id
stringlengths 6
117
| description
stringlengths 29
13k
| code
stringlengths 9
465k
| language
class label 4
classes | test_samples
sequence | source
class label 5
classes |
---|---|---|---|---|---|
284_B. Cows and Poker Game_100 | There are n cows playing poker at a table. For the current betting phase, each player's status is either "ALLIN", "IN", or "FOLDED", and does not change throughout the phase. To increase the suspense, a player whose current status is not "FOLDED" may show his/her hand to the table. However, so as not to affect any betting decisions, he/she may only do so if all other players have a status of either "ALLIN" or "FOLDED". The player's own status may be either "ALLIN" or "IN".
Find the number of cows that can currently show their hands without affecting any betting decisions.
Input
The first line contains a single integer, n (2 ≤ n ≤ 2·105). The second line contains n characters, each either "A", "I", or "F". The i-th character is "A" if the i-th player's status is "ALLIN", "I" if the i-th player's status is "IN", or "F" if the i-th player's status is "FOLDED".
Output
The first line should contain a single integer denoting the number of players that can currently show their hands.
Examples
Input
6
AFFAAA
Output
4
Input
3
AFI
Output
1
Note
In the first sample, cows 1, 4, 5, and 6 can show their hands. In the second sample, only cow 3 can show her hand. | #! /bin/python
n = int(raw_input())
s = raw_input()
#I = [s.index(i) for i in s if i == 'I']
#A = [s.index(i) for i in s if i == 'A']
I = 0
A = 0
for i in s:
if i == 'I':I += 1
elif i == 'A': A += 1
#print I,A
if I > 1:
print '0'
elif I == 1:
print '1'
else:
print A
| 1Python2
| {
"input": [
"3\nAFI\n",
"6\nAFFAAA\n",
"2\nFF\n",
"5\nIIIIF\n",
"5\nFAFFF\n",
"2\nFA\n",
"3\nAAA\n",
"5\nFAIAF\n",
"5\nAIFFF\n",
"3\nFFF\n",
"3\nFIF\n",
"3\nIII\n",
"5\nFAAII\n",
"2\nIF\n",
"8\nAFFFFIAF\n",
"5\nIIIII\n",
"3\nIAA\n",
"10\nAAAAAAAAAA\n",
"3\nIIF\n",
"8\nIAAIFFFI\n",
"3\nAFF\n",
"3\nIIA\n",
"5\nAFAFA\n",
"5\nAAAAI\n",
"5\nAIAIF\n",
"100\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\n",
"5\nFFFAF\n",
"5\nIIAAF\n",
"5\nAAFFA\n",
"6\nAAAFFA\n",
"2\nAF\n",
"8\nIFFFIAAI\n",
"3\nFFA\n",
"3\nAII\n",
"5\nIAAAA\n",
"3\nIFA\n",
"5\nFFFFA\n",
"5\nAFFFF\n",
"3\nIFF\n",
"2\nFI\n",
"3\nAAI\n",
"5\nFAAFA\n",
"3\nFIA\n",
"5\nAFFAA\n",
"3\nFAI\n",
"5\nFIIII\n",
"5\nIAFAF\n",
"8\nIFAIFAFI\n",
"3\nIAF\n",
"5\nFFAFF\n",
"5\nAAFAF\n",
"3\nFFI\n",
"3\nAIF\n",
"5\nAAFIF\n",
"8\nIFAFIAFI\n",
"5\nFIFAA\n",
"5\nFAIIA\n",
"8\nFAIFFFFA\n",
"3\nAIA\n",
"8\nFAAIFFII\n",
"5\nAFAAF\n",
"5\nIAAIF\n",
"3\nFAF\n",
"5\nAIAAA\n",
"8\nIFAFIFAI\n",
"8\nIIFFIAAF\n",
"6\nAFAFAA\n",
"6\nAAFAFA\n",
"5\nIFIII\n",
"5\nFAIFA\n",
"8\nAFIFFFAF\n",
"5\nAAIAA\n",
"5\nFIAIA\n",
"5\nAAAIA\n",
"5\nFAFAI\n",
"5\nFAFAA\n",
"5\nAIFFA\n",
"5\nAAAFF\n",
"5\nAFIAF\n",
"8\nAAIFFFFF\n",
"5\nFIAAI\n",
"8\nIAFIFFAI\n",
"5\nFFAAA\n",
"5\nAIIAF\n",
"8\nFAAIIFFI\n",
"6\nAFAAFA\n",
"8\nIAFIFAFI\n",
"5\nIAFFA\n",
"5\nFAAAF\n",
"5\nFIAFA\n",
"8\nIAFIFFIA\n",
"8\nIAFIAFFI\n",
"8\nIFFAIFAI\n",
"5\nAAFII\n",
"8\nFFAFFIAF\n",
"6\nFAAAFA\n",
"6\nAFAAAF\n",
"5\nAAIFF\n",
"8\nFFFFFIAA\n",
"5\nIAAFI\n",
"8\nAAFIFFII\n",
"8\nIFFIIAAF\n",
"5\nIAFAI\n",
"5\nIFAAI\n",
"8\nFIFIIAAF\n",
"8\nFIFIIFAA\n",
"8\nAIAIFFFI\n",
"8\nAFIIFAFI\n",
"5\nAFIIA\n",
"5\nIIIFI\n",
"8\nFAFFFIFA\n",
"5\nIFAFA\n",
"8\nAAFFFFIF\n",
"8\nIAFIIAFF\n",
"8\nAIFFIFAI\n",
"5\nIIFAA\n",
"5\nIFAIA\n",
"5\nAAIIF\n",
"8\nIIFIFFAA\n",
"5\nAIFIA\n",
"8\nFAFFIFFA\n",
"8\nAFFFIFFA\n",
"5\nAFFIF\n",
"3\nFII\n",
"3\nIAI\n",
"5\nFFIAA\n"
],
"output": [
"1",
"4",
"0",
"0",
"1",
"1",
"3",
"1",
"1",
"0",
"1",
"0",
"0",
"1",
"1",
"0",
"1",
"10",
"0",
"0",
"1",
"0",
"3",
"1",
"0",
"100",
"1\n",
"0\n",
"3\n",
"4\n",
"1\n",
"0\n",
"1\n",
"0\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"3\n",
"1\n",
"3\n",
"1\n",
"0\n",
"1\n",
"0\n",
"1\n",
"1\n",
"3\n",
"1\n",
"1\n",
"1\n",
"0\n",
"1\n",
"0\n",
"1\n",
"1\n",
"0\n",
"3\n",
"0\n",
"1\n",
"1\n",
"0\n",
"0\n",
"4\n",
"4\n",
"0\n",
"1\n",
"1\n",
"1\n",
"0\n",
"1\n",
"1\n",
"3\n",
"1\n",
"3\n",
"1\n",
"1\n",
"0\n",
"0\n",
"3\n",
"0\n",
"0\n",
"4\n",
"0\n",
"1\n",
"3\n",
"1\n",
"0\n",
"0\n",
"0\n",
"0\n",
"1\n",
"4\n",
"4\n",
"1\n",
"1\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"1\n",
"1\n",
"1\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"1\n",
"1\n",
"1\n",
"0\n",
"0\n",
"1\n"
]
} | 2CODEFORCES
|
284_B. Cows and Poker Game_101 | There are n cows playing poker at a table. For the current betting phase, each player's status is either "ALLIN", "IN", or "FOLDED", and does not change throughout the phase. To increase the suspense, a player whose current status is not "FOLDED" may show his/her hand to the table. However, so as not to affect any betting decisions, he/she may only do so if all other players have a status of either "ALLIN" or "FOLDED". The player's own status may be either "ALLIN" or "IN".
Find the number of cows that can currently show their hands without affecting any betting decisions.
Input
The first line contains a single integer, n (2 ≤ n ≤ 2·105). The second line contains n characters, each either "A", "I", or "F". The i-th character is "A" if the i-th player's status is "ALLIN", "I" if the i-th player's status is "IN", or "F" if the i-th player's status is "FOLDED".
Output
The first line should contain a single integer denoting the number of players that can currently show their hands.
Examples
Input
6
AFFAAA
Output
4
Input
3
AFI
Output
1
Note
In the first sample, cows 1, 4, 5, and 6 can show their hands. In the second sample, only cow 3 can show her hand. | #include <bits/stdc++.h>
using namespace std;
template <class T>
void pp(T v) {
for (__typeof((v).begin()) it = (v).begin(); it != (v).end(); ++it)
cout << *it << ' ';
cout << endl;
}
template <class T>
void pp(T v, int n) {
for (int i = 0; i < (int)n; i++) cout << v[i] << ' ';
cout << endl;
}
template <class T>
inline void chmax(T &a, const T b) {
a = max(a, b);
}
template <class T>
inline void chmin(T &a, const T b) {
a = min(a, b);
}
const int INF = 1 << 28;
const double EPS = 1.0e-9;
static const int dx[] = {1, 0, -1, 0}, dy[] = {0, -1, 0, 1};
int main(void) {
int N;
cin >> N;
string line;
cin >> line;
int A = 0, F = 0, I = 0;
for (int i = 0; i < (int)N; i++) {
switch (line[i]) {
case 'A':
A++;
break;
case 'F':
F++;
break;
case 'I':
I++;
break;
}
}
int ans = 0;
for (int i = 0; i < (int)N; i++) {
if (line[i] == 'A' || line[i] == 'I') {
int irem = I - (line[i] == 'I' ? 1 : 0);
if (irem <= 0) ans++;
}
}
cout << ans << endl;
return 0;
}
| 2C++
| {
"input": [
"3\nAFI\n",
"6\nAFFAAA\n",
"2\nFF\n",
"5\nIIIIF\n",
"5\nFAFFF\n",
"2\nFA\n",
"3\nAAA\n",
"5\nFAIAF\n",
"5\nAIFFF\n",
"3\nFFF\n",
"3\nFIF\n",
"3\nIII\n",
"5\nFAAII\n",
"2\nIF\n",
"8\nAFFFFIAF\n",
"5\nIIIII\n",
"3\nIAA\n",
"10\nAAAAAAAAAA\n",
"3\nIIF\n",
"8\nIAAIFFFI\n",
"3\nAFF\n",
"3\nIIA\n",
"5\nAFAFA\n",
"5\nAAAAI\n",
"5\nAIAIF\n",
"100\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\n",
"5\nFFFAF\n",
"5\nIIAAF\n",
"5\nAAFFA\n",
"6\nAAAFFA\n",
"2\nAF\n",
"8\nIFFFIAAI\n",
"3\nFFA\n",
"3\nAII\n",
"5\nIAAAA\n",
"3\nIFA\n",
"5\nFFFFA\n",
"5\nAFFFF\n",
"3\nIFF\n",
"2\nFI\n",
"3\nAAI\n",
"5\nFAAFA\n",
"3\nFIA\n",
"5\nAFFAA\n",
"3\nFAI\n",
"5\nFIIII\n",
"5\nIAFAF\n",
"8\nIFAIFAFI\n",
"3\nIAF\n",
"5\nFFAFF\n",
"5\nAAFAF\n",
"3\nFFI\n",
"3\nAIF\n",
"5\nAAFIF\n",
"8\nIFAFIAFI\n",
"5\nFIFAA\n",
"5\nFAIIA\n",
"8\nFAIFFFFA\n",
"3\nAIA\n",
"8\nFAAIFFII\n",
"5\nAFAAF\n",
"5\nIAAIF\n",
"3\nFAF\n",
"5\nAIAAA\n",
"8\nIFAFIFAI\n",
"8\nIIFFIAAF\n",
"6\nAFAFAA\n",
"6\nAAFAFA\n",
"5\nIFIII\n",
"5\nFAIFA\n",
"8\nAFIFFFAF\n",
"5\nAAIAA\n",
"5\nFIAIA\n",
"5\nAAAIA\n",
"5\nFAFAI\n",
"5\nFAFAA\n",
"5\nAIFFA\n",
"5\nAAAFF\n",
"5\nAFIAF\n",
"8\nAAIFFFFF\n",
"5\nFIAAI\n",
"8\nIAFIFFAI\n",
"5\nFFAAA\n",
"5\nAIIAF\n",
"8\nFAAIIFFI\n",
"6\nAFAAFA\n",
"8\nIAFIFAFI\n",
"5\nIAFFA\n",
"5\nFAAAF\n",
"5\nFIAFA\n",
"8\nIAFIFFIA\n",
"8\nIAFIAFFI\n",
"8\nIFFAIFAI\n",
"5\nAAFII\n",
"8\nFFAFFIAF\n",
"6\nFAAAFA\n",
"6\nAFAAAF\n",
"5\nAAIFF\n",
"8\nFFFFFIAA\n",
"5\nIAAFI\n",
"8\nAAFIFFII\n",
"8\nIFFIIAAF\n",
"5\nIAFAI\n",
"5\nIFAAI\n",
"8\nFIFIIAAF\n",
"8\nFIFIIFAA\n",
"8\nAIAIFFFI\n",
"8\nAFIIFAFI\n",
"5\nAFIIA\n",
"5\nIIIFI\n",
"8\nFAFFFIFA\n",
"5\nIFAFA\n",
"8\nAAFFFFIF\n",
"8\nIAFIIAFF\n",
"8\nAIFFIFAI\n",
"5\nIIFAA\n",
"5\nIFAIA\n",
"5\nAAIIF\n",
"8\nIIFIFFAA\n",
"5\nAIFIA\n",
"8\nFAFFIFFA\n",
"8\nAFFFIFFA\n",
"5\nAFFIF\n",
"3\nFII\n",
"3\nIAI\n",
"5\nFFIAA\n"
],
"output": [
"1",
"4",
"0",
"0",
"1",
"1",
"3",
"1",
"1",
"0",
"1",
"0",
"0",
"1",
"1",
"0",
"1",
"10",
"0",
"0",
"1",
"0",
"3",
"1",
"0",
"100",
"1\n",
"0\n",
"3\n",
"4\n",
"1\n",
"0\n",
"1\n",
"0\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"3\n",
"1\n",
"3\n",
"1\n",
"0\n",
"1\n",
"0\n",
"1\n",
"1\n",
"3\n",
"1\n",
"1\n",
"1\n",
"0\n",
"1\n",
"0\n",
"1\n",
"1\n",
"0\n",
"3\n",
"0\n",
"1\n",
"1\n",
"0\n",
"0\n",
"4\n",
"4\n",
"0\n",
"1\n",
"1\n",
"1\n",
"0\n",
"1\n",
"1\n",
"3\n",
"1\n",
"3\n",
"1\n",
"1\n",
"0\n",
"0\n",
"3\n",
"0\n",
"0\n",
"4\n",
"0\n",
"1\n",
"3\n",
"1\n",
"0\n",
"0\n",
"0\n",
"0\n",
"1\n",
"4\n",
"4\n",
"1\n",
"1\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"1\n",
"1\n",
"1\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"1\n",
"1\n",
"1\n",
"0\n",
"0\n",
"1\n"
]
} | 2CODEFORCES
|
284_B. Cows and Poker Game_102 | There are n cows playing poker at a table. For the current betting phase, each player's status is either "ALLIN", "IN", or "FOLDED", and does not change throughout the phase. To increase the suspense, a player whose current status is not "FOLDED" may show his/her hand to the table. However, so as not to affect any betting decisions, he/she may only do so if all other players have a status of either "ALLIN" or "FOLDED". The player's own status may be either "ALLIN" or "IN".
Find the number of cows that can currently show their hands without affecting any betting decisions.
Input
The first line contains a single integer, n (2 ≤ n ≤ 2·105). The second line contains n characters, each either "A", "I", or "F". The i-th character is "A" if the i-th player's status is "ALLIN", "I" if the i-th player's status is "IN", or "F" if the i-th player's status is "FOLDED".
Output
The first line should contain a single integer denoting the number of players that can currently show their hands.
Examples
Input
6
AFFAAA
Output
4
Input
3
AFI
Output
1
Note
In the first sample, cows 1, 4, 5, and 6 can show their hands. In the second sample, only cow 3 can show her hand. | #!/bin/python
# -*- coding: utf-8 -*-
n = int(input())
s = input()
print(int(s.count('I') == 1) if 'I' in s else s.count('A'))
| 3Python3
| {
"input": [
"3\nAFI\n",
"6\nAFFAAA\n",
"2\nFF\n",
"5\nIIIIF\n",
"5\nFAFFF\n",
"2\nFA\n",
"3\nAAA\n",
"5\nFAIAF\n",
"5\nAIFFF\n",
"3\nFFF\n",
"3\nFIF\n",
"3\nIII\n",
"5\nFAAII\n",
"2\nIF\n",
"8\nAFFFFIAF\n",
"5\nIIIII\n",
"3\nIAA\n",
"10\nAAAAAAAAAA\n",
"3\nIIF\n",
"8\nIAAIFFFI\n",
"3\nAFF\n",
"3\nIIA\n",
"5\nAFAFA\n",
"5\nAAAAI\n",
"5\nAIAIF\n",
"100\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\n",
"5\nFFFAF\n",
"5\nIIAAF\n",
"5\nAAFFA\n",
"6\nAAAFFA\n",
"2\nAF\n",
"8\nIFFFIAAI\n",
"3\nFFA\n",
"3\nAII\n",
"5\nIAAAA\n",
"3\nIFA\n",
"5\nFFFFA\n",
"5\nAFFFF\n",
"3\nIFF\n",
"2\nFI\n",
"3\nAAI\n",
"5\nFAAFA\n",
"3\nFIA\n",
"5\nAFFAA\n",
"3\nFAI\n",
"5\nFIIII\n",
"5\nIAFAF\n",
"8\nIFAIFAFI\n",
"3\nIAF\n",
"5\nFFAFF\n",
"5\nAAFAF\n",
"3\nFFI\n",
"3\nAIF\n",
"5\nAAFIF\n",
"8\nIFAFIAFI\n",
"5\nFIFAA\n",
"5\nFAIIA\n",
"8\nFAIFFFFA\n",
"3\nAIA\n",
"8\nFAAIFFII\n",
"5\nAFAAF\n",
"5\nIAAIF\n",
"3\nFAF\n",
"5\nAIAAA\n",
"8\nIFAFIFAI\n",
"8\nIIFFIAAF\n",
"6\nAFAFAA\n",
"6\nAAFAFA\n",
"5\nIFIII\n",
"5\nFAIFA\n",
"8\nAFIFFFAF\n",
"5\nAAIAA\n",
"5\nFIAIA\n",
"5\nAAAIA\n",
"5\nFAFAI\n",
"5\nFAFAA\n",
"5\nAIFFA\n",
"5\nAAAFF\n",
"5\nAFIAF\n",
"8\nAAIFFFFF\n",
"5\nFIAAI\n",
"8\nIAFIFFAI\n",
"5\nFFAAA\n",
"5\nAIIAF\n",
"8\nFAAIIFFI\n",
"6\nAFAAFA\n",
"8\nIAFIFAFI\n",
"5\nIAFFA\n",
"5\nFAAAF\n",
"5\nFIAFA\n",
"8\nIAFIFFIA\n",
"8\nIAFIAFFI\n",
"8\nIFFAIFAI\n",
"5\nAAFII\n",
"8\nFFAFFIAF\n",
"6\nFAAAFA\n",
"6\nAFAAAF\n",
"5\nAAIFF\n",
"8\nFFFFFIAA\n",
"5\nIAAFI\n",
"8\nAAFIFFII\n",
"8\nIFFIIAAF\n",
"5\nIAFAI\n",
"5\nIFAAI\n",
"8\nFIFIIAAF\n",
"8\nFIFIIFAA\n",
"8\nAIAIFFFI\n",
"8\nAFIIFAFI\n",
"5\nAFIIA\n",
"5\nIIIFI\n",
"8\nFAFFFIFA\n",
"5\nIFAFA\n",
"8\nAAFFFFIF\n",
"8\nIAFIIAFF\n",
"8\nAIFFIFAI\n",
"5\nIIFAA\n",
"5\nIFAIA\n",
"5\nAAIIF\n",
"8\nIIFIFFAA\n",
"5\nAIFIA\n",
"8\nFAFFIFFA\n",
"8\nAFFFIFFA\n",
"5\nAFFIF\n",
"3\nFII\n",
"3\nIAI\n",
"5\nFFIAA\n"
],
"output": [
"1",
"4",
"0",
"0",
"1",
"1",
"3",
"1",
"1",
"0",
"1",
"0",
"0",
"1",
"1",
"0",
"1",
"10",
"0",
"0",
"1",
"0",
"3",
"1",
"0",
"100",
"1\n",
"0\n",
"3\n",
"4\n",
"1\n",
"0\n",
"1\n",
"0\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"3\n",
"1\n",
"3\n",
"1\n",
"0\n",
"1\n",
"0\n",
"1\n",
"1\n",
"3\n",
"1\n",
"1\n",
"1\n",
"0\n",
"1\n",
"0\n",
"1\n",
"1\n",
"0\n",
"3\n",
"0\n",
"1\n",
"1\n",
"0\n",
"0\n",
"4\n",
"4\n",
"0\n",
"1\n",
"1\n",
"1\n",
"0\n",
"1\n",
"1\n",
"3\n",
"1\n",
"3\n",
"1\n",
"1\n",
"0\n",
"0\n",
"3\n",
"0\n",
"0\n",
"4\n",
"0\n",
"1\n",
"3\n",
"1\n",
"0\n",
"0\n",
"0\n",
"0\n",
"1\n",
"4\n",
"4\n",
"1\n",
"1\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"1\n",
"1\n",
"1\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"1\n",
"1\n",
"1\n",
"0\n",
"0\n",
"1\n"
]
} | 2CODEFORCES
|
284_B. Cows and Poker Game_103 | There are n cows playing poker at a table. For the current betting phase, each player's status is either "ALLIN", "IN", or "FOLDED", and does not change throughout the phase. To increase the suspense, a player whose current status is not "FOLDED" may show his/her hand to the table. However, so as not to affect any betting decisions, he/she may only do so if all other players have a status of either "ALLIN" or "FOLDED". The player's own status may be either "ALLIN" or "IN".
Find the number of cows that can currently show their hands without affecting any betting decisions.
Input
The first line contains a single integer, n (2 ≤ n ≤ 2·105). The second line contains n characters, each either "A", "I", or "F". The i-th character is "A" if the i-th player's status is "ALLIN", "I" if the i-th player's status is "IN", or "F" if the i-th player's status is "FOLDED".
Output
The first line should contain a single integer denoting the number of players that can currently show their hands.
Examples
Input
6
AFFAAA
Output
4
Input
3
AFI
Output
1
Note
In the first sample, cows 1, 4, 5, and 6 can show their hands. In the second sample, only cow 3 can show her hand. | import java.util.Scanner;
public class Poker {
/**
* @param args
*/
public static void main(String[] args) {
// TODO Auto-generated method stub
Scanner sc = new Scanner(System.in);
int jugadores = sc.nextInt();
String status = null;
int mostrar = 0;
int a = 0;
int i = 0;
int f = 0;
status = sc.next();
for (int l = 0; l < jugadores; l++) {
if (status.substring(l, l + 1).equals("I")) {
i++;
} else if (status.substring(l, l + 1).equals("A")) {
a++;
}
if (i > 1) {
mostrar = 0;
} else if (i == 1) {
mostrar = 1;
} else if (i == 0) {
mostrar = a;
}
}
System.out.println(mostrar);
}
} | 4JAVA
| {
"input": [
"3\nAFI\n",
"6\nAFFAAA\n",
"2\nFF\n",
"5\nIIIIF\n",
"5\nFAFFF\n",
"2\nFA\n",
"3\nAAA\n",
"5\nFAIAF\n",
"5\nAIFFF\n",
"3\nFFF\n",
"3\nFIF\n",
"3\nIII\n",
"5\nFAAII\n",
"2\nIF\n",
"8\nAFFFFIAF\n",
"5\nIIIII\n",
"3\nIAA\n",
"10\nAAAAAAAAAA\n",
"3\nIIF\n",
"8\nIAAIFFFI\n",
"3\nAFF\n",
"3\nIIA\n",
"5\nAFAFA\n",
"5\nAAAAI\n",
"5\nAIAIF\n",
"100\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\n",
"5\nFFFAF\n",
"5\nIIAAF\n",
"5\nAAFFA\n",
"6\nAAAFFA\n",
"2\nAF\n",
"8\nIFFFIAAI\n",
"3\nFFA\n",
"3\nAII\n",
"5\nIAAAA\n",
"3\nIFA\n",
"5\nFFFFA\n",
"5\nAFFFF\n",
"3\nIFF\n",
"2\nFI\n",
"3\nAAI\n",
"5\nFAAFA\n",
"3\nFIA\n",
"5\nAFFAA\n",
"3\nFAI\n",
"5\nFIIII\n",
"5\nIAFAF\n",
"8\nIFAIFAFI\n",
"3\nIAF\n",
"5\nFFAFF\n",
"5\nAAFAF\n",
"3\nFFI\n",
"3\nAIF\n",
"5\nAAFIF\n",
"8\nIFAFIAFI\n",
"5\nFIFAA\n",
"5\nFAIIA\n",
"8\nFAIFFFFA\n",
"3\nAIA\n",
"8\nFAAIFFII\n",
"5\nAFAAF\n",
"5\nIAAIF\n",
"3\nFAF\n",
"5\nAIAAA\n",
"8\nIFAFIFAI\n",
"8\nIIFFIAAF\n",
"6\nAFAFAA\n",
"6\nAAFAFA\n",
"5\nIFIII\n",
"5\nFAIFA\n",
"8\nAFIFFFAF\n",
"5\nAAIAA\n",
"5\nFIAIA\n",
"5\nAAAIA\n",
"5\nFAFAI\n",
"5\nFAFAA\n",
"5\nAIFFA\n",
"5\nAAAFF\n",
"5\nAFIAF\n",
"8\nAAIFFFFF\n",
"5\nFIAAI\n",
"8\nIAFIFFAI\n",
"5\nFFAAA\n",
"5\nAIIAF\n",
"8\nFAAIIFFI\n",
"6\nAFAAFA\n",
"8\nIAFIFAFI\n",
"5\nIAFFA\n",
"5\nFAAAF\n",
"5\nFIAFA\n",
"8\nIAFIFFIA\n",
"8\nIAFIAFFI\n",
"8\nIFFAIFAI\n",
"5\nAAFII\n",
"8\nFFAFFIAF\n",
"6\nFAAAFA\n",
"6\nAFAAAF\n",
"5\nAAIFF\n",
"8\nFFFFFIAA\n",
"5\nIAAFI\n",
"8\nAAFIFFII\n",
"8\nIFFIIAAF\n",
"5\nIAFAI\n",
"5\nIFAAI\n",
"8\nFIFIIAAF\n",
"8\nFIFIIFAA\n",
"8\nAIAIFFFI\n",
"8\nAFIIFAFI\n",
"5\nAFIIA\n",
"5\nIIIFI\n",
"8\nFAFFFIFA\n",
"5\nIFAFA\n",
"8\nAAFFFFIF\n",
"8\nIAFIIAFF\n",
"8\nAIFFIFAI\n",
"5\nIIFAA\n",
"5\nIFAIA\n",
"5\nAAIIF\n",
"8\nIIFIFFAA\n",
"5\nAIFIA\n",
"8\nFAFFIFFA\n",
"8\nAFFFIFFA\n",
"5\nAFFIF\n",
"3\nFII\n",
"3\nIAI\n",
"5\nFFIAA\n"
],
"output": [
"1",
"4",
"0",
"0",
"1",
"1",
"3",
"1",
"1",
"0",
"1",
"0",
"0",
"1",
"1",
"0",
"1",
"10",
"0",
"0",
"1",
"0",
"3",
"1",
"0",
"100",
"1\n",
"0\n",
"3\n",
"4\n",
"1\n",
"0\n",
"1\n",
"0\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"3\n",
"1\n",
"3\n",
"1\n",
"0\n",
"1\n",
"0\n",
"1\n",
"1\n",
"3\n",
"1\n",
"1\n",
"1\n",
"0\n",
"1\n",
"0\n",
"1\n",
"1\n",
"0\n",
"3\n",
"0\n",
"1\n",
"1\n",
"0\n",
"0\n",
"4\n",
"4\n",
"0\n",
"1\n",
"1\n",
"1\n",
"0\n",
"1\n",
"1\n",
"3\n",
"1\n",
"3\n",
"1\n",
"1\n",
"0\n",
"0\n",
"3\n",
"0\n",
"0\n",
"4\n",
"0\n",
"1\n",
"3\n",
"1\n",
"0\n",
"0\n",
"0\n",
"0\n",
"1\n",
"4\n",
"4\n",
"1\n",
"1\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"1\n",
"1\n",
"1\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"1\n",
"1\n",
"1\n",
"0\n",
"0\n",
"1\n"
]
} | 2CODEFORCES
|
309_B. Context Advertising_104 | Advertising has become part of our routine. And now, in the era of progressive technologies, we need your ideas to make advertising better!
In this problem we'll look at a simplified version of context advertising. You've got a text, consisting of exactly n words. A standard advertising banner has exactly r lines, each line can contain at most c characters. The potential customer always likes it when they can see lots of advertising, so you should determine which maximum number of consecutive words from the text can be written on the banner. Single words in one line of the banner should be separated by spaces. You are allowed to insert more than one space at once. Note that you are not allowed to break the words, that is, each word in the text must occupy exactly one line in the banner. Besides, you cannot change the word order, that is, if you read the banner text consecutively, from top to bottom and from left to right, you should get some consecutive part of the advertisement text.
More formally, the statement can be written like that. Let's say that all words are indexed from 1 to n in the order in which they occur in the advertisement text. Then you have to choose all words, starting from some i-th one and ending with some j-th one (1 ≤ i ≤ j ≤ n), so that all of them could be written on the banner. There must be as many words as possible. See the samples for clarifications.
Input
The first input line contains three integers n, r, c (1 ≤ n, r, c ≤ 106; r × c ≤ 106). The next line contains a text, consisting of n words. The words consist only of lowercase English letters and are not empty. The words in the lines are separated by single spaces. The total number of characters in all words doesn't exceed 5·106.
Output
Print at most r lines, in each line print at most c characters — the optimal advertisement banner. If there are multiple advertisement banners, print any of them.
Note that some lines of the banner can be empty. You are allowed not to print such lines.
Examples
Input
9 4 12
this is a sample text for croc final round
Output
this is a
sample text
for croc
final round
Input
9 1 9
this is a sample text for croc final round
Output
this is a
Input
6 2 3
croc a a a croc a
Output
a a
a
Input
2 2 5
first second
Output
first | #include <bits/stdc++.h>
using namespace std;
const int N = 1000100, L = 5000500, BufL = 220;
char ch[N + L] = {}, buf[BufL] = {};
int n, r, c, l, a[N] = {}, p[N] = {}, f[N] = {}, g[N] = {};
int main() {
gets(buf + 1);
sscanf(buf + 1, "%d%d%d", &n, &r, &c);
gets(ch + 1);
l = strlen(ch + 1);
for (int i = 1, tot = 0; i <= l; ++i)
if (isalpha(ch[i])) {
p[++tot] = i;
while (i <= l && isalpha(ch[i])) ++a[tot], ++i;
}
for (int i = 1; i <= n + 1; ++i) g[i] = i;
for (int i = 1, t = 0, s = -1; i <= n; s -= a[i++] + 1) {
while (t <= n && s <= c) s += a[++t] + 1;
f[i] = t;
}
f[n + 1] = n + 1;
for (; r; r >>= 1) {
if (r & 1)
for (int i = 1; i <= n; ++i) g[i] = f[g[i]];
for (int i = 1; i <= n; ++i) f[i] = f[f[i]];
}
int ans = 0;
for (int i = 1; i <= n; ++i)
if (g[i] - i > g[ans] - ans) ans = i;
for (int i = ans, s = c; i < g[ans]; ++i) {
if (s + a[i] + 1 <= c) {
s += a[i] + 1;
putchar(' ');
} else {
if (i > ans) puts("");
s = a[i];
}
for (int j = p[i]; j < p[i] + a[i]; ++j) putchar(ch[j]);
}
return 0;
}
| 2C++
| {
"input": [
"9 4 12\nthis is a sample text for croc final round\n",
"9 1 9\nthis is a sample text for croc final round\n",
"2 2 5\nfirst second\n",
"6 2 3\ncroc a a a croc a\n",
"10 20 11\nisnr u eq qas gcj rnnf fpb c dz g\n",
"10 4 3\nuzu bl fl ou uist j lp e gkp fmo\n",
"10 10 19\nlguv zi riht pf jtbo qmk qp nvh qur z\n",
"10 4 6\nhukd i i npii fgin j ek hhc lzi b\n",
"10 4 6\nxg gi cih cl pnib ims spmo nh v bvli\n",
"10 16 6\notgi f i j oazv vsy fizc wh es faka\n",
"10 18 14\nonj uuzu gwia kvs bl eo lwws jpi cevh zvot\n",
"10 2 6\nonj uuzu gwia kvs bl eo lwws jpi cevh zvot\n",
"10 8 10\nhukd i i npii fgin j ek hhc lzi b\n",
"10 1 6\nvmg cr xo yqr xz tfo ibxv c p nomd\n",
"10 20 15\ne u xn fxrz kk o run oir auza byc\n",
"10 14 13\nsoc cf y bv kp ceb k hd nss p\n",
"5 2 6\naa aaa aa a a\n",
"10 4 17\nbi ys xm sd btbp bplj h r mp lbi\n",
"10 19 13\nifa aonn ng tk vygu lm nb ut fb v\n",
"10 12 2\nxg gi cih cl pnib ims spmo nh v bvli\n",
"10 15 15\nv vshb rdy o fxbs nlnn v ize yvrq c\n",
"10 12 7\nl ry ksgx bxeb t w szsw m bf eyfc\n",
"10 4 3\nisnr u eq qas gcj rnnf fpb c dz g\n",
"10 4 1\nkvet t myiq skt ua ju zx ax dm s\n",
"10 5 10\nvmg cr xo yqr xz tfo ibxv c p nomd\n",
"10 8 5\nkvet t myiq skt ua ju zx ax dm s\n",
"10 3 6\neff qe jit rj c o mp jfqy xtcp wayp\n",
"10 2 11\nbs ypyq futw y edwq rrsz x kj sx i\n",
"10 14 7\nrll seqs fxc xjrs yp e att xx hwsf plyi\n",
"10 19 6\nybkb wrt vifr ct lm v gg rhd m r\n",
"10 1 6\nlz lgos cmnt lfa vu cljk tsm cydm vy gqed\n",
"10 5 5\nalab cib vz cgm q nne tuxf yjst hbk jdn\n",
"10 15 10\neff qe jit rj c o mp jfqy xtcp wayp\n",
"10 4 6\notgi f i j oazv vsy fizc wh es faka\n",
"10 4 1\nbi ys xm sd btbp bplj h r mp lbi\n",
"10 5 5\nib yi c f ka yg xdz qk fs jk\n",
"10 2 3\nrll seqs fxc xjrs yp e att xx hwsf plyi\n",
"10 10 18\nf g y fu qjlj s lqrl hwi e itg\n",
"10 7 3\nejw d u qpd ky zzo lb wit jos jaqr\n",
"10 2 1\nsoc cf y bv kp ceb k hd nss p\n",
"10 14 13\nw atdg vkjo s mpr efv bu f oy wflo\n",
"10 2 6\nf g y fu qjlj s lqrl hwi e itg\n",
"10 9 14\nlz lgos cmnt lfa vu cljk tsm cydm vy gqed\n",
"10 5 6\np kaa pf eafz xep fgob lcz kna j tifx\n",
"10 12 20\nh y u vb qai xbm lp ip w uedc\n",
"10 15 1\nr aaw fmz r k jtge mwj yw ef i\n",
"10 2 17\nyr gens ax icuz rj ran c eji cmdv fut\n",
"10 3 6\nybkb wrt vifr ct lm v gg rhd m r\n",
"10 1 6\np kaa pf eafz xep fgob lcz kna j tifx\n",
"10 5 11\nna qt xck lob v jpg h ac s j\n",
"10 20 11\njsnr u eq qas gcj rnnf fpb c dz g\n",
"10 10 19\nlguv zi riht pf jtbo qmj qp nvh qur z\n",
"10 4 6\nhukd i i npii fgin j ek ihc lzi b\n",
"10 4 6\nxg gi cih lc pnib ims spmo nh v bvli\n",
"10 16 6\notgi f i j oazu vsy fizc wh es faka\n",
"10 18 14\nonj uuzu gwia kvs bl en lwws jpi cevh zvot\n",
"10 8 10\nhukd i i npii fgin j ek hhd lzi b\n",
"10 20 15\nd u xn fxrz kk o run oir auza byc\n",
"10 14 13\nsoc cf z bv kp ceb k hd nss p\n",
"5 2 6\naa aaa aa a b\n",
"10 4 17\nbi ys xm sd btbp bplj h r mp lci\n",
"10 19 13\nifa aonn ng tk vygu lm nb ut bf v\n",
"10 12 2\nxg gi cig cl pnib ims spmo nh v bvli\n",
"10 12 7\nl ry ksgx bxeb t w szsw m bf ezfc\n",
"10 4 3\nisrn u eq qas gcj rnnf fpb c dz g\n",
"10 8 5\nkvet t myiq tkt ua ju zx ax dm s\n",
"10 3 6\neff eq jit rj c o mp jfqy xtcp wayp\n",
"10 2 15\nbs ypyq futw y edwq rrsz x kj sx i\n",
"10 14 7\nrlk seqs fxc xjrs yp e att xx hwsf plyi\n",
"10 19 6\nybkb wrt vifr ct lm v gg rhd l r\n",
"10 1 6\nlz lgos cmnt lfa vu cljk tsn cydm vy gqed\n",
"10 5 5\nalab cib vz cgm q nne tuxf yjst hbk jen\n",
"10 15 10\neff qe jit rj c o mp jfqy xucp wayp\n",
"10 4 6\notgi f i j oazv vsy fizc wh es fkaa\n",
"10 4 1\nbi ys xm sd btbp bplj g r mp lbi\n",
"10 5 5\nib yi c f ka yf xdz qk fs jk\n",
"10 2 3\nrll seqs fxc xjrs yp f att xx hwsf plyi\n",
"10 2 1\nroc cf y bv kp ceb k hd nss p\n",
"10 14 13\nw atdg vkjo s mpr efv bu f ny wflo\n",
"10 3 6\nf g y fu qjlj s lqrl hwi e itg\n",
"10 9 14\nlz ogls cmnt lfa vu cljk tsm cydm vy gqed\n",
"10 5 6\np kaa pf eafz xep fgob lcz kna k tifx\n",
"10 12 3\nh y u vb qai xbm lp ip w uedc\n",
"10 1 17\nyr gens ax icuz rj ran c eji cmdv fut\n",
"10 3 6\nybkb wrt vifr ct lm v hg rhd m r\n",
"10 1 6\np kaa pf eafz xep fgob zcl kna j tifx\n",
"10 5 11\nna qt xck lob v jpg g ac s j\n",
"9 4 12\nthis is a sample text for csoc final round\n",
"9 2 9\nthis is a sample text for croc final round\n",
"2 2 5\nfitsr second\n",
"10 20 11\njsnr u eq qas gcj rnnf fpb c cz g\n",
"10 10 19\nlguv zi riht qf jtbo qmj qp nvh qur z\n",
"10 4 12\nhukd i i npii fgin j ek ihc lzi b\n",
"10 16 6\notgi g i j oazu vsy fizc wh es faka\n",
"10 18 14\nonj uuzu gwia kvs lb en lwws jpi cevh zvot\n",
"10 8 10\nhukd i i npii fgin j ek hhd lzi a\n",
"10 20 15\nd u xn fxrz kk o run oir auza bxc\n",
"10 4 6\nxg gi cih lc pnib ims spmo nh w bvli\n"
],
"output": [
"this is a\nsample text\nfor croc\nfinal round\n",
"this is a\n",
"first\n\n",
"a a\na\n",
"isnr u eq\nqas gcj\nrnnf fpb c\ndz g\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
"uzu\nbl\nfl\nou\n",
"lguv zi riht pf\njtbo qmk qp nvh qur\nz\n\n\n\n\n\n\n\n",
"hukd i\ni npii\nfgin j\nek hhc\n",
"xg gi\ncih cl\npnib\nims\n",
"otgi f\ni j\noazv\nvsy\nfizc\nwh es\nfaka\n\n\n\n\n\n\n\n\n\n",
"onj uuzu gwia\nkvs bl eo lwws\njpi cevh zvot\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
"gwia\nkvs bl\n",
"hukd i i\nnpii fgin\nj ek hhc\nlzi b\n\n\n\n\n",
"vmg cr\n",
"e u xn fxrz kk\no run oir auza\nbyc\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
"soc cf y bv\nkp ceb k hd\nnss p\n\n\n\n\n\n\n\n\n\n\n\n",
"aa aaa\naa a a\n",
"bi ys xm sd btbp\nbplj h r mp lbi\n\n\n",
"ifa aonn ng\ntk vygu lm nb\nut fb v\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
"xg\ngi\n\n\n\n\n\n\n\n\n\n\n",
"v vshb rdy o\nfxbs nlnn v ize\nyvrq c\n\n\n\n\n\n\n\n\n\n\n\n\n",
"l ry\nksgx\nbxeb t\nw szsw\nm bf\neyfc\n\n\n\n\n\n\n",
"u\neq\nqas\ngcj\n",
"t\n\n\n\n",
"vmg cr xo\nyqr xz tfo\nibxv c p\nnomd\n\n",
"kvet\nt\nmyiq\nskt\nua ju\nzx ax\ndm s\n\n",
"eff qe\njit rj\nc o mp\n",
"y edwq rrsz\nx kj sx i\n",
"rll\nseqs\nfxc\nxjrs yp\ne att\nxx hwsf\nplyi\n\n\n\n\n\n\n\n",
"ybkb\nwrt\nvifr\nct lm\nv gg\nrhd m\nr\n\n\n\n\n\n\n\n\n\n\n\n\n",
"lfa vu\n",
"alab\ncib\nvz\ncgm q\nnne\n",
"eff qe jit\nrj c o mp\njfqy xtcp\nwayp\n\n\n\n\n\n\n\n\n\n\n\n",
"otgi f\ni j\noazv\nvsy\n",
"h\nr\n\n\n",
"ib yi\nc f\nka yg\nxdz\nqk fs\n",
"yp\ne\n",
"f g y fu qjlj s\nlqrl hwi e itg\n\n\n\n\n\n\n\n\n",
"ejw\nd u\nqpd\nky\nzzo\nlb\nwit\n",
"y\n\n",
"w atdg vkjo s\nmpr efv bu f\noy wflo\n\n\n\n\n\n\n\n\n\n\n\n",
"g y fu\nqjlj s\n",
"lz lgos cmnt\nlfa vu cljk\ntsm cydm vy\ngqed\n\n\n\n\n\n",
"p kaa\npf\neafz\nxep\nfgob\n",
"h y u vb qai xbm lp\nip w uedc\n\n\n\n\n\n\n\n\n\n\n",
"r\nk\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
"yr gens ax icuz\nrj ran c eji cmdv\n",
"ct lm\nv gg\nrhd m\n",
"p kaa\n",
"na qt xck\nlob v jpg h\nac s j\n",
"jsnr u eq\nqas gcj\nrnnf fpb c\ndz g",
"lguv zi riht pf\njtbo qmj qp nvh qur\nz",
"hukd i\ni npii\nfgin j\nek ihc",
"xg gi\ncih lc\npnib\nims",
"otgi f\ni j\noazu\nvsy\nfizc\nwh es\nfaka",
"onj uuzu gwia\nkvs bl en lwws\njpi cevh zvot",
"hukd i i\nnpii fgin\nj ek hhd\nlzi b",
"d u xn fxrz kk\no run oir auza\nbyc",
"soc cf z bv\nkp ceb k hd\nnss p",
"aa aaa\naa a b",
"bi ys xm sd btbp\nbplj h r mp lci",
"ifa aonn ng\ntk vygu lm nb\nut bf v",
"xg\ngi",
"l ry\nksgx\nbxeb t\nw szsw\nm bf\nezfc",
"u\neq\nqas\ngcj",
"kvet\nt\nmyiq\ntkt\nua ju\nzx ax\ndm s",
"eff eq\njit rj\nc o mp",
"bs ypyq futw y\nedwq rrsz x kj",
"rlk\nseqs\nfxc\nxjrs yp\ne att\nxx hwsf\nplyi",
"ybkb\nwrt\nvifr\nct lm\nv gg\nrhd l\nr",
"lfa vu",
"alab\ncib\nvz\ncgm q\nnne",
"eff qe jit\nrj c o mp\njfqy xucp\nwayp",
"otgi f\ni j\noazv\nvsy",
"g\nr",
"ib yi\nc f\nka yf\nxdz\nqk fs",
"yp\nf",
"y",
"w atdg vkjo s\nmpr efv bu f\nny wflo",
"f g y\nfu\nqjlj s",
"lz ogls cmnt\nlfa vu cljk\ntsm cydm vy\ngqed",
"p kaa\npf\neafz\nxep\nfgob",
"h y\nu\nvb\nqai\nxbm\nlp\nip\nw",
"ax icuz rj ran c",
"ct lm\nv hg\nrhd m",
"p kaa",
"na qt xck\nlob v jpg g\nac s j",
"this is a\nsample text\nfor csoc\nfinal round",
"this is a\nsample",
"fitsr",
"jsnr u eq\nqas gcj\nrnnf fpb c\ncz g",
"lguv zi riht qf\njtbo qmj qp nvh qur\nz",
"hukd i i\nnpii fgin j\nek ihc lzi b",
"otgi g\ni j\noazu\nvsy\nfizc\nwh es\nfaka",
"onj uuzu gwia\nkvs lb en lwws\njpi cevh zvot",
"hukd i i\nnpii fgin\nj ek hhd\nlzi a",
"d u xn fxrz kk\no run oir auza\nbxc",
"xg gi\ncih lc\npnib\nims"
]
} | 2CODEFORCES
|
309_B. Context Advertising_105 | Advertising has become part of our routine. And now, in the era of progressive technologies, we need your ideas to make advertising better!
In this problem we'll look at a simplified version of context advertising. You've got a text, consisting of exactly n words. A standard advertising banner has exactly r lines, each line can contain at most c characters. The potential customer always likes it when they can see lots of advertising, so you should determine which maximum number of consecutive words from the text can be written on the banner. Single words in one line of the banner should be separated by spaces. You are allowed to insert more than one space at once. Note that you are not allowed to break the words, that is, each word in the text must occupy exactly one line in the banner. Besides, you cannot change the word order, that is, if you read the banner text consecutively, from top to bottom and from left to right, you should get some consecutive part of the advertisement text.
More formally, the statement can be written like that. Let's say that all words are indexed from 1 to n in the order in which they occur in the advertisement text. Then you have to choose all words, starting from some i-th one and ending with some j-th one (1 ≤ i ≤ j ≤ n), so that all of them could be written on the banner. There must be as many words as possible. See the samples for clarifications.
Input
The first input line contains three integers n, r, c (1 ≤ n, r, c ≤ 106; r × c ≤ 106). The next line contains a text, consisting of n words. The words consist only of lowercase English letters and are not empty. The words in the lines are separated by single spaces. The total number of characters in all words doesn't exceed 5·106.
Output
Print at most r lines, in each line print at most c characters — the optimal advertisement banner. If there are multiple advertisement banners, print any of them.
Note that some lines of the banner can be empty. You are allowed not to print such lines.
Examples
Input
9 4 12
this is a sample text for croc final round
Output
this is a
sample text
for croc
final round
Input
9 1 9
this is a sample text for croc final round
Output
this is a
Input
6 2 3
croc a a a croc a
Output
a a
a
Input
2 2 5
first second
Output
first | import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.ArrayList;
import java.util.Collections;
import java.util.Locale;
import java.util.StringTokenizer;
public class B {
private void solve() throws IOException {
int n = nextInt();
int r = nextInt();
int c = nextInt();
String s = reader.readLine();
String[] all = new String[n];
StringTokenizer st = new StringTokenizer(s);
for (int i = 0; i < n; i++) {
all[i] = st.nextToken();
}
int[] start = new int[n];
int[] finish = new int[n];
int len = 0;
for (int i = 0; i < n; i++) {
start[i] = len;
len += all[i].length();
finish[i] = len - 1;
len++;
}
char[] a = s.toCharArray();
int[] wordIndex = new int[a.length];
for (int i = 1; i < a.length; i++) {
if (a[i] == ' ') {
wordIndex[i] = wordIndex[i - 1] + 1;
} else {
wordIndex[i] = wordIndex[i - 1];
}
}
for (int i = 0; i < a.length; i++) {
if (a[i] == ' ') {
wordIndex[i]--;
}
}
int[] lines = new int[n];
int[] words = new int[n];
int[] onLine = new int[n];
int[][] prevW = new int[20][n];
for (int i = 0; i < n; i++) {
int prev = finish[i] - c;
int wordsOnLine = 0;
if (prev < 0) {
wordsOnLine = i + 1;
lines[i] = 1;
words[i] = wordsOnLine;
onLine[i] = wordsOnLine;
continue;
} else {
wordsOnLine = i - wordIndex[prev];
}
if (wordsOnLine == 0) {
continue;
}
if (r == 1) {
lines[i] = 1;
words[i] = wordsOnLine;
onLine[i] = wordsOnLine;
continue;
}
int prevWord = wordIndex[prev];
if (lines[prevWord] == r) {
lines[i] = r;
int begin = prevWord - words[prevWord] + 1;
int d = r - 1;
int p = prevWord;
int t = 20;
while (d != 0) {
if ((1 << t) > d) {
t--;
} else {
d -= 1 << t;
p = prevW[t][p];
}
}
int w = p - begin + 1;
words[i] = words[prevWord] - w + wordsOnLine;
} else {
lines[i] = lines[prevWord] + 1;
words[i] = words[prevWord] + wordsOnLine;
}
prevW[0][i] = prevWord;
for (int j = 1; j < 20; j++) {
prevW[j][i] = prevW[j - 1][prevW[j - 1][i]];
}
onLine[i] = wordsOnLine;
}
int ans = 0;
for (int i = 1; i < n; i++) {
if (words[i] > words[ans]) {
ans = i;
}
}
int p = ans;
ArrayList<String> res = new ArrayList<String>();
for (int i = 0; i < lines[ans]; i++) {
StringBuilder sb = new StringBuilder();
for (int j = p - onLine[p] + 1; j <= p; j++) {
sb.append(all[j]);
if (j < p) {
sb.append(' ');
}
}
res.add(sb.toString());
p = prevW[0][p];
}
Collections.reverse(res);
for (String t: res) {
println(t);
}
}
private String nextToken() throws IOException {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
tokenizer = new StringTokenizer(reader.readLine());
}
return tokenizer.nextToken();
}
private int nextInt() throws NumberFormatException, IOException {
return Integer.parseInt(nextToken());
}
private double nextDouble() throws NumberFormatException, IOException {
return Double.parseDouble(nextToken());
}
private long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
private void print(Object o) {
writer.print(o);
}
private void println(Object o) {
writer.println(o);
}
private void printf(String format, Object... o) {
writer.printf(format, o);
}
public static void main(String[] args) {
long time = System.currentTimeMillis();
Locale.setDefault(Locale.US);
new B().run();
System.err.printf("%.3f\n", 1e-3 * (System.currentTimeMillis() - time));
}
BufferedReader reader;
StringTokenizer tokenizer;
PrintWriter writer;
private void run() {
try {
reader = new BufferedReader(new InputStreamReader(System.in));
writer = new PrintWriter(System.out);
solve();
reader.close();
writer.close();
} catch (IOException e) {
e.printStackTrace();
System.exit(13);
}
}
} | 4JAVA
| {
"input": [
"9 4 12\nthis is a sample text for croc final round\n",
"9 1 9\nthis is a sample text for croc final round\n",
"2 2 5\nfirst second\n",
"6 2 3\ncroc a a a croc a\n",
"10 20 11\nisnr u eq qas gcj rnnf fpb c dz g\n",
"10 4 3\nuzu bl fl ou uist j lp e gkp fmo\n",
"10 10 19\nlguv zi riht pf jtbo qmk qp nvh qur z\n",
"10 4 6\nhukd i i npii fgin j ek hhc lzi b\n",
"10 4 6\nxg gi cih cl pnib ims spmo nh v bvli\n",
"10 16 6\notgi f i j oazv vsy fizc wh es faka\n",
"10 18 14\nonj uuzu gwia kvs bl eo lwws jpi cevh zvot\n",
"10 2 6\nonj uuzu gwia kvs bl eo lwws jpi cevh zvot\n",
"10 8 10\nhukd i i npii fgin j ek hhc lzi b\n",
"10 1 6\nvmg cr xo yqr xz tfo ibxv c p nomd\n",
"10 20 15\ne u xn fxrz kk o run oir auza byc\n",
"10 14 13\nsoc cf y bv kp ceb k hd nss p\n",
"5 2 6\naa aaa aa a a\n",
"10 4 17\nbi ys xm sd btbp bplj h r mp lbi\n",
"10 19 13\nifa aonn ng tk vygu lm nb ut fb v\n",
"10 12 2\nxg gi cih cl pnib ims spmo nh v bvli\n",
"10 15 15\nv vshb rdy o fxbs nlnn v ize yvrq c\n",
"10 12 7\nl ry ksgx bxeb t w szsw m bf eyfc\n",
"10 4 3\nisnr u eq qas gcj rnnf fpb c dz g\n",
"10 4 1\nkvet t myiq skt ua ju zx ax dm s\n",
"10 5 10\nvmg cr xo yqr xz tfo ibxv c p nomd\n",
"10 8 5\nkvet t myiq skt ua ju zx ax dm s\n",
"10 3 6\neff qe jit rj c o mp jfqy xtcp wayp\n",
"10 2 11\nbs ypyq futw y edwq rrsz x kj sx i\n",
"10 14 7\nrll seqs fxc xjrs yp e att xx hwsf plyi\n",
"10 19 6\nybkb wrt vifr ct lm v gg rhd m r\n",
"10 1 6\nlz lgos cmnt lfa vu cljk tsm cydm vy gqed\n",
"10 5 5\nalab cib vz cgm q nne tuxf yjst hbk jdn\n",
"10 15 10\neff qe jit rj c o mp jfqy xtcp wayp\n",
"10 4 6\notgi f i j oazv vsy fizc wh es faka\n",
"10 4 1\nbi ys xm sd btbp bplj h r mp lbi\n",
"10 5 5\nib yi c f ka yg xdz qk fs jk\n",
"10 2 3\nrll seqs fxc xjrs yp e att xx hwsf plyi\n",
"10 10 18\nf g y fu qjlj s lqrl hwi e itg\n",
"10 7 3\nejw d u qpd ky zzo lb wit jos jaqr\n",
"10 2 1\nsoc cf y bv kp ceb k hd nss p\n",
"10 14 13\nw atdg vkjo s mpr efv bu f oy wflo\n",
"10 2 6\nf g y fu qjlj s lqrl hwi e itg\n",
"10 9 14\nlz lgos cmnt lfa vu cljk tsm cydm vy gqed\n",
"10 5 6\np kaa pf eafz xep fgob lcz kna j tifx\n",
"10 12 20\nh y u vb qai xbm lp ip w uedc\n",
"10 15 1\nr aaw fmz r k jtge mwj yw ef i\n",
"10 2 17\nyr gens ax icuz rj ran c eji cmdv fut\n",
"10 3 6\nybkb wrt vifr ct lm v gg rhd m r\n",
"10 1 6\np kaa pf eafz xep fgob lcz kna j tifx\n",
"10 5 11\nna qt xck lob v jpg h ac s j\n",
"10 20 11\njsnr u eq qas gcj rnnf fpb c dz g\n",
"10 10 19\nlguv zi riht pf jtbo qmj qp nvh qur z\n",
"10 4 6\nhukd i i npii fgin j ek ihc lzi b\n",
"10 4 6\nxg gi cih lc pnib ims spmo nh v bvli\n",
"10 16 6\notgi f i j oazu vsy fizc wh es faka\n",
"10 18 14\nonj uuzu gwia kvs bl en lwws jpi cevh zvot\n",
"10 8 10\nhukd i i npii fgin j ek hhd lzi b\n",
"10 20 15\nd u xn fxrz kk o run oir auza byc\n",
"10 14 13\nsoc cf z bv kp ceb k hd nss p\n",
"5 2 6\naa aaa aa a b\n",
"10 4 17\nbi ys xm sd btbp bplj h r mp lci\n",
"10 19 13\nifa aonn ng tk vygu lm nb ut bf v\n",
"10 12 2\nxg gi cig cl pnib ims spmo nh v bvli\n",
"10 12 7\nl ry ksgx bxeb t w szsw m bf ezfc\n",
"10 4 3\nisrn u eq qas gcj rnnf fpb c dz g\n",
"10 8 5\nkvet t myiq tkt ua ju zx ax dm s\n",
"10 3 6\neff eq jit rj c o mp jfqy xtcp wayp\n",
"10 2 15\nbs ypyq futw y edwq rrsz x kj sx i\n",
"10 14 7\nrlk seqs fxc xjrs yp e att xx hwsf plyi\n",
"10 19 6\nybkb wrt vifr ct lm v gg rhd l r\n",
"10 1 6\nlz lgos cmnt lfa vu cljk tsn cydm vy gqed\n",
"10 5 5\nalab cib vz cgm q nne tuxf yjst hbk jen\n",
"10 15 10\neff qe jit rj c o mp jfqy xucp wayp\n",
"10 4 6\notgi f i j oazv vsy fizc wh es fkaa\n",
"10 4 1\nbi ys xm sd btbp bplj g r mp lbi\n",
"10 5 5\nib yi c f ka yf xdz qk fs jk\n",
"10 2 3\nrll seqs fxc xjrs yp f att xx hwsf plyi\n",
"10 2 1\nroc cf y bv kp ceb k hd nss p\n",
"10 14 13\nw atdg vkjo s mpr efv bu f ny wflo\n",
"10 3 6\nf g y fu qjlj s lqrl hwi e itg\n",
"10 9 14\nlz ogls cmnt lfa vu cljk tsm cydm vy gqed\n",
"10 5 6\np kaa pf eafz xep fgob lcz kna k tifx\n",
"10 12 3\nh y u vb qai xbm lp ip w uedc\n",
"10 1 17\nyr gens ax icuz rj ran c eji cmdv fut\n",
"10 3 6\nybkb wrt vifr ct lm v hg rhd m r\n",
"10 1 6\np kaa pf eafz xep fgob zcl kna j tifx\n",
"10 5 11\nna qt xck lob v jpg g ac s j\n",
"9 4 12\nthis is a sample text for csoc final round\n",
"9 2 9\nthis is a sample text for croc final round\n",
"2 2 5\nfitsr second\n",
"10 20 11\njsnr u eq qas gcj rnnf fpb c cz g\n",
"10 10 19\nlguv zi riht qf jtbo qmj qp nvh qur z\n",
"10 4 12\nhukd i i npii fgin j ek ihc lzi b\n",
"10 16 6\notgi g i j oazu vsy fizc wh es faka\n",
"10 18 14\nonj uuzu gwia kvs lb en lwws jpi cevh zvot\n",
"10 8 10\nhukd i i npii fgin j ek hhd lzi a\n",
"10 20 15\nd u xn fxrz kk o run oir auza bxc\n",
"10 4 6\nxg gi cih lc pnib ims spmo nh w bvli\n"
],
"output": [
"this is a\nsample text\nfor croc\nfinal round\n",
"this is a\n",
"first\n\n",
"a a\na\n",
"isnr u eq\nqas gcj\nrnnf fpb c\ndz g\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
"uzu\nbl\nfl\nou\n",
"lguv zi riht pf\njtbo qmk qp nvh qur\nz\n\n\n\n\n\n\n\n",
"hukd i\ni npii\nfgin j\nek hhc\n",
"xg gi\ncih cl\npnib\nims\n",
"otgi f\ni j\noazv\nvsy\nfizc\nwh es\nfaka\n\n\n\n\n\n\n\n\n\n",
"onj uuzu gwia\nkvs bl eo lwws\njpi cevh zvot\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
"gwia\nkvs bl\n",
"hukd i i\nnpii fgin\nj ek hhc\nlzi b\n\n\n\n\n",
"vmg cr\n",
"e u xn fxrz kk\no run oir auza\nbyc\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
"soc cf y bv\nkp ceb k hd\nnss p\n\n\n\n\n\n\n\n\n\n\n\n",
"aa aaa\naa a a\n",
"bi ys xm sd btbp\nbplj h r mp lbi\n\n\n",
"ifa aonn ng\ntk vygu lm nb\nut fb v\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
"xg\ngi\n\n\n\n\n\n\n\n\n\n\n",
"v vshb rdy o\nfxbs nlnn v ize\nyvrq c\n\n\n\n\n\n\n\n\n\n\n\n\n",
"l ry\nksgx\nbxeb t\nw szsw\nm bf\neyfc\n\n\n\n\n\n\n",
"u\neq\nqas\ngcj\n",
"t\n\n\n\n",
"vmg cr xo\nyqr xz tfo\nibxv c p\nnomd\n\n",
"kvet\nt\nmyiq\nskt\nua ju\nzx ax\ndm s\n\n",
"eff qe\njit rj\nc o mp\n",
"y edwq rrsz\nx kj sx i\n",
"rll\nseqs\nfxc\nxjrs yp\ne att\nxx hwsf\nplyi\n\n\n\n\n\n\n\n",
"ybkb\nwrt\nvifr\nct lm\nv gg\nrhd m\nr\n\n\n\n\n\n\n\n\n\n\n\n\n",
"lfa vu\n",
"alab\ncib\nvz\ncgm q\nnne\n",
"eff qe jit\nrj c o mp\njfqy xtcp\nwayp\n\n\n\n\n\n\n\n\n\n\n\n",
"otgi f\ni j\noazv\nvsy\n",
"h\nr\n\n\n",
"ib yi\nc f\nka yg\nxdz\nqk fs\n",
"yp\ne\n",
"f g y fu qjlj s\nlqrl hwi e itg\n\n\n\n\n\n\n\n\n",
"ejw\nd u\nqpd\nky\nzzo\nlb\nwit\n",
"y\n\n",
"w atdg vkjo s\nmpr efv bu f\noy wflo\n\n\n\n\n\n\n\n\n\n\n\n",
"g y fu\nqjlj s\n",
"lz lgos cmnt\nlfa vu cljk\ntsm cydm vy\ngqed\n\n\n\n\n\n",
"p kaa\npf\neafz\nxep\nfgob\n",
"h y u vb qai xbm lp\nip w uedc\n\n\n\n\n\n\n\n\n\n\n",
"r\nk\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
"yr gens ax icuz\nrj ran c eji cmdv\n",
"ct lm\nv gg\nrhd m\n",
"p kaa\n",
"na qt xck\nlob v jpg h\nac s j\n",
"jsnr u eq\nqas gcj\nrnnf fpb c\ndz g",
"lguv zi riht pf\njtbo qmj qp nvh qur\nz",
"hukd i\ni npii\nfgin j\nek ihc",
"xg gi\ncih lc\npnib\nims",
"otgi f\ni j\noazu\nvsy\nfizc\nwh es\nfaka",
"onj uuzu gwia\nkvs bl en lwws\njpi cevh zvot",
"hukd i i\nnpii fgin\nj ek hhd\nlzi b",
"d u xn fxrz kk\no run oir auza\nbyc",
"soc cf z bv\nkp ceb k hd\nnss p",
"aa aaa\naa a b",
"bi ys xm sd btbp\nbplj h r mp lci",
"ifa aonn ng\ntk vygu lm nb\nut bf v",
"xg\ngi",
"l ry\nksgx\nbxeb t\nw szsw\nm bf\nezfc",
"u\neq\nqas\ngcj",
"kvet\nt\nmyiq\ntkt\nua ju\nzx ax\ndm s",
"eff eq\njit rj\nc o mp",
"bs ypyq futw y\nedwq rrsz x kj",
"rlk\nseqs\nfxc\nxjrs yp\ne att\nxx hwsf\nplyi",
"ybkb\nwrt\nvifr\nct lm\nv gg\nrhd l\nr",
"lfa vu",
"alab\ncib\nvz\ncgm q\nnne",
"eff qe jit\nrj c o mp\njfqy xucp\nwayp",
"otgi f\ni j\noazv\nvsy",
"g\nr",
"ib yi\nc f\nka yf\nxdz\nqk fs",
"yp\nf",
"y",
"w atdg vkjo s\nmpr efv bu f\nny wflo",
"f g y\nfu\nqjlj s",
"lz ogls cmnt\nlfa vu cljk\ntsm cydm vy\ngqed",
"p kaa\npf\neafz\nxep\nfgob",
"h y\nu\nvb\nqai\nxbm\nlp\nip\nw",
"ax icuz rj ran c",
"ct lm\nv hg\nrhd m",
"p kaa",
"na qt xck\nlob v jpg g\nac s j",
"this is a\nsample text\nfor csoc\nfinal round",
"this is a\nsample",
"fitsr",
"jsnr u eq\nqas gcj\nrnnf fpb c\ncz g",
"lguv zi riht qf\njtbo qmj qp nvh qur\nz",
"hukd i i\nnpii fgin j\nek ihc lzi b",
"otgi g\ni j\noazu\nvsy\nfizc\nwh es\nfaka",
"onj uuzu gwia\nkvs lb en lwws\njpi cevh zvot",
"hukd i i\nnpii fgin\nj ek hhd\nlzi a",
"d u xn fxrz kk\no run oir auza\nbxc",
"xg gi\ncih lc\npnib\nims"
]
} | 2CODEFORCES
|
331_E2. Deja Vu_106 | Everybody knows that we have been living in the Matrix for a long time. And in the new seventh Matrix the world is ruled by beavers.
So let's take beaver Neo. Neo has so-called "deja vu" outbursts when he gets visions of events in some places he's been at or is going to be at. Let's examine the phenomenon in more detail.
We can say that Neo's city is represented by a directed graph, consisting of n shops and m streets that connect the shops. No two streets connect the same pair of shops (besides, there can't be one street from A to B and one street from B to A). No street connects a shop with itself. As Neo passes some streets, he gets visions. No matter how many times he passes street k, every time he will get the same visions in the same order. A vision is a sequence of shops.
We know that Neo is going to get really shocked if he passes the way from some shop a to some shop b, possible coinciding with a, such that the list of visited shops in the real life and in the visions coincide.
Suggest beaver Neo such path of non-zero length. Or maybe you can even count the number of such paths modulo 1000000007 (109 + 7)?..
Input
The first line contains integers n and m — the number of shops and the number of streets, correspondingly, 1 ≤ n ≤ 50, <image>. Next m lines contain the descriptions of the streets in the following format: xi yi ki v1 v2 ... vk, where xi and yi (1 ≤ xi, yi ≤ n, xi ≠ yi) are numbers of shops connected by a street, ki (0 ≤ ki ≤ n) is the number of visions on the way from xi to yi; v1, v2, ..., vk (1 ≤ vi ≤ n) describe the visions: the numbers of the shops Neo saw. Note that the order of the visions matters.
It is guaranteed that the total number of visions on all streets doesn't exceed 105.
* to get 50 points, you need to find any (not necessarily simple) path of length at most 2·n, that meets the attributes described above (subproblem E1);
* to get 50 more points, you need to count for each length from 1 to 2·n the number of paths that have the attribute described above (subproblem E2).
Output
Subproblem E1. In the first line print an integer k (1 ≤ k ≤ 2·n) — the numbers of shops on Neo's path. In the next line print k integers — the number of shops in the order Neo passes them. If the graph doesn't have such paths or the length of the shortest path includes more than 2·n shops, print on a single line 0.
Subproblem E2. Print 2·n lines. The i-th line must contain a single integer — the number of required paths of length i modulo 1000000007 (109 + 7).
Examples
Input
6 6
1 2 2 1 2
2 3 1 3
3 4 2 4 5
4 5 0
5 3 1 3
6 1 1 6
Output
4
6 1 2 3
Input
6 6
1 2 2 1 2
2 3 1 3
3 4 2 4 5
4 5 0
5 3 1 3
6 1 1 6
Output
1
2
1
1
2
1
1
2
1
1
2
1
Note
The input in both samples are the same. The first sample contains the answer to the first subproblem, the second sample contains the answer to the second subproblem. | #include <bits/stdc++.h>
using namespace std;
const int MAX = 100 + 10;
const int Mod = (int)1e9 + 7;
int n, m;
int g[MAX][MAX], can[MAX][MAX];
vector<int> p[MAX][MAX];
int get(vector<int> &before, int kind, int could, int have) {
int j;
int now = 0, cc = have;
for (; now < (int)before.size(); now++) {
if (now + 1 == (int)before.size()) break;
int a = before[now];
int b = before[now + 1];
if (g[a][b] != kind || (!could && can[a][b])) return 0;
vector<int> &nL = p[a][b];
for ((j) = (0); (j) != ((int)nL.size()); ++(j)) {
if (cc < (int)before.size()) {
if (nL[j] == before[cc])
cc++;
else
return 0;
} else {
while (j < (int)nL.size()) {
before.push_back(nL[j++]);
if ((int)before.size() > 2 * n + 1) return 0;
}
cc = before.size();
break;
}
}
}
return cc == (int)before.size();
}
int isCan(int a, int b) {
int i;
vector<int> &L = p[a][b];
int len = L.size();
for ((i) = (0); (i) <= (len - 2); ++(i))
if (L[i] == a && L[i + 1] == b) return 1;
return 0;
}
int f_Before[MAX][MAX][MAX], f_After[MAX][MAX][MAX], tmp[MAX][MAX][MAX];
int Before[MAX][MAX], After[MAX][MAX];
int ans[MAX];
void work(int u, int kind, int f[MAX][MAX][MAX]) {
int v;
for ((v) = (1); (v) <= (n); ++(v))
if (g[u][v] == kind && !can[v][u]) {
vector<int> after;
after.push_back(u);
after.push_back(v);
if (!get(after, kind, kind != 2, 1)) continue;
int Len = after.size();
f[u][after[Len - 1]][Len - 1]++;
}
}
void add(int &a, int b) {
a += b;
if (a >= Mod) a -= Mod;
}
void work2(int a, int b) {
int i, j;
vector<int> &L = p[a][b];
int len = L.size();
for ((i) = (0); (i) <= (len - 2); ++(i))
if (L[i] == a && L[i + 1] == b) {
vector<int> before, after;
for (j = i; j >= 0; --j) before.push_back(L[j]);
for (j = i + 1; j < len; ++j) after.push_back(L[j]);
if (get(before, 2, 0, before.size()) && get(after, 1, 1, after.size())) {
reverse(before.begin(), before.end());
int A = before[0];
int B = after[after.size() - 1];
int Len = before.size() + after.size() - 1;
int k, l, o;
for ((l) = (1); (l) <= (n); ++(l))
for ((o) = (0); (o) <= (2 * n); ++(o))
if (tmp[A][l][o])
for ((k) = (1); (k) <= (n); ++(k))
if (g[k][l] == 1 && p[k][l].size() == 0 && Len + 1 + o <= 2 * n)
add(f_After[k][B][Len + 1 + o], tmp[A][l][o]);
} else
return;
}
return;
}
int tot = 0, First;
void Dp1(int f[MAX][MAX][MAX], int after[MAX][MAX]) {
int i, j, k, l, o;
memset(tmp, 0, sizeof tmp);
for ((i) = (1); (i) <= (n); ++(i)) tmp[i][i][0] = 1;
int up = 2 * n;
for ((l) = (1); (l) <= (up); ++(l))
for ((i) = (1); (i) <= (n); ++(i))
for ((j) = (1); (j) <= (n); ++(j))
for ((o) = (0); (o) <= (l); ++(o))
if (f[i][j][o])
for ((k) = (1); (k) <= (n); ++(k))
if (tmp[j][k][l - o])
add(tmp[i][k][l],
(long long)f[i][j][o] * tmp[j][k][l - o] % Mod);
for ((i) = (1); (i) <= (n); ++(i))
for ((j) = (1); (j) <= (n); ++(j))
for ((l) = (0); (l) <= (2 * n); ++(l)) add(after[i][l], tmp[i][j][l]);
}
void Dp2(int f[MAX][MAX][MAX], int after[MAX][MAX]) {
int i, j, k, l;
for ((i) = (1); (i) <= (n); ++(i)) after[i][0] = 1;
int up = 2 * n;
for ((l) = (1); (l) <= (up); ++(l))
for ((i) = (1); (i) <= (n); ++(i))
for ((j) = (1); (j) <= (n); ++(j))
for ((k) = (0); (k) != (l); ++(k))
add(After[i][l], (long long)f[i][j][l - k] * After[j][k] % Mod);
}
void check(int a, int b) {
int i, j;
vector<int> &L = p[a][b];
int len = L.size();
for ((i) = (0); (i) <= (len - 2); ++(i))
if (L[i] == a && L[i + 1] == b) {
vector<int> before, after;
for (j = i; j >= 0; --j) before.push_back(L[j]);
for (j = i + 1; j < len; ++j) after.push_back(L[j]);
if (get(before, 2, 0, before.size()) && get(after, 1, 1, after.size())) {
reverse(before.begin(), before.end());
int A = before[0];
int B = after[after.size() - 1];
int Len = before.size() + after.size() - 1;
int l1, l2;
for ((l1) = (0); (l1) <= (2 * n); ++(l1))
for ((l2) = (0); (l2) <= (2 * n); ++(l2))
if (l1 + l2 + Len <= 2 * n)
add(ans[l1 + l2 + Len],
(long long)Before[A][l1] * After[B][l2] % Mod);
} else
return;
}
return;
}
int main() {
int i, j;
scanf("%d%d", &n, &m);
for ((i) = (1); (i) <= (m); ++(i)) {
int a, b;
scanf("%d%d", &a, &b);
if (!First) First = a;
g[a][b] = 1;
g[b][a] = 2;
int k, first;
scanf("%d", &k);
while (k--) {
scanf("%d", &first);
p[a][b].push_back(first);
}
p[b][a] = p[a][b];
reverse(p[b][a].begin(), p[b][a].end());
}
for ((i) = (1); (i) <= (n); ++(i))
for ((j) = (1); (j) <= (n); ++(j))
if (g[i][j] == 1 && isCan(i, j)) can[j][i] = can[i][j] = 1;
for ((i) = (1); (i) <= (n); ++(i)) work(i, 1, f_After);
for ((i) = (1); (i) <= (n); ++(i)) work(i, 2, f_Before);
Dp1(f_Before, Before);
for ((i) = (1); (i) <= (n); ++(i))
for ((j) = (1); (j) <= (n); ++(j))
if (g[i][j] == 1 && can[i][j] == 1) work2(i, j);
Dp2(f_After, After);
for ((i) = (1); (i) <= (n); ++(i))
for ((j) = (1); (j) <= (n); ++(j))
if (g[i][j] == 1 && can[i][j] == 1) check(i, j);
for ((i) = (1); (i) <= (2 * n); ++(i)) cout << ans[i] << endl;
return 0;
}
| 2C++
| {
"input": [
"6 6\n1 2 2 1 2\n2 3 1 3\n3 4 2 4 5\n4 5 0\n5 3 1 3\n6 1 1 6\n",
"6 6\n1 2 2 1 2\n2 3 1 3\n3 4 2 4 5\n4 5 0\n5 3 1 3\n6 1 1 6\n",
"1 0\n",
"2 1\n1 2 0\n",
"5 4\n1 2 3 3 1 2\n5 4 0\n4 3 0\n3 1 2 5 4\n",
"3 3\n1 2 2 3 2\n1 3 2 3 3\n2 3 2 2 3\n",
"11 17\n1 2 5 3 4 1 2 5\n1 3 0\n1 6 2 6 7\n2 5 1 1\n3 4 0\n4 1 1 1\n5 1 0\n6 10 1 10\n10 1 1 1\n6 5 2 5 1\n6 7 0\n7 8 2 8 6\n8 6 0\n1 9 2 9 11\n9 11 0\n11 1 0\n7 1 0\n",
"10 45\n1 2 2 1 2\n1 3 2 1 3\n1 4 2 7 10\n1 5 0\n1 6 2 1 6\n1 7 2 1 7\n1 8 0\n1 9 2 5 9\n1 10 0\n2 3 2 4 3\n2 4 2 2 4\n2 5 2 3 10\n2 6 2 2 6\n2 7 2 2 7\n2 8 0\n2 9 2 2 9\n2 10 2 10 6\n3 4 0\n3 5 0\n3 6 2 3 6\n3 7 0\n3 8 0\n3 9 2 7 1\n3 10 2 1 6\n4 5 0\n4 6 2 4 6\n4 7 2 2 4\n4 8 0\n4 9 2 7 5\n4 10 2 4 10\n5 6 2 8 4\n5 7 2 6 5\n5 8 0\n5 9 0\n5 10 0\n6 7 2 6 7\n6 8 2 6 8\n6 9 2 10 8\n6 10 0\n7 8 2 1 4\n7 9 0\n7 10 2 10 10\n8 9 2 2 8\n8 10 2 8 10\n9 10 2 10 10\n",
"10 6\n1 2 0\n2 3 0\n3 4 7 1 2 3 4 5 2 7\n4 5 0\n5 2 0\n2 7 1 7\n",
"2 1\n1 2 2 1 2\n",
"3 3\n1 2 1 1\n2 3 1 2\n3 1 1 3\n",
"4 6\n1 2 0\n1 3 2 2 3\n1 4 2 1 1\n2 3 0\n2 4 2 1 1\n3 4 2 1 1\n",
"2 1\n1 2 2 2 1\n",
"5 10\n1 2 0\n1 3 2 1 3\n1 4 2 1 4\n1 5 2 5 2\n2 3 2 2 3\n2 4 0\n2 5 2 2 5\n3 4 2 3 4\n3 5 0\n4 5 0\n",
"8 8\n1 2 0\n4 3 1 3\n7 8 3 3 7 8\n3 7 0\n2 3 2 2 1\n5 2 2 1 2\n6 5 3 1 2 3\n1 5 3 5 1 6\n",
"10 6\n1 2 0\n2 3 0\n3 4 7 1 2 3 4 5 2 7\n4 5 0\n5 2 0\n2 7 0\n",
"50 17\n1 2 5 3 4 1 2 5\n1 3 0\n1 6 2 6 7\n2 5 1 1\n3 4 0\n4 1 1 1\n5 1 0\n6 10 1 10\n10 1 1 1\n6 5 2 5 1\n6 7 0\n7 8 2 8 6\n8 6 0\n1 9 2 9 11\n9 11 0\n11 1 0\n7 1 0\n",
"2 0\n",
"3 1\n1 2 0\n",
"3 3\n1 2 2 3 2\n1 1 2 3 3\n2 3 2 2 3\n",
"11 17\n1 2 5 3 4 1 2 10\n1 3 0\n1 6 2 6 7\n2 5 1 1\n3 4 0\n4 1 1 1\n5 1 0\n6 10 1 10\n10 1 1 1\n6 5 2 5 1\n6 7 0\n7 8 2 8 6\n8 6 0\n1 9 2 9 11\n9 11 0\n11 1 0\n7 1 0\n",
"10 45\n1 2 2 1 2\n1 3 2 1 3\n1 4 2 7 10\n1 5 0\n1 6 2 1 6\n1 7 2 1 7\n1 8 0\n1 9 2 5 9\n1 10 0\n2 3 2 4 3\n2 4 2 2 4\n2 5 2 3 10\n2 6 2 2 6\n2 7 2 2 7\n2 8 0\n2 9 2 2 9\n2 10 2 10 6\n3 4 0\n3 5 0\n3 6 2 3 6\n3 7 0\n3 8 0\n3 9 2 7 1\n3 10 2 1 6\n4 5 0\n4 6 2 4 6\n4 7 2 2 4\n4 8 0\n4 9 2 7 5\n4 10 2 4 10\n5 6 2 8 4\n5 7 2 6 5\n5 8 0\n5 9 0\n5 10 0\n6 7 2 6 7\n6 8 2 6 8\n6 9 2 10 8\n6 10 0\n7 8 2 1 4\n7 9 0\n7 10 2 10 10\n8 9 2 2 8\n12 10 2 8 10\n9 10 2 10 10\n",
"15 6\n1 2 0\n2 3 0\n3 4 7 1 2 3 4 5 2 7\n4 5 0\n5 2 0\n2 7 1 7\n",
"5 10\n1 2 0\n1 3 2 1 3\n1 4 2 1 4\n1 5 2 5 2\n2 6 2 2 3\n2 4 0\n2 5 2 2 5\n3 4 2 3 4\n3 5 0\n4 5 0\n",
"8 8\n1 2 0\n4 3 1 3\n7 8 3 3 7 8\n1 7 0\n2 3 2 2 1\n5 2 2 1 2\n6 5 3 1 2 3\n1 5 3 5 1 6\n",
"50 17\n1 2 5 3 4 1 2 5\n1 3 0\n1 6 2 6 7\n2 10 1 1\n3 4 0\n4 1 1 1\n5 1 0\n6 10 1 10\n10 1 1 1\n6 5 2 5 1\n6 7 0\n7 8 2 8 6\n8 6 0\n1 9 2 9 11\n9 11 0\n11 1 0\n7 1 0\n",
"6 6\n1 2 2 1 2\n2 3 1 3\n3 4 2 4 5\n4 5 0\n5 3 1 2\n6 1 1 6\n",
"6 6\n1 2 2 1 2\n2 3 1 3\n2 4 2 4 5\n4 5 0\n5 3 1 3\n6 1 1 6\n",
"6 6\n1 3 2 1 2\n2 3 1 3\n3 4 2 4 5\n4 5 0\n5 3 1 2\n6 1 1 6\n",
"6 6\n1 2 2 1 2\n2 3 1 3\n2 4 2 4 5\n4 5 0\n5 5 1 3\n6 1 1 6\n",
"11 6\n1 2 2 1 2\n2 3 1 3\n2 4 2 4 5\n4 5 0\n5 5 1 3\n6 1 1 6\n",
"4 1\n1 2 0\n",
"5 4\n1 2 3 3 1 2\n5 4 0\n4 3 0\n4 1 2 5 4\n",
"11 17\n1 2 5 3 4 1 2 5\n1 3 0\n1 6 2 6 7\n2 5 1 1\n3 4 0\n4 1 1 1\n5 1 0\n6 10 1 10\n10 1 1 1\n6 5 2 5 1\n6 7 0\n7 8 2 8 6\n8 6 0\n1 9 2 9 11\n9 11 0\n11 2 0\n7 1 0\n",
"10 45\n1 2 2 1 2\n1 3 2 1 3\n1 4 2 7 10\n1 5 0\n1 6 2 1 6\n1 7 2 1 7\n1 8 0\n1 9 2 5 9\n1 10 0\n2 3 2 4 3\n2 4 2 2 4\n2 5 2 3 10\n2 6 2 2 6\n2 7 2 2 7\n2 8 0\n2 9 2 2 9\n2 10 2 10 6\n3 4 0\n3 5 0\n3 6 2 3 6\n3 7 0\n3 8 0\n3 9 2 7 1\n3 10 2 1 6\n4 5 0\n4 6 2 4 6\n4 7 2 2 4\n4 8 0\n4 9 2 7 5\n4 10 2 4 10\n5 6 2 8 4\n5 7 2 6 5\n5 8 0\n5 9 0\n5 10 0\n6 7 2 6 7\n6 8 2 6 8\n6 9 2 10 8\n6 10 0\n7 8 2 1 4\n7 9 0\n7 10 2 10 10\n8 9 2 2 8\n8 10 2 8 10\n0 10 2 10 10\n",
"10 6\n1 2 0\n2 3 0\n3 4 7 1 2 3 4 5 2 7\n4 5 0\n5 2 0\n2 3 1 7\n",
"4 1\n1 2 2 1 2\n",
"8 8\n1 2 0\n4 3 1 3\n7 8 3 3 7 8\n3 7 0\n2 3 2 2 1\n5 2 2 1 1\n6 5 3 1 2 3\n1 5 3 5 1 6\n",
"6 6\n1 2 2 1 2\n2 3 1 3\n3 0 2 4 5\n4 5 0\n5 3 1 3\n6 1 1 6\n",
"1 1\n1 2 0\n",
"7 6\n1 2 2 1 2\n2 3 1 3\n2 4 2 4 5\n4 5 0\n5 3 1 3\n6 1 1 6\n",
"2 1\n1 2 1 1 2\n",
"3 3\n1 2 1 1\n2 3 1 2\n3 1 0 3\n",
"2 1\n0 2 2 2 1\n",
"15 6\n1 2 0\n2 3 0\n3 4 7 1 2 3 4 5 2 7\n6 5 0\n5 2 0\n2 7 1 7\n",
"2 1\n1 2 1 0 2\n",
"2 1\n0 2 2 2 2\n",
"5 10\n1 2 0\n1 3 2 1 3\n1 4 2 1 4\n1 5 2 5 2\n2 6 2 2 3\n2 0 0\n2 5 2 2 5\n3 4 2 3 4\n3 5 0\n4 5 0\n",
"8 8\n1 2 0\n4 3 1 3\n7 8 3 3 7 8\n0 7 0\n2 3 2 2 1\n5 2 2 1 2\n6 5 3 1 2 3\n1 5 3 5 1 6\n",
"50 17\n1 2 5 3 4 1 2 5\n1 3 0\n1 6 2 6 7\n2 10 1 1\n3 4 0\n4 1 1 1\n5 1 0\n6 10 1 10\n10 1 1 2\n6 5 2 5 1\n6 7 0\n7 8 2 8 6\n8 6 0\n1 9 2 9 11\n9 11 0\n11 1 0\n7 1 0\n",
"15 6\n1 2 0\n2 3 0\n3 4 7 1 4 3 4 5 2 7\n6 5 0\n5 2 0\n2 7 1 7\n",
"2 1\n0 2 1 0 2\n",
"8 8\n1 2 0\n2 3 1 3\n7 8 3 3 7 8\n0 7 0\n2 3 2 2 1\n5 2 2 1 2\n6 5 3 1 2 3\n1 5 3 5 1 6\n",
"2 1\n0 2 1 1 2\n",
"8 8\n1 2 0\n2 3 1 3\n7 5 3 3 7 8\n0 7 0\n2 3 2 2 1\n5 2 2 1 2\n6 5 3 1 2 3\n1 5 3 5 1 6\n",
"8 8\n1 2 0\n2 3 1 3\n7 5 3 3 7 8\n0 7 0\n2 3 2 2 1\n8 2 2 1 2\n6 5 3 1 2 3\n1 5 3 5 1 6\n",
"8 8\n1 2 0\n2 3 1 3\n11 5 3 3 7 8\n0 7 0\n2 3 2 2 1\n8 2 2 1 2\n6 5 3 1 2 3\n1 5 3 5 1 6\n",
"8 8\n1 2 0\n2 3 1 3\n11 5 3 3 7 8\n0 7 0\n2 3 2 0 1\n8 2 2 1 2\n6 5 3 1 2 3\n1 5 3 5 1 6\n",
"8 8\n1 2 0\n2 3 1 3\n18 5 3 3 7 8\n0 7 0\n2 3 2 0 1\n8 2 2 1 2\n6 5 3 1 2 3\n1 5 3 5 1 6\n",
"3 3\n1 2 2 3 2\n1 3 2 3 0\n2 3 2 2 3\n",
"3 3\n2 2 1 1\n2 3 1 2\n3 1 1 3\n",
"4 6\n1 2 0\n1 3 2 2 3\n1 4 2 1 1\n2 3 0\n2 7 2 1 1\n3 4 2 1 1\n",
"6 6\n1 0 2 1 2\n2 3 1 3\n3 4 2 4 5\n4 5 0\n5 3 1 3\n6 1 1 6\n",
"3 3\n1 2 2 3 2\n1 1 2 3 6\n2 3 2 2 3\n",
"11 17\n1 2 5 3 4 1 2 10\n1 3 0\n1 6 2 6 7\n2 5 1 1\n3 4 0\n4 1 1 1\n5 1 0\n6 10 1 19\n10 1 1 1\n6 5 2 5 1\n6 7 0\n7 8 2 8 6\n8 6 0\n1 9 2 9 11\n9 11 0\n11 1 0\n7 1 0\n",
"15 6\n1 2 0\n2 3 0\n4 4 7 1 2 3 4 5 2 7\n4 5 0\n5 2 0\n2 7 1 7\n",
"6 3\n1 2 1 1\n2 3 1 2\n3 1 0 3\n",
"1 1\n0 2 2 2 1\n",
"8 8\n1 2 0\n4 3 1 4\n7 8 3 3 7 8\n1 7 0\n2 3 2 2 1\n5 2 2 1 2\n6 5 3 1 2 3\n1 5 3 5 1 6\n",
"50 17\n1 2 5 3 4 1 2 5\n1 3 0\n1 6 2 6 7\n2 10 1 1\n3 4 0\n4 1 1 1\n5 1 0\n7 10 1 10\n10 1 1 1\n6 5 2 5 1\n6 7 0\n7 8 2 8 6\n8 6 0\n1 9 2 9 11\n9 11 0\n11 1 0\n7 1 0\n",
"6 6\n1 2 2 1 2\n2 3 1 3\n6 4 2 4 5\n4 5 0\n5 3 1 2\n6 1 1 6\n",
"15 6\n1 2 0\n2 3 0\n3 4 7 1 2 3 4 5 2 7\n6 5 0\n5 4 0\n2 7 1 7\n",
"2 1\n1 0 1 0 2\n",
"2 1\n0 2 2 0 2\n",
"5 10\n1 2 0\n1 3 2 1 3\n1 4 2 1 4\n1 5 2 5 2\n2 6 2 2 0\n2 0 0\n2 5 2 2 5\n3 4 2 3 4\n3 5 0\n4 5 0\n",
"6 6\n1 3 2 1 2\n2 3 1 3\n3 4 2 4 5\n4 5 0\n5 3 1 2\n6 2 1 6\n",
"6 6\n1 2 2 1 2\n2 3 1 3\n2 4 2 4 5\n4 5 0\n8 5 1 3\n6 1 1 6\n",
"15 6\n1 2 0\n2 3 0\n3 4 7 1 4 3 4 5 2 7\n6 3 0\n5 2 0\n2 7 1 7\n",
"3 1\n0 2 1 0 2\n",
"8 8\n1 2 0\n2 3 1 3\n7 16 3 3 7 8\n0 7 0\n2 3 2 2 1\n5 2 2 1 2\n6 5 3 1 2 3\n1 5 3 5 1 6\n",
"11 6\n1 2 2 1 2\n2 3 1 3\n2 4 2 4 5\n4 5 0\n2 5 1 3\n6 1 1 6\n",
"2 1\n0 2 2 1 2\n",
"8 8\n1 2 0\n2 3 1 3\n7 5 3 3 7 8\n0 7 0\n2 3 2 2 1\n5 3 2 1 2\n6 5 3 1 2 3\n1 5 3 5 1 6\n",
"8 8\n1 2 0\n2 3 1 3\n7 5 3 3 7 8\n0 7 0\n2 3 2 2 1\n8 2 2 1 0\n6 5 3 1 2 3\n1 5 3 5 1 6\n",
"8 8\n1 2 0\n2 3 1 3\n11 5 3 3 7 12\n0 7 0\n2 3 2 2 1\n8 2 2 1 2\n6 5 3 1 2 3\n1 5 3 5 1 6\n",
"8 8\n1 2 0\n2 3 1 3\n11 5 3 3 7 8\n0 7 0\n2 3 2 0 1\n8 2 2 1 2\n6 5 3 1 2 3\n1 2 3 5 1 6\n",
"8 8\n1 2 0\n2 3 1 3\n18 5 3 3 7 8\n0 7 0\n2 3 2 0 1\n8 4 2 1 2\n6 5 3 1 2 3\n1 5 3 5 1 6\n",
"3 3\n1 4 2 3 2\n1 3 2 3 0\n2 3 2 2 3\n",
"11 17\n1 2 5 3 4 1 2 5\n1 3 0\n1 6 2 6 7\n0 5 1 1\n3 4 0\n4 1 1 1\n5 1 0\n6 10 1 10\n10 1 1 1\n6 5 2 5 1\n6 7 0\n7 8 2 8 6\n8 6 0\n1 9 2 9 11\n9 11 0\n11 2 0\n7 1 0\n"
],
"output": [
"1\n2\n1\n1\n2\n1\n1\n2\n1\n1\n2\n1\n",
"1\n2\n1\n1\n2\n1\n1\n2\n1\n1\n2\n1\n",
"0\n0\n",
"0\n0\n0\n0\n",
"0\n0\n0\n1\n0\n0\n0\n0\n0\n0\n",
"1\n0\n0\n0\n0\n0\n",
"0\n0\n0\n0\n0\n1\n0\n2\n0\n1\n1\n2\n0\n4\n2\n2\n6\n4\n2\n10\n8\n4\n",
"14\n0\n5\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n",
"0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n",
"1\n0\n0\n0\n",
"0\n0\n0\n0\n0\n0\n",
"0\n0\n0\n0\n0\n0\n0\n0\n",
"0\n0\n0\n0\n",
"5\n0\n0\n0\n0\n0\n0\n0\n0\n0\n",
"0\n1\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n",
"0\n0\n0\n0\n0\n1\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n",
"0\n0\n0\n0\n0\n1\n0\n2\n0\n1\n1\n2\n0\n4\n2\n2\n6\n4\n2\n10\n8\n4\n20\n12\n8\n32\n24\n12\n60\n40\n24\n104\n72\n40\n184\n128\n72\n328\n224\n128\n576\n400\n224\n1024\n704\n400\n1808\n1248\n704\n3200\n2208\n1248\n5664\n3904\n2208\n10016\n6912\n3904\n17728\n12224\n6912\n31360\n21632\n12224\n55488\n38272\n21632\n98176\n67712\n38272\n173696\n119808\n67712\n307328\n211968\n119808\n543744\n375040\n211968\n962048\n663552\n375040\n1702144\n1174016\n663552\n3011584\n2077184\n1174016\n5328384\n3675136\n2077184\n9427456\n6502400\n3675136\n16679936\n11504640\n6502400\n29511680\n20355072\n11504640\n",
"0\n0\n0\n0\n",
"0\n0\n0\n0\n0\n0\n",
"1\n0\n0\n0\n0\n0\n",
"0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n",
"13\n0\n2\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n",
"0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n",
"4\n0\n0\n0\n0\n0\n0\n0\n0\n0\n",
"0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n",
"0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n",
"1\n2\n1\n1\n1\n0\n0\n0\n0\n0\n0\n0\n",
"1\n2\n2\n2\n1\n0\n0\n0\n0\n0\n0\n0\n",
"0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n",
"1\n2\n2\n1\n0\n0\n0\n0\n0\n0\n0\n0\n",
"1\n2\n2\n1\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n",
"0\n0\n0\n0\n0\n0\n0\n0\n",
"0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n",
"0\n0\n0\n0\n0\n1\n0\n2\n0\n1\n1\n2\n0\n4\n1\n2\n4\n4\n1\n9\n4\n4\n",
"14\n0\n5\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n",
"0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n",
"1\n0\n0\n0\n0\n0\n0\n0\n",
"0\n1\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n",
"1\n2\n1\n0\n0\n0\n0\n0\n0\n0\n0\n0\n",
"0\n0\n",
"1\n2\n2\n2\n1\n0\n0\n0\n0\n0\n0\n0\n0\n0\n",
"0\n0\n0\n0\n",
"0\n0\n0\n0\n0\n0\n",
"0\n0\n0\n0\n",
"0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n",
"0\n0\n0\n0\n",
"0\n0\n0\n0\n",
"4\n0\n0\n0\n0\n0\n0\n0\n0\n0\n",
"0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n",
"0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n",
"0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n",
"0\n0\n0\n0\n",
"0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n",
"0\n0\n0\n0\n",
"0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n",
"0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n",
"0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n",
"0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n",
"0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n",
"1\n0\n0\n0\n0\n0\n",
"0\n0\n0\n0\n0\n0\n",
"0\n0\n0\n0\n0\n0\n0\n0\n",
"0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n",
"1\n0\n0\n0\n0\n0\n",
"0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n",
"0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n",
"0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n",
"0\n0\n",
"0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n",
"0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n",
"1\n2\n1\n0\n0\n0\n0\n0\n0\n0\n0\n0\n",
"0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n",
"0\n0\n0\n0\n",
"0\n0\n0\n0\n",
"4\n0\n0\n0\n0\n0\n0\n0\n0\n0\n",
"0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n",
"1\n2\n2\n1\n0\n0\n0\n0\n0\n0\n0\n0\n",
"0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n",
"0\n0\n0\n0\n0\n0\n",
"0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n",
"1\n2\n2\n1\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n",
"0\n0\n0\n0\n",
"0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n",
"0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n",
"0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n",
"0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n",
"0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n",
"1\n0\n0\n0\n0\n0\n",
"0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n"
]
} | 2CODEFORCES
|
354_E. Lucky Number Representation_107 | We know that lucky digits are digits 4 and 7, however Vasya's got another favorite digit 0 and he assumes it also is lucky! Lucky numbers are such non-negative integers whose decimal record only contains lucky digits. For example, numbers 0, 47, 7074 are lucky, but 1, 7377, 895, -7 are not.
Vasya has t important positive integers he needs to remember. Vasya is quite superstitious and he wants to remember lucky numbers only, so he is asking you for each important number to represent it as a sum of exactly six lucky numbers (Vasya just can't remember more numbers). Then Vasya can just remember these six numbers and calculate the important number at any moment.
For each of t important integers represent it as the sum of six lucky numbers or state that this is impossible.
Input
The first line contains a single integer t (1 ≤ t ≤ 5000).
Next t lines contain a single positive integer ni (1 ≤ ni ≤ 1018) — the list of important numbers.
Please, do not use the %lld to read or write 64-bit integers С++. It is preferred to read the cin, cout streams or the %I64d specifier.
Output
Print t lines. The i-th line must contain the answer for the i-th important number: if the solution exists, the line must contain exactly six lucky numbers the sum of which equals ni, if the solution doesn't exist the string must contain a single integer -1.
If there are multiple answers print any of them.
Examples
Input
5
42
17
444
7
51
Output
7 7 7 7 7 7
-1
400 0 40 0 4 0
7 0 0 0 0 0
47 4 0 0 0 0 | #include <bits/stdc++.h>
using namespace std;
set<long long> kharab = {1, 2, 3, 5, 6, 9, 10, 13, 17, 31, 34,
37, 38, 41, 43, 45, 46, 49, 50, 53, 57, 71,
83, 111, 123, 391, 403, 437, 457, 471, 483, 511, 523};
long long a[6];
vector<long long> D[43];
void f(long long n) {
if (kharab.find(n) != kharab.end()) {
fill(a, a + 6, -1);
return;
}
if (n < 8) {
a[0] = n;
return;
}
for (long long i = 0; i <= 42; i++) {
if ((!D[i].size() || ~D[i].back()) && i % 10 == n % 10 &&
kharab.find((n - i) / 10) == kharab.end()) {
f((n - i) / 10);
for (long long j = 0; j < 6; j++) a[j] *= 10;
for (long long j = 0; j < D[i].size(); j++) a[j] += D[i][j];
return;
}
}
}
int32_t main() {
long long t;
cin >> t;
D[4].push_back(4);
D[7].push_back(7);
for (long long i = 1; i <= 42; i++) {
if (i == 4 || i == 7) continue;
if (kharab.find(i) != kharab.end() || i == 40) {
D[i].push_back(-1);
continue;
}
if (D[i - 4].size() < 6 && (!D[i - 4].size() || ~D[i - 4].back())) {
D[i] = D[i - 4];
D[i].push_back(4);
} else {
D[i] = D[i - 7];
D[i].push_back(7);
}
}
while (t--) {
long long n;
cin >> n;
fill(a, a + 6, 0);
f(n);
if (~a[0])
for (long long i = 0; i < 6; i++) cout << a[i] << ' ';
else
cout << -1;
cout << '\n';
}
}
| 2C++
| {
"input": [
"5\n42\n17\n444\n7\n51\n",
"5\n42\n17\n444\n7\n51\n",
"5\n42\n17\n444\n7\n52\n",
"5\n42\n17\n640\n7\n51\n",
"5\n42\n15\n444\n7\n52\n",
"5\n42\n21\n640\n7\n51\n",
"5\n35\n15\n444\n7\n52\n",
"5\n42\n21\n640\n7\n44\n",
"5\n42\n17\n444\n11\n51\n",
"5\n42\n17\n444\n1\n51\n",
"5\n42\n17\n444\n7\n75\n",
"5\n42\n15\n444\n7\n30\n",
"5\n66\n21\n640\n7\n51\n",
"5\n35\n15\n444\n7\n24\n",
"5\n42\n19\n640\n7\n44\n",
"5\n80\n17\n444\n7\n75\n",
"5\n42\n15\n444\n13\n30\n",
"5\n63\n21\n640\n7\n51\n",
"5\n35\n15\n470\n7\n24\n",
"5\n42\n37\n640\n7\n44\n",
"5\n42\n20\n444\n11\n51\n",
"5\n80\n17\n740\n7\n75\n",
"5\n76\n15\n444\n13\n30\n",
"5\n27\n21\n640\n7\n51\n",
"5\n80\n17\n740\n8\n75\n",
"5\n76\n15\n444\n13\n1\n",
"5\n27\n21\n640\n4\n51\n",
"5\n42\n38\n444\n11\n80\n",
"5\n57\n15\n444\n13\n1\n",
"5\n42\n38\n444\n11\n62\n",
"5\n18\n34\n740\n8\n75\n",
"5\n31\n34\n740\n8\n75\n",
"5\n17\n15\n444\n12\n1\n",
"5\n10\n15\n444\n19\n1\n",
"5\n42\n17\n444\n7\n42\n",
"5\n22\n17\n444\n7\n52\n",
"5\n43\n17\n640\n7\n51\n",
"5\n60\n15\n444\n7\n52\n",
"5\n42\n21\n56\n7\n51\n",
"5\n35\n15\n444\n7\n76\n",
"5\n42\n21\n640\n4\n44\n",
"5\n42\n17\n444\n11\n76\n",
"5\n42\n17\n444\n10\n75\n",
"5\n42\n30\n444\n7\n30\n",
"5\n35\n15\n444\n11\n24\n",
"5\n42\n36\n640\n7\n44\n",
"5\n42\n10\n444\n8\n51\n",
"5\n42\n15\n444\n13\n40\n",
"5\n42\n14\n640\n7\n44\n",
"5\n76\n15\n444\n13\n58\n",
"5\n27\n21\n640\n13\n51\n",
"5\n70\n38\n444\n11\n51\n",
"5\n80\n20\n740\n8\n75\n",
"5\n76\n15\n444\n18\n1\n",
"5\n39\n21\n640\n4\n51\n",
"5\n18\n34\n740\n8\n54\n",
"5\n31\n48\n740\n8\n75\n",
"5\n42\n10\n444\n11\n51\n",
"5\n42\n38\n444\n11\n51\n",
"5\n80\n34\n740\n8\n75\n",
"5\n17\n15\n444\n13\n1\n",
"5\n10\n15\n444\n12\n1\n",
"5\n80\n34\n740\n7\n75\n",
"5\n80\n38\n740\n8\n75\n"
],
"output": [
" 7 7 7 7 7 7 \n-1\n 444 0 0 0 0 0 \n 7 0 0 0 0 0 \n 44 7 0 0 0 0 \n",
" 7 7 7 7 7 7 \n-1\n 444 0 0 0 0 0 \n 7 0 0 0 0 0 \n 44 7 0 0 0 0 \n",
" 7 7 7 7 7 7 \n-1\n 444 0 0 0 0 0 \n 7 0 0 0 0 0 \n 44 4 4 0 0 0 \n",
" 7 7 7 7 7 7 \n-1\n 440 40 40 40 40 40 \n 7 0 0 0 0 0 \n 44 7 0 0 0 0 \n",
" 7 7 7 7 7 7 \n 4 4 7 0 0 0 \n 444 0 0 0 0 0 \n 7 0 0 0 0 0 \n 44 4 4 0 0 0 \n",
" 7 7 7 7 7 7 \n 7 7 7 0 0 0 \n 440 40 40 40 40 40 \n 7 0 0 0 0 0 \n 44 7 0 0 0 0 \n",
" 7 7 7 7 7 0 \n 4 4 7 0 0 0 \n 444 0 0 0 0 0 \n 7 0 0 0 0 0 \n 44 4 4 0 0 0 \n",
" 7 7 7 7 7 7 \n 7 7 7 0 0 0 \n 440 40 40 40 40 40 \n 7 0 0 0 0 0 \n 44 0 0 0 0 0 \n",
" 7 7 7 7 7 7 \n-1\n 444 0 0 0 0 0 \n 4 7 0 0 0 0 \n 44 7 0 0 0 0 \n",
" 7 7 7 7 7 7 \n-1\n 444 0 0 0 0 0 \n-1\n 44 7 0 0 0 0 \n",
" 7 7 7 7 7 7 \n-1\n 444 0 0 0 0 0 \n 7 0 0 0 0 0 \n 47 7 7 7 7 0 \n",
" 7 7 7 7 7 7 \n 4 4 7 0 0 0 \n 444 0 0 0 0 0 \n 7 0 0 0 0 0 \n 4 4 4 4 7 7 \n",
" 44 4 4 7 7 0 \n 7 7 7 0 0 0 \n 440 40 40 40 40 40 \n 7 0 0 0 0 0 \n 44 7 0 0 0 0 \n",
" 7 7 7 7 7 0 \n 4 4 7 0 0 0 \n 444 0 0 0 0 0 \n 7 0 0 0 0 0 \n 4 4 4 4 4 4 \n",
" 7 7 7 7 7 7 \n 4 4 4 7 0 0 \n 440 40 40 40 40 40 \n 7 0 0 0 0 0 \n 44 0 0 0 0 0 \n",
" 40 40 0 0 0 0 \n-1\n 444 0 0 0 0 0 \n 7 0 0 0 0 0 \n 47 7 7 7 7 0 \n",
" 7 7 7 7 7 7 \n 4 4 7 0 0 0 \n 444 0 0 0 0 0 \n-1\n 4 4 4 4 7 7 \n",
" 44 4 4 4 7 0 \n 7 7 7 0 0 0 \n 440 40 40 40 40 40 \n 7 0 0 0 0 0 \n 44 7 0 0 0 0 \n",
" 7 7 7 7 7 0 \n 4 4 7 0 0 0 \n 470 0 0 0 0 0 \n 7 0 0 0 0 0 \n 4 4 4 4 4 4 \n",
" 7 7 7 7 7 7 \n-1\n 440 40 40 40 40 40 \n 7 0 0 0 0 0 \n 44 0 0 0 0 0 \n",
" 7 7 7 7 7 7 \n 4 4 4 4 4 0 \n 444 0 0 0 0 0 \n 4 7 0 0 0 0 \n 44 7 0 0 0 0 \n",
" 40 40 0 0 0 0 \n-1\n 740 0 0 0 0 0 \n 7 0 0 0 0 0 \n 47 7 7 7 7 0 \n",
" 44 4 7 7 7 7 \n 4 4 7 0 0 0 \n 444 0 0 0 0 0 \n-1\n 4 4 4 4 7 7 \n",
" 4 4 4 4 4 7 \n 7 7 7 0 0 0 \n 440 40 40 40 40 40 \n 7 0 0 0 0 0 \n 44 7 0 0 0 0 \n",
" 40 40 0 0 0 0 \n-1\n 740 0 0 0 0 0 \n 4 4 0 0 0 0 \n 47 7 7 7 7 0 \n",
" 44 4 7 7 7 7 \n 4 4 7 0 0 0 \n 444 0 0 0 0 0 \n-1\n-1\n",
" 4 4 4 4 4 7 \n 7 7 7 0 0 0 \n 440 40 40 40 40 40 \n 4 0 0 0 0 0 \n 44 7 0 0 0 0 \n",
" 7 7 7 7 7 7 \n-1\n 444 0 0 0 0 0 \n 4 7 0 0 0 0 \n 40 40 0 0 0 0 \n",
"-1\n 4 4 7 0 0 0 \n 444 0 0 0 0 0 \n-1\n-1\n",
" 7 7 7 7 7 7 \n-1\n 444 0 0 0 0 0 \n 4 7 0 0 0 0 \n 44 4 7 7 0 0 \n",
" 4 7 7 0 0 0 \n-1\n 740 0 0 0 0 0 \n 4 4 0 0 0 0 \n 47 7 7 7 7 0 \n",
"-1\n-1\n 740 0 0 0 0 0 \n 4 4 0 0 0 0 \n 47 7 7 7 7 0 \n",
"-1\n 4 4 7 0 0 0 \n 444 0 0 0 0 0 \n 4 4 4 0 0 0 \n-1\n",
"-1\n 4 4 7 0 0 0 \n 444 0 0 0 0 0 \n 4 4 4 7 0 0 \n-1\n",
" 7 7 7 7 7 7 \n-1\n 444 0 0 0 0 0 \n 7 0 0 0 0 0 \n 7 7 7 7 7 7 \n",
" 4 4 7 7 0 0 \n-1\n 444 0 0 0 0 0 \n 7 0 0 0 0 0 \n 44 4 4 0 0 0 \n",
"-1\n-1\n 440 40 40 40 40 40 \n 7 0 0 0 0 0 \n 44 7 0 0 0 0 \n",
" 44 4 4 4 4 0 \n 4 4 7 0 0 0 \n 444 0 0 0 0 0 \n 7 0 0 0 0 0 \n 44 4 4 0 0 0 \n",
" 7 7 7 7 7 7 \n 7 7 7 0 0 0 \n 44 4 4 4 0 0 \n 7 0 0 0 0 0 \n 44 7 0 0 0 0 \n",
" 7 7 7 7 7 0 \n 4 4 7 0 0 0 \n 444 0 0 0 0 0 \n 7 0 0 0 0 0 \n 44 4 7 7 7 7 \n",
" 7 7 7 7 7 7 \n 7 7 7 0 0 0 \n 440 40 40 40 40 40 \n 4 0 0 0 0 0 \n 44 0 0 0 0 0 \n",
" 7 7 7 7 7 7 \n-1\n 444 0 0 0 0 0 \n 4 7 0 0 0 0 \n 44 4 7 7 7 7 \n",
" 7 7 7 7 7 7 \n-1\n 444 0 0 0 0 0 \n-1\n 47 7 7 7 7 0 \n",
" 7 7 7 7 7 7 \n 4 4 4 4 7 7 \n 444 0 0 0 0 0 \n 7 0 0 0 0 0 \n 4 4 4 4 7 7 \n",
" 7 7 7 7 7 0 \n 4 4 7 0 0 0 \n 444 0 0 0 0 0 \n 4 7 0 0 0 0 \n 4 4 4 4 4 4 \n",
" 7 7 7 7 7 7 \n 4 4 7 7 7 7 \n 440 40 40 40 40 40 \n 7 0 0 0 0 0 \n 44 0 0 0 0 0 \n",
" 7 7 7 7 7 7 \n-1\n 444 0 0 0 0 0 \n 4 4 0 0 0 0 \n 44 7 0 0 0 0 \n",
" 7 7 7 7 7 7 \n 4 4 7 0 0 0 \n 444 0 0 0 0 0 \n-1\n 40 0 0 0 0 0 \n",
" 7 7 7 7 7 7 \n 7 7 0 0 0 0 \n 440 40 40 40 40 40 \n 7 0 0 0 0 0 \n 44 0 0 0 0 0 \n",
" 44 4 7 7 7 7 \n 4 4 7 0 0 0 \n 444 0 0 0 0 0 \n-1\n 44 7 7 0 0 0 \n",
" 4 4 4 4 4 7 \n 7 7 7 0 0 0 \n 440 40 40 40 40 40 \n-1\n 44 7 0 0 0 0 \n",
" 70 0 0 0 0 0 \n-1\n 444 0 0 0 0 0 \n 4 7 0 0 0 0 \n 44 7 0 0 0 0 \n",
" 40 40 0 0 0 0 \n 4 4 4 4 4 0 \n 740 0 0 0 0 0 \n 4 4 0 0 0 0 \n 47 7 7 7 7 0 \n",
" 44 4 7 7 7 7 \n 4 4 7 0 0 0 \n 444 0 0 0 0 0 \n 4 7 7 0 0 0 \n-1\n",
" 4 7 7 7 7 7 \n 7 7 7 0 0 0 \n 440 40 40 40 40 40 \n 4 0 0 0 0 0 \n 44 7 0 0 0 0 \n",
" 4 7 7 0 0 0 \n-1\n 740 0 0 0 0 0 \n 4 4 0 0 0 0 \n 47 7 0 0 0 0 \n",
"-1\n 44 4 0 0 0 0 \n 740 0 0 0 0 0 \n 4 4 0 0 0 0 \n 47 7 7 7 7 0 \n",
" 7 7 7 7 7 7 \n-1\n 444 0 0 0 0 0 \n 4 7 0 0 0 0 \n 44 7 0 0 0 0 \n",
" 7 7 7 7 7 7 \n-1\n 444 0 0 0 0 0 \n 4 7 0 0 0 0 \n 44 7 0 0 0 0 \n",
" 40 40 0 0 0 0 \n-1\n 740 0 0 0 0 0 \n 4 4 0 0 0 0 \n 47 7 7 7 7 0 \n",
"-1\n 4 4 7 0 0 0 \n 444 0 0 0 0 0 \n-1\n-1\n",
"-1\n 4 4 7 0 0 0 \n 444 0 0 0 0 0 \n 4 4 4 0 0 0 \n-1\n",
" 40 40 0 0 0 0 \n-1\n 740 0 0 0 0 0 \n 7 0 0 0 0 0 \n 47 7 7 7 7 0 \n",
" 40 40 0 0 0 0 \n-1\n 740 0 0 0 0 0 \n 4 4 0 0 0 0 \n 47 7 7 7 7 0 \n"
]
} | 2CODEFORCES
|
354_E. Lucky Number Representation_108 | We know that lucky digits are digits 4 and 7, however Vasya's got another favorite digit 0 and he assumes it also is lucky! Lucky numbers are such non-negative integers whose decimal record only contains lucky digits. For example, numbers 0, 47, 7074 are lucky, but 1, 7377, 895, -7 are not.
Vasya has t important positive integers he needs to remember. Vasya is quite superstitious and he wants to remember lucky numbers only, so he is asking you for each important number to represent it as a sum of exactly six lucky numbers (Vasya just can't remember more numbers). Then Vasya can just remember these six numbers and calculate the important number at any moment.
For each of t important integers represent it as the sum of six lucky numbers or state that this is impossible.
Input
The first line contains a single integer t (1 ≤ t ≤ 5000).
Next t lines contain a single positive integer ni (1 ≤ ni ≤ 1018) — the list of important numbers.
Please, do not use the %lld to read or write 64-bit integers С++. It is preferred to read the cin, cout streams or the %I64d specifier.
Output
Print t lines. The i-th line must contain the answer for the i-th important number: if the solution exists, the line must contain exactly six lucky numbers the sum of which equals ni, if the solution doesn't exist the string must contain a single integer -1.
If there are multiple answers print any of them.
Examples
Input
5
42
17
444
7
51
Output
7 7 7 7 7 7
-1
400 0 40 0 4 0
7 0 0 0 0 0
47 4 0 0 0 0 | import java.io.InputStreamReader;
import java.io.IOException;
import java.util.InputMismatchException;
import java.io.BufferedReader;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.io.Reader;
import java.io.Writer;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
* @author Niyaz Nigmatullin
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
FastScanner in = new FastScanner(inputStream);
FastPrinter out = new FastPrinter(outputStream);
TaskE solver = new TaskE();
solver.solve(1, in, out);
out.close();
}
}
class TaskE {
final int MAXCARRY = 6;
public void solve(int testNumber, FastScanner in, FastPrinter out) {
int t = in.nextInt();
for (int curTest = 0; curTest < t; curTest++) {
long n = in.nextLong();
String s = n + "";
int[] d = new int[s.length()];
for (int i = 0; i < d.length; i++) {
d[i] = s.charAt(i) - '0';
}
boolean[][] dp = new boolean[d.length + 1][MAXCARRY];
dp[d.length][0] = true;
for (int i = d.length - 1; i >= 0; i--) {
for (int carry2 = 0; carry2 < MAXCARRY; carry2++) {
if (!dp[i + 1][carry2]) {
continue;
}
for (int carry = 0; carry < MAXCARRY; carry++) {
int needSum = carry * 10 + d[i] - carry2;
for (int seven = 0; seven * 7 <= needSum && seven <= 6; seven++) {
int left = needSum - seven * 7;
if (left % 4 != 0 || left / 4 + seven > 6) {
continue;
}
dp[i][carry] = true;
break;
}
}
}
}
if (!dp[0][0]) {
out.println(-1);
continue;
}
long[] answer = new long[6];
all: for (int i = 0, carry = 0; i < d.length; i++) {
for (int carry2 = 0; carry2 < MAXCARRY; carry2++) {
if (!dp[i + 1][carry2]) continue;
int needSum = carry * 10 + d[i] - carry2;
for (int seven = 0; seven * 7 <= needSum && seven <= 6; seven++) {
int left = needSum - seven * 7;
if (left % 4 != 0 || left / 4 + seven > 6) {
continue;
}
int four = left / 4;
carry = carry2;
for (int j = 0; j < seven; j++) {
answer[j] = answer[j] * 10 + 7;
}
for (int j = 0; j < four; j++) {
answer[j + seven] = answer[j + seven] * 10 + 4;
}
for (int j = 0; j < 6 - seven - four; j++) {
answer[j + seven + four] *= 10;
}
continue all;
}
}
throw new AssertionError();
}
out.printArray(answer);
}
}
}
class FastScanner extends BufferedReader {
public FastScanner(InputStream is) {
super(new InputStreamReader(is));
}
public int read() {
try {
int ret = super.read();
// if (isEOF && ret < 0) {
// throw new InputMismatchException();
// }
// isEOF = ret == -1;
return ret;
} catch (IOException e) {
throw new InputMismatchException();
}
}
public String next() {
StringBuilder sb = new StringBuilder();
int c = read();
while (isWhiteSpace(c)) {
c = read();
}
if (c < 0) {
return null;
}
while (c >= 0 && !isWhiteSpace(c)) {
sb.appendCodePoint(c);
c = read();
}
return sb.toString();
}
static boolean isWhiteSpace(int c) {
return c >= 0 && c <= 32;
}
public int nextInt() {
int c = read();
while (isWhiteSpace(c)) {
c = read();
}
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int ret = 0;
while (c >= 0 && !isWhiteSpace(c)) {
if (c < '0' || c > '9') {
throw new NumberFormatException("digit expected " + (char) c
+ " found");
}
ret = ret * 10 + c - '0';
c = read();
}
return ret * sgn;
}
public long nextLong() {
return Long.parseLong(next());
}
public String readLine() {
try {
return super.readLine();
} catch (IOException e) {
return null;
}
}
}
class FastPrinter extends PrintWriter {
public FastPrinter(OutputStream out) {
super(out);
}
public FastPrinter(Writer out) {
super(out);
}
public void printArray(long[] a) {
for (int i = 0; i < a.length; i++) {
if (i > 0) {
print(' ');
}
print(a[i]);
}
println();
}
}
| 4JAVA
| {
"input": [
"5\n42\n17\n444\n7\n51\n",
"5\n42\n17\n444\n7\n51\n",
"5\n42\n17\n444\n7\n52\n",
"5\n42\n17\n640\n7\n51\n",
"5\n42\n15\n444\n7\n52\n",
"5\n42\n21\n640\n7\n51\n",
"5\n35\n15\n444\n7\n52\n",
"5\n42\n21\n640\n7\n44\n",
"5\n42\n17\n444\n11\n51\n",
"5\n42\n17\n444\n1\n51\n",
"5\n42\n17\n444\n7\n75\n",
"5\n42\n15\n444\n7\n30\n",
"5\n66\n21\n640\n7\n51\n",
"5\n35\n15\n444\n7\n24\n",
"5\n42\n19\n640\n7\n44\n",
"5\n80\n17\n444\n7\n75\n",
"5\n42\n15\n444\n13\n30\n",
"5\n63\n21\n640\n7\n51\n",
"5\n35\n15\n470\n7\n24\n",
"5\n42\n37\n640\n7\n44\n",
"5\n42\n20\n444\n11\n51\n",
"5\n80\n17\n740\n7\n75\n",
"5\n76\n15\n444\n13\n30\n",
"5\n27\n21\n640\n7\n51\n",
"5\n80\n17\n740\n8\n75\n",
"5\n76\n15\n444\n13\n1\n",
"5\n27\n21\n640\n4\n51\n",
"5\n42\n38\n444\n11\n80\n",
"5\n57\n15\n444\n13\n1\n",
"5\n42\n38\n444\n11\n62\n",
"5\n18\n34\n740\n8\n75\n",
"5\n31\n34\n740\n8\n75\n",
"5\n17\n15\n444\n12\n1\n",
"5\n10\n15\n444\n19\n1\n",
"5\n42\n17\n444\n7\n42\n",
"5\n22\n17\n444\n7\n52\n",
"5\n43\n17\n640\n7\n51\n",
"5\n60\n15\n444\n7\n52\n",
"5\n42\n21\n56\n7\n51\n",
"5\n35\n15\n444\n7\n76\n",
"5\n42\n21\n640\n4\n44\n",
"5\n42\n17\n444\n11\n76\n",
"5\n42\n17\n444\n10\n75\n",
"5\n42\n30\n444\n7\n30\n",
"5\n35\n15\n444\n11\n24\n",
"5\n42\n36\n640\n7\n44\n",
"5\n42\n10\n444\n8\n51\n",
"5\n42\n15\n444\n13\n40\n",
"5\n42\n14\n640\n7\n44\n",
"5\n76\n15\n444\n13\n58\n",
"5\n27\n21\n640\n13\n51\n",
"5\n70\n38\n444\n11\n51\n",
"5\n80\n20\n740\n8\n75\n",
"5\n76\n15\n444\n18\n1\n",
"5\n39\n21\n640\n4\n51\n",
"5\n18\n34\n740\n8\n54\n",
"5\n31\n48\n740\n8\n75\n",
"5\n42\n10\n444\n11\n51\n",
"5\n42\n38\n444\n11\n51\n",
"5\n80\n34\n740\n8\n75\n",
"5\n17\n15\n444\n13\n1\n",
"5\n10\n15\n444\n12\n1\n",
"5\n80\n34\n740\n7\n75\n",
"5\n80\n38\n740\n8\n75\n"
],
"output": [
" 7 7 7 7 7 7 \n-1\n 444 0 0 0 0 0 \n 7 0 0 0 0 0 \n 44 7 0 0 0 0 \n",
" 7 7 7 7 7 7 \n-1\n 444 0 0 0 0 0 \n 7 0 0 0 0 0 \n 44 7 0 0 0 0 \n",
" 7 7 7 7 7 7 \n-1\n 444 0 0 0 0 0 \n 7 0 0 0 0 0 \n 44 4 4 0 0 0 \n",
" 7 7 7 7 7 7 \n-1\n 440 40 40 40 40 40 \n 7 0 0 0 0 0 \n 44 7 0 0 0 0 \n",
" 7 7 7 7 7 7 \n 4 4 7 0 0 0 \n 444 0 0 0 0 0 \n 7 0 0 0 0 0 \n 44 4 4 0 0 0 \n",
" 7 7 7 7 7 7 \n 7 7 7 0 0 0 \n 440 40 40 40 40 40 \n 7 0 0 0 0 0 \n 44 7 0 0 0 0 \n",
" 7 7 7 7 7 0 \n 4 4 7 0 0 0 \n 444 0 0 0 0 0 \n 7 0 0 0 0 0 \n 44 4 4 0 0 0 \n",
" 7 7 7 7 7 7 \n 7 7 7 0 0 0 \n 440 40 40 40 40 40 \n 7 0 0 0 0 0 \n 44 0 0 0 0 0 \n",
" 7 7 7 7 7 7 \n-1\n 444 0 0 0 0 0 \n 4 7 0 0 0 0 \n 44 7 0 0 0 0 \n",
" 7 7 7 7 7 7 \n-1\n 444 0 0 0 0 0 \n-1\n 44 7 0 0 0 0 \n",
" 7 7 7 7 7 7 \n-1\n 444 0 0 0 0 0 \n 7 0 0 0 0 0 \n 47 7 7 7 7 0 \n",
" 7 7 7 7 7 7 \n 4 4 7 0 0 0 \n 444 0 0 0 0 0 \n 7 0 0 0 0 0 \n 4 4 4 4 7 7 \n",
" 44 4 4 7 7 0 \n 7 7 7 0 0 0 \n 440 40 40 40 40 40 \n 7 0 0 0 0 0 \n 44 7 0 0 0 0 \n",
" 7 7 7 7 7 0 \n 4 4 7 0 0 0 \n 444 0 0 0 0 0 \n 7 0 0 0 0 0 \n 4 4 4 4 4 4 \n",
" 7 7 7 7 7 7 \n 4 4 4 7 0 0 \n 440 40 40 40 40 40 \n 7 0 0 0 0 0 \n 44 0 0 0 0 0 \n",
" 40 40 0 0 0 0 \n-1\n 444 0 0 0 0 0 \n 7 0 0 0 0 0 \n 47 7 7 7 7 0 \n",
" 7 7 7 7 7 7 \n 4 4 7 0 0 0 \n 444 0 0 0 0 0 \n-1\n 4 4 4 4 7 7 \n",
" 44 4 4 4 7 0 \n 7 7 7 0 0 0 \n 440 40 40 40 40 40 \n 7 0 0 0 0 0 \n 44 7 0 0 0 0 \n",
" 7 7 7 7 7 0 \n 4 4 7 0 0 0 \n 470 0 0 0 0 0 \n 7 0 0 0 0 0 \n 4 4 4 4 4 4 \n",
" 7 7 7 7 7 7 \n-1\n 440 40 40 40 40 40 \n 7 0 0 0 0 0 \n 44 0 0 0 0 0 \n",
" 7 7 7 7 7 7 \n 4 4 4 4 4 0 \n 444 0 0 0 0 0 \n 4 7 0 0 0 0 \n 44 7 0 0 0 0 \n",
" 40 40 0 0 0 0 \n-1\n 740 0 0 0 0 0 \n 7 0 0 0 0 0 \n 47 7 7 7 7 0 \n",
" 44 4 7 7 7 7 \n 4 4 7 0 0 0 \n 444 0 0 0 0 0 \n-1\n 4 4 4 4 7 7 \n",
" 4 4 4 4 4 7 \n 7 7 7 0 0 0 \n 440 40 40 40 40 40 \n 7 0 0 0 0 0 \n 44 7 0 0 0 0 \n",
" 40 40 0 0 0 0 \n-1\n 740 0 0 0 0 0 \n 4 4 0 0 0 0 \n 47 7 7 7 7 0 \n",
" 44 4 7 7 7 7 \n 4 4 7 0 0 0 \n 444 0 0 0 0 0 \n-1\n-1\n",
" 4 4 4 4 4 7 \n 7 7 7 0 0 0 \n 440 40 40 40 40 40 \n 4 0 0 0 0 0 \n 44 7 0 0 0 0 \n",
" 7 7 7 7 7 7 \n-1\n 444 0 0 0 0 0 \n 4 7 0 0 0 0 \n 40 40 0 0 0 0 \n",
"-1\n 4 4 7 0 0 0 \n 444 0 0 0 0 0 \n-1\n-1\n",
" 7 7 7 7 7 7 \n-1\n 444 0 0 0 0 0 \n 4 7 0 0 0 0 \n 44 4 7 7 0 0 \n",
" 4 7 7 0 0 0 \n-1\n 740 0 0 0 0 0 \n 4 4 0 0 0 0 \n 47 7 7 7 7 0 \n",
"-1\n-1\n 740 0 0 0 0 0 \n 4 4 0 0 0 0 \n 47 7 7 7 7 0 \n",
"-1\n 4 4 7 0 0 0 \n 444 0 0 0 0 0 \n 4 4 4 0 0 0 \n-1\n",
"-1\n 4 4 7 0 0 0 \n 444 0 0 0 0 0 \n 4 4 4 7 0 0 \n-1\n",
" 7 7 7 7 7 7 \n-1\n 444 0 0 0 0 0 \n 7 0 0 0 0 0 \n 7 7 7 7 7 7 \n",
" 4 4 7 7 0 0 \n-1\n 444 0 0 0 0 0 \n 7 0 0 0 0 0 \n 44 4 4 0 0 0 \n",
"-1\n-1\n 440 40 40 40 40 40 \n 7 0 0 0 0 0 \n 44 7 0 0 0 0 \n",
" 44 4 4 4 4 0 \n 4 4 7 0 0 0 \n 444 0 0 0 0 0 \n 7 0 0 0 0 0 \n 44 4 4 0 0 0 \n",
" 7 7 7 7 7 7 \n 7 7 7 0 0 0 \n 44 4 4 4 0 0 \n 7 0 0 0 0 0 \n 44 7 0 0 0 0 \n",
" 7 7 7 7 7 0 \n 4 4 7 0 0 0 \n 444 0 0 0 0 0 \n 7 0 0 0 0 0 \n 44 4 7 7 7 7 \n",
" 7 7 7 7 7 7 \n 7 7 7 0 0 0 \n 440 40 40 40 40 40 \n 4 0 0 0 0 0 \n 44 0 0 0 0 0 \n",
" 7 7 7 7 7 7 \n-1\n 444 0 0 0 0 0 \n 4 7 0 0 0 0 \n 44 4 7 7 7 7 \n",
" 7 7 7 7 7 7 \n-1\n 444 0 0 0 0 0 \n-1\n 47 7 7 7 7 0 \n",
" 7 7 7 7 7 7 \n 4 4 4 4 7 7 \n 444 0 0 0 0 0 \n 7 0 0 0 0 0 \n 4 4 4 4 7 7 \n",
" 7 7 7 7 7 0 \n 4 4 7 0 0 0 \n 444 0 0 0 0 0 \n 4 7 0 0 0 0 \n 4 4 4 4 4 4 \n",
" 7 7 7 7 7 7 \n 4 4 7 7 7 7 \n 440 40 40 40 40 40 \n 7 0 0 0 0 0 \n 44 0 0 0 0 0 \n",
" 7 7 7 7 7 7 \n-1\n 444 0 0 0 0 0 \n 4 4 0 0 0 0 \n 44 7 0 0 0 0 \n",
" 7 7 7 7 7 7 \n 4 4 7 0 0 0 \n 444 0 0 0 0 0 \n-1\n 40 0 0 0 0 0 \n",
" 7 7 7 7 7 7 \n 7 7 0 0 0 0 \n 440 40 40 40 40 40 \n 7 0 0 0 0 0 \n 44 0 0 0 0 0 \n",
" 44 4 7 7 7 7 \n 4 4 7 0 0 0 \n 444 0 0 0 0 0 \n-1\n 44 7 7 0 0 0 \n",
" 4 4 4 4 4 7 \n 7 7 7 0 0 0 \n 440 40 40 40 40 40 \n-1\n 44 7 0 0 0 0 \n",
" 70 0 0 0 0 0 \n-1\n 444 0 0 0 0 0 \n 4 7 0 0 0 0 \n 44 7 0 0 0 0 \n",
" 40 40 0 0 0 0 \n 4 4 4 4 4 0 \n 740 0 0 0 0 0 \n 4 4 0 0 0 0 \n 47 7 7 7 7 0 \n",
" 44 4 7 7 7 7 \n 4 4 7 0 0 0 \n 444 0 0 0 0 0 \n 4 7 7 0 0 0 \n-1\n",
" 4 7 7 7 7 7 \n 7 7 7 0 0 0 \n 440 40 40 40 40 40 \n 4 0 0 0 0 0 \n 44 7 0 0 0 0 \n",
" 4 7 7 0 0 0 \n-1\n 740 0 0 0 0 0 \n 4 4 0 0 0 0 \n 47 7 0 0 0 0 \n",
"-1\n 44 4 0 0 0 0 \n 740 0 0 0 0 0 \n 4 4 0 0 0 0 \n 47 7 7 7 7 0 \n",
" 7 7 7 7 7 7 \n-1\n 444 0 0 0 0 0 \n 4 7 0 0 0 0 \n 44 7 0 0 0 0 \n",
" 7 7 7 7 7 7 \n-1\n 444 0 0 0 0 0 \n 4 7 0 0 0 0 \n 44 7 0 0 0 0 \n",
" 40 40 0 0 0 0 \n-1\n 740 0 0 0 0 0 \n 4 4 0 0 0 0 \n 47 7 7 7 7 0 \n",
"-1\n 4 4 7 0 0 0 \n 444 0 0 0 0 0 \n-1\n-1\n",
"-1\n 4 4 7 0 0 0 \n 444 0 0 0 0 0 \n 4 4 4 0 0 0 \n-1\n",
" 40 40 0 0 0 0 \n-1\n 740 0 0 0 0 0 \n 7 0 0 0 0 0 \n 47 7 7 7 7 0 \n",
" 40 40 0 0 0 0 \n-1\n 740 0 0 0 0 0 \n 4 4 0 0 0 0 \n 47 7 7 7 7 0 \n"
]
} | 2CODEFORCES
|
379_A. New Year Candles_109 | Vasily the Programmer loves romance, so this year he decided to illuminate his room with candles.
Vasily has a candles.When Vasily lights up a new candle, it first burns for an hour and then it goes out. Vasily is smart, so he can make b went out candles into a new candle. As a result, this new candle can be used like any other new candle.
Now Vasily wonders: for how many hours can his candles light up the room if he acts optimally well? Help him find this number.
Input
The single line contains two integers, a and b (1 ≤ a ≤ 1000; 2 ≤ b ≤ 1000).
Output
Print a single integer — the number of hours Vasily can light up the room for.
Examples
Input
4 2
Output
7
Input
6 3
Output
8
Note
Consider the first sample. For the first four hours Vasily lights up new candles, then he uses four burned out candles to make two new ones and lights them up. When these candles go out (stop burning), Vasily can make another candle. Overall, Vasily can light up the room for 7 hours. | a, b = map(int, raw_input().strip().split(' '))
c = (a)
while c >= b:
t = c / b
c = t + c % b
a += t
print a
| 1Python2
| {
"input": [
"4 2\n",
"6 3\n",
"5 3\n",
"1000 3\n",
"777 17\n",
"4 3\n",
"2 2\n",
"100 4\n",
"10 4\n",
"999 2\n",
"6 4\n",
"1 2\n",
"17 3\n",
"1 4\n",
"26 8\n",
"91 5\n",
"1 3\n",
"1000 2\n",
"20 3\n",
"9 4\n",
"123 5\n",
"1000 1000\n",
"3 2\n",
"3 3\n",
"80 970\n",
"1000 4\n",
"1 1000\n",
"777 20\n",
"110 4\n",
"12 4\n",
"500 2\n",
"11 4\n",
"1 8\n",
"26 11\n",
"91 4\n",
"20 4\n",
"123 10\n",
"7 4\n",
"7 3\n",
"4 5\n",
"777 9\n",
"110 8\n",
"12 2\n",
"2 8\n",
"26 16\n",
"91 8\n",
"123 12\n",
"14 4\n",
"200 9\n",
"100 8\n",
"14 5\n",
"12 16\n",
"162 8\n",
"123 16\n",
"4 4\n",
"200 14\n",
"111 8\n",
"162 3\n",
"123 6\n",
"23 14\n",
"111 11\n",
"12 8\n",
"321 3\n",
"80 6\n",
"37 14\n",
"371 3\n",
"80 9\n",
"46 14\n",
"11 12\n",
"371 5\n",
"80 7\n",
"58 14\n",
"8 17\n",
"371 8\n",
"80 12\n",
"21 14\n",
"158 12\n",
"158 23\n",
"3 14\n",
"158 7\n",
"12 5\n",
"2 4\n",
"2 16\n",
"14 8\n",
"4 16\n",
"12 15\n",
"4 24\n",
"14 2\n",
"011 11\n",
"11 8\n",
"5 24\n",
"8 4\n",
"001 11\n",
"5 17\n",
"20 2\n",
"001 2\n",
"11 15\n",
"11 30\n",
"4 17\n",
"9 14\n",
"11 50\n",
"4 26\n",
"11 72\n",
"8 26\n",
"3 5\n",
"11 77\n",
"8 5\n"
],
"output": [
"7\n",
"8\n",
"7\n",
"1499\n",
"825\n",
"5\n",
"3\n",
"133\n",
"13\n",
"1997\n",
"7\n",
"1\n",
"25\n",
"1\n",
"29\n",
"113\n",
"1\n",
"1999\n",
"29\n",
"11\n",
"153\n",
"1001\n",
"5\n",
"4\n",
"80\n",
"1333\n",
"1\n",
"817\n",
"146\n",
"15\n",
"999\n",
"14\n",
"1\n",
"28\n",
"121\n",
"26\n",
"136\n",
"9\n",
"10\n",
"4\n",
"874\n",
"125\n",
"23\n",
"2\n",
"27\n",
"103\n",
"134\n",
"18\n",
"224\n",
"114\n",
"17\n",
"12\n",
"185\n",
"131\n",
"5\n",
"215\n",
"126\n",
"242\n",
"147\n",
"24\n",
"122\n",
"13\n",
"481\n",
"95\n",
"39\n",
"556\n",
"89\n",
"49\n",
"11\n",
"463\n",
"93\n",
"62\n",
"8\n",
"423\n",
"87\n",
"22\n",
"172\n",
"165\n",
"3\n",
"184\n",
"14\n",
"2\n",
"2\n",
"15\n",
"4\n",
"12\n",
"4\n",
"27\n",
"12\n",
"12\n",
"5\n",
"10\n",
"1\n",
"5\n",
"39\n",
"1\n",
"11\n",
"11\n",
"4\n",
"9\n",
"11\n",
"4\n",
"11\n",
"8\n",
"3\n",
"11\n",
"9\n"
]
} | 2CODEFORCES
|
379_A. New Year Candles_110 | Vasily the Programmer loves romance, so this year he decided to illuminate his room with candles.
Vasily has a candles.When Vasily lights up a new candle, it first burns for an hour and then it goes out. Vasily is smart, so he can make b went out candles into a new candle. As a result, this new candle can be used like any other new candle.
Now Vasily wonders: for how many hours can his candles light up the room if he acts optimally well? Help him find this number.
Input
The single line contains two integers, a and b (1 ≤ a ≤ 1000; 2 ≤ b ≤ 1000).
Output
Print a single integer — the number of hours Vasily can light up the room for.
Examples
Input
4 2
Output
7
Input
6 3
Output
8
Note
Consider the first sample. For the first four hours Vasily lights up new candles, then he uses four burned out candles to make two new ones and lights them up. When these candles go out (stop burning), Vasily can make another candle. Overall, Vasily can light up the room for 7 hours. | #include <bits/stdc++.h>
using namespace std;
const int mod = 1000 * 1000 * 1000 + 7;
const int INF = 1e9 + 100;
const long long LINF = 1e18 + 100;
int32_t main(void) {
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
;
int a, b;
cin >> a >> b;
int x = 0, ans = 0;
while (a) {
ans += a;
x += a;
a = x / b;
x %= b;
}
cout << ans << '\n';
return 0;
}
| 2C++
| {
"input": [
"4 2\n",
"6 3\n",
"5 3\n",
"1000 3\n",
"777 17\n",
"4 3\n",
"2 2\n",
"100 4\n",
"10 4\n",
"999 2\n",
"6 4\n",
"1 2\n",
"17 3\n",
"1 4\n",
"26 8\n",
"91 5\n",
"1 3\n",
"1000 2\n",
"20 3\n",
"9 4\n",
"123 5\n",
"1000 1000\n",
"3 2\n",
"3 3\n",
"80 970\n",
"1000 4\n",
"1 1000\n",
"777 20\n",
"110 4\n",
"12 4\n",
"500 2\n",
"11 4\n",
"1 8\n",
"26 11\n",
"91 4\n",
"20 4\n",
"123 10\n",
"7 4\n",
"7 3\n",
"4 5\n",
"777 9\n",
"110 8\n",
"12 2\n",
"2 8\n",
"26 16\n",
"91 8\n",
"123 12\n",
"14 4\n",
"200 9\n",
"100 8\n",
"14 5\n",
"12 16\n",
"162 8\n",
"123 16\n",
"4 4\n",
"200 14\n",
"111 8\n",
"162 3\n",
"123 6\n",
"23 14\n",
"111 11\n",
"12 8\n",
"321 3\n",
"80 6\n",
"37 14\n",
"371 3\n",
"80 9\n",
"46 14\n",
"11 12\n",
"371 5\n",
"80 7\n",
"58 14\n",
"8 17\n",
"371 8\n",
"80 12\n",
"21 14\n",
"158 12\n",
"158 23\n",
"3 14\n",
"158 7\n",
"12 5\n",
"2 4\n",
"2 16\n",
"14 8\n",
"4 16\n",
"12 15\n",
"4 24\n",
"14 2\n",
"011 11\n",
"11 8\n",
"5 24\n",
"8 4\n",
"001 11\n",
"5 17\n",
"20 2\n",
"001 2\n",
"11 15\n",
"11 30\n",
"4 17\n",
"9 14\n",
"11 50\n",
"4 26\n",
"11 72\n",
"8 26\n",
"3 5\n",
"11 77\n",
"8 5\n"
],
"output": [
"7\n",
"8\n",
"7\n",
"1499\n",
"825\n",
"5\n",
"3\n",
"133\n",
"13\n",
"1997\n",
"7\n",
"1\n",
"25\n",
"1\n",
"29\n",
"113\n",
"1\n",
"1999\n",
"29\n",
"11\n",
"153\n",
"1001\n",
"5\n",
"4\n",
"80\n",
"1333\n",
"1\n",
"817\n",
"146\n",
"15\n",
"999\n",
"14\n",
"1\n",
"28\n",
"121\n",
"26\n",
"136\n",
"9\n",
"10\n",
"4\n",
"874\n",
"125\n",
"23\n",
"2\n",
"27\n",
"103\n",
"134\n",
"18\n",
"224\n",
"114\n",
"17\n",
"12\n",
"185\n",
"131\n",
"5\n",
"215\n",
"126\n",
"242\n",
"147\n",
"24\n",
"122\n",
"13\n",
"481\n",
"95\n",
"39\n",
"556\n",
"89\n",
"49\n",
"11\n",
"463\n",
"93\n",
"62\n",
"8\n",
"423\n",
"87\n",
"22\n",
"172\n",
"165\n",
"3\n",
"184\n",
"14\n",
"2\n",
"2\n",
"15\n",
"4\n",
"12\n",
"4\n",
"27\n",
"12\n",
"12\n",
"5\n",
"10\n",
"1\n",
"5\n",
"39\n",
"1\n",
"11\n",
"11\n",
"4\n",
"9\n",
"11\n",
"4\n",
"11\n",
"8\n",
"3\n",
"11\n",
"9\n"
]
} | 2CODEFORCES
|
379_A. New Year Candles_111 | Vasily the Programmer loves romance, so this year he decided to illuminate his room with candles.
Vasily has a candles.When Vasily lights up a new candle, it first burns for an hour and then it goes out. Vasily is smart, so he can make b went out candles into a new candle. As a result, this new candle can be used like any other new candle.
Now Vasily wonders: for how many hours can his candles light up the room if he acts optimally well? Help him find this number.
Input
The single line contains two integers, a and b (1 ≤ a ≤ 1000; 2 ≤ b ≤ 1000).
Output
Print a single integer — the number of hours Vasily can light up the room for.
Examples
Input
4 2
Output
7
Input
6 3
Output
8
Note
Consider the first sample. For the first four hours Vasily lights up new candles, then he uses four burned out candles to make two new ones and lights them up. When these candles go out (stop burning), Vasily can make another candle. Overall, Vasily can light up the room for 7 hours. | a, b = map(int, input().split())
c, s = a, 0
while a >= b:
s += a // b
a = (a // b) + (a % b)
print(s + c)
| 3Python3
| {
"input": [
"4 2\n",
"6 3\n",
"5 3\n",
"1000 3\n",
"777 17\n",
"4 3\n",
"2 2\n",
"100 4\n",
"10 4\n",
"999 2\n",
"6 4\n",
"1 2\n",
"17 3\n",
"1 4\n",
"26 8\n",
"91 5\n",
"1 3\n",
"1000 2\n",
"20 3\n",
"9 4\n",
"123 5\n",
"1000 1000\n",
"3 2\n",
"3 3\n",
"80 970\n",
"1000 4\n",
"1 1000\n",
"777 20\n",
"110 4\n",
"12 4\n",
"500 2\n",
"11 4\n",
"1 8\n",
"26 11\n",
"91 4\n",
"20 4\n",
"123 10\n",
"7 4\n",
"7 3\n",
"4 5\n",
"777 9\n",
"110 8\n",
"12 2\n",
"2 8\n",
"26 16\n",
"91 8\n",
"123 12\n",
"14 4\n",
"200 9\n",
"100 8\n",
"14 5\n",
"12 16\n",
"162 8\n",
"123 16\n",
"4 4\n",
"200 14\n",
"111 8\n",
"162 3\n",
"123 6\n",
"23 14\n",
"111 11\n",
"12 8\n",
"321 3\n",
"80 6\n",
"37 14\n",
"371 3\n",
"80 9\n",
"46 14\n",
"11 12\n",
"371 5\n",
"80 7\n",
"58 14\n",
"8 17\n",
"371 8\n",
"80 12\n",
"21 14\n",
"158 12\n",
"158 23\n",
"3 14\n",
"158 7\n",
"12 5\n",
"2 4\n",
"2 16\n",
"14 8\n",
"4 16\n",
"12 15\n",
"4 24\n",
"14 2\n",
"011 11\n",
"11 8\n",
"5 24\n",
"8 4\n",
"001 11\n",
"5 17\n",
"20 2\n",
"001 2\n",
"11 15\n",
"11 30\n",
"4 17\n",
"9 14\n",
"11 50\n",
"4 26\n",
"11 72\n",
"8 26\n",
"3 5\n",
"11 77\n",
"8 5\n"
],
"output": [
"7\n",
"8\n",
"7\n",
"1499\n",
"825\n",
"5\n",
"3\n",
"133\n",
"13\n",
"1997\n",
"7\n",
"1\n",
"25\n",
"1\n",
"29\n",
"113\n",
"1\n",
"1999\n",
"29\n",
"11\n",
"153\n",
"1001\n",
"5\n",
"4\n",
"80\n",
"1333\n",
"1\n",
"817\n",
"146\n",
"15\n",
"999\n",
"14\n",
"1\n",
"28\n",
"121\n",
"26\n",
"136\n",
"9\n",
"10\n",
"4\n",
"874\n",
"125\n",
"23\n",
"2\n",
"27\n",
"103\n",
"134\n",
"18\n",
"224\n",
"114\n",
"17\n",
"12\n",
"185\n",
"131\n",
"5\n",
"215\n",
"126\n",
"242\n",
"147\n",
"24\n",
"122\n",
"13\n",
"481\n",
"95\n",
"39\n",
"556\n",
"89\n",
"49\n",
"11\n",
"463\n",
"93\n",
"62\n",
"8\n",
"423\n",
"87\n",
"22\n",
"172\n",
"165\n",
"3\n",
"184\n",
"14\n",
"2\n",
"2\n",
"15\n",
"4\n",
"12\n",
"4\n",
"27\n",
"12\n",
"12\n",
"5\n",
"10\n",
"1\n",
"5\n",
"39\n",
"1\n",
"11\n",
"11\n",
"4\n",
"9\n",
"11\n",
"4\n",
"11\n",
"8\n",
"3\n",
"11\n",
"9\n"
]
} | 2CODEFORCES
|
379_A. New Year Candles_112 | Vasily the Programmer loves romance, so this year he decided to illuminate his room with candles.
Vasily has a candles.When Vasily lights up a new candle, it first burns for an hour and then it goes out. Vasily is smart, so he can make b went out candles into a new candle. As a result, this new candle can be used like any other new candle.
Now Vasily wonders: for how many hours can his candles light up the room if he acts optimally well? Help him find this number.
Input
The single line contains two integers, a and b (1 ≤ a ≤ 1000; 2 ≤ b ≤ 1000).
Output
Print a single integer — the number of hours Vasily can light up the room for.
Examples
Input
4 2
Output
7
Input
6 3
Output
8
Note
Consider the first sample. For the first four hours Vasily lights up new candles, then he uses four burned out candles to make two new ones and lights them up. When these candles go out (stop burning), Vasily can make another candle. Overall, Vasily can light up the room for 7 hours. |
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int a = in.nextInt();
int b = in.nextInt();
int num_hours = a;
while (true) {
if (a < b) {
break;
}
num_hours += a / b;
a = a / b + a % b;
}
System.out.println(num_hours);
}
}
| 4JAVA
| {
"input": [
"4 2\n",
"6 3\n",
"5 3\n",
"1000 3\n",
"777 17\n",
"4 3\n",
"2 2\n",
"100 4\n",
"10 4\n",
"999 2\n",
"6 4\n",
"1 2\n",
"17 3\n",
"1 4\n",
"26 8\n",
"91 5\n",
"1 3\n",
"1000 2\n",
"20 3\n",
"9 4\n",
"123 5\n",
"1000 1000\n",
"3 2\n",
"3 3\n",
"80 970\n",
"1000 4\n",
"1 1000\n",
"777 20\n",
"110 4\n",
"12 4\n",
"500 2\n",
"11 4\n",
"1 8\n",
"26 11\n",
"91 4\n",
"20 4\n",
"123 10\n",
"7 4\n",
"7 3\n",
"4 5\n",
"777 9\n",
"110 8\n",
"12 2\n",
"2 8\n",
"26 16\n",
"91 8\n",
"123 12\n",
"14 4\n",
"200 9\n",
"100 8\n",
"14 5\n",
"12 16\n",
"162 8\n",
"123 16\n",
"4 4\n",
"200 14\n",
"111 8\n",
"162 3\n",
"123 6\n",
"23 14\n",
"111 11\n",
"12 8\n",
"321 3\n",
"80 6\n",
"37 14\n",
"371 3\n",
"80 9\n",
"46 14\n",
"11 12\n",
"371 5\n",
"80 7\n",
"58 14\n",
"8 17\n",
"371 8\n",
"80 12\n",
"21 14\n",
"158 12\n",
"158 23\n",
"3 14\n",
"158 7\n",
"12 5\n",
"2 4\n",
"2 16\n",
"14 8\n",
"4 16\n",
"12 15\n",
"4 24\n",
"14 2\n",
"011 11\n",
"11 8\n",
"5 24\n",
"8 4\n",
"001 11\n",
"5 17\n",
"20 2\n",
"001 2\n",
"11 15\n",
"11 30\n",
"4 17\n",
"9 14\n",
"11 50\n",
"4 26\n",
"11 72\n",
"8 26\n",
"3 5\n",
"11 77\n",
"8 5\n"
],
"output": [
"7\n",
"8\n",
"7\n",
"1499\n",
"825\n",
"5\n",
"3\n",
"133\n",
"13\n",
"1997\n",
"7\n",
"1\n",
"25\n",
"1\n",
"29\n",
"113\n",
"1\n",
"1999\n",
"29\n",
"11\n",
"153\n",
"1001\n",
"5\n",
"4\n",
"80\n",
"1333\n",
"1\n",
"817\n",
"146\n",
"15\n",
"999\n",
"14\n",
"1\n",
"28\n",
"121\n",
"26\n",
"136\n",
"9\n",
"10\n",
"4\n",
"874\n",
"125\n",
"23\n",
"2\n",
"27\n",
"103\n",
"134\n",
"18\n",
"224\n",
"114\n",
"17\n",
"12\n",
"185\n",
"131\n",
"5\n",
"215\n",
"126\n",
"242\n",
"147\n",
"24\n",
"122\n",
"13\n",
"481\n",
"95\n",
"39\n",
"556\n",
"89\n",
"49\n",
"11\n",
"463\n",
"93\n",
"62\n",
"8\n",
"423\n",
"87\n",
"22\n",
"172\n",
"165\n",
"3\n",
"184\n",
"14\n",
"2\n",
"2\n",
"15\n",
"4\n",
"12\n",
"4\n",
"27\n",
"12\n",
"12\n",
"5\n",
"10\n",
"1\n",
"5\n",
"39\n",
"1\n",
"11\n",
"11\n",
"4\n",
"9\n",
"11\n",
"4\n",
"11\n",
"8\n",
"3\n",
"11\n",
"9\n"
]
} | 2CODEFORCES
|
39_H. Multiplication Table_113 | Petya studies positional notations. He has already learned to add and subtract numbers in the systems of notations with different radices and has moved on to a more complicated action — multiplication. To multiply large numbers one has to learn the multiplication table. Unfortunately, in the second grade students learn only the multiplication table of decimals (and some students even learn it in the first grade). Help Petya make a multiplication table for numbers in the system of notations with the radix k.
Input
The first line contains a single integer k (2 ≤ k ≤ 10) — the radix of the system.
Output
Output the multiplication table for the system of notations with the radix k. The table must contain k - 1 rows and k - 1 columns. The element on the crossing of the i-th row and the j-th column is equal to the product of i and j in the system of notations with the radix k. Each line may have any number of spaces between the numbers (the extra spaces in the samples are put for clarity).
Examples
Input
10
Output
1 2 3 4 5 6 7 8 9
2 4 6 8 10 12 14 16 18
3 6 9 12 15 18 21 24 27
4 8 12 16 20 24 28 32 36
5 10 15 20 25 30 35 40 45
6 12 18 24 30 36 42 48 54
7 14 21 28 35 42 49 56 63
8 16 24 32 40 48 56 64 72
9 18 27 36 45 54 63 72 81
Input
3
Output
1 2
2 11 | def zetom(a,b):
res=''
s=a
while s/b>0:
res+=str(s%b)
s=s/b
res+=str(s)
t=res[::-1]
return t
k=input()
for i in range(1,k):
for j in range(1,k):
res=i*j
if res>=k:
res=zetom (res,k)
print res,
print
| 1Python2
| {
"input": [
"10\n",
"3\n",
"9\n",
"8\n",
"6\n",
"4\n",
"7\n",
"5\n",
"2\n",
"010\n"
],
"output": [
"1 2 3 4 5 6 7 8 9 \n2 4 6 8 10 12 14 16 18 \n3 6 9 12 15 18 21 24 27 \n4 8 12 16 20 24 28 32 36 \n5 10 15 20 25 30 35 40 45 \n6 12 18 24 30 36 42 48 54 \n7 14 21 28 35 42 49 56 63 \n8 16 24 32 40 48 56 64 72 \n9 18 27 36 45 54 63 72 81 \n",
"1 2 \n2 11 \n",
"1 2 3 4 5 6 7 8 \n2 4 6 8 11 13 15 17 \n3 6 10 13 16 20 23 26 \n4 8 13 17 22 26 31 35 \n5 11 16 22 27 33 38 44 \n6 13 20 26 33 40 46 53 \n7 15 23 31 38 46 54 62 \n8 17 26 35 44 53 62 71 \n",
"1 2 3 4 5 6 7 \n2 4 6 10 12 14 16 \n3 6 11 14 17 22 25 \n4 10 14 20 24 30 34 \n5 12 17 24 31 36 43 \n6 14 22 30 36 44 52 \n7 16 25 34 43 52 61 \n",
"1 2 3 4 5 \n2 4 10 12 14 \n3 10 13 20 23 \n4 12 20 24 32 \n5 14 23 32 41 \n",
"1 2 3 \n2 10 12 \n3 12 21 \n",
"1 2 3 4 5 6 \n2 4 6 11 13 15 \n3 6 12 15 21 24 \n4 11 15 22 26 33 \n5 13 21 26 34 42 \n6 15 24 33 42 51 \n",
"1 2 3 4 \n2 4 11 13 \n3 11 14 22 \n4 13 22 31 \n",
"1 \n",
"1 2 3 4 5 6 7 8 9 \n2 4 6 8 10 12 14 16 18 \n3 6 9 12 15 18 21 24 27 \n4 8 12 16 20 24 28 32 36 \n5 10 15 20 25 30 35 40 45 \n6 12 18 24 30 36 42 48 54 \n7 14 21 28 35 42 49 56 63 \n8 16 24 32 40 48 56 64 72 \n9 18 27 36 45 54 63 72 81 \n"
]
} | 2CODEFORCES
|
39_H. Multiplication Table_114 | Petya studies positional notations. He has already learned to add and subtract numbers in the systems of notations with different radices and has moved on to a more complicated action — multiplication. To multiply large numbers one has to learn the multiplication table. Unfortunately, in the second grade students learn only the multiplication table of decimals (and some students even learn it in the first grade). Help Petya make a multiplication table for numbers in the system of notations with the radix k.
Input
The first line contains a single integer k (2 ≤ k ≤ 10) — the radix of the system.
Output
Output the multiplication table for the system of notations with the radix k. The table must contain k - 1 rows and k - 1 columns. The element on the crossing of the i-th row and the j-th column is equal to the product of i and j in the system of notations with the radix k. Each line may have any number of spaces between the numbers (the extra spaces in the samples are put for clarity).
Examples
Input
10
Output
1 2 3 4 5 6 7 8 9
2 4 6 8 10 12 14 16 18
3 6 9 12 15 18 21 24 27
4 8 12 16 20 24 28 32 36
5 10 15 20 25 30 35 40 45
6 12 18 24 30 36 42 48 54
7 14 21 28 35 42 49 56 63
8 16 24 32 40 48 56 64 72
9 18 27 36 45 54 63 72 81
Input
3
Output
1 2
2 11 | #include <bits/stdc++.h>
using namespace std;
const int INF = 0x3f3f3f3f;
int inline in() {
int x = 0, c;
for (; (unsigned)((c = getchar()) - '0') >= 10;) {
if (c == '-') return -in();
if (!~c) throw ~0;
}
do {
x = (x << 3) + (x << 1) + (c - '0');
} while ((unsigned)((c = getchar()) - '0') < 10);
return x;
}
int k;
int main() {
cin >> k;
for (int i = 0; i < (k - 1); i++) {
for (int j = 0; j < (k - 1); j++) {
int pro = (i + 1) * (j + 1);
if (pro >= k) {
int tmp = pro / k;
pro %= k;
pro += tmp * 10;
}
cout << pro << ' ';
}
cout << endl;
}
return 0;
}
| 2C++
| {
"input": [
"10\n",
"3\n",
"9\n",
"8\n",
"6\n",
"4\n",
"7\n",
"5\n",
"2\n",
"010\n"
],
"output": [
"1 2 3 4 5 6 7 8 9 \n2 4 6 8 10 12 14 16 18 \n3 6 9 12 15 18 21 24 27 \n4 8 12 16 20 24 28 32 36 \n5 10 15 20 25 30 35 40 45 \n6 12 18 24 30 36 42 48 54 \n7 14 21 28 35 42 49 56 63 \n8 16 24 32 40 48 56 64 72 \n9 18 27 36 45 54 63 72 81 \n",
"1 2 \n2 11 \n",
"1 2 3 4 5 6 7 8 \n2 4 6 8 11 13 15 17 \n3 6 10 13 16 20 23 26 \n4 8 13 17 22 26 31 35 \n5 11 16 22 27 33 38 44 \n6 13 20 26 33 40 46 53 \n7 15 23 31 38 46 54 62 \n8 17 26 35 44 53 62 71 \n",
"1 2 3 4 5 6 7 \n2 4 6 10 12 14 16 \n3 6 11 14 17 22 25 \n4 10 14 20 24 30 34 \n5 12 17 24 31 36 43 \n6 14 22 30 36 44 52 \n7 16 25 34 43 52 61 \n",
"1 2 3 4 5 \n2 4 10 12 14 \n3 10 13 20 23 \n4 12 20 24 32 \n5 14 23 32 41 \n",
"1 2 3 \n2 10 12 \n3 12 21 \n",
"1 2 3 4 5 6 \n2 4 6 11 13 15 \n3 6 12 15 21 24 \n4 11 15 22 26 33 \n5 13 21 26 34 42 \n6 15 24 33 42 51 \n",
"1 2 3 4 \n2 4 11 13 \n3 11 14 22 \n4 13 22 31 \n",
"1 \n",
"1 2 3 4 5 6 7 8 9 \n2 4 6 8 10 12 14 16 18 \n3 6 9 12 15 18 21 24 27 \n4 8 12 16 20 24 28 32 36 \n5 10 15 20 25 30 35 40 45 \n6 12 18 24 30 36 42 48 54 \n7 14 21 28 35 42 49 56 63 \n8 16 24 32 40 48 56 64 72 \n9 18 27 36 45 54 63 72 81 \n"
]
} | 2CODEFORCES
|
39_H. Multiplication Table_115 | Petya studies positional notations. He has already learned to add and subtract numbers in the systems of notations with different radices and has moved on to a more complicated action — multiplication. To multiply large numbers one has to learn the multiplication table. Unfortunately, in the second grade students learn only the multiplication table of decimals (and some students even learn it in the first grade). Help Petya make a multiplication table for numbers in the system of notations with the radix k.
Input
The first line contains a single integer k (2 ≤ k ≤ 10) — the radix of the system.
Output
Output the multiplication table for the system of notations with the radix k. The table must contain k - 1 rows and k - 1 columns. The element on the crossing of the i-th row and the j-th column is equal to the product of i and j in the system of notations with the radix k. Each line may have any number of spaces between the numbers (the extra spaces in the samples are put for clarity).
Examples
Input
10
Output
1 2 3 4 5 6 7 8 9
2 4 6 8 10 12 14 16 18
3 6 9 12 15 18 21 24 27
4 8 12 16 20 24 28 32 36
5 10 15 20 25 30 35 40 45
6 12 18 24 30 36 42 48 54
7 14 21 28 35 42 49 56 63
8 16 24 32 40 48 56 64 72
9 18 27 36 45 54 63 72 81
Input
3
Output
1 2
2 11 | k=int(input())
for i in range(1,k):
z,a=i,[]
for j in range(k-1):
p,s=z,""
while p:
s=str(p%k)+s
p//=k
z+=i
a.append(s)
print(*a)
| 3Python3
| {
"input": [
"10\n",
"3\n",
"9\n",
"8\n",
"6\n",
"4\n",
"7\n",
"5\n",
"2\n",
"010\n"
],
"output": [
"1 2 3 4 5 6 7 8 9 \n2 4 6 8 10 12 14 16 18 \n3 6 9 12 15 18 21 24 27 \n4 8 12 16 20 24 28 32 36 \n5 10 15 20 25 30 35 40 45 \n6 12 18 24 30 36 42 48 54 \n7 14 21 28 35 42 49 56 63 \n8 16 24 32 40 48 56 64 72 \n9 18 27 36 45 54 63 72 81 \n",
"1 2 \n2 11 \n",
"1 2 3 4 5 6 7 8 \n2 4 6 8 11 13 15 17 \n3 6 10 13 16 20 23 26 \n4 8 13 17 22 26 31 35 \n5 11 16 22 27 33 38 44 \n6 13 20 26 33 40 46 53 \n7 15 23 31 38 46 54 62 \n8 17 26 35 44 53 62 71 \n",
"1 2 3 4 5 6 7 \n2 4 6 10 12 14 16 \n3 6 11 14 17 22 25 \n4 10 14 20 24 30 34 \n5 12 17 24 31 36 43 \n6 14 22 30 36 44 52 \n7 16 25 34 43 52 61 \n",
"1 2 3 4 5 \n2 4 10 12 14 \n3 10 13 20 23 \n4 12 20 24 32 \n5 14 23 32 41 \n",
"1 2 3 \n2 10 12 \n3 12 21 \n",
"1 2 3 4 5 6 \n2 4 6 11 13 15 \n3 6 12 15 21 24 \n4 11 15 22 26 33 \n5 13 21 26 34 42 \n6 15 24 33 42 51 \n",
"1 2 3 4 \n2 4 11 13 \n3 11 14 22 \n4 13 22 31 \n",
"1 \n",
"1 2 3 4 5 6 7 8 9 \n2 4 6 8 10 12 14 16 18 \n3 6 9 12 15 18 21 24 27 \n4 8 12 16 20 24 28 32 36 \n5 10 15 20 25 30 35 40 45 \n6 12 18 24 30 36 42 48 54 \n7 14 21 28 35 42 49 56 63 \n8 16 24 32 40 48 56 64 72 \n9 18 27 36 45 54 63 72 81 \n"
]
} | 2CODEFORCES
|
39_H. Multiplication Table_116 | Petya studies positional notations. He has already learned to add and subtract numbers in the systems of notations with different radices and has moved on to a more complicated action — multiplication. To multiply large numbers one has to learn the multiplication table. Unfortunately, in the second grade students learn only the multiplication table of decimals (and some students even learn it in the first grade). Help Petya make a multiplication table for numbers in the system of notations with the radix k.
Input
The first line contains a single integer k (2 ≤ k ≤ 10) — the radix of the system.
Output
Output the multiplication table for the system of notations with the radix k. The table must contain k - 1 rows and k - 1 columns. The element on the crossing of the i-th row and the j-th column is equal to the product of i and j in the system of notations with the radix k. Each line may have any number of spaces between the numbers (the extra spaces in the samples are put for clarity).
Examples
Input
10
Output
1 2 3 4 5 6 7 8 9
2 4 6 8 10 12 14 16 18
3 6 9 12 15 18 21 24 27
4 8 12 16 20 24 28 32 36
5 10 15 20 25 30 35 40 45
6 12 18 24 30 36 42 48 54
7 14 21 28 35 42 49 56 63
8 16 24 32 40 48 56 64 72
9 18 27 36 45 54 63 72 81
Input
3
Output
1 2
2 11 |
import java.io.*;
import java.util.*;
public class Main {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
PrintWriter out = new PrintWriter(System.out);
int n = in.nextInt();
for (int i = 1; i < n; i++) {
for (int j = 1; j < n; j++) {
Num a = new Num(n, 0, i);
Num b = new Num(n, 0, j);
out.print(a.mul(b));
out.print(" ");
}
out.println();
}
out.flush();
}
private static class Num {
int osn;
int first;
int second;
public Num(int o, int f, int s) {
osn = o;
first = f;
second = s;
}
public String mul(Num a) {
Integer ansSecond = second * a.second;
Integer ansFirst = ansSecond / osn;
ansSecond %= osn;
String ans;
if (ansFirst == 0) {
ans = ansSecond.toString();
} else {
ans = ansFirst.toString() + ansSecond.toString();
}
return ans;
}
}
}
| 4JAVA
| {
"input": [
"10\n",
"3\n",
"9\n",
"8\n",
"6\n",
"4\n",
"7\n",
"5\n",
"2\n",
"010\n"
],
"output": [
"1 2 3 4 5 6 7 8 9 \n2 4 6 8 10 12 14 16 18 \n3 6 9 12 15 18 21 24 27 \n4 8 12 16 20 24 28 32 36 \n5 10 15 20 25 30 35 40 45 \n6 12 18 24 30 36 42 48 54 \n7 14 21 28 35 42 49 56 63 \n8 16 24 32 40 48 56 64 72 \n9 18 27 36 45 54 63 72 81 \n",
"1 2 \n2 11 \n",
"1 2 3 4 5 6 7 8 \n2 4 6 8 11 13 15 17 \n3 6 10 13 16 20 23 26 \n4 8 13 17 22 26 31 35 \n5 11 16 22 27 33 38 44 \n6 13 20 26 33 40 46 53 \n7 15 23 31 38 46 54 62 \n8 17 26 35 44 53 62 71 \n",
"1 2 3 4 5 6 7 \n2 4 6 10 12 14 16 \n3 6 11 14 17 22 25 \n4 10 14 20 24 30 34 \n5 12 17 24 31 36 43 \n6 14 22 30 36 44 52 \n7 16 25 34 43 52 61 \n",
"1 2 3 4 5 \n2 4 10 12 14 \n3 10 13 20 23 \n4 12 20 24 32 \n5 14 23 32 41 \n",
"1 2 3 \n2 10 12 \n3 12 21 \n",
"1 2 3 4 5 6 \n2 4 6 11 13 15 \n3 6 12 15 21 24 \n4 11 15 22 26 33 \n5 13 21 26 34 42 \n6 15 24 33 42 51 \n",
"1 2 3 4 \n2 4 11 13 \n3 11 14 22 \n4 13 22 31 \n",
"1 \n",
"1 2 3 4 5 6 7 8 9 \n2 4 6 8 10 12 14 16 18 \n3 6 9 12 15 18 21 24 27 \n4 8 12 16 20 24 28 32 36 \n5 10 15 20 25 30 35 40 45 \n6 12 18 24 30 36 42 48 54 \n7 14 21 28 35 42 49 56 63 \n8 16 24 32 40 48 56 64 72 \n9 18 27 36 45 54 63 72 81 \n"
]
} | 2CODEFORCES
|
425_D. Sereja and Squares_117 | Sereja has painted n distinct points on the plane. The coordinates of each point are integers. Now he is wondering: how many squares are there with sides parallel to the coordinate axes and with points painted in all its four vertexes? Help him, calculate this number.
Input
The first line contains integer n (1 ≤ n ≤ 105). Each of the next n lines contains two integers xi, yi (0 ≤ xi, yi ≤ 105), the integers represent the coordinates of the i-th point. It is guaranteed that all the given points are distinct.
Output
In a single line print the required number of squares.
Examples
Input
5
0 0
0 2
2 0
2 2
1 1
Output
1
Input
9
0 0
1 1
2 2
0 1
1 0
0 2
2 0
1 2
2 1
Output
5 | #include <bits/stdc++.h>
using namespace std;
const long double eps = 1e-12;
const int maxn = 100000 + 1912;
const int MX = 1e6;
int n;
pair<int, int> a[maxn];
vector<int> p[MX * 2 + 3];
long long res = 0;
void ReadData() {
scanf("%d", &n);
for (int i = 1; i <= n; i++) {
scanf("%d%d", &a[i].first, &a[i].second);
a[i].first += MX;
a[i].second += MX;
p[a[i].first].push_back(a[i].second);
}
for (int i = 0; i <= MX * 2; i++)
if (((int)p[i].size())) sort(p[i].begin(), p[i].end());
}
bool Found(int x, int y) {
if (x < 0 || x > MX * 2) return false;
vector<int>::iterator it = lower_bound(p[x].begin(), p[x].end(), y);
if (it != p[x].end() && (*it) == y) return true;
return false;
}
void Process() {
for (int i = 0; i <= MX * 2; i++)
if (((int)p[i].size())) {
if (((int)p[i].size()) <= 520) {
for (int fi = 0; fi < ((int)p[i].size()); fi++)
for (int se = 0; se < fi; se++) {
int len = p[i][fi] - p[i][se];
if (i >= len && Found(i - len, p[i][se]) &&
Found(i - len, p[i][fi]))
res++;
}
} else {
for (int j = 0; j <= i - 1; j++) {
int len = i - j;
for (int k = 0; k < ((int)p[j].size()); k++) {
if (Found(i, p[j][k]) && Found(j, p[j][k] + len) &&
Found(i, p[j][k] + len))
res++;
}
}
}
}
cout << res << endl;
}
int main() {
ios_base::sync_with_stdio(false);
cin.tie(NULL);
ReadData();
Process();
}
| 2C++
| {
"input": [
"5\n0 0\n0 2\n2 0\n2 2\n1 1\n",
"9\n0 0\n1 1\n2 2\n0 1\n1 0\n0 2\n2 0\n1 2\n2 1\n",
"81\n9 4\n6 8\n6 4\n4 6\n4 8\n9 10\n0 2\n5 4\n8 9\n7 7\n10 5\n4 4\n7 8\n3 7\n2 1\n5 5\n2 7\n8 6\n2 8\n10 7\n5 8\n0 10\n10 0\n4 9\n4 2\n10 3\n6 6\n3 8\n5 3\n8 8\n10 9\n1 1\n0 9\n8 1\n1 8\n0 7\n10 4\n3 6\n7 6\n1 9\n8 3\n8 10\n4 5\n3 4\n7 5\n2 0\n0 6\n2 4\n7 4\n6 3\n1 6\n10 8\n1 5\n6 5\n0 0\n9 0\n7 3\n3 2\n2 6\n4 0\n8 7\n10 10\n3 0\n0 5\n3 9\n5 1\n6 0\n1 4\n0 1\n1 2\n6 2\n9 7\n6 10\n1 3\n1 7\n2 5\n5 10\n10 2\n5 6\n6 7\n2 3\n",
"1\n0 0\n",
"3\n5 1\n4 1\n2 6\n",
"54\n0 8\n3 2\n9 3\n7 2\n8 2\n2 8\n10 10\n7 6\n1 1\n9 7\n4 0\n6 10\n10 1\n10 8\n5 1\n0 4\n7 10\n3 6\n0 5\n4 3\n3 0\n5 10\n6 9\n5 4\n6 6\n8 5\n0 7\n5 8\n1 2\n2 2\n9 4\n2 4\n0 10\n5 9\n10 9\n7 9\n9 9\n2 5\n4 10\n8 9\n7 7\n5 2\n6 5\n4 1\n10 6\n6 3\n9 6\n0 9\n7 3\n7 5\n8 4\n1 3\n0 3\n2 10\n",
"49\n2 9\n7 0\n8 0\n10 3\n2 10\n6 10\n6 2\n9 7\n1 9\n4 6\n5 4\n1 0\n9 4\n6 9\n5 6\n7 9\n10 10\n8 2\n3 10\n0 8\n4 4\n5 7\n0 0\n9 1\n0 7\n2 0\n1 7\n10 0\n3 5\n8 5\n6 4\n0 4\n2 7\n4 1\n10 2\n2 4\n8 4\n0 9\n3 4\n4 9\n7 7\n10 9\n2 3\n7 2\n5 8\n4 7\n10 8\n7 6\n1 8\n",
"72\n8 2\n2 4\n3 5\n9 10\n7 6\n1 5\n0 0\n3 3\n1 6\n7 10\n8 8\n7 9\n6 0\n3 6\n9 3\n8 1\n3 4\n3 7\n0 7\n10 8\n2 6\n6 8\n0 6\n5 6\n6 6\n6 5\n6 4\n0 2\n9 9\n4 8\n7 2\n8 0\n9 4\n0 10\n4 5\n9 8\n10 3\n8 7\n8 5\n7 7\n6 7\n5 7\n5 4\n8 4\n3 2\n7 3\n9 0\n0 8\n0 5\n3 9\n2 10\n7 1\n4 3\n1 10\n3 0\n5 9\n10 1\n6 1\n4 10\n1 0\n2 1\n2 0\n3 8\n10 7\n7 4\n0 9\n1 1\n1 8\n8 3\n5 2\n6 3\n4 2\n",
"71\n5 3\n1 10\n10 3\n5 2\n3 5\n10 9\n10 2\n1 5\n9 5\n8 9\n2 3\n2 6\n8 4\n6 3\n0 2\n9 4\n2 0\n7 7\n10 0\n4 0\n1 4\n1 6\n4 5\n6 1\n8 2\n0 0\n0 1\n3 7\n3 10\n4 8\n4 6\n3 8\n1 0\n9 10\n9 9\n6 5\n7 1\n10 1\n6 6\n3 4\n4 3\n4 2\n4 10\n9 6\n7 3\n6 8\n5 5\n4 9\n0 7\n0 9\n8 10\n2 7\n1 7\n7 2\n5 8\n1 2\n3 6\n10 8\n0 8\n3 1\n1 3\n9 3\n7 6\n6 7\n4 4\n0 3\n2 2\n5 10\n2 9\n0 5\n7 0\n",
"3\n1 6\n10 8\n4 3\n",
"1\n100000 100000\n",
"87\n5 10\n5 0\n9 2\n2 4\n6 6\n4 4\n3 4\n0 3\n10 6\n1 0\n7 1\n2 5\n6 10\n5 3\n1 6\n8 7\n5 6\n5 9\n9 8\n2 6\n6 9\n6 4\n3 2\n10 10\n0 4\n8 9\n8 8\n4 8\n10 2\n10 0\n3 8\n8 2\n3 1\n9 5\n9 1\n5 4\n4 6\n10 7\n2 0\n10 9\n9 0\n9 9\n6 2\n3 9\n10 8\n7 0\n7 3\n6 0\n5 2\n6 5\n4 7\n1 3\n9 7\n1 5\n4 1\n7 10\n0 2\n0 8\n9 10\n0 5\n4 10\n7 4\n1 8\n2 7\n10 3\n9 3\n10 5\n6 1\n8 3\n10 1\n8 0\n5 1\n3 10\n10 4\n2 10\n4 5\n5 7\n7 9\n1 7\n8 6\n1 1\n7 2\n7 5\n5 5\n1 4\n6 8\n6 3\n",
"81\n9 4\n6 8\n6 4\n4 6\n4 8\n9 10\n0 2\n5 4\n8 9\n7 7\n10 5\n4 4\n7 8\n3 7\n2 1\n5 5\n2 7\n8 6\n2 8\n10 7\n5 12\n0 10\n10 0\n4 9\n4 2\n10 3\n6 6\n3 8\n5 3\n8 8\n10 9\n1 1\n0 9\n8 1\n1 8\n0 7\n10 4\n3 6\n7 6\n1 9\n8 3\n8 10\n4 5\n3 4\n7 5\n2 0\n0 6\n2 4\n7 4\n6 3\n1 6\n10 8\n1 5\n6 5\n0 0\n9 0\n7 3\n3 2\n2 6\n4 0\n8 7\n10 10\n3 0\n0 5\n3 9\n5 1\n6 0\n1 4\n0 1\n1 2\n6 2\n9 7\n6 10\n1 3\n1 7\n2 5\n5 10\n10 2\n5 6\n6 7\n2 3\n",
"3\n5 1\n4 0\n2 6\n",
"54\n0 8\n3 2\n9 3\n7 2\n8 2\n2 8\n10 10\n7 6\n1 1\n9 7\n4 0\n6 10\n10 1\n10 8\n5 1\n0 4\n7 10\n3 6\n0 5\n4 3\n3 0\n5 10\n6 9\n5 4\n6 6\n8 5\n0 7\n5 8\n1 2\n2 2\n16 4\n2 4\n0 10\n5 9\n10 9\n7 9\n9 9\n2 5\n4 10\n8 9\n7 7\n5 2\n6 5\n4 1\n10 6\n6 3\n9 6\n0 9\n7 3\n7 5\n8 4\n1 3\n0 3\n2 10\n",
"49\n2 9\n7 0\n8 0\n10 3\n2 10\n6 10\n6 2\n9 7\n1 9\n4 6\n5 4\n1 0\n9 4\n6 9\n5 6\n7 9\n10 10\n8 2\n3 10\n0 8\n4 4\n5 7\n0 0\n9 1\n0 7\n2 0\n1 7\n10 0\n3 5\n8 5\n6 4\n0 4\n2 7\n4 1\n10 2\n2 4\n8 4\n0 9\n3 4\n4 9\n7 7\n10 9\n2 3\n7 2\n5 8\n4 7\n10 14\n7 6\n1 8\n",
"71\n5 3\n1 10\n10 3\n5 2\n3 5\n10 9\n10 2\n1 5\n9 5\n8 9\n2 3\n2 6\n8 4\n6 3\n0 2\n9 4\n2 0\n7 7\n20 0\n4 0\n1 4\n1 6\n4 5\n6 1\n8 2\n0 0\n0 1\n3 7\n3 10\n4 8\n4 6\n3 8\n1 0\n9 10\n9 9\n6 5\n7 1\n10 1\n6 6\n3 4\n4 3\n4 2\n4 10\n9 6\n7 3\n6 8\n5 5\n4 9\n0 7\n0 9\n8 10\n2 7\n1 7\n7 2\n5 8\n1 2\n3 6\n10 8\n0 8\n3 1\n1 3\n9 3\n7 6\n6 7\n4 4\n0 3\n2 2\n5 10\n2 9\n0 5\n7 0\n",
"87\n5 10\n5 0\n9 2\n2 4\n6 6\n4 4\n3 4\n0 3\n10 6\n1 0\n7 1\n2 5\n6 10\n5 3\n1 6\n8 7\n5 6\n5 9\n9 8\n2 6\n6 9\n6 4\n2 2\n10 10\n0 4\n8 9\n8 8\n4 8\n10 2\n10 0\n3 8\n8 2\n3 1\n9 5\n9 1\n5 4\n4 6\n10 7\n2 0\n10 9\n9 0\n9 9\n6 2\n3 9\n10 8\n7 0\n7 3\n6 0\n5 2\n6 5\n4 7\n1 3\n9 7\n1 5\n4 1\n7 10\n0 2\n0 8\n9 10\n0 5\n4 10\n7 4\n1 8\n2 7\n10 3\n9 3\n10 5\n6 1\n8 3\n10 1\n8 0\n5 1\n3 10\n10 4\n2 10\n4 5\n5 7\n7 9\n1 7\n8 6\n1 1\n7 2\n7 5\n5 5\n1 4\n6 8\n6 3\n",
"49\n2 9\n7 0\n8 0\n10 3\n2 10\n6 10\n6 2\n9 7\n1 9\n4 6\n5 4\n1 0\n9 4\n6 9\n5 6\n7 9\n10 10\n8 2\n3 10\n0 8\n4 4\n5 7\n0 0\n9 1\n0 7\n2 0\n1 7\n10 0\n3 5\n8 5\n6 4\n0 4\n2 7\n4 1\n10 2\n2 4\n8 4\n0 9\n3 4\n4 9\n14 7\n10 9\n2 3\n7 2\n5 8\n4 7\n10 14\n7 6\n1 8\n",
"71\n5 3\n1 10\n10 3\n5 2\n3 5\n10 9\n10 2\n1 5\n9 5\n8 9\n2 3\n2 6\n15 4\n6 3\n0 2\n9 4\n2 0\n7 7\n20 0\n4 0\n1 4\n1 6\n4 5\n6 1\n8 2\n0 0\n0 1\n3 7\n3 10\n4 8\n4 6\n3 8\n1 0\n9 10\n9 9\n6 5\n7 1\n10 1\n6 10\n3 4\n4 3\n4 2\n4 10\n9 6\n7 3\n7 8\n5 5\n4 9\n0 7\n1 9\n8 10\n2 7\n1 7\n7 2\n5 8\n1 2\n3 6\n10 8\n0 8\n3 1\n1 3\n9 3\n7 6\n6 7\n4 4\n0 3\n2 2\n5 10\n2 9\n0 5\n7 0\n",
"54\n0 8\n3 2\n9 3\n7 2\n8 2\n2 8\n10 10\n7 6\n1 1\n9 7\n4 0\n6 10\n10 1\n10 8\n5 0\n0 4\n7 10\n3 6\n0 5\n4 3\n3 0\n5 10\n6 9\n5 4\n6 6\n8 5\n0 7\n5 8\n1 2\n2 2\n9 4\n2 4\n0 10\n5 9\n10 9\n7 9\n9 9\n2 5\n4 10\n8 9\n7 7\n5 2\n6 5\n4 1\n10 6\n6 3\n9 6\n0 9\n7 3\n7 5\n8 4\n1 3\n0 3\n2 10\n",
"87\n5 10\n5 0\n9 2\n2 4\n6 6\n4 4\n3 4\n0 3\n10 6\n1 0\n7 1\n2 5\n6 10\n5 3\n1 6\n8 7\n5 6\n5 9\n9 8\n2 6\n6 9\n6 4\n3 2\n10 10\n0 4\n8 9\n8 8\n4 8\n10 2\n10 0\n3 8\n8 2\n3 1\n9 5\n9 1\n5 4\n4 6\n10 7\n2 0\n10 9\n9 0\n9 9\n6 2\n3 9\n10 8\n7 0\n7 3\n6 0\n5 2\n6 5\n4 7\n1 3\n9 7\n1 5\n4 1\n7 10\n0 2\n0 8\n9 10\n0 5\n4 10\n7 4\n1 8\n2 8\n10 3\n9 3\n10 5\n6 1\n8 3\n10 1\n8 0\n5 1\n3 10\n10 4\n2 10\n4 5\n5 7\n7 9\n1 7\n8 6\n1 1\n7 2\n7 5\n5 5\n1 4\n6 8\n6 3\n",
"3\n0 6\n10 8\n4 3\n",
"3\n2 1\n4 0\n2 6\n",
"71\n5 3\n1 10\n10 3\n5 2\n3 5\n10 9\n10 2\n1 5\n9 5\n8 9\n2 3\n2 6\n15 4\n6 3\n0 2\n9 4\n2 0\n7 7\n20 0\n4 0\n1 4\n1 6\n4 5\n6 1\n8 2\n0 0\n0 1\n3 7\n3 10\n4 8\n4 6\n3 8\n1 0\n9 10\n9 9\n6 5\n7 1\n10 1\n6 6\n3 4\n4 3\n4 2\n4 10\n9 6\n7 3\n6 8\n5 5\n4 9\n0 7\n0 9\n8 10\n2 7\n1 7\n7 2\n5 8\n1 2\n3 6\n10 8\n0 8\n3 1\n1 3\n9 3\n7 6\n6 7\n4 4\n0 3\n2 2\n5 10\n2 9\n0 5\n7 0\n",
"3\n0 6\n16 8\n4 3\n",
"49\n2 9\n7 0\n8 0\n10 3\n2 10\n6 10\n6 2\n9 7\n1 9\n4 6\n5 4\n1 0\n9 4\n6 9\n5 6\n7 9\n10 10\n8 2\n3 10\n0 8\n4 4\n5 7\n0 0\n9 1\n0 7\n2 0\n1 7\n10 0\n3 5\n8 5\n6 4\n0 4\n2 7\n4 1\n10 2\n2 4\n8 4\n0 9\n3 4\n4 9\n14 7\n10 9\n2 3\n7 2\n5 8\n4 7\n10 27\n7 6\n1 8\n",
"71\n5 3\n1 10\n10 3\n5 2\n3 5\n10 9\n10 2\n1 5\n9 5\n8 9\n2 3\n2 6\n15 4\n6 3\n0 2\n9 4\n2 0\n7 7\n20 0\n4 0\n1 4\n1 6\n4 5\n6 1\n8 2\n0 0\n0 1\n3 7\n3 10\n4 8\n4 6\n3 8\n1 0\n9 10\n9 9\n6 5\n7 1\n10 1\n6 10\n3 4\n4 3\n4 2\n4 10\n9 6\n7 3\n6 8\n5 5\n4 9\n0 7\n0 9\n8 10\n2 7\n1 7\n7 2\n5 8\n1 2\n3 6\n10 8\n0 8\n3 1\n1 3\n9 3\n7 6\n6 7\n4 4\n0 3\n2 2\n5 10\n2 9\n0 5\n7 0\n",
"3\n0 6\n26 8\n4 3\n",
"71\n5 3\n1 10\n10 3\n5 2\n3 5\n10 9\n10 2\n1 5\n9 5\n8 9\n2 3\n2 6\n15 4\n6 3\n0 2\n9 4\n2 0\n7 7\n20 0\n4 0\n1 4\n1 6\n4 5\n6 1\n8 2\n0 0\n0 1\n3 7\n3 10\n4 8\n4 6\n3 8\n1 0\n9 10\n9 9\n6 5\n7 1\n10 1\n6 10\n3 4\n4 3\n4 2\n4 10\n9 6\n7 3\n6 8\n5 5\n4 9\n0 7\n1 9\n8 10\n2 7\n1 7\n7 2\n5 8\n1 2\n3 6\n10 8\n0 8\n3 1\n1 3\n9 3\n7 6\n6 7\n4 4\n0 3\n2 2\n5 10\n2 9\n0 5\n7 0\n",
"3\n0 6\n26 8\n4 6\n",
"3\n0 6\n48 8\n4 6\n",
"3\n0 6\n48 8\n4 0\n",
"3\n0 6\n50 8\n4 0\n",
"3\n0 12\n50 8\n4 0\n",
"3\n0 12\n50 15\n4 0\n",
"3\n1 12\n50 15\n4 0\n",
"3\n1 12\n50 26\n4 0\n",
"3\n1 12\n50 26\n6 0\n",
"3\n1 18\n50 26\n6 0\n",
"3\n1 27\n50 26\n6 0\n",
"3\n2 27\n50 26\n6 0\n",
"3\n2 27\n50 37\n6 0\n",
"3\n1 27\n50 37\n6 0\n",
"3\n4 27\n50 37\n6 0\n",
"3\n4 27\n59 37\n6 0\n",
"3\n4 27\n59 37\n11 0\n",
"3\n4 25\n59 37\n11 0\n",
"3\n4 25\n59 64\n11 0\n",
"3\n8 25\n59 64\n11 0\n",
"3\n5 1\n4 2\n2 6\n",
"71\n5 3\n1 10\n10 3\n5 2\n3 5\n10 9\n10 2\n1 5\n9 5\n8 9\n2 3\n2 6\n8 4\n6 0\n0 2\n9 4\n2 0\n7 7\n10 0\n4 0\n1 4\n1 6\n4 5\n6 1\n8 2\n0 0\n0 1\n3 7\n3 10\n4 8\n4 6\n3 8\n1 0\n9 10\n9 9\n6 5\n7 1\n10 1\n6 6\n3 4\n4 3\n4 2\n4 10\n9 6\n7 3\n6 8\n5 5\n4 9\n0 7\n0 9\n8 10\n2 7\n1 7\n7 2\n5 8\n1 2\n3 6\n10 8\n0 8\n3 1\n1 3\n9 3\n7 6\n6 7\n4 4\n0 3\n2 2\n5 10\n2 9\n0 5\n7 0\n",
"3\n1 6\n18 8\n4 3\n",
"3\n5 1\n0 0\n2 6\n",
"54\n0 8\n3 2\n9 3\n7 2\n8 2\n2 8\n10 10\n7 6\n1 1\n5 7\n4 0\n6 10\n10 1\n10 8\n5 1\n0 4\n7 10\n3 6\n0 5\n4 3\n3 0\n5 10\n6 9\n5 4\n6 6\n8 5\n0 7\n5 8\n1 2\n2 2\n16 4\n2 4\n0 10\n5 9\n10 9\n7 9\n9 9\n2 5\n4 10\n8 9\n7 7\n5 2\n6 5\n4 1\n10 6\n6 3\n9 6\n0 9\n7 3\n7 5\n8 4\n1 3\n0 3\n2 10\n",
"3\n0 0\n10 8\n4 3\n",
"3\n2 1\n5 0\n2 6\n",
"71\n5 0\n1 10\n10 3\n5 2\n3 5\n10 9\n10 2\n1 5\n9 5\n8 9\n2 3\n2 6\n15 4\n6 3\n0 2\n9 4\n2 0\n7 7\n20 0\n4 0\n1 4\n1 6\n4 5\n6 1\n8 2\n0 0\n0 1\n3 7\n3 10\n4 8\n4 6\n3 8\n1 0\n9 10\n9 9\n6 5\n7 1\n10 1\n6 6\n3 4\n4 3\n4 2\n4 10\n9 6\n7 3\n6 8\n5 5\n4 9\n0 7\n0 9\n8 10\n2 7\n1 7\n7 2\n5 8\n1 2\n3 6\n10 8\n0 8\n3 1\n1 3\n9 3\n7 6\n6 7\n4 4\n0 3\n2 2\n5 10\n2 9\n0 5\n7 0\n",
"3\n0 0\n16 8\n4 3\n",
"49\n2 9\n7 0\n8 0\n10 3\n2 10\n6 10\n6 2\n9 7\n1 9\n4 6\n5 4\n1 0\n9 4\n6 9\n5 6\n7 9\n10 10\n8 2\n3 10\n0 8\n4 4\n5 7\n0 0\n9 1\n0 7\n2 1\n1 7\n10 0\n3 5\n8 5\n6 4\n0 4\n2 7\n4 1\n10 2\n2 4\n8 4\n0 9\n3 4\n4 9\n14 7\n10 9\n2 3\n7 2\n5 8\n4 7\n10 27\n7 6\n1 8\n"
],
"output": [
"1\n",
"5\n",
"85\n",
"0\n",
"0\n",
"14\n",
"11\n",
"51\n",
"40\n",
"0\n",
"0\n",
"101\n",
"80\n",
"0\n",
"14\n",
"11\n",
"39\n",
"102\n",
"10\n",
"38\n",
"15\n",
"100\n",
"0\n",
"0\n",
"39\n",
"0\n",
"10\n",
"39\n",
"0\n",
"39\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"39\n",
"0\n",
"0\n",
"14\n",
"0\n",
"0\n",
"38\n",
"0\n",
"10\n"
]
} | 2CODEFORCES
|
425_D. Sereja and Squares_118 | Sereja has painted n distinct points on the plane. The coordinates of each point are integers. Now he is wondering: how many squares are there with sides parallel to the coordinate axes and with points painted in all its four vertexes? Help him, calculate this number.
Input
The first line contains integer n (1 ≤ n ≤ 105). Each of the next n lines contains two integers xi, yi (0 ≤ xi, yi ≤ 105), the integers represent the coordinates of the i-th point. It is guaranteed that all the given points are distinct.
Output
In a single line print the required number of squares.
Examples
Input
5
0 0
0 2
2 0
2 2
1 1
Output
1
Input
9
0 0
1 1
2 2
0 1
1 0
0 2
2 0
1 2
2 1
Output
5 |
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.nio.LongBuffer;
import java.util.Arrays;
import java.util.Comparator;
import java.util.HashSet;
import java.util.StringTokenizer;
public class R243D1D {
static class Point{
int x; int y;
public Point(){}
public Point(int x, int y){
this.x = x;
this.y = y;
}
}
static class yxComparator implements Comparator<Point>{
@Override
public int compare(Point o1, Point o2) {
if(o1.y!=o2.y) return o1.y-o2.y;
return o1.x-o2.x;
}
}
static class xyComparator implements Comparator<Point>{
@Override
public int compare(Point o1, Point o2) {
if(o1.x!=o2.x) return o1.x-o2.x;
return o1.y-o2.y;
}
}
public static void main(String[] args) throws Exception {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer(br.readLine());
int n = Integer.parseInt(st.nextToken());
Point[] horizontal = new Point[n];
Point[] vertical = new Point[n];
HashSet<Long> set = new HashSet<Long>();
for(int i=0; i<n; i++){
st = new StringTokenizer(br.readLine());
int x = Integer.parseInt(st.nextToken());
int y = Integer.parseInt(st.nextToken());
horizontal[i] = new Point(x,y);
vertical[i] = new Point(x,y);
set.add((long)x*100001+y);
}
Arrays.sort(horizontal, new yxComparator());
Arrays.sort(vertical, new xyComparator());
int result=0;
for(int i=0; i<n; i++){
int u = Arrays.binarySearch(vertical, horizontal[i], new xyComparator());
int j=i+1;
int v=u+1;
while(j<n && v<n && horizontal[j].y==horizontal[i].y && vertical[v].x==vertical[u].x){
if(horizontal[j].x-horizontal[i].x == vertical[v].y-vertical[u].y){
if(set.contains((long)horizontal[j].x*100001+vertical[v].y)) result++;
j++; v++;
}
else if(horizontal[j].x-horizontal[i].x > vertical[v].y-vertical[u].y){
v++;
}
else{
j++;
}
}
}
System.out.println(result);
}
} | 4JAVA
| {
"input": [
"5\n0 0\n0 2\n2 0\n2 2\n1 1\n",
"9\n0 0\n1 1\n2 2\n0 1\n1 0\n0 2\n2 0\n1 2\n2 1\n",
"81\n9 4\n6 8\n6 4\n4 6\n4 8\n9 10\n0 2\n5 4\n8 9\n7 7\n10 5\n4 4\n7 8\n3 7\n2 1\n5 5\n2 7\n8 6\n2 8\n10 7\n5 8\n0 10\n10 0\n4 9\n4 2\n10 3\n6 6\n3 8\n5 3\n8 8\n10 9\n1 1\n0 9\n8 1\n1 8\n0 7\n10 4\n3 6\n7 6\n1 9\n8 3\n8 10\n4 5\n3 4\n7 5\n2 0\n0 6\n2 4\n7 4\n6 3\n1 6\n10 8\n1 5\n6 5\n0 0\n9 0\n7 3\n3 2\n2 6\n4 0\n8 7\n10 10\n3 0\n0 5\n3 9\n5 1\n6 0\n1 4\n0 1\n1 2\n6 2\n9 7\n6 10\n1 3\n1 7\n2 5\n5 10\n10 2\n5 6\n6 7\n2 3\n",
"1\n0 0\n",
"3\n5 1\n4 1\n2 6\n",
"54\n0 8\n3 2\n9 3\n7 2\n8 2\n2 8\n10 10\n7 6\n1 1\n9 7\n4 0\n6 10\n10 1\n10 8\n5 1\n0 4\n7 10\n3 6\n0 5\n4 3\n3 0\n5 10\n6 9\n5 4\n6 6\n8 5\n0 7\n5 8\n1 2\n2 2\n9 4\n2 4\n0 10\n5 9\n10 9\n7 9\n9 9\n2 5\n4 10\n8 9\n7 7\n5 2\n6 5\n4 1\n10 6\n6 3\n9 6\n0 9\n7 3\n7 5\n8 4\n1 3\n0 3\n2 10\n",
"49\n2 9\n7 0\n8 0\n10 3\n2 10\n6 10\n6 2\n9 7\n1 9\n4 6\n5 4\n1 0\n9 4\n6 9\n5 6\n7 9\n10 10\n8 2\n3 10\n0 8\n4 4\n5 7\n0 0\n9 1\n0 7\n2 0\n1 7\n10 0\n3 5\n8 5\n6 4\n0 4\n2 7\n4 1\n10 2\n2 4\n8 4\n0 9\n3 4\n4 9\n7 7\n10 9\n2 3\n7 2\n5 8\n4 7\n10 8\n7 6\n1 8\n",
"72\n8 2\n2 4\n3 5\n9 10\n7 6\n1 5\n0 0\n3 3\n1 6\n7 10\n8 8\n7 9\n6 0\n3 6\n9 3\n8 1\n3 4\n3 7\n0 7\n10 8\n2 6\n6 8\n0 6\n5 6\n6 6\n6 5\n6 4\n0 2\n9 9\n4 8\n7 2\n8 0\n9 4\n0 10\n4 5\n9 8\n10 3\n8 7\n8 5\n7 7\n6 7\n5 7\n5 4\n8 4\n3 2\n7 3\n9 0\n0 8\n0 5\n3 9\n2 10\n7 1\n4 3\n1 10\n3 0\n5 9\n10 1\n6 1\n4 10\n1 0\n2 1\n2 0\n3 8\n10 7\n7 4\n0 9\n1 1\n1 8\n8 3\n5 2\n6 3\n4 2\n",
"71\n5 3\n1 10\n10 3\n5 2\n3 5\n10 9\n10 2\n1 5\n9 5\n8 9\n2 3\n2 6\n8 4\n6 3\n0 2\n9 4\n2 0\n7 7\n10 0\n4 0\n1 4\n1 6\n4 5\n6 1\n8 2\n0 0\n0 1\n3 7\n3 10\n4 8\n4 6\n3 8\n1 0\n9 10\n9 9\n6 5\n7 1\n10 1\n6 6\n3 4\n4 3\n4 2\n4 10\n9 6\n7 3\n6 8\n5 5\n4 9\n0 7\n0 9\n8 10\n2 7\n1 7\n7 2\n5 8\n1 2\n3 6\n10 8\n0 8\n3 1\n1 3\n9 3\n7 6\n6 7\n4 4\n0 3\n2 2\n5 10\n2 9\n0 5\n7 0\n",
"3\n1 6\n10 8\n4 3\n",
"1\n100000 100000\n",
"87\n5 10\n5 0\n9 2\n2 4\n6 6\n4 4\n3 4\n0 3\n10 6\n1 0\n7 1\n2 5\n6 10\n5 3\n1 6\n8 7\n5 6\n5 9\n9 8\n2 6\n6 9\n6 4\n3 2\n10 10\n0 4\n8 9\n8 8\n4 8\n10 2\n10 0\n3 8\n8 2\n3 1\n9 5\n9 1\n5 4\n4 6\n10 7\n2 0\n10 9\n9 0\n9 9\n6 2\n3 9\n10 8\n7 0\n7 3\n6 0\n5 2\n6 5\n4 7\n1 3\n9 7\n1 5\n4 1\n7 10\n0 2\n0 8\n9 10\n0 5\n4 10\n7 4\n1 8\n2 7\n10 3\n9 3\n10 5\n6 1\n8 3\n10 1\n8 0\n5 1\n3 10\n10 4\n2 10\n4 5\n5 7\n7 9\n1 7\n8 6\n1 1\n7 2\n7 5\n5 5\n1 4\n6 8\n6 3\n",
"81\n9 4\n6 8\n6 4\n4 6\n4 8\n9 10\n0 2\n5 4\n8 9\n7 7\n10 5\n4 4\n7 8\n3 7\n2 1\n5 5\n2 7\n8 6\n2 8\n10 7\n5 12\n0 10\n10 0\n4 9\n4 2\n10 3\n6 6\n3 8\n5 3\n8 8\n10 9\n1 1\n0 9\n8 1\n1 8\n0 7\n10 4\n3 6\n7 6\n1 9\n8 3\n8 10\n4 5\n3 4\n7 5\n2 0\n0 6\n2 4\n7 4\n6 3\n1 6\n10 8\n1 5\n6 5\n0 0\n9 0\n7 3\n3 2\n2 6\n4 0\n8 7\n10 10\n3 0\n0 5\n3 9\n5 1\n6 0\n1 4\n0 1\n1 2\n6 2\n9 7\n6 10\n1 3\n1 7\n2 5\n5 10\n10 2\n5 6\n6 7\n2 3\n",
"3\n5 1\n4 0\n2 6\n",
"54\n0 8\n3 2\n9 3\n7 2\n8 2\n2 8\n10 10\n7 6\n1 1\n9 7\n4 0\n6 10\n10 1\n10 8\n5 1\n0 4\n7 10\n3 6\n0 5\n4 3\n3 0\n5 10\n6 9\n5 4\n6 6\n8 5\n0 7\n5 8\n1 2\n2 2\n16 4\n2 4\n0 10\n5 9\n10 9\n7 9\n9 9\n2 5\n4 10\n8 9\n7 7\n5 2\n6 5\n4 1\n10 6\n6 3\n9 6\n0 9\n7 3\n7 5\n8 4\n1 3\n0 3\n2 10\n",
"49\n2 9\n7 0\n8 0\n10 3\n2 10\n6 10\n6 2\n9 7\n1 9\n4 6\n5 4\n1 0\n9 4\n6 9\n5 6\n7 9\n10 10\n8 2\n3 10\n0 8\n4 4\n5 7\n0 0\n9 1\n0 7\n2 0\n1 7\n10 0\n3 5\n8 5\n6 4\n0 4\n2 7\n4 1\n10 2\n2 4\n8 4\n0 9\n3 4\n4 9\n7 7\n10 9\n2 3\n7 2\n5 8\n4 7\n10 14\n7 6\n1 8\n",
"71\n5 3\n1 10\n10 3\n5 2\n3 5\n10 9\n10 2\n1 5\n9 5\n8 9\n2 3\n2 6\n8 4\n6 3\n0 2\n9 4\n2 0\n7 7\n20 0\n4 0\n1 4\n1 6\n4 5\n6 1\n8 2\n0 0\n0 1\n3 7\n3 10\n4 8\n4 6\n3 8\n1 0\n9 10\n9 9\n6 5\n7 1\n10 1\n6 6\n3 4\n4 3\n4 2\n4 10\n9 6\n7 3\n6 8\n5 5\n4 9\n0 7\n0 9\n8 10\n2 7\n1 7\n7 2\n5 8\n1 2\n3 6\n10 8\n0 8\n3 1\n1 3\n9 3\n7 6\n6 7\n4 4\n0 3\n2 2\n5 10\n2 9\n0 5\n7 0\n",
"87\n5 10\n5 0\n9 2\n2 4\n6 6\n4 4\n3 4\n0 3\n10 6\n1 0\n7 1\n2 5\n6 10\n5 3\n1 6\n8 7\n5 6\n5 9\n9 8\n2 6\n6 9\n6 4\n2 2\n10 10\n0 4\n8 9\n8 8\n4 8\n10 2\n10 0\n3 8\n8 2\n3 1\n9 5\n9 1\n5 4\n4 6\n10 7\n2 0\n10 9\n9 0\n9 9\n6 2\n3 9\n10 8\n7 0\n7 3\n6 0\n5 2\n6 5\n4 7\n1 3\n9 7\n1 5\n4 1\n7 10\n0 2\n0 8\n9 10\n0 5\n4 10\n7 4\n1 8\n2 7\n10 3\n9 3\n10 5\n6 1\n8 3\n10 1\n8 0\n5 1\n3 10\n10 4\n2 10\n4 5\n5 7\n7 9\n1 7\n8 6\n1 1\n7 2\n7 5\n5 5\n1 4\n6 8\n6 3\n",
"49\n2 9\n7 0\n8 0\n10 3\n2 10\n6 10\n6 2\n9 7\n1 9\n4 6\n5 4\n1 0\n9 4\n6 9\n5 6\n7 9\n10 10\n8 2\n3 10\n0 8\n4 4\n5 7\n0 0\n9 1\n0 7\n2 0\n1 7\n10 0\n3 5\n8 5\n6 4\n0 4\n2 7\n4 1\n10 2\n2 4\n8 4\n0 9\n3 4\n4 9\n14 7\n10 9\n2 3\n7 2\n5 8\n4 7\n10 14\n7 6\n1 8\n",
"71\n5 3\n1 10\n10 3\n5 2\n3 5\n10 9\n10 2\n1 5\n9 5\n8 9\n2 3\n2 6\n15 4\n6 3\n0 2\n9 4\n2 0\n7 7\n20 0\n4 0\n1 4\n1 6\n4 5\n6 1\n8 2\n0 0\n0 1\n3 7\n3 10\n4 8\n4 6\n3 8\n1 0\n9 10\n9 9\n6 5\n7 1\n10 1\n6 10\n3 4\n4 3\n4 2\n4 10\n9 6\n7 3\n7 8\n5 5\n4 9\n0 7\n1 9\n8 10\n2 7\n1 7\n7 2\n5 8\n1 2\n3 6\n10 8\n0 8\n3 1\n1 3\n9 3\n7 6\n6 7\n4 4\n0 3\n2 2\n5 10\n2 9\n0 5\n7 0\n",
"54\n0 8\n3 2\n9 3\n7 2\n8 2\n2 8\n10 10\n7 6\n1 1\n9 7\n4 0\n6 10\n10 1\n10 8\n5 0\n0 4\n7 10\n3 6\n0 5\n4 3\n3 0\n5 10\n6 9\n5 4\n6 6\n8 5\n0 7\n5 8\n1 2\n2 2\n9 4\n2 4\n0 10\n5 9\n10 9\n7 9\n9 9\n2 5\n4 10\n8 9\n7 7\n5 2\n6 5\n4 1\n10 6\n6 3\n9 6\n0 9\n7 3\n7 5\n8 4\n1 3\n0 3\n2 10\n",
"87\n5 10\n5 0\n9 2\n2 4\n6 6\n4 4\n3 4\n0 3\n10 6\n1 0\n7 1\n2 5\n6 10\n5 3\n1 6\n8 7\n5 6\n5 9\n9 8\n2 6\n6 9\n6 4\n3 2\n10 10\n0 4\n8 9\n8 8\n4 8\n10 2\n10 0\n3 8\n8 2\n3 1\n9 5\n9 1\n5 4\n4 6\n10 7\n2 0\n10 9\n9 0\n9 9\n6 2\n3 9\n10 8\n7 0\n7 3\n6 0\n5 2\n6 5\n4 7\n1 3\n9 7\n1 5\n4 1\n7 10\n0 2\n0 8\n9 10\n0 5\n4 10\n7 4\n1 8\n2 8\n10 3\n9 3\n10 5\n6 1\n8 3\n10 1\n8 0\n5 1\n3 10\n10 4\n2 10\n4 5\n5 7\n7 9\n1 7\n8 6\n1 1\n7 2\n7 5\n5 5\n1 4\n6 8\n6 3\n",
"3\n0 6\n10 8\n4 3\n",
"3\n2 1\n4 0\n2 6\n",
"71\n5 3\n1 10\n10 3\n5 2\n3 5\n10 9\n10 2\n1 5\n9 5\n8 9\n2 3\n2 6\n15 4\n6 3\n0 2\n9 4\n2 0\n7 7\n20 0\n4 0\n1 4\n1 6\n4 5\n6 1\n8 2\n0 0\n0 1\n3 7\n3 10\n4 8\n4 6\n3 8\n1 0\n9 10\n9 9\n6 5\n7 1\n10 1\n6 6\n3 4\n4 3\n4 2\n4 10\n9 6\n7 3\n6 8\n5 5\n4 9\n0 7\n0 9\n8 10\n2 7\n1 7\n7 2\n5 8\n1 2\n3 6\n10 8\n0 8\n3 1\n1 3\n9 3\n7 6\n6 7\n4 4\n0 3\n2 2\n5 10\n2 9\n0 5\n7 0\n",
"3\n0 6\n16 8\n4 3\n",
"49\n2 9\n7 0\n8 0\n10 3\n2 10\n6 10\n6 2\n9 7\n1 9\n4 6\n5 4\n1 0\n9 4\n6 9\n5 6\n7 9\n10 10\n8 2\n3 10\n0 8\n4 4\n5 7\n0 0\n9 1\n0 7\n2 0\n1 7\n10 0\n3 5\n8 5\n6 4\n0 4\n2 7\n4 1\n10 2\n2 4\n8 4\n0 9\n3 4\n4 9\n14 7\n10 9\n2 3\n7 2\n5 8\n4 7\n10 27\n7 6\n1 8\n",
"71\n5 3\n1 10\n10 3\n5 2\n3 5\n10 9\n10 2\n1 5\n9 5\n8 9\n2 3\n2 6\n15 4\n6 3\n0 2\n9 4\n2 0\n7 7\n20 0\n4 0\n1 4\n1 6\n4 5\n6 1\n8 2\n0 0\n0 1\n3 7\n3 10\n4 8\n4 6\n3 8\n1 0\n9 10\n9 9\n6 5\n7 1\n10 1\n6 10\n3 4\n4 3\n4 2\n4 10\n9 6\n7 3\n6 8\n5 5\n4 9\n0 7\n0 9\n8 10\n2 7\n1 7\n7 2\n5 8\n1 2\n3 6\n10 8\n0 8\n3 1\n1 3\n9 3\n7 6\n6 7\n4 4\n0 3\n2 2\n5 10\n2 9\n0 5\n7 0\n",
"3\n0 6\n26 8\n4 3\n",
"71\n5 3\n1 10\n10 3\n5 2\n3 5\n10 9\n10 2\n1 5\n9 5\n8 9\n2 3\n2 6\n15 4\n6 3\n0 2\n9 4\n2 0\n7 7\n20 0\n4 0\n1 4\n1 6\n4 5\n6 1\n8 2\n0 0\n0 1\n3 7\n3 10\n4 8\n4 6\n3 8\n1 0\n9 10\n9 9\n6 5\n7 1\n10 1\n6 10\n3 4\n4 3\n4 2\n4 10\n9 6\n7 3\n6 8\n5 5\n4 9\n0 7\n1 9\n8 10\n2 7\n1 7\n7 2\n5 8\n1 2\n3 6\n10 8\n0 8\n3 1\n1 3\n9 3\n7 6\n6 7\n4 4\n0 3\n2 2\n5 10\n2 9\n0 5\n7 0\n",
"3\n0 6\n26 8\n4 6\n",
"3\n0 6\n48 8\n4 6\n",
"3\n0 6\n48 8\n4 0\n",
"3\n0 6\n50 8\n4 0\n",
"3\n0 12\n50 8\n4 0\n",
"3\n0 12\n50 15\n4 0\n",
"3\n1 12\n50 15\n4 0\n",
"3\n1 12\n50 26\n4 0\n",
"3\n1 12\n50 26\n6 0\n",
"3\n1 18\n50 26\n6 0\n",
"3\n1 27\n50 26\n6 0\n",
"3\n2 27\n50 26\n6 0\n",
"3\n2 27\n50 37\n6 0\n",
"3\n1 27\n50 37\n6 0\n",
"3\n4 27\n50 37\n6 0\n",
"3\n4 27\n59 37\n6 0\n",
"3\n4 27\n59 37\n11 0\n",
"3\n4 25\n59 37\n11 0\n",
"3\n4 25\n59 64\n11 0\n",
"3\n8 25\n59 64\n11 0\n",
"3\n5 1\n4 2\n2 6\n",
"71\n5 3\n1 10\n10 3\n5 2\n3 5\n10 9\n10 2\n1 5\n9 5\n8 9\n2 3\n2 6\n8 4\n6 0\n0 2\n9 4\n2 0\n7 7\n10 0\n4 0\n1 4\n1 6\n4 5\n6 1\n8 2\n0 0\n0 1\n3 7\n3 10\n4 8\n4 6\n3 8\n1 0\n9 10\n9 9\n6 5\n7 1\n10 1\n6 6\n3 4\n4 3\n4 2\n4 10\n9 6\n7 3\n6 8\n5 5\n4 9\n0 7\n0 9\n8 10\n2 7\n1 7\n7 2\n5 8\n1 2\n3 6\n10 8\n0 8\n3 1\n1 3\n9 3\n7 6\n6 7\n4 4\n0 3\n2 2\n5 10\n2 9\n0 5\n7 0\n",
"3\n1 6\n18 8\n4 3\n",
"3\n5 1\n0 0\n2 6\n",
"54\n0 8\n3 2\n9 3\n7 2\n8 2\n2 8\n10 10\n7 6\n1 1\n5 7\n4 0\n6 10\n10 1\n10 8\n5 1\n0 4\n7 10\n3 6\n0 5\n4 3\n3 0\n5 10\n6 9\n5 4\n6 6\n8 5\n0 7\n5 8\n1 2\n2 2\n16 4\n2 4\n0 10\n5 9\n10 9\n7 9\n9 9\n2 5\n4 10\n8 9\n7 7\n5 2\n6 5\n4 1\n10 6\n6 3\n9 6\n0 9\n7 3\n7 5\n8 4\n1 3\n0 3\n2 10\n",
"3\n0 0\n10 8\n4 3\n",
"3\n2 1\n5 0\n2 6\n",
"71\n5 0\n1 10\n10 3\n5 2\n3 5\n10 9\n10 2\n1 5\n9 5\n8 9\n2 3\n2 6\n15 4\n6 3\n0 2\n9 4\n2 0\n7 7\n20 0\n4 0\n1 4\n1 6\n4 5\n6 1\n8 2\n0 0\n0 1\n3 7\n3 10\n4 8\n4 6\n3 8\n1 0\n9 10\n9 9\n6 5\n7 1\n10 1\n6 6\n3 4\n4 3\n4 2\n4 10\n9 6\n7 3\n6 8\n5 5\n4 9\n0 7\n0 9\n8 10\n2 7\n1 7\n7 2\n5 8\n1 2\n3 6\n10 8\n0 8\n3 1\n1 3\n9 3\n7 6\n6 7\n4 4\n0 3\n2 2\n5 10\n2 9\n0 5\n7 0\n",
"3\n0 0\n16 8\n4 3\n",
"49\n2 9\n7 0\n8 0\n10 3\n2 10\n6 10\n6 2\n9 7\n1 9\n4 6\n5 4\n1 0\n9 4\n6 9\n5 6\n7 9\n10 10\n8 2\n3 10\n0 8\n4 4\n5 7\n0 0\n9 1\n0 7\n2 1\n1 7\n10 0\n3 5\n8 5\n6 4\n0 4\n2 7\n4 1\n10 2\n2 4\n8 4\n0 9\n3 4\n4 9\n14 7\n10 9\n2 3\n7 2\n5 8\n4 7\n10 27\n7 6\n1 8\n"
],
"output": [
"1\n",
"5\n",
"85\n",
"0\n",
"0\n",
"14\n",
"11\n",
"51\n",
"40\n",
"0\n",
"0\n",
"101\n",
"80\n",
"0\n",
"14\n",
"11\n",
"39\n",
"102\n",
"10\n",
"38\n",
"15\n",
"100\n",
"0\n",
"0\n",
"39\n",
"0\n",
"10\n",
"39\n",
"0\n",
"39\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"39\n",
"0\n",
"0\n",
"14\n",
"0\n",
"0\n",
"38\n",
"0\n",
"10\n"
]
} | 2CODEFORCES
|
44_B. Cola_119 | To celebrate the opening of the Winter Computer School the organizers decided to buy in n liters of cola. However, an unexpected difficulty occurred in the shop: it turned out that cola is sold in bottles 0.5, 1 and 2 liters in volume. At that, there are exactly a bottles 0.5 in volume, b one-liter bottles and c of two-liter ones. The organizers have enough money to buy any amount of cola. What did cause the heated arguments was how many bottles of every kind to buy, as this question is pivotal for the distribution of cola among the participants (and organizers as well).
Thus, while the organizers are having the argument, discussing different variants of buying cola, the Winter School can't start. Your task is to count the number of all the possible ways to buy exactly n liters of cola and persuade the organizers that this number is too large, and if they keep on arguing, then the Winter Computer School will have to be organized in summer.
All the bottles of cola are considered indistinguishable, i.e. two variants of buying are different from each other only if they differ in the number of bottles of at least one kind.
Input
The first line contains four integers — n, a, b, c (1 ≤ n ≤ 10000, 0 ≤ a, b, c ≤ 5000).
Output
Print the unique number — the solution to the problem. If it is impossible to buy exactly n liters of cola, print 0.
Examples
Input
10 5 5 5
Output
9
Input
3 0 0 2
Output
0 | import math
n, a, b, c = [int(i) for i in raw_input().split()]
ans = 0
for i in range(0, a+1):
for j in range(0, b+1):
t = (n - 0.5*i - j)/2
if t >= 0 and t <= c and t == math.floor(t):
ans += 1
print(ans) | 1Python2
| {
"input": [
"10 5 5 5\n",
"3 0 0 2\n",
"10 20 10 5\n",
"20 1 2 3\n",
"7 2 2 2\n",
"25 10 5 10\n",
"999 999 899 299\n",
"10000 5000 0 5000\n",
"2 2 2 2\n",
"1 0 2 0\n",
"3 3 2 1\n",
"1 1 0 0\n",
"1 0 0 1\n",
"20 10 20 30\n",
"505 142 321 12\n",
"101 10 10 50\n",
"10 19 15 100\n",
"10000 5000 5000 0\n",
"1234 645 876 1000\n",
"3 10 10 10\n",
"1 0 1 0\n",
"7 3 0 5\n",
"101 10 0 50\n",
"1 0 0 0\n",
"10 0 8 10\n",
"1 2 0 0\n",
"5 2 1 1\n",
"8765 2432 2789 4993\n",
"8987 4000 2534 4534\n",
"10000 5000 5000 5000\n",
"10000 5000 2500 2500\n",
"10000 0 5000 5000\n",
"10000 4999 2500 2500\n",
"5 5000 5000 5000\n",
"10000 4534 2345 4231\n",
"5643 1524 1423 2111\n",
"7777 4444 3333 2222\n",
"2500 5000 5000 5000\n",
"10000 2500 2500 2500\n",
"5000 5000 5000 5000\n",
"10 15 10 5\n",
"20 0 2 3\n",
"7 3 2 2\n",
"29 10 5 10\n",
"3 2 2 2\n",
"20 17 20 30\n",
"101 18 10 50\n",
"1508 645 876 1000\n",
"3 10 8 10\n",
"8765 3899 2789 4993\n",
"10000 0 9916 5000\n",
"5 9080 5000 5000\n",
"2500 9549 5000 5000\n",
"3653 5000 5000 5000\n",
"10 5 5 8\n",
"6 15 10 5\n",
"3 2 4 2\n",
"8765 3899 3326 4993\n",
"4744 9549 5000 5000\n",
"3653 4427 5000 5000\n",
"2 0 0 0\n",
"1 0 1 1\n",
"505 142 321 22\n",
"0 19 15 100\n",
"10000 5190 5000 0\n",
"0 0 1 0\n",
"7 3 0 7\n",
"101 8 0 50\n",
"1 1 0 1\n",
"6 2 1 1\n",
"8987 4000 2534 1847\n",
"10000 3101 2500 2500\n",
"10000 1338 2500 2500\n",
"5643 1524 1423 1396\n",
"10000 2500 1558 2500\n",
"20 0 4 3\n",
"4 3 2 2\n",
"29 5 5 10\n",
"3 0 0 0\n",
"1 0 2 1\n",
"20 17 20 24\n",
"832 142 321 22\n",
"1 19 15 100\n",
"1508 645 876 1100\n",
"3 0 8 10\n",
"7 2 0 7\n",
"1 1 1 1\n",
"8 2 1 1\n",
"8987 4000 1253 1847\n",
"6 9080 5000 5000\n",
"10000 2500 1089 2500\n",
"10 6 5 8\n",
"6 15 10 8\n",
"20 0 1 3\n"
],
"output": [
"9\n",
"0\n",
"36\n",
"0\n",
"1\n",
"12\n",
"145000\n",
"1251\n",
"3\n",
"1\n",
"3\n",
"0\n",
"0\n",
"57\n",
"0\n",
"33\n",
"35\n",
"0\n",
"141636\n",
"6\n",
"1\n",
"1\n",
"3\n",
"0\n",
"5\n",
"1\n",
"0\n",
"1697715\n",
"2536267\n",
"6253751\n",
"1\n",
"2501\n",
"0\n",
"12\n",
"2069003\n",
"146687\n",
"1236544\n",
"1565001\n",
"0\n",
"4691251\n",
"32",
"0",
"1",
"2",
"3",
"79",
"55",
"141636",
"6",
"2720250",
"4959",
"12",
"1565001",
"3006827",
"9",
"16",
"4",
"3243825",
"5631129",
"2820636",
"0",
"1",
"0",
"1",
"0",
"1",
"1",
"2",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"3",
"0",
"0",
"1",
"79",
"0",
"2",
"141636",
"2",
"1",
"1",
"0",
"0",
"16",
"0",
"12",
"16",
"0"
]
} | 2CODEFORCES
|
44_B. Cola_120 | To celebrate the opening of the Winter Computer School the organizers decided to buy in n liters of cola. However, an unexpected difficulty occurred in the shop: it turned out that cola is sold in bottles 0.5, 1 and 2 liters in volume. At that, there are exactly a bottles 0.5 in volume, b one-liter bottles and c of two-liter ones. The organizers have enough money to buy any amount of cola. What did cause the heated arguments was how many bottles of every kind to buy, as this question is pivotal for the distribution of cola among the participants (and organizers as well).
Thus, while the organizers are having the argument, discussing different variants of buying cola, the Winter School can't start. Your task is to count the number of all the possible ways to buy exactly n liters of cola and persuade the organizers that this number is too large, and if they keep on arguing, then the Winter Computer School will have to be organized in summer.
All the bottles of cola are considered indistinguishable, i.e. two variants of buying are different from each other only if they differ in the number of bottles of at least one kind.
Input
The first line contains four integers — n, a, b, c (1 ≤ n ≤ 10000, 0 ≤ a, b, c ≤ 5000).
Output
Print the unique number — the solution to the problem. If it is impossible to buy exactly n liters of cola, print 0.
Examples
Input
10 5 5 5
Output
9
Input
3 0 0 2
Output
0 | #include <bits/stdc++.h>
using namespace std;
int main() {
double n;
int a, b, c, ans = 0;
cin >> n >> a >> b >> c;
for (int i = min(int(n / 2), c); i >= 0; i--) {
for (int j = min(int(n - 2 * i), b); j >= 0; j--) {
if (a / 2 + j + i * 2 >= n) {
ans++;
}
}
}
cout << ans;
return 0;
}
| 2C++
| {
"input": [
"10 5 5 5\n",
"3 0 0 2\n",
"10 20 10 5\n",
"20 1 2 3\n",
"7 2 2 2\n",
"25 10 5 10\n",
"999 999 899 299\n",
"10000 5000 0 5000\n",
"2 2 2 2\n",
"1 0 2 0\n",
"3 3 2 1\n",
"1 1 0 0\n",
"1 0 0 1\n",
"20 10 20 30\n",
"505 142 321 12\n",
"101 10 10 50\n",
"10 19 15 100\n",
"10000 5000 5000 0\n",
"1234 645 876 1000\n",
"3 10 10 10\n",
"1 0 1 0\n",
"7 3 0 5\n",
"101 10 0 50\n",
"1 0 0 0\n",
"10 0 8 10\n",
"1 2 0 0\n",
"5 2 1 1\n",
"8765 2432 2789 4993\n",
"8987 4000 2534 4534\n",
"10000 5000 5000 5000\n",
"10000 5000 2500 2500\n",
"10000 0 5000 5000\n",
"10000 4999 2500 2500\n",
"5 5000 5000 5000\n",
"10000 4534 2345 4231\n",
"5643 1524 1423 2111\n",
"7777 4444 3333 2222\n",
"2500 5000 5000 5000\n",
"10000 2500 2500 2500\n",
"5000 5000 5000 5000\n",
"10 15 10 5\n",
"20 0 2 3\n",
"7 3 2 2\n",
"29 10 5 10\n",
"3 2 2 2\n",
"20 17 20 30\n",
"101 18 10 50\n",
"1508 645 876 1000\n",
"3 10 8 10\n",
"8765 3899 2789 4993\n",
"10000 0 9916 5000\n",
"5 9080 5000 5000\n",
"2500 9549 5000 5000\n",
"3653 5000 5000 5000\n",
"10 5 5 8\n",
"6 15 10 5\n",
"3 2 4 2\n",
"8765 3899 3326 4993\n",
"4744 9549 5000 5000\n",
"3653 4427 5000 5000\n",
"2 0 0 0\n",
"1 0 1 1\n",
"505 142 321 22\n",
"0 19 15 100\n",
"10000 5190 5000 0\n",
"0 0 1 0\n",
"7 3 0 7\n",
"101 8 0 50\n",
"1 1 0 1\n",
"6 2 1 1\n",
"8987 4000 2534 1847\n",
"10000 3101 2500 2500\n",
"10000 1338 2500 2500\n",
"5643 1524 1423 1396\n",
"10000 2500 1558 2500\n",
"20 0 4 3\n",
"4 3 2 2\n",
"29 5 5 10\n",
"3 0 0 0\n",
"1 0 2 1\n",
"20 17 20 24\n",
"832 142 321 22\n",
"1 19 15 100\n",
"1508 645 876 1100\n",
"3 0 8 10\n",
"7 2 0 7\n",
"1 1 1 1\n",
"8 2 1 1\n",
"8987 4000 1253 1847\n",
"6 9080 5000 5000\n",
"10000 2500 1089 2500\n",
"10 6 5 8\n",
"6 15 10 8\n",
"20 0 1 3\n"
],
"output": [
"9\n",
"0\n",
"36\n",
"0\n",
"1\n",
"12\n",
"145000\n",
"1251\n",
"3\n",
"1\n",
"3\n",
"0\n",
"0\n",
"57\n",
"0\n",
"33\n",
"35\n",
"0\n",
"141636\n",
"6\n",
"1\n",
"1\n",
"3\n",
"0\n",
"5\n",
"1\n",
"0\n",
"1697715\n",
"2536267\n",
"6253751\n",
"1\n",
"2501\n",
"0\n",
"12\n",
"2069003\n",
"146687\n",
"1236544\n",
"1565001\n",
"0\n",
"4691251\n",
"32",
"0",
"1",
"2",
"3",
"79",
"55",
"141636",
"6",
"2720250",
"4959",
"12",
"1565001",
"3006827",
"9",
"16",
"4",
"3243825",
"5631129",
"2820636",
"0",
"1",
"0",
"1",
"0",
"1",
"1",
"2",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"3",
"0",
"0",
"1",
"79",
"0",
"2",
"141636",
"2",
"1",
"1",
"0",
"0",
"16",
"0",
"12",
"16",
"0"
]
} | 2CODEFORCES
|
44_B. Cola_121 | To celebrate the opening of the Winter Computer School the organizers decided to buy in n liters of cola. However, an unexpected difficulty occurred in the shop: it turned out that cola is sold in bottles 0.5, 1 and 2 liters in volume. At that, there are exactly a bottles 0.5 in volume, b one-liter bottles and c of two-liter ones. The organizers have enough money to buy any amount of cola. What did cause the heated arguments was how many bottles of every kind to buy, as this question is pivotal for the distribution of cola among the participants (and organizers as well).
Thus, while the organizers are having the argument, discussing different variants of buying cola, the Winter School can't start. Your task is to count the number of all the possible ways to buy exactly n liters of cola and persuade the organizers that this number is too large, and if they keep on arguing, then the Winter Computer School will have to be organized in summer.
All the bottles of cola are considered indistinguishable, i.e. two variants of buying are different from each other only if they differ in the number of bottles of at least one kind.
Input
The first line contains four integers — n, a, b, c (1 ≤ n ≤ 10000, 0 ≤ a, b, c ≤ 5000).
Output
Print the unique number — the solution to the problem. If it is impossible to buy exactly n liters of cola, print 0.
Examples
Input
10 5 5 5
Output
9
Input
3 0 0 2
Output
0 | def nik(rudy,x,y,z,cot):
for i in range(z+1):
for j in range(y+1):
t = rudy - i*2 -j
if t>=0 and x*0.5 >= t:
cot+=1
return cot
rudy, x, y, z = list(map(int,input().split()))
cot = 0
print(nik(rudy,x,y,z,cot))
| 3Python3
| {
"input": [
"10 5 5 5\n",
"3 0 0 2\n",
"10 20 10 5\n",
"20 1 2 3\n",
"7 2 2 2\n",
"25 10 5 10\n",
"999 999 899 299\n",
"10000 5000 0 5000\n",
"2 2 2 2\n",
"1 0 2 0\n",
"3 3 2 1\n",
"1 1 0 0\n",
"1 0 0 1\n",
"20 10 20 30\n",
"505 142 321 12\n",
"101 10 10 50\n",
"10 19 15 100\n",
"10000 5000 5000 0\n",
"1234 645 876 1000\n",
"3 10 10 10\n",
"1 0 1 0\n",
"7 3 0 5\n",
"101 10 0 50\n",
"1 0 0 0\n",
"10 0 8 10\n",
"1 2 0 0\n",
"5 2 1 1\n",
"8765 2432 2789 4993\n",
"8987 4000 2534 4534\n",
"10000 5000 5000 5000\n",
"10000 5000 2500 2500\n",
"10000 0 5000 5000\n",
"10000 4999 2500 2500\n",
"5 5000 5000 5000\n",
"10000 4534 2345 4231\n",
"5643 1524 1423 2111\n",
"7777 4444 3333 2222\n",
"2500 5000 5000 5000\n",
"10000 2500 2500 2500\n",
"5000 5000 5000 5000\n",
"10 15 10 5\n",
"20 0 2 3\n",
"7 3 2 2\n",
"29 10 5 10\n",
"3 2 2 2\n",
"20 17 20 30\n",
"101 18 10 50\n",
"1508 645 876 1000\n",
"3 10 8 10\n",
"8765 3899 2789 4993\n",
"10000 0 9916 5000\n",
"5 9080 5000 5000\n",
"2500 9549 5000 5000\n",
"3653 5000 5000 5000\n",
"10 5 5 8\n",
"6 15 10 5\n",
"3 2 4 2\n",
"8765 3899 3326 4993\n",
"4744 9549 5000 5000\n",
"3653 4427 5000 5000\n",
"2 0 0 0\n",
"1 0 1 1\n",
"505 142 321 22\n",
"0 19 15 100\n",
"10000 5190 5000 0\n",
"0 0 1 0\n",
"7 3 0 7\n",
"101 8 0 50\n",
"1 1 0 1\n",
"6 2 1 1\n",
"8987 4000 2534 1847\n",
"10000 3101 2500 2500\n",
"10000 1338 2500 2500\n",
"5643 1524 1423 1396\n",
"10000 2500 1558 2500\n",
"20 0 4 3\n",
"4 3 2 2\n",
"29 5 5 10\n",
"3 0 0 0\n",
"1 0 2 1\n",
"20 17 20 24\n",
"832 142 321 22\n",
"1 19 15 100\n",
"1508 645 876 1100\n",
"3 0 8 10\n",
"7 2 0 7\n",
"1 1 1 1\n",
"8 2 1 1\n",
"8987 4000 1253 1847\n",
"6 9080 5000 5000\n",
"10000 2500 1089 2500\n",
"10 6 5 8\n",
"6 15 10 8\n",
"20 0 1 3\n"
],
"output": [
"9\n",
"0\n",
"36\n",
"0\n",
"1\n",
"12\n",
"145000\n",
"1251\n",
"3\n",
"1\n",
"3\n",
"0\n",
"0\n",
"57\n",
"0\n",
"33\n",
"35\n",
"0\n",
"141636\n",
"6\n",
"1\n",
"1\n",
"3\n",
"0\n",
"5\n",
"1\n",
"0\n",
"1697715\n",
"2536267\n",
"6253751\n",
"1\n",
"2501\n",
"0\n",
"12\n",
"2069003\n",
"146687\n",
"1236544\n",
"1565001\n",
"0\n",
"4691251\n",
"32",
"0",
"1",
"2",
"3",
"79",
"55",
"141636",
"6",
"2720250",
"4959",
"12",
"1565001",
"3006827",
"9",
"16",
"4",
"3243825",
"5631129",
"2820636",
"0",
"1",
"0",
"1",
"0",
"1",
"1",
"2",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"3",
"0",
"0",
"1",
"79",
"0",
"2",
"141636",
"2",
"1",
"1",
"0",
"0",
"16",
"0",
"12",
"16",
"0"
]
} | 2CODEFORCES
|
44_B. Cola_122 | To celebrate the opening of the Winter Computer School the organizers decided to buy in n liters of cola. However, an unexpected difficulty occurred in the shop: it turned out that cola is sold in bottles 0.5, 1 and 2 liters in volume. At that, there are exactly a bottles 0.5 in volume, b one-liter bottles and c of two-liter ones. The organizers have enough money to buy any amount of cola. What did cause the heated arguments was how many bottles of every kind to buy, as this question is pivotal for the distribution of cola among the participants (and organizers as well).
Thus, while the organizers are having the argument, discussing different variants of buying cola, the Winter School can't start. Your task is to count the number of all the possible ways to buy exactly n liters of cola and persuade the organizers that this number is too large, and if they keep on arguing, then the Winter Computer School will have to be organized in summer.
All the bottles of cola are considered indistinguishable, i.e. two variants of buying are different from each other only if they differ in the number of bottles of at least one kind.
Input
The first line contains four integers — n, a, b, c (1 ≤ n ≤ 10000, 0 ≤ a, b, c ≤ 5000).
Output
Print the unique number — the solution to the problem. If it is impossible to buy exactly n liters of cola, print 0.
Examples
Input
10 5 5 5
Output
9
Input
3 0 0 2
Output
0 | import org.omg.PortableInterceptor.SYSTEM_EXCEPTION;
import java.io.*;
import java.util.*;
import java.util.regex.Matcher;
public class Main {
public static void main(String[] args) throws IOException {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = /*new InputReader(new FileReader("input.txt"));*/ new InputReader(inputStream);
PrintWriter out = /*new PrintWriter("output.txt"); */ new PrintWriter(outputStream);
TaskB solver = new TaskB();
solver.solve(in, out);
out.close();
}
private static class TaskB {
static final long max = 1000000000000000000L;
static final double eps = 0.000000001;
static final long mod = 1000000007;
void solve(InputReader in, PrintWriter out) throws IOException {
int N = in.nextInt();
int A = in.nextInt();
int B = in.nextInt();
int C = in.nextInt();
int count = 0;
for (int i = 0; i <= B; i++)
for (int j = 0; j <= C; j++) {
int sum = i + j * 2;
if (sum == N) {
count++;
} else if (sum < N) {
int rem = N - sum;
if (rem * 2 <= A) count++;
}
}
out.println(count);
}
}
private static class InputReader {
StringTokenizer st;
BufferedReader br;
public InputReader(InputStream s) {
br = new BufferedReader(new InputStreamReader(s));
}
public InputReader(FileReader s) throws FileNotFoundException {
br = new BufferedReader(s);
}
public String next() {
while (st == null || !st.hasMoreTokens())
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
return st.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public String nextLine() {
try {
return br.readLine();
} catch (IOException e) {
throw new RuntimeException(e);
}
}
public double nextDouble() {
return Double.parseDouble(next());
}
public boolean ready() {
try {
return br.ready();
} catch (IOException e) {
throw new RuntimeException(e);
}
}
}
} | 4JAVA
| {
"input": [
"10 5 5 5\n",
"3 0 0 2\n",
"10 20 10 5\n",
"20 1 2 3\n",
"7 2 2 2\n",
"25 10 5 10\n",
"999 999 899 299\n",
"10000 5000 0 5000\n",
"2 2 2 2\n",
"1 0 2 0\n",
"3 3 2 1\n",
"1 1 0 0\n",
"1 0 0 1\n",
"20 10 20 30\n",
"505 142 321 12\n",
"101 10 10 50\n",
"10 19 15 100\n",
"10000 5000 5000 0\n",
"1234 645 876 1000\n",
"3 10 10 10\n",
"1 0 1 0\n",
"7 3 0 5\n",
"101 10 0 50\n",
"1 0 0 0\n",
"10 0 8 10\n",
"1 2 0 0\n",
"5 2 1 1\n",
"8765 2432 2789 4993\n",
"8987 4000 2534 4534\n",
"10000 5000 5000 5000\n",
"10000 5000 2500 2500\n",
"10000 0 5000 5000\n",
"10000 4999 2500 2500\n",
"5 5000 5000 5000\n",
"10000 4534 2345 4231\n",
"5643 1524 1423 2111\n",
"7777 4444 3333 2222\n",
"2500 5000 5000 5000\n",
"10000 2500 2500 2500\n",
"5000 5000 5000 5000\n",
"10 15 10 5\n",
"20 0 2 3\n",
"7 3 2 2\n",
"29 10 5 10\n",
"3 2 2 2\n",
"20 17 20 30\n",
"101 18 10 50\n",
"1508 645 876 1000\n",
"3 10 8 10\n",
"8765 3899 2789 4993\n",
"10000 0 9916 5000\n",
"5 9080 5000 5000\n",
"2500 9549 5000 5000\n",
"3653 5000 5000 5000\n",
"10 5 5 8\n",
"6 15 10 5\n",
"3 2 4 2\n",
"8765 3899 3326 4993\n",
"4744 9549 5000 5000\n",
"3653 4427 5000 5000\n",
"2 0 0 0\n",
"1 0 1 1\n",
"505 142 321 22\n",
"0 19 15 100\n",
"10000 5190 5000 0\n",
"0 0 1 0\n",
"7 3 0 7\n",
"101 8 0 50\n",
"1 1 0 1\n",
"6 2 1 1\n",
"8987 4000 2534 1847\n",
"10000 3101 2500 2500\n",
"10000 1338 2500 2500\n",
"5643 1524 1423 1396\n",
"10000 2500 1558 2500\n",
"20 0 4 3\n",
"4 3 2 2\n",
"29 5 5 10\n",
"3 0 0 0\n",
"1 0 2 1\n",
"20 17 20 24\n",
"832 142 321 22\n",
"1 19 15 100\n",
"1508 645 876 1100\n",
"3 0 8 10\n",
"7 2 0 7\n",
"1 1 1 1\n",
"8 2 1 1\n",
"8987 4000 1253 1847\n",
"6 9080 5000 5000\n",
"10000 2500 1089 2500\n",
"10 6 5 8\n",
"6 15 10 8\n",
"20 0 1 3\n"
],
"output": [
"9\n",
"0\n",
"36\n",
"0\n",
"1\n",
"12\n",
"145000\n",
"1251\n",
"3\n",
"1\n",
"3\n",
"0\n",
"0\n",
"57\n",
"0\n",
"33\n",
"35\n",
"0\n",
"141636\n",
"6\n",
"1\n",
"1\n",
"3\n",
"0\n",
"5\n",
"1\n",
"0\n",
"1697715\n",
"2536267\n",
"6253751\n",
"1\n",
"2501\n",
"0\n",
"12\n",
"2069003\n",
"146687\n",
"1236544\n",
"1565001\n",
"0\n",
"4691251\n",
"32",
"0",
"1",
"2",
"3",
"79",
"55",
"141636",
"6",
"2720250",
"4959",
"12",
"1565001",
"3006827",
"9",
"16",
"4",
"3243825",
"5631129",
"2820636",
"0",
"1",
"0",
"1",
"0",
"1",
"1",
"2",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"3",
"0",
"0",
"1",
"79",
"0",
"2",
"141636",
"2",
"1",
"1",
"0",
"0",
"16",
"0",
"12",
"16",
"0"
]
} | 2CODEFORCES
|
494_D. Birthday_123 | Ali is Hamed's little brother and tomorrow is his birthday. Hamed wants his brother to earn his gift so he gave him a hard programming problem and told him if he can successfully solve it, he'll get him a brand new laptop. Ali is not yet a very talented programmer like Hamed and although he usually doesn't cheat but this time is an exception. It's about a brand new laptop. So he decided to secretly seek help from you. Please solve this problem for Ali.
An n-vertex weighted rooted tree is given. Vertex number 1 is a root of the tree. We define d(u, v) as the sum of edges weights on the shortest path between vertices u and v. Specifically we define d(u, u) = 0. Also let's define S(v) for each vertex v as a set containing all vertices u such that d(1, u) = d(1, v) + d(v, u). Function f(u, v) is then defined using the following formula:
<image>
The goal is to calculate f(u, v) for each of the q given pair of vertices. As the answer can be rather large it's enough to print it modulo 109 + 7.
Input
In the first line of input an integer n (1 ≤ n ≤ 105), number of vertices of the tree is given.
In each of the next n - 1 lines three space-separated integers ai, bi, ci (1 ≤ ai, bi ≤ n, 1 ≤ ci ≤ 109) are given indicating an edge between ai and bi with weight equal to ci.
In the next line an integer q (1 ≤ q ≤ 105), number of vertex pairs, is given.
In each of the next q lines two space-separated integers ui, vi (1 ≤ ui, vi ≤ n) are given meaning that you must calculate f(ui, vi).
It is guaranteed that the given edges form a tree.
Output
Output q lines. In the i-th line print the value of f(ui, vi) modulo 109 + 7.
Examples
Input
5
1 2 1
4 3 1
3 5 1
1 3 1
5
1 1
1 5
2 4
2 1
3 5
Output
10
1000000005
1000000002
23
1000000002
Input
8
1 2 100
1 3 20
2 4 2
2 5 1
3 6 1
3 7 2
6 8 5
6
1 8
2 3
5 8
2 6
4 7
6 1
Output
999968753
49796
999961271
999991235
999958569
45130 | #include <bits/stdc++.h>
using namespace std;
inline int read() {
static int r, sign;
static char c;
r = 0, sign = 1;
do c = getchar();
while (c != '-' && (c < '0' || c > '9'));
if (c == '-') sign = -1, c = getchar();
while (c >= '0' && c <= '9') r = r * 10 + (int)(c - '0'), c = getchar();
return sign * r;
}
template <typename T>
inline void print(T *a, int n) {
for (int i = 1; i < n; ++i) cout << a[i] << " ";
cout << a[n] << endl;
}
const int mod = (int)1e9 + 7;
struct hashInt {
int x;
hashInt() {}
hashInt(int _x) : x(_x) {}
inline hashInt operator+(const hashInt &y) const {
int z = x + y.x;
if (z >= mod) z -= mod;
if (z < 0) z += mod;
return hashInt(z);
}
inline hashInt operator-(const hashInt &y) const {
int z = x - y.x;
if (z >= mod) z -= mod;
if (z < 0) z += mod;
return hashInt(z);
}
inline hashInt operator*(const hashInt &y) const {
return hashInt((long long)x * y.x % mod);
}
};
struct edge {
int next, node;
hashInt w;
} e[100100 << 1 | 1];
int head[100100 + 1], tot = 0;
inline void addedge(int a, int b, int w) {
e[++tot].next = head[a];
head[a] = tot, e[tot].node = b, e[tot].w = w;
}
struct DP {
hashInt sum, sqr;
DP() {}
DP(int _s, int _q) : sum(_s), sqr(_q) {}
DP(hashInt _s, hashInt _q) : sum(_s), sqr(_q) {}
} up[100100 + 1], down[100100 + 1], downex[100100 + 1];
int n, size[100100 + 1];
inline hashInt delta(const DP &x, int n, hashInt b) {
return x.sqr + b * b * n + b * 2 * x.sum;
}
void preUp(int x, int f) {
size[x] = 1, up[x].sum = up[x].sqr = 0;
for (int i = head[x]; i; i = e[i].next) {
int node = e[i].node;
if (node == f) continue;
preUp(node, x);
size[x] += size[node];
up[x].sum = up[x].sum + up[node].sum + e[i].w * size[node];
up[x].sqr = up[x].sqr + delta(up[node], size[node], e[i].w);
}
}
void preDown(int x, int f) {
for (int i = head[x]; i; i = e[i].next) {
int node = e[i].node;
if (node == f) continue;
DP cur;
cur.sum = down[x].sum + up[x].sum - up[node].sum - e[i].w * size[node];
cur.sqr = down[x].sqr + up[x].sqr - delta(up[node], size[node], e[i].w);
downex[node] = cur;
down[node].sum = cur.sum + e[i].w * (n - size[node]);
down[node].sqr = delta(cur, n - size[node], e[i].w);
preDown(node, x);
}
}
int p[18 + 1][100100 + 1], logn, dep[100100 + 1];
hashInt dis[100100 + 1], dissum[100100 + 1], dissqr[100100 + 1];
void preDA(int x, int f) {
p[0][x] = f;
for (int i = head[x]; i; i = e[i].next) {
int node = e[i].node;
if (node == f) continue;
dep[node] = dep[x] + 1;
dis[node] = dis[x] + e[i].w;
dissum[node] = dissum[x] + dis[node];
dissqr[node] = dissqr[x] + dis[node] * dis[node];
preDA(node, x);
}
}
inline int LCA(int x, int y) {
if (dep[x] > dep[y]) swap(x, y);
for (int i = logn; i >= 0; --i)
if (dep[x] <= dep[p[i][y]]) y = p[i][y];
if (x == y) return x;
for (int i = logn; i >= 0; --i)
if (p[i][x] != p[i][y]) x = p[i][x], y = p[i][y];
return p[0][x];
}
inline int LCA2(int x, int y) {
for (int i = logn; i >= 0; --i)
if (dep[x] < dep[p[i][y]]) y = p[i][y];
return y;
}
vector<pair<int, int> > Q[100100 + 1];
int q, ans[100100 + 1], seq[100100 + 1], cnt = 0;
DP pre[100100 + 1], suf[100100 + 1];
struct BIT {
hashInt a[100100 + 1];
inline void modify(int x, hashInt w) {
for (; x <= n; x += x & -x) a[x] = a[x] + w;
}
inline hashInt query(int x) {
hashInt r = 0;
for (; x > 0; x -= x & -x) r = r + a[x];
return r;
}
} sufsum, sufsqr;
void dfs(int x, int f) {
for (int i = 0; i < Q[x].size(); ++i) {
int node = Q[x][i].first, id = Q[x][i].second;
int p = LCA(x, node);
hashInt b = dis[node] - dis[p];
b = b * b;
}
for (int i = head[x]; i; i = e[i].next) {
int node = e[i].node;
if (node == f) continue;
seq[++cnt] = x;
pre[cnt].sum = pre[cnt - 1].sum + e[i].w * (cnt - 1);
pre[cnt].sqr = delta(pre[cnt - 1], cnt - 1, e[i].w);
dfs(node, x);
--cnt;
}
}
int main(int argc, char *argv[]) {
scanf("%d", &n);
for (int i = 1; i < n; ++i) {
int x, y, w;
scanf("%d%d%d", &x, &y, &w);
addedge(x, y, w), addedge(y, x, w);
}
preUp(1, 0);
preDown(1, 0);
dep[1] = 1, preDA(1, 0);
logn = (int)(log((double)n) / log(2.0));
for (int i = 1; i <= logn; ++i)
for (int j = 1; j <= n; ++j) p[i][j] = p[i - 1][p[i - 1][j]];
scanf("%d", &q);
while (q--) {
int x, y;
scanf("%d%d", &x, &y);
int p = LCA(x, y);
hashInt d = dis[x] + dis[y] - dis[p] * 2;
hashInt ans = 0;
if (p == y) {
ans = delta(down[y], n - size[y], d);
ans = up[x].sqr + down[x].sqr - ans * 2;
} else {
ans = delta(up[y], size[y], d);
ans = ans * 2 - up[x].sqr - down[x].sqr;
}
printf("%d\n", ans.x);
}
fclose(stdin);
fclose(stdout);
return 0;
}
| 2C++
| {
"input": [
"8\n1 2 100\n1 3 20\n2 4 2\n2 5 1\n3 6 1\n3 7 2\n6 8 5\n6\n1 8\n2 3\n5 8\n2 6\n4 7\n6 1\n",
"5\n1 2 1\n4 3 1\n3 5 1\n1 3 1\n5\n1 1\n1 5\n2 4\n2 1\n3 5\n",
"10\n5 1 33242121\n5 7 535463871\n9 1 202863787\n5 4 874413088\n6 1 623012241\n6 8 786659185\n10 5 164281028\n9 2 851489092\n3 9 169897037\n10\n9 7\n7 7\n5 9\n6 1\n3 6\n6 5\n2 3\n7 7\n8 9\n7 2\n",
"10\n3 1 278114804\n3 7 453886464\n8 7 830020662\n8 2 759298564\n9 2 147615930\n2 4 617310668\n10 2 921400635\n2 5 185694079\n6 2 157439659\n10\n4 3\n7 7\n9 4\n2 4\n4 1\n6 3\n7 2\n1 10\n4 5\n1 9\n",
"10\n3 1 278114804\n3 7 453886464\n8 7 830020662\n8 2 759298564\n9 2 147615930\n9 4 617310668\n10 4 921400635\n4 5 185694079\n6 4 157439659\n10\n4 3\n7 7\n9 4\n2 4\n4 1\n6 3\n7 2\n1 10\n4 5\n1 9\n",
"10\n3 1 940484348\n1 2 683105297\n6 1 34326471\n6 7 846216720\n10 3 913688945\n6 5 62114151\n4 2 895808279\n3 9 73879870\n8 10 274103932\n10\n10 6\n5 8\n3 5\n7 10\n6 6\n2 4\n1 5\n6 4\n8 6\n9 10\n",
"10\n3 1 278114804\n1 7 453886464\n8 1 830020662\n1 2 759298564\n9 1 147615930\n1 4 617310668\n10 1 921400635\n1 5 185694079\n6 1 157439659\n10\n4 3\n7 7\n9 4\n2 4\n4 1\n6 3\n7 2\n1 10\n4 5\n1 9\n",
"10\n7 1 948825254\n7 8 163731103\n5 7 24781877\n1 9 873109737\n6 5 922157259\n6 4 695796614\n3 8 710123832\n5 2 229846714\n10 2 126680384\n10\n1 6\n3 7\n2 1\n10 4\n5 1\n9 9\n10 8\n4 2\n7 3\n1 8\n",
"10\n3 1 278114804\n3 7 453886464\n8 7 830020662\n8 2 759298564\n9 2 147615930\n9 4 617310668\n10 4 921400635\n10 5 185694079\n6 5 157439659\n10\n4 3\n7 7\n9 4\n2 4\n4 1\n6 3\n7 2\n1 10\n4 5\n1 9\n",
"10\n3 1 278114804\n3 7 453886464\n8 1 830020662\n8 2 759298564\n9 1 147615930\n9 4 617310668\n10 1 921400635\n10 5 185694079\n6 1 157439659\n10\n4 3\n7 7\n9 4\n2 4\n4 1\n6 3\n7 2\n1 10\n4 5\n1 9\n",
"10\n3 1 278114804\n3 7 453886464\n8 7 830020662\n8 2 759298564\n9 2 147615930\n2 4 617310668\n10 2 921400635\n2 5 185694079\n6 2 157439659\n10\n4 3\n7 7\n9 4\n2 4\n4 1\n5 3\n7 2\n1 10\n4 5\n1 9\n",
"10\n3 1 940484348\n1 2 683105297\n6 1 34326471\n6 7 15773065\n10 3 913688945\n6 5 62114151\n4 2 895808279\n3 9 73879870\n8 10 274103932\n10\n10 6\n5 8\n3 5\n7 10\n6 6\n2 4\n1 5\n6 4\n8 6\n9 10\n",
"10\n3 1 278114804\n3 7 453886464\n8 7 830020662\n8 2 759298564\n9 2 147615930\n9 4 617310668\n6 4 921400635\n10 5 185694079\n6 5 157439659\n10\n4 3\n7 7\n9 4\n2 4\n4 1\n6 3\n7 2\n1 10\n4 5\n1 9\n",
"8\n1 2 100\n1 3 20\n2 4 2\n2 5 1\n3 6 1\n3 7 2\n6 8 4\n6\n1 8\n2 3\n5 8\n2 6\n4 7\n6 1\n",
"5\n1 2 1\n4 3 0\n3 5 1\n1 3 1\n5\n1 1\n1 5\n2 4\n2 1\n3 5\n",
"10\n3 1 278114804\n3 7 453886464\n8 7 830020662\n8 2 759298564\n9 1 147615930\n9 4 617310668\n6 4 921400635\n10 5 185694079\n6 5 157439659\n10\n4 3\n7 7\n9 4\n2 4\n4 1\n6 3\n7 2\n1 10\n4 5\n1 9\n",
"8\n1 2 100\n1 3 20\n1 4 2\n2 5 1\n3 6 1\n3 7 2\n6 8 4\n6\n1 8\n2 3\n5 8\n2 6\n4 7\n6 1\n",
"5\n1 2 1\n4 3 0\n3 5 1\n1 3 1\n5\n1 1\n1 5\n3 4\n2 1\n3 5\n",
"10\n3 1 278114804\n3 2 453886464\n8 7 830020662\n8 2 759298564\n9 1 147615930\n9 4 617310668\n6 4 921400635\n10 5 185694079\n6 5 157439659\n10\n4 3\n7 7\n9 4\n2 4\n4 1\n6 3\n7 2\n1 10\n4 5\n1 9\n",
"5\n1 2 1\n4 3 0\n3 5 1\n1 3 0\n5\n1 1\n1 5\n3 4\n2 1\n3 5\n",
"10\n3 1 278114804\n3 2 453886464\n8 7 830020662\n8 2 759298564\n9 1 147615930\n9 4 617310668\n6 4 921400635\n10 5 185694079\n6 5 46066019\n10\n4 3\n7 7\n9 4\n2 4\n4 1\n6 3\n7 2\n1 10\n4 5\n1 9\n",
"10\n3 1 278114804\n3 2 453886464\n8 7 830020662\n8 2 759298564\n9 1 147615930\n9 4 963177691\n6 4 921400635\n10 5 185694079\n6 5 46066019\n10\n4 3\n7 7\n9 4\n2 4\n4 1\n6 3\n7 2\n1 10\n4 5\n1 9\n",
"10\n3 1 278114804\n3 7 453886464\n8 7 830020662\n8 2 759298564\n9 2 147615930\n9 4 617310668\n10 4 921400635\n4 5 185694079\n6 4 157439659\n10\n4 3\n7 7\n9 4\n2 4\n4 1\n6 3\n7 2\n1 10\n4 5\n1 3\n",
"10\n3 1 940484348\n1 2 683105297\n6 1 64767541\n6 7 846216720\n10 3 913688945\n6 5 62114151\n4 2 895808279\n3 9 73879870\n8 10 274103932\n10\n10 6\n5 8\n3 5\n7 10\n6 6\n2 4\n1 5\n6 4\n8 6\n9 10\n",
"10\n3 1 278114804\n3 7 453886464\n8 7 830020662\n8 2 759298564\n9 2 139660381\n9 4 617310668\n10 4 921400635\n10 5 185694079\n6 5 157439659\n10\n4 3\n7 7\n9 4\n2 4\n4 1\n6 3\n7 2\n1 10\n4 5\n1 9\n",
"8\n1 2 100\n1 3 20\n2 4 2\n2 5 1\n3 6 1\n5 7 2\n6 8 5\n6\n1 8\n2 3\n5 8\n2 6\n4 7\n6 1\n",
"5\n1 2 1\n4 3 2\n3 5 1\n1 3 1\n5\n1 1\n1 5\n2 4\n2 1\n3 5\n",
"10\n3 1 278114804\n3 7 453886464\n8 7 830020662\n8 2 759298564\n9 2 147615930\n2 4 617310668\n10 2 921400635\n2 5 185694079\n6 2 157439659\n10\n4 3\n7 6\n9 4\n2 4\n4 1\n5 3\n7 2\n1 10\n4 5\n1 9\n",
"10\n3 1 940484348\n1 2 683105297\n6 1 34326471\n6 7 15773065\n10 3 913688945\n6 5 62114151\n4 2 895808279\n3 9 73879870\n8 10 274103932\n10\n10 6\n5 8\n3 5\n7 10\n6 6\n2 4\n1 5\n6 4\n8 6\n9 4\n",
"10\n3 1 44056013\n3 7 453886464\n8 7 830020662\n8 2 759298564\n9 2 147615930\n9 4 617310668\n6 4 921400635\n10 5 185694079\n6 5 157439659\n10\n4 3\n7 7\n9 4\n2 4\n4 1\n6 3\n7 2\n1 10\n4 5\n1 9\n",
"8\n1 2 100\n1 3 20\n1 4 2\n2 5 1\n3 6 1\n6 7 2\n6 8 4\n6\n1 8\n2 3\n5 8\n2 6\n4 7\n6 1\n",
"10\n3 1 278114804\n3 2 453886464\n8 7 830020662\n8 2 759298564\n9 1 147615930\n9 4 617310668\n6 4 921400635\n10 1 185694079\n6 5 157439659\n10\n4 3\n7 7\n9 4\n2 4\n4 1\n6 3\n7 2\n1 10\n4 5\n1 9\n",
"10\n3 1 278114804\n3 2 453886464\n8 7 830020662\n8 2 759298564\n9 1 147615930\n9 4 963177691\n6 4 921400635\n10 5 185694079\n6 5 46066019\n10\n4 3\n7 7\n9 4\n2 4\n4 1\n6 3\n8 2\n1 10\n4 5\n1 9\n",
"5\n1 2 1\n4 3 0\n3 5 1\n1 3 1\n5\n1 1\n1 4\n3 4\n2 1\n4 5\n",
"10\n5 1 33242121\n5 7 535463871\n9 1 210110308\n5 4 874413088\n6 1 623012241\n6 8 786659185\n10 5 164281028\n9 2 851489092\n3 9 169897037\n10\n9 7\n7 7\n5 9\n6 1\n3 6\n6 5\n2 3\n7 7\n8 9\n7 2\n",
"10\n3 1 278114804\n3 7 453886464\n8 7 830020662\n8 2 759298564\n9 2 147615930\n9 5 617310668\n10 4 921400635\n4 5 185694079\n6 4 157439659\n10\n4 3\n7 7\n9 4\n2 4\n4 1\n6 3\n7 2\n1 10\n4 5\n1 9\n",
"10\n3 1 940484348\n1 2 683105297\n6 1 34326471\n6 7 846216720\n10 3 913688945\n6 5 62114151\n4 2 895808279\n3 9 73879870\n8 10 274103932\n10\n6 6\n5 8\n3 5\n7 10\n6 6\n2 4\n1 5\n6 4\n8 6\n9 10\n",
"10\n7 1 948825254\n7 8 163731103\n5 7 24781877\n1 9 856412550\n6 5 922157259\n6 4 695796614\n3 8 710123832\n5 2 229846714\n10 2 126680384\n10\n1 6\n3 7\n2 1\n10 4\n5 1\n9 9\n10 8\n4 2\n7 3\n1 8\n",
"8\n1 2 100\n1 3 20\n2 4 2\n2 5 1\n3 6 1\n3 7 2\n6 8 5\n6\n1 8\n2 3\n5 8\n2 3\n4 7\n6 1\n",
"5\n1 2 1\n4 3 0\n3 5 1\n1 3 1\n5\n1 1\n1 5\n1 4\n2 1\n3 5\n",
"10\n3 1 278114804\n3 7 453886464\n8 7 830020662\n8 2 759298564\n9 2 147615930\n2 4 617310668\n10 2 921400635\n2 5 185694079\n6 2 157439659\n10\n4 3\n7 7\n9 4\n2 4\n4 1\n5 3\n7 2\n1 10\n4 5\n1 8\n",
"10\n3 1 940484348\n1 2 683105297\n6 1 34326471\n6 7 15773065\n10 3 913688945\n6 5 62114151\n4 2 895808279\n3 9 73879870\n8 10 274103932\n10\n10 6\n5 8\n3 5\n7 10\n6 6\n2 4\n1 7\n6 4\n8 6\n9 10\n",
"10\n3 1 278114804\n3 7 453886464\n8 7 830020662\n8 2 759298564\n9 2 147615930\n9 4 617310668\n6 4 921400635\n10 5 25679612\n6 5 157439659\n10\n4 3\n7 7\n9 4\n2 4\n4 1\n6 3\n7 2\n1 10\n4 5\n1 9\n",
"5\n1 2 1\n4 3 0\n3 5 0\n1 3 1\n5\n1 1\n1 5\n2 4\n2 1\n3 5\n",
"10\n3 1 278114804\n3 7 453886464\n8 7 830020662\n8 2 759298564\n9 1 147615930\n9 4 617310668\n6 4 921400635\n10 5 185694079\n6 5 157439659\n10\n4 3\n7 7\n9 4\n2 4\n4 1\n6 3\n7 2\n1 10\n4 8\n1 9\n",
"8\n1 2 100\n1 3 20\n1 4 2\n2 5 1\n3 6 1\n3 7 2\n6 8 4\n6\n1 5\n2 3\n5 8\n2 6\n4 7\n6 1\n",
"5\n1 2 1\n4 3 0\n3 5 1\n1 3 1\n5\n1 1\n1 5\n3 4\n2 1\n1 5\n",
"10\n3 1 278114804\n3 7 867603660\n8 7 830020662\n8 2 759298564\n9 2 147615930\n9 4 617310668\n10 4 921400635\n4 5 185694079\n6 4 157439659\n10\n4 3\n7 7\n9 4\n2 4\n4 1\n6 3\n7 2\n1 10\n4 5\n1 3\n",
"10\n3 1 278114804\n3 7 453886464\n8 7 830020662\n8 2 586110012\n9 2 139660381\n9 4 617310668\n10 4 921400635\n10 5 185694079\n6 5 157439659\n10\n4 3\n7 7\n9 4\n2 4\n4 1\n6 3\n7 2\n1 10\n4 5\n1 9\n",
"10\n3 1 940484348\n1 2 683105297\n6 1 34326471\n6 7 15773065\n10 3 913688945\n6 5 62114151\n4 2 895808279\n3 9 73879870\n8 10 274103932\n10\n10 6\n5 8\n3 5\n7 10\n5 6\n2 4\n1 5\n6 4\n8 6\n9 4\n",
"10\n3 1 44056013\n3 7 453886464\n8 7 830020662\n8 2 759298564\n9 2 147615930\n9 4 617310668\n6 4 921400635\n10 5 185694079\n6 5 157439659\n10\n4 3\n7 7\n9 4\n2 4\n4 1\n6 3\n7 2\n1 8\n4 5\n1 9\n",
"10\n3 1 278114804\n3 2 453886464\n8 7 830020662\n8 2 759298564\n9 1 147615930\n9 4 617310668\n6 4 921400635\n10 1 185694079\n6 5 157439659\n10\n4 3\n9 7\n9 4\n2 4\n4 1\n6 3\n7 2\n1 10\n4 5\n1 9\n",
"5\n1 2 1\n4 3 0\n3 5 1\n2 3 0\n5\n1 1\n1 5\n3 4\n2 1\n1 5\n",
"10\n3 1 278114804\n3 2 453886464\n8 7 830020662\n8 2 759298564\n9 1 147615930\n9 4 963177691\n6 4 921400635\n10 5 185694079\n6 5 46066019\n10\n4 3\n8 7\n9 4\n2 4\n4 1\n6 3\n8 2\n1 10\n4 5\n1 9\n",
"10\n5 1 33242121\n5 7 535463871\n9 1 210110308\n5 4 874413088\n6 1 623012241\n6 8 786659185\n10 5 164281028\n9 2 851489092\n3 9 169897037\n10\n9 7\n7 7\n5 9\n6 1\n3 9\n6 5\n2 3\n7 7\n8 9\n7 2\n",
"10\n3 1 278114804\n3 7 453886464\n8 7 830020662\n8 2 759298564\n9 2 147615930\n8 5 617310668\n10 4 921400635\n4 5 185694079\n6 4 157439659\n10\n4 3\n7 7\n9 4\n2 4\n4 1\n6 3\n7 2\n1 10\n4 5\n1 9\n",
"5\n1 2 1\n4 3 0\n3 5 1\n1 3 1\n5\n1 1\n1 5\n3 4\n2 1\n4 5\n",
"5\n1 2 1\n4 3 0\n3 5 1\n1 3 0\n5\n1 1\n1 5\n3 4\n2 1\n1 5\n"
],
"output": [
"999968753\n49796\n999961271\n999991235\n999958569\n45130\n",
"10\n1000000005\n1000000002\n23\n1000000002\n",
"754602117\n941306036\n345159140\n889751864\n221567087\n452330243\n610417136\n941306036\n595859331\n524414191\n",
"154209178\n787444642\n453508248\n220845981\n811407029\n585833802\n738688277\n482446523\n570228330\n938497929\n",
"153593825\n962975972\n258291347\n478762666\n561612109\n329362801\n914219607\n371538245\n906952313\n964451612\n",
"799905193\n189641085\n247256971\n16810814\n597350254\n995209118\n212122928\n806020836\n286406008\n266027678\n",
"249228255\n490830292\n244045360\n106498909\n338602533\n608288211\n212101232\n448454413\n43032819\n251819024\n",
"307488562\n936965007\n669306706\n472217029\n103977612\n445047045\n340459197\n439153232\n484754007\n867070884\n",
"859089925\n583743823\n284988364\n199943666\n267108202\n191221580\n534987458\n420592815\n717499524\n997368329\n",
"203173178\n722185173\n839677047\n956076405\n781508643\n309964349\n11590066\n259439789\n320401300\n152672030\n",
"154209178\n787444642\n453508248\n220845981\n811407029\n942950834\n738688277\n482446523\n570228330\n938497929\n",
"173180669\n252039241\n458934086\n206595818\n980123680\n533486595\n511245719\n423247410\n566568744\n166211527\n",
"482690840\n549510478\n384468729\n387994066\n890709124\n285749029\n500754113\n382245136\n341100439\n719477658\n",
"999968702\n49545\n999961018\n999990984\n999958824\n45121\n",
"7\n1\n999999997\n18\n1000000003\n",
"512273057\n208248956\n55867925\n403646437\n997508820\n854367839\n159492591\n889848524\n234300743\n809531382\n",
"999979102\n39145\n999950418\n999980584\n999977824\n30521\n",
"7\n1\n1000000001\n18\n1000000003\n",
"250373395\n602611606\n811489736\n130515183\n735609158\n493291114\n554747940\n255983960\n496200405\n175666818\n",
"2\n0\n1000000005\n7\n0\n",
"491624877\n521338641\n71331968\n541967260\n494357676\n134849765\n473474975\n536168797\n254948923\n111502908\n",
"487830036\n658327697\n192903256\n841518528\n234969534\n678994761\n610464031\n277576719\n514337065\n425778331\n",
"153593825\n962975972\n258291347\n478762666\n561612109\n329362801\n914219607\n371538245\n906952313\n227632139\n",
"527066959\n322639308\n124513234\n739517841\n185806392\n816782040\n431313018\n282069631\n550842507\n497410572\n",
"513337671\n792618247\n959225653\n819998658\n261676764\n268477401\n743861882\n867629666\n722930962\n57524459\n",
"999958628\n34903\n999976396\n6103\n999943218\n60497\n",
"15\n1000000000\n2\n30\n999999999\n",
"154209178\n422790270\n453508248\n220845981\n811407029\n942950834\n738688277\n482446523\n570228330\n938497929\n",
"173180669\n252039241\n458934086\n206595818\n980123680\n533486595\n511245719\n423247410\n566568744\n895452296\n",
"270279710\n487068765\n947910655\n218866009\n103120247\n363535631\n438312400\n852643027\n128689309\n244502281\n",
"999979057\n39390\n999950171\n10590\n999977873\n30516\n",
"341365667\n46545109\n942672039\n77040369\n644616886\n772003463\n998681450\n8985951\n976846792\n460104401\n",
"487830036\n658327697\n192903256\n841518528\n234969534\n678994761\n369704755\n277576719\n514337065\n425778331\n",
"7\n1000000002\n1000000001\n18\n1000000003\n",
"117348718\n376302090\n957476847\n681085861\n383752931\n660996246\n965697738\n376302090\n971442867\n534310283\n",
"852978109\n60057471\n763689537\n739023996\n944295270\n200185280\n11301106\n45978047\n100418977\n407909392\n",
"597350254\n189641085\n247256971\n16810814\n597350254\n995209118\n212122928\n806020836\n286406008\n266027678\n",
"152048132\n269310415\n314399215\n919271252\n825328055\n491361668\n787513420\n89299399\n500236598\n711630454\n",
"999968753\n49796\n999961271\n49796\n999958569\n45130\n",
"7\n1\n1000000002\n18\n1000000003\n",
"154209178\n787444642\n453508248\n220845981\n811407029\n942950834\n738688277\n482446523\n570228330\n699558579\n",
"173180669\n252039241\n458934086\n206595818\n980123680\n533486595\n477654163\n423247410\n566568744\n166211527\n",
"388017232\n300152686\n645828127\n260724420\n796035516\n132924484\n251396321\n288030120\n246426831\n625262642\n",
"4\n1000000005\n1000000002\n13\n1000000002\n",
"512273057\n208248956\n55867925\n403646437\n997508820\n854367839\n159492591\n889848524\n527591243\n809531382\n",
"999998254\n39145\n999950418\n999980584\n999977824\n30521\n",
"7\n1\n1000000001\n18\n1\n",
"10506921\n188069043\n107612364\n196217852\n64701768\n186275897\n139312678\n929351231\n403862647\n61693597\n",
"229162393\n716863883\n698616420\n656627353\n708727949\n59991053\n668107518\n477285666\n275879777\n36412402\n",
"173180669\n252039241\n458934086\n206595818\n224999629\n533486595\n511245719\n423247410\n566568744\n895452296\n",
"270279710\n487068765\n947910655\n218866009\n103120247\n363535631\n438312400\n268824726\n128689309\n244502281\n",
"341365667\n470112049\n942672039\n77040369\n644616886\n772003463\n998681450\n8985951\n976846792\n460104401\n",
"7\n1\n1000000005\n2\n1\n",
"487830036\n856260840\n192903256\n841518528\n234969534\n678994761\n369704755\n277576719\n514337065\n425778331\n",
"117348718\n376302090\n957476847\n681085861\n155009686\n660996246\n965697738\n376302090\n971442867\n534310283\n",
"150415103\n429185471\n946814209\n554150448\n686823752\n419687643\n808151756\n298735211\n357890495\n556863374\n",
"7\n1\n1000000001\n18\n1000000003\n",
"2\n0\n1000000005\n7\n0\n"
]
} | 2CODEFORCES
|
494_D. Birthday_124 | Ali is Hamed's little brother and tomorrow is his birthday. Hamed wants his brother to earn his gift so he gave him a hard programming problem and told him if he can successfully solve it, he'll get him a brand new laptop. Ali is not yet a very talented programmer like Hamed and although he usually doesn't cheat but this time is an exception. It's about a brand new laptop. So he decided to secretly seek help from you. Please solve this problem for Ali.
An n-vertex weighted rooted tree is given. Vertex number 1 is a root of the tree. We define d(u, v) as the sum of edges weights on the shortest path between vertices u and v. Specifically we define d(u, u) = 0. Also let's define S(v) for each vertex v as a set containing all vertices u such that d(1, u) = d(1, v) + d(v, u). Function f(u, v) is then defined using the following formula:
<image>
The goal is to calculate f(u, v) for each of the q given pair of vertices. As the answer can be rather large it's enough to print it modulo 109 + 7.
Input
In the first line of input an integer n (1 ≤ n ≤ 105), number of vertices of the tree is given.
In each of the next n - 1 lines three space-separated integers ai, bi, ci (1 ≤ ai, bi ≤ n, 1 ≤ ci ≤ 109) are given indicating an edge between ai and bi with weight equal to ci.
In the next line an integer q (1 ≤ q ≤ 105), number of vertex pairs, is given.
In each of the next q lines two space-separated integers ui, vi (1 ≤ ui, vi ≤ n) are given meaning that you must calculate f(ui, vi).
It is guaranteed that the given edges form a tree.
Output
Output q lines. In the i-th line print the value of f(ui, vi) modulo 109 + 7.
Examples
Input
5
1 2 1
4 3 1
3 5 1
1 3 1
5
1 1
1 5
2 4
2 1
3 5
Output
10
1000000005
1000000002
23
1000000002
Input
8
1 2 100
1 3 20
2 4 2
2 5 1
3 6 1
3 7 2
6 8 5
6
1 8
2 3
5 8
2 6
4 7
6 1
Output
999968753
49796
999961271
999991235
999958569
45130 | import java.util.*;
import java.io.*;
/*
5
1 2 1
4 3 1
3 5 1
1 3 1
5
1 1
1 5
2 4
2 1
3 5
*/
public class d
{
public static void main(String[] arg) throws IOException
{
new d();
}
ArrayList<Edge>[] adj;
ArrayList<Pair>[] queries;
int cnt;
int[] pre;
int[] post;
ST st;
int n;
public d() throws IOException
{
FastScanner in = new FastScanner(System.in);
PrintWriter out = new PrintWriter(System.out);
n = in.nextInt();
adj = new ArrayList[n];
for(int i = 0; i < n; i++) adj[i] = new ArrayList<Edge>();
for(int i = 0; i < n-1; i++)
{
int v = in.nextInt()-1;
int u = in.nextInt()-1;
int w = in.nextInt();
adj[v].add(new Edge(u, w));
adj[u].add(new Edge(v, w));
}
int Q = in.nextInt();
Pair[] qList = new Pair[Q];
queries = new ArrayList[n];
for(int i = 0; i < n; i++) queries[i] = new ArrayList<Pair>();
pre = new int[n];
post = new int[n];
st = new ST(n);
cnt = 0;
int source = 0;
precomp(source, source, 0);
for(int i = 0; i < Q; i++)
{
int u = in.nextInt()-1;
int v = in.nextInt()-1;
Pair p = new Pair(u, v, i);
qList[i] = p;
queries[p.a].add(p);
}
solve(source, source);
for(int i = 0; i < Q; i++)
{
out.println(qList[i].ans);
}
in.close(); out.close();
}
void solve(int v, int p)
{
for(Pair pair : queries[v])
{
// long a = st.sum(pre[pair.b], post[pair.b])*MODINVTWO%MOD;
// long b = st.sum(0, cnt-1)*MODINVTWO%MOD;
long a = st.sum(pre[pair.b], post[pair.b])%MOD;
long b = st.sum(0, cnt-1)%MOD;
pair.ans = a-(b-a+MOD)%MOD+MOD;
pair.ans %= MOD;
}
for(Edge e : adj[v])
{
if(e.to == p) continue;
st.update(0, cnt-1, e.w);
st.update(pre[e.to], post[e.to], (-2*e.w+2L*MOD)%MOD);
solve(e.to, v);
st.update(0, cnt-1, (-e.w+MOD)%MOD);
st.update(pre[e.to], post[e.to], 2*e.w);
}
}
void precomp(int v, int p, long d)
{
pre[v] = cnt++;
for(Edge e : adj[v])
{
int to = e.to;
if(to == p) continue;
precomp(to, v, d+e.w);
}
post[v] = cnt-1;
// post[v] = cnt++;
st.update(pre[v], pre[v], d);
// st.update(post[v], post[v], d);
}
class ST
{
long[] x1;
long[] x2;
long[] d;
int s;
public ST(int size)
{
s = size;
x1 = new long[4*s+1];
x2 = new long[4*s+1];
d = new long[4*s+1];
}
public void update(int l, int r, long v)
{
update(l, r, v, 0, s-1, 1);
}
private void update(int lq, int rq, long v, int li, int ri, int c)
{
if(rq < li || ri < lq) return;
if(lq <= li && ri <= rq)
{
d[c] += v;
d[c] %= MOD;
return;
}
int m = li + (ri-li)/2;
prop(c);
update(lq, rq, v, li, m, 2*c);
update(lq, rq, v, m+1, ri, 2*c+1);
fix(c, li, ri);
}
public long sum(int l, int r)
{
return sum(l, r, 0, s-1, 1);
}
private long sum(int lq, int rq, int li, int ri, int c)
{
if(rq < li || ri < lq) return 0;
if(lq <= li && ri <= rq)
{
return ((x2[c]+2*x1[c]*d[c]%MOD)+(ri-li+1)*d[c]%MOD*d[c])%MOD;
}
int m = li + (ri-li)/2;
prop(c);
long ret = sum(lq, rq, li, m, 2*c);
ret += sum(lq, rq, m+1, ri, 2*c+1);
ret %= MOD;
fix(c, li, ri);
return ret;
}
void prop(int c)
{
d[2*c] += d[c];
d[2*c] %= MOD;
d[2*c+1] += d[c];
d[2*c+1] %= MOD;
d[c] = 0;
}
void fix(int c, int l, int r)
{
int m = l + (r-l)/2;
x1[c] = 0;
x1[c] += (x1[2*c]+(m-l+1)*d[2*c]);
x1[c] += (x1[2*c+1]+(r-(m+1)+1)*d[2*c+1]);
x1[c] %= MOD;
x2[c] = 0;
x2[c] += ((x2[2*c]+2*x1[2*c]*d[2*c]%MOD)+(m-l+1)*d[2*c]%MOD*d[2*c]%MOD);
x2[c] += ((x2[2*c+1]+2*x1[2*c+1]*d[2*c+1]%MOD)+(r-(m+1)+1)*d[2*c+1]%MOD*d[2*c+1]%MOD);
x2[c] %= MOD;
}
}
static final int MOD = 1_000_000_007;
class Edge
{
int to;
long w;
public Edge(int a, long b)
{
to = a;
w = b;
}
}
class Pair
{
int a, b, id;
long ans;
public Pair(int aa, int bb, int cc)
{
a = aa;
b = bb;
id = cc;
}
}
class FastScanner
{
BufferedReader br;
StringTokenizer st;
public FastScanner(InputStream in)
{
br = new BufferedReader(new InputStreamReader(in));
st = new StringTokenizer("");
}
public String next() throws IOException
{
while(!st.hasMoreElements()) st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public int nextInt() throws IOException
{
return Integer.parseInt(next());
}
public void close() throws IOException
{
br.close();
}
}
} | 4JAVA
| {
"input": [
"8\n1 2 100\n1 3 20\n2 4 2\n2 5 1\n3 6 1\n3 7 2\n6 8 5\n6\n1 8\n2 3\n5 8\n2 6\n4 7\n6 1\n",
"5\n1 2 1\n4 3 1\n3 5 1\n1 3 1\n5\n1 1\n1 5\n2 4\n2 1\n3 5\n",
"10\n5 1 33242121\n5 7 535463871\n9 1 202863787\n5 4 874413088\n6 1 623012241\n6 8 786659185\n10 5 164281028\n9 2 851489092\n3 9 169897037\n10\n9 7\n7 7\n5 9\n6 1\n3 6\n6 5\n2 3\n7 7\n8 9\n7 2\n",
"10\n3 1 278114804\n3 7 453886464\n8 7 830020662\n8 2 759298564\n9 2 147615930\n2 4 617310668\n10 2 921400635\n2 5 185694079\n6 2 157439659\n10\n4 3\n7 7\n9 4\n2 4\n4 1\n6 3\n7 2\n1 10\n4 5\n1 9\n",
"10\n3 1 278114804\n3 7 453886464\n8 7 830020662\n8 2 759298564\n9 2 147615930\n9 4 617310668\n10 4 921400635\n4 5 185694079\n6 4 157439659\n10\n4 3\n7 7\n9 4\n2 4\n4 1\n6 3\n7 2\n1 10\n4 5\n1 9\n",
"10\n3 1 940484348\n1 2 683105297\n6 1 34326471\n6 7 846216720\n10 3 913688945\n6 5 62114151\n4 2 895808279\n3 9 73879870\n8 10 274103932\n10\n10 6\n5 8\n3 5\n7 10\n6 6\n2 4\n1 5\n6 4\n8 6\n9 10\n",
"10\n3 1 278114804\n1 7 453886464\n8 1 830020662\n1 2 759298564\n9 1 147615930\n1 4 617310668\n10 1 921400635\n1 5 185694079\n6 1 157439659\n10\n4 3\n7 7\n9 4\n2 4\n4 1\n6 3\n7 2\n1 10\n4 5\n1 9\n",
"10\n7 1 948825254\n7 8 163731103\n5 7 24781877\n1 9 873109737\n6 5 922157259\n6 4 695796614\n3 8 710123832\n5 2 229846714\n10 2 126680384\n10\n1 6\n3 7\n2 1\n10 4\n5 1\n9 9\n10 8\n4 2\n7 3\n1 8\n",
"10\n3 1 278114804\n3 7 453886464\n8 7 830020662\n8 2 759298564\n9 2 147615930\n9 4 617310668\n10 4 921400635\n10 5 185694079\n6 5 157439659\n10\n4 3\n7 7\n9 4\n2 4\n4 1\n6 3\n7 2\n1 10\n4 5\n1 9\n",
"10\n3 1 278114804\n3 7 453886464\n8 1 830020662\n8 2 759298564\n9 1 147615930\n9 4 617310668\n10 1 921400635\n10 5 185694079\n6 1 157439659\n10\n4 3\n7 7\n9 4\n2 4\n4 1\n6 3\n7 2\n1 10\n4 5\n1 9\n",
"10\n3 1 278114804\n3 7 453886464\n8 7 830020662\n8 2 759298564\n9 2 147615930\n2 4 617310668\n10 2 921400635\n2 5 185694079\n6 2 157439659\n10\n4 3\n7 7\n9 4\n2 4\n4 1\n5 3\n7 2\n1 10\n4 5\n1 9\n",
"10\n3 1 940484348\n1 2 683105297\n6 1 34326471\n6 7 15773065\n10 3 913688945\n6 5 62114151\n4 2 895808279\n3 9 73879870\n8 10 274103932\n10\n10 6\n5 8\n3 5\n7 10\n6 6\n2 4\n1 5\n6 4\n8 6\n9 10\n",
"10\n3 1 278114804\n3 7 453886464\n8 7 830020662\n8 2 759298564\n9 2 147615930\n9 4 617310668\n6 4 921400635\n10 5 185694079\n6 5 157439659\n10\n4 3\n7 7\n9 4\n2 4\n4 1\n6 3\n7 2\n1 10\n4 5\n1 9\n",
"8\n1 2 100\n1 3 20\n2 4 2\n2 5 1\n3 6 1\n3 7 2\n6 8 4\n6\n1 8\n2 3\n5 8\n2 6\n4 7\n6 1\n",
"5\n1 2 1\n4 3 0\n3 5 1\n1 3 1\n5\n1 1\n1 5\n2 4\n2 1\n3 5\n",
"10\n3 1 278114804\n3 7 453886464\n8 7 830020662\n8 2 759298564\n9 1 147615930\n9 4 617310668\n6 4 921400635\n10 5 185694079\n6 5 157439659\n10\n4 3\n7 7\n9 4\n2 4\n4 1\n6 3\n7 2\n1 10\n4 5\n1 9\n",
"8\n1 2 100\n1 3 20\n1 4 2\n2 5 1\n3 6 1\n3 7 2\n6 8 4\n6\n1 8\n2 3\n5 8\n2 6\n4 7\n6 1\n",
"5\n1 2 1\n4 3 0\n3 5 1\n1 3 1\n5\n1 1\n1 5\n3 4\n2 1\n3 5\n",
"10\n3 1 278114804\n3 2 453886464\n8 7 830020662\n8 2 759298564\n9 1 147615930\n9 4 617310668\n6 4 921400635\n10 5 185694079\n6 5 157439659\n10\n4 3\n7 7\n9 4\n2 4\n4 1\n6 3\n7 2\n1 10\n4 5\n1 9\n",
"5\n1 2 1\n4 3 0\n3 5 1\n1 3 0\n5\n1 1\n1 5\n3 4\n2 1\n3 5\n",
"10\n3 1 278114804\n3 2 453886464\n8 7 830020662\n8 2 759298564\n9 1 147615930\n9 4 617310668\n6 4 921400635\n10 5 185694079\n6 5 46066019\n10\n4 3\n7 7\n9 4\n2 4\n4 1\n6 3\n7 2\n1 10\n4 5\n1 9\n",
"10\n3 1 278114804\n3 2 453886464\n8 7 830020662\n8 2 759298564\n9 1 147615930\n9 4 963177691\n6 4 921400635\n10 5 185694079\n6 5 46066019\n10\n4 3\n7 7\n9 4\n2 4\n4 1\n6 3\n7 2\n1 10\n4 5\n1 9\n",
"10\n3 1 278114804\n3 7 453886464\n8 7 830020662\n8 2 759298564\n9 2 147615930\n9 4 617310668\n10 4 921400635\n4 5 185694079\n6 4 157439659\n10\n4 3\n7 7\n9 4\n2 4\n4 1\n6 3\n7 2\n1 10\n4 5\n1 3\n",
"10\n3 1 940484348\n1 2 683105297\n6 1 64767541\n6 7 846216720\n10 3 913688945\n6 5 62114151\n4 2 895808279\n3 9 73879870\n8 10 274103932\n10\n10 6\n5 8\n3 5\n7 10\n6 6\n2 4\n1 5\n6 4\n8 6\n9 10\n",
"10\n3 1 278114804\n3 7 453886464\n8 7 830020662\n8 2 759298564\n9 2 139660381\n9 4 617310668\n10 4 921400635\n10 5 185694079\n6 5 157439659\n10\n4 3\n7 7\n9 4\n2 4\n4 1\n6 3\n7 2\n1 10\n4 5\n1 9\n",
"8\n1 2 100\n1 3 20\n2 4 2\n2 5 1\n3 6 1\n5 7 2\n6 8 5\n6\n1 8\n2 3\n5 8\n2 6\n4 7\n6 1\n",
"5\n1 2 1\n4 3 2\n3 5 1\n1 3 1\n5\n1 1\n1 5\n2 4\n2 1\n3 5\n",
"10\n3 1 278114804\n3 7 453886464\n8 7 830020662\n8 2 759298564\n9 2 147615930\n2 4 617310668\n10 2 921400635\n2 5 185694079\n6 2 157439659\n10\n4 3\n7 6\n9 4\n2 4\n4 1\n5 3\n7 2\n1 10\n4 5\n1 9\n",
"10\n3 1 940484348\n1 2 683105297\n6 1 34326471\n6 7 15773065\n10 3 913688945\n6 5 62114151\n4 2 895808279\n3 9 73879870\n8 10 274103932\n10\n10 6\n5 8\n3 5\n7 10\n6 6\n2 4\n1 5\n6 4\n8 6\n9 4\n",
"10\n3 1 44056013\n3 7 453886464\n8 7 830020662\n8 2 759298564\n9 2 147615930\n9 4 617310668\n6 4 921400635\n10 5 185694079\n6 5 157439659\n10\n4 3\n7 7\n9 4\n2 4\n4 1\n6 3\n7 2\n1 10\n4 5\n1 9\n",
"8\n1 2 100\n1 3 20\n1 4 2\n2 5 1\n3 6 1\n6 7 2\n6 8 4\n6\n1 8\n2 3\n5 8\n2 6\n4 7\n6 1\n",
"10\n3 1 278114804\n3 2 453886464\n8 7 830020662\n8 2 759298564\n9 1 147615930\n9 4 617310668\n6 4 921400635\n10 1 185694079\n6 5 157439659\n10\n4 3\n7 7\n9 4\n2 4\n4 1\n6 3\n7 2\n1 10\n4 5\n1 9\n",
"10\n3 1 278114804\n3 2 453886464\n8 7 830020662\n8 2 759298564\n9 1 147615930\n9 4 963177691\n6 4 921400635\n10 5 185694079\n6 5 46066019\n10\n4 3\n7 7\n9 4\n2 4\n4 1\n6 3\n8 2\n1 10\n4 5\n1 9\n",
"5\n1 2 1\n4 3 0\n3 5 1\n1 3 1\n5\n1 1\n1 4\n3 4\n2 1\n4 5\n",
"10\n5 1 33242121\n5 7 535463871\n9 1 210110308\n5 4 874413088\n6 1 623012241\n6 8 786659185\n10 5 164281028\n9 2 851489092\n3 9 169897037\n10\n9 7\n7 7\n5 9\n6 1\n3 6\n6 5\n2 3\n7 7\n8 9\n7 2\n",
"10\n3 1 278114804\n3 7 453886464\n8 7 830020662\n8 2 759298564\n9 2 147615930\n9 5 617310668\n10 4 921400635\n4 5 185694079\n6 4 157439659\n10\n4 3\n7 7\n9 4\n2 4\n4 1\n6 3\n7 2\n1 10\n4 5\n1 9\n",
"10\n3 1 940484348\n1 2 683105297\n6 1 34326471\n6 7 846216720\n10 3 913688945\n6 5 62114151\n4 2 895808279\n3 9 73879870\n8 10 274103932\n10\n6 6\n5 8\n3 5\n7 10\n6 6\n2 4\n1 5\n6 4\n8 6\n9 10\n",
"10\n7 1 948825254\n7 8 163731103\n5 7 24781877\n1 9 856412550\n6 5 922157259\n6 4 695796614\n3 8 710123832\n5 2 229846714\n10 2 126680384\n10\n1 6\n3 7\n2 1\n10 4\n5 1\n9 9\n10 8\n4 2\n7 3\n1 8\n",
"8\n1 2 100\n1 3 20\n2 4 2\n2 5 1\n3 6 1\n3 7 2\n6 8 5\n6\n1 8\n2 3\n5 8\n2 3\n4 7\n6 1\n",
"5\n1 2 1\n4 3 0\n3 5 1\n1 3 1\n5\n1 1\n1 5\n1 4\n2 1\n3 5\n",
"10\n3 1 278114804\n3 7 453886464\n8 7 830020662\n8 2 759298564\n9 2 147615930\n2 4 617310668\n10 2 921400635\n2 5 185694079\n6 2 157439659\n10\n4 3\n7 7\n9 4\n2 4\n4 1\n5 3\n7 2\n1 10\n4 5\n1 8\n",
"10\n3 1 940484348\n1 2 683105297\n6 1 34326471\n6 7 15773065\n10 3 913688945\n6 5 62114151\n4 2 895808279\n3 9 73879870\n8 10 274103932\n10\n10 6\n5 8\n3 5\n7 10\n6 6\n2 4\n1 7\n6 4\n8 6\n9 10\n",
"10\n3 1 278114804\n3 7 453886464\n8 7 830020662\n8 2 759298564\n9 2 147615930\n9 4 617310668\n6 4 921400635\n10 5 25679612\n6 5 157439659\n10\n4 3\n7 7\n9 4\n2 4\n4 1\n6 3\n7 2\n1 10\n4 5\n1 9\n",
"5\n1 2 1\n4 3 0\n3 5 0\n1 3 1\n5\n1 1\n1 5\n2 4\n2 1\n3 5\n",
"10\n3 1 278114804\n3 7 453886464\n8 7 830020662\n8 2 759298564\n9 1 147615930\n9 4 617310668\n6 4 921400635\n10 5 185694079\n6 5 157439659\n10\n4 3\n7 7\n9 4\n2 4\n4 1\n6 3\n7 2\n1 10\n4 8\n1 9\n",
"8\n1 2 100\n1 3 20\n1 4 2\n2 5 1\n3 6 1\n3 7 2\n6 8 4\n6\n1 5\n2 3\n5 8\n2 6\n4 7\n6 1\n",
"5\n1 2 1\n4 3 0\n3 5 1\n1 3 1\n5\n1 1\n1 5\n3 4\n2 1\n1 5\n",
"10\n3 1 278114804\n3 7 867603660\n8 7 830020662\n8 2 759298564\n9 2 147615930\n9 4 617310668\n10 4 921400635\n4 5 185694079\n6 4 157439659\n10\n4 3\n7 7\n9 4\n2 4\n4 1\n6 3\n7 2\n1 10\n4 5\n1 3\n",
"10\n3 1 278114804\n3 7 453886464\n8 7 830020662\n8 2 586110012\n9 2 139660381\n9 4 617310668\n10 4 921400635\n10 5 185694079\n6 5 157439659\n10\n4 3\n7 7\n9 4\n2 4\n4 1\n6 3\n7 2\n1 10\n4 5\n1 9\n",
"10\n3 1 940484348\n1 2 683105297\n6 1 34326471\n6 7 15773065\n10 3 913688945\n6 5 62114151\n4 2 895808279\n3 9 73879870\n8 10 274103932\n10\n10 6\n5 8\n3 5\n7 10\n5 6\n2 4\n1 5\n6 4\n8 6\n9 4\n",
"10\n3 1 44056013\n3 7 453886464\n8 7 830020662\n8 2 759298564\n9 2 147615930\n9 4 617310668\n6 4 921400635\n10 5 185694079\n6 5 157439659\n10\n4 3\n7 7\n9 4\n2 4\n4 1\n6 3\n7 2\n1 8\n4 5\n1 9\n",
"10\n3 1 278114804\n3 2 453886464\n8 7 830020662\n8 2 759298564\n9 1 147615930\n9 4 617310668\n6 4 921400635\n10 1 185694079\n6 5 157439659\n10\n4 3\n9 7\n9 4\n2 4\n4 1\n6 3\n7 2\n1 10\n4 5\n1 9\n",
"5\n1 2 1\n4 3 0\n3 5 1\n2 3 0\n5\n1 1\n1 5\n3 4\n2 1\n1 5\n",
"10\n3 1 278114804\n3 2 453886464\n8 7 830020662\n8 2 759298564\n9 1 147615930\n9 4 963177691\n6 4 921400635\n10 5 185694079\n6 5 46066019\n10\n4 3\n8 7\n9 4\n2 4\n4 1\n6 3\n8 2\n1 10\n4 5\n1 9\n",
"10\n5 1 33242121\n5 7 535463871\n9 1 210110308\n5 4 874413088\n6 1 623012241\n6 8 786659185\n10 5 164281028\n9 2 851489092\n3 9 169897037\n10\n9 7\n7 7\n5 9\n6 1\n3 9\n6 5\n2 3\n7 7\n8 9\n7 2\n",
"10\n3 1 278114804\n3 7 453886464\n8 7 830020662\n8 2 759298564\n9 2 147615930\n8 5 617310668\n10 4 921400635\n4 5 185694079\n6 4 157439659\n10\n4 3\n7 7\n9 4\n2 4\n4 1\n6 3\n7 2\n1 10\n4 5\n1 9\n",
"5\n1 2 1\n4 3 0\n3 5 1\n1 3 1\n5\n1 1\n1 5\n3 4\n2 1\n4 5\n",
"5\n1 2 1\n4 3 0\n3 5 1\n1 3 0\n5\n1 1\n1 5\n3 4\n2 1\n1 5\n"
],
"output": [
"999968753\n49796\n999961271\n999991235\n999958569\n45130\n",
"10\n1000000005\n1000000002\n23\n1000000002\n",
"754602117\n941306036\n345159140\n889751864\n221567087\n452330243\n610417136\n941306036\n595859331\n524414191\n",
"154209178\n787444642\n453508248\n220845981\n811407029\n585833802\n738688277\n482446523\n570228330\n938497929\n",
"153593825\n962975972\n258291347\n478762666\n561612109\n329362801\n914219607\n371538245\n906952313\n964451612\n",
"799905193\n189641085\n247256971\n16810814\n597350254\n995209118\n212122928\n806020836\n286406008\n266027678\n",
"249228255\n490830292\n244045360\n106498909\n338602533\n608288211\n212101232\n448454413\n43032819\n251819024\n",
"307488562\n936965007\n669306706\n472217029\n103977612\n445047045\n340459197\n439153232\n484754007\n867070884\n",
"859089925\n583743823\n284988364\n199943666\n267108202\n191221580\n534987458\n420592815\n717499524\n997368329\n",
"203173178\n722185173\n839677047\n956076405\n781508643\n309964349\n11590066\n259439789\n320401300\n152672030\n",
"154209178\n787444642\n453508248\n220845981\n811407029\n942950834\n738688277\n482446523\n570228330\n938497929\n",
"173180669\n252039241\n458934086\n206595818\n980123680\n533486595\n511245719\n423247410\n566568744\n166211527\n",
"482690840\n549510478\n384468729\n387994066\n890709124\n285749029\n500754113\n382245136\n341100439\n719477658\n",
"999968702\n49545\n999961018\n999990984\n999958824\n45121\n",
"7\n1\n999999997\n18\n1000000003\n",
"512273057\n208248956\n55867925\n403646437\n997508820\n854367839\n159492591\n889848524\n234300743\n809531382\n",
"999979102\n39145\n999950418\n999980584\n999977824\n30521\n",
"7\n1\n1000000001\n18\n1000000003\n",
"250373395\n602611606\n811489736\n130515183\n735609158\n493291114\n554747940\n255983960\n496200405\n175666818\n",
"2\n0\n1000000005\n7\n0\n",
"491624877\n521338641\n71331968\n541967260\n494357676\n134849765\n473474975\n536168797\n254948923\n111502908\n",
"487830036\n658327697\n192903256\n841518528\n234969534\n678994761\n610464031\n277576719\n514337065\n425778331\n",
"153593825\n962975972\n258291347\n478762666\n561612109\n329362801\n914219607\n371538245\n906952313\n227632139\n",
"527066959\n322639308\n124513234\n739517841\n185806392\n816782040\n431313018\n282069631\n550842507\n497410572\n",
"513337671\n792618247\n959225653\n819998658\n261676764\n268477401\n743861882\n867629666\n722930962\n57524459\n",
"999958628\n34903\n999976396\n6103\n999943218\n60497\n",
"15\n1000000000\n2\n30\n999999999\n",
"154209178\n422790270\n453508248\n220845981\n811407029\n942950834\n738688277\n482446523\n570228330\n938497929\n",
"173180669\n252039241\n458934086\n206595818\n980123680\n533486595\n511245719\n423247410\n566568744\n895452296\n",
"270279710\n487068765\n947910655\n218866009\n103120247\n363535631\n438312400\n852643027\n128689309\n244502281\n",
"999979057\n39390\n999950171\n10590\n999977873\n30516\n",
"341365667\n46545109\n942672039\n77040369\n644616886\n772003463\n998681450\n8985951\n976846792\n460104401\n",
"487830036\n658327697\n192903256\n841518528\n234969534\n678994761\n369704755\n277576719\n514337065\n425778331\n",
"7\n1000000002\n1000000001\n18\n1000000003\n",
"117348718\n376302090\n957476847\n681085861\n383752931\n660996246\n965697738\n376302090\n971442867\n534310283\n",
"852978109\n60057471\n763689537\n739023996\n944295270\n200185280\n11301106\n45978047\n100418977\n407909392\n",
"597350254\n189641085\n247256971\n16810814\n597350254\n995209118\n212122928\n806020836\n286406008\n266027678\n",
"152048132\n269310415\n314399215\n919271252\n825328055\n491361668\n787513420\n89299399\n500236598\n711630454\n",
"999968753\n49796\n999961271\n49796\n999958569\n45130\n",
"7\n1\n1000000002\n18\n1000000003\n",
"154209178\n787444642\n453508248\n220845981\n811407029\n942950834\n738688277\n482446523\n570228330\n699558579\n",
"173180669\n252039241\n458934086\n206595818\n980123680\n533486595\n477654163\n423247410\n566568744\n166211527\n",
"388017232\n300152686\n645828127\n260724420\n796035516\n132924484\n251396321\n288030120\n246426831\n625262642\n",
"4\n1000000005\n1000000002\n13\n1000000002\n",
"512273057\n208248956\n55867925\n403646437\n997508820\n854367839\n159492591\n889848524\n527591243\n809531382\n",
"999998254\n39145\n999950418\n999980584\n999977824\n30521\n",
"7\n1\n1000000001\n18\n1\n",
"10506921\n188069043\n107612364\n196217852\n64701768\n186275897\n139312678\n929351231\n403862647\n61693597\n",
"229162393\n716863883\n698616420\n656627353\n708727949\n59991053\n668107518\n477285666\n275879777\n36412402\n",
"173180669\n252039241\n458934086\n206595818\n224999629\n533486595\n511245719\n423247410\n566568744\n895452296\n",
"270279710\n487068765\n947910655\n218866009\n103120247\n363535631\n438312400\n268824726\n128689309\n244502281\n",
"341365667\n470112049\n942672039\n77040369\n644616886\n772003463\n998681450\n8985951\n976846792\n460104401\n",
"7\n1\n1000000005\n2\n1\n",
"487830036\n856260840\n192903256\n841518528\n234969534\n678994761\n369704755\n277576719\n514337065\n425778331\n",
"117348718\n376302090\n957476847\n681085861\n155009686\n660996246\n965697738\n376302090\n971442867\n534310283\n",
"150415103\n429185471\n946814209\n554150448\n686823752\n419687643\n808151756\n298735211\n357890495\n556863374\n",
"7\n1\n1000000001\n18\n1000000003\n",
"2\n0\n1000000005\n7\n0\n"
]
} | 2CODEFORCES
|
519_B. A and B and Compilation Errors_125 | A and B are preparing themselves for programming contests.
B loves to debug his code. But before he runs the solution and starts debugging, he has to first compile the code.
Initially, the compiler displayed n compilation errors, each of them is represented as a positive integer. After some effort, B managed to fix some mistake and then another one mistake.
However, despite the fact that B is sure that he corrected the two errors, he can not understand exactly what compilation errors disappeared — the compiler of the language which B uses shows errors in the new order every time! B is sure that unlike many other programming languages, compilation errors for his programming language do not depend on each other, that is, if you correct one error, the set of other error does not change.
Can you help B find out exactly what two errors he corrected?
Input
The first line of the input contains integer n (3 ≤ n ≤ 105) — the initial number of compilation errors.
The second line contains n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 109) — the errors the compiler displayed for the first time.
The third line contains n - 1 space-separated integers b1, b2, ..., bn - 1 — the errors displayed at the second compilation. It is guaranteed that the sequence in the third line contains all numbers of the second string except for exactly one.
The fourth line contains n - 2 space-separated integers с1, с2, ..., сn - 2 — the errors displayed at the third compilation. It is guaranteed that the sequence in the fourth line contains all numbers of the third line except for exactly one.
Output
Print two numbers on a single line: the numbers of the compilation errors that disappeared after B made the first and the second correction, respectively.
Examples
Input
5
1 5 8 123 7
123 7 5 1
5 1 7
Output
8
123
Input
6
1 4 3 3 5 7
3 7 5 4 3
4 3 7 5
Output
1
3
Note
In the first test sample B first corrects the error number 8, then the error number 123.
In the second test sample B first corrects the error number 1, then the error number 3. Note that if there are multiple errors with the same number, B can correct only one of them in one step. | n = input()
a = map(int,raw_input().split())
b = map(int,raw_input().split())
c = map(int,raw_input().split())
a.sort()
b.sort()
c.sort()
flag = False
for i in range(0,n - 1) :
if (a[i] != b[i]) :
print a[i]
flag = True
break
if (flag == False) :
print a[n - 1]
flag = False
for i in range(0,n - 2) :
if (b[i] != c[i]) :
print b[i]
flag = True
break
if (flag == False) :
print b[n - 2]
| 1Python2
| {
"input": [
"6\n1 4 3 3 5 7\n3 7 5 4 3\n4 3 7 5\n",
"5\n1 5 8 123 7\n123 7 5 1\n5 1 7\n",
"3\n1 2 3\n3 2\n2\n",
"3\n84 30 9\n9 84\n9\n",
"4\n1 5 7 8\n1 5 7\n1 5\n",
"3\n796067435 964699482 819602309\n964699482 796067435\n964699482\n",
"10\n460626451 802090732 277246428 661369649 388684428 784303821 376287098 656422756 9301599 25720377\n277246428 388684428 661369649 460626451 656422756 802090732 9301599 784303821 376287098\n376287098 802090732 388684428 9301599 656422756 784303821 460626451 277246428\n",
"6\n5 4 3 3 5 5\n3 5 5 4 3\n3 5 4 3\n",
"3\n168638990 939116221 323703261\n168638990 323703261\n168638990\n",
"3\n77 77 77\n77 77\n77\n",
"3\n374054998 726316780 902899520\n902899520 726316780\n726316780\n",
"3\n77 42 77\n77 77\n77\n",
"3\n77 31 77\n77 77\n77\n",
"4\n1 5 7 12\n1 5 7\n1 5\n",
"3\n77 77 140\n77 77\n77\n",
"4\n1 5 7 4\n1 5 7\n1 5\n",
"3\n84 28 9\n9 84\n9\n",
"3\n11 77 77\n77 77\n77\n",
"3\n77 28 77\n77 77\n77\n",
"3\n77 26 77\n77 77\n77\n",
"3\n7 77 77\n77 77\n77\n",
"3\n77 22 77\n77 77\n77\n",
"3\n10 77 77\n77 77\n77\n",
"6\n5 4 3 3 10 5\n3 5 5 4 3\n3 5 4 3\n",
"3\n77 77 132\n77 77\n77\n",
"3\n385751174 726316780 902899520\n902899520 726316780\n726316780\n",
"3\n77 77 147\n77 77\n77\n",
"4\n1 5 7 4\n1 5 7\n1 7\n",
"3\n84 23 9\n9 84\n9\n",
"3\n77 77 226\n77 77\n77\n",
"3\n633890371 726316780 902899520\n902899520 726316780\n726316780\n",
"3\n5116641 726316780 902899520\n902899520 726316780\n726316780\n",
"3\n796067435 964699482 948201176\n964699482 796067435\n964699482\n",
"3\n77 77 103\n77 77\n77\n",
"3\n77 35 77\n77 77\n77\n",
"3\n84 51 9\n9 84\n9\n",
"3\n77 77 175\n77 77\n77\n",
"3\n237279512 726316780 902899520\n902899520 726316780\n726316780\n",
"3\n2 2 3\n3 2\n2\n",
"3\n796067435 964699482 629662177\n964699482 796067435\n964699482\n",
"3\n77 24 77\n77 77\n77\n",
"3\n84 20 9\n9 84\n9\n",
"3\n77 29 77\n77 77\n77\n",
"3\n77 77 129\n77 77\n77\n",
"3\n77 77 93\n77 77\n77\n",
"3\n84 40 9\n9 84\n9\n",
"3\n2 1 3\n3 2\n2\n",
"3\n84 37 9\n9 84\n9\n",
"3\n84 64 9\n9 84\n9\n",
"3\n168638990 8998374 323703261\n168638990 323703261\n168638990\n",
"4\n1 5 7 2\n1 5 7\n1 5\n",
"6\n5 4 3 3 11 5\n3 5 5 4 3\n3 5 4 3\n",
"3\n84 33 9\n9 84\n9\n",
"3\n77 1 77\n77 77\n77\n",
"3\n84 21 9\n9 84\n9\n",
"6\n4 5 3 3 5 5\n3 5 5 4 3\n3 5 4 3\n",
"6\n4 5 3 3 9 5\n3 5 5 4 3\n3 5 4 3\n",
"3\n77 77 104\n77 77\n77\n",
"4\n1 5 7 1\n1 5 7\n1 5\n",
"3\n9 77 77\n77 77\n77\n",
"3\n77 77 65\n77 77\n77\n",
"4\n1 5 7 7\n1 5 7\n1 7\n",
"3\n77 77 79\n77 77\n77\n",
"3\n796067435 964699482 117085886\n964699482 796067435\n964699482\n",
"3\n84 48 9\n9 84\n9\n",
"3\n84 25 9\n9 84\n9\n",
"3\n168638990 14343393 323703261\n168638990 323703261\n168638990\n",
"3\n77 2 77\n77 77\n77\n",
"3\n84 14 9\n9 84\n9\n",
"3\n77 77 90\n77 77\n77\n",
"3\n84 7 9\n9 84\n9\n",
"3\n84 60 9\n9 84\n9\n",
"3\n77 77 38\n77 77\n77\n",
"3\n77 19 77\n77 77\n77\n",
"3\n77 77 66\n77 77\n77\n",
"3\n216349438 726316780 902899520\n902899520 726316780\n726316780\n",
"3\n77 77 143\n77 77\n77\n",
"4\n1 5 7 8\n1 5 7\n1 7\n",
"3\n77 77 139\n77 77\n77\n",
"3\n77 77 70\n77 77\n77\n",
"3\n279847456 726316780 902899520\n902899520 726316780\n726316780\n",
"3\n77 77 121\n77 77\n77\n",
"3\n77 77 114\n77 77\n77\n",
"5\n1 5 7 123 7\n123 7 5 1\n5 1 7\n",
"3\n16 77 77\n77 77\n77\n",
"3\n2 2 3\n3 2\n3\n",
"3\n84 36 9\n9 84\n9\n",
"3\n84 10 9\n9 84\n9\n",
"6\n2 4 3 3 5 5\n3 5 5 4 3\n3 5 4 3\n",
"3\n168638990 8046203 323703261\n168638990 323703261\n168638990\n",
"3\n84 54 9\n9 84\n9\n",
"3\n84 11 9\n9 84\n9\n",
"6\n4 5 3 3 5 5\n3 5 5 4 3\n3 5 4 5\n",
"3\n8 77 77\n77 77\n77\n",
"3\n796067435 964699482 188036649\n964699482 796067435\n964699482\n",
"3\n77 77 39\n77 77\n77\n",
"3\n77 80 77\n77 77\n77\n",
"3\n546853328 726316780 902899520\n902899520 726316780\n726316780\n",
"6\n5 4 3 3 5 4\n3 5 5 4 3\n3 5 4 3\n",
"6\n4 4 3 3 5 5\n3 5 5 4 3\n3 5 4 3\n",
"4\n2 5 7 1\n1 5 7\n1 5\n",
"4\n4 5 7 1\n1 5 7\n1 5\n"
],
"output": [
"1\n3\n",
"8\n123\n",
"1\n3\n",
"30\n84\n",
"8\n7\n",
"819602309\n796067435\n",
"25720377\n661369649\n",
"5\n5\n",
"939116221\n323703261\n",
"77\n77\n",
"374054998\n902899520\n",
"42\n77\n",
"31\n77\n",
"12\n7\n",
"140\n77\n",
"4\n7\n",
"28\n84\n",
"11\n77\n",
"28\n77\n",
"26\n77\n",
"7\n77\n",
"22\n77\n",
"10\n77\n",
"10\n5\n",
"132\n77\n",
"385751174\n902899520\n",
"147\n77\n",
"4\n5\n",
"23\n84\n",
"226\n77\n",
"633890371\n902899520\n",
"5116641\n902899520\n",
"948201176\n796067435\n",
"103\n77\n",
"35\n77\n",
"51\n84\n",
"175\n77\n",
"237279512\n902899520\n",
"2\n3\n",
"629662177\n796067435\n",
"24\n77\n",
"20\n84\n",
"29\n77\n",
"129\n77\n",
"93\n77\n",
"40\n84\n",
"1\n3\n",
"37\n84\n",
"64\n84\n",
"8998374\n323703261\n",
"2\n7\n",
"11\n5\n",
"33\n84\n",
"1\n77\n",
"21\n84\n",
"5\n5\n",
"9\n5\n",
"104\n77\n",
"1\n7\n",
"9\n77\n",
"65\n77\n",
"7\n5\n",
"79\n77\n",
"117085886\n796067435\n",
"48\n84\n",
"25\n84\n",
"14343393\n323703261\n",
"2\n77\n",
"14\n84\n",
"90\n77\n",
"7\n84\n",
"60\n84\n",
"38\n77\n",
"19\n77\n",
"66\n77\n",
"216349438\n902899520\n",
"143\n77\n",
"8\n5\n",
"139\n77\n",
"70\n77\n",
"279847456\n902899520\n",
"121\n77\n",
"114\n77\n",
"7\n123\n",
"16\n77\n",
"2\n2\n",
"36\n84\n",
"10\n84\n",
"2\n5\n",
"8046203\n323703261\n",
"54\n84\n",
"11\n84\n",
"5\n3\n",
"8\n77\n",
"188036649\n796067435\n",
"39\n77\n",
"80\n77\n",
"546853328\n902899520\n",
"4\n5\n",
"4\n5\n",
"2\n7\n",
"4\n7\n"
]
} | 2CODEFORCES
|
519_B. A and B and Compilation Errors_126 | A and B are preparing themselves for programming contests.
B loves to debug his code. But before he runs the solution and starts debugging, he has to first compile the code.
Initially, the compiler displayed n compilation errors, each of them is represented as a positive integer. After some effort, B managed to fix some mistake and then another one mistake.
However, despite the fact that B is sure that he corrected the two errors, he can not understand exactly what compilation errors disappeared — the compiler of the language which B uses shows errors in the new order every time! B is sure that unlike many other programming languages, compilation errors for his programming language do not depend on each other, that is, if you correct one error, the set of other error does not change.
Can you help B find out exactly what two errors he corrected?
Input
The first line of the input contains integer n (3 ≤ n ≤ 105) — the initial number of compilation errors.
The second line contains n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 109) — the errors the compiler displayed for the first time.
The third line contains n - 1 space-separated integers b1, b2, ..., bn - 1 — the errors displayed at the second compilation. It is guaranteed that the sequence in the third line contains all numbers of the second string except for exactly one.
The fourth line contains n - 2 space-separated integers с1, с2, ..., сn - 2 — the errors displayed at the third compilation. It is guaranteed that the sequence in the fourth line contains all numbers of the third line except for exactly one.
Output
Print two numbers on a single line: the numbers of the compilation errors that disappeared after B made the first and the second correction, respectively.
Examples
Input
5
1 5 8 123 7
123 7 5 1
5 1 7
Output
8
123
Input
6
1 4 3 3 5 7
3 7 5 4 3
4 3 7 5
Output
1
3
Note
In the first test sample B first corrects the error number 8, then the error number 123.
In the second test sample B first corrects the error number 1, then the error number 3. Note that if there are multiple errors with the same number, B can correct only one of them in one step. | #include <bits/stdc++.h>
using namespace std;
int main() {
int n, a[3], q;
cin >> n;
for (int i = 0; i < 3; i++) a[i] = 0;
for (int i = 0; i < 3; i++) {
for (int j = 0; j < n - i; j++) {
cin >> q;
a[i] += q;
}
}
cout << a[0] - a[1] << endl;
cout << a[1] - a[2];
return 0;
}
| 2C++
| {
"input": [
"6\n1 4 3 3 5 7\n3 7 5 4 3\n4 3 7 5\n",
"5\n1 5 8 123 7\n123 7 5 1\n5 1 7\n",
"3\n1 2 3\n3 2\n2\n",
"3\n84 30 9\n9 84\n9\n",
"4\n1 5 7 8\n1 5 7\n1 5\n",
"3\n796067435 964699482 819602309\n964699482 796067435\n964699482\n",
"10\n460626451 802090732 277246428 661369649 388684428 784303821 376287098 656422756 9301599 25720377\n277246428 388684428 661369649 460626451 656422756 802090732 9301599 784303821 376287098\n376287098 802090732 388684428 9301599 656422756 784303821 460626451 277246428\n",
"6\n5 4 3 3 5 5\n3 5 5 4 3\n3 5 4 3\n",
"3\n168638990 939116221 323703261\n168638990 323703261\n168638990\n",
"3\n77 77 77\n77 77\n77\n",
"3\n374054998 726316780 902899520\n902899520 726316780\n726316780\n",
"3\n77 42 77\n77 77\n77\n",
"3\n77 31 77\n77 77\n77\n",
"4\n1 5 7 12\n1 5 7\n1 5\n",
"3\n77 77 140\n77 77\n77\n",
"4\n1 5 7 4\n1 5 7\n1 5\n",
"3\n84 28 9\n9 84\n9\n",
"3\n11 77 77\n77 77\n77\n",
"3\n77 28 77\n77 77\n77\n",
"3\n77 26 77\n77 77\n77\n",
"3\n7 77 77\n77 77\n77\n",
"3\n77 22 77\n77 77\n77\n",
"3\n10 77 77\n77 77\n77\n",
"6\n5 4 3 3 10 5\n3 5 5 4 3\n3 5 4 3\n",
"3\n77 77 132\n77 77\n77\n",
"3\n385751174 726316780 902899520\n902899520 726316780\n726316780\n",
"3\n77 77 147\n77 77\n77\n",
"4\n1 5 7 4\n1 5 7\n1 7\n",
"3\n84 23 9\n9 84\n9\n",
"3\n77 77 226\n77 77\n77\n",
"3\n633890371 726316780 902899520\n902899520 726316780\n726316780\n",
"3\n5116641 726316780 902899520\n902899520 726316780\n726316780\n",
"3\n796067435 964699482 948201176\n964699482 796067435\n964699482\n",
"3\n77 77 103\n77 77\n77\n",
"3\n77 35 77\n77 77\n77\n",
"3\n84 51 9\n9 84\n9\n",
"3\n77 77 175\n77 77\n77\n",
"3\n237279512 726316780 902899520\n902899520 726316780\n726316780\n",
"3\n2 2 3\n3 2\n2\n",
"3\n796067435 964699482 629662177\n964699482 796067435\n964699482\n",
"3\n77 24 77\n77 77\n77\n",
"3\n84 20 9\n9 84\n9\n",
"3\n77 29 77\n77 77\n77\n",
"3\n77 77 129\n77 77\n77\n",
"3\n77 77 93\n77 77\n77\n",
"3\n84 40 9\n9 84\n9\n",
"3\n2 1 3\n3 2\n2\n",
"3\n84 37 9\n9 84\n9\n",
"3\n84 64 9\n9 84\n9\n",
"3\n168638990 8998374 323703261\n168638990 323703261\n168638990\n",
"4\n1 5 7 2\n1 5 7\n1 5\n",
"6\n5 4 3 3 11 5\n3 5 5 4 3\n3 5 4 3\n",
"3\n84 33 9\n9 84\n9\n",
"3\n77 1 77\n77 77\n77\n",
"3\n84 21 9\n9 84\n9\n",
"6\n4 5 3 3 5 5\n3 5 5 4 3\n3 5 4 3\n",
"6\n4 5 3 3 9 5\n3 5 5 4 3\n3 5 4 3\n",
"3\n77 77 104\n77 77\n77\n",
"4\n1 5 7 1\n1 5 7\n1 5\n",
"3\n9 77 77\n77 77\n77\n",
"3\n77 77 65\n77 77\n77\n",
"4\n1 5 7 7\n1 5 7\n1 7\n",
"3\n77 77 79\n77 77\n77\n",
"3\n796067435 964699482 117085886\n964699482 796067435\n964699482\n",
"3\n84 48 9\n9 84\n9\n",
"3\n84 25 9\n9 84\n9\n",
"3\n168638990 14343393 323703261\n168638990 323703261\n168638990\n",
"3\n77 2 77\n77 77\n77\n",
"3\n84 14 9\n9 84\n9\n",
"3\n77 77 90\n77 77\n77\n",
"3\n84 7 9\n9 84\n9\n",
"3\n84 60 9\n9 84\n9\n",
"3\n77 77 38\n77 77\n77\n",
"3\n77 19 77\n77 77\n77\n",
"3\n77 77 66\n77 77\n77\n",
"3\n216349438 726316780 902899520\n902899520 726316780\n726316780\n",
"3\n77 77 143\n77 77\n77\n",
"4\n1 5 7 8\n1 5 7\n1 7\n",
"3\n77 77 139\n77 77\n77\n",
"3\n77 77 70\n77 77\n77\n",
"3\n279847456 726316780 902899520\n902899520 726316780\n726316780\n",
"3\n77 77 121\n77 77\n77\n",
"3\n77 77 114\n77 77\n77\n",
"5\n1 5 7 123 7\n123 7 5 1\n5 1 7\n",
"3\n16 77 77\n77 77\n77\n",
"3\n2 2 3\n3 2\n3\n",
"3\n84 36 9\n9 84\n9\n",
"3\n84 10 9\n9 84\n9\n",
"6\n2 4 3 3 5 5\n3 5 5 4 3\n3 5 4 3\n",
"3\n168638990 8046203 323703261\n168638990 323703261\n168638990\n",
"3\n84 54 9\n9 84\n9\n",
"3\n84 11 9\n9 84\n9\n",
"6\n4 5 3 3 5 5\n3 5 5 4 3\n3 5 4 5\n",
"3\n8 77 77\n77 77\n77\n",
"3\n796067435 964699482 188036649\n964699482 796067435\n964699482\n",
"3\n77 77 39\n77 77\n77\n",
"3\n77 80 77\n77 77\n77\n",
"3\n546853328 726316780 902899520\n902899520 726316780\n726316780\n",
"6\n5 4 3 3 5 4\n3 5 5 4 3\n3 5 4 3\n",
"6\n4 4 3 3 5 5\n3 5 5 4 3\n3 5 4 3\n",
"4\n2 5 7 1\n1 5 7\n1 5\n",
"4\n4 5 7 1\n1 5 7\n1 5\n"
],
"output": [
"1\n3\n",
"8\n123\n",
"1\n3\n",
"30\n84\n",
"8\n7\n",
"819602309\n796067435\n",
"25720377\n661369649\n",
"5\n5\n",
"939116221\n323703261\n",
"77\n77\n",
"374054998\n902899520\n",
"42\n77\n",
"31\n77\n",
"12\n7\n",
"140\n77\n",
"4\n7\n",
"28\n84\n",
"11\n77\n",
"28\n77\n",
"26\n77\n",
"7\n77\n",
"22\n77\n",
"10\n77\n",
"10\n5\n",
"132\n77\n",
"385751174\n902899520\n",
"147\n77\n",
"4\n5\n",
"23\n84\n",
"226\n77\n",
"633890371\n902899520\n",
"5116641\n902899520\n",
"948201176\n796067435\n",
"103\n77\n",
"35\n77\n",
"51\n84\n",
"175\n77\n",
"237279512\n902899520\n",
"2\n3\n",
"629662177\n796067435\n",
"24\n77\n",
"20\n84\n",
"29\n77\n",
"129\n77\n",
"93\n77\n",
"40\n84\n",
"1\n3\n",
"37\n84\n",
"64\n84\n",
"8998374\n323703261\n",
"2\n7\n",
"11\n5\n",
"33\n84\n",
"1\n77\n",
"21\n84\n",
"5\n5\n",
"9\n5\n",
"104\n77\n",
"1\n7\n",
"9\n77\n",
"65\n77\n",
"7\n5\n",
"79\n77\n",
"117085886\n796067435\n",
"48\n84\n",
"25\n84\n",
"14343393\n323703261\n",
"2\n77\n",
"14\n84\n",
"90\n77\n",
"7\n84\n",
"60\n84\n",
"38\n77\n",
"19\n77\n",
"66\n77\n",
"216349438\n902899520\n",
"143\n77\n",
"8\n5\n",
"139\n77\n",
"70\n77\n",
"279847456\n902899520\n",
"121\n77\n",
"114\n77\n",
"7\n123\n",
"16\n77\n",
"2\n2\n",
"36\n84\n",
"10\n84\n",
"2\n5\n",
"8046203\n323703261\n",
"54\n84\n",
"11\n84\n",
"5\n3\n",
"8\n77\n",
"188036649\n796067435\n",
"39\n77\n",
"80\n77\n",
"546853328\n902899520\n",
"4\n5\n",
"4\n5\n",
"2\n7\n",
"4\n7\n"
]
} | 2CODEFORCES
|
519_B. A and B and Compilation Errors_127 | A and B are preparing themselves for programming contests.
B loves to debug his code. But before he runs the solution and starts debugging, he has to first compile the code.
Initially, the compiler displayed n compilation errors, each of them is represented as a positive integer. After some effort, B managed to fix some mistake and then another one mistake.
However, despite the fact that B is sure that he corrected the two errors, he can not understand exactly what compilation errors disappeared — the compiler of the language which B uses shows errors in the new order every time! B is sure that unlike many other programming languages, compilation errors for his programming language do not depend on each other, that is, if you correct one error, the set of other error does not change.
Can you help B find out exactly what two errors he corrected?
Input
The first line of the input contains integer n (3 ≤ n ≤ 105) — the initial number of compilation errors.
The second line contains n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 109) — the errors the compiler displayed for the first time.
The third line contains n - 1 space-separated integers b1, b2, ..., bn - 1 — the errors displayed at the second compilation. It is guaranteed that the sequence in the third line contains all numbers of the second string except for exactly one.
The fourth line contains n - 2 space-separated integers с1, с2, ..., сn - 2 — the errors displayed at the third compilation. It is guaranteed that the sequence in the fourth line contains all numbers of the third line except for exactly one.
Output
Print two numbers on a single line: the numbers of the compilation errors that disappeared after B made the first and the second correction, respectively.
Examples
Input
5
1 5 8 123 7
123 7 5 1
5 1 7
Output
8
123
Input
6
1 4 3 3 5 7
3 7 5 4 3
4 3 7 5
Output
1
3
Note
In the first test sample B first corrects the error number 8, then the error number 123.
In the second test sample B first corrects the error number 1, then the error number 3. Note that if there are multiple errors with the same number, B can correct only one of them in one step. | n = int(input())
a_sum = sum(map(int, input().split()))
b_sum = sum(map(int, input().split()))
c_sum = sum(map(int, input().split()))
print(a_sum - b_sum)
print(b_sum - c_sum) | 3Python3
| {
"input": [
"6\n1 4 3 3 5 7\n3 7 5 4 3\n4 3 7 5\n",
"5\n1 5 8 123 7\n123 7 5 1\n5 1 7\n",
"3\n1 2 3\n3 2\n2\n",
"3\n84 30 9\n9 84\n9\n",
"4\n1 5 7 8\n1 5 7\n1 5\n",
"3\n796067435 964699482 819602309\n964699482 796067435\n964699482\n",
"10\n460626451 802090732 277246428 661369649 388684428 784303821 376287098 656422756 9301599 25720377\n277246428 388684428 661369649 460626451 656422756 802090732 9301599 784303821 376287098\n376287098 802090732 388684428 9301599 656422756 784303821 460626451 277246428\n",
"6\n5 4 3 3 5 5\n3 5 5 4 3\n3 5 4 3\n",
"3\n168638990 939116221 323703261\n168638990 323703261\n168638990\n",
"3\n77 77 77\n77 77\n77\n",
"3\n374054998 726316780 902899520\n902899520 726316780\n726316780\n",
"3\n77 42 77\n77 77\n77\n",
"3\n77 31 77\n77 77\n77\n",
"4\n1 5 7 12\n1 5 7\n1 5\n",
"3\n77 77 140\n77 77\n77\n",
"4\n1 5 7 4\n1 5 7\n1 5\n",
"3\n84 28 9\n9 84\n9\n",
"3\n11 77 77\n77 77\n77\n",
"3\n77 28 77\n77 77\n77\n",
"3\n77 26 77\n77 77\n77\n",
"3\n7 77 77\n77 77\n77\n",
"3\n77 22 77\n77 77\n77\n",
"3\n10 77 77\n77 77\n77\n",
"6\n5 4 3 3 10 5\n3 5 5 4 3\n3 5 4 3\n",
"3\n77 77 132\n77 77\n77\n",
"3\n385751174 726316780 902899520\n902899520 726316780\n726316780\n",
"3\n77 77 147\n77 77\n77\n",
"4\n1 5 7 4\n1 5 7\n1 7\n",
"3\n84 23 9\n9 84\n9\n",
"3\n77 77 226\n77 77\n77\n",
"3\n633890371 726316780 902899520\n902899520 726316780\n726316780\n",
"3\n5116641 726316780 902899520\n902899520 726316780\n726316780\n",
"3\n796067435 964699482 948201176\n964699482 796067435\n964699482\n",
"3\n77 77 103\n77 77\n77\n",
"3\n77 35 77\n77 77\n77\n",
"3\n84 51 9\n9 84\n9\n",
"3\n77 77 175\n77 77\n77\n",
"3\n237279512 726316780 902899520\n902899520 726316780\n726316780\n",
"3\n2 2 3\n3 2\n2\n",
"3\n796067435 964699482 629662177\n964699482 796067435\n964699482\n",
"3\n77 24 77\n77 77\n77\n",
"3\n84 20 9\n9 84\n9\n",
"3\n77 29 77\n77 77\n77\n",
"3\n77 77 129\n77 77\n77\n",
"3\n77 77 93\n77 77\n77\n",
"3\n84 40 9\n9 84\n9\n",
"3\n2 1 3\n3 2\n2\n",
"3\n84 37 9\n9 84\n9\n",
"3\n84 64 9\n9 84\n9\n",
"3\n168638990 8998374 323703261\n168638990 323703261\n168638990\n",
"4\n1 5 7 2\n1 5 7\n1 5\n",
"6\n5 4 3 3 11 5\n3 5 5 4 3\n3 5 4 3\n",
"3\n84 33 9\n9 84\n9\n",
"3\n77 1 77\n77 77\n77\n",
"3\n84 21 9\n9 84\n9\n",
"6\n4 5 3 3 5 5\n3 5 5 4 3\n3 5 4 3\n",
"6\n4 5 3 3 9 5\n3 5 5 4 3\n3 5 4 3\n",
"3\n77 77 104\n77 77\n77\n",
"4\n1 5 7 1\n1 5 7\n1 5\n",
"3\n9 77 77\n77 77\n77\n",
"3\n77 77 65\n77 77\n77\n",
"4\n1 5 7 7\n1 5 7\n1 7\n",
"3\n77 77 79\n77 77\n77\n",
"3\n796067435 964699482 117085886\n964699482 796067435\n964699482\n",
"3\n84 48 9\n9 84\n9\n",
"3\n84 25 9\n9 84\n9\n",
"3\n168638990 14343393 323703261\n168638990 323703261\n168638990\n",
"3\n77 2 77\n77 77\n77\n",
"3\n84 14 9\n9 84\n9\n",
"3\n77 77 90\n77 77\n77\n",
"3\n84 7 9\n9 84\n9\n",
"3\n84 60 9\n9 84\n9\n",
"3\n77 77 38\n77 77\n77\n",
"3\n77 19 77\n77 77\n77\n",
"3\n77 77 66\n77 77\n77\n",
"3\n216349438 726316780 902899520\n902899520 726316780\n726316780\n",
"3\n77 77 143\n77 77\n77\n",
"4\n1 5 7 8\n1 5 7\n1 7\n",
"3\n77 77 139\n77 77\n77\n",
"3\n77 77 70\n77 77\n77\n",
"3\n279847456 726316780 902899520\n902899520 726316780\n726316780\n",
"3\n77 77 121\n77 77\n77\n",
"3\n77 77 114\n77 77\n77\n",
"5\n1 5 7 123 7\n123 7 5 1\n5 1 7\n",
"3\n16 77 77\n77 77\n77\n",
"3\n2 2 3\n3 2\n3\n",
"3\n84 36 9\n9 84\n9\n",
"3\n84 10 9\n9 84\n9\n",
"6\n2 4 3 3 5 5\n3 5 5 4 3\n3 5 4 3\n",
"3\n168638990 8046203 323703261\n168638990 323703261\n168638990\n",
"3\n84 54 9\n9 84\n9\n",
"3\n84 11 9\n9 84\n9\n",
"6\n4 5 3 3 5 5\n3 5 5 4 3\n3 5 4 5\n",
"3\n8 77 77\n77 77\n77\n",
"3\n796067435 964699482 188036649\n964699482 796067435\n964699482\n",
"3\n77 77 39\n77 77\n77\n",
"3\n77 80 77\n77 77\n77\n",
"3\n546853328 726316780 902899520\n902899520 726316780\n726316780\n",
"6\n5 4 3 3 5 4\n3 5 5 4 3\n3 5 4 3\n",
"6\n4 4 3 3 5 5\n3 5 5 4 3\n3 5 4 3\n",
"4\n2 5 7 1\n1 5 7\n1 5\n",
"4\n4 5 7 1\n1 5 7\n1 5\n"
],
"output": [
"1\n3\n",
"8\n123\n",
"1\n3\n",
"30\n84\n",
"8\n7\n",
"819602309\n796067435\n",
"25720377\n661369649\n",
"5\n5\n",
"939116221\n323703261\n",
"77\n77\n",
"374054998\n902899520\n",
"42\n77\n",
"31\n77\n",
"12\n7\n",
"140\n77\n",
"4\n7\n",
"28\n84\n",
"11\n77\n",
"28\n77\n",
"26\n77\n",
"7\n77\n",
"22\n77\n",
"10\n77\n",
"10\n5\n",
"132\n77\n",
"385751174\n902899520\n",
"147\n77\n",
"4\n5\n",
"23\n84\n",
"226\n77\n",
"633890371\n902899520\n",
"5116641\n902899520\n",
"948201176\n796067435\n",
"103\n77\n",
"35\n77\n",
"51\n84\n",
"175\n77\n",
"237279512\n902899520\n",
"2\n3\n",
"629662177\n796067435\n",
"24\n77\n",
"20\n84\n",
"29\n77\n",
"129\n77\n",
"93\n77\n",
"40\n84\n",
"1\n3\n",
"37\n84\n",
"64\n84\n",
"8998374\n323703261\n",
"2\n7\n",
"11\n5\n",
"33\n84\n",
"1\n77\n",
"21\n84\n",
"5\n5\n",
"9\n5\n",
"104\n77\n",
"1\n7\n",
"9\n77\n",
"65\n77\n",
"7\n5\n",
"79\n77\n",
"117085886\n796067435\n",
"48\n84\n",
"25\n84\n",
"14343393\n323703261\n",
"2\n77\n",
"14\n84\n",
"90\n77\n",
"7\n84\n",
"60\n84\n",
"38\n77\n",
"19\n77\n",
"66\n77\n",
"216349438\n902899520\n",
"143\n77\n",
"8\n5\n",
"139\n77\n",
"70\n77\n",
"279847456\n902899520\n",
"121\n77\n",
"114\n77\n",
"7\n123\n",
"16\n77\n",
"2\n2\n",
"36\n84\n",
"10\n84\n",
"2\n5\n",
"8046203\n323703261\n",
"54\n84\n",
"11\n84\n",
"5\n3\n",
"8\n77\n",
"188036649\n796067435\n",
"39\n77\n",
"80\n77\n",
"546853328\n902899520\n",
"4\n5\n",
"4\n5\n",
"2\n7\n",
"4\n7\n"
]
} | 2CODEFORCES
|
519_B. A and B and Compilation Errors_128 | A and B are preparing themselves for programming contests.
B loves to debug his code. But before he runs the solution and starts debugging, he has to first compile the code.
Initially, the compiler displayed n compilation errors, each of them is represented as a positive integer. After some effort, B managed to fix some mistake and then another one mistake.
However, despite the fact that B is sure that he corrected the two errors, he can not understand exactly what compilation errors disappeared — the compiler of the language which B uses shows errors in the new order every time! B is sure that unlike many other programming languages, compilation errors for his programming language do not depend on each other, that is, if you correct one error, the set of other error does not change.
Can you help B find out exactly what two errors he corrected?
Input
The first line of the input contains integer n (3 ≤ n ≤ 105) — the initial number of compilation errors.
The second line contains n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 109) — the errors the compiler displayed for the first time.
The third line contains n - 1 space-separated integers b1, b2, ..., bn - 1 — the errors displayed at the second compilation. It is guaranteed that the sequence in the third line contains all numbers of the second string except for exactly one.
The fourth line contains n - 2 space-separated integers с1, с2, ..., сn - 2 — the errors displayed at the third compilation. It is guaranteed that the sequence in the fourth line contains all numbers of the third line except for exactly one.
Output
Print two numbers on a single line: the numbers of the compilation errors that disappeared after B made the first and the second correction, respectively.
Examples
Input
5
1 5 8 123 7
123 7 5 1
5 1 7
Output
8
123
Input
6
1 4 3 3 5 7
3 7 5 4 3
4 3 7 5
Output
1
3
Note
In the first test sample B first corrects the error number 8, then the error number 123.
In the second test sample B first corrects the error number 1, then the error number 3. Note that if there are multiple errors with the same number, B can correct only one of them in one step. |
import java.util.Scanner;
/**
*
* @author Marco
*/
public class CompilationErrors {
/**
* @param args the command line arguments
*/
public static void main(String[] args) {
// TODO code application logic here
Scanner in = new Scanner(System.in);
int cantidad = in.nextInt();
long aux = 0, suma = 0;
int num1, num2;
for (int i = 0; i < cantidad; i++) {
suma += in.nextInt();
}
for (int i = 0; i < cantidad - 1; i++) {
aux += in.nextInt();
}
num1 = (int) (suma - aux);
aux = 0;
System.out.println(num1);
for (int i = 0; i < cantidad - 2; i++) {
aux += in.nextInt();
}
num2 = (int) (suma - aux - num1);
System.out.println(num2);
}
}
| 4JAVA
| {
"input": [
"6\n1 4 3 3 5 7\n3 7 5 4 3\n4 3 7 5\n",
"5\n1 5 8 123 7\n123 7 5 1\n5 1 7\n",
"3\n1 2 3\n3 2\n2\n",
"3\n84 30 9\n9 84\n9\n",
"4\n1 5 7 8\n1 5 7\n1 5\n",
"3\n796067435 964699482 819602309\n964699482 796067435\n964699482\n",
"10\n460626451 802090732 277246428 661369649 388684428 784303821 376287098 656422756 9301599 25720377\n277246428 388684428 661369649 460626451 656422756 802090732 9301599 784303821 376287098\n376287098 802090732 388684428 9301599 656422756 784303821 460626451 277246428\n",
"6\n5 4 3 3 5 5\n3 5 5 4 3\n3 5 4 3\n",
"3\n168638990 939116221 323703261\n168638990 323703261\n168638990\n",
"3\n77 77 77\n77 77\n77\n",
"3\n374054998 726316780 902899520\n902899520 726316780\n726316780\n",
"3\n77 42 77\n77 77\n77\n",
"3\n77 31 77\n77 77\n77\n",
"4\n1 5 7 12\n1 5 7\n1 5\n",
"3\n77 77 140\n77 77\n77\n",
"4\n1 5 7 4\n1 5 7\n1 5\n",
"3\n84 28 9\n9 84\n9\n",
"3\n11 77 77\n77 77\n77\n",
"3\n77 28 77\n77 77\n77\n",
"3\n77 26 77\n77 77\n77\n",
"3\n7 77 77\n77 77\n77\n",
"3\n77 22 77\n77 77\n77\n",
"3\n10 77 77\n77 77\n77\n",
"6\n5 4 3 3 10 5\n3 5 5 4 3\n3 5 4 3\n",
"3\n77 77 132\n77 77\n77\n",
"3\n385751174 726316780 902899520\n902899520 726316780\n726316780\n",
"3\n77 77 147\n77 77\n77\n",
"4\n1 5 7 4\n1 5 7\n1 7\n",
"3\n84 23 9\n9 84\n9\n",
"3\n77 77 226\n77 77\n77\n",
"3\n633890371 726316780 902899520\n902899520 726316780\n726316780\n",
"3\n5116641 726316780 902899520\n902899520 726316780\n726316780\n",
"3\n796067435 964699482 948201176\n964699482 796067435\n964699482\n",
"3\n77 77 103\n77 77\n77\n",
"3\n77 35 77\n77 77\n77\n",
"3\n84 51 9\n9 84\n9\n",
"3\n77 77 175\n77 77\n77\n",
"3\n237279512 726316780 902899520\n902899520 726316780\n726316780\n",
"3\n2 2 3\n3 2\n2\n",
"3\n796067435 964699482 629662177\n964699482 796067435\n964699482\n",
"3\n77 24 77\n77 77\n77\n",
"3\n84 20 9\n9 84\n9\n",
"3\n77 29 77\n77 77\n77\n",
"3\n77 77 129\n77 77\n77\n",
"3\n77 77 93\n77 77\n77\n",
"3\n84 40 9\n9 84\n9\n",
"3\n2 1 3\n3 2\n2\n",
"3\n84 37 9\n9 84\n9\n",
"3\n84 64 9\n9 84\n9\n",
"3\n168638990 8998374 323703261\n168638990 323703261\n168638990\n",
"4\n1 5 7 2\n1 5 7\n1 5\n",
"6\n5 4 3 3 11 5\n3 5 5 4 3\n3 5 4 3\n",
"3\n84 33 9\n9 84\n9\n",
"3\n77 1 77\n77 77\n77\n",
"3\n84 21 9\n9 84\n9\n",
"6\n4 5 3 3 5 5\n3 5 5 4 3\n3 5 4 3\n",
"6\n4 5 3 3 9 5\n3 5 5 4 3\n3 5 4 3\n",
"3\n77 77 104\n77 77\n77\n",
"4\n1 5 7 1\n1 5 7\n1 5\n",
"3\n9 77 77\n77 77\n77\n",
"3\n77 77 65\n77 77\n77\n",
"4\n1 5 7 7\n1 5 7\n1 7\n",
"3\n77 77 79\n77 77\n77\n",
"3\n796067435 964699482 117085886\n964699482 796067435\n964699482\n",
"3\n84 48 9\n9 84\n9\n",
"3\n84 25 9\n9 84\n9\n",
"3\n168638990 14343393 323703261\n168638990 323703261\n168638990\n",
"3\n77 2 77\n77 77\n77\n",
"3\n84 14 9\n9 84\n9\n",
"3\n77 77 90\n77 77\n77\n",
"3\n84 7 9\n9 84\n9\n",
"3\n84 60 9\n9 84\n9\n",
"3\n77 77 38\n77 77\n77\n",
"3\n77 19 77\n77 77\n77\n",
"3\n77 77 66\n77 77\n77\n",
"3\n216349438 726316780 902899520\n902899520 726316780\n726316780\n",
"3\n77 77 143\n77 77\n77\n",
"4\n1 5 7 8\n1 5 7\n1 7\n",
"3\n77 77 139\n77 77\n77\n",
"3\n77 77 70\n77 77\n77\n",
"3\n279847456 726316780 902899520\n902899520 726316780\n726316780\n",
"3\n77 77 121\n77 77\n77\n",
"3\n77 77 114\n77 77\n77\n",
"5\n1 5 7 123 7\n123 7 5 1\n5 1 7\n",
"3\n16 77 77\n77 77\n77\n",
"3\n2 2 3\n3 2\n3\n",
"3\n84 36 9\n9 84\n9\n",
"3\n84 10 9\n9 84\n9\n",
"6\n2 4 3 3 5 5\n3 5 5 4 3\n3 5 4 3\n",
"3\n168638990 8046203 323703261\n168638990 323703261\n168638990\n",
"3\n84 54 9\n9 84\n9\n",
"3\n84 11 9\n9 84\n9\n",
"6\n4 5 3 3 5 5\n3 5 5 4 3\n3 5 4 5\n",
"3\n8 77 77\n77 77\n77\n",
"3\n796067435 964699482 188036649\n964699482 796067435\n964699482\n",
"3\n77 77 39\n77 77\n77\n",
"3\n77 80 77\n77 77\n77\n",
"3\n546853328 726316780 902899520\n902899520 726316780\n726316780\n",
"6\n5 4 3 3 5 4\n3 5 5 4 3\n3 5 4 3\n",
"6\n4 4 3 3 5 5\n3 5 5 4 3\n3 5 4 3\n",
"4\n2 5 7 1\n1 5 7\n1 5\n",
"4\n4 5 7 1\n1 5 7\n1 5\n"
],
"output": [
"1\n3\n",
"8\n123\n",
"1\n3\n",
"30\n84\n",
"8\n7\n",
"819602309\n796067435\n",
"25720377\n661369649\n",
"5\n5\n",
"939116221\n323703261\n",
"77\n77\n",
"374054998\n902899520\n",
"42\n77\n",
"31\n77\n",
"12\n7\n",
"140\n77\n",
"4\n7\n",
"28\n84\n",
"11\n77\n",
"28\n77\n",
"26\n77\n",
"7\n77\n",
"22\n77\n",
"10\n77\n",
"10\n5\n",
"132\n77\n",
"385751174\n902899520\n",
"147\n77\n",
"4\n5\n",
"23\n84\n",
"226\n77\n",
"633890371\n902899520\n",
"5116641\n902899520\n",
"948201176\n796067435\n",
"103\n77\n",
"35\n77\n",
"51\n84\n",
"175\n77\n",
"237279512\n902899520\n",
"2\n3\n",
"629662177\n796067435\n",
"24\n77\n",
"20\n84\n",
"29\n77\n",
"129\n77\n",
"93\n77\n",
"40\n84\n",
"1\n3\n",
"37\n84\n",
"64\n84\n",
"8998374\n323703261\n",
"2\n7\n",
"11\n5\n",
"33\n84\n",
"1\n77\n",
"21\n84\n",
"5\n5\n",
"9\n5\n",
"104\n77\n",
"1\n7\n",
"9\n77\n",
"65\n77\n",
"7\n5\n",
"79\n77\n",
"117085886\n796067435\n",
"48\n84\n",
"25\n84\n",
"14343393\n323703261\n",
"2\n77\n",
"14\n84\n",
"90\n77\n",
"7\n84\n",
"60\n84\n",
"38\n77\n",
"19\n77\n",
"66\n77\n",
"216349438\n902899520\n",
"143\n77\n",
"8\n5\n",
"139\n77\n",
"70\n77\n",
"279847456\n902899520\n",
"121\n77\n",
"114\n77\n",
"7\n123\n",
"16\n77\n",
"2\n2\n",
"36\n84\n",
"10\n84\n",
"2\n5\n",
"8046203\n323703261\n",
"54\n84\n",
"11\n84\n",
"5\n3\n",
"8\n77\n",
"188036649\n796067435\n",
"39\n77\n",
"80\n77\n",
"546853328\n902899520\n",
"4\n5\n",
"4\n5\n",
"2\n7\n",
"4\n7\n"
]
} | 2CODEFORCES
|
545_C. Woodcutters_129 | Little Susie listens to fairy tales before bed every day. Today's fairy tale was about wood cutters and the little girl immediately started imagining the choppers cutting wood. She imagined the situation that is described below.
There are n trees located along the road at points with coordinates x1, x2, ..., xn. Each tree has its height hi. Woodcutters can cut down a tree and fell it to the left or to the right. After that it occupies one of the segments [xi - hi, xi] or [xi;xi + hi]. The tree that is not cut down occupies a single point with coordinate xi. Woodcutters can fell a tree if the segment to be occupied by the fallen tree doesn't contain any occupied point. The woodcutters want to process as many trees as possible, so Susie wonders, what is the maximum number of trees to fell.
Input
The first line contains integer n (1 ≤ n ≤ 105) — the number of trees.
Next n lines contain pairs of integers xi, hi (1 ≤ xi, hi ≤ 109) — the coordinate and the height of the і-th tree.
The pairs are given in the order of ascending xi. No two trees are located at the point with the same coordinate.
Output
Print a single number — the maximum number of trees that you can cut down by the given rules.
Examples
Input
5
1 2
2 1
5 10
10 9
19 1
Output
3
Input
5
1 2
2 1
5 10
10 9
20 1
Output
4
Note
In the first sample you can fell the trees like that:
* fell the 1-st tree to the left — now it occupies segment [ - 1;1]
* fell the 2-nd tree to the right — now it occupies segment [2;3]
* leave the 3-rd tree — it occupies point 5
* leave the 4-th tree — it occupies point 10
* fell the 5-th tree to the right — now it occupies segment [19;20]
In the second sample you can also fell 4-th tree to the right, after that it will occupy segment [10;19]. | n = int(raw_input())
x = [0 for i in range(n)]
h = [0 for i in range(n)]
for i in range(n):
x[i], h[i] = map(int,raw_input().split(" "))
if n <= 2:
print n
else:
cut = 2
for i in range(1,n-1):
if x[i] - h[i] > x[i-1]:
cut += 1
elif x[i] + h[i] < x[i+1]:
x[i] += h[i]
cut += 1
print cut
| 1Python2
| {
"input": [
"5\n1 2\n2 1\n5 10\n10 9\n20 1\n",
"5\n1 2\n2 1\n5 10\n10 9\n19 1\n",
"4\n10 4\n15 1\n19 3\n20 1\n",
"2\n1 999999999\n1000000000 1000000000\n",
"67\n1 1\n3 8\n4 10\n7 8\n9 2\n10 1\n11 5\n12 8\n13 4\n16 6\n18 3\n19 3\n22 5\n24 6\n27 5\n28 3\n29 3\n30 5\n32 5\n33 10\n34 7\n35 8\n36 5\n41 3\n42 2\n43 5\n46 4\n48 4\n49 9\n52 4\n53 9\n55 1\n56 4\n59 7\n68 7\n69 4\n71 9\n72 10\n74 5\n76 4\n77 9\n80 7\n81 9\n82 5\n83 5\n84 9\n85 7\n86 9\n87 4\n88 7\n89 10\n90 3\n91 5\n92 10\n93 5\n94 8\n95 4\n96 2\n97 10\n98 1\n99 3\n100 1\n101 5\n102 4\n103 8\n104 8\n105 8\n",
"10\n999999900 1000000000\n999999901 1000000000\n999999902 1000000000\n999999903 1000000000\n999999904 1000000000\n999999905 1000000000\n999999906 1000000000\n999999907 1000000000\n999999908 1000000000\n999999909 1000000000\n",
"35\n1 7\n3 11\n6 12\n7 6\n8 5\n9 11\n15 3\n16 10\n22 2\n23 3\n25 7\n27 3\n34 5\n35 10\n37 3\n39 4\n40 5\n41 1\n44 1\n47 7\n48 11\n50 6\n52 5\n57 2\n58 7\n60 4\n62 1\n67 3\n68 12\n69 8\n70 1\n71 5\n72 5\n73 6\n74 4\n",
"1\n1000000000 1000000000\n",
"2\n100000000 1000000000\n1000000000 1000000000\n",
"10\n7 12\n10 2\n12 2\n15 1\n19 2\n20 1\n53 25\n63 10\n75 12\n87 1\n",
"3\n1 1\n1000 1000\n1000000000 1000000000\n",
"40\n1 1\n2 1\n3 1\n4 1\n5 1\n6 1\n7 1\n8 1\n9 1\n10 1\n11 1\n12 1\n13 1\n14 1\n15 1\n16 1\n17 1\n18 1\n19 1\n20 1\n21 1\n22 1\n23 1\n24 1\n25 1\n26 1\n27 1\n28 1\n29 1\n30 1\n31 1\n32 1\n33 1\n34 1\n35 1\n36 1\n37 1\n38 1\n39 1\n40 1\n",
"2\n1 222168095\n1000000000 1000000000\n",
"35\n1 7\n3 11\n6 12\n7 6\n8 5\n9 11\n15 3\n16 10\n22 2\n23 3\n25 7\n27 3\n34 5\n35 0\n37 3\n39 4\n40 5\n41 1\n44 1\n47 7\n48 11\n50 6\n52 5\n57 2\n58 7\n60 4\n62 1\n67 3\n68 12\n69 8\n70 1\n71 5\n72 5\n73 6\n74 4\n",
"1\n1010000000 1000000000\n",
"10\n7 12\n10 2\n12 2\n15 1\n19 2\n20 1\n53 25\n63 10\n75 12\n144 1\n",
"3\n1 1\n1000 1000\n1100000000 1000000000\n",
"5\n1 2\n2 2\n5 10\n10 9\n20 1\n",
"10\n999999900 1000000000\n999999901 1000100000\n999999902 1000000000\n999999903 1000000000\n999999904 1000000000\n999999905 1000000000\n999999906 1000000000\n999999907 1000000000\n999999908 1000000000\n999999909 1000000000\n",
"2\n100100000 1000000000\n1000000000 1000000000\n",
"40\n1 1\n2 1\n3 1\n4 1\n5 1\n6 1\n7 1\n8 1\n9 1\n10 1\n11 1\n12 1\n13 1\n14 1\n15 1\n16 1\n17 1\n18 1\n19 1\n20 1\n21 1\n22 1\n23 1\n24 1\n25 1\n26 1\n27 1\n28 1\n29 1\n30 1\n31 1\n32 1\n33 1\n34 0\n35 1\n36 1\n37 1\n38 1\n39 1\n40 1\n",
"5\n1 2\n2 1\n5 10\n10 9\n21 1\n",
"2\n1 417800447\n1000000000 1000000000\n",
"35\n1 7\n3 11\n6 12\n7 6\n8 6\n9 11\n15 3\n16 10\n22 2\n23 3\n25 7\n27 3\n34 5\n35 0\n37 3\n39 4\n40 5\n41 1\n44 1\n47 7\n48 11\n50 6\n52 5\n57 2\n58 7\n60 4\n62 1\n67 3\n68 12\n69 8\n70 1\n71 5\n72 5\n73 6\n74 4\n",
"1\n1010000000 1000010000\n",
"2\n100100000 1000001000\n1000000000 1000000000\n",
"3\n1 1\n1000 1000\n1100000100 1000000000\n",
"40\n1 1\n2 1\n3 1\n4 1\n5 1\n6 1\n7 1\n8 1\n9 1\n10 1\n11 1\n12 1\n13 1\n14 1\n15 1\n16 1\n17 1\n18 1\n19 1\n20 1\n21 1\n22 1\n23 1\n24 1\n25 1\n26 1\n27 1\n28 1\n29 1\n30 1\n31 1\n32 1\n33 1\n34 0\n35 1\n36 1\n37 1\n38 2\n39 1\n40 1\n",
"5\n1 0\n2 1\n5 10\n10 9\n21 1\n",
"2\n2 417800447\n1000000000 1000000000\n",
"1\n1110000000 1000010000\n",
"2\n100110000 1000001000\n1000000000 1000000000\n",
"5\n1 0\n2 1\n5 10\n10 4\n21 1\n",
"2\n0 417800447\n1000000000 1000000000\n",
"1\n1110000000 1000000000\n",
"2\n100110000 1100001000\n1000000000 1000000000\n",
"5\n0 0\n2 1\n5 10\n10 4\n21 1\n",
"2\n0 417800447\n1010000000 1000000000\n",
"1\n1110000000 1000000100\n",
"5\n0 0\n2 1\n5 10\n10 4\n27 1\n",
"2\n0 417800447\n1010000000 1000001000\n",
"1\n1110000000 1010000000\n",
"5\n0 0\n2 1\n5 10\n10 4\n39 1\n",
"2\n0 417800447\n0010000000 1000000000\n",
"1\n0110000000 1010000000\n",
"2\n-1 417800447\n0010000000 1000000000\n",
"1\n0111000000 1010000000\n",
"2\n-1 587142519\n0010000000 1000000000\n",
"1\n0111000000 0010000000\n",
"2\n-1 207865786\n0010000000 1000000000\n",
"1\n0111000000 0010000100\n",
"2\n-1 207865786\n0010001000 1000000000\n",
"1\n0110000000 0010000100\n",
"2\n-1 207865786\n0010001000 1000000001\n",
"1\n0110000010 0010000100\n",
"2\n-1 207865786\n0010001000 1000100000\n",
"1\n0110000010 0000000100\n",
"2\n0 207865786\n0010001000 1000100000\n",
"1\n0110000010 0000000110\n",
"2\n0 207865786\n0010001001 1000100000\n",
"1\n0110000010 0000010110\n",
"2\n1 207865786\n0010001001 1000100000\n",
"1\n0110000010 0000011110\n",
"2\n1 207865786\n0000001001 1000100000\n",
"1\n0110000010 0000011111\n",
"2\n1 207865786\n0010001001 1001100000\n",
"1\n0110000010 1000011111\n",
"2\n1 22649069\n0010001001 1001100000\n",
"1\n0110000010 1010011111\n",
"2\n1 45164813\n0010001001 1001100000\n",
"1\n0110100010 1010011111\n",
"2\n1 45164813\n0010001001 0001100000\n",
"1\n0110100010 1010011011\n",
"2\n1 45164813\n0010000001 0001100000\n",
"1\n0100100010 1010011011\n",
"2\n1 45164813\n0010000001 0011100000\n",
"1\n0110100010 1010111011\n",
"2\n2 45164813\n0010000001 0011100000\n",
"1\n0110100010 1000111011\n",
"2\n2 75661394\n0010000001 0011100000\n",
"1\n0110100010 1000101011\n",
"2\n2 75661394\n0010000001 0011000000\n",
"1\n0100100010 1000101011\n",
"2\n2 75661394\n0010100001 0011000000\n",
"1\n0100100010 1100101011\n",
"2\n1 75661394\n0010100001 0011000000\n",
"1\n0100100010 1100100011\n",
"2\n1 75661394\n0010100001 0010000000\n",
"1\n0100100010 1100100001\n",
"2\n1 75661394\n0010000001 0010000000\n",
"1\n0101100010 1100100001\n",
"2\n1 75661394\n0010000001 0010000100\n",
"1\n0001100010 1100100001\n",
"2\n1 15884654\n0010000001 0010000100\n",
"1\n0001100010 1100100011\n",
"2\n1 15884654\n0010000001 0010010100\n",
"1\n0001100010 1100100010\n",
"2\n1 15884654\n0010000001 0010010101\n",
"1\n0011100010 1100100010\n",
"2\n0 15884654\n0010000001 0010010101\n",
"1\n0011101010 1100100010\n",
"2\n0 15884654\n0010000001 0110010101\n",
"1\n0011101010 1100100011\n",
"2\n0 5768934\n0010000001 0110010101\n",
"1\n0011111010 1100100011\n",
"2\n0 5768934\n0110000001 0110010101\n",
"1\n0011111010 1000100011\n",
"2\n0 5768934\n0110000001 0010010101\n",
"1\n0011111110 1000100011\n",
"2\n0 2084855\n0110000001 0010010101\n",
"1\n0011111110 0000100011\n",
"2\n1 2084855\n0110000001 0010010101\n"
],
"output": [
"4\n",
"3\n",
"4\n",
"2\n",
"5\n",
"2\n",
"10\n",
"1\n",
"2\n",
"9\n",
"3\n",
"2\n",
"2\n",
"11\n",
"1\n",
"10\n",
"3\n",
"4\n",
"2\n",
"2\n",
"3\n",
"4\n",
"2\n",
"11\n",
"1\n",
"2\n",
"3\n",
"3\n",
"4\n",
"2\n",
"1\n",
"2\n",
"4\n",
"2\n",
"1\n",
"2\n",
"4\n",
"2\n",
"1\n",
"4\n",
"2\n",
"1\n",
"4\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n"
]
} | 2CODEFORCES
|
545_C. Woodcutters_130 | Little Susie listens to fairy tales before bed every day. Today's fairy tale was about wood cutters and the little girl immediately started imagining the choppers cutting wood. She imagined the situation that is described below.
There are n trees located along the road at points with coordinates x1, x2, ..., xn. Each tree has its height hi. Woodcutters can cut down a tree and fell it to the left or to the right. After that it occupies one of the segments [xi - hi, xi] or [xi;xi + hi]. The tree that is not cut down occupies a single point with coordinate xi. Woodcutters can fell a tree if the segment to be occupied by the fallen tree doesn't contain any occupied point. The woodcutters want to process as many trees as possible, so Susie wonders, what is the maximum number of trees to fell.
Input
The first line contains integer n (1 ≤ n ≤ 105) — the number of trees.
Next n lines contain pairs of integers xi, hi (1 ≤ xi, hi ≤ 109) — the coordinate and the height of the і-th tree.
The pairs are given in the order of ascending xi. No two trees are located at the point with the same coordinate.
Output
Print a single number — the maximum number of trees that you can cut down by the given rules.
Examples
Input
5
1 2
2 1
5 10
10 9
19 1
Output
3
Input
5
1 2
2 1
5 10
10 9
20 1
Output
4
Note
In the first sample you can fell the trees like that:
* fell the 1-st tree to the left — now it occupies segment [ - 1;1]
* fell the 2-nd tree to the right — now it occupies segment [2;3]
* leave the 3-rd tree — it occupies point 5
* leave the 4-th tree — it occupies point 10
* fell the 5-th tree to the right — now it occupies segment [19;20]
In the second sample you can also fell 4-th tree to the right, after that it will occupy segment [10;19]. | #include <bits/stdc++.h>
using namespace std;
const int MOD = 1e9 + 7;
const int INF = INT_MAX;
const long long int LINF = LLONG_MAX;
int main() {
ios_base::sync_with_stdio(false), cin.tie(NULL), cout.tie(NULL);
int n, maxx = -INF, x, h, res = 0;
cin >> n;
pair<int, int> tree[n];
for (int i = 0; i < n; ++i) cin >> tree[i].first >> tree[i].second;
for (int i = 0; i < n; ++i) {
int cx = tree[i].first, ch = tree[i].second;
if (cx - ch > maxx) {
res++;
maxx = cx;
} else if (i == n - 1 || cx + ch < tree[i + 1].first) {
res++;
maxx = cx + ch;
} else {
maxx = cx;
}
}
cout << res;
return 0;
}
| 2C++
| {
"input": [
"5\n1 2\n2 1\n5 10\n10 9\n20 1\n",
"5\n1 2\n2 1\n5 10\n10 9\n19 1\n",
"4\n10 4\n15 1\n19 3\n20 1\n",
"2\n1 999999999\n1000000000 1000000000\n",
"67\n1 1\n3 8\n4 10\n7 8\n9 2\n10 1\n11 5\n12 8\n13 4\n16 6\n18 3\n19 3\n22 5\n24 6\n27 5\n28 3\n29 3\n30 5\n32 5\n33 10\n34 7\n35 8\n36 5\n41 3\n42 2\n43 5\n46 4\n48 4\n49 9\n52 4\n53 9\n55 1\n56 4\n59 7\n68 7\n69 4\n71 9\n72 10\n74 5\n76 4\n77 9\n80 7\n81 9\n82 5\n83 5\n84 9\n85 7\n86 9\n87 4\n88 7\n89 10\n90 3\n91 5\n92 10\n93 5\n94 8\n95 4\n96 2\n97 10\n98 1\n99 3\n100 1\n101 5\n102 4\n103 8\n104 8\n105 8\n",
"10\n999999900 1000000000\n999999901 1000000000\n999999902 1000000000\n999999903 1000000000\n999999904 1000000000\n999999905 1000000000\n999999906 1000000000\n999999907 1000000000\n999999908 1000000000\n999999909 1000000000\n",
"35\n1 7\n3 11\n6 12\n7 6\n8 5\n9 11\n15 3\n16 10\n22 2\n23 3\n25 7\n27 3\n34 5\n35 10\n37 3\n39 4\n40 5\n41 1\n44 1\n47 7\n48 11\n50 6\n52 5\n57 2\n58 7\n60 4\n62 1\n67 3\n68 12\n69 8\n70 1\n71 5\n72 5\n73 6\n74 4\n",
"1\n1000000000 1000000000\n",
"2\n100000000 1000000000\n1000000000 1000000000\n",
"10\n7 12\n10 2\n12 2\n15 1\n19 2\n20 1\n53 25\n63 10\n75 12\n87 1\n",
"3\n1 1\n1000 1000\n1000000000 1000000000\n",
"40\n1 1\n2 1\n3 1\n4 1\n5 1\n6 1\n7 1\n8 1\n9 1\n10 1\n11 1\n12 1\n13 1\n14 1\n15 1\n16 1\n17 1\n18 1\n19 1\n20 1\n21 1\n22 1\n23 1\n24 1\n25 1\n26 1\n27 1\n28 1\n29 1\n30 1\n31 1\n32 1\n33 1\n34 1\n35 1\n36 1\n37 1\n38 1\n39 1\n40 1\n",
"2\n1 222168095\n1000000000 1000000000\n",
"35\n1 7\n3 11\n6 12\n7 6\n8 5\n9 11\n15 3\n16 10\n22 2\n23 3\n25 7\n27 3\n34 5\n35 0\n37 3\n39 4\n40 5\n41 1\n44 1\n47 7\n48 11\n50 6\n52 5\n57 2\n58 7\n60 4\n62 1\n67 3\n68 12\n69 8\n70 1\n71 5\n72 5\n73 6\n74 4\n",
"1\n1010000000 1000000000\n",
"10\n7 12\n10 2\n12 2\n15 1\n19 2\n20 1\n53 25\n63 10\n75 12\n144 1\n",
"3\n1 1\n1000 1000\n1100000000 1000000000\n",
"5\n1 2\n2 2\n5 10\n10 9\n20 1\n",
"10\n999999900 1000000000\n999999901 1000100000\n999999902 1000000000\n999999903 1000000000\n999999904 1000000000\n999999905 1000000000\n999999906 1000000000\n999999907 1000000000\n999999908 1000000000\n999999909 1000000000\n",
"2\n100100000 1000000000\n1000000000 1000000000\n",
"40\n1 1\n2 1\n3 1\n4 1\n5 1\n6 1\n7 1\n8 1\n9 1\n10 1\n11 1\n12 1\n13 1\n14 1\n15 1\n16 1\n17 1\n18 1\n19 1\n20 1\n21 1\n22 1\n23 1\n24 1\n25 1\n26 1\n27 1\n28 1\n29 1\n30 1\n31 1\n32 1\n33 1\n34 0\n35 1\n36 1\n37 1\n38 1\n39 1\n40 1\n",
"5\n1 2\n2 1\n5 10\n10 9\n21 1\n",
"2\n1 417800447\n1000000000 1000000000\n",
"35\n1 7\n3 11\n6 12\n7 6\n8 6\n9 11\n15 3\n16 10\n22 2\n23 3\n25 7\n27 3\n34 5\n35 0\n37 3\n39 4\n40 5\n41 1\n44 1\n47 7\n48 11\n50 6\n52 5\n57 2\n58 7\n60 4\n62 1\n67 3\n68 12\n69 8\n70 1\n71 5\n72 5\n73 6\n74 4\n",
"1\n1010000000 1000010000\n",
"2\n100100000 1000001000\n1000000000 1000000000\n",
"3\n1 1\n1000 1000\n1100000100 1000000000\n",
"40\n1 1\n2 1\n3 1\n4 1\n5 1\n6 1\n7 1\n8 1\n9 1\n10 1\n11 1\n12 1\n13 1\n14 1\n15 1\n16 1\n17 1\n18 1\n19 1\n20 1\n21 1\n22 1\n23 1\n24 1\n25 1\n26 1\n27 1\n28 1\n29 1\n30 1\n31 1\n32 1\n33 1\n34 0\n35 1\n36 1\n37 1\n38 2\n39 1\n40 1\n",
"5\n1 0\n2 1\n5 10\n10 9\n21 1\n",
"2\n2 417800447\n1000000000 1000000000\n",
"1\n1110000000 1000010000\n",
"2\n100110000 1000001000\n1000000000 1000000000\n",
"5\n1 0\n2 1\n5 10\n10 4\n21 1\n",
"2\n0 417800447\n1000000000 1000000000\n",
"1\n1110000000 1000000000\n",
"2\n100110000 1100001000\n1000000000 1000000000\n",
"5\n0 0\n2 1\n5 10\n10 4\n21 1\n",
"2\n0 417800447\n1010000000 1000000000\n",
"1\n1110000000 1000000100\n",
"5\n0 0\n2 1\n5 10\n10 4\n27 1\n",
"2\n0 417800447\n1010000000 1000001000\n",
"1\n1110000000 1010000000\n",
"5\n0 0\n2 1\n5 10\n10 4\n39 1\n",
"2\n0 417800447\n0010000000 1000000000\n",
"1\n0110000000 1010000000\n",
"2\n-1 417800447\n0010000000 1000000000\n",
"1\n0111000000 1010000000\n",
"2\n-1 587142519\n0010000000 1000000000\n",
"1\n0111000000 0010000000\n",
"2\n-1 207865786\n0010000000 1000000000\n",
"1\n0111000000 0010000100\n",
"2\n-1 207865786\n0010001000 1000000000\n",
"1\n0110000000 0010000100\n",
"2\n-1 207865786\n0010001000 1000000001\n",
"1\n0110000010 0010000100\n",
"2\n-1 207865786\n0010001000 1000100000\n",
"1\n0110000010 0000000100\n",
"2\n0 207865786\n0010001000 1000100000\n",
"1\n0110000010 0000000110\n",
"2\n0 207865786\n0010001001 1000100000\n",
"1\n0110000010 0000010110\n",
"2\n1 207865786\n0010001001 1000100000\n",
"1\n0110000010 0000011110\n",
"2\n1 207865786\n0000001001 1000100000\n",
"1\n0110000010 0000011111\n",
"2\n1 207865786\n0010001001 1001100000\n",
"1\n0110000010 1000011111\n",
"2\n1 22649069\n0010001001 1001100000\n",
"1\n0110000010 1010011111\n",
"2\n1 45164813\n0010001001 1001100000\n",
"1\n0110100010 1010011111\n",
"2\n1 45164813\n0010001001 0001100000\n",
"1\n0110100010 1010011011\n",
"2\n1 45164813\n0010000001 0001100000\n",
"1\n0100100010 1010011011\n",
"2\n1 45164813\n0010000001 0011100000\n",
"1\n0110100010 1010111011\n",
"2\n2 45164813\n0010000001 0011100000\n",
"1\n0110100010 1000111011\n",
"2\n2 75661394\n0010000001 0011100000\n",
"1\n0110100010 1000101011\n",
"2\n2 75661394\n0010000001 0011000000\n",
"1\n0100100010 1000101011\n",
"2\n2 75661394\n0010100001 0011000000\n",
"1\n0100100010 1100101011\n",
"2\n1 75661394\n0010100001 0011000000\n",
"1\n0100100010 1100100011\n",
"2\n1 75661394\n0010100001 0010000000\n",
"1\n0100100010 1100100001\n",
"2\n1 75661394\n0010000001 0010000000\n",
"1\n0101100010 1100100001\n",
"2\n1 75661394\n0010000001 0010000100\n",
"1\n0001100010 1100100001\n",
"2\n1 15884654\n0010000001 0010000100\n",
"1\n0001100010 1100100011\n",
"2\n1 15884654\n0010000001 0010010100\n",
"1\n0001100010 1100100010\n",
"2\n1 15884654\n0010000001 0010010101\n",
"1\n0011100010 1100100010\n",
"2\n0 15884654\n0010000001 0010010101\n",
"1\n0011101010 1100100010\n",
"2\n0 15884654\n0010000001 0110010101\n",
"1\n0011101010 1100100011\n",
"2\n0 5768934\n0010000001 0110010101\n",
"1\n0011111010 1100100011\n",
"2\n0 5768934\n0110000001 0110010101\n",
"1\n0011111010 1000100011\n",
"2\n0 5768934\n0110000001 0010010101\n",
"1\n0011111110 1000100011\n",
"2\n0 2084855\n0110000001 0010010101\n",
"1\n0011111110 0000100011\n",
"2\n1 2084855\n0110000001 0010010101\n"
],
"output": [
"4\n",
"3\n",
"4\n",
"2\n",
"5\n",
"2\n",
"10\n",
"1\n",
"2\n",
"9\n",
"3\n",
"2\n",
"2\n",
"11\n",
"1\n",
"10\n",
"3\n",
"4\n",
"2\n",
"2\n",
"3\n",
"4\n",
"2\n",
"11\n",
"1\n",
"2\n",
"3\n",
"3\n",
"4\n",
"2\n",
"1\n",
"2\n",
"4\n",
"2\n",
"1\n",
"2\n",
"4\n",
"2\n",
"1\n",
"4\n",
"2\n",
"1\n",
"4\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n"
]
} | 2CODEFORCES
|
545_C. Woodcutters_131 | Little Susie listens to fairy tales before bed every day. Today's fairy tale was about wood cutters and the little girl immediately started imagining the choppers cutting wood. She imagined the situation that is described below.
There are n trees located along the road at points with coordinates x1, x2, ..., xn. Each tree has its height hi. Woodcutters can cut down a tree and fell it to the left or to the right. After that it occupies one of the segments [xi - hi, xi] or [xi;xi + hi]. The tree that is not cut down occupies a single point with coordinate xi. Woodcutters can fell a tree if the segment to be occupied by the fallen tree doesn't contain any occupied point. The woodcutters want to process as many trees as possible, so Susie wonders, what is the maximum number of trees to fell.
Input
The first line contains integer n (1 ≤ n ≤ 105) — the number of trees.
Next n lines contain pairs of integers xi, hi (1 ≤ xi, hi ≤ 109) — the coordinate and the height of the і-th tree.
The pairs are given in the order of ascending xi. No two trees are located at the point with the same coordinate.
Output
Print a single number — the maximum number of trees that you can cut down by the given rules.
Examples
Input
5
1 2
2 1
5 10
10 9
19 1
Output
3
Input
5
1 2
2 1
5 10
10 9
20 1
Output
4
Note
In the first sample you can fell the trees like that:
* fell the 1-st tree to the left — now it occupies segment [ - 1;1]
* fell the 2-nd tree to the right — now it occupies segment [2;3]
* leave the 3-rd tree — it occupies point 5
* leave the 4-th tree — it occupies point 10
* fell the 5-th tree to the right — now it occupies segment [19;20]
In the second sample you can also fell 4-th tree to the right, after that it will occupy segment [10;19]. | ll=lambda:map(int,input().split())
t=lambda:int(input())
ss=lambda:input()
#from math import log10 ,log2,ceil,factorial as f,gcd
#from itertools import combinations_with_replacement as cs
#from functools import reduce
#from bisect import bisect_right as br
#from collections import Counter
n=t()
x,h=[],[]
for _ in range(n):
a,b=ll()
x.append(a)
h.append(b)
if n>=2:
c=2
tx=x[0]
for i in range(1,n-1):
if x[i]-tx>h[i]:
tx=x[i]
c+=1
elif x[i+1]-x[i]>h[i]:
tx=x[i]+h[i]
c+=1
else:
tx=x[i]
print(c)
else:
print(1) | 3Python3
| {
"input": [
"5\n1 2\n2 1\n5 10\n10 9\n20 1\n",
"5\n1 2\n2 1\n5 10\n10 9\n19 1\n",
"4\n10 4\n15 1\n19 3\n20 1\n",
"2\n1 999999999\n1000000000 1000000000\n",
"67\n1 1\n3 8\n4 10\n7 8\n9 2\n10 1\n11 5\n12 8\n13 4\n16 6\n18 3\n19 3\n22 5\n24 6\n27 5\n28 3\n29 3\n30 5\n32 5\n33 10\n34 7\n35 8\n36 5\n41 3\n42 2\n43 5\n46 4\n48 4\n49 9\n52 4\n53 9\n55 1\n56 4\n59 7\n68 7\n69 4\n71 9\n72 10\n74 5\n76 4\n77 9\n80 7\n81 9\n82 5\n83 5\n84 9\n85 7\n86 9\n87 4\n88 7\n89 10\n90 3\n91 5\n92 10\n93 5\n94 8\n95 4\n96 2\n97 10\n98 1\n99 3\n100 1\n101 5\n102 4\n103 8\n104 8\n105 8\n",
"10\n999999900 1000000000\n999999901 1000000000\n999999902 1000000000\n999999903 1000000000\n999999904 1000000000\n999999905 1000000000\n999999906 1000000000\n999999907 1000000000\n999999908 1000000000\n999999909 1000000000\n",
"35\n1 7\n3 11\n6 12\n7 6\n8 5\n9 11\n15 3\n16 10\n22 2\n23 3\n25 7\n27 3\n34 5\n35 10\n37 3\n39 4\n40 5\n41 1\n44 1\n47 7\n48 11\n50 6\n52 5\n57 2\n58 7\n60 4\n62 1\n67 3\n68 12\n69 8\n70 1\n71 5\n72 5\n73 6\n74 4\n",
"1\n1000000000 1000000000\n",
"2\n100000000 1000000000\n1000000000 1000000000\n",
"10\n7 12\n10 2\n12 2\n15 1\n19 2\n20 1\n53 25\n63 10\n75 12\n87 1\n",
"3\n1 1\n1000 1000\n1000000000 1000000000\n",
"40\n1 1\n2 1\n3 1\n4 1\n5 1\n6 1\n7 1\n8 1\n9 1\n10 1\n11 1\n12 1\n13 1\n14 1\n15 1\n16 1\n17 1\n18 1\n19 1\n20 1\n21 1\n22 1\n23 1\n24 1\n25 1\n26 1\n27 1\n28 1\n29 1\n30 1\n31 1\n32 1\n33 1\n34 1\n35 1\n36 1\n37 1\n38 1\n39 1\n40 1\n",
"2\n1 222168095\n1000000000 1000000000\n",
"35\n1 7\n3 11\n6 12\n7 6\n8 5\n9 11\n15 3\n16 10\n22 2\n23 3\n25 7\n27 3\n34 5\n35 0\n37 3\n39 4\n40 5\n41 1\n44 1\n47 7\n48 11\n50 6\n52 5\n57 2\n58 7\n60 4\n62 1\n67 3\n68 12\n69 8\n70 1\n71 5\n72 5\n73 6\n74 4\n",
"1\n1010000000 1000000000\n",
"10\n7 12\n10 2\n12 2\n15 1\n19 2\n20 1\n53 25\n63 10\n75 12\n144 1\n",
"3\n1 1\n1000 1000\n1100000000 1000000000\n",
"5\n1 2\n2 2\n5 10\n10 9\n20 1\n",
"10\n999999900 1000000000\n999999901 1000100000\n999999902 1000000000\n999999903 1000000000\n999999904 1000000000\n999999905 1000000000\n999999906 1000000000\n999999907 1000000000\n999999908 1000000000\n999999909 1000000000\n",
"2\n100100000 1000000000\n1000000000 1000000000\n",
"40\n1 1\n2 1\n3 1\n4 1\n5 1\n6 1\n7 1\n8 1\n9 1\n10 1\n11 1\n12 1\n13 1\n14 1\n15 1\n16 1\n17 1\n18 1\n19 1\n20 1\n21 1\n22 1\n23 1\n24 1\n25 1\n26 1\n27 1\n28 1\n29 1\n30 1\n31 1\n32 1\n33 1\n34 0\n35 1\n36 1\n37 1\n38 1\n39 1\n40 1\n",
"5\n1 2\n2 1\n5 10\n10 9\n21 1\n",
"2\n1 417800447\n1000000000 1000000000\n",
"35\n1 7\n3 11\n6 12\n7 6\n8 6\n9 11\n15 3\n16 10\n22 2\n23 3\n25 7\n27 3\n34 5\n35 0\n37 3\n39 4\n40 5\n41 1\n44 1\n47 7\n48 11\n50 6\n52 5\n57 2\n58 7\n60 4\n62 1\n67 3\n68 12\n69 8\n70 1\n71 5\n72 5\n73 6\n74 4\n",
"1\n1010000000 1000010000\n",
"2\n100100000 1000001000\n1000000000 1000000000\n",
"3\n1 1\n1000 1000\n1100000100 1000000000\n",
"40\n1 1\n2 1\n3 1\n4 1\n5 1\n6 1\n7 1\n8 1\n9 1\n10 1\n11 1\n12 1\n13 1\n14 1\n15 1\n16 1\n17 1\n18 1\n19 1\n20 1\n21 1\n22 1\n23 1\n24 1\n25 1\n26 1\n27 1\n28 1\n29 1\n30 1\n31 1\n32 1\n33 1\n34 0\n35 1\n36 1\n37 1\n38 2\n39 1\n40 1\n",
"5\n1 0\n2 1\n5 10\n10 9\n21 1\n",
"2\n2 417800447\n1000000000 1000000000\n",
"1\n1110000000 1000010000\n",
"2\n100110000 1000001000\n1000000000 1000000000\n",
"5\n1 0\n2 1\n5 10\n10 4\n21 1\n",
"2\n0 417800447\n1000000000 1000000000\n",
"1\n1110000000 1000000000\n",
"2\n100110000 1100001000\n1000000000 1000000000\n",
"5\n0 0\n2 1\n5 10\n10 4\n21 1\n",
"2\n0 417800447\n1010000000 1000000000\n",
"1\n1110000000 1000000100\n",
"5\n0 0\n2 1\n5 10\n10 4\n27 1\n",
"2\n0 417800447\n1010000000 1000001000\n",
"1\n1110000000 1010000000\n",
"5\n0 0\n2 1\n5 10\n10 4\n39 1\n",
"2\n0 417800447\n0010000000 1000000000\n",
"1\n0110000000 1010000000\n",
"2\n-1 417800447\n0010000000 1000000000\n",
"1\n0111000000 1010000000\n",
"2\n-1 587142519\n0010000000 1000000000\n",
"1\n0111000000 0010000000\n",
"2\n-1 207865786\n0010000000 1000000000\n",
"1\n0111000000 0010000100\n",
"2\n-1 207865786\n0010001000 1000000000\n",
"1\n0110000000 0010000100\n",
"2\n-1 207865786\n0010001000 1000000001\n",
"1\n0110000010 0010000100\n",
"2\n-1 207865786\n0010001000 1000100000\n",
"1\n0110000010 0000000100\n",
"2\n0 207865786\n0010001000 1000100000\n",
"1\n0110000010 0000000110\n",
"2\n0 207865786\n0010001001 1000100000\n",
"1\n0110000010 0000010110\n",
"2\n1 207865786\n0010001001 1000100000\n",
"1\n0110000010 0000011110\n",
"2\n1 207865786\n0000001001 1000100000\n",
"1\n0110000010 0000011111\n",
"2\n1 207865786\n0010001001 1001100000\n",
"1\n0110000010 1000011111\n",
"2\n1 22649069\n0010001001 1001100000\n",
"1\n0110000010 1010011111\n",
"2\n1 45164813\n0010001001 1001100000\n",
"1\n0110100010 1010011111\n",
"2\n1 45164813\n0010001001 0001100000\n",
"1\n0110100010 1010011011\n",
"2\n1 45164813\n0010000001 0001100000\n",
"1\n0100100010 1010011011\n",
"2\n1 45164813\n0010000001 0011100000\n",
"1\n0110100010 1010111011\n",
"2\n2 45164813\n0010000001 0011100000\n",
"1\n0110100010 1000111011\n",
"2\n2 75661394\n0010000001 0011100000\n",
"1\n0110100010 1000101011\n",
"2\n2 75661394\n0010000001 0011000000\n",
"1\n0100100010 1000101011\n",
"2\n2 75661394\n0010100001 0011000000\n",
"1\n0100100010 1100101011\n",
"2\n1 75661394\n0010100001 0011000000\n",
"1\n0100100010 1100100011\n",
"2\n1 75661394\n0010100001 0010000000\n",
"1\n0100100010 1100100001\n",
"2\n1 75661394\n0010000001 0010000000\n",
"1\n0101100010 1100100001\n",
"2\n1 75661394\n0010000001 0010000100\n",
"1\n0001100010 1100100001\n",
"2\n1 15884654\n0010000001 0010000100\n",
"1\n0001100010 1100100011\n",
"2\n1 15884654\n0010000001 0010010100\n",
"1\n0001100010 1100100010\n",
"2\n1 15884654\n0010000001 0010010101\n",
"1\n0011100010 1100100010\n",
"2\n0 15884654\n0010000001 0010010101\n",
"1\n0011101010 1100100010\n",
"2\n0 15884654\n0010000001 0110010101\n",
"1\n0011101010 1100100011\n",
"2\n0 5768934\n0010000001 0110010101\n",
"1\n0011111010 1100100011\n",
"2\n0 5768934\n0110000001 0110010101\n",
"1\n0011111010 1000100011\n",
"2\n0 5768934\n0110000001 0010010101\n",
"1\n0011111110 1000100011\n",
"2\n0 2084855\n0110000001 0010010101\n",
"1\n0011111110 0000100011\n",
"2\n1 2084855\n0110000001 0010010101\n"
],
"output": [
"4\n",
"3\n",
"4\n",
"2\n",
"5\n",
"2\n",
"10\n",
"1\n",
"2\n",
"9\n",
"3\n",
"2\n",
"2\n",
"11\n",
"1\n",
"10\n",
"3\n",
"4\n",
"2\n",
"2\n",
"3\n",
"4\n",
"2\n",
"11\n",
"1\n",
"2\n",
"3\n",
"3\n",
"4\n",
"2\n",
"1\n",
"2\n",
"4\n",
"2\n",
"1\n",
"2\n",
"4\n",
"2\n",
"1\n",
"4\n",
"2\n",
"1\n",
"4\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n"
]
} | 2CODEFORCES
|
545_C. Woodcutters_132 | Little Susie listens to fairy tales before bed every day. Today's fairy tale was about wood cutters and the little girl immediately started imagining the choppers cutting wood. She imagined the situation that is described below.
There are n trees located along the road at points with coordinates x1, x2, ..., xn. Each tree has its height hi. Woodcutters can cut down a tree and fell it to the left or to the right. After that it occupies one of the segments [xi - hi, xi] or [xi;xi + hi]. The tree that is not cut down occupies a single point with coordinate xi. Woodcutters can fell a tree if the segment to be occupied by the fallen tree doesn't contain any occupied point. The woodcutters want to process as many trees as possible, so Susie wonders, what is the maximum number of trees to fell.
Input
The first line contains integer n (1 ≤ n ≤ 105) — the number of trees.
Next n lines contain pairs of integers xi, hi (1 ≤ xi, hi ≤ 109) — the coordinate and the height of the і-th tree.
The pairs are given in the order of ascending xi. No two trees are located at the point with the same coordinate.
Output
Print a single number — the maximum number of trees that you can cut down by the given rules.
Examples
Input
5
1 2
2 1
5 10
10 9
19 1
Output
3
Input
5
1 2
2 1
5 10
10 9
20 1
Output
4
Note
In the first sample you can fell the trees like that:
* fell the 1-st tree to the left — now it occupies segment [ - 1;1]
* fell the 2-nd tree to the right — now it occupies segment [2;3]
* leave the 3-rd tree — it occupies point 5
* leave the 4-th tree — it occupies point 10
* fell the 5-th tree to the right — now it occupies segment [19;20]
In the second sample you can also fell 4-th tree to the right, after that it will occupy segment [10;19]. | /* package whatever; // don't place package name! */
import java.util.*;
import java.lang.*;
import java.io.*;
/* Name of the class has to be "Main" only if the class is public. */
public class Trees
{
public static void main (String[] args) throws java.lang.Exception
{
// your code goes here
Scanner scan = new Scanner(System.in);
int numTrees = scan.nextInt();
int ans = 0;
int[] positions = new int[numTrees];
int[] heights = new int[numTrees];
if(numTrees == 1)
ans = 1;
else
{
if(numTrees > 1) ans = 2; //if there are at least two trees, we can at least fell them in opposite directions
for(int i = 0; i < numTrees; i++)
{
positions[i] = scan.nextInt();
heights[i] = scan.nextInt();
}
for(int j = 1; j < numTrees-1; j++)
{
//System.out.println("right? " + positions[j] + "+" + heights[j] + "<?" + positions[j+1]);
if(positions[j] - heights[j] > positions[j-1])
{
ans++;
// System.out.println("fell tree " + j + " of height " + heights[j] + " to the left");
}
else if(positions[j] + heights[j] < positions[j+1])
{
ans++;
// System.out.println("fell tree " + j + " of height " + heights[j] + " to the right");
positions[j] += heights[j];
}
}
}
System.out.println(ans);
}
} | 4JAVA
| {
"input": [
"5\n1 2\n2 1\n5 10\n10 9\n20 1\n",
"5\n1 2\n2 1\n5 10\n10 9\n19 1\n",
"4\n10 4\n15 1\n19 3\n20 1\n",
"2\n1 999999999\n1000000000 1000000000\n",
"67\n1 1\n3 8\n4 10\n7 8\n9 2\n10 1\n11 5\n12 8\n13 4\n16 6\n18 3\n19 3\n22 5\n24 6\n27 5\n28 3\n29 3\n30 5\n32 5\n33 10\n34 7\n35 8\n36 5\n41 3\n42 2\n43 5\n46 4\n48 4\n49 9\n52 4\n53 9\n55 1\n56 4\n59 7\n68 7\n69 4\n71 9\n72 10\n74 5\n76 4\n77 9\n80 7\n81 9\n82 5\n83 5\n84 9\n85 7\n86 9\n87 4\n88 7\n89 10\n90 3\n91 5\n92 10\n93 5\n94 8\n95 4\n96 2\n97 10\n98 1\n99 3\n100 1\n101 5\n102 4\n103 8\n104 8\n105 8\n",
"10\n999999900 1000000000\n999999901 1000000000\n999999902 1000000000\n999999903 1000000000\n999999904 1000000000\n999999905 1000000000\n999999906 1000000000\n999999907 1000000000\n999999908 1000000000\n999999909 1000000000\n",
"35\n1 7\n3 11\n6 12\n7 6\n8 5\n9 11\n15 3\n16 10\n22 2\n23 3\n25 7\n27 3\n34 5\n35 10\n37 3\n39 4\n40 5\n41 1\n44 1\n47 7\n48 11\n50 6\n52 5\n57 2\n58 7\n60 4\n62 1\n67 3\n68 12\n69 8\n70 1\n71 5\n72 5\n73 6\n74 4\n",
"1\n1000000000 1000000000\n",
"2\n100000000 1000000000\n1000000000 1000000000\n",
"10\n7 12\n10 2\n12 2\n15 1\n19 2\n20 1\n53 25\n63 10\n75 12\n87 1\n",
"3\n1 1\n1000 1000\n1000000000 1000000000\n",
"40\n1 1\n2 1\n3 1\n4 1\n5 1\n6 1\n7 1\n8 1\n9 1\n10 1\n11 1\n12 1\n13 1\n14 1\n15 1\n16 1\n17 1\n18 1\n19 1\n20 1\n21 1\n22 1\n23 1\n24 1\n25 1\n26 1\n27 1\n28 1\n29 1\n30 1\n31 1\n32 1\n33 1\n34 1\n35 1\n36 1\n37 1\n38 1\n39 1\n40 1\n",
"2\n1 222168095\n1000000000 1000000000\n",
"35\n1 7\n3 11\n6 12\n7 6\n8 5\n9 11\n15 3\n16 10\n22 2\n23 3\n25 7\n27 3\n34 5\n35 0\n37 3\n39 4\n40 5\n41 1\n44 1\n47 7\n48 11\n50 6\n52 5\n57 2\n58 7\n60 4\n62 1\n67 3\n68 12\n69 8\n70 1\n71 5\n72 5\n73 6\n74 4\n",
"1\n1010000000 1000000000\n",
"10\n7 12\n10 2\n12 2\n15 1\n19 2\n20 1\n53 25\n63 10\n75 12\n144 1\n",
"3\n1 1\n1000 1000\n1100000000 1000000000\n",
"5\n1 2\n2 2\n5 10\n10 9\n20 1\n",
"10\n999999900 1000000000\n999999901 1000100000\n999999902 1000000000\n999999903 1000000000\n999999904 1000000000\n999999905 1000000000\n999999906 1000000000\n999999907 1000000000\n999999908 1000000000\n999999909 1000000000\n",
"2\n100100000 1000000000\n1000000000 1000000000\n",
"40\n1 1\n2 1\n3 1\n4 1\n5 1\n6 1\n7 1\n8 1\n9 1\n10 1\n11 1\n12 1\n13 1\n14 1\n15 1\n16 1\n17 1\n18 1\n19 1\n20 1\n21 1\n22 1\n23 1\n24 1\n25 1\n26 1\n27 1\n28 1\n29 1\n30 1\n31 1\n32 1\n33 1\n34 0\n35 1\n36 1\n37 1\n38 1\n39 1\n40 1\n",
"5\n1 2\n2 1\n5 10\n10 9\n21 1\n",
"2\n1 417800447\n1000000000 1000000000\n",
"35\n1 7\n3 11\n6 12\n7 6\n8 6\n9 11\n15 3\n16 10\n22 2\n23 3\n25 7\n27 3\n34 5\n35 0\n37 3\n39 4\n40 5\n41 1\n44 1\n47 7\n48 11\n50 6\n52 5\n57 2\n58 7\n60 4\n62 1\n67 3\n68 12\n69 8\n70 1\n71 5\n72 5\n73 6\n74 4\n",
"1\n1010000000 1000010000\n",
"2\n100100000 1000001000\n1000000000 1000000000\n",
"3\n1 1\n1000 1000\n1100000100 1000000000\n",
"40\n1 1\n2 1\n3 1\n4 1\n5 1\n6 1\n7 1\n8 1\n9 1\n10 1\n11 1\n12 1\n13 1\n14 1\n15 1\n16 1\n17 1\n18 1\n19 1\n20 1\n21 1\n22 1\n23 1\n24 1\n25 1\n26 1\n27 1\n28 1\n29 1\n30 1\n31 1\n32 1\n33 1\n34 0\n35 1\n36 1\n37 1\n38 2\n39 1\n40 1\n",
"5\n1 0\n2 1\n5 10\n10 9\n21 1\n",
"2\n2 417800447\n1000000000 1000000000\n",
"1\n1110000000 1000010000\n",
"2\n100110000 1000001000\n1000000000 1000000000\n",
"5\n1 0\n2 1\n5 10\n10 4\n21 1\n",
"2\n0 417800447\n1000000000 1000000000\n",
"1\n1110000000 1000000000\n",
"2\n100110000 1100001000\n1000000000 1000000000\n",
"5\n0 0\n2 1\n5 10\n10 4\n21 1\n",
"2\n0 417800447\n1010000000 1000000000\n",
"1\n1110000000 1000000100\n",
"5\n0 0\n2 1\n5 10\n10 4\n27 1\n",
"2\n0 417800447\n1010000000 1000001000\n",
"1\n1110000000 1010000000\n",
"5\n0 0\n2 1\n5 10\n10 4\n39 1\n",
"2\n0 417800447\n0010000000 1000000000\n",
"1\n0110000000 1010000000\n",
"2\n-1 417800447\n0010000000 1000000000\n",
"1\n0111000000 1010000000\n",
"2\n-1 587142519\n0010000000 1000000000\n",
"1\n0111000000 0010000000\n",
"2\n-1 207865786\n0010000000 1000000000\n",
"1\n0111000000 0010000100\n",
"2\n-1 207865786\n0010001000 1000000000\n",
"1\n0110000000 0010000100\n",
"2\n-1 207865786\n0010001000 1000000001\n",
"1\n0110000010 0010000100\n",
"2\n-1 207865786\n0010001000 1000100000\n",
"1\n0110000010 0000000100\n",
"2\n0 207865786\n0010001000 1000100000\n",
"1\n0110000010 0000000110\n",
"2\n0 207865786\n0010001001 1000100000\n",
"1\n0110000010 0000010110\n",
"2\n1 207865786\n0010001001 1000100000\n",
"1\n0110000010 0000011110\n",
"2\n1 207865786\n0000001001 1000100000\n",
"1\n0110000010 0000011111\n",
"2\n1 207865786\n0010001001 1001100000\n",
"1\n0110000010 1000011111\n",
"2\n1 22649069\n0010001001 1001100000\n",
"1\n0110000010 1010011111\n",
"2\n1 45164813\n0010001001 1001100000\n",
"1\n0110100010 1010011111\n",
"2\n1 45164813\n0010001001 0001100000\n",
"1\n0110100010 1010011011\n",
"2\n1 45164813\n0010000001 0001100000\n",
"1\n0100100010 1010011011\n",
"2\n1 45164813\n0010000001 0011100000\n",
"1\n0110100010 1010111011\n",
"2\n2 45164813\n0010000001 0011100000\n",
"1\n0110100010 1000111011\n",
"2\n2 75661394\n0010000001 0011100000\n",
"1\n0110100010 1000101011\n",
"2\n2 75661394\n0010000001 0011000000\n",
"1\n0100100010 1000101011\n",
"2\n2 75661394\n0010100001 0011000000\n",
"1\n0100100010 1100101011\n",
"2\n1 75661394\n0010100001 0011000000\n",
"1\n0100100010 1100100011\n",
"2\n1 75661394\n0010100001 0010000000\n",
"1\n0100100010 1100100001\n",
"2\n1 75661394\n0010000001 0010000000\n",
"1\n0101100010 1100100001\n",
"2\n1 75661394\n0010000001 0010000100\n",
"1\n0001100010 1100100001\n",
"2\n1 15884654\n0010000001 0010000100\n",
"1\n0001100010 1100100011\n",
"2\n1 15884654\n0010000001 0010010100\n",
"1\n0001100010 1100100010\n",
"2\n1 15884654\n0010000001 0010010101\n",
"1\n0011100010 1100100010\n",
"2\n0 15884654\n0010000001 0010010101\n",
"1\n0011101010 1100100010\n",
"2\n0 15884654\n0010000001 0110010101\n",
"1\n0011101010 1100100011\n",
"2\n0 5768934\n0010000001 0110010101\n",
"1\n0011111010 1100100011\n",
"2\n0 5768934\n0110000001 0110010101\n",
"1\n0011111010 1000100011\n",
"2\n0 5768934\n0110000001 0010010101\n",
"1\n0011111110 1000100011\n",
"2\n0 2084855\n0110000001 0010010101\n",
"1\n0011111110 0000100011\n",
"2\n1 2084855\n0110000001 0010010101\n"
],
"output": [
"4\n",
"3\n",
"4\n",
"2\n",
"5\n",
"2\n",
"10\n",
"1\n",
"2\n",
"9\n",
"3\n",
"2\n",
"2\n",
"11\n",
"1\n",
"10\n",
"3\n",
"4\n",
"2\n",
"2\n",
"3\n",
"4\n",
"2\n",
"11\n",
"1\n",
"2\n",
"3\n",
"3\n",
"4\n",
"2\n",
"1\n",
"2\n",
"4\n",
"2\n",
"1\n",
"2\n",
"4\n",
"2\n",
"1\n",
"4\n",
"2\n",
"1\n",
"4\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n"
]
} | 2CODEFORCES
|
571_E. Geometric Progressions_133 | Geometric progression with the first element a and common ratio b is a sequence of numbers a, ab, ab2, ab3, ....
You are given n integer geometric progressions. Your task is to find the smallest integer x, that is the element of all the given progressions, or else state that such integer does not exist.
Input
The first line contains integer (1 ≤ n ≤ 100) — the number of geometric progressions.
Next n lines contain pairs of integers a, b (1 ≤ a, b ≤ 109), that are the first element and the common ratio of the corresponding geometric progression.
Output
If the intersection of all progressions is empty, then print - 1, otherwise print the remainder of the minimal positive integer number belonging to all progressions modulo 1000000007 (109 + 7).
Examples
Input
2
2 2
4 1
Output
4
Input
2
2 2
3 3
Output
-1
Note
In the second sample test one of the progressions contains only powers of two, the other one contains only powers of three. |
def primes(n):
size = n/3 + (n%6==2)
plist = size * [True]
plist[0] = False
for i in xrange(int(n**0.5)/3+1):
if plist[i]:
k=3*i+1|1
for j in xrange((k*k)/3,size,2*k):
plist[j] = False
for j in xrange((k*k+4*k-2*k*(i&1))/3,size,2*k):
plist[j] = False
ans = [2,3]
for i in xrange(size):
if plist[i]:
ans.append(3*i+1|1)
return ans
def solve():
mod = 1000000007
plist = primes(31700)
instring = """2
2 2
4 1"""
n = int(raw_input())
alist = []
blist = []
for i in xrange(n):
a,b = [int(x) for x in raw_input().split()]
alist.append(a)
blist.append(b)
# break down the primes
amaps = []
bmaps = []
for i in xrange(n):
a,b = alist[i], blist[i]
amap = dict()
bmap = dict()
for p in plist:
if p*p > a:
if a > 1:
amap[a] = 1
bmap[a] = 0
break
if a%p == 0:
count = 1
a /= p
while a%p == 0:
count += 1
a /= p
amap[p] = count
bmap[p] = 0
for p in plist:
if p*p > b:
if b > 1:
if b not in bmap:
amap[b] = 0
bmap[b] = 1
break
if b%p == 0:
count = 1
b /= p
while b%p == 0:
count += 1
b /= p
if p not in bmap:
amap[p] = 0
bmap[p] = count
amaps.append(amap)
bmaps.append(bmap)
#print amaps
#print bmaps
# check each a, see if any works
for i in xrange(n):
a = alist[i]
amap = amaps[i]
works = True
for j in xrange(n):
if alist[j] == a:
continue
constrained = -1
amapj = amaps[j]
for p in amapj:
if p not in amap:
works = False
if not works:
break
bmapj = bmaps[j]
for (p,c) in amap.iteritems():
need = c
if p in amapj:
need -= amapj[p]
add = 0
if p in bmapj:
add = bmapj[p]
if need == 0 and add == 0:
continue
if need < 0 or (add==0 and need>0) or need%add != 0:
works = False
break
index = need / add
if constrained == -1:
constrained = index
elif constrained != index:
works = False
break
if works:
print a
return True
#print "Looks like no a works..."
# make sure all seqs use same primes
for i in xrange(n):
for j in xrange(i+1,n):
if amaps[i].keys() != amaps[j].keys():
return False
#print "All them primes check out dude"
# look for a diff in prime alloc in two b's (ratio diff), use to solve equation
pkeys = amaps[0].keys()
for i in xrange(len(pkeys)):
p1 = pkeys[i]
for j in xrange(i+1,len(pkeys)):
p2 = pkeys[j]
for k in xrange(n):
for l in xrange(k+1,n):
#diff1 = bmaps[k][p1] - bmaps[l][p1]
#diff2 = bmaps[k][p2] - bmaps[l][p2]
a1p1 = amaps[k][p1]
b1p1 = bmaps[k][p1]
a1p2 = amaps[k][p2]
b1p2 = bmaps[k][p2]
a2p1 = amaps[l][p1]
b2p1 = bmaps[l][p1]
a2p2 = amaps[l][p2]
b2p2 = bmaps[l][p2]
q = b1p1
s = b2p1
r = b1p2
t = b2p2
c1 = a2p1 - a1p1
c2 = a2p2 - a1p2
if q*t == r*s:
if r*c1 == q*c2:
continue
else:
return False
x3 = s*r - q*t
c3 = q*c2 - r*c1
if c3 % x3 != 0:
return False
sol_l = c3 / x3
# check if it works for all sequences
pmap = dict(amaps[l])
for key, value in bmaps[l].iteritems():
pmap[key] += sol_l*value
for o in xrange(n):
amap = amaps[o]
bmap = bmaps[o]
index = -1
for key, value in pmap.iteritems():
need = value - amap[key]
add = bmap[key]
if need == 0 and add == 0:
continue
if need < 0 or (need > 0 and add == 0):
return False
if need % add != 0:
return False
mustbe = need / add
if index == -1:
index = mustbe
elif index != mustbe:
return False
print alist[l] * pow(blist[l],sol_l,mod) % mod
return True
'''
if diff1 != diff2:
print "We got one!"
a1p1 = amaps[k][p1]
b1p1 = bmaps[k][p1]
a1p2 = amaps[k][p2]
b1p2 = bmaps[k][p2]
a2p1 = amaps[l][p1]
b2p1 = bmaps[l][p1]
a2p2 = amaps[l][p2]
b2p2 = bmaps[l][p2]
#print "%d + %d*i = %d + %d*j" % (a1p1,b1p1,a2p1,b2p1)
#print "%d + %d*i = %d + %d*j" % (a1p2,b1p2,a2p2,b2p2)
q = b1p1
s = b2p1
r = b1p2
t = b2p2
c1 = a2p1 - a1p1
c2 = a2p2 - a1p2
#print "%d*i-%d*j = %d" % (q,s,c1)
#print "%d*i-%d*j = %d" % (r,t,c2)
if (r*c1)%q != 0 or (r*s)%q != 0:
#print "Non integer solution to cross"
return False
c3 = c2 - (r*c1)/q
x3 = (r*s)/q - t
if c3%x3 != 0:
#print "Non integer solution to cross"
return False
sol_l = c3 / x3
#print p1, p2, sol_l, (c1+s)*sol_l/q
# check if it works for all sequences
pmap = dict(amaps[l])
for key, value in bmaps[l].iteritems():
pmap[key] += value
for o in xrange(n):
amap = amaps[o]
bmap = bmaps[o]
index = -1
for key, value in pmap.iteritems():
need = value - amap[key]
add = bmap[key]
if need == 0 and add == 0:
continue
if need < 0 or (need > 0 and add == 0):
return False
if need % add != 0:
return False
mustbe = need / add
if index == -1:
index = mustbe
elif index != mustbe:
return False
print alist[l] * pow(blist[l],sol_l,mod) % mod
return True
'''
# if no diffs, use mod sys solver
eea = lambda b,s,w=1,x=0,y=0,z=1:(b,w,x)if s==0 else eea(s,b%s,y,z,w-b/s*y,x-b/s*z)
def solve_mod_sys(eqs):
if len(eqs) == 1: return eqs
a,m1 = eqs.pop()
b,m2 = eqs.pop()
lhs,rhs = m1,b-a
gcd, m1inv = eea(m1,m2)[:2]
if (gcd > 1):
if rhs%gcd == 0:
rhs/=gcd
m1/=gcd
m2/=gcd
m1inv = eea(m1,m2)[1]
else:
return False
rhs = m1inv*rhs%m2
c = a + rhs*lhs
m3 = m2*lhs
eqs.append((c,m3))
return solve_mod_sys(eqs)
pkey = amaps[0].keys()[0]
equations = []
for i in xrange(n):
start = amaps[i][pkey]
step = bmaps[i][pkey]
equations.append((start,step))
res = solve_mod_sys(equations)
if res == False:
return False
else:
x,m = res[0]
x /= bmaps[0][pkey]
solution = alist[0]
for p in bmaps[0]:
solution *= pow(p,x*bmaps[0][p],mod)
print solution % mod
return True
if not solve():
print -1
| 1Python2
| {
"input": [
"2\n2 2\n3 3\n",
"2\n2 2\n4 1\n",
"25\n1 8\n8 8\n64 8\n512 8\n4096 8\n32768 8\n262144 8\n2097152 8\n16777216 8\n134217728 8\n8 64\n512 64\n32768 64\n2097152 64\n134217728 64\n512 4096\n2097152 4096\n2097152 16777216\n64 512\n32768 512\n16777216 512\n16777216 134217728\n4096 32768\n134217728 32768\n262144 2097152\n",
"2\n387420489 774840978\n2125764 3\n",
"17\n1 2\n1 4\n4 16\n64 256\n16384 65536\n1 8\n64 512\n16777216 134217728\n16 32\n16777216 33554432\n16 128\n2048 2048\n8192 8192\n4096 131072\n8192 524288\n256 8388608\n2097152 536870912\n",
"14\n1 2\n2 4\n8 16\n128 256\n32768 65536\n4 8\n256 512\n16 32\n64 128\n1024 2048\n4096 8192\n65536 131072\n262144 524288\n4194304 8388608\n",
"10\n1 3\n3 9\n27 81\n2187 6561\n9 27\n6561 19683\n81 243\n729 2187\n59049 177147\n531441 1594323\n",
"9\n1 4\n4 16\n64 256\n16384 65536\n16 64\n65536 262144\n256 1024\n4096 16384\n1048576 4194304\n",
"2\n1 6\n3 12\n",
"2\n4 1\n2 4\n",
"2\n2 24\n27 48\n",
"2\n1 6\n9 12\n",
"17\n1 2\n2 4\n8 16\n128 256\n32768 65536\n2 8\n128 512\n33554432 134217728\n16 32\n16777216 33554432\n8 128\n128 2048\n512 8192\n256 131072\n64 524288\n1048576 8388608\n512 536870912\n",
"1\n312441 1\n",
"2\n1 6\n1 12\n",
"3\n1 4\n2 5\n4 2\n",
"31\n1 6\n6 6\n36 6\n216 6\n1296 6\n7776 6\n46656 6\n279936 6\n1679616 6\n10077696 6\n60466176 6\n362797056 6\n6 36\n216 36\n7776 36\n279936 36\n10077696 36\n362797056 36\n216 1296\n279936 1296\n362797056 1296\n279936 1679616\n36 216\n7776 216\n1679616 216\n362797056 216\n1679616 10077696\n1296 7776\n10077696 7776\n46656 279936\n60466176 362797056\n",
"2\n3 12\n16 6\n",
"2\n1 6\n2 6\n",
"3\n579 4123\n579 43543\n579 2138494\n",
"3\n21 42\n3 7\n7 3\n",
"2\n1 4\n2 6\n",
"2\n387420489 774840978\n972 3\n",
"39\n1 4\n4 4\n16 4\n64 4\n256 4\n1024 4\n4096 4\n16384 4\n65536 4\n262144 4\n1048576 4\n4194304 4\n16777216 4\n67108864 4\n268435456 4\n4 16\n64 16\n1024 16\n16384 16\n262144 16\n4194304 16\n67108864 16\n64 256\n16384 256\n4194304 256\n16384 65536\n16 64\n1024 64\n65536 64\n4194304 64\n268435456 64\n65536 262144\n256 1024\n262144 1024\n268435456 1024\n4096 16384\n67108864 16384\n1048576 4194304\n16777216 67108864\n",
"6\n1 9\n9 81\n729 6561\n81 729\n6561 59049\n531441 4782969\n",
"17\n1 2\n1 4\n4 16\n64 256\n16384 65536\n2 8\n128 512\n33554432 134217728\n4 32\n4194304 33554432\n16 128\n1024 2048\n2048 8192\n8 131072\n16384 524288\n2097152 8388608\n1 536870912\n",
"32\n1 5\n5 5\n25 5\n125 5\n625 5\n3125 5\n15625 5\n78125 5\n390625 5\n1953125 5\n9765625 5\n48828125 5\n244140625 5\n5 25\n125 25\n3125 25\n78125 25\n1953125 25\n48828125 25\n125 625\n78125 625\n48828125 625\n78125 390625\n25 125\n3125 125\n390625 125\n48828125 125\n390625 1953125\n625 3125\n1953125 3125\n15625 78125\n9765625 48828125\n",
"2\n387420489 774840978\n8748 3\n",
"1\n1 1\n",
"17\n1 2\n2 4\n8 16\n128 256\n32768 65536\n4 8\n256 512\n67108864 134217728\n4 32\n4194304 33554432\n2 128\n8 2048\n2 8192\n2048 131072\n32 524288\n8192 8388608\n67108864 536870912\n",
"1\n1214431 9043141\n",
"25\n1 9\n9 9\n81 9\n729 9\n6561 9\n59049 9\n531441 9\n4782969 9\n43046721 9\n387420489 9\n9 81\n729 81\n59049 81\n4782969 81\n387420489 81\n729 6561\n4782969 6561\n4782969 43046721\n81 729\n59049 729\n43046721 729\n43046721 387420489\n6561 59049\n387420489 59049\n531441 4782969\n",
"25\n1 10\n10 10\n100 10\n1000 10\n10000 10\n100000 10\n1000000 10\n10000000 10\n100000000 10\n1000000000 10\n10 100\n1000 100\n100000 100\n10000000 100\n1000000000 100\n1000 10000\n10000000 10000\n10000000 100000000\n100 1000\n100000 1000\n100000000 1000\n100000000 1000000000\n10000 100000\n1000000000 100000\n1000000 10000000\n",
"8\n1 5\n5 25\n125 625\n78125 390625\n25 125\n390625 1953125\n625 3125\n15625 78125\n",
"6\n1 10\n10 100\n1000 10000\n100 1000\n10000 100000\n1000000 10000000\n",
"3\n1 2\n2 2\n1 2\n",
"3\n579 4123\n579 4123\n579 4123\n",
"7\n1 6\n6 36\n216 1296\n279936 1679616\n36 216\n1296 7776\n46656 279936\n",
"26\n1 7\n7 7\n49 7\n343 7\n2401 7\n16807 7\n117649 7\n823543 7\n5764801 7\n40353607 7\n282475249 7\n7 49\n343 49\n16807 49\n823543 49\n40353607 49\n343 2401\n823543 2401\n823543 5764801\n49 343\n16807 343\n5764801 343\n5764801 40353607\n2401 16807\n40353607 16807\n117649 823543\n",
"6\n1 8\n8 64\n512 4096\n64 512\n4096 32768\n262144 2097152\n",
"2\n387420489 774840978\n26244 3\n",
"7\n1 7\n7 49\n343 2401\n823543 5764801\n49 343\n2401 16807\n117649 823543\n",
"1\n1 3148137\n",
"17\n1 2\n2 4\n8 16\n128 256\n32768 65536\n2 8\n128 512\n33554432 134217728\n2 32\n2097152 33554432\n128 128\n1024 2048\n1024 8192\n2 131072\n16384 524288\n524288 8388608\n8 536870912\n",
"10\n1 3\n3 9\n27 81\n2187 6561\n9 27\n12641 19683\n81 243\n729 2187\n59049 177147\n531441 1594323\n",
"2\n2 6\n3 12\n",
"2\n2 6\n9 12\n",
"1\n222607 1\n",
"3\n579 4123\n579 43543\n579 2905820\n",
"6\n1 9\n9 81\n729 6561\n9 729\n6561 59049\n531441 4782969\n",
"1\n1214431 11794409\n",
"1\n1 3586306\n",
"2\n2 2\n8 1\n",
"2\n2 6\n1 12\n",
"1\n252828 1\n",
"1\n1979576 11794409\n",
"1\n3590407 11794409\n",
"1\n3478272 11794409\n",
"3\n21 42\n6 7\n7 3\n",
"2\n1 4\n2 3\n",
"39\n1 4\n4 4\n16 4\n64 4\n256 4\n1024 4\n4096 4\n16384 4\n65536 4\n262144 4\n1048576 4\n4194304 4\n16777216 4\n67108864 4\n268435456 4\n4 16\n64 16\n1024 16\n16384 16\n262144 16\n4194304 16\n67108864 16\n64 256\n16384 256\n4194304 256\n16384 65536\n16 64\n1024 64\n65536 64\n4194304 64\n388053860 64\n65536 262144\n256 1024\n262144 1024\n268435456 1024\n4096 16384\n67108864 16384\n1048576 4194304\n16777216 67108864\n",
"2\n257615308 774840978\n8748 3\n",
"7\n1 6\n6 36\n115 1296\n279936 1679616\n36 216\n1296 7776\n46656 279936\n",
"26\n1 7\n7 7\n49 7\n343 7\n2401 7\n16807 7\n117649 7\n823543 7\n5764801 7\n40353607 7\n282475249 7\n7 49\n343 49\n16807 49\n823543 49\n40353607 49\n343 2401\n823543 2401\n823543 5764801\n49 343\n16807 343\n4230632 343\n5764801 40353607\n2401 16807\n40353607 16807\n117649 823543\n",
"6\n1 8\n8 64\n512 4096\n126 512\n4096 32768\n262144 2097152\n",
"7\n1 7\n11 49\n343 2401\n823543 5764801\n49 343\n2401 16807\n117649 823543\n",
"10\n1 3\n3 9\n27 81\n2187 6561\n9 27\n12641 19683\n81 272\n729 2187\n59049 177147\n531441 1594323\n",
"3\n21 42\n6 3\n7 3\n",
"39\n1 4\n4 4\n16 4\n64 4\n256 4\n1024 4\n4033 4\n16384 4\n65536 4\n262144 4\n1048576 4\n4194304 4\n16777216 4\n67108864 4\n268435456 4\n4 16\n64 16\n1024 16\n16384 16\n262144 16\n4194304 16\n67108864 16\n64 256\n16384 256\n4194304 256\n16384 65536\n16 64\n1024 64\n65536 64\n4194304 64\n388053860 64\n65536 262144\n256 1024\n262144 1024\n268435456 1024\n4096 16384\n67108864 16384\n1048576 4194304\n16777216 67108864\n",
"6\n1 9\n9 81\n729 6561\n9 729\n6561 59049\n283974 4782969\n",
"2\n257615308 774840978\n11038 3\n",
"7\n1 6\n6 33\n115 1296\n279936 1679616\n36 216\n1296 7776\n46656 279936\n",
"6\n1 8\n8 64\n512 4096\n4 512\n4096 32768\n262144 2097152\n",
"7\n1 7\n11 49\n343 2401\n823543 5764801\n77 343\n2401 16807\n117649 823543\n",
"1\n1 3750983\n",
"10\n1 3\n3 9\n27 65\n2187 6561\n9 27\n12641 19683\n81 272\n729 2187\n59049 177147\n531441 1594323\n",
"3\n21 42\n6 3\n7 5\n",
"39\n1 4\n4 4\n16 4\n64 4\n256 4\n1024 4\n4033 4\n16384 4\n65536 4\n262144 4\n1048576 4\n4194304 4\n16777216 6\n67108864 4\n268435456 4\n4 16\n64 16\n1024 16\n16384 16\n262144 16\n4194304 16\n67108864 16\n64 256\n16384 256\n4194304 256\n16384 65536\n16 64\n1024 64\n65536 64\n4194304 64\n388053860 64\n65536 262144\n256 1024\n262144 1024\n268435456 1024\n4096 16384\n67108864 16384\n1048576 4194304\n16777216 67108864\n",
"6\n1 9\n9 81\n729 6561\n4 729\n6561 59049\n283974 4782969\n",
"2\n262569360 774840978\n11038 3\n",
"7\n1 6\n6 33\n115 1296\n279936 1679616\n36 216\n839 7776\n46656 279936\n",
"6\n1 8\n8 64\n512 942\n4 512\n4096 32768\n262144 2097152\n",
"7\n1 7\n11 49\n343 2401\n823543 5764801\n77 343\n2401 16807\n31461 823543\n",
"1\n1 38399\n",
"10\n1 3\n3 9\n31 65\n2187 6561\n9 27\n12641 19683\n81 272\n729 2187\n59049 177147\n531441 1594323\n",
"3\n21 81\n6 3\n7 5\n",
"6\n1 9\n9 81\n729 6561\n4 729\n6561 72603\n283974 4782969\n",
"2\n262569360 774840978\n11038 1\n",
"7\n1 6\n6 33\n115 1296\n279936 1679616\n55 216\n839 7776\n46656 279936\n"
],
"output": [
" -1\n",
" 4\n",
" 877081770\n",
" 73787378\n",
" 659662497\n",
" 846526526\n",
" 798227420\n",
" 688327409\n",
" 36\n",
"-1\n",
" 659879000\n",
" 1296\n",
" 452786803\n",
"312441\n",
" 1\n",
"-1\n",
" 984905470\n",
" 746496\n",
"-1\n",
" 579\n",
" 21\n",
"-1\n",
" 73787378\n",
" 483961502\n",
" 776679181\n",
" 25658080\n",
" 422925678\n",
" 73787378\n",
"1\n",
" 929168961\n",
"1214431\n",
" 931384348\n",
" 936617851\n",
" 606616797\n",
" 342341157\n",
" 2\n",
" 579\n",
" 719781883\n",
" 136839922\n",
" 464664614\n",
" 73787378\n",
" 279800917\n",
"1\n",
" 839825639\n",
"-1\n",
"432\n",
"15552\n",
"222607\n",
"579\n",
"728888415\n",
"1214431\n",
"1\n",
"8\n",
"12\n",
"252828\n",
"1979576\n",
"3590407\n",
"3478272\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n"
]
} | 2CODEFORCES
|
571_E. Geometric Progressions_134 | Geometric progression with the first element a and common ratio b is a sequence of numbers a, ab, ab2, ab3, ....
You are given n integer geometric progressions. Your task is to find the smallest integer x, that is the element of all the given progressions, or else state that such integer does not exist.
Input
The first line contains integer (1 ≤ n ≤ 100) — the number of geometric progressions.
Next n lines contain pairs of integers a, b (1 ≤ a, b ≤ 109), that are the first element and the common ratio of the corresponding geometric progression.
Output
If the intersection of all progressions is empty, then print - 1, otherwise print the remainder of the minimal positive integer number belonging to all progressions modulo 1000000007 (109 + 7).
Examples
Input
2
2 2
4 1
Output
4
Input
2
2 2
3 3
Output
-1
Note
In the second sample test one of the progressions contains only powers of two, the other one contains only powers of three. | #include <bits/stdc++.h>
using std::sort;
using std::swap;
using std::unique;
namespace fastIO {
static char buf[(1 << 19)], *p1 = buf + (1 << 19), *pend = buf + (1 << 19);
inline char nc() {
if (p1 == pend) {
p1 = buf;
pend = buf + fread(buf, 1, (1 << 19), stdin);
}
return *p1++;
}
inline long long read() {
long long x = 0, f = 1;
register char s = nc();
for (; !isdigit(s); s = nc())
if (s == '-') f = -1;
for (; isdigit(s); s = nc()) x = (x << 1) + (x << 3) + s - '0';
return x * f;
}
} // namespace fastIO
using namespace fastIO;
inline long long mabs(long long x) { return x > 0 ? x : -x; }
long long gcd(long long a, long long b) { return b ? gcd(b, a % b) : a; }
struct IT {
long long p;
long long k;
IT(long long p = 0, long long k = 0) : p(p), k(k) {}
};
struct rec {
IT p[1001];
long long num;
void init(long long x) {
for (long long i = 2; i * i <= x; ++i) {
if (x % i == 0) {
long long c = 0;
while (x % i == 0) x /= i, c++;
p[num++] = IT(i, c);
}
}
if (x > 1) p[num++] = IT(x, 1);
}
IT query(long long x) {
for (long long i = 0; i < num; ++i)
if (p[i].p == x) return p[i];
return IT(x, 0);
}
} A[200], B[200];
long long n;
IT A1[3507], B1[3507], A2[3507], B2[3507];
long long pri[3507], num;
long long exgcd(long long a, long long b, long long &x, long long &y) {
if (!b) {
x = 1, y = 0;
return a;
}
long long g = exgcd(b, a % b, y, x);
y -= a / b * x;
return g;
}
void inter(long long A, long long B, long long C, long long a, long long b,
long long c, long long &x1, long long &x2) {
while (a) {
long long t = A / a;
A -= t * a, B -= t * b, C -= t * c;
swap(A, a);
swap(B, b);
swap(C, c);
}
if (c % b) puts("-1"), exit(0);
x2 = -c / b;
if ((C + B * x2) % A) puts("-1"), exit(0);
x1 = (-C - B * x2) / A;
}
inline void UN(rec &a1, rec &b1, rec &a2, rec &b2) {
num = 0;
for (long long i = 0; i < a1.num; ++i) pri[num++] = a1.p[i].p;
for (long long i = 0; i < a2.num; ++i) pri[num++] = a2.p[i].p;
for (long long i = 0; i < b1.num; ++i) pri[num++] = b1.p[i].p;
for (long long i = 0; i < b2.num; ++i) pri[num++] = b2.p[i].p;
sort(pri, pri + num);
num = unique(pri, pri + num) - pri;
for (long long i = 0; i < num; ++i) A1[i] = a1.query(pri[i]);
for (long long i = 0; i < num; ++i) A2[i] = a2.query(pri[i]);
for (long long i = 0; i < num; ++i) B1[i] = b1.query(pri[i]);
for (long long i = 0; i < num; ++i) B2[i] = b2.query(pri[i]);
long long A = 0, B = 0, C = 0;
long long flg1 = 0;
long long x1, x2;
for (long long i = 0; i < num; ++i) {
long long a = B1[i].k, b = -B2[i].k, c = A1[i].k - A2[i].k;
if (a == 0 && b == 0) {
if (c) puts("-1"), exit(0);
continue;
}
long long g = gcd(a, gcd(-b, mabs(c)));
a /= g, b /= g, c /= g;
if (!b) {
if (c % a) puts("-1"), exit(0);
if (-c / a < 0) puts("-1"), exit(0);
}
if (!A && !B) {
A = a, B = b, C = c;
continue;
}
if (!B) {
if (b) {
inter(A, B, C, a, b, c, x1, x2);
flg1 = 1;
break;
}
if (C / A != c / a) puts("-1"), exit(0);
continue;
}
if (A * b == a * B) {
if (c * A == C * a) continue;
puts("-1"), exit(0);
}
inter(A, B, C, a, b, c, x1, x2), flg1 = 1;
break;
}
if (flg1) {
for (long long i = 0; i < num; ++i) {
long long a = B1[i].k, b = -B2[i].k, c = A1[i].k - A2[i].k;
if (a * x1 + b * x2 + c) puts("-1"), exit(0);
}
for (long long i = 0; i < num; ++i) {
A1[i].k = A1[i].k + B1[i].k * x1;
B1[i].k = 0;
}
for (long long i = 0; i < num; ++i) {
a1.p[i] = A1[i], b1.p[i] = B1[i];
}
a1.num = b1.num = num;
return;
}
long long g = exgcd(A, B, x1, x2);
if (C % g) puts("-1"), exit(0);
x1 *= -C / g, x2 *= -C / g;
long long tx = mabs(-B / g), ty = mabs(A / g);
if (C > 0 || !ty) {
x1 = (x1 % tx + tx) % tx;
if (B)
x2 = -(A * x1 + C) / B;
else
x2 = 0;
} else {
x2 = (x2 % ty + ty) % ty;
if (A)
x1 = (-B * x2 - C) / A;
else
x1 = 0;
}
for (long long i = 0; i < num; ++i) {
A1[i].k = A1[i].k + B1[i].k * x1;
B1[i].k = tx * B1[i].k;
}
for (long long i = 0; i < num; ++i) {
a1.p[i] = A1[i], b1.p[i] = B1[i];
}
a1.num = b1.num = num;
}
const long long P = 1e9 + 7;
inline long long ksm(long long x, long long y) {
long long ans = 1;
while (y) {
if (y & 1) ans = ans * x % P;
x = x * x % P;
y >>= 1;
}
return ans;
}
signed main() {
n = read();
for (long long i = 1, a, b; i <= n; ++i) {
a = read();
b = read();
A[i].init(a);
B[i].init(b);
}
for (long long i = 2; i <= n; ++i) {
UN(A[1], B[1], A[i], B[i]);
}
long long ans = 1;
for (long long i = 0; i < A[1].num; ++i) {
ans = ans * 1ll * ksm(A[1].p[i].p, A[1].p[i].k) % P;
}
printf("%lld\n", ans);
return 0;
}
| 2C++
| {
"input": [
"2\n2 2\n3 3\n",
"2\n2 2\n4 1\n",
"25\n1 8\n8 8\n64 8\n512 8\n4096 8\n32768 8\n262144 8\n2097152 8\n16777216 8\n134217728 8\n8 64\n512 64\n32768 64\n2097152 64\n134217728 64\n512 4096\n2097152 4096\n2097152 16777216\n64 512\n32768 512\n16777216 512\n16777216 134217728\n4096 32768\n134217728 32768\n262144 2097152\n",
"2\n387420489 774840978\n2125764 3\n",
"17\n1 2\n1 4\n4 16\n64 256\n16384 65536\n1 8\n64 512\n16777216 134217728\n16 32\n16777216 33554432\n16 128\n2048 2048\n8192 8192\n4096 131072\n8192 524288\n256 8388608\n2097152 536870912\n",
"14\n1 2\n2 4\n8 16\n128 256\n32768 65536\n4 8\n256 512\n16 32\n64 128\n1024 2048\n4096 8192\n65536 131072\n262144 524288\n4194304 8388608\n",
"10\n1 3\n3 9\n27 81\n2187 6561\n9 27\n6561 19683\n81 243\n729 2187\n59049 177147\n531441 1594323\n",
"9\n1 4\n4 16\n64 256\n16384 65536\n16 64\n65536 262144\n256 1024\n4096 16384\n1048576 4194304\n",
"2\n1 6\n3 12\n",
"2\n4 1\n2 4\n",
"2\n2 24\n27 48\n",
"2\n1 6\n9 12\n",
"17\n1 2\n2 4\n8 16\n128 256\n32768 65536\n2 8\n128 512\n33554432 134217728\n16 32\n16777216 33554432\n8 128\n128 2048\n512 8192\n256 131072\n64 524288\n1048576 8388608\n512 536870912\n",
"1\n312441 1\n",
"2\n1 6\n1 12\n",
"3\n1 4\n2 5\n4 2\n",
"31\n1 6\n6 6\n36 6\n216 6\n1296 6\n7776 6\n46656 6\n279936 6\n1679616 6\n10077696 6\n60466176 6\n362797056 6\n6 36\n216 36\n7776 36\n279936 36\n10077696 36\n362797056 36\n216 1296\n279936 1296\n362797056 1296\n279936 1679616\n36 216\n7776 216\n1679616 216\n362797056 216\n1679616 10077696\n1296 7776\n10077696 7776\n46656 279936\n60466176 362797056\n",
"2\n3 12\n16 6\n",
"2\n1 6\n2 6\n",
"3\n579 4123\n579 43543\n579 2138494\n",
"3\n21 42\n3 7\n7 3\n",
"2\n1 4\n2 6\n",
"2\n387420489 774840978\n972 3\n",
"39\n1 4\n4 4\n16 4\n64 4\n256 4\n1024 4\n4096 4\n16384 4\n65536 4\n262144 4\n1048576 4\n4194304 4\n16777216 4\n67108864 4\n268435456 4\n4 16\n64 16\n1024 16\n16384 16\n262144 16\n4194304 16\n67108864 16\n64 256\n16384 256\n4194304 256\n16384 65536\n16 64\n1024 64\n65536 64\n4194304 64\n268435456 64\n65536 262144\n256 1024\n262144 1024\n268435456 1024\n4096 16384\n67108864 16384\n1048576 4194304\n16777216 67108864\n",
"6\n1 9\n9 81\n729 6561\n81 729\n6561 59049\n531441 4782969\n",
"17\n1 2\n1 4\n4 16\n64 256\n16384 65536\n2 8\n128 512\n33554432 134217728\n4 32\n4194304 33554432\n16 128\n1024 2048\n2048 8192\n8 131072\n16384 524288\n2097152 8388608\n1 536870912\n",
"32\n1 5\n5 5\n25 5\n125 5\n625 5\n3125 5\n15625 5\n78125 5\n390625 5\n1953125 5\n9765625 5\n48828125 5\n244140625 5\n5 25\n125 25\n3125 25\n78125 25\n1953125 25\n48828125 25\n125 625\n78125 625\n48828125 625\n78125 390625\n25 125\n3125 125\n390625 125\n48828125 125\n390625 1953125\n625 3125\n1953125 3125\n15625 78125\n9765625 48828125\n",
"2\n387420489 774840978\n8748 3\n",
"1\n1 1\n",
"17\n1 2\n2 4\n8 16\n128 256\n32768 65536\n4 8\n256 512\n67108864 134217728\n4 32\n4194304 33554432\n2 128\n8 2048\n2 8192\n2048 131072\n32 524288\n8192 8388608\n67108864 536870912\n",
"1\n1214431 9043141\n",
"25\n1 9\n9 9\n81 9\n729 9\n6561 9\n59049 9\n531441 9\n4782969 9\n43046721 9\n387420489 9\n9 81\n729 81\n59049 81\n4782969 81\n387420489 81\n729 6561\n4782969 6561\n4782969 43046721\n81 729\n59049 729\n43046721 729\n43046721 387420489\n6561 59049\n387420489 59049\n531441 4782969\n",
"25\n1 10\n10 10\n100 10\n1000 10\n10000 10\n100000 10\n1000000 10\n10000000 10\n100000000 10\n1000000000 10\n10 100\n1000 100\n100000 100\n10000000 100\n1000000000 100\n1000 10000\n10000000 10000\n10000000 100000000\n100 1000\n100000 1000\n100000000 1000\n100000000 1000000000\n10000 100000\n1000000000 100000\n1000000 10000000\n",
"8\n1 5\n5 25\n125 625\n78125 390625\n25 125\n390625 1953125\n625 3125\n15625 78125\n",
"6\n1 10\n10 100\n1000 10000\n100 1000\n10000 100000\n1000000 10000000\n",
"3\n1 2\n2 2\n1 2\n",
"3\n579 4123\n579 4123\n579 4123\n",
"7\n1 6\n6 36\n216 1296\n279936 1679616\n36 216\n1296 7776\n46656 279936\n",
"26\n1 7\n7 7\n49 7\n343 7\n2401 7\n16807 7\n117649 7\n823543 7\n5764801 7\n40353607 7\n282475249 7\n7 49\n343 49\n16807 49\n823543 49\n40353607 49\n343 2401\n823543 2401\n823543 5764801\n49 343\n16807 343\n5764801 343\n5764801 40353607\n2401 16807\n40353607 16807\n117649 823543\n",
"6\n1 8\n8 64\n512 4096\n64 512\n4096 32768\n262144 2097152\n",
"2\n387420489 774840978\n26244 3\n",
"7\n1 7\n7 49\n343 2401\n823543 5764801\n49 343\n2401 16807\n117649 823543\n",
"1\n1 3148137\n",
"17\n1 2\n2 4\n8 16\n128 256\n32768 65536\n2 8\n128 512\n33554432 134217728\n2 32\n2097152 33554432\n128 128\n1024 2048\n1024 8192\n2 131072\n16384 524288\n524288 8388608\n8 536870912\n",
"10\n1 3\n3 9\n27 81\n2187 6561\n9 27\n12641 19683\n81 243\n729 2187\n59049 177147\n531441 1594323\n",
"2\n2 6\n3 12\n",
"2\n2 6\n9 12\n",
"1\n222607 1\n",
"3\n579 4123\n579 43543\n579 2905820\n",
"6\n1 9\n9 81\n729 6561\n9 729\n6561 59049\n531441 4782969\n",
"1\n1214431 11794409\n",
"1\n1 3586306\n",
"2\n2 2\n8 1\n",
"2\n2 6\n1 12\n",
"1\n252828 1\n",
"1\n1979576 11794409\n",
"1\n3590407 11794409\n",
"1\n3478272 11794409\n",
"3\n21 42\n6 7\n7 3\n",
"2\n1 4\n2 3\n",
"39\n1 4\n4 4\n16 4\n64 4\n256 4\n1024 4\n4096 4\n16384 4\n65536 4\n262144 4\n1048576 4\n4194304 4\n16777216 4\n67108864 4\n268435456 4\n4 16\n64 16\n1024 16\n16384 16\n262144 16\n4194304 16\n67108864 16\n64 256\n16384 256\n4194304 256\n16384 65536\n16 64\n1024 64\n65536 64\n4194304 64\n388053860 64\n65536 262144\n256 1024\n262144 1024\n268435456 1024\n4096 16384\n67108864 16384\n1048576 4194304\n16777216 67108864\n",
"2\n257615308 774840978\n8748 3\n",
"7\n1 6\n6 36\n115 1296\n279936 1679616\n36 216\n1296 7776\n46656 279936\n",
"26\n1 7\n7 7\n49 7\n343 7\n2401 7\n16807 7\n117649 7\n823543 7\n5764801 7\n40353607 7\n282475249 7\n7 49\n343 49\n16807 49\n823543 49\n40353607 49\n343 2401\n823543 2401\n823543 5764801\n49 343\n16807 343\n4230632 343\n5764801 40353607\n2401 16807\n40353607 16807\n117649 823543\n",
"6\n1 8\n8 64\n512 4096\n126 512\n4096 32768\n262144 2097152\n",
"7\n1 7\n11 49\n343 2401\n823543 5764801\n49 343\n2401 16807\n117649 823543\n",
"10\n1 3\n3 9\n27 81\n2187 6561\n9 27\n12641 19683\n81 272\n729 2187\n59049 177147\n531441 1594323\n",
"3\n21 42\n6 3\n7 3\n",
"39\n1 4\n4 4\n16 4\n64 4\n256 4\n1024 4\n4033 4\n16384 4\n65536 4\n262144 4\n1048576 4\n4194304 4\n16777216 4\n67108864 4\n268435456 4\n4 16\n64 16\n1024 16\n16384 16\n262144 16\n4194304 16\n67108864 16\n64 256\n16384 256\n4194304 256\n16384 65536\n16 64\n1024 64\n65536 64\n4194304 64\n388053860 64\n65536 262144\n256 1024\n262144 1024\n268435456 1024\n4096 16384\n67108864 16384\n1048576 4194304\n16777216 67108864\n",
"6\n1 9\n9 81\n729 6561\n9 729\n6561 59049\n283974 4782969\n",
"2\n257615308 774840978\n11038 3\n",
"7\n1 6\n6 33\n115 1296\n279936 1679616\n36 216\n1296 7776\n46656 279936\n",
"6\n1 8\n8 64\n512 4096\n4 512\n4096 32768\n262144 2097152\n",
"7\n1 7\n11 49\n343 2401\n823543 5764801\n77 343\n2401 16807\n117649 823543\n",
"1\n1 3750983\n",
"10\n1 3\n3 9\n27 65\n2187 6561\n9 27\n12641 19683\n81 272\n729 2187\n59049 177147\n531441 1594323\n",
"3\n21 42\n6 3\n7 5\n",
"39\n1 4\n4 4\n16 4\n64 4\n256 4\n1024 4\n4033 4\n16384 4\n65536 4\n262144 4\n1048576 4\n4194304 4\n16777216 6\n67108864 4\n268435456 4\n4 16\n64 16\n1024 16\n16384 16\n262144 16\n4194304 16\n67108864 16\n64 256\n16384 256\n4194304 256\n16384 65536\n16 64\n1024 64\n65536 64\n4194304 64\n388053860 64\n65536 262144\n256 1024\n262144 1024\n268435456 1024\n4096 16384\n67108864 16384\n1048576 4194304\n16777216 67108864\n",
"6\n1 9\n9 81\n729 6561\n4 729\n6561 59049\n283974 4782969\n",
"2\n262569360 774840978\n11038 3\n",
"7\n1 6\n6 33\n115 1296\n279936 1679616\n36 216\n839 7776\n46656 279936\n",
"6\n1 8\n8 64\n512 942\n4 512\n4096 32768\n262144 2097152\n",
"7\n1 7\n11 49\n343 2401\n823543 5764801\n77 343\n2401 16807\n31461 823543\n",
"1\n1 38399\n",
"10\n1 3\n3 9\n31 65\n2187 6561\n9 27\n12641 19683\n81 272\n729 2187\n59049 177147\n531441 1594323\n",
"3\n21 81\n6 3\n7 5\n",
"6\n1 9\n9 81\n729 6561\n4 729\n6561 72603\n283974 4782969\n",
"2\n262569360 774840978\n11038 1\n",
"7\n1 6\n6 33\n115 1296\n279936 1679616\n55 216\n839 7776\n46656 279936\n"
],
"output": [
" -1\n",
" 4\n",
" 877081770\n",
" 73787378\n",
" 659662497\n",
" 846526526\n",
" 798227420\n",
" 688327409\n",
" 36\n",
"-1\n",
" 659879000\n",
" 1296\n",
" 452786803\n",
"312441\n",
" 1\n",
"-1\n",
" 984905470\n",
" 746496\n",
"-1\n",
" 579\n",
" 21\n",
"-1\n",
" 73787378\n",
" 483961502\n",
" 776679181\n",
" 25658080\n",
" 422925678\n",
" 73787378\n",
"1\n",
" 929168961\n",
"1214431\n",
" 931384348\n",
" 936617851\n",
" 606616797\n",
" 342341157\n",
" 2\n",
" 579\n",
" 719781883\n",
" 136839922\n",
" 464664614\n",
" 73787378\n",
" 279800917\n",
"1\n",
" 839825639\n",
"-1\n",
"432\n",
"15552\n",
"222607\n",
"579\n",
"728888415\n",
"1214431\n",
"1\n",
"8\n",
"12\n",
"252828\n",
"1979576\n",
"3590407\n",
"3478272\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n"
]
} | 2CODEFORCES
|
571_E. Geometric Progressions_135 | Geometric progression with the first element a and common ratio b is a sequence of numbers a, ab, ab2, ab3, ....
You are given n integer geometric progressions. Your task is to find the smallest integer x, that is the element of all the given progressions, or else state that such integer does not exist.
Input
The first line contains integer (1 ≤ n ≤ 100) — the number of geometric progressions.
Next n lines contain pairs of integers a, b (1 ≤ a, b ≤ 109), that are the first element and the common ratio of the corresponding geometric progression.
Output
If the intersection of all progressions is empty, then print - 1, otherwise print the remainder of the minimal positive integer number belonging to all progressions modulo 1000000007 (109 + 7).
Examples
Input
2
2 2
4 1
Output
4
Input
2
2 2
3 3
Output
-1
Note
In the second sample test one of the progressions contains only powers of two, the other one contains only powers of three. | import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.StringTokenizer;
import java.math.BigInteger;
import java.io.BufferedReader;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskE solver = new TaskE();
solver.solve(1, in, out);
out.close();
}
static class TaskE {
static final int MODULO = (int) 1e9 + 7;
Desc factor(int x, int[] globalPrimes) {
Desc res = new Desc();
res.pows = new int[globalPrimes.length];
for (int i = 0; i < globalPrimes.length; ++i) {
while (x % globalPrimes[i] == 0) {
x /= globalPrimes[i];
++res.pows[i];
}
}
int[] primes = new int[100];
int[] ppow = new int[100];
int nprimes = 0;
int tmp = x;
for (int i = 2; i * i <= tmp; ++i)
if (tmp % i == 0) {
primes[nprimes++] = i;
while (tmp % i == 0) {
tmp /= i;
++ppow[nprimes - 1];
}
}
if (tmp > 1) {
primes[nprimes++] = tmp;
++ppow[nprimes - 1];
}
res.extraPrimes = Arrays.copyOf(primes, nprimes);
res.extraPrimePow = Arrays.copyOf(ppow, nprimes);
return res;
}
public void solve(int testNumber, InputReader in, PrintWriter out) {
int n = in.nextInt();
int[] a = new int[n];
int[] b = new int[n];
for (int i = 0; i < n; ++i) {
a[i] = in.nextInt();
b[i] = in.nextInt();
}
for (int i = 0; i < n; ++i)
if (b[i] == 1) {
out.println(checkOne(n, a, b, i, 0));
return;
}
int[] primes = new int[100];
int nprimes = 0;
int tmp = b[0];
for (int i = 2; i * i <= tmp; ++i)
if (tmp % i == 0) {
primes[nprimes++] = i;
while (tmp % i == 0) tmp /= i;
}
if (tmp > 1) {
primes[nprimes++] = tmp;
}
primes = Arrays.copyOf(primes, nprimes);
Desc basic = factor(b[0], primes);
Desc ba = factor(a[0], primes);
int[] start = new int[n];
int[] step = new int[n];
start[0] = ba.pows[0];
step[0] = basic.pows[0];
for (int i = 1; i < n; ++i) {
Desc other = factor(b[i], primes);
if (other.extraPrimes.length > 0) {
int p = other.extraPrimes[0];
tmp = a[0];
int needPow = 0;
while (tmp % p == 0) {
tmp /= p;
++needPow;
}
tmp = a[i];
while (tmp % p == 0) {
tmp /= p;
--needPow;
}
if (needPow < 0 || needPow % other.extraPrimePow[0] != 0) {
out.println(-1);
return;
}
int times = needPow / other.extraPrimePow[0];
out.println(checkOne(n, a, b, i, times));
return;
}
int nonzero = 0;
while (other.pows[nonzero] == 0) ++nonzero;
int p = other.pows[nonzero];
int q = basic.pows[nonzero];
int nonpropindex = -1;
for (int j = 0; j < primes.length; ++j) {
if (p * basic.pows[j] != q * other.pows[j]) {
nonpropindex = j;
break;
}
}
Desc bo = factor(a[i], primes);
if (nonpropindex >= 0) {
if (nonpropindex == nonzero) throw new RuntimeException();
int s1 = ba.pows[nonzero];
int s2 = ba.pows[nonpropindex];
int sv1 = basic.pows[nonzero];
int sv2 = basic.pows[nonpropindex];
int t1 = bo.pows[nonzero];
int t2 = bo.pows[nonpropindex];
int tv1 = other.pows[nonzero];
int tv2 = other.pows[nonpropindex];
int needDiff = sv2 * s1 - sv1 * s2 - (sv2 * t1 - sv1 * t2);
int each = sv2 * tv1 - sv1 * tv2;
if (each == 0) throw new RuntimeException();
if (each < 0) {
needDiff = -needDiff;
each = -each;
}
if (needDiff < 0 || needDiff % each != 0) {
out.println(-1);
return;
}
out.println(checkOne(n, a, b, i, needDiff / each));
return;
}
if (bo.extraPrimes.length != ba.extraPrimes.length) {
out.println(-1);
return;
}
for (int j = 0; j < bo.extraPrimes.length; ++j) {
if (bo.extraPrimes[j] != ba.extraPrimes[j] || bo.extraPrimePow[j] != ba.extraPrimePow[j]) {
out.println(-1);
return;
}
}
int[] delta = new int[primes.length];
for (int j = 0; j < primes.length; ++j) delta[j] = bo.pows[j] - ba.pows[j];
for (int j = 0; j < primes.length; ++j) {
if (delta[j] * basic.pows[0] != delta[0] * basic.pows[j]) {
out.println(-1);
return;
}
}
start[i] = bo.pows[0];
step[i] = other.pows[0];
}
int maxStart = start[0];
for (int x : start) maxStart = Math.max(maxStart, x);
long lcm = 1;
long rem = 0;
for (int i = 0; i < n; ++i) {
int needRem = (((start[i] - maxStart) % step[i]) + step[i]) % step[i];
int needBy = step[i];
long g = gcd(needBy, lcm);
if (rem % g != needRem % g) {
out.println(-1);
return;
}
long rg = rem % g;
rem /= g;
lcm /= g;
needBy /= g;
needRem /= g;
if (needBy == 1) {
} else if (lcm == 1) {
lcm = needBy;
rem = needRem;
} else {
long oneForFirst = needBy * BigInteger.valueOf(needBy % lcm).modInverse(BigInteger.valueOf(lcm)).longValue();
long oneForSecond = lcm * BigInteger.valueOf(lcm % needBy).modInverse(BigInteger.valueOf(needBy)).longValue();
lcm = lcm * needBy;
rem = (BigInteger.valueOf(rem).multiply(BigInteger.valueOf(oneForFirst)).mod(BigInteger.valueOf(lcm)).longValue() + needRem * oneForSecond) % lcm;
}
lcm *= g;
rem = rem * g + rg;
}
if ((rem + (maxStart - start[0])) % step[0] != 0) throw new RuntimeException();
long times = (rem + (maxStart - start[0])) / step[0];
out.println(getRes(a[0], b[0], times));
}
private long getRes(long a, long b, long times) {
if (times == 0) return a % MODULO;
if (times % 2 == 0) {
return getRes(a, b * b % MODULO, times / 2);
}
return getRes(a, b, times - 1) * b % MODULO;
}
private long gcd(long a, long b) {
while (b > 0) {
long t = a % b;
a = b;
b = t;
}
return a;
}
private int checkOne(int n, int[] a, int[] b, int i, int times) {
Desc fa = factor(a[i], new int[0]);
Desc fb = factor(b[i], fa.extraPrimes);
int[] primes = new int[fa.extraPrimes.length + fb.extraPrimes.length];
System.arraycopy(fa.extraPrimes, 0, primes, 0, fa.extraPrimes.length);
System.arraycopy(fb.extraPrimes, 0, primes, fa.extraPrimes.length, fb.extraPrimes.length);
int[] pows = new int[primes.length];
fb = factor(b[i], primes);
if (fb.extraPrimes.length != 0) throw new RuntimeException();
for (int j = 0; j < primes.length; ++j) pows[j] += times * fb.pows[j];
fa = factor(a[i], primes);
if (fa.extraPrimes.length != 0) throw new RuntimeException();
for (int j = 0; j < primes.length; ++j) pows[j] += fa.pows[j];
for (int k = 0; k < n; ++k) {
fa = factor(a[k], primes);
if (fa.extraPrimes.length != 0) return -1;
fb = factor(b[k], primes);
int reps = -1;
for (int j = 0; j < primes.length; ++j) {
if (fa.pows[j] > pows[j]) return -1;
if (fb.pows[j] == 0) {
if (fa.pows[j] != pows[j]) return -1;
continue;
}
if ((pows[j] - fa.pows[j]) % fb.pows[j] != 0) return -1;
int creps = (pows[j] - fa.pows[j]) / fb.pows[j];
if (reps < 0 || reps == creps) {
reps = creps;
} else {
return -1;
}
}
if (reps > 0 && fb.extraPrimes.length != 0) return -1;
}
return (int) getRes(a[i], b[i], times);
}
static class Desc {
int[] pows;
int[] extraPrimes;
int[] extraPrimePow;
}
}
static class InputReader {
public BufferedReader reader;
public StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
}
}
| 4JAVA
| {
"input": [
"2\n2 2\n3 3\n",
"2\n2 2\n4 1\n",
"25\n1 8\n8 8\n64 8\n512 8\n4096 8\n32768 8\n262144 8\n2097152 8\n16777216 8\n134217728 8\n8 64\n512 64\n32768 64\n2097152 64\n134217728 64\n512 4096\n2097152 4096\n2097152 16777216\n64 512\n32768 512\n16777216 512\n16777216 134217728\n4096 32768\n134217728 32768\n262144 2097152\n",
"2\n387420489 774840978\n2125764 3\n",
"17\n1 2\n1 4\n4 16\n64 256\n16384 65536\n1 8\n64 512\n16777216 134217728\n16 32\n16777216 33554432\n16 128\n2048 2048\n8192 8192\n4096 131072\n8192 524288\n256 8388608\n2097152 536870912\n",
"14\n1 2\n2 4\n8 16\n128 256\n32768 65536\n4 8\n256 512\n16 32\n64 128\n1024 2048\n4096 8192\n65536 131072\n262144 524288\n4194304 8388608\n",
"10\n1 3\n3 9\n27 81\n2187 6561\n9 27\n6561 19683\n81 243\n729 2187\n59049 177147\n531441 1594323\n",
"9\n1 4\n4 16\n64 256\n16384 65536\n16 64\n65536 262144\n256 1024\n4096 16384\n1048576 4194304\n",
"2\n1 6\n3 12\n",
"2\n4 1\n2 4\n",
"2\n2 24\n27 48\n",
"2\n1 6\n9 12\n",
"17\n1 2\n2 4\n8 16\n128 256\n32768 65536\n2 8\n128 512\n33554432 134217728\n16 32\n16777216 33554432\n8 128\n128 2048\n512 8192\n256 131072\n64 524288\n1048576 8388608\n512 536870912\n",
"1\n312441 1\n",
"2\n1 6\n1 12\n",
"3\n1 4\n2 5\n4 2\n",
"31\n1 6\n6 6\n36 6\n216 6\n1296 6\n7776 6\n46656 6\n279936 6\n1679616 6\n10077696 6\n60466176 6\n362797056 6\n6 36\n216 36\n7776 36\n279936 36\n10077696 36\n362797056 36\n216 1296\n279936 1296\n362797056 1296\n279936 1679616\n36 216\n7776 216\n1679616 216\n362797056 216\n1679616 10077696\n1296 7776\n10077696 7776\n46656 279936\n60466176 362797056\n",
"2\n3 12\n16 6\n",
"2\n1 6\n2 6\n",
"3\n579 4123\n579 43543\n579 2138494\n",
"3\n21 42\n3 7\n7 3\n",
"2\n1 4\n2 6\n",
"2\n387420489 774840978\n972 3\n",
"39\n1 4\n4 4\n16 4\n64 4\n256 4\n1024 4\n4096 4\n16384 4\n65536 4\n262144 4\n1048576 4\n4194304 4\n16777216 4\n67108864 4\n268435456 4\n4 16\n64 16\n1024 16\n16384 16\n262144 16\n4194304 16\n67108864 16\n64 256\n16384 256\n4194304 256\n16384 65536\n16 64\n1024 64\n65536 64\n4194304 64\n268435456 64\n65536 262144\n256 1024\n262144 1024\n268435456 1024\n4096 16384\n67108864 16384\n1048576 4194304\n16777216 67108864\n",
"6\n1 9\n9 81\n729 6561\n81 729\n6561 59049\n531441 4782969\n",
"17\n1 2\n1 4\n4 16\n64 256\n16384 65536\n2 8\n128 512\n33554432 134217728\n4 32\n4194304 33554432\n16 128\n1024 2048\n2048 8192\n8 131072\n16384 524288\n2097152 8388608\n1 536870912\n",
"32\n1 5\n5 5\n25 5\n125 5\n625 5\n3125 5\n15625 5\n78125 5\n390625 5\n1953125 5\n9765625 5\n48828125 5\n244140625 5\n5 25\n125 25\n3125 25\n78125 25\n1953125 25\n48828125 25\n125 625\n78125 625\n48828125 625\n78125 390625\n25 125\n3125 125\n390625 125\n48828125 125\n390625 1953125\n625 3125\n1953125 3125\n15625 78125\n9765625 48828125\n",
"2\n387420489 774840978\n8748 3\n",
"1\n1 1\n",
"17\n1 2\n2 4\n8 16\n128 256\n32768 65536\n4 8\n256 512\n67108864 134217728\n4 32\n4194304 33554432\n2 128\n8 2048\n2 8192\n2048 131072\n32 524288\n8192 8388608\n67108864 536870912\n",
"1\n1214431 9043141\n",
"25\n1 9\n9 9\n81 9\n729 9\n6561 9\n59049 9\n531441 9\n4782969 9\n43046721 9\n387420489 9\n9 81\n729 81\n59049 81\n4782969 81\n387420489 81\n729 6561\n4782969 6561\n4782969 43046721\n81 729\n59049 729\n43046721 729\n43046721 387420489\n6561 59049\n387420489 59049\n531441 4782969\n",
"25\n1 10\n10 10\n100 10\n1000 10\n10000 10\n100000 10\n1000000 10\n10000000 10\n100000000 10\n1000000000 10\n10 100\n1000 100\n100000 100\n10000000 100\n1000000000 100\n1000 10000\n10000000 10000\n10000000 100000000\n100 1000\n100000 1000\n100000000 1000\n100000000 1000000000\n10000 100000\n1000000000 100000\n1000000 10000000\n",
"8\n1 5\n5 25\n125 625\n78125 390625\n25 125\n390625 1953125\n625 3125\n15625 78125\n",
"6\n1 10\n10 100\n1000 10000\n100 1000\n10000 100000\n1000000 10000000\n",
"3\n1 2\n2 2\n1 2\n",
"3\n579 4123\n579 4123\n579 4123\n",
"7\n1 6\n6 36\n216 1296\n279936 1679616\n36 216\n1296 7776\n46656 279936\n",
"26\n1 7\n7 7\n49 7\n343 7\n2401 7\n16807 7\n117649 7\n823543 7\n5764801 7\n40353607 7\n282475249 7\n7 49\n343 49\n16807 49\n823543 49\n40353607 49\n343 2401\n823543 2401\n823543 5764801\n49 343\n16807 343\n5764801 343\n5764801 40353607\n2401 16807\n40353607 16807\n117649 823543\n",
"6\n1 8\n8 64\n512 4096\n64 512\n4096 32768\n262144 2097152\n",
"2\n387420489 774840978\n26244 3\n",
"7\n1 7\n7 49\n343 2401\n823543 5764801\n49 343\n2401 16807\n117649 823543\n",
"1\n1 3148137\n",
"17\n1 2\n2 4\n8 16\n128 256\n32768 65536\n2 8\n128 512\n33554432 134217728\n2 32\n2097152 33554432\n128 128\n1024 2048\n1024 8192\n2 131072\n16384 524288\n524288 8388608\n8 536870912\n",
"10\n1 3\n3 9\n27 81\n2187 6561\n9 27\n12641 19683\n81 243\n729 2187\n59049 177147\n531441 1594323\n",
"2\n2 6\n3 12\n",
"2\n2 6\n9 12\n",
"1\n222607 1\n",
"3\n579 4123\n579 43543\n579 2905820\n",
"6\n1 9\n9 81\n729 6561\n9 729\n6561 59049\n531441 4782969\n",
"1\n1214431 11794409\n",
"1\n1 3586306\n",
"2\n2 2\n8 1\n",
"2\n2 6\n1 12\n",
"1\n252828 1\n",
"1\n1979576 11794409\n",
"1\n3590407 11794409\n",
"1\n3478272 11794409\n",
"3\n21 42\n6 7\n7 3\n",
"2\n1 4\n2 3\n",
"39\n1 4\n4 4\n16 4\n64 4\n256 4\n1024 4\n4096 4\n16384 4\n65536 4\n262144 4\n1048576 4\n4194304 4\n16777216 4\n67108864 4\n268435456 4\n4 16\n64 16\n1024 16\n16384 16\n262144 16\n4194304 16\n67108864 16\n64 256\n16384 256\n4194304 256\n16384 65536\n16 64\n1024 64\n65536 64\n4194304 64\n388053860 64\n65536 262144\n256 1024\n262144 1024\n268435456 1024\n4096 16384\n67108864 16384\n1048576 4194304\n16777216 67108864\n",
"2\n257615308 774840978\n8748 3\n",
"7\n1 6\n6 36\n115 1296\n279936 1679616\n36 216\n1296 7776\n46656 279936\n",
"26\n1 7\n7 7\n49 7\n343 7\n2401 7\n16807 7\n117649 7\n823543 7\n5764801 7\n40353607 7\n282475249 7\n7 49\n343 49\n16807 49\n823543 49\n40353607 49\n343 2401\n823543 2401\n823543 5764801\n49 343\n16807 343\n4230632 343\n5764801 40353607\n2401 16807\n40353607 16807\n117649 823543\n",
"6\n1 8\n8 64\n512 4096\n126 512\n4096 32768\n262144 2097152\n",
"7\n1 7\n11 49\n343 2401\n823543 5764801\n49 343\n2401 16807\n117649 823543\n",
"10\n1 3\n3 9\n27 81\n2187 6561\n9 27\n12641 19683\n81 272\n729 2187\n59049 177147\n531441 1594323\n",
"3\n21 42\n6 3\n7 3\n",
"39\n1 4\n4 4\n16 4\n64 4\n256 4\n1024 4\n4033 4\n16384 4\n65536 4\n262144 4\n1048576 4\n4194304 4\n16777216 4\n67108864 4\n268435456 4\n4 16\n64 16\n1024 16\n16384 16\n262144 16\n4194304 16\n67108864 16\n64 256\n16384 256\n4194304 256\n16384 65536\n16 64\n1024 64\n65536 64\n4194304 64\n388053860 64\n65536 262144\n256 1024\n262144 1024\n268435456 1024\n4096 16384\n67108864 16384\n1048576 4194304\n16777216 67108864\n",
"6\n1 9\n9 81\n729 6561\n9 729\n6561 59049\n283974 4782969\n",
"2\n257615308 774840978\n11038 3\n",
"7\n1 6\n6 33\n115 1296\n279936 1679616\n36 216\n1296 7776\n46656 279936\n",
"6\n1 8\n8 64\n512 4096\n4 512\n4096 32768\n262144 2097152\n",
"7\n1 7\n11 49\n343 2401\n823543 5764801\n77 343\n2401 16807\n117649 823543\n",
"1\n1 3750983\n",
"10\n1 3\n3 9\n27 65\n2187 6561\n9 27\n12641 19683\n81 272\n729 2187\n59049 177147\n531441 1594323\n",
"3\n21 42\n6 3\n7 5\n",
"39\n1 4\n4 4\n16 4\n64 4\n256 4\n1024 4\n4033 4\n16384 4\n65536 4\n262144 4\n1048576 4\n4194304 4\n16777216 6\n67108864 4\n268435456 4\n4 16\n64 16\n1024 16\n16384 16\n262144 16\n4194304 16\n67108864 16\n64 256\n16384 256\n4194304 256\n16384 65536\n16 64\n1024 64\n65536 64\n4194304 64\n388053860 64\n65536 262144\n256 1024\n262144 1024\n268435456 1024\n4096 16384\n67108864 16384\n1048576 4194304\n16777216 67108864\n",
"6\n1 9\n9 81\n729 6561\n4 729\n6561 59049\n283974 4782969\n",
"2\n262569360 774840978\n11038 3\n",
"7\n1 6\n6 33\n115 1296\n279936 1679616\n36 216\n839 7776\n46656 279936\n",
"6\n1 8\n8 64\n512 942\n4 512\n4096 32768\n262144 2097152\n",
"7\n1 7\n11 49\n343 2401\n823543 5764801\n77 343\n2401 16807\n31461 823543\n",
"1\n1 38399\n",
"10\n1 3\n3 9\n31 65\n2187 6561\n9 27\n12641 19683\n81 272\n729 2187\n59049 177147\n531441 1594323\n",
"3\n21 81\n6 3\n7 5\n",
"6\n1 9\n9 81\n729 6561\n4 729\n6561 72603\n283974 4782969\n",
"2\n262569360 774840978\n11038 1\n",
"7\n1 6\n6 33\n115 1296\n279936 1679616\n55 216\n839 7776\n46656 279936\n"
],
"output": [
" -1\n",
" 4\n",
" 877081770\n",
" 73787378\n",
" 659662497\n",
" 846526526\n",
" 798227420\n",
" 688327409\n",
" 36\n",
"-1\n",
" 659879000\n",
" 1296\n",
" 452786803\n",
"312441\n",
" 1\n",
"-1\n",
" 984905470\n",
" 746496\n",
"-1\n",
" 579\n",
" 21\n",
"-1\n",
" 73787378\n",
" 483961502\n",
" 776679181\n",
" 25658080\n",
" 422925678\n",
" 73787378\n",
"1\n",
" 929168961\n",
"1214431\n",
" 931384348\n",
" 936617851\n",
" 606616797\n",
" 342341157\n",
" 2\n",
" 579\n",
" 719781883\n",
" 136839922\n",
" 464664614\n",
" 73787378\n",
" 279800917\n",
"1\n",
" 839825639\n",
"-1\n",
"432\n",
"15552\n",
"222607\n",
"579\n",
"728888415\n",
"1214431\n",
"1\n",
"8\n",
"12\n",
"252828\n",
"1979576\n",
"3590407\n",
"3478272\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n"
]
} | 2CODEFORCES
|
593_C. Beautiful Function_136 | Every day Ruslan tried to count sheep to fall asleep, but this didn't help. Now he has found a more interesting thing to do. First, he thinks of some set of circles on a plane, and then tries to choose a beautiful set of points, such that there is at least one point from the set inside or on the border of each of the imagined circles.
Yesterday Ruslan tried to solve this problem for the case when the set of points is considered beautiful if it is given as (xt = f(t), yt = g(t)), where argument t takes all integer values from 0 to 50. Moreover, f(t) and g(t) should be correct functions.
Assume that w(t) and h(t) are some correct functions, and c is an integer ranging from 0 to 50. The function s(t) is correct if it's obtained by one of the following rules:
1. s(t) = abs(w(t)), where abs(x) means taking the absolute value of a number x, i.e. |x|;
2. s(t) = (w(t) + h(t));
3. s(t) = (w(t) - h(t));
4. s(t) = (w(t) * h(t)), where * means multiplication, i.e. (w(t)·h(t));
5. s(t) = c;
6. s(t) = t;
Yesterday Ruslan thought on and on, but he could not cope with the task. Now he asks you to write a program that computes the appropriate f(t) and g(t) for any set of at most 50 circles.
In each of the functions f(t) and g(t) you are allowed to use no more than 50 multiplications. The length of any function should not exceed 100·n characters. The function should not contain spaces.
Ruslan can't keep big numbers in his memory, so you should choose f(t) and g(t), such that for all integer t from 0 to 50 value of f(t) and g(t) and all the intermediate calculations won't exceed 109 by their absolute value.
Input
The first line of the input contains number n (1 ≤ n ≤ 50) — the number of circles Ruslan thinks of. Next follow n lines, each of them containing three integers xi, yi and ri (0 ≤ xi, yi ≤ 50, 2 ≤ ri ≤ 50) — the coordinates of the center and the raduis of the i-th circle.
Output
In the first line print a correct function f(t). In the second line print a correct function g(t). The set of the points (xt = f(t), yt = g(t)) (0 ≤ t ≤ 50) must satisfy the condition, that there is at least one point inside or on the border of each of the circles, Ruslan thinks of at the beginning.
Examples
Input
3
0 10 4
10 0 4
20 10 4
Output
t
abs((t-10))
Note
Correct functions:
1. 10
2. (1+2)
3. ((t-3)+(t*4))
4. abs((t-10))
5. (abs((((23-t)*(t*t))+((45+12)*(t*t))))*((5*t)+((12*t)-13)))
6. abs((t-(abs((t*31))+14))))
Incorrect functions:
1. 3+5+7 (not enough brackets, it should be ((3+5)+7) or (3+(5+7)))
2. abs(t-3) (not enough brackets, it should be abs((t-3))
3. 2+(2-3 (one bracket too many)
4. 1(t+5) (no arithmetic operation between 1 and the bracket)
5. 5000*5000 (the number exceeds the maximum)
<image> The picture shows one of the possible solutions | import fileinput
def str_sum(a, b):
return '({a}+{b})'.format(a=a, b=b)
def str_dif(a, b):
return '({a}-{b})'.format(a=a, b=b)
def str_mul(a, b):
return '({a}*{b})'.format(a=a, b=b)
def str_abs(a):
return 'abs({a})'.format(a=a)
def get_indicator(i):
"""
Indicator of [i <= t]
"""
abs_1 = str_abs(str_dif(i-1, 't'))
abs_2 = str_abs(str_dif(i-1, str_dif('t', 1)))
return str_sum(1, str_dif(abs_1, abs_2))
def solve(x):
ans = str(x[0])
r = 0
for i in xrange(1, len(x)):
diff = (x[i] - x[i-1] + r) / 2
if diff > 0:
ans = str_sum(ans, str_mul(abs(diff), get_indicator(i)))
else:
ans = str_sum(ans, str_mul(str_dif(0, abs(diff)), get_indicator(i)))
r = (r + x[i] - x[i-1]) % 2
return ans
def read_data():
data_gen = fileinput.input()
line = data_gen.next()
n = int(line)
x = []
y = []
for (i,line) in enumerate(data_gen):
data = line.split()
x.append(int(data[0]))
y.append(int(data[1]))
return x, y, n
x, y, n = read_data()
ans1 = solve(x)
ans2 = solve(y)
#print str_sum(0, str_sum(1, str_sum(2, 3)))
print ans1
print ans2
#for t in xrange(n):
# print t, eval(ans1, dict(t=t)), eval(ans2, dict(t=t))
| 1Python2
| {
"input": [
"3\n0 10 4\n10 0 4\n20 10 4\n",
"3\n9 5 8\n8 9 10\n9 5 2\n",
"50\n48 45 42\n32 45 8\n15 41 47\n32 29 38\n7 16 48\n19 9 21\n18 40 5\n39 40 7\n37 0 6\n42 15 37\n9 33 37\n40 41 33\n25 43 2\n23 21 38\n30 20 32\n28 15 5\n47 9 19\n47 22 26\n26 9 18\n24 23 24\n11 29 5\n38 44 9\n49 22 42\n1 15 32\n18 25 21\n8 48 39\n48 7 26\n3 30 26\n34 21 47\n34 14 4\n36 43 40\n49 19 12\n33 8 30\n42 35 28\n47 21 14\n36 11 27\n40 46 17\n7 12 32\n47 5 4\n9 33 43\n35 31 3\n3 48 43\n2 19 9\n29 15 36\n1 13 2\n28 28 19\n31 33 21\n9 33 18\n7 12 22\n45 14 23\n",
"3\n3 3 3\n5 9 3\n49 1 7\n",
"5\n0 0 2\n1 1 2\n3 3 2\n40 40 2\n50 50 50\n",
"3\n0 10 4\n10 0 4\n20 10 4\n",
"50\n1 1 2\n1 1 42\n0 0 46\n1 1 16\n1 0 9\n0 0 43\n1 0 39\n1 1 41\n1 1 6\n1 1 43\n0 1 25\n0 1 40\n0 0 11\n0 1 27\n1 0 5\n1 0 9\n1 1 49\n0 0 25\n0 0 32\n0 1 6\n0 1 31\n1 1 22\n0 0 47\n0 1 6\n0 0 6\n0 1 49\n1 0 44\n0 0 50\n1 0 3\n0 1 15\n1 0 37\n0 0 14\n1 1 28\n1 1 49\n1 0 9\n0 1 12\n0 0 35\n1 0 42\n1 1 28\n0 1 20\n1 1 24\n1 1 33\n0 0 38\n1 0 17\n0 1 21\n0 0 22\n1 1 37\n0 1 34\n0 1 46\n1 1 21\n",
"5\n2 0 4\n5 6 10\n7 2 8\n3 10 8\n8 2 9\n",
"49\n48 9 48\n9 38 8\n27 43 43\n19 48 2\n35 3 11\n25 3 37\n26 40 20\n30 28 46\n19 35 44\n20 28 43\n34 40 37\n12 45 47\n28 2 38\n13 32 31\n50 10 28\n12 6 19\n31 50 5\n38 22 8\n25 33 50\n32 1 42\n8 37 26\n31 27 25\n21 4 25\n3 1 47\n21 15 42\n40 21 27\n43 20 9\n9 29 21\n15 35 36\n9 30 6\n46 39 22\n41 40 47\n11 5 32\n12 47 23\n24 2 27\n15 9 24\n0 8 45\n4 11 3\n28 13 27\n12 43 30\n23 42 40\n38 24 9\n13 46 42\n20 50 41\n29 32 11\n35 21 12\n10 34 47\n24 29 3\n46 4 7\n",
"10\n7 3 5\n2 1 6\n8 6 2\n1 2 6\n2 0 9\n10 9 2\n2 6 4\n10 3 6\n4 6 3\n9 9 2\n",
"50\n7 13 2\n41 17 2\n49 32 2\n22 16 2\n11 16 2\n2 10 2\n15 2 2\n8 12 2\n1 17 2\n22 44 2\n10 1 2\n18 45 2\n11 31 2\n4 43 2\n26 14 2\n33 47 2\n3 5 2\n49 22 2\n44 3 2\n3 41 2\n0 26 2\n30 1 2\n37 6 2\n10 48 2\n11 47 2\n5 41 2\n2 46 2\n32 3 2\n37 42 2\n25 17 2\n18 32 2\n47 21 2\n46 24 2\n7 2 2\n14 2 2\n17 17 2\n13 30 2\n23 19 2\n43 40 2\n42 26 2\n20 20 2\n17 5 2\n43 38 2\n4 32 2\n48 4 2\n1 3 2\n4 41 2\n49 36 2\n7 10 2\n9 6 2\n",
"49\n36 12 10\n50 6 19\n13 31 36\n15 47 9\n23 43 11\n31 17 14\n25 28 7\n2 20 50\n42 7 4\n7 12 43\n20 33 34\n27 44 26\n19 39 21\n40 29 16\n37 1 2\n13 27 26\n2 4 47\n49 30 13\n4 14 36\n21 36 18\n42 32 22\n21 22 18\n23 35 43\n15 31 27\n17 46 8\n22 3 34\n3 50 19\n47 47 9\n18 42 20\n30 26 42\n44 32 47\n29 20 42\n35 33 20\n43 16 9\n45 24 12\n11 1 21\n32 50 9\n38 19 48\n21 31 7\n5 42 5\n23 0 21\n39 50 8\n42 21 12\n21 20 41\n43 44 23\n43 34 4\n31 2 28\n7 0 38\n28 35 46\n",
"1\n50 50 50\n",
"3\n0 0 2\n5 7 5\n20 25 10\n",
"50\n10 26 2\n20 36 2\n32 43 2\n34 6 2\n19 37 2\n20 29 2\n31 12 2\n30 9 2\n31 5 2\n23 6 2\n0 44 2\n5 36 2\n34 22 2\n6 39 2\n19 18 2\n9 50 2\n40 11 2\n32 4 2\n42 46 2\n22 45 2\n28 2 2\n34 4 2\n16 30 2\n17 47 2\n14 46 2\n32 36 2\n43 11 2\n22 34 2\n34 9 2\n2 4 2\n18 15 2\n48 38 2\n27 28 2\n24 38 2\n33 32 2\n11 7 2\n37 35 2\n50 23 2\n25 28 2\n25 50 2\n28 26 2\n20 31 2\n12 31 2\n15 2 2\n31 45 2\n14 12 2\n16 18 2\n23 30 2\n16 26 2\n30 0 2\n",
"49\n33 40 10\n30 24 11\n4 36 23\n38 50 18\n23 28 29\n9 39 21\n47 15 35\n2 41 27\n1 45 28\n39 15 24\n7 7 28\n1 34 6\n47 17 43\n20 28 12\n23 22 15\n33 41 23\n34 3 44\n39 37 25\n41 49 39\n13 14 26\n4 35 18\n17 8 45\n23 23 16\n37 48 40\n12 48 29\n16 5 6\n29 1 5\n1 18 27\n37 11 3\n46 11 44\n9 25 40\n26 1 17\n12 26 45\n3 18 19\n15 32 38\n41 8 27\n8 39 35\n42 35 13\n5 19 43\n31 47 4\n16 47 38\n12 9 23\n10 23 3\n49 43 16\n38 28 6\n3 46 38\n13 27 28\n0 26 3\n23 1 15\n",
"1\n0 0 2\n",
"50\n34 7 2\n18 14 2\n15 24 2\n2 24 2\n27 2 2\n50 45 2\n49 19 2\n7 23 2\n16 22 2\n23 25 2\n18 23 2\n11 29 2\n22 14 2\n31 15 2\n10 42 2\n8 11 2\n9 33 2\n15 0 2\n30 25 2\n12 4 2\n14 13 2\n5 16 2\n13 43 2\n1 8 2\n26 34 2\n44 13 2\n10 17 2\n40 5 2\n48 39 2\n39 23 2\n19 10 2\n22 17 2\n36 26 2\n2 34 2\n11 42 2\n14 37 2\n25 7 2\n11 35 2\n22 34 2\n22 25 2\n12 36 2\n18 6 2\n2 47 2\n47 29 2\n13 37 2\n8 46 2\n9 4 2\n11 34 2\n12 31 2\n7 16 2\n",
"49\n9 43 6\n23 35 9\n46 39 11\n34 14 12\n30 8 4\n10 32 7\n43 10 45\n30 34 27\n27 26 21\n7 31 14\n38 13 33\n34 11 46\n33 31 32\n38 31 7\n3 24 13\n38 12 41\n21 26 32\n33 0 43\n17 44 25\n11 21 27\n27 43 28\n45 8 38\n47 50 47\n49 45 8\n2 9 34\n34 32 49\n21 30 9\n13 19 38\n8 45 32\n16 47 35\n45 28 14\n3 25 43\n45 7 32\n49 35 12\n22 35 35\n14 33 42\n19 23 10\n49 4 2\n44 37 40\n27 17 15\n7 37 30\n38 50 39\n32 12 19\n3 48 9\n26 36 27\n38 18 39\n25 40 50\n45 3 2\n23 40 36\n",
"50\n47 43 2\n31 38 2\n35 21 2\n18 41 2\n24 33 2\n35 0 2\n15 41 2\n6 3 2\n23 40 2\n11 29 2\n48 46 2\n33 45 2\n28 18 2\n31 14 2\n14 4 2\n35 18 2\n50 11 2\n10 28 2\n23 9 2\n43 25 2\n34 21 2\n19 49 2\n40 37 2\n22 27 2\n7 1 2\n37 24 2\n14 26 2\n18 46 2\n40 50 2\n21 40 2\n19 26 2\n35 2 2\n19 27 2\n13 23 2\n9 50 2\n38 9 2\n44 22 2\n5 30 2\n36 7 2\n10 26 2\n21 30 2\n19 6 2\n21 13 2\n5 3 2\n9 41 2\n10 17 2\n1 11 2\n5 6 2\n40 17 2\n6 7 2\n",
"10\n1 9 2\n3 10 2\n7 7 2\n6 12 2\n14 15 2\n2 12 2\n8 0 2\n0 12 2\n4 11 2\n15 9 2\n",
"7\n13 15 5\n2 10 3\n12 12 8\n9 12 11\n10 3 10\n9 6 13\n11 10 3\n",
"50\n0 1 2\n1 0 2\n1 1 2\n1 1 2\n1 1 2\n1 1 2\n0 1 2\n0 1 2\n0 0 2\n1 0 2\n1 1 2\n1 0 2\n1 0 2\n1 0 2\n1 0 2\n0 0 2\n0 1 2\n1 0 2\n1 0 2\n0 0 2\n0 1 2\n0 1 2\n0 1 2\n0 1 2\n0 1 2\n1 0 2\n0 0 2\n1 1 2\n0 0 2\n0 1 2\n0 0 2\n1 0 2\n1 1 2\n0 0 2\n0 0 2\n1 1 2\n0 1 2\n0 1 2\n1 0 2\n0 0 2\n1 0 2\n0 1 2\n0 0 2\n1 1 2\n1 1 2\n0 1 2\n0 0 2\n0 0 2\n0 0 2\n0 0 2\n",
"49\n22 28 2\n37 8 19\n17 36 19\n50 31 10\n26 39 17\n46 37 45\n8 33 30\n29 14 19\n34 42 37\n20 35 34\n17 10 39\n6 28 16\n38 35 27\n39 4 41\n8 37 7\n39 21 4\n12 28 20\n28 27 29\n36 28 10\n41 16 22\n21 0 20\n6 15 4\n48 43 21\n19 12 18\n10 27 15\n27 44 12\n25 14 19\n43 8 43\n1 31 26\n49 11 4\n45 18 7\n16 35 48\n2 8 21\n8 0 30\n20 42 5\n39 30 2\n13 36 34\n43 50 50\n7 9 43\n17 42 10\n15 5 21\n39 25 18\n25 29 35\n12 46 15\n48 41 6\n41 13 17\n16 46 15\n38 27 39\n50 25 16\n",
"1\n1 1 32\n",
"50\n21 22 2\n4 16 2\n19 29 2\n37 7 2\n31 47 2\n38 15 2\n32 24 2\n7 18 2\n9 7 2\n36 48 2\n14 26 2\n40 12 2\n18 10 2\n29 42 2\n32 27 2\n34 3 2\n44 33 2\n19 49 2\n12 39 2\n33 10 2\n21 8 2\n44 9 2\n13 0 2\n6 16 2\n18 15 2\n50 1 2\n31 31 2\n36 43 2\n30 2 2\n7 33 2\n18 22 2\n9 7 2\n3 25 2\n17 18 2\n13 10 2\n41 41 2\n32 44 2\n17 40 2\n7 11 2\n31 50 2\n3 40 2\n17 30 2\n10 5 2\n13 30 2\n44 33 2\n6 50 2\n45 49 2\n18 9 2\n35 46 2\n8 50 2\n",
"4\n0 0 2\n50 50 2\n50 0 2\n0 50 2\n",
"3\n9 5 8\n8 9 3\n9 5 2\n",
"50\n48 45 42\n32 45 8\n15 41 47\n32 29 38\n7 16 48\n19 9 21\n18 40 5\n39 40 7\n37 0 6\n50 15 37\n9 33 37\n40 41 33\n25 43 2\n23 21 38\n30 20 32\n28 15 5\n47 9 19\n47 22 26\n26 9 18\n24 23 24\n11 29 5\n38 44 9\n49 22 42\n1 15 32\n18 25 21\n8 48 39\n48 7 26\n3 30 26\n34 21 47\n34 14 4\n36 43 40\n49 19 12\n33 8 30\n42 35 28\n47 21 14\n36 11 27\n40 46 17\n7 12 32\n47 5 4\n9 33 43\n35 31 3\n3 48 43\n2 19 9\n29 15 36\n1 13 2\n28 28 19\n31 33 21\n9 33 18\n7 12 22\n45 14 23\n",
"3\n3 4 3\n5 9 3\n49 1 7\n",
"5\n0 0 2\n1 1 2\n3 0 2\n40 40 2\n50 50 50\n",
"3\n1 10 4\n10 0 4\n20 10 4\n",
"50\n1 1 2\n1 1 42\n0 0 46\n1 1 16\n1 0 9\n0 0 43\n1 0 39\n1 1 41\n1 1 6\n1 1 43\n0 1 25\n0 1 40\n0 0 11\n0 1 27\n1 0 5\n1 0 9\n1 1 49\n0 0 25\n0 0 32\n0 1 6\n0 1 31\n1 1 22\n0 0 47\n0 1 6\n0 0 6\n0 1 49\n1 0 44\n0 0 50\n1 0 3\n0 1 15\n1 0 37\n0 0 14\n1 1 28\n1 1 49\n1 0 9\n0 1 12\n0 0 35\n1 1 42\n1 1 28\n0 1 20\n1 1 24\n1 1 33\n0 0 38\n1 0 17\n0 1 21\n0 0 22\n1 1 37\n0 1 34\n0 1 46\n1 1 21\n",
"5\n2 0 4\n5 6 10\n7 2 8\n3 10 8\n8 0 9\n",
"49\n48 9 48\n9 38 8\n27 43 43\n19 48 2\n35 3 11\n25 3 37\n26 40 20\n30 28 46\n19 35 44\n20 28 57\n34 40 37\n12 45 47\n28 2 38\n13 32 31\n50 10 28\n12 6 19\n31 50 5\n38 22 8\n25 33 50\n32 1 42\n8 37 26\n31 27 25\n21 4 25\n3 1 47\n21 15 42\n40 21 27\n43 20 9\n9 29 21\n15 35 36\n9 30 6\n46 39 22\n41 40 47\n11 5 32\n12 47 23\n24 2 27\n15 9 24\n0 8 45\n4 11 3\n28 13 27\n12 43 30\n23 42 40\n38 24 9\n13 46 42\n20 50 41\n29 32 11\n35 21 12\n10 34 47\n24 29 3\n46 4 7\n",
"10\n7 3 5\n2 0 6\n8 6 2\n1 2 6\n2 0 9\n10 9 2\n2 6 4\n10 3 6\n4 6 3\n9 9 2\n",
"50\n7 13 2\n41 17 2\n49 32 2\n14 16 2\n11 16 2\n2 10 2\n15 2 2\n8 12 2\n1 17 2\n22 44 2\n10 1 2\n18 45 2\n11 31 2\n4 43 2\n26 14 2\n33 47 2\n3 5 2\n49 22 2\n44 3 2\n3 41 2\n0 26 2\n30 1 2\n37 6 2\n10 48 2\n11 47 2\n5 41 2\n2 46 2\n32 3 2\n37 42 2\n25 17 2\n18 32 2\n47 21 2\n46 24 2\n7 2 2\n14 2 2\n17 17 2\n13 30 2\n23 19 2\n43 40 2\n42 26 2\n20 20 2\n17 5 2\n43 38 2\n4 32 2\n48 4 2\n1 3 2\n4 41 2\n49 36 2\n7 10 2\n9 6 2\n",
"1\n50 50 63\n",
"3\n0 0 3\n5 7 5\n20 25 10\n",
"50\n10 26 2\n20 36 2\n32 43 2\n34 6 2\n19 37 2\n20 29 2\n31 12 2\n30 9 2\n31 5 2\n23 6 2\n0 44 2\n5 36 2\n34 22 2\n6 39 2\n19 18 2\n9 50 2\n40 11 2\n32 4 2\n42 46 2\n22 45 2\n28 2 2\n34 4 2\n16 30 2\n17 47 2\n14 46 2\n32 15 2\n43 11 2\n22 34 2\n34 9 2\n2 4 2\n18 15 2\n48 38 2\n27 28 2\n24 38 2\n33 32 2\n11 7 2\n37 35 2\n50 23 2\n25 28 2\n25 50 2\n28 26 2\n20 31 2\n12 31 2\n15 2 2\n31 45 2\n14 12 2\n16 18 2\n23 30 2\n16 26 2\n30 0 2\n",
"49\n33 40 10\n30 24 11\n4 36 23\n38 50 18\n23 28 29\n9 39 21\n47 15 35\n2 41 27\n1 45 28\n39 15 24\n7 7 28\n1 34 6\n47 17 43\n20 28 12\n23 22 15\n33 41 23\n34 3 44\n39 37 25\n41 49 39\n13 14 26\n4 14 18\n17 8 45\n23 23 16\n37 48 40\n12 48 29\n16 5 6\n29 1 5\n1 18 27\n37 11 3\n46 11 44\n9 25 40\n26 1 17\n12 26 45\n3 18 19\n15 32 38\n41 8 27\n8 39 35\n42 35 13\n5 19 43\n31 47 4\n16 47 38\n12 9 23\n10 23 3\n49 43 16\n38 28 6\n3 46 38\n13 27 28\n0 26 3\n23 1 15\n",
"50\n34 7 2\n18 14 2\n15 24 2\n2 24 2\n27 2 2\n50 45 2\n49 19 2\n7 23 2\n16 22 2\n23 25 2\n18 23 2\n11 29 2\n22 14 2\n31 15 2\n10 42 2\n8 11 2\n9 33 2\n15 0 2\n30 25 2\n12 4 2\n14 13 2\n5 16 2\n13 43 2\n1 8 2\n26 34 2\n83 13 2\n10 17 2\n40 5 2\n48 39 2\n39 23 2\n19 10 2\n22 17 2\n36 26 2\n2 34 2\n11 42 2\n14 37 2\n25 7 2\n11 35 2\n22 34 2\n22 25 2\n12 36 2\n18 6 2\n2 47 2\n47 29 2\n13 37 2\n8 46 2\n9 4 2\n11 34 2\n12 31 2\n7 16 2\n",
"49\n9 43 6\n23 35 9\n46 39 11\n34 14 12\n30 8 4\n10 32 7\n43 10 45\n30 34 27\n27 26 21\n7 31 14\n38 13 33\n34 11 46\n33 31 32\n38 31 7\n3 24 13\n38 12 41\n21 26 32\n33 0 43\n17 44 25\n11 21 27\n27 43 28\n45 8 38\n47 50 47\n49 45 8\n2 9 34\n34 32 49\n21 30 9\n13 19 38\n8 45 32\n16 47 35\n45 28 14\n3 22 43\n45 7 32\n49 35 12\n22 35 35\n14 33 42\n19 23 10\n49 4 2\n44 37 40\n27 17 15\n7 37 30\n38 50 39\n32 12 19\n3 48 9\n26 36 27\n38 18 39\n25 40 50\n45 3 2\n23 40 36\n",
"50\n47 43 2\n31 38 2\n35 21 2\n18 41 2\n24 33 2\n35 0 2\n15 41 2\n6 3 2\n23 40 2\n11 29 2\n48 46 2\n33 45 2\n28 18 2\n31 17 2\n14 4 2\n35 18 2\n50 11 2\n10 28 2\n23 9 2\n43 25 2\n34 21 2\n19 49 2\n40 37 2\n22 27 2\n7 1 2\n37 24 2\n14 26 2\n18 46 2\n40 50 2\n21 40 2\n19 26 2\n35 2 2\n19 27 2\n13 23 2\n9 50 2\n38 9 2\n44 22 2\n5 30 2\n36 7 2\n10 26 2\n21 30 2\n19 6 2\n21 13 2\n5 3 2\n9 41 2\n10 17 2\n1 11 2\n5 6 2\n40 17 2\n6 7 2\n",
"10\n1 9 2\n3 10 2\n7 7 2\n6 12 2\n14 15 2\n2 12 2\n8 0 2\n1 12 2\n4 11 2\n15 9 2\n",
"7\n13 25 5\n2 10 3\n12 12 8\n9 12 11\n10 3 10\n9 6 13\n11 10 3\n",
"49\n22 28 2\n37 8 19\n17 36 19\n50 31 10\n26 39 17\n46 37 45\n8 33 30\n29 14 19\n34 42 37\n20 35 34\n17 10 39\n6 28 16\n38 35 27\n39 4 41\n8 37 7\n39 21 4\n12 28 20\n28 27 29\n36 28 10\n41 16 22\n21 0 20\n6 15 4\n48 43 21\n19 12 18\n10 27 15\n27 44 12\n25 14 19\n43 8 43\n1 31 26\n49 11 4\n45 18 7\n16 35 48\n2 8 21\n8 0 30\n20 42 5\n39 30 2\n13 36 64\n43 50 50\n7 9 43\n17 42 10\n15 5 21\n39 25 18\n25 29 35\n12 46 15\n48 41 6\n41 13 17\n16 46 15\n38 27 39\n50 25 16\n",
"1\n1 1 11\n",
"50\n21 22 2\n4 16 2\n19 29 2\n37 7 2\n31 47 2\n38 15 2\n32 24 2\n7 18 2\n9 7 2\n36 48 2\n14 26 2\n40 12 2\n18 10 2\n29 42 2\n32 27 2\n34 3 2\n44 33 2\n19 49 2\n12 39 2\n33 10 2\n21 8 2\n44 9 2\n13 0 2\n6 16 2\n18 15 2\n50 1 2\n31 31 2\n36 43 2\n30 2 2\n7 33 2\n18 22 2\n9 7 2\n3 25 2\n17 18 2\n13 10 2\n41 57 2\n32 44 2\n17 40 2\n7 11 2\n31 50 2\n3 40 2\n17 30 2\n10 5 2\n13 30 2\n44 33 2\n6 50 2\n45 49 2\n18 9 2\n35 46 2\n8 50 2\n",
"4\n0 0 2\n50 66 2\n50 0 2\n0 50 2\n",
"3\n0 10 4\n18 0 4\n20 10 4\n",
"5\n0 0 2\n2 1 2\n3 0 2\n40 40 2\n50 50 50\n",
"50\n1 1 2\n1 1 42\n0 0 46\n2 1 16\n1 0 9\n0 0 43\n1 0 39\n1 1 41\n1 1 6\n1 1 43\n0 1 25\n0 1 40\n0 0 11\n0 1 27\n1 0 5\n1 0 9\n1 1 49\n0 0 25\n0 0 32\n0 1 6\n0 1 31\n1 1 22\n0 0 47\n0 1 6\n0 0 6\n0 1 49\n1 0 44\n0 0 50\n1 0 3\n0 1 15\n1 0 37\n0 0 14\n1 1 28\n1 1 49\n1 0 9\n0 1 12\n0 0 35\n1 1 42\n1 1 28\n0 1 20\n1 1 24\n1 1 33\n0 0 38\n1 0 17\n0 1 21\n0 0 22\n1 1 37\n0 1 34\n0 1 46\n1 1 21\n",
"5\n2 0 4\n5 6 10\n7 2 8\n3 10 8\n10 0 9\n",
"10\n7 3 5\n2 0 6\n8 6 2\n1 2 6\n2 0 9\n10 9 2\n2 6 4\n10 3 6\n4 11 3\n9 9 2\n",
"1\n50 5 63\n",
"50\n47 43 2\n31 38 2\n35 21 2\n18 41 2\n24 33 2\n35 0 2\n15 41 2\n6 3 2\n23 40 2\n11 29 2\n48 46 2\n33 45 2\n28 18 2\n31 17 2\n14 4 2\n35 18 2\n50 11 2\n10 28 2\n23 9 2\n43 25 2\n34 21 2\n19 49 2\n40 37 2\n22 27 2\n7 1 2\n37 24 2\n14 26 2\n18 46 2\n40 50 2\n27 40 2\n19 26 2\n35 2 2\n19 27 2\n13 23 2\n9 50 2\n38 9 2\n44 22 2\n5 30 2\n36 7 2\n10 26 2\n21 30 2\n19 6 2\n21 13 2\n5 3 2\n9 41 2\n10 17 2\n1 11 2\n5 6 2\n40 17 2\n6 7 2\n",
"10\n1 9 2\n3 10 2\n7 7 2\n6 12 2\n14 15 2\n2 12 2\n8 0 2\n1 12 2\n4 11 2\n15 3 2\n",
"7\n13 25 5\n2 10 3\n12 12 8\n1 12 11\n10 3 10\n9 6 13\n11 10 3\n",
"50\n21 22 2\n4 16 2\n19 29 2\n37 7 2\n31 47 2\n38 15 2\n32 24 2\n7 18 2\n9 7 2\n36 48 2\n14 26 2\n40 12 2\n18 10 2\n29 42 2\n32 27 2\n34 3 2\n44 33 2\n19 49 2\n12 39 2\n33 10 2\n21 8 2\n44 9 2\n13 0 2\n6 16 2\n18 15 2\n50 1 2\n1 31 2\n36 43 2\n30 2 2\n7 33 2\n18 22 2\n9 7 2\n3 25 2\n17 18 2\n13 10 2\n41 57 2\n32 44 2\n17 40 2\n7 11 2\n31 50 2\n3 40 2\n17 30 2\n10 5 2\n13 30 2\n44 33 2\n6 50 2\n45 49 2\n18 9 2\n35 46 2\n8 50 2\n",
"4\n0 0 2\n50 66 2\n50 0 2\n0 24 2\n",
"3\n0 10 4\n35 0 4\n20 10 4\n",
"50\n0 1 2\n1 0 2\n1 1 2\n1 1 2\n1 1 2\n1 1 2\n0 1 2\n0 1 2\n0 0 2\n1 0 2\n1 1 2\n1 0 2\n1 0 2\n1 0 2\n1 0 2\n0 0 2\n0 1 2\n1 0 2\n1 0 2\n0 0 2\n0 1 2\n0 1 2\n0 1 2\n0 1 2\n0 1 0\n1 0 2\n0 0 2\n1 1 2\n0 0 2\n0 1 2\n0 0 2\n1 0 2\n1 1 2\n0 0 2\n0 0 2\n1 1 2\n0 1 2\n0 1 2\n1 0 2\n0 0 2\n1 0 2\n0 1 2\n0 0 2\n1 1 2\n1 1 2\n0 1 2\n0 0 2\n0 0 2\n0 0 2\n0 0 2\n",
"3\n9 5 3\n8 9 3\n9 5 2\n",
"50\n48 45 42\n32 45 8\n15 41 47\n32 29 38\n7 16 48\n19 9 21\n18 40 5\n39 40 0\n37 0 6\n50 15 37\n9 33 37\n40 41 33\n25 43 2\n23 21 38\n30 20 32\n28 15 5\n47 9 19\n47 22 26\n26 9 18\n24 23 24\n11 29 5\n38 44 9\n49 22 42\n1 15 32\n18 25 21\n8 48 39\n48 7 26\n3 30 26\n34 21 47\n34 14 4\n36 43 40\n49 19 12\n33 8 30\n42 35 28\n47 21 14\n36 11 27\n40 46 17\n7 12 32\n47 5 4\n9 33 43\n35 31 3\n3 48 43\n2 19 9\n29 15 36\n1 13 2\n28 28 19\n31 33 21\n9 33 18\n7 12 22\n45 14 23\n",
"3\n3 4 6\n5 9 3\n49 1 7\n",
"3\n1 10 5\n10 0 4\n20 10 4\n",
"49\n48 9 48\n9 38 8\n27 43 43\n19 48 4\n35 3 11\n25 3 37\n26 40 20\n30 28 46\n19 35 44\n20 28 57\n34 40 37\n12 45 47\n28 2 38\n13 32 31\n50 10 28\n12 6 19\n31 50 5\n38 22 8\n25 33 50\n32 1 42\n8 37 26\n31 27 25\n21 4 25\n3 1 47\n21 15 42\n40 21 27\n43 20 9\n9 29 21\n15 35 36\n9 30 6\n46 39 22\n41 40 47\n11 5 32\n12 47 23\n24 2 27\n15 9 24\n0 8 45\n4 11 3\n28 13 27\n12 43 30\n23 42 40\n38 24 9\n13 46 42\n20 50 41\n29 32 11\n35 21 12\n10 34 47\n24 29 3\n46 4 7\n",
"50\n7 13 2\n41 17 2\n49 32 2\n14 16 2\n11 16 2\n2 10 2\n15 2 2\n8 12 2\n1 17 2\n22 44 2\n10 1 2\n18 45 2\n11 31 2\n4 43 2\n26 14 2\n33 47 2\n3 5 2\n49 22 2\n44 3 2\n3 41 2\n0 26 2\n30 1 2\n37 6 2\n10 48 2\n11 47 2\n5 41 2\n2 46 2\n32 3 2\n37 42 2\n25 17 2\n18 32 2\n47 21 2\n46 24 2\n7 2 2\n14 2 2\n17 17 2\n13 30 2\n23 19 2\n43 40 2\n42 26 2\n20 20 2\n17 5 2\n43 38 2\n4 32 0\n48 4 2\n1 3 2\n4 41 2\n49 36 2\n7 10 2\n9 6 2\n",
"3\n1 0 3\n5 7 5\n20 25 10\n",
"50\n10 26 2\n20 36 2\n32 43 2\n34 6 2\n19 37 2\n20 29 2\n31 12 2\n30 9 2\n31 5 2\n23 6 2\n0 44 2\n5 36 2\n34 22 2\n6 39 2\n19 18 2\n9 50 2\n40 11 2\n32 4 2\n42 46 2\n22 45 2\n28 2 2\n34 4 2\n16 30 2\n17 47 2\n14 46 2\n32 15 2\n43 11 2\n22 34 2\n34 9 2\n2 4 2\n18 15 2\n48 38 2\n27 28 2\n24 38 2\n33 32 2\n11 7 2\n37 35 2\n50 23 4\n25 28 2\n25 50 2\n28 26 2\n20 31 2\n12 31 2\n15 2 2\n31 45 2\n14 12 2\n16 18 2\n23 30 2\n16 26 2\n30 0 2\n",
"49\n33 40 10\n30 24 11\n4 36 23\n38 50 18\n23 28 29\n9 39 21\n47 15 35\n2 41 27\n1 45 28\n39 15 24\n7 7 28\n1 34 6\n47 17 43\n20 28 12\n23 22 15\n33 41 23\n34 3 44\n39 37 25\n41 49 39\n13 14 26\n4 14 18\n17 8 45\n23 23 16\n37 48 40\n12 48 29\n16 5 6\n29 1 5\n1 18 27\n37 11 3\n46 11 44\n9 25 40\n26 1 17\n12 26 45\n3 18 19\n15 32 38\n41 9 27\n8 39 35\n42 35 13\n5 19 43\n31 47 4\n16 47 38\n12 9 23\n10 23 3\n49 43 16\n38 28 6\n3 46 38\n13 27 28\n0 26 3\n23 1 15\n",
"50\n34 7 2\n18 14 2\n15 24 2\n2 24 2\n27 2 2\n50 45 2\n49 19 2\n7 23 2\n16 22 2\n23 25 2\n18 23 2\n11 29 2\n22 14 2\n31 15 2\n10 42 2\n8 11 4\n9 33 2\n15 0 2\n30 25 2\n12 4 2\n14 13 2\n5 16 2\n13 43 2\n1 8 2\n26 34 2\n83 13 2\n10 17 2\n40 5 2\n48 39 2\n39 23 2\n19 10 2\n22 17 2\n36 26 2\n2 34 2\n11 42 2\n14 37 2\n25 7 2\n11 35 2\n22 34 2\n22 25 2\n12 36 2\n18 6 2\n2 47 2\n47 29 2\n13 37 2\n8 46 2\n9 4 2\n11 34 2\n12 31 2\n7 16 2\n",
"49\n9 43 6\n23 35 9\n46 39 11\n34 14 12\n30 8 4\n10 32 7\n43 10 45\n30 34 27\n27 26 21\n7 31 14\n38 13 33\n34 11 46\n33 31 32\n38 31 7\n3 24 13\n38 12 41\n21 26 32\n33 0 43\n17 44 25\n11 21 27\n27 43 28\n45 8 38\n47 50 47\n49 45 8\n2 9 34\n34 32 49\n21 30 9\n13 19 38\n8 45 32\n16 47 35\n45 28 14\n3 22 43\n45 7 32\n49 35 12\n22 35 35\n14 33 42\n19 23 10\n49 4 2\n44 37 40\n27 17 15\n7 37 30\n38 50 39\n32 12 19\n3 48 9\n26 36 27\n38 18 39\n25 40 39\n45 3 2\n23 40 36\n",
"49\n22 28 2\n37 8 19\n17 36 19\n50 31 10\n26 39 17\n46 37 45\n8 33 30\n29 14 19\n34 42 37\n20 35 34\n17 10 39\n6 28 16\n38 35 27\n39 4 41\n8 37 7\n39 21 4\n12 28 20\n28 27 29\n36 28 10\n41 16 22\n21 0 20\n6 15 4\n48 43 21\n19 12 18\n10 27 15\n27 44 12\n25 14 19\n43 8 43\n1 31 26\n49 11 4\n45 18 7\n16 35 48\n2 8 20\n8 0 30\n20 42 5\n39 30 2\n13 36 64\n43 50 50\n7 9 43\n17 42 10\n15 5 21\n39 25 18\n25 29 35\n12 46 15\n48 41 6\n41 13 17\n16 46 15\n38 27 39\n50 25 16\n",
"1\n1 1 14\n"
],
"output": [
"(((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(5*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(10*((1-abs((t-2)))+abs((abs((t-2))-1)))))\n(((5*((1-abs((t-0)))+abs((abs((t-0))-1))))+(0*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(5*((1-abs((t-2)))+abs((abs((t-2))-1)))))\n",
"(((4*((1-abs((t-0)))+abs((abs((t-0))-1))))+(4*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(4*((1-abs((t-2)))+abs((abs((t-2))-1)))))\n(((2*((1-abs((t-0)))+abs((abs((t-0))-1))))+(4*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(2*((1-abs((t-2)))+abs((abs((t-2))-1)))))\n",
"((((((((((((((((((((((((((((((((((((((((((((((((((24*((1-abs((t-0)))+abs((abs((t-0))-1))))+(16*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(7*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(16*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(3*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(9*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(9*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(19*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(18*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(21*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(4*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(20*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(12*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(11*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(15*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(14*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(23*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(23*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(13*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(12*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(5*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(19*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(24*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(0*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(9*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(4*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(24*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(1*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(17*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(17*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(18*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(24*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(16*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(21*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(23*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(18*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(20*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(3*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(23*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(4*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(17*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(1*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(1*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(14*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(0*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(14*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(15*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(4*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(3*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(22*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n((((((((((((((((((((((((((((((((((((((((((((((((((22*((1-abs((t-0)))+abs((abs((t-0))-1))))+(22*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(20*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(14*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(8*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(4*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(20*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(20*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(0*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(7*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(16*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(20*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(21*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(10*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(10*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(7*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(4*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(11*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(4*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(11*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(14*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(22*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(11*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(7*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(12*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(24*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(3*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(15*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(10*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(7*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(21*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(9*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(4*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(17*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(10*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(5*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(23*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(6*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(2*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(16*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(15*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(24*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(9*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(7*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(6*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(14*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(16*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(16*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(6*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(7*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n",
"(((1*((1-abs((t-0)))+abs((abs((t-0))-1))))+(2*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(24*((1-abs((t-2)))+abs((abs((t-2))-1)))))\n(((1*((1-abs((t-0)))+abs((abs((t-0))-1))))+(4*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(0*((1-abs((t-2)))+abs((abs((t-2))-1)))))\n",
"(((((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(0*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(1*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(20*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(25*((1-abs((t-4)))+abs((abs((t-4))-1)))))\n(((((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(0*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(1*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(20*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(25*((1-abs((t-4)))+abs((abs((t-4))-1)))))\n",
"(((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(5*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(10*((1-abs((t-2)))+abs((abs((t-2))-1)))))\n(((5*((1-abs((t-0)))+abs((abs((t-0))-1))))+(0*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(5*((1-abs((t-2)))+abs((abs((t-2))-1)))))\n",
"((((((((((((((((((((((((((((((((((((((((((((((((((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(0*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(0*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(0*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(0*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(0*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(0*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(0*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(0*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(0*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(0*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(0*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(0*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(0*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(0*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(0*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(0*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(0*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(0*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(0*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(0*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(0*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(0*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(0*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(0*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(0*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(0*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(0*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(0*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(0*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(0*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(0*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(0*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(0*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(0*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(0*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(0*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(0*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(0*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(0*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(0*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(0*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(0*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(0*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(0*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(0*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(0*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(0*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(0*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(0*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n((((((((((((((((((((((((((((((((((((((((((((((((((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(0*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(0*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(0*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(0*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(0*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(0*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(0*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(0*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(0*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(0*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(0*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(0*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(0*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(0*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(0*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(0*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(0*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(0*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(0*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(0*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(0*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(0*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(0*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(0*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(0*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(0*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(0*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(0*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(0*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(0*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(0*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(0*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(0*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(0*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(0*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(0*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(0*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(0*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(0*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(0*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(0*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(0*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(0*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(0*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(0*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(0*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(0*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(0*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(0*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n",
"(((((1*((1-abs((t-0)))+abs((abs((t-0))-1))))+(2*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(3*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(1*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(4*((1-abs((t-4)))+abs((abs((t-4))-1)))))\n(((((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(3*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(1*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(5*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(1*((1-abs((t-4)))+abs((abs((t-4))-1)))))\n",
"(((((((((((((((((((((((((((((((((((((((((((((((((24*((1-abs((t-0)))+abs((abs((t-0))-1))))+(4*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(13*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(9*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(17*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(12*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(13*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(15*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(9*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(10*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(17*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(6*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(14*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(6*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(25*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(6*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(15*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(19*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(12*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(16*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(4*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(15*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(10*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(1*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(10*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(20*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(21*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(4*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(7*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(4*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(23*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(20*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(5*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(6*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(12*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(7*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(0*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(2*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(14*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(6*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(11*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(19*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(6*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(10*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(14*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(17*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(5*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(12*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(23*((1-abs((t-48)))+abs((abs((t-48))-1)))))\n(((((((((((((((((((((((((((((((((((((((((((((((((4*((1-abs((t-0)))+abs((abs((t-0))-1))))+(19*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(21*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(24*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(1*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(1*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(20*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(14*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(17*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(14*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(20*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(22*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(1*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(16*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(5*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(3*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(25*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(11*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(16*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(0*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(18*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(13*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(2*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(0*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(7*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(10*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(10*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(14*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(17*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(15*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(19*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(20*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(2*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(23*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(1*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(4*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(4*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(5*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(6*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(21*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(21*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(12*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(23*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(25*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(16*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(10*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(17*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(14*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(2*((1-abs((t-48)))+abs((abs((t-48))-1)))))\n",
"((((((((((3*((1-abs((t-0)))+abs((abs((t-0))-1))))+(1*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(4*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(0*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(1*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(5*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(1*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(5*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(2*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(4*((1-abs((t-9)))+abs((abs((t-9))-1)))))\n((((((((((1*((1-abs((t-0)))+abs((abs((t-0))-1))))+(0*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(3*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(1*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(0*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(4*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(3*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(1*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(3*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(4*((1-abs((t-9)))+abs((abs((t-9))-1)))))\n",
"((((((((((((((((((((((((((((((((((((((((((((((((((3*((1-abs((t-0)))+abs((abs((t-0))-1))))+(20*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(24*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(11*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(5*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(1*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(7*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(4*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(0*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(11*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(5*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(9*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(5*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(2*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(13*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(16*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(1*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(24*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(22*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(1*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(0*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(15*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(18*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(5*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(5*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(2*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(1*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(16*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(18*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(12*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(9*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(23*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(23*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(3*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(7*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(8*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(6*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(11*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(21*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(21*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(10*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(8*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(21*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(2*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(24*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(0*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(2*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(24*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(3*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(4*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n((((((((((((((((((((((((((((((((((((((((((((((((((6*((1-abs((t-0)))+abs((abs((t-0))-1))))+(8*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(16*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(8*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(8*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(5*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(1*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(6*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(8*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(22*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(0*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(22*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(15*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(21*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(7*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(23*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(2*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(11*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(1*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(20*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(13*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(0*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(3*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(24*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(23*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(20*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(23*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(1*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(21*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(8*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(16*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(10*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(12*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(1*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(1*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(8*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(15*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(9*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(20*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(13*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(10*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(2*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(19*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(16*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(2*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(1*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(20*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(18*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(5*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(3*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n",
"(((((((((((((((((((((((((((((((((((((((((((((((((18*((1-abs((t-0)))+abs((abs((t-0))-1))))+(25*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(6*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(7*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(11*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(15*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(12*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(1*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(21*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(3*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(10*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(13*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(9*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(20*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(18*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(6*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(1*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(24*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(2*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(10*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(21*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(10*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(11*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(7*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(8*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(11*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(1*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(23*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(9*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(15*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(22*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(14*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(17*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(21*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(22*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(5*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(16*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(19*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(10*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(2*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(11*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(19*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(21*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(10*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(21*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(21*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(15*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(3*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(14*((1-abs((t-48)))+abs((abs((t-48))-1)))))\n(((((((((((((((((((((((((((((((((((((((((((((((((6*((1-abs((t-0)))+abs((abs((t-0))-1))))+(3*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(15*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(23*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(21*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(8*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(14*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(10*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(3*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(6*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(16*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(22*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(19*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(14*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(0*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(13*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(2*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(15*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(7*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(18*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(16*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(11*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(17*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(15*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(23*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(1*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(25*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(23*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(21*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(13*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(16*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(10*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(16*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(8*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(12*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(0*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(25*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(9*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(15*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(21*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(0*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(25*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(10*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(10*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(22*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(17*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(1*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(0*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(17*((1-abs((t-48)))+abs((abs((t-48))-1)))))\n",
"(25*((1-abs((t-0)))+abs((abs((t-0))-1))))\n(25*((1-abs((t-0)))+abs((abs((t-0))-1))))\n",
"(((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(2*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(10*((1-abs((t-2)))+abs((abs((t-2))-1)))))\n(((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(3*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(12*((1-abs((t-2)))+abs((abs((t-2))-1)))))\n",
"((((((((((((((((((((((((((((((((((((((((((((((((((5*((1-abs((t-0)))+abs((abs((t-0))-1))))+(10*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(16*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(17*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(9*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(10*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(15*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(15*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(15*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(11*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(0*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(2*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(17*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(3*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(9*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(4*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(20*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(16*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(21*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(11*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(14*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(17*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(8*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(8*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(7*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(16*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(21*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(11*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(17*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(1*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(9*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(24*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(13*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(12*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(16*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(5*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(18*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(25*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(12*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(12*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(14*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(10*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(6*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(7*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(15*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(7*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(8*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(11*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(8*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(15*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n((((((((((((((((((((((((((((((((((((((((((((((((((13*((1-abs((t-0)))+abs((abs((t-0))-1))))+(18*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(21*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(3*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(18*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(14*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(6*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(4*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(2*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(3*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(22*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(18*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(11*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(19*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(9*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(25*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(5*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(2*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(23*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(22*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(1*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(2*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(15*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(23*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(23*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(18*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(5*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(17*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(4*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(2*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(7*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(19*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(14*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(19*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(16*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(3*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(17*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(11*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(14*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(25*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(13*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(15*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(15*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(1*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(22*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(6*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(9*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(15*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(13*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(0*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n",
"(((((((((((((((((((((((((((((((((((((((((((((((((16*((1-abs((t-0)))+abs((abs((t-0))-1))))+(15*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(2*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(19*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(11*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(4*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(23*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(1*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(0*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(19*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(3*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(0*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(23*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(10*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(11*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(16*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(17*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(19*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(20*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(6*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(2*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(8*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(11*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(18*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(6*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(8*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(14*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(0*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(18*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(23*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(4*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(13*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(6*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(1*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(7*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(20*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(4*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(21*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(2*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(15*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(8*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(6*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(5*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(24*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(19*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(1*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(6*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(0*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(11*((1-abs((t-48)))+abs((abs((t-48))-1)))))\n(((((((((((((((((((((((((((((((((((((((((((((((((20*((1-abs((t-0)))+abs((abs((t-0))-1))))+(12*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(18*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(25*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(14*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(19*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(7*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(20*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(22*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(7*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(3*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(17*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(8*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(14*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(11*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(20*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(1*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(18*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(24*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(7*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(17*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(4*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(11*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(24*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(24*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(2*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(0*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(9*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(5*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(5*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(12*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(0*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(13*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(9*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(16*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(4*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(19*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(17*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(9*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(23*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(23*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(4*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(11*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(21*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(14*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(23*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(13*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(13*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(0*((1-abs((t-48)))+abs((abs((t-48))-1)))))\n",
"(0*((1-abs((t-0)))+abs((abs((t-0))-1))))\n(0*((1-abs((t-0)))+abs((abs((t-0))-1))))\n",
"((((((((((((((((((((((((((((((((((((((((((((((((((17*((1-abs((t-0)))+abs((abs((t-0))-1))))+(9*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(7*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(1*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(13*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(25*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(24*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(3*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(8*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(11*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(9*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(5*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(11*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(15*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(5*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(4*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(4*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(7*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(15*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(6*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(7*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(2*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(6*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(0*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(13*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(22*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(5*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(20*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(24*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(19*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(9*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(11*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(18*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(1*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(5*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(7*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(12*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(5*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(11*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(11*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(6*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(9*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(1*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(23*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(6*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(4*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(4*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(5*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(6*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(3*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n((((((((((((((((((((((((((((((((((((((((((((((((((3*((1-abs((t-0)))+abs((abs((t-0))-1))))+(7*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(12*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(12*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(1*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(22*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(9*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(11*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(11*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(12*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(11*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(14*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(7*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(7*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(21*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(5*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(16*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(0*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(12*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(2*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(6*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(8*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(21*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(4*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(17*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(6*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(8*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(2*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(19*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(11*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(5*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(8*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(13*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(17*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(21*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(18*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(3*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(17*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(17*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(12*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(18*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(3*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(23*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(14*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(18*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(23*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(2*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(17*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(15*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(8*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n",
"(((((((((((((((((((((((((((((((((((((((((((((((((4*((1-abs((t-0)))+abs((abs((t-0))-1))))+(11*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(23*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(17*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(15*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(5*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(21*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(15*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(13*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(3*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(19*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(17*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(16*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(19*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(1*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(19*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(10*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(16*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(8*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(5*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(13*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(22*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(23*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(24*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(1*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(17*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(10*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(6*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(4*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(8*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(22*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(1*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(22*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(24*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(11*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(7*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(9*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(24*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(22*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(13*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(3*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(19*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(16*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(1*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(13*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(19*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(12*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(22*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(11*((1-abs((t-48)))+abs((abs((t-48))-1)))))\n(((((((((((((((((((((((((((((((((((((((((((((((((21*((1-abs((t-0)))+abs((abs((t-0))-1))))+(17*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(19*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(7*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(4*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(16*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(5*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(17*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(13*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(15*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(6*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(5*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(15*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(15*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(12*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(6*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(13*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(0*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(22*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(10*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(21*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(4*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(25*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(22*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(4*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(16*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(15*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(9*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(22*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(23*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(14*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(12*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(3*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(17*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(17*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(16*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(11*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(2*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(18*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(8*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(18*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(25*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(6*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(24*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(18*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(9*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(20*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(1*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(20*((1-abs((t-48)))+abs((abs((t-48))-1)))))\n",
"((((((((((((((((((((((((((((((((((((((((((((((((((23*((1-abs((t-0)))+abs((abs((t-0))-1))))+(15*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(17*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(9*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(12*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(17*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(7*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(3*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(11*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(5*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(24*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(16*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(14*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(15*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(7*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(17*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(25*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(5*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(11*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(21*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(17*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(9*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(20*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(11*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(3*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(18*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(7*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(9*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(20*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(10*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(9*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(17*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(9*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(6*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(4*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(19*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(22*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(2*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(18*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(5*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(10*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(9*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(10*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(2*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(4*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(5*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(0*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(2*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(20*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(3*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n((((((((((((((((((((((((((((((((((((((((((((((((((21*((1-abs((t-0)))+abs((abs((t-0))-1))))+(19*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(10*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(20*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(16*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(0*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(20*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(1*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(20*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(14*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(23*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(22*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(9*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(7*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(2*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(9*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(5*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(14*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(4*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(12*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(10*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(24*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(18*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(13*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(0*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(12*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(13*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(23*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(25*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(20*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(13*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(1*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(13*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(11*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(25*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(4*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(11*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(15*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(3*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(13*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(15*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(3*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(6*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(1*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(20*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(8*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(5*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(3*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(8*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(3*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n",
"((((((((((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(1*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(3*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(3*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(7*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(1*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(4*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(0*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(2*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(7*((1-abs((t-9)))+abs((abs((t-9))-1)))))\n((((((((((4*((1-abs((t-0)))+abs((abs((t-0))-1))))+(5*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(3*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(6*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(7*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(6*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(0*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(6*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(5*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(4*((1-abs((t-9)))+abs((abs((t-9))-1)))))\n",
"(((((((6*((1-abs((t-0)))+abs((abs((t-0))-1))))+(1*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(6*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(4*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(5*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(4*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(5*((1-abs((t-6)))+abs((abs((t-6))-1)))))\n(((((((7*((1-abs((t-0)))+abs((abs((t-0))-1))))+(5*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(6*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(6*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(1*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(3*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(5*((1-abs((t-6)))+abs((abs((t-6))-1)))))\n",
"((((((((((((((((((((((((((((((((((((((((((((((((((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(0*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(0*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(0*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(0*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(0*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(0*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(0*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(0*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(0*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(0*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(0*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(0*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(0*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(0*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(0*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(0*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(0*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(0*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(0*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(0*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(0*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(0*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(0*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(0*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(0*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(0*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(0*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(0*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(0*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(0*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(0*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(0*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(0*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(0*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(0*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(0*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(0*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(0*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(0*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(0*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(0*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(0*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(0*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(0*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(0*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(0*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(0*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(0*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(0*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n((((((((((((((((((((((((((((((((((((((((((((((((((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(0*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(0*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(0*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(0*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(0*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(0*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(0*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(0*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(0*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(0*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(0*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(0*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(0*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(0*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(0*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(0*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(0*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(0*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(0*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(0*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(0*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(0*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(0*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(0*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(0*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(0*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(0*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(0*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(0*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(0*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(0*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(0*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(0*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(0*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(0*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(0*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(0*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(0*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(0*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(0*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(0*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(0*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(0*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(0*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(0*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(0*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(0*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(0*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(0*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n",
"(((((((((((((((((((((((((((((((((((((((((((((((((11*((1-abs((t-0)))+abs((abs((t-0))-1))))+(18*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(8*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(25*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(13*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(23*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(4*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(14*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(17*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(10*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(8*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(3*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(19*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(19*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(4*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(19*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(6*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(14*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(18*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(20*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(10*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(3*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(24*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(9*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(5*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(13*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(12*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(21*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(0*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(24*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(22*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(8*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(1*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(4*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(10*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(19*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(6*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(21*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(3*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(8*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(7*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(19*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(12*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(6*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(24*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(20*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(8*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(19*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(25*((1-abs((t-48)))+abs((abs((t-48))-1)))))\n(((((((((((((((((((((((((((((((((((((((((((((((((14*((1-abs((t-0)))+abs((abs((t-0))-1))))+(4*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(18*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(15*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(19*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(18*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(16*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(7*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(21*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(17*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(5*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(14*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(17*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(2*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(18*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(10*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(14*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(13*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(14*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(8*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(0*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(7*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(21*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(6*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(13*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(22*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(7*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(4*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(15*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(5*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(9*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(17*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(4*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(0*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(21*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(15*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(18*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(25*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(4*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(21*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(2*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(12*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(14*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(23*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(20*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(6*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(23*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(13*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(12*((1-abs((t-48)))+abs((abs((t-48))-1)))))\n",
"(0*((1-abs((t-0)))+abs((abs((t-0))-1))))\n(0*((1-abs((t-0)))+abs((abs((t-0))-1))))\n",
"((((((((((((((((((((((((((((((((((((((((((((((((((10*((1-abs((t-0)))+abs((abs((t-0))-1))))+(2*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(9*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(18*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(15*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(19*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(16*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(3*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(4*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(18*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(7*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(20*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(9*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(14*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(16*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(17*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(22*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(9*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(6*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(16*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(10*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(22*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(6*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(3*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(9*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(25*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(15*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(18*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(15*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(3*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(9*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(4*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(1*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(8*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(6*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(20*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(16*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(8*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(3*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(15*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(1*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(8*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(5*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(6*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(22*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(3*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(22*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(9*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(17*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(4*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n((((((((((((((((((((((((((((((((((((((((((((((((((11*((1-abs((t-0)))+abs((abs((t-0))-1))))+(8*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(14*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(3*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(23*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(7*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(12*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(9*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(3*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(24*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(13*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(6*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(5*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(21*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(13*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(1*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(16*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(24*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(19*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(5*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(4*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(4*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(0*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(8*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(7*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(0*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(15*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(21*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(1*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(16*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(11*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(3*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(12*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(9*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(5*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(20*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(22*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(20*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(5*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(25*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(20*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(15*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(2*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(15*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(16*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(25*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(24*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(4*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(23*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(25*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n",
"((((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(25*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(25*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(0*((1-abs((t-3)))+abs((abs((t-3))-1)))))\n((((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(25*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(0*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(25*((1-abs((t-3)))+abs((abs((t-3))-1)))))\n",
"(((4*((1-abs((t-0)))+abs((abs((t-0))-1))))+(4*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(4*((1-abs((t-2)))+abs((abs((t-2))-1)))))\n(((2*((1-abs((t-0)))+abs((abs((t-0))-1))))+(4*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(2*((1-abs((t-2)))+abs((abs((t-2))-1)))))",
"((((((((((((((((((((((((((((((((((((((((((((((((((24*((1-abs((t-0)))+abs((abs((t-0))-1))))+(16*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(7*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(16*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(3*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(9*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(9*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(19*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(18*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(25*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(4*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(20*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(12*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(11*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(15*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(14*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(23*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(23*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(13*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(12*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(5*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(19*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(24*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(0*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(9*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(4*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(24*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(1*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(17*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(17*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(18*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(24*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(16*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(21*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(23*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(18*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(20*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(3*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(23*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(4*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(17*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(1*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(1*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(14*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(0*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(14*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(15*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(4*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(3*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(22*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n((((((((((((((((((((((((((((((((((((((((((((((((((22*((1-abs((t-0)))+abs((abs((t-0))-1))))+(22*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(20*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(14*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(8*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(4*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(20*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(20*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(0*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(7*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(16*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(20*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(21*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(10*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(10*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(7*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(4*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(11*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(4*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(11*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(14*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(22*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(11*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(7*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(12*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(24*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(3*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(15*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(10*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(7*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(21*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(9*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(4*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(17*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(10*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(5*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(23*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(6*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(2*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(16*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(15*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(24*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(9*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(7*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(6*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(14*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(16*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(16*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(6*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(7*((1-abs((t-49)))+abs((abs((t-49))-1)))))",
"(((1*((1-abs((t-0)))+abs((abs((t-0))-1))))+(2*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(24*((1-abs((t-2)))+abs((abs((t-2))-1)))))\n(((2*((1-abs((t-0)))+abs((abs((t-0))-1))))+(4*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(0*((1-abs((t-2)))+abs((abs((t-2))-1)))))",
"(((((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(0*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(1*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(20*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(25*((1-abs((t-4)))+abs((abs((t-4))-1)))))\n(((((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(0*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(0*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(20*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(25*((1-abs((t-4)))+abs((abs((t-4))-1)))))",
"(((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(5*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(10*((1-abs((t-2)))+abs((abs((t-2))-1)))))\n(((5*((1-abs((t-0)))+abs((abs((t-0))-1))))+(0*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(5*((1-abs((t-2)))+abs((abs((t-2))-1)))))",
"((((((((((((((((((((((((((((((((((((((((((((((((((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(0*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(0*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(0*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(0*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(0*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(0*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(0*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(0*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(0*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(0*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(0*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(0*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(0*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(0*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(0*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(0*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(0*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(0*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(0*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(0*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(0*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(0*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(0*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(0*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(0*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(0*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(0*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(0*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(0*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(0*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(0*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(0*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(0*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(0*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(0*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(0*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(0*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(0*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(0*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(0*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(0*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(0*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(0*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(0*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(0*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(0*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(0*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(0*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(0*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n((((((((((((((((((((((((((((((((((((((((((((((((((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(0*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(0*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(0*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(0*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(0*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(0*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(0*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(0*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(0*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(0*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(0*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(0*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(0*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(0*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(0*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(0*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(0*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(0*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(0*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(0*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(0*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(0*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(0*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(0*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(0*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(0*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(0*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(0*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(0*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(0*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(0*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(0*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(0*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(0*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(0*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(0*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(0*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(0*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(0*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(0*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(0*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(0*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(0*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(0*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(0*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(0*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(0*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(0*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(0*((1-abs((t-49)))+abs((abs((t-49))-1)))))",
"(((((1*((1-abs((t-0)))+abs((abs((t-0))-1))))+(2*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(3*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(1*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(4*((1-abs((t-4)))+abs((abs((t-4))-1)))))\n(((((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(3*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(1*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(5*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(0*((1-abs((t-4)))+abs((abs((t-4))-1)))))",
"(((((((((((((((((((((((((((((((((((((((((((((((((24*((1-abs((t-0)))+abs((abs((t-0))-1))))+(4*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(13*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(9*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(17*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(12*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(13*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(15*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(9*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(10*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(17*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(6*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(14*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(6*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(25*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(6*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(15*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(19*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(12*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(16*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(4*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(15*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(10*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(1*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(10*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(20*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(21*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(4*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(7*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(4*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(23*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(20*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(5*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(6*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(12*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(7*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(0*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(2*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(14*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(6*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(11*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(19*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(6*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(10*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(14*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(17*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(5*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(12*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(23*((1-abs((t-48)))+abs((abs((t-48))-1)))))\n(((((((((((((((((((((((((((((((((((((((((((((((((4*((1-abs((t-0)))+abs((abs((t-0))-1))))+(19*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(21*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(24*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(1*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(1*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(20*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(14*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(17*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(14*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(20*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(22*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(1*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(16*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(5*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(3*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(25*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(11*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(16*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(0*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(18*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(13*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(2*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(0*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(7*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(10*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(10*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(14*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(17*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(15*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(19*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(20*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(2*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(23*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(1*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(4*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(4*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(5*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(6*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(21*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(21*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(12*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(23*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(25*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(16*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(10*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(17*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(14*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(2*((1-abs((t-48)))+abs((abs((t-48))-1)))))",
"((((((((((3*((1-abs((t-0)))+abs((abs((t-0))-1))))+(1*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(4*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(0*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(1*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(5*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(1*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(5*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(2*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(4*((1-abs((t-9)))+abs((abs((t-9))-1)))))\n((((((((((1*((1-abs((t-0)))+abs((abs((t-0))-1))))+(0*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(3*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(1*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(0*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(4*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(3*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(1*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(3*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(4*((1-abs((t-9)))+abs((abs((t-9))-1)))))",
"((((((((((((((((((((((((((((((((((((((((((((((((((3*((1-abs((t-0)))+abs((abs((t-0))-1))))+(20*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(24*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(7*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(5*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(1*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(7*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(4*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(0*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(11*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(5*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(9*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(5*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(2*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(13*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(16*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(1*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(24*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(22*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(1*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(0*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(15*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(18*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(5*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(5*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(2*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(1*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(16*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(18*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(12*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(9*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(23*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(23*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(3*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(7*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(8*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(6*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(11*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(21*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(21*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(10*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(8*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(21*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(2*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(24*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(0*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(2*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(24*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(3*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(4*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n((((((((((((((((((((((((((((((((((((((((((((((((((6*((1-abs((t-0)))+abs((abs((t-0))-1))))+(8*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(16*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(8*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(8*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(5*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(1*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(6*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(8*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(22*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(0*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(22*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(15*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(21*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(7*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(23*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(2*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(11*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(1*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(20*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(13*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(0*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(3*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(24*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(23*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(20*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(23*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(1*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(21*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(8*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(16*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(10*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(12*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(1*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(1*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(8*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(15*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(9*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(20*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(13*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(10*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(2*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(19*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(16*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(2*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(1*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(20*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(18*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(5*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(3*((1-abs((t-49)))+abs((abs((t-49))-1)))))",
"(25*((1-abs((t-0)))+abs((abs((t-0))-1))))\n(25*((1-abs((t-0)))+abs((abs((t-0))-1))))",
"(((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(2*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(10*((1-abs((t-2)))+abs((abs((t-2))-1)))))\n(((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(3*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(12*((1-abs((t-2)))+abs((abs((t-2))-1)))))",
"((((((((((((((((((((((((((((((((((((((((((((((((((5*((1-abs((t-0)))+abs((abs((t-0))-1))))+(10*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(16*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(17*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(9*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(10*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(15*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(15*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(15*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(11*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(0*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(2*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(17*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(3*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(9*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(4*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(20*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(16*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(21*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(11*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(14*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(17*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(8*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(8*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(7*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(16*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(21*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(11*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(17*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(1*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(9*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(24*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(13*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(12*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(16*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(5*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(18*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(25*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(12*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(12*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(14*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(10*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(6*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(7*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(15*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(7*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(8*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(11*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(8*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(15*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n((((((((((((((((((((((((((((((((((((((((((((((((((13*((1-abs((t-0)))+abs((abs((t-0))-1))))+(18*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(21*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(3*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(18*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(14*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(6*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(4*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(2*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(3*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(22*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(18*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(11*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(19*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(9*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(25*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(5*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(2*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(23*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(22*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(1*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(2*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(15*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(23*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(23*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(7*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(5*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(17*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(4*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(2*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(7*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(19*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(14*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(19*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(16*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(3*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(17*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(11*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(14*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(25*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(13*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(15*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(15*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(1*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(22*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(6*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(9*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(15*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(13*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(0*((1-abs((t-49)))+abs((abs((t-49))-1)))))",
"(((((((((((((((((((((((((((((((((((((((((((((((((16*((1-abs((t-0)))+abs((abs((t-0))-1))))+(15*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(2*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(19*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(11*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(4*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(23*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(1*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(0*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(19*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(3*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(0*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(23*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(10*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(11*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(16*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(17*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(19*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(20*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(6*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(2*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(8*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(11*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(18*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(6*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(8*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(14*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(0*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(18*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(23*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(4*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(13*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(6*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(1*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(7*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(20*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(4*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(21*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(2*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(15*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(8*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(6*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(5*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(24*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(19*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(1*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(6*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(0*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(11*((1-abs((t-48)))+abs((abs((t-48))-1)))))\n(((((((((((((((((((((((((((((((((((((((((((((((((20*((1-abs((t-0)))+abs((abs((t-0))-1))))+(12*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(18*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(25*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(14*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(19*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(7*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(20*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(22*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(7*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(3*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(17*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(8*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(14*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(11*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(20*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(1*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(18*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(24*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(7*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(7*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(4*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(11*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(24*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(24*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(2*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(0*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(9*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(5*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(5*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(12*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(0*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(13*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(9*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(16*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(4*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(19*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(17*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(9*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(23*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(23*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(4*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(11*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(21*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(14*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(23*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(13*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(13*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(0*((1-abs((t-48)))+abs((abs((t-48))-1)))))",
"((((((((((((((((((((((((((((((((((((((((((((((((((17*((1-abs((t-0)))+abs((abs((t-0))-1))))+(9*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(7*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(1*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(13*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(25*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(24*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(3*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(8*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(11*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(9*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(5*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(11*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(15*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(5*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(4*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(4*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(7*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(15*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(6*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(7*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(2*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(6*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(0*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(13*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(41*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(5*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(20*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(24*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(19*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(9*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(11*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(18*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(1*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(5*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(7*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(12*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(5*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(11*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(11*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(6*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(9*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(1*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(23*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(6*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(4*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(4*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(5*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(6*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(3*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n((((((((((((((((((((((((((((((((((((((((((((((((((3*((1-abs((t-0)))+abs((abs((t-0))-1))))+(7*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(12*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(12*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(1*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(22*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(9*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(11*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(11*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(12*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(11*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(14*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(7*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(7*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(21*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(5*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(16*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(0*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(12*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(2*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(6*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(8*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(21*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(4*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(17*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(6*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(8*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(2*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(19*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(11*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(5*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(8*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(13*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(17*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(21*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(18*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(3*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(17*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(17*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(12*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(18*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(3*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(23*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(14*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(18*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(23*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(2*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(17*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(15*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(8*((1-abs((t-49)))+abs((abs((t-49))-1)))))",
"(((((((((((((((((((((((((((((((((((((((((((((((((4*((1-abs((t-0)))+abs((abs((t-0))-1))))+(11*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(23*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(17*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(15*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(5*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(21*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(15*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(13*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(3*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(19*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(17*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(16*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(19*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(1*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(19*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(10*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(16*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(8*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(5*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(13*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(22*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(23*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(24*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(1*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(17*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(10*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(6*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(4*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(8*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(22*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(1*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(22*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(24*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(11*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(7*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(9*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(24*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(22*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(13*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(3*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(19*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(16*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(1*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(13*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(19*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(12*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(22*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(11*((1-abs((t-48)))+abs((abs((t-48))-1)))))\n(((((((((((((((((((((((((((((((((((((((((((((((((21*((1-abs((t-0)))+abs((abs((t-0))-1))))+(17*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(19*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(7*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(4*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(16*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(5*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(17*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(13*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(15*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(6*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(5*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(15*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(15*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(12*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(6*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(13*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(0*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(22*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(10*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(21*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(4*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(25*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(22*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(4*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(16*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(15*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(9*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(22*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(23*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(14*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(11*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(3*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(17*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(17*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(16*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(11*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(2*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(18*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(8*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(18*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(25*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(6*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(24*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(18*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(9*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(20*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(1*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(20*((1-abs((t-48)))+abs((abs((t-48))-1)))))",
"((((((((((((((((((((((((((((((((((((((((((((((((((23*((1-abs((t-0)))+abs((abs((t-0))-1))))+(15*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(17*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(9*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(12*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(17*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(7*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(3*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(11*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(5*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(24*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(16*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(14*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(15*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(7*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(17*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(25*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(5*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(11*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(21*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(17*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(9*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(20*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(11*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(3*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(18*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(7*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(9*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(20*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(10*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(9*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(17*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(9*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(6*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(4*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(19*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(22*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(2*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(18*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(5*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(10*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(9*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(10*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(2*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(4*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(5*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(0*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(2*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(20*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(3*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n((((((((((((((((((((((((((((((((((((((((((((((((((21*((1-abs((t-0)))+abs((abs((t-0))-1))))+(19*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(10*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(20*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(16*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(0*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(20*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(1*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(20*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(14*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(23*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(22*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(9*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(8*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(2*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(9*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(5*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(14*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(4*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(12*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(10*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(24*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(18*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(13*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(0*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(12*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(13*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(23*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(25*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(20*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(13*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(1*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(13*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(11*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(25*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(4*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(11*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(15*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(3*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(13*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(15*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(3*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(6*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(1*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(20*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(8*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(5*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(3*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(8*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(3*((1-abs((t-49)))+abs((abs((t-49))-1)))))",
"((((((((((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(1*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(3*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(3*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(7*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(1*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(4*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(0*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(2*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(7*((1-abs((t-9)))+abs((abs((t-9))-1)))))\n((((((((((4*((1-abs((t-0)))+abs((abs((t-0))-1))))+(5*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(3*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(6*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(7*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(6*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(0*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(6*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(5*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(4*((1-abs((t-9)))+abs((abs((t-9))-1)))))",
"(((((((6*((1-abs((t-0)))+abs((abs((t-0))-1))))+(1*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(6*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(4*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(5*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(4*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(5*((1-abs((t-6)))+abs((abs((t-6))-1)))))\n(((((((12*((1-abs((t-0)))+abs((abs((t-0))-1))))+(5*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(6*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(6*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(1*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(3*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(5*((1-abs((t-6)))+abs((abs((t-6))-1)))))",
"(((((((((((((((((((((((((((((((((((((((((((((((((11*((1-abs((t-0)))+abs((abs((t-0))-1))))+(18*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(8*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(25*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(13*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(23*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(4*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(14*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(17*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(10*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(8*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(3*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(19*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(19*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(4*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(19*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(6*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(14*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(18*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(20*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(10*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(3*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(24*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(9*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(5*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(13*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(12*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(21*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(0*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(24*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(22*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(8*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(1*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(4*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(10*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(19*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(6*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(21*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(3*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(8*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(7*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(19*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(12*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(6*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(24*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(20*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(8*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(19*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(25*((1-abs((t-48)))+abs((abs((t-48))-1)))))\n(((((((((((((((((((((((((((((((((((((((((((((((((14*((1-abs((t-0)))+abs((abs((t-0))-1))))+(4*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(18*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(15*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(19*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(18*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(16*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(7*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(21*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(17*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(5*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(14*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(17*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(2*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(18*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(10*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(14*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(13*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(14*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(8*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(0*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(7*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(21*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(6*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(13*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(22*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(7*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(4*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(15*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(5*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(9*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(17*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(4*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(0*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(21*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(15*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(18*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(25*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(4*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(21*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(2*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(12*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(14*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(23*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(20*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(6*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(23*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(13*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(12*((1-abs((t-48)))+abs((abs((t-48))-1)))))",
"(0*((1-abs((t-0)))+abs((abs((t-0))-1))))\n(0*((1-abs((t-0)))+abs((abs((t-0))-1))))",
"((((((((((((((((((((((((((((((((((((((((((((((((((10*((1-abs((t-0)))+abs((abs((t-0))-1))))+(2*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(9*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(18*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(15*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(19*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(16*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(3*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(4*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(18*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(7*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(20*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(9*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(14*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(16*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(17*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(22*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(9*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(6*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(16*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(10*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(22*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(6*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(3*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(9*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(25*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(15*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(18*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(15*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(3*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(9*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(4*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(1*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(8*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(6*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(20*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(16*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(8*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(3*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(15*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(1*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(8*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(5*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(6*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(22*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(3*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(22*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(9*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(17*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(4*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n((((((((((((((((((((((((((((((((((((((((((((((((((11*((1-abs((t-0)))+abs((abs((t-0))-1))))+(8*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(14*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(3*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(23*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(7*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(12*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(9*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(3*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(24*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(13*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(6*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(5*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(21*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(13*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(1*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(16*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(24*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(19*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(5*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(4*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(4*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(0*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(8*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(7*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(0*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(15*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(21*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(1*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(16*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(11*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(3*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(12*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(9*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(5*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(28*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(22*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(20*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(5*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(25*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(20*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(15*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(2*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(15*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(16*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(25*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(24*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(4*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(23*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(25*((1-abs((t-49)))+abs((abs((t-49))-1)))))",
"((((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(25*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(25*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(0*((1-abs((t-3)))+abs((abs((t-3))-1)))))\n((((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(33*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(0*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(25*((1-abs((t-3)))+abs((abs((t-3))-1)))))",
"(((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(9*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(10*((1-abs((t-2)))+abs((abs((t-2))-1)))))\n(((5*((1-abs((t-0)))+abs((abs((t-0))-1))))+(0*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(5*((1-abs((t-2)))+abs((abs((t-2))-1)))))",
"(((((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(1*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(1*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(20*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(25*((1-abs((t-4)))+abs((abs((t-4))-1)))))\n(((((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(0*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(0*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(20*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(25*((1-abs((t-4)))+abs((abs((t-4))-1)))))",
"((((((((((((((((((((((((((((((((((((((((((((((((((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(0*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(0*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(1*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(0*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(0*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(0*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(0*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(0*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(0*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(0*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(0*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(0*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(0*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(0*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(0*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(0*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(0*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(0*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(0*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(0*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(0*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(0*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(0*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(0*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(0*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(0*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(0*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(0*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(0*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(0*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(0*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(0*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(0*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(0*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(0*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(0*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(0*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(0*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(0*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(0*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(0*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(0*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(0*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(0*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(0*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(0*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(0*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(0*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(0*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n((((((((((((((((((((((((((((((((((((((((((((((((((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(0*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(0*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(0*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(0*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(0*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(0*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(0*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(0*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(0*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(0*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(0*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(0*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(0*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(0*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(0*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(0*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(0*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(0*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(0*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(0*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(0*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(0*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(0*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(0*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(0*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(0*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(0*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(0*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(0*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(0*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(0*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(0*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(0*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(0*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(0*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(0*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(0*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(0*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(0*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(0*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(0*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(0*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(0*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(0*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(0*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(0*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(0*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(0*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(0*((1-abs((t-49)))+abs((abs((t-49))-1)))))",
"(((((1*((1-abs((t-0)))+abs((abs((t-0))-1))))+(2*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(3*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(1*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(5*((1-abs((t-4)))+abs((abs((t-4))-1)))))\n(((((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(3*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(1*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(5*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(0*((1-abs((t-4)))+abs((abs((t-4))-1)))))",
"((((((((((3*((1-abs((t-0)))+abs((abs((t-0))-1))))+(1*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(4*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(0*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(1*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(5*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(1*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(5*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(2*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(4*((1-abs((t-9)))+abs((abs((t-9))-1)))))\n((((((((((1*((1-abs((t-0)))+abs((abs((t-0))-1))))+(0*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(3*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(1*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(0*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(4*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(3*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(1*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(5*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(4*((1-abs((t-9)))+abs((abs((t-9))-1)))))",
"(25*((1-abs((t-0)))+abs((abs((t-0))-1))))\n(2*((1-abs((t-0)))+abs((abs((t-0))-1))))",
"((((((((((((((((((((((((((((((((((((((((((((((((((23*((1-abs((t-0)))+abs((abs((t-0))-1))))+(15*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(17*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(9*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(12*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(17*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(7*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(3*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(11*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(5*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(24*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(16*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(14*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(15*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(7*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(17*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(25*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(5*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(11*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(21*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(17*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(9*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(20*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(11*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(3*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(18*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(7*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(9*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(20*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(13*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(9*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(17*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(9*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(6*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(4*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(19*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(22*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(2*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(18*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(5*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(10*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(9*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(10*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(2*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(4*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(5*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(0*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(2*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(20*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(3*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n((((((((((((((((((((((((((((((((((((((((((((((((((21*((1-abs((t-0)))+abs((abs((t-0))-1))))+(19*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(10*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(20*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(16*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(0*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(20*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(1*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(20*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(14*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(23*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(22*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(9*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(8*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(2*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(9*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(5*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(14*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(4*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(12*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(10*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(24*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(18*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(13*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(0*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(12*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(13*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(23*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(25*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(20*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(13*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(1*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(13*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(11*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(25*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(4*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(11*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(15*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(3*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(13*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(15*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(3*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(6*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(1*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(20*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(8*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(5*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(3*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(8*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(3*((1-abs((t-49)))+abs((abs((t-49))-1)))))",
"((((((((((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(1*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(3*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(3*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(7*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(1*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(4*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(0*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(2*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(7*((1-abs((t-9)))+abs((abs((t-9))-1)))))\n((((((((((4*((1-abs((t-0)))+abs((abs((t-0))-1))))+(5*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(3*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(6*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(7*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(6*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(0*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(6*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(5*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(1*((1-abs((t-9)))+abs((abs((t-9))-1)))))",
"(((((((6*((1-abs((t-0)))+abs((abs((t-0))-1))))+(1*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(6*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(0*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(5*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(4*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(5*((1-abs((t-6)))+abs((abs((t-6))-1)))))\n(((((((12*((1-abs((t-0)))+abs((abs((t-0))-1))))+(5*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(6*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(6*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(1*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(3*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(5*((1-abs((t-6)))+abs((abs((t-6))-1)))))",
"((((((((((((((((((((((((((((((((((((((((((((((((((10*((1-abs((t-0)))+abs((abs((t-0))-1))))+(2*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(9*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(18*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(15*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(19*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(16*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(3*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(4*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(18*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(7*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(20*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(9*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(14*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(16*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(17*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(22*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(9*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(6*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(16*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(10*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(22*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(6*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(3*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(9*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(25*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(0*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(18*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(15*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(3*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(9*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(4*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(1*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(8*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(6*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(20*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(16*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(8*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(3*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(15*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(1*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(8*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(5*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(6*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(22*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(3*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(22*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(9*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(17*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(4*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n((((((((((((((((((((((((((((((((((((((((((((((((((11*((1-abs((t-0)))+abs((abs((t-0))-1))))+(8*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(14*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(3*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(23*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(7*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(12*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(9*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(3*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(24*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(13*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(6*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(5*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(21*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(13*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(1*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(16*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(24*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(19*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(5*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(4*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(4*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(0*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(8*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(7*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(0*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(15*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(21*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(1*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(16*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(11*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(3*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(12*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(9*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(5*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(28*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(22*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(20*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(5*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(25*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(20*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(15*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(2*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(15*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(16*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(25*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(24*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(4*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(23*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(25*((1-abs((t-49)))+abs((abs((t-49))-1)))))",
"((((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(25*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(25*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(0*((1-abs((t-3)))+abs((abs((t-3))-1)))))\n((((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(33*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(0*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(12*((1-abs((t-3)))+abs((abs((t-3))-1)))))",
"(((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(17*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(10*((1-abs((t-2)))+abs((abs((t-2))-1)))))\n(((5*((1-abs((t-0)))+abs((abs((t-0))-1))))+(0*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(5*((1-abs((t-2)))+abs((abs((t-2))-1)))))",
"((((((((((((((((((((((((((((((((((((((((((((((((((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(0*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(0*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(0*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(0*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(0*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(0*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(0*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(0*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(0*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(0*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(0*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(0*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(0*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(0*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(0*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(0*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(0*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(0*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(0*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(0*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(0*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(0*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(0*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(0*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(0*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(0*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(0*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(0*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(0*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(0*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(0*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(0*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(0*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(0*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(0*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(0*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(0*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(0*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(0*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(0*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(0*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(0*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(0*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(0*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(0*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(0*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(0*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(0*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(0*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n((((((((((((((((((((((((((((((((((((((((((((((((((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(0*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(0*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(0*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(0*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(0*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(0*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(0*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(0*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(0*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(0*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(0*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(0*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(0*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(0*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(0*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(0*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(0*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(0*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(0*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(0*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(0*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(0*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(0*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(0*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(0*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(0*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(0*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(0*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(0*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(0*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(0*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(0*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(0*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(0*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(0*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(0*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(0*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(0*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(0*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(0*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(0*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(0*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(0*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(0*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(0*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(0*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(0*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(0*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(0*((1-abs((t-49)))+abs((abs((t-49))-1)))))",
"(((4*((1-abs((t-0)))+abs((abs((t-0))-1))))+(4*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(4*((1-abs((t-2)))+abs((abs((t-2))-1)))))\n(((2*((1-abs((t-0)))+abs((abs((t-0))-1))))+(4*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(2*((1-abs((t-2)))+abs((abs((t-2))-1)))))",
"((((((((((((((((((((((((((((((((((((((((((((((((((24*((1-abs((t-0)))+abs((abs((t-0))-1))))+(16*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(7*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(16*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(3*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(9*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(9*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(19*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(18*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(25*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(4*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(20*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(12*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(11*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(15*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(14*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(23*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(23*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(13*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(12*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(5*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(19*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(24*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(0*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(9*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(4*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(24*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(1*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(17*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(17*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(18*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(24*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(16*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(21*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(23*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(18*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(20*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(3*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(23*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(4*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(17*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(1*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(1*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(14*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(0*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(14*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(15*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(4*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(3*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(22*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n((((((((((((((((((((((((((((((((((((((((((((((((((22*((1-abs((t-0)))+abs((abs((t-0))-1))))+(22*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(20*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(14*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(8*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(4*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(20*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(20*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(0*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(7*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(16*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(20*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(21*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(10*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(10*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(7*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(4*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(11*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(4*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(11*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(14*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(22*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(11*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(7*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(12*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(24*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(3*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(15*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(10*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(7*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(21*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(9*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(4*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(17*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(10*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(5*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(23*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(6*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(2*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(16*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(15*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(24*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(9*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(7*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(6*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(14*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(16*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(16*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(6*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(7*((1-abs((t-49)))+abs((abs((t-49))-1)))))",
"(((1*((1-abs((t-0)))+abs((abs((t-0))-1))))+(2*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(24*((1-abs((t-2)))+abs((abs((t-2))-1)))))\n(((2*((1-abs((t-0)))+abs((abs((t-0))-1))))+(4*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(0*((1-abs((t-2)))+abs((abs((t-2))-1)))))",
"(((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(5*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(10*((1-abs((t-2)))+abs((abs((t-2))-1)))))\n(((5*((1-abs((t-0)))+abs((abs((t-0))-1))))+(0*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(5*((1-abs((t-2)))+abs((abs((t-2))-1)))))",
"(((((((((((((((((((((((((((((((((((((((((((((((((24*((1-abs((t-0)))+abs((abs((t-0))-1))))+(4*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(13*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(9*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(17*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(12*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(13*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(15*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(9*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(10*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(17*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(6*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(14*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(6*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(25*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(6*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(15*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(19*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(12*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(16*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(4*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(15*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(10*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(1*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(10*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(20*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(21*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(4*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(7*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(4*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(23*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(20*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(5*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(6*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(12*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(7*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(0*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(2*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(14*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(6*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(11*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(19*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(6*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(10*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(14*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(17*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(5*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(12*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(23*((1-abs((t-48)))+abs((abs((t-48))-1)))))\n(((((((((((((((((((((((((((((((((((((((((((((((((4*((1-abs((t-0)))+abs((abs((t-0))-1))))+(19*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(21*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(24*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(1*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(1*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(20*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(14*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(17*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(14*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(20*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(22*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(1*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(16*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(5*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(3*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(25*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(11*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(16*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(0*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(18*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(13*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(2*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(0*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(7*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(10*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(10*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(14*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(17*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(15*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(19*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(20*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(2*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(23*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(1*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(4*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(4*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(5*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(6*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(21*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(21*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(12*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(23*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(25*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(16*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(10*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(17*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(14*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(2*((1-abs((t-48)))+abs((abs((t-48))-1)))))",
"((((((((((((((((((((((((((((((((((((((((((((((((((3*((1-abs((t-0)))+abs((abs((t-0))-1))))+(20*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(24*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(7*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(5*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(1*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(7*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(4*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(0*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(11*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(5*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(9*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(5*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(2*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(13*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(16*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(1*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(24*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(22*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(1*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(0*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(15*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(18*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(5*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(5*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(2*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(1*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(16*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(18*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(12*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(9*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(23*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(23*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(3*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(7*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(8*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(6*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(11*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(21*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(21*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(10*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(8*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(21*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(2*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(24*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(0*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(2*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(24*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(3*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(4*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n((((((((((((((((((((((((((((((((((((((((((((((((((6*((1-abs((t-0)))+abs((abs((t-0))-1))))+(8*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(16*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(8*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(8*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(5*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(1*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(6*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(8*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(22*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(0*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(22*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(15*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(21*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(7*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(23*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(2*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(11*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(1*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(20*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(13*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(0*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(3*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(24*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(23*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(20*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(23*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(1*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(21*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(8*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(16*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(10*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(12*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(1*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(1*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(8*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(15*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(9*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(20*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(13*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(10*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(2*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(19*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(16*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(2*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(1*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(20*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(18*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(5*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(3*((1-abs((t-49)))+abs((abs((t-49))-1)))))",
"(((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(2*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(10*((1-abs((t-2)))+abs((abs((t-2))-1)))))\n(((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(3*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(12*((1-abs((t-2)))+abs((abs((t-2))-1)))))",
"((((((((((((((((((((((((((((((((((((((((((((((((((5*((1-abs((t-0)))+abs((abs((t-0))-1))))+(10*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(16*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(17*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(9*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(10*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(15*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(15*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(15*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(11*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(0*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(2*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(17*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(3*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(9*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(4*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(20*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(16*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(21*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(11*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(14*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(17*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(8*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(8*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(7*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(16*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(21*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(11*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(17*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(1*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(9*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(24*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(13*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(12*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(16*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(5*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(18*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(25*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(12*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(12*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(14*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(10*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(6*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(7*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(15*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(7*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(8*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(11*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(8*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(15*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n((((((((((((((((((((((((((((((((((((((((((((((((((13*((1-abs((t-0)))+abs((abs((t-0))-1))))+(18*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(21*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(3*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(18*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(14*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(6*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(4*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(2*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(3*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(22*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(18*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(11*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(19*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(9*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(25*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(5*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(2*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(23*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(22*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(1*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(2*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(15*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(23*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(23*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(7*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(5*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(17*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(4*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(2*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(7*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(19*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(14*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(19*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(16*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(3*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(17*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(11*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(14*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(25*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(13*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(15*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(15*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(1*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(22*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(6*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(9*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(15*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(13*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(0*((1-abs((t-49)))+abs((abs((t-49))-1)))))",
"(((((((((((((((((((((((((((((((((((((((((((((((((16*((1-abs((t-0)))+abs((abs((t-0))-1))))+(15*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(2*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(19*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(11*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(4*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(23*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(1*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(0*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(19*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(3*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(0*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(23*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(10*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(11*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(16*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(17*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(19*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(20*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(6*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(2*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(8*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(11*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(18*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(6*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(8*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(14*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(0*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(18*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(23*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(4*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(13*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(6*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(1*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(7*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(20*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(4*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(21*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(2*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(15*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(8*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(6*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(5*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(24*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(19*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(1*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(6*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(0*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(11*((1-abs((t-48)))+abs((abs((t-48))-1)))))\n(((((((((((((((((((((((((((((((((((((((((((((((((20*((1-abs((t-0)))+abs((abs((t-0))-1))))+(12*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(18*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(25*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(14*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(19*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(7*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(20*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(22*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(7*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(3*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(17*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(8*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(14*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(11*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(20*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(1*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(18*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(24*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(7*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(7*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(4*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(11*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(24*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(24*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(2*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(0*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(9*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(5*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(5*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(12*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(0*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(13*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(9*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(16*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(4*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(19*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(17*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(9*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(23*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(23*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(4*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(11*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(21*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(14*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(23*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(13*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(13*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(0*((1-abs((t-48)))+abs((abs((t-48))-1)))))",
"((((((((((((((((((((((((((((((((((((((((((((((((((17*((1-abs((t-0)))+abs((abs((t-0))-1))))+(9*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(7*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(1*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(13*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(25*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(24*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(3*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(8*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(11*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(9*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(5*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(11*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(15*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(5*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(4*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(4*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(7*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(15*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(6*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(7*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(2*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(6*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(0*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(13*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(41*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(5*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(20*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(24*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(19*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(9*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(11*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(18*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(1*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(5*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(7*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(12*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(5*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(11*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(11*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(6*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(9*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(1*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(23*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(6*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(4*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(4*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(5*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(6*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(3*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n((((((((((((((((((((((((((((((((((((((((((((((((((3*((1-abs((t-0)))+abs((abs((t-0))-1))))+(7*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(12*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(12*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(1*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(22*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(9*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(11*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(11*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(12*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(11*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(14*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(7*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(7*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(21*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(5*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(16*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(0*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(12*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(2*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(6*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(8*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(21*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(4*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(17*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(6*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(8*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(2*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(19*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(11*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(5*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(8*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(13*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(17*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(21*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(18*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(3*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(17*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(17*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(12*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(18*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(3*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(23*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(14*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(18*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(23*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(2*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(17*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(15*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(8*((1-abs((t-49)))+abs((abs((t-49))-1)))))",
"(((((((((((((((((((((((((((((((((((((((((((((((((4*((1-abs((t-0)))+abs((abs((t-0))-1))))+(11*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(23*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(17*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(15*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(5*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(21*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(15*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(13*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(3*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(19*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(17*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(16*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(19*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(1*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(19*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(10*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(16*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(8*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(5*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(13*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(22*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(23*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(24*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(1*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(17*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(10*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(6*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(4*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(8*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(22*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(1*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(22*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(24*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(11*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(7*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(9*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(24*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(22*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(13*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(3*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(19*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(16*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(1*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(13*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(19*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(12*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(22*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(11*((1-abs((t-48)))+abs((abs((t-48))-1)))))\n(((((((((((((((((((((((((((((((((((((((((((((((((21*((1-abs((t-0)))+abs((abs((t-0))-1))))+(17*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(19*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(7*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(4*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(16*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(5*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(17*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(13*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(15*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(6*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(5*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(15*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(15*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(12*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(6*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(13*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(0*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(22*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(10*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(21*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(4*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(25*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(22*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(4*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(16*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(15*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(9*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(22*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(23*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(14*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(11*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(3*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(17*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(17*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(16*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(11*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(2*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(18*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(8*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(18*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(25*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(6*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(24*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(18*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(9*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(20*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(1*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(20*((1-abs((t-48)))+abs((abs((t-48))-1)))))",
"(((((((((((((((((((((((((((((((((((((((((((((((((11*((1-abs((t-0)))+abs((abs((t-0))-1))))+(18*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(8*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(25*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(13*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(23*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(4*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(14*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(17*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(10*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(8*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(3*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(19*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(19*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(4*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(19*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(6*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(14*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(18*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(20*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(10*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(3*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(24*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(9*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(5*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(13*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(12*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(21*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(0*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(24*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(22*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(8*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(1*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(4*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(10*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(19*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(6*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(21*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(3*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(8*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(7*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(19*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(12*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(6*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(24*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(20*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(8*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(19*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(25*((1-abs((t-48)))+abs((abs((t-48))-1)))))\n(((((((((((((((((((((((((((((((((((((((((((((((((14*((1-abs((t-0)))+abs((abs((t-0))-1))))+(4*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(18*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(15*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(19*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(18*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(16*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(7*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(21*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(17*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(5*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(14*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(17*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(2*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(18*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(10*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(14*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(13*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(14*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(8*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(0*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(7*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(21*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(6*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(13*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(22*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(7*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(4*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(15*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(5*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(9*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(17*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(4*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(0*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(21*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(15*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(18*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(25*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(4*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(21*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(2*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(12*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(14*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(23*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(20*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(6*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(23*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(13*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(12*((1-abs((t-48)))+abs((abs((t-48))-1)))))",
"(0*((1-abs((t-0)))+abs((abs((t-0))-1))))\n(0*((1-abs((t-0)))+abs((abs((t-0))-1))))"
]
} | 2CODEFORCES
|
593_C. Beautiful Function_137 | Every day Ruslan tried to count sheep to fall asleep, but this didn't help. Now he has found a more interesting thing to do. First, he thinks of some set of circles on a plane, and then tries to choose a beautiful set of points, such that there is at least one point from the set inside or on the border of each of the imagined circles.
Yesterday Ruslan tried to solve this problem for the case when the set of points is considered beautiful if it is given as (xt = f(t), yt = g(t)), where argument t takes all integer values from 0 to 50. Moreover, f(t) and g(t) should be correct functions.
Assume that w(t) and h(t) are some correct functions, and c is an integer ranging from 0 to 50. The function s(t) is correct if it's obtained by one of the following rules:
1. s(t) = abs(w(t)), where abs(x) means taking the absolute value of a number x, i.e. |x|;
2. s(t) = (w(t) + h(t));
3. s(t) = (w(t) - h(t));
4. s(t) = (w(t) * h(t)), where * means multiplication, i.e. (w(t)·h(t));
5. s(t) = c;
6. s(t) = t;
Yesterday Ruslan thought on and on, but he could not cope with the task. Now he asks you to write a program that computes the appropriate f(t) and g(t) for any set of at most 50 circles.
In each of the functions f(t) and g(t) you are allowed to use no more than 50 multiplications. The length of any function should not exceed 100·n characters. The function should not contain spaces.
Ruslan can't keep big numbers in his memory, so you should choose f(t) and g(t), such that for all integer t from 0 to 50 value of f(t) and g(t) and all the intermediate calculations won't exceed 109 by their absolute value.
Input
The first line of the input contains number n (1 ≤ n ≤ 50) — the number of circles Ruslan thinks of. Next follow n lines, each of them containing three integers xi, yi and ri (0 ≤ xi, yi ≤ 50, 2 ≤ ri ≤ 50) — the coordinates of the center and the raduis of the i-th circle.
Output
In the first line print a correct function f(t). In the second line print a correct function g(t). The set of the points (xt = f(t), yt = g(t)) (0 ≤ t ≤ 50) must satisfy the condition, that there is at least one point inside or on the border of each of the circles, Ruslan thinks of at the beginning.
Examples
Input
3
0 10 4
10 0 4
20 10 4
Output
t
abs((t-10))
Note
Correct functions:
1. 10
2. (1+2)
3. ((t-3)+(t*4))
4. abs((t-10))
5. (abs((((23-t)*(t*t))+((45+12)*(t*t))))*((5*t)+((12*t)-13)))
6. abs((t-(abs((t*31))+14))))
Incorrect functions:
1. 3+5+7 (not enough brackets, it should be ((3+5)+7) or (3+(5+7)))
2. abs(t-3) (not enough brackets, it should be abs((t-3))
3. 2+(2-3 (one bracket too many)
4. 1(t+5) (no arithmetic operation between 1 and the bracket)
5. 5000*5000 (the number exceeds the maximum)
<image> The picture shows one of the possible solutions | #include <bits/stdc++.h>
using namespace std;
int N;
vector<int> xs, ys;
string generateFunc(int i, int x) {
char str[1024];
sprintf(str, "(%d*((1-abs((t-%d)))+abs((abs((t-%d))-1))))", x / 2, i, i);
return string(str);
}
string solve(vector<int>& xs) {
string rv;
rv += generateFunc(0, xs[0]);
for (int i = 1; i < N; ++i)
rv = "(" + rv + "+" + generateFunc(i, xs[i]) + ")";
return rv;
}
int main() {
cin >> N;
for (int i = 0; i < N; ++i) {
int x, y, r;
cin >> x >> y >> r;
xs.emplace_back(x);
ys.emplace_back(y);
}
cout << solve(xs) << endl;
cout << solve(ys) << endl;
return 0;
}
| 2C++
| {
"input": [
"3\n0 10 4\n10 0 4\n20 10 4\n",
"3\n9 5 8\n8 9 10\n9 5 2\n",
"50\n48 45 42\n32 45 8\n15 41 47\n32 29 38\n7 16 48\n19 9 21\n18 40 5\n39 40 7\n37 0 6\n42 15 37\n9 33 37\n40 41 33\n25 43 2\n23 21 38\n30 20 32\n28 15 5\n47 9 19\n47 22 26\n26 9 18\n24 23 24\n11 29 5\n38 44 9\n49 22 42\n1 15 32\n18 25 21\n8 48 39\n48 7 26\n3 30 26\n34 21 47\n34 14 4\n36 43 40\n49 19 12\n33 8 30\n42 35 28\n47 21 14\n36 11 27\n40 46 17\n7 12 32\n47 5 4\n9 33 43\n35 31 3\n3 48 43\n2 19 9\n29 15 36\n1 13 2\n28 28 19\n31 33 21\n9 33 18\n7 12 22\n45 14 23\n",
"3\n3 3 3\n5 9 3\n49 1 7\n",
"5\n0 0 2\n1 1 2\n3 3 2\n40 40 2\n50 50 50\n",
"3\n0 10 4\n10 0 4\n20 10 4\n",
"50\n1 1 2\n1 1 42\n0 0 46\n1 1 16\n1 0 9\n0 0 43\n1 0 39\n1 1 41\n1 1 6\n1 1 43\n0 1 25\n0 1 40\n0 0 11\n0 1 27\n1 0 5\n1 0 9\n1 1 49\n0 0 25\n0 0 32\n0 1 6\n0 1 31\n1 1 22\n0 0 47\n0 1 6\n0 0 6\n0 1 49\n1 0 44\n0 0 50\n1 0 3\n0 1 15\n1 0 37\n0 0 14\n1 1 28\n1 1 49\n1 0 9\n0 1 12\n0 0 35\n1 0 42\n1 1 28\n0 1 20\n1 1 24\n1 1 33\n0 0 38\n1 0 17\n0 1 21\n0 0 22\n1 1 37\n0 1 34\n0 1 46\n1 1 21\n",
"5\n2 0 4\n5 6 10\n7 2 8\n3 10 8\n8 2 9\n",
"49\n48 9 48\n9 38 8\n27 43 43\n19 48 2\n35 3 11\n25 3 37\n26 40 20\n30 28 46\n19 35 44\n20 28 43\n34 40 37\n12 45 47\n28 2 38\n13 32 31\n50 10 28\n12 6 19\n31 50 5\n38 22 8\n25 33 50\n32 1 42\n8 37 26\n31 27 25\n21 4 25\n3 1 47\n21 15 42\n40 21 27\n43 20 9\n9 29 21\n15 35 36\n9 30 6\n46 39 22\n41 40 47\n11 5 32\n12 47 23\n24 2 27\n15 9 24\n0 8 45\n4 11 3\n28 13 27\n12 43 30\n23 42 40\n38 24 9\n13 46 42\n20 50 41\n29 32 11\n35 21 12\n10 34 47\n24 29 3\n46 4 7\n",
"10\n7 3 5\n2 1 6\n8 6 2\n1 2 6\n2 0 9\n10 9 2\n2 6 4\n10 3 6\n4 6 3\n9 9 2\n",
"50\n7 13 2\n41 17 2\n49 32 2\n22 16 2\n11 16 2\n2 10 2\n15 2 2\n8 12 2\n1 17 2\n22 44 2\n10 1 2\n18 45 2\n11 31 2\n4 43 2\n26 14 2\n33 47 2\n3 5 2\n49 22 2\n44 3 2\n3 41 2\n0 26 2\n30 1 2\n37 6 2\n10 48 2\n11 47 2\n5 41 2\n2 46 2\n32 3 2\n37 42 2\n25 17 2\n18 32 2\n47 21 2\n46 24 2\n7 2 2\n14 2 2\n17 17 2\n13 30 2\n23 19 2\n43 40 2\n42 26 2\n20 20 2\n17 5 2\n43 38 2\n4 32 2\n48 4 2\n1 3 2\n4 41 2\n49 36 2\n7 10 2\n9 6 2\n",
"49\n36 12 10\n50 6 19\n13 31 36\n15 47 9\n23 43 11\n31 17 14\n25 28 7\n2 20 50\n42 7 4\n7 12 43\n20 33 34\n27 44 26\n19 39 21\n40 29 16\n37 1 2\n13 27 26\n2 4 47\n49 30 13\n4 14 36\n21 36 18\n42 32 22\n21 22 18\n23 35 43\n15 31 27\n17 46 8\n22 3 34\n3 50 19\n47 47 9\n18 42 20\n30 26 42\n44 32 47\n29 20 42\n35 33 20\n43 16 9\n45 24 12\n11 1 21\n32 50 9\n38 19 48\n21 31 7\n5 42 5\n23 0 21\n39 50 8\n42 21 12\n21 20 41\n43 44 23\n43 34 4\n31 2 28\n7 0 38\n28 35 46\n",
"1\n50 50 50\n",
"3\n0 0 2\n5 7 5\n20 25 10\n",
"50\n10 26 2\n20 36 2\n32 43 2\n34 6 2\n19 37 2\n20 29 2\n31 12 2\n30 9 2\n31 5 2\n23 6 2\n0 44 2\n5 36 2\n34 22 2\n6 39 2\n19 18 2\n9 50 2\n40 11 2\n32 4 2\n42 46 2\n22 45 2\n28 2 2\n34 4 2\n16 30 2\n17 47 2\n14 46 2\n32 36 2\n43 11 2\n22 34 2\n34 9 2\n2 4 2\n18 15 2\n48 38 2\n27 28 2\n24 38 2\n33 32 2\n11 7 2\n37 35 2\n50 23 2\n25 28 2\n25 50 2\n28 26 2\n20 31 2\n12 31 2\n15 2 2\n31 45 2\n14 12 2\n16 18 2\n23 30 2\n16 26 2\n30 0 2\n",
"49\n33 40 10\n30 24 11\n4 36 23\n38 50 18\n23 28 29\n9 39 21\n47 15 35\n2 41 27\n1 45 28\n39 15 24\n7 7 28\n1 34 6\n47 17 43\n20 28 12\n23 22 15\n33 41 23\n34 3 44\n39 37 25\n41 49 39\n13 14 26\n4 35 18\n17 8 45\n23 23 16\n37 48 40\n12 48 29\n16 5 6\n29 1 5\n1 18 27\n37 11 3\n46 11 44\n9 25 40\n26 1 17\n12 26 45\n3 18 19\n15 32 38\n41 8 27\n8 39 35\n42 35 13\n5 19 43\n31 47 4\n16 47 38\n12 9 23\n10 23 3\n49 43 16\n38 28 6\n3 46 38\n13 27 28\n0 26 3\n23 1 15\n",
"1\n0 0 2\n",
"50\n34 7 2\n18 14 2\n15 24 2\n2 24 2\n27 2 2\n50 45 2\n49 19 2\n7 23 2\n16 22 2\n23 25 2\n18 23 2\n11 29 2\n22 14 2\n31 15 2\n10 42 2\n8 11 2\n9 33 2\n15 0 2\n30 25 2\n12 4 2\n14 13 2\n5 16 2\n13 43 2\n1 8 2\n26 34 2\n44 13 2\n10 17 2\n40 5 2\n48 39 2\n39 23 2\n19 10 2\n22 17 2\n36 26 2\n2 34 2\n11 42 2\n14 37 2\n25 7 2\n11 35 2\n22 34 2\n22 25 2\n12 36 2\n18 6 2\n2 47 2\n47 29 2\n13 37 2\n8 46 2\n9 4 2\n11 34 2\n12 31 2\n7 16 2\n",
"49\n9 43 6\n23 35 9\n46 39 11\n34 14 12\n30 8 4\n10 32 7\n43 10 45\n30 34 27\n27 26 21\n7 31 14\n38 13 33\n34 11 46\n33 31 32\n38 31 7\n3 24 13\n38 12 41\n21 26 32\n33 0 43\n17 44 25\n11 21 27\n27 43 28\n45 8 38\n47 50 47\n49 45 8\n2 9 34\n34 32 49\n21 30 9\n13 19 38\n8 45 32\n16 47 35\n45 28 14\n3 25 43\n45 7 32\n49 35 12\n22 35 35\n14 33 42\n19 23 10\n49 4 2\n44 37 40\n27 17 15\n7 37 30\n38 50 39\n32 12 19\n3 48 9\n26 36 27\n38 18 39\n25 40 50\n45 3 2\n23 40 36\n",
"50\n47 43 2\n31 38 2\n35 21 2\n18 41 2\n24 33 2\n35 0 2\n15 41 2\n6 3 2\n23 40 2\n11 29 2\n48 46 2\n33 45 2\n28 18 2\n31 14 2\n14 4 2\n35 18 2\n50 11 2\n10 28 2\n23 9 2\n43 25 2\n34 21 2\n19 49 2\n40 37 2\n22 27 2\n7 1 2\n37 24 2\n14 26 2\n18 46 2\n40 50 2\n21 40 2\n19 26 2\n35 2 2\n19 27 2\n13 23 2\n9 50 2\n38 9 2\n44 22 2\n5 30 2\n36 7 2\n10 26 2\n21 30 2\n19 6 2\n21 13 2\n5 3 2\n9 41 2\n10 17 2\n1 11 2\n5 6 2\n40 17 2\n6 7 2\n",
"10\n1 9 2\n3 10 2\n7 7 2\n6 12 2\n14 15 2\n2 12 2\n8 0 2\n0 12 2\n4 11 2\n15 9 2\n",
"7\n13 15 5\n2 10 3\n12 12 8\n9 12 11\n10 3 10\n9 6 13\n11 10 3\n",
"50\n0 1 2\n1 0 2\n1 1 2\n1 1 2\n1 1 2\n1 1 2\n0 1 2\n0 1 2\n0 0 2\n1 0 2\n1 1 2\n1 0 2\n1 0 2\n1 0 2\n1 0 2\n0 0 2\n0 1 2\n1 0 2\n1 0 2\n0 0 2\n0 1 2\n0 1 2\n0 1 2\n0 1 2\n0 1 2\n1 0 2\n0 0 2\n1 1 2\n0 0 2\n0 1 2\n0 0 2\n1 0 2\n1 1 2\n0 0 2\n0 0 2\n1 1 2\n0 1 2\n0 1 2\n1 0 2\n0 0 2\n1 0 2\n0 1 2\n0 0 2\n1 1 2\n1 1 2\n0 1 2\n0 0 2\n0 0 2\n0 0 2\n0 0 2\n",
"49\n22 28 2\n37 8 19\n17 36 19\n50 31 10\n26 39 17\n46 37 45\n8 33 30\n29 14 19\n34 42 37\n20 35 34\n17 10 39\n6 28 16\n38 35 27\n39 4 41\n8 37 7\n39 21 4\n12 28 20\n28 27 29\n36 28 10\n41 16 22\n21 0 20\n6 15 4\n48 43 21\n19 12 18\n10 27 15\n27 44 12\n25 14 19\n43 8 43\n1 31 26\n49 11 4\n45 18 7\n16 35 48\n2 8 21\n8 0 30\n20 42 5\n39 30 2\n13 36 34\n43 50 50\n7 9 43\n17 42 10\n15 5 21\n39 25 18\n25 29 35\n12 46 15\n48 41 6\n41 13 17\n16 46 15\n38 27 39\n50 25 16\n",
"1\n1 1 32\n",
"50\n21 22 2\n4 16 2\n19 29 2\n37 7 2\n31 47 2\n38 15 2\n32 24 2\n7 18 2\n9 7 2\n36 48 2\n14 26 2\n40 12 2\n18 10 2\n29 42 2\n32 27 2\n34 3 2\n44 33 2\n19 49 2\n12 39 2\n33 10 2\n21 8 2\n44 9 2\n13 0 2\n6 16 2\n18 15 2\n50 1 2\n31 31 2\n36 43 2\n30 2 2\n7 33 2\n18 22 2\n9 7 2\n3 25 2\n17 18 2\n13 10 2\n41 41 2\n32 44 2\n17 40 2\n7 11 2\n31 50 2\n3 40 2\n17 30 2\n10 5 2\n13 30 2\n44 33 2\n6 50 2\n45 49 2\n18 9 2\n35 46 2\n8 50 2\n",
"4\n0 0 2\n50 50 2\n50 0 2\n0 50 2\n",
"3\n9 5 8\n8 9 3\n9 5 2\n",
"50\n48 45 42\n32 45 8\n15 41 47\n32 29 38\n7 16 48\n19 9 21\n18 40 5\n39 40 7\n37 0 6\n50 15 37\n9 33 37\n40 41 33\n25 43 2\n23 21 38\n30 20 32\n28 15 5\n47 9 19\n47 22 26\n26 9 18\n24 23 24\n11 29 5\n38 44 9\n49 22 42\n1 15 32\n18 25 21\n8 48 39\n48 7 26\n3 30 26\n34 21 47\n34 14 4\n36 43 40\n49 19 12\n33 8 30\n42 35 28\n47 21 14\n36 11 27\n40 46 17\n7 12 32\n47 5 4\n9 33 43\n35 31 3\n3 48 43\n2 19 9\n29 15 36\n1 13 2\n28 28 19\n31 33 21\n9 33 18\n7 12 22\n45 14 23\n",
"3\n3 4 3\n5 9 3\n49 1 7\n",
"5\n0 0 2\n1 1 2\n3 0 2\n40 40 2\n50 50 50\n",
"3\n1 10 4\n10 0 4\n20 10 4\n",
"50\n1 1 2\n1 1 42\n0 0 46\n1 1 16\n1 0 9\n0 0 43\n1 0 39\n1 1 41\n1 1 6\n1 1 43\n0 1 25\n0 1 40\n0 0 11\n0 1 27\n1 0 5\n1 0 9\n1 1 49\n0 0 25\n0 0 32\n0 1 6\n0 1 31\n1 1 22\n0 0 47\n0 1 6\n0 0 6\n0 1 49\n1 0 44\n0 0 50\n1 0 3\n0 1 15\n1 0 37\n0 0 14\n1 1 28\n1 1 49\n1 0 9\n0 1 12\n0 0 35\n1 1 42\n1 1 28\n0 1 20\n1 1 24\n1 1 33\n0 0 38\n1 0 17\n0 1 21\n0 0 22\n1 1 37\n0 1 34\n0 1 46\n1 1 21\n",
"5\n2 0 4\n5 6 10\n7 2 8\n3 10 8\n8 0 9\n",
"49\n48 9 48\n9 38 8\n27 43 43\n19 48 2\n35 3 11\n25 3 37\n26 40 20\n30 28 46\n19 35 44\n20 28 57\n34 40 37\n12 45 47\n28 2 38\n13 32 31\n50 10 28\n12 6 19\n31 50 5\n38 22 8\n25 33 50\n32 1 42\n8 37 26\n31 27 25\n21 4 25\n3 1 47\n21 15 42\n40 21 27\n43 20 9\n9 29 21\n15 35 36\n9 30 6\n46 39 22\n41 40 47\n11 5 32\n12 47 23\n24 2 27\n15 9 24\n0 8 45\n4 11 3\n28 13 27\n12 43 30\n23 42 40\n38 24 9\n13 46 42\n20 50 41\n29 32 11\n35 21 12\n10 34 47\n24 29 3\n46 4 7\n",
"10\n7 3 5\n2 0 6\n8 6 2\n1 2 6\n2 0 9\n10 9 2\n2 6 4\n10 3 6\n4 6 3\n9 9 2\n",
"50\n7 13 2\n41 17 2\n49 32 2\n14 16 2\n11 16 2\n2 10 2\n15 2 2\n8 12 2\n1 17 2\n22 44 2\n10 1 2\n18 45 2\n11 31 2\n4 43 2\n26 14 2\n33 47 2\n3 5 2\n49 22 2\n44 3 2\n3 41 2\n0 26 2\n30 1 2\n37 6 2\n10 48 2\n11 47 2\n5 41 2\n2 46 2\n32 3 2\n37 42 2\n25 17 2\n18 32 2\n47 21 2\n46 24 2\n7 2 2\n14 2 2\n17 17 2\n13 30 2\n23 19 2\n43 40 2\n42 26 2\n20 20 2\n17 5 2\n43 38 2\n4 32 2\n48 4 2\n1 3 2\n4 41 2\n49 36 2\n7 10 2\n9 6 2\n",
"1\n50 50 63\n",
"3\n0 0 3\n5 7 5\n20 25 10\n",
"50\n10 26 2\n20 36 2\n32 43 2\n34 6 2\n19 37 2\n20 29 2\n31 12 2\n30 9 2\n31 5 2\n23 6 2\n0 44 2\n5 36 2\n34 22 2\n6 39 2\n19 18 2\n9 50 2\n40 11 2\n32 4 2\n42 46 2\n22 45 2\n28 2 2\n34 4 2\n16 30 2\n17 47 2\n14 46 2\n32 15 2\n43 11 2\n22 34 2\n34 9 2\n2 4 2\n18 15 2\n48 38 2\n27 28 2\n24 38 2\n33 32 2\n11 7 2\n37 35 2\n50 23 2\n25 28 2\n25 50 2\n28 26 2\n20 31 2\n12 31 2\n15 2 2\n31 45 2\n14 12 2\n16 18 2\n23 30 2\n16 26 2\n30 0 2\n",
"49\n33 40 10\n30 24 11\n4 36 23\n38 50 18\n23 28 29\n9 39 21\n47 15 35\n2 41 27\n1 45 28\n39 15 24\n7 7 28\n1 34 6\n47 17 43\n20 28 12\n23 22 15\n33 41 23\n34 3 44\n39 37 25\n41 49 39\n13 14 26\n4 14 18\n17 8 45\n23 23 16\n37 48 40\n12 48 29\n16 5 6\n29 1 5\n1 18 27\n37 11 3\n46 11 44\n9 25 40\n26 1 17\n12 26 45\n3 18 19\n15 32 38\n41 8 27\n8 39 35\n42 35 13\n5 19 43\n31 47 4\n16 47 38\n12 9 23\n10 23 3\n49 43 16\n38 28 6\n3 46 38\n13 27 28\n0 26 3\n23 1 15\n",
"50\n34 7 2\n18 14 2\n15 24 2\n2 24 2\n27 2 2\n50 45 2\n49 19 2\n7 23 2\n16 22 2\n23 25 2\n18 23 2\n11 29 2\n22 14 2\n31 15 2\n10 42 2\n8 11 2\n9 33 2\n15 0 2\n30 25 2\n12 4 2\n14 13 2\n5 16 2\n13 43 2\n1 8 2\n26 34 2\n83 13 2\n10 17 2\n40 5 2\n48 39 2\n39 23 2\n19 10 2\n22 17 2\n36 26 2\n2 34 2\n11 42 2\n14 37 2\n25 7 2\n11 35 2\n22 34 2\n22 25 2\n12 36 2\n18 6 2\n2 47 2\n47 29 2\n13 37 2\n8 46 2\n9 4 2\n11 34 2\n12 31 2\n7 16 2\n",
"49\n9 43 6\n23 35 9\n46 39 11\n34 14 12\n30 8 4\n10 32 7\n43 10 45\n30 34 27\n27 26 21\n7 31 14\n38 13 33\n34 11 46\n33 31 32\n38 31 7\n3 24 13\n38 12 41\n21 26 32\n33 0 43\n17 44 25\n11 21 27\n27 43 28\n45 8 38\n47 50 47\n49 45 8\n2 9 34\n34 32 49\n21 30 9\n13 19 38\n8 45 32\n16 47 35\n45 28 14\n3 22 43\n45 7 32\n49 35 12\n22 35 35\n14 33 42\n19 23 10\n49 4 2\n44 37 40\n27 17 15\n7 37 30\n38 50 39\n32 12 19\n3 48 9\n26 36 27\n38 18 39\n25 40 50\n45 3 2\n23 40 36\n",
"50\n47 43 2\n31 38 2\n35 21 2\n18 41 2\n24 33 2\n35 0 2\n15 41 2\n6 3 2\n23 40 2\n11 29 2\n48 46 2\n33 45 2\n28 18 2\n31 17 2\n14 4 2\n35 18 2\n50 11 2\n10 28 2\n23 9 2\n43 25 2\n34 21 2\n19 49 2\n40 37 2\n22 27 2\n7 1 2\n37 24 2\n14 26 2\n18 46 2\n40 50 2\n21 40 2\n19 26 2\n35 2 2\n19 27 2\n13 23 2\n9 50 2\n38 9 2\n44 22 2\n5 30 2\n36 7 2\n10 26 2\n21 30 2\n19 6 2\n21 13 2\n5 3 2\n9 41 2\n10 17 2\n1 11 2\n5 6 2\n40 17 2\n6 7 2\n",
"10\n1 9 2\n3 10 2\n7 7 2\n6 12 2\n14 15 2\n2 12 2\n8 0 2\n1 12 2\n4 11 2\n15 9 2\n",
"7\n13 25 5\n2 10 3\n12 12 8\n9 12 11\n10 3 10\n9 6 13\n11 10 3\n",
"49\n22 28 2\n37 8 19\n17 36 19\n50 31 10\n26 39 17\n46 37 45\n8 33 30\n29 14 19\n34 42 37\n20 35 34\n17 10 39\n6 28 16\n38 35 27\n39 4 41\n8 37 7\n39 21 4\n12 28 20\n28 27 29\n36 28 10\n41 16 22\n21 0 20\n6 15 4\n48 43 21\n19 12 18\n10 27 15\n27 44 12\n25 14 19\n43 8 43\n1 31 26\n49 11 4\n45 18 7\n16 35 48\n2 8 21\n8 0 30\n20 42 5\n39 30 2\n13 36 64\n43 50 50\n7 9 43\n17 42 10\n15 5 21\n39 25 18\n25 29 35\n12 46 15\n48 41 6\n41 13 17\n16 46 15\n38 27 39\n50 25 16\n",
"1\n1 1 11\n",
"50\n21 22 2\n4 16 2\n19 29 2\n37 7 2\n31 47 2\n38 15 2\n32 24 2\n7 18 2\n9 7 2\n36 48 2\n14 26 2\n40 12 2\n18 10 2\n29 42 2\n32 27 2\n34 3 2\n44 33 2\n19 49 2\n12 39 2\n33 10 2\n21 8 2\n44 9 2\n13 0 2\n6 16 2\n18 15 2\n50 1 2\n31 31 2\n36 43 2\n30 2 2\n7 33 2\n18 22 2\n9 7 2\n3 25 2\n17 18 2\n13 10 2\n41 57 2\n32 44 2\n17 40 2\n7 11 2\n31 50 2\n3 40 2\n17 30 2\n10 5 2\n13 30 2\n44 33 2\n6 50 2\n45 49 2\n18 9 2\n35 46 2\n8 50 2\n",
"4\n0 0 2\n50 66 2\n50 0 2\n0 50 2\n",
"3\n0 10 4\n18 0 4\n20 10 4\n",
"5\n0 0 2\n2 1 2\n3 0 2\n40 40 2\n50 50 50\n",
"50\n1 1 2\n1 1 42\n0 0 46\n2 1 16\n1 0 9\n0 0 43\n1 0 39\n1 1 41\n1 1 6\n1 1 43\n0 1 25\n0 1 40\n0 0 11\n0 1 27\n1 0 5\n1 0 9\n1 1 49\n0 0 25\n0 0 32\n0 1 6\n0 1 31\n1 1 22\n0 0 47\n0 1 6\n0 0 6\n0 1 49\n1 0 44\n0 0 50\n1 0 3\n0 1 15\n1 0 37\n0 0 14\n1 1 28\n1 1 49\n1 0 9\n0 1 12\n0 0 35\n1 1 42\n1 1 28\n0 1 20\n1 1 24\n1 1 33\n0 0 38\n1 0 17\n0 1 21\n0 0 22\n1 1 37\n0 1 34\n0 1 46\n1 1 21\n",
"5\n2 0 4\n5 6 10\n7 2 8\n3 10 8\n10 0 9\n",
"10\n7 3 5\n2 0 6\n8 6 2\n1 2 6\n2 0 9\n10 9 2\n2 6 4\n10 3 6\n4 11 3\n9 9 2\n",
"1\n50 5 63\n",
"50\n47 43 2\n31 38 2\n35 21 2\n18 41 2\n24 33 2\n35 0 2\n15 41 2\n6 3 2\n23 40 2\n11 29 2\n48 46 2\n33 45 2\n28 18 2\n31 17 2\n14 4 2\n35 18 2\n50 11 2\n10 28 2\n23 9 2\n43 25 2\n34 21 2\n19 49 2\n40 37 2\n22 27 2\n7 1 2\n37 24 2\n14 26 2\n18 46 2\n40 50 2\n27 40 2\n19 26 2\n35 2 2\n19 27 2\n13 23 2\n9 50 2\n38 9 2\n44 22 2\n5 30 2\n36 7 2\n10 26 2\n21 30 2\n19 6 2\n21 13 2\n5 3 2\n9 41 2\n10 17 2\n1 11 2\n5 6 2\n40 17 2\n6 7 2\n",
"10\n1 9 2\n3 10 2\n7 7 2\n6 12 2\n14 15 2\n2 12 2\n8 0 2\n1 12 2\n4 11 2\n15 3 2\n",
"7\n13 25 5\n2 10 3\n12 12 8\n1 12 11\n10 3 10\n9 6 13\n11 10 3\n",
"50\n21 22 2\n4 16 2\n19 29 2\n37 7 2\n31 47 2\n38 15 2\n32 24 2\n7 18 2\n9 7 2\n36 48 2\n14 26 2\n40 12 2\n18 10 2\n29 42 2\n32 27 2\n34 3 2\n44 33 2\n19 49 2\n12 39 2\n33 10 2\n21 8 2\n44 9 2\n13 0 2\n6 16 2\n18 15 2\n50 1 2\n1 31 2\n36 43 2\n30 2 2\n7 33 2\n18 22 2\n9 7 2\n3 25 2\n17 18 2\n13 10 2\n41 57 2\n32 44 2\n17 40 2\n7 11 2\n31 50 2\n3 40 2\n17 30 2\n10 5 2\n13 30 2\n44 33 2\n6 50 2\n45 49 2\n18 9 2\n35 46 2\n8 50 2\n",
"4\n0 0 2\n50 66 2\n50 0 2\n0 24 2\n",
"3\n0 10 4\n35 0 4\n20 10 4\n",
"50\n0 1 2\n1 0 2\n1 1 2\n1 1 2\n1 1 2\n1 1 2\n0 1 2\n0 1 2\n0 0 2\n1 0 2\n1 1 2\n1 0 2\n1 0 2\n1 0 2\n1 0 2\n0 0 2\n0 1 2\n1 0 2\n1 0 2\n0 0 2\n0 1 2\n0 1 2\n0 1 2\n0 1 2\n0 1 0\n1 0 2\n0 0 2\n1 1 2\n0 0 2\n0 1 2\n0 0 2\n1 0 2\n1 1 2\n0 0 2\n0 0 2\n1 1 2\n0 1 2\n0 1 2\n1 0 2\n0 0 2\n1 0 2\n0 1 2\n0 0 2\n1 1 2\n1 1 2\n0 1 2\n0 0 2\n0 0 2\n0 0 2\n0 0 2\n",
"3\n9 5 3\n8 9 3\n9 5 2\n",
"50\n48 45 42\n32 45 8\n15 41 47\n32 29 38\n7 16 48\n19 9 21\n18 40 5\n39 40 0\n37 0 6\n50 15 37\n9 33 37\n40 41 33\n25 43 2\n23 21 38\n30 20 32\n28 15 5\n47 9 19\n47 22 26\n26 9 18\n24 23 24\n11 29 5\n38 44 9\n49 22 42\n1 15 32\n18 25 21\n8 48 39\n48 7 26\n3 30 26\n34 21 47\n34 14 4\n36 43 40\n49 19 12\n33 8 30\n42 35 28\n47 21 14\n36 11 27\n40 46 17\n7 12 32\n47 5 4\n9 33 43\n35 31 3\n3 48 43\n2 19 9\n29 15 36\n1 13 2\n28 28 19\n31 33 21\n9 33 18\n7 12 22\n45 14 23\n",
"3\n3 4 6\n5 9 3\n49 1 7\n",
"3\n1 10 5\n10 0 4\n20 10 4\n",
"49\n48 9 48\n9 38 8\n27 43 43\n19 48 4\n35 3 11\n25 3 37\n26 40 20\n30 28 46\n19 35 44\n20 28 57\n34 40 37\n12 45 47\n28 2 38\n13 32 31\n50 10 28\n12 6 19\n31 50 5\n38 22 8\n25 33 50\n32 1 42\n8 37 26\n31 27 25\n21 4 25\n3 1 47\n21 15 42\n40 21 27\n43 20 9\n9 29 21\n15 35 36\n9 30 6\n46 39 22\n41 40 47\n11 5 32\n12 47 23\n24 2 27\n15 9 24\n0 8 45\n4 11 3\n28 13 27\n12 43 30\n23 42 40\n38 24 9\n13 46 42\n20 50 41\n29 32 11\n35 21 12\n10 34 47\n24 29 3\n46 4 7\n",
"50\n7 13 2\n41 17 2\n49 32 2\n14 16 2\n11 16 2\n2 10 2\n15 2 2\n8 12 2\n1 17 2\n22 44 2\n10 1 2\n18 45 2\n11 31 2\n4 43 2\n26 14 2\n33 47 2\n3 5 2\n49 22 2\n44 3 2\n3 41 2\n0 26 2\n30 1 2\n37 6 2\n10 48 2\n11 47 2\n5 41 2\n2 46 2\n32 3 2\n37 42 2\n25 17 2\n18 32 2\n47 21 2\n46 24 2\n7 2 2\n14 2 2\n17 17 2\n13 30 2\n23 19 2\n43 40 2\n42 26 2\n20 20 2\n17 5 2\n43 38 2\n4 32 0\n48 4 2\n1 3 2\n4 41 2\n49 36 2\n7 10 2\n9 6 2\n",
"3\n1 0 3\n5 7 5\n20 25 10\n",
"50\n10 26 2\n20 36 2\n32 43 2\n34 6 2\n19 37 2\n20 29 2\n31 12 2\n30 9 2\n31 5 2\n23 6 2\n0 44 2\n5 36 2\n34 22 2\n6 39 2\n19 18 2\n9 50 2\n40 11 2\n32 4 2\n42 46 2\n22 45 2\n28 2 2\n34 4 2\n16 30 2\n17 47 2\n14 46 2\n32 15 2\n43 11 2\n22 34 2\n34 9 2\n2 4 2\n18 15 2\n48 38 2\n27 28 2\n24 38 2\n33 32 2\n11 7 2\n37 35 2\n50 23 4\n25 28 2\n25 50 2\n28 26 2\n20 31 2\n12 31 2\n15 2 2\n31 45 2\n14 12 2\n16 18 2\n23 30 2\n16 26 2\n30 0 2\n",
"49\n33 40 10\n30 24 11\n4 36 23\n38 50 18\n23 28 29\n9 39 21\n47 15 35\n2 41 27\n1 45 28\n39 15 24\n7 7 28\n1 34 6\n47 17 43\n20 28 12\n23 22 15\n33 41 23\n34 3 44\n39 37 25\n41 49 39\n13 14 26\n4 14 18\n17 8 45\n23 23 16\n37 48 40\n12 48 29\n16 5 6\n29 1 5\n1 18 27\n37 11 3\n46 11 44\n9 25 40\n26 1 17\n12 26 45\n3 18 19\n15 32 38\n41 9 27\n8 39 35\n42 35 13\n5 19 43\n31 47 4\n16 47 38\n12 9 23\n10 23 3\n49 43 16\n38 28 6\n3 46 38\n13 27 28\n0 26 3\n23 1 15\n",
"50\n34 7 2\n18 14 2\n15 24 2\n2 24 2\n27 2 2\n50 45 2\n49 19 2\n7 23 2\n16 22 2\n23 25 2\n18 23 2\n11 29 2\n22 14 2\n31 15 2\n10 42 2\n8 11 4\n9 33 2\n15 0 2\n30 25 2\n12 4 2\n14 13 2\n5 16 2\n13 43 2\n1 8 2\n26 34 2\n83 13 2\n10 17 2\n40 5 2\n48 39 2\n39 23 2\n19 10 2\n22 17 2\n36 26 2\n2 34 2\n11 42 2\n14 37 2\n25 7 2\n11 35 2\n22 34 2\n22 25 2\n12 36 2\n18 6 2\n2 47 2\n47 29 2\n13 37 2\n8 46 2\n9 4 2\n11 34 2\n12 31 2\n7 16 2\n",
"49\n9 43 6\n23 35 9\n46 39 11\n34 14 12\n30 8 4\n10 32 7\n43 10 45\n30 34 27\n27 26 21\n7 31 14\n38 13 33\n34 11 46\n33 31 32\n38 31 7\n3 24 13\n38 12 41\n21 26 32\n33 0 43\n17 44 25\n11 21 27\n27 43 28\n45 8 38\n47 50 47\n49 45 8\n2 9 34\n34 32 49\n21 30 9\n13 19 38\n8 45 32\n16 47 35\n45 28 14\n3 22 43\n45 7 32\n49 35 12\n22 35 35\n14 33 42\n19 23 10\n49 4 2\n44 37 40\n27 17 15\n7 37 30\n38 50 39\n32 12 19\n3 48 9\n26 36 27\n38 18 39\n25 40 39\n45 3 2\n23 40 36\n",
"49\n22 28 2\n37 8 19\n17 36 19\n50 31 10\n26 39 17\n46 37 45\n8 33 30\n29 14 19\n34 42 37\n20 35 34\n17 10 39\n6 28 16\n38 35 27\n39 4 41\n8 37 7\n39 21 4\n12 28 20\n28 27 29\n36 28 10\n41 16 22\n21 0 20\n6 15 4\n48 43 21\n19 12 18\n10 27 15\n27 44 12\n25 14 19\n43 8 43\n1 31 26\n49 11 4\n45 18 7\n16 35 48\n2 8 20\n8 0 30\n20 42 5\n39 30 2\n13 36 64\n43 50 50\n7 9 43\n17 42 10\n15 5 21\n39 25 18\n25 29 35\n12 46 15\n48 41 6\n41 13 17\n16 46 15\n38 27 39\n50 25 16\n",
"1\n1 1 14\n"
],
"output": [
"(((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(5*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(10*((1-abs((t-2)))+abs((abs((t-2))-1)))))\n(((5*((1-abs((t-0)))+abs((abs((t-0))-1))))+(0*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(5*((1-abs((t-2)))+abs((abs((t-2))-1)))))\n",
"(((4*((1-abs((t-0)))+abs((abs((t-0))-1))))+(4*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(4*((1-abs((t-2)))+abs((abs((t-2))-1)))))\n(((2*((1-abs((t-0)))+abs((abs((t-0))-1))))+(4*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(2*((1-abs((t-2)))+abs((abs((t-2))-1)))))\n",
"((((((((((((((((((((((((((((((((((((((((((((((((((24*((1-abs((t-0)))+abs((abs((t-0))-1))))+(16*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(7*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(16*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(3*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(9*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(9*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(19*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(18*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(21*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(4*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(20*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(12*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(11*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(15*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(14*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(23*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(23*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(13*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(12*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(5*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(19*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(24*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(0*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(9*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(4*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(24*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(1*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(17*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(17*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(18*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(24*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(16*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(21*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(23*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(18*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(20*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(3*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(23*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(4*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(17*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(1*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(1*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(14*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(0*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(14*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(15*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(4*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(3*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(22*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n((((((((((((((((((((((((((((((((((((((((((((((((((22*((1-abs((t-0)))+abs((abs((t-0))-1))))+(22*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(20*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(14*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(8*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(4*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(20*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(20*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(0*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(7*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(16*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(20*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(21*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(10*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(10*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(7*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(4*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(11*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(4*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(11*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(14*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(22*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(11*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(7*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(12*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(24*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(3*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(15*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(10*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(7*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(21*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(9*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(4*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(17*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(10*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(5*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(23*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(6*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(2*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(16*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(15*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(24*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(9*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(7*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(6*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(14*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(16*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(16*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(6*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(7*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n",
"(((1*((1-abs((t-0)))+abs((abs((t-0))-1))))+(2*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(24*((1-abs((t-2)))+abs((abs((t-2))-1)))))\n(((1*((1-abs((t-0)))+abs((abs((t-0))-1))))+(4*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(0*((1-abs((t-2)))+abs((abs((t-2))-1)))))\n",
"(((((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(0*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(1*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(20*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(25*((1-abs((t-4)))+abs((abs((t-4))-1)))))\n(((((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(0*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(1*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(20*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(25*((1-abs((t-4)))+abs((abs((t-4))-1)))))\n",
"(((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(5*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(10*((1-abs((t-2)))+abs((abs((t-2))-1)))))\n(((5*((1-abs((t-0)))+abs((abs((t-0))-1))))+(0*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(5*((1-abs((t-2)))+abs((abs((t-2))-1)))))\n",
"((((((((((((((((((((((((((((((((((((((((((((((((((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(0*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(0*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(0*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(0*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(0*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(0*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(0*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(0*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(0*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(0*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(0*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(0*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(0*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(0*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(0*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(0*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(0*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(0*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(0*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(0*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(0*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(0*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(0*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(0*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(0*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(0*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(0*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(0*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(0*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(0*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(0*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(0*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(0*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(0*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(0*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(0*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(0*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(0*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(0*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(0*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(0*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(0*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(0*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(0*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(0*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(0*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(0*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(0*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(0*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n((((((((((((((((((((((((((((((((((((((((((((((((((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(0*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(0*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(0*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(0*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(0*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(0*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(0*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(0*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(0*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(0*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(0*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(0*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(0*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(0*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(0*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(0*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(0*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(0*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(0*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(0*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(0*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(0*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(0*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(0*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(0*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(0*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(0*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(0*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(0*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(0*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(0*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(0*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(0*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(0*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(0*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(0*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(0*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(0*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(0*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(0*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(0*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(0*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(0*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(0*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(0*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(0*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(0*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(0*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(0*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n",
"(((((1*((1-abs((t-0)))+abs((abs((t-0))-1))))+(2*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(3*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(1*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(4*((1-abs((t-4)))+abs((abs((t-4))-1)))))\n(((((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(3*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(1*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(5*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(1*((1-abs((t-4)))+abs((abs((t-4))-1)))))\n",
"(((((((((((((((((((((((((((((((((((((((((((((((((24*((1-abs((t-0)))+abs((abs((t-0))-1))))+(4*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(13*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(9*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(17*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(12*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(13*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(15*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(9*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(10*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(17*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(6*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(14*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(6*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(25*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(6*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(15*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(19*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(12*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(16*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(4*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(15*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(10*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(1*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(10*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(20*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(21*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(4*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(7*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(4*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(23*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(20*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(5*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(6*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(12*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(7*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(0*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(2*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(14*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(6*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(11*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(19*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(6*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(10*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(14*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(17*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(5*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(12*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(23*((1-abs((t-48)))+abs((abs((t-48))-1)))))\n(((((((((((((((((((((((((((((((((((((((((((((((((4*((1-abs((t-0)))+abs((abs((t-0))-1))))+(19*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(21*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(24*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(1*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(1*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(20*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(14*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(17*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(14*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(20*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(22*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(1*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(16*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(5*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(3*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(25*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(11*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(16*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(0*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(18*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(13*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(2*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(0*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(7*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(10*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(10*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(14*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(17*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(15*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(19*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(20*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(2*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(23*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(1*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(4*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(4*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(5*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(6*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(21*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(21*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(12*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(23*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(25*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(16*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(10*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(17*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(14*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(2*((1-abs((t-48)))+abs((abs((t-48))-1)))))\n",
"((((((((((3*((1-abs((t-0)))+abs((abs((t-0))-1))))+(1*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(4*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(0*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(1*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(5*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(1*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(5*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(2*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(4*((1-abs((t-9)))+abs((abs((t-9))-1)))))\n((((((((((1*((1-abs((t-0)))+abs((abs((t-0))-1))))+(0*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(3*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(1*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(0*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(4*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(3*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(1*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(3*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(4*((1-abs((t-9)))+abs((abs((t-9))-1)))))\n",
"((((((((((((((((((((((((((((((((((((((((((((((((((3*((1-abs((t-0)))+abs((abs((t-0))-1))))+(20*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(24*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(11*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(5*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(1*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(7*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(4*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(0*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(11*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(5*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(9*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(5*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(2*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(13*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(16*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(1*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(24*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(22*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(1*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(0*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(15*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(18*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(5*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(5*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(2*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(1*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(16*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(18*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(12*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(9*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(23*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(23*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(3*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(7*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(8*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(6*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(11*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(21*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(21*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(10*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(8*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(21*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(2*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(24*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(0*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(2*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(24*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(3*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(4*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n((((((((((((((((((((((((((((((((((((((((((((((((((6*((1-abs((t-0)))+abs((abs((t-0))-1))))+(8*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(16*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(8*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(8*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(5*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(1*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(6*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(8*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(22*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(0*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(22*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(15*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(21*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(7*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(23*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(2*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(11*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(1*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(20*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(13*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(0*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(3*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(24*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(23*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(20*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(23*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(1*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(21*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(8*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(16*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(10*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(12*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(1*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(1*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(8*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(15*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(9*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(20*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(13*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(10*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(2*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(19*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(16*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(2*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(1*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(20*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(18*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(5*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(3*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n",
"(((((((((((((((((((((((((((((((((((((((((((((((((18*((1-abs((t-0)))+abs((abs((t-0))-1))))+(25*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(6*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(7*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(11*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(15*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(12*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(1*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(21*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(3*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(10*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(13*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(9*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(20*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(18*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(6*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(1*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(24*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(2*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(10*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(21*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(10*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(11*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(7*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(8*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(11*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(1*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(23*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(9*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(15*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(22*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(14*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(17*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(21*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(22*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(5*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(16*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(19*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(10*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(2*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(11*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(19*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(21*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(10*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(21*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(21*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(15*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(3*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(14*((1-abs((t-48)))+abs((abs((t-48))-1)))))\n(((((((((((((((((((((((((((((((((((((((((((((((((6*((1-abs((t-0)))+abs((abs((t-0))-1))))+(3*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(15*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(23*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(21*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(8*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(14*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(10*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(3*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(6*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(16*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(22*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(19*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(14*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(0*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(13*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(2*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(15*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(7*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(18*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(16*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(11*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(17*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(15*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(23*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(1*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(25*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(23*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(21*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(13*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(16*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(10*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(16*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(8*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(12*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(0*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(25*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(9*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(15*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(21*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(0*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(25*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(10*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(10*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(22*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(17*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(1*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(0*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(17*((1-abs((t-48)))+abs((abs((t-48))-1)))))\n",
"(25*((1-abs((t-0)))+abs((abs((t-0))-1))))\n(25*((1-abs((t-0)))+abs((abs((t-0))-1))))\n",
"(((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(2*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(10*((1-abs((t-2)))+abs((abs((t-2))-1)))))\n(((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(3*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(12*((1-abs((t-2)))+abs((abs((t-2))-1)))))\n",
"((((((((((((((((((((((((((((((((((((((((((((((((((5*((1-abs((t-0)))+abs((abs((t-0))-1))))+(10*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(16*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(17*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(9*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(10*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(15*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(15*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(15*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(11*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(0*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(2*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(17*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(3*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(9*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(4*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(20*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(16*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(21*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(11*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(14*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(17*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(8*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(8*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(7*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(16*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(21*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(11*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(17*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(1*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(9*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(24*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(13*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(12*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(16*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(5*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(18*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(25*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(12*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(12*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(14*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(10*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(6*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(7*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(15*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(7*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(8*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(11*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(8*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(15*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n((((((((((((((((((((((((((((((((((((((((((((((((((13*((1-abs((t-0)))+abs((abs((t-0))-1))))+(18*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(21*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(3*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(18*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(14*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(6*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(4*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(2*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(3*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(22*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(18*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(11*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(19*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(9*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(25*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(5*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(2*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(23*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(22*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(1*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(2*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(15*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(23*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(23*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(18*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(5*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(17*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(4*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(2*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(7*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(19*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(14*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(19*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(16*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(3*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(17*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(11*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(14*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(25*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(13*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(15*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(15*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(1*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(22*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(6*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(9*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(15*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(13*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(0*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n",
"(((((((((((((((((((((((((((((((((((((((((((((((((16*((1-abs((t-0)))+abs((abs((t-0))-1))))+(15*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(2*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(19*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(11*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(4*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(23*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(1*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(0*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(19*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(3*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(0*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(23*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(10*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(11*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(16*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(17*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(19*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(20*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(6*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(2*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(8*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(11*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(18*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(6*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(8*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(14*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(0*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(18*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(23*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(4*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(13*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(6*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(1*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(7*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(20*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(4*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(21*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(2*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(15*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(8*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(6*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(5*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(24*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(19*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(1*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(6*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(0*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(11*((1-abs((t-48)))+abs((abs((t-48))-1)))))\n(((((((((((((((((((((((((((((((((((((((((((((((((20*((1-abs((t-0)))+abs((abs((t-0))-1))))+(12*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(18*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(25*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(14*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(19*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(7*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(20*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(22*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(7*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(3*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(17*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(8*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(14*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(11*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(20*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(1*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(18*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(24*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(7*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(17*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(4*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(11*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(24*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(24*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(2*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(0*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(9*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(5*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(5*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(12*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(0*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(13*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(9*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(16*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(4*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(19*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(17*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(9*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(23*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(23*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(4*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(11*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(21*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(14*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(23*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(13*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(13*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(0*((1-abs((t-48)))+abs((abs((t-48))-1)))))\n",
"(0*((1-abs((t-0)))+abs((abs((t-0))-1))))\n(0*((1-abs((t-0)))+abs((abs((t-0))-1))))\n",
"((((((((((((((((((((((((((((((((((((((((((((((((((17*((1-abs((t-0)))+abs((abs((t-0))-1))))+(9*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(7*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(1*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(13*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(25*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(24*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(3*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(8*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(11*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(9*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(5*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(11*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(15*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(5*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(4*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(4*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(7*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(15*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(6*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(7*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(2*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(6*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(0*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(13*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(22*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(5*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(20*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(24*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(19*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(9*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(11*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(18*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(1*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(5*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(7*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(12*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(5*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(11*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(11*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(6*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(9*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(1*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(23*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(6*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(4*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(4*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(5*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(6*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(3*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n((((((((((((((((((((((((((((((((((((((((((((((((((3*((1-abs((t-0)))+abs((abs((t-0))-1))))+(7*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(12*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(12*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(1*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(22*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(9*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(11*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(11*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(12*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(11*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(14*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(7*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(7*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(21*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(5*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(16*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(0*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(12*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(2*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(6*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(8*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(21*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(4*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(17*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(6*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(8*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(2*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(19*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(11*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(5*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(8*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(13*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(17*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(21*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(18*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(3*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(17*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(17*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(12*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(18*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(3*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(23*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(14*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(18*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(23*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(2*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(17*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(15*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(8*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n",
"(((((((((((((((((((((((((((((((((((((((((((((((((4*((1-abs((t-0)))+abs((abs((t-0))-1))))+(11*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(23*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(17*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(15*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(5*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(21*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(15*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(13*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(3*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(19*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(17*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(16*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(19*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(1*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(19*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(10*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(16*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(8*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(5*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(13*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(22*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(23*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(24*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(1*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(17*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(10*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(6*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(4*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(8*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(22*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(1*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(22*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(24*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(11*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(7*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(9*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(24*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(22*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(13*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(3*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(19*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(16*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(1*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(13*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(19*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(12*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(22*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(11*((1-abs((t-48)))+abs((abs((t-48))-1)))))\n(((((((((((((((((((((((((((((((((((((((((((((((((21*((1-abs((t-0)))+abs((abs((t-0))-1))))+(17*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(19*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(7*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(4*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(16*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(5*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(17*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(13*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(15*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(6*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(5*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(15*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(15*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(12*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(6*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(13*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(0*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(22*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(10*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(21*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(4*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(25*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(22*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(4*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(16*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(15*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(9*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(22*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(23*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(14*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(12*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(3*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(17*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(17*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(16*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(11*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(2*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(18*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(8*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(18*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(25*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(6*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(24*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(18*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(9*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(20*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(1*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(20*((1-abs((t-48)))+abs((abs((t-48))-1)))))\n",
"((((((((((((((((((((((((((((((((((((((((((((((((((23*((1-abs((t-0)))+abs((abs((t-0))-1))))+(15*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(17*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(9*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(12*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(17*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(7*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(3*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(11*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(5*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(24*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(16*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(14*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(15*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(7*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(17*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(25*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(5*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(11*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(21*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(17*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(9*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(20*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(11*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(3*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(18*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(7*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(9*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(20*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(10*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(9*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(17*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(9*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(6*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(4*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(19*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(22*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(2*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(18*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(5*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(10*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(9*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(10*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(2*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(4*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(5*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(0*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(2*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(20*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(3*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n((((((((((((((((((((((((((((((((((((((((((((((((((21*((1-abs((t-0)))+abs((abs((t-0))-1))))+(19*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(10*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(20*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(16*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(0*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(20*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(1*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(20*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(14*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(23*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(22*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(9*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(7*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(2*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(9*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(5*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(14*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(4*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(12*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(10*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(24*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(18*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(13*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(0*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(12*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(13*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(23*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(25*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(20*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(13*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(1*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(13*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(11*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(25*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(4*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(11*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(15*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(3*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(13*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(15*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(3*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(6*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(1*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(20*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(8*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(5*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(3*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(8*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(3*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n",
"((((((((((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(1*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(3*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(3*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(7*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(1*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(4*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(0*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(2*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(7*((1-abs((t-9)))+abs((abs((t-9))-1)))))\n((((((((((4*((1-abs((t-0)))+abs((abs((t-0))-1))))+(5*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(3*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(6*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(7*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(6*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(0*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(6*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(5*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(4*((1-abs((t-9)))+abs((abs((t-9))-1)))))\n",
"(((((((6*((1-abs((t-0)))+abs((abs((t-0))-1))))+(1*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(6*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(4*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(5*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(4*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(5*((1-abs((t-6)))+abs((abs((t-6))-1)))))\n(((((((7*((1-abs((t-0)))+abs((abs((t-0))-1))))+(5*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(6*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(6*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(1*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(3*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(5*((1-abs((t-6)))+abs((abs((t-6))-1)))))\n",
"((((((((((((((((((((((((((((((((((((((((((((((((((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(0*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(0*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(0*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(0*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(0*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(0*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(0*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(0*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(0*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(0*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(0*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(0*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(0*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(0*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(0*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(0*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(0*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(0*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(0*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(0*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(0*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(0*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(0*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(0*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(0*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(0*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(0*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(0*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(0*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(0*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(0*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(0*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(0*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(0*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(0*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(0*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(0*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(0*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(0*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(0*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(0*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(0*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(0*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(0*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(0*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(0*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(0*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(0*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(0*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n((((((((((((((((((((((((((((((((((((((((((((((((((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(0*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(0*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(0*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(0*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(0*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(0*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(0*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(0*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(0*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(0*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(0*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(0*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(0*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(0*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(0*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(0*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(0*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(0*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(0*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(0*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(0*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(0*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(0*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(0*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(0*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(0*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(0*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(0*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(0*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(0*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(0*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(0*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(0*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(0*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(0*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(0*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(0*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(0*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(0*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(0*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(0*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(0*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(0*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(0*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(0*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(0*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(0*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(0*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(0*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n",
"(((((((((((((((((((((((((((((((((((((((((((((((((11*((1-abs((t-0)))+abs((abs((t-0))-1))))+(18*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(8*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(25*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(13*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(23*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(4*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(14*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(17*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(10*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(8*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(3*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(19*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(19*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(4*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(19*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(6*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(14*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(18*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(20*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(10*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(3*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(24*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(9*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(5*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(13*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(12*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(21*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(0*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(24*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(22*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(8*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(1*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(4*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(10*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(19*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(6*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(21*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(3*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(8*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(7*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(19*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(12*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(6*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(24*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(20*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(8*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(19*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(25*((1-abs((t-48)))+abs((abs((t-48))-1)))))\n(((((((((((((((((((((((((((((((((((((((((((((((((14*((1-abs((t-0)))+abs((abs((t-0))-1))))+(4*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(18*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(15*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(19*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(18*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(16*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(7*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(21*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(17*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(5*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(14*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(17*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(2*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(18*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(10*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(14*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(13*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(14*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(8*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(0*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(7*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(21*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(6*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(13*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(22*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(7*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(4*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(15*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(5*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(9*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(17*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(4*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(0*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(21*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(15*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(18*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(25*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(4*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(21*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(2*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(12*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(14*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(23*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(20*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(6*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(23*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(13*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(12*((1-abs((t-48)))+abs((abs((t-48))-1)))))\n",
"(0*((1-abs((t-0)))+abs((abs((t-0))-1))))\n(0*((1-abs((t-0)))+abs((abs((t-0))-1))))\n",
"((((((((((((((((((((((((((((((((((((((((((((((((((10*((1-abs((t-0)))+abs((abs((t-0))-1))))+(2*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(9*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(18*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(15*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(19*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(16*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(3*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(4*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(18*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(7*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(20*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(9*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(14*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(16*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(17*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(22*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(9*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(6*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(16*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(10*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(22*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(6*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(3*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(9*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(25*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(15*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(18*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(15*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(3*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(9*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(4*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(1*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(8*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(6*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(20*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(16*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(8*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(3*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(15*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(1*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(8*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(5*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(6*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(22*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(3*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(22*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(9*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(17*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(4*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n((((((((((((((((((((((((((((((((((((((((((((((((((11*((1-abs((t-0)))+abs((abs((t-0))-1))))+(8*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(14*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(3*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(23*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(7*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(12*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(9*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(3*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(24*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(13*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(6*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(5*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(21*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(13*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(1*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(16*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(24*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(19*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(5*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(4*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(4*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(0*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(8*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(7*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(0*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(15*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(21*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(1*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(16*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(11*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(3*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(12*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(9*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(5*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(20*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(22*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(20*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(5*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(25*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(20*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(15*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(2*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(15*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(16*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(25*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(24*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(4*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(23*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(25*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n",
"((((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(25*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(25*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(0*((1-abs((t-3)))+abs((abs((t-3))-1)))))\n((((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(25*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(0*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(25*((1-abs((t-3)))+abs((abs((t-3))-1)))))\n",
"(((4*((1-abs((t-0)))+abs((abs((t-0))-1))))+(4*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(4*((1-abs((t-2)))+abs((abs((t-2))-1)))))\n(((2*((1-abs((t-0)))+abs((abs((t-0))-1))))+(4*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(2*((1-abs((t-2)))+abs((abs((t-2))-1)))))",
"((((((((((((((((((((((((((((((((((((((((((((((((((24*((1-abs((t-0)))+abs((abs((t-0))-1))))+(16*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(7*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(16*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(3*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(9*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(9*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(19*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(18*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(25*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(4*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(20*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(12*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(11*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(15*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(14*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(23*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(23*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(13*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(12*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(5*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(19*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(24*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(0*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(9*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(4*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(24*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(1*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(17*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(17*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(18*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(24*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(16*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(21*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(23*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(18*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(20*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(3*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(23*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(4*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(17*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(1*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(1*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(14*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(0*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(14*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(15*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(4*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(3*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(22*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n((((((((((((((((((((((((((((((((((((((((((((((((((22*((1-abs((t-0)))+abs((abs((t-0))-1))))+(22*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(20*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(14*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(8*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(4*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(20*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(20*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(0*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(7*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(16*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(20*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(21*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(10*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(10*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(7*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(4*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(11*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(4*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(11*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(14*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(22*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(11*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(7*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(12*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(24*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(3*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(15*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(10*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(7*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(21*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(9*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(4*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(17*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(10*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(5*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(23*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(6*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(2*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(16*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(15*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(24*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(9*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(7*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(6*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(14*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(16*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(16*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(6*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(7*((1-abs((t-49)))+abs((abs((t-49))-1)))))",
"(((1*((1-abs((t-0)))+abs((abs((t-0))-1))))+(2*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(24*((1-abs((t-2)))+abs((abs((t-2))-1)))))\n(((2*((1-abs((t-0)))+abs((abs((t-0))-1))))+(4*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(0*((1-abs((t-2)))+abs((abs((t-2))-1)))))",
"(((((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(0*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(1*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(20*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(25*((1-abs((t-4)))+abs((abs((t-4))-1)))))\n(((((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(0*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(0*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(20*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(25*((1-abs((t-4)))+abs((abs((t-4))-1)))))",
"(((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(5*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(10*((1-abs((t-2)))+abs((abs((t-2))-1)))))\n(((5*((1-abs((t-0)))+abs((abs((t-0))-1))))+(0*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(5*((1-abs((t-2)))+abs((abs((t-2))-1)))))",
"((((((((((((((((((((((((((((((((((((((((((((((((((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(0*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(0*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(0*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(0*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(0*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(0*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(0*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(0*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(0*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(0*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(0*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(0*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(0*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(0*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(0*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(0*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(0*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(0*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(0*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(0*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(0*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(0*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(0*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(0*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(0*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(0*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(0*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(0*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(0*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(0*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(0*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(0*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(0*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(0*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(0*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(0*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(0*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(0*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(0*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(0*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(0*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(0*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(0*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(0*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(0*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(0*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(0*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(0*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(0*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n((((((((((((((((((((((((((((((((((((((((((((((((((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(0*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(0*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(0*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(0*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(0*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(0*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(0*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(0*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(0*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(0*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(0*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(0*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(0*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(0*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(0*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(0*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(0*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(0*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(0*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(0*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(0*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(0*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(0*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(0*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(0*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(0*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(0*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(0*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(0*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(0*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(0*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(0*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(0*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(0*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(0*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(0*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(0*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(0*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(0*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(0*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(0*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(0*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(0*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(0*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(0*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(0*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(0*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(0*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(0*((1-abs((t-49)))+abs((abs((t-49))-1)))))",
"(((((1*((1-abs((t-0)))+abs((abs((t-0))-1))))+(2*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(3*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(1*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(4*((1-abs((t-4)))+abs((abs((t-4))-1)))))\n(((((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(3*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(1*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(5*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(0*((1-abs((t-4)))+abs((abs((t-4))-1)))))",
"(((((((((((((((((((((((((((((((((((((((((((((((((24*((1-abs((t-0)))+abs((abs((t-0))-1))))+(4*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(13*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(9*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(17*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(12*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(13*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(15*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(9*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(10*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(17*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(6*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(14*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(6*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(25*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(6*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(15*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(19*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(12*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(16*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(4*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(15*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(10*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(1*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(10*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(20*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(21*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(4*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(7*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(4*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(23*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(20*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(5*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(6*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(12*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(7*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(0*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(2*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(14*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(6*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(11*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(19*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(6*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(10*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(14*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(17*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(5*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(12*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(23*((1-abs((t-48)))+abs((abs((t-48))-1)))))\n(((((((((((((((((((((((((((((((((((((((((((((((((4*((1-abs((t-0)))+abs((abs((t-0))-1))))+(19*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(21*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(24*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(1*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(1*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(20*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(14*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(17*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(14*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(20*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(22*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(1*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(16*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(5*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(3*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(25*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(11*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(16*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(0*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(18*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(13*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(2*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(0*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(7*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(10*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(10*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(14*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(17*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(15*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(19*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(20*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(2*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(23*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(1*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(4*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(4*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(5*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(6*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(21*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(21*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(12*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(23*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(25*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(16*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(10*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(17*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(14*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(2*((1-abs((t-48)))+abs((abs((t-48))-1)))))",
"((((((((((3*((1-abs((t-0)))+abs((abs((t-0))-1))))+(1*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(4*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(0*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(1*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(5*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(1*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(5*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(2*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(4*((1-abs((t-9)))+abs((abs((t-9))-1)))))\n((((((((((1*((1-abs((t-0)))+abs((abs((t-0))-1))))+(0*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(3*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(1*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(0*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(4*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(3*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(1*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(3*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(4*((1-abs((t-9)))+abs((abs((t-9))-1)))))",
"((((((((((((((((((((((((((((((((((((((((((((((((((3*((1-abs((t-0)))+abs((abs((t-0))-1))))+(20*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(24*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(7*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(5*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(1*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(7*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(4*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(0*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(11*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(5*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(9*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(5*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(2*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(13*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(16*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(1*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(24*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(22*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(1*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(0*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(15*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(18*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(5*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(5*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(2*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(1*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(16*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(18*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(12*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(9*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(23*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(23*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(3*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(7*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(8*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(6*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(11*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(21*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(21*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(10*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(8*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(21*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(2*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(24*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(0*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(2*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(24*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(3*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(4*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n((((((((((((((((((((((((((((((((((((((((((((((((((6*((1-abs((t-0)))+abs((abs((t-0))-1))))+(8*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(16*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(8*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(8*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(5*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(1*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(6*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(8*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(22*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(0*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(22*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(15*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(21*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(7*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(23*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(2*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(11*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(1*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(20*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(13*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(0*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(3*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(24*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(23*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(20*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(23*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(1*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(21*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(8*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(16*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(10*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(12*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(1*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(1*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(8*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(15*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(9*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(20*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(13*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(10*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(2*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(19*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(16*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(2*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(1*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(20*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(18*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(5*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(3*((1-abs((t-49)))+abs((abs((t-49))-1)))))",
"(25*((1-abs((t-0)))+abs((abs((t-0))-1))))\n(25*((1-abs((t-0)))+abs((abs((t-0))-1))))",
"(((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(2*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(10*((1-abs((t-2)))+abs((abs((t-2))-1)))))\n(((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(3*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(12*((1-abs((t-2)))+abs((abs((t-2))-1)))))",
"((((((((((((((((((((((((((((((((((((((((((((((((((5*((1-abs((t-0)))+abs((abs((t-0))-1))))+(10*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(16*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(17*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(9*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(10*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(15*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(15*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(15*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(11*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(0*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(2*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(17*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(3*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(9*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(4*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(20*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(16*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(21*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(11*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(14*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(17*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(8*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(8*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(7*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(16*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(21*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(11*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(17*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(1*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(9*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(24*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(13*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(12*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(16*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(5*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(18*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(25*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(12*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(12*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(14*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(10*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(6*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(7*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(15*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(7*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(8*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(11*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(8*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(15*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n((((((((((((((((((((((((((((((((((((((((((((((((((13*((1-abs((t-0)))+abs((abs((t-0))-1))))+(18*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(21*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(3*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(18*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(14*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(6*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(4*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(2*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(3*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(22*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(18*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(11*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(19*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(9*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(25*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(5*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(2*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(23*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(22*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(1*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(2*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(15*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(23*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(23*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(7*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(5*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(17*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(4*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(2*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(7*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(19*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(14*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(19*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(16*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(3*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(17*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(11*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(14*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(25*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(13*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(15*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(15*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(1*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(22*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(6*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(9*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(15*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(13*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(0*((1-abs((t-49)))+abs((abs((t-49))-1)))))",
"(((((((((((((((((((((((((((((((((((((((((((((((((16*((1-abs((t-0)))+abs((abs((t-0))-1))))+(15*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(2*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(19*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(11*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(4*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(23*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(1*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(0*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(19*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(3*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(0*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(23*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(10*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(11*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(16*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(17*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(19*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(20*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(6*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(2*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(8*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(11*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(18*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(6*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(8*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(14*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(0*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(18*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(23*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(4*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(13*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(6*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(1*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(7*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(20*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(4*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(21*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(2*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(15*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(8*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(6*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(5*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(24*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(19*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(1*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(6*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(0*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(11*((1-abs((t-48)))+abs((abs((t-48))-1)))))\n(((((((((((((((((((((((((((((((((((((((((((((((((20*((1-abs((t-0)))+abs((abs((t-0))-1))))+(12*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(18*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(25*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(14*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(19*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(7*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(20*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(22*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(7*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(3*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(17*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(8*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(14*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(11*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(20*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(1*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(18*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(24*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(7*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(7*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(4*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(11*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(24*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(24*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(2*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(0*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(9*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(5*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(5*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(12*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(0*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(13*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(9*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(16*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(4*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(19*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(17*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(9*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(23*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(23*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(4*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(11*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(21*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(14*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(23*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(13*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(13*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(0*((1-abs((t-48)))+abs((abs((t-48))-1)))))",
"((((((((((((((((((((((((((((((((((((((((((((((((((17*((1-abs((t-0)))+abs((abs((t-0))-1))))+(9*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(7*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(1*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(13*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(25*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(24*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(3*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(8*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(11*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(9*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(5*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(11*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(15*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(5*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(4*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(4*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(7*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(15*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(6*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(7*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(2*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(6*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(0*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(13*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(41*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(5*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(20*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(24*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(19*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(9*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(11*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(18*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(1*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(5*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(7*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(12*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(5*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(11*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(11*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(6*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(9*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(1*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(23*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(6*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(4*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(4*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(5*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(6*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(3*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n((((((((((((((((((((((((((((((((((((((((((((((((((3*((1-abs((t-0)))+abs((abs((t-0))-1))))+(7*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(12*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(12*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(1*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(22*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(9*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(11*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(11*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(12*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(11*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(14*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(7*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(7*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(21*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(5*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(16*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(0*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(12*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(2*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(6*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(8*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(21*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(4*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(17*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(6*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(8*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(2*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(19*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(11*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(5*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(8*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(13*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(17*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(21*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(18*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(3*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(17*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(17*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(12*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(18*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(3*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(23*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(14*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(18*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(23*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(2*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(17*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(15*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(8*((1-abs((t-49)))+abs((abs((t-49))-1)))))",
"(((((((((((((((((((((((((((((((((((((((((((((((((4*((1-abs((t-0)))+abs((abs((t-0))-1))))+(11*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(23*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(17*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(15*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(5*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(21*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(15*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(13*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(3*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(19*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(17*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(16*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(19*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(1*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(19*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(10*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(16*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(8*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(5*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(13*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(22*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(23*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(24*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(1*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(17*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(10*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(6*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(4*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(8*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(22*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(1*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(22*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(24*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(11*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(7*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(9*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(24*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(22*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(13*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(3*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(19*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(16*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(1*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(13*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(19*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(12*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(22*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(11*((1-abs((t-48)))+abs((abs((t-48))-1)))))\n(((((((((((((((((((((((((((((((((((((((((((((((((21*((1-abs((t-0)))+abs((abs((t-0))-1))))+(17*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(19*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(7*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(4*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(16*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(5*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(17*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(13*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(15*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(6*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(5*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(15*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(15*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(12*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(6*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(13*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(0*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(22*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(10*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(21*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(4*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(25*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(22*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(4*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(16*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(15*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(9*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(22*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(23*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(14*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(11*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(3*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(17*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(17*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(16*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(11*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(2*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(18*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(8*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(18*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(25*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(6*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(24*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(18*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(9*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(20*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(1*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(20*((1-abs((t-48)))+abs((abs((t-48))-1)))))",
"((((((((((((((((((((((((((((((((((((((((((((((((((23*((1-abs((t-0)))+abs((abs((t-0))-1))))+(15*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(17*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(9*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(12*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(17*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(7*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(3*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(11*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(5*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(24*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(16*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(14*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(15*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(7*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(17*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(25*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(5*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(11*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(21*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(17*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(9*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(20*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(11*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(3*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(18*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(7*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(9*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(20*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(10*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(9*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(17*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(9*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(6*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(4*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(19*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(22*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(2*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(18*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(5*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(10*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(9*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(10*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(2*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(4*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(5*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(0*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(2*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(20*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(3*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n((((((((((((((((((((((((((((((((((((((((((((((((((21*((1-abs((t-0)))+abs((abs((t-0))-1))))+(19*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(10*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(20*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(16*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(0*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(20*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(1*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(20*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(14*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(23*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(22*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(9*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(8*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(2*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(9*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(5*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(14*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(4*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(12*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(10*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(24*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(18*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(13*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(0*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(12*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(13*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(23*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(25*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(20*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(13*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(1*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(13*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(11*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(25*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(4*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(11*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(15*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(3*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(13*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(15*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(3*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(6*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(1*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(20*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(8*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(5*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(3*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(8*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(3*((1-abs((t-49)))+abs((abs((t-49))-1)))))",
"((((((((((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(1*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(3*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(3*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(7*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(1*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(4*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(0*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(2*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(7*((1-abs((t-9)))+abs((abs((t-9))-1)))))\n((((((((((4*((1-abs((t-0)))+abs((abs((t-0))-1))))+(5*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(3*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(6*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(7*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(6*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(0*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(6*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(5*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(4*((1-abs((t-9)))+abs((abs((t-9))-1)))))",
"(((((((6*((1-abs((t-0)))+abs((abs((t-0))-1))))+(1*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(6*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(4*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(5*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(4*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(5*((1-abs((t-6)))+abs((abs((t-6))-1)))))\n(((((((12*((1-abs((t-0)))+abs((abs((t-0))-1))))+(5*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(6*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(6*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(1*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(3*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(5*((1-abs((t-6)))+abs((abs((t-6))-1)))))",
"(((((((((((((((((((((((((((((((((((((((((((((((((11*((1-abs((t-0)))+abs((abs((t-0))-1))))+(18*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(8*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(25*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(13*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(23*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(4*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(14*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(17*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(10*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(8*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(3*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(19*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(19*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(4*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(19*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(6*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(14*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(18*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(20*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(10*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(3*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(24*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(9*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(5*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(13*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(12*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(21*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(0*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(24*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(22*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(8*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(1*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(4*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(10*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(19*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(6*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(21*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(3*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(8*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(7*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(19*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(12*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(6*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(24*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(20*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(8*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(19*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(25*((1-abs((t-48)))+abs((abs((t-48))-1)))))\n(((((((((((((((((((((((((((((((((((((((((((((((((14*((1-abs((t-0)))+abs((abs((t-0))-1))))+(4*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(18*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(15*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(19*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(18*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(16*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(7*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(21*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(17*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(5*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(14*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(17*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(2*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(18*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(10*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(14*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(13*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(14*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(8*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(0*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(7*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(21*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(6*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(13*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(22*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(7*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(4*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(15*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(5*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(9*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(17*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(4*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(0*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(21*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(15*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(18*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(25*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(4*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(21*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(2*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(12*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(14*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(23*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(20*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(6*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(23*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(13*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(12*((1-abs((t-48)))+abs((abs((t-48))-1)))))",
"(0*((1-abs((t-0)))+abs((abs((t-0))-1))))\n(0*((1-abs((t-0)))+abs((abs((t-0))-1))))",
"((((((((((((((((((((((((((((((((((((((((((((((((((10*((1-abs((t-0)))+abs((abs((t-0))-1))))+(2*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(9*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(18*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(15*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(19*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(16*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(3*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(4*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(18*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(7*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(20*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(9*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(14*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(16*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(17*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(22*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(9*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(6*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(16*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(10*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(22*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(6*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(3*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(9*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(25*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(15*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(18*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(15*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(3*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(9*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(4*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(1*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(8*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(6*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(20*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(16*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(8*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(3*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(15*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(1*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(8*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(5*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(6*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(22*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(3*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(22*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(9*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(17*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(4*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n((((((((((((((((((((((((((((((((((((((((((((((((((11*((1-abs((t-0)))+abs((abs((t-0))-1))))+(8*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(14*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(3*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(23*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(7*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(12*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(9*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(3*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(24*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(13*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(6*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(5*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(21*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(13*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(1*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(16*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(24*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(19*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(5*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(4*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(4*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(0*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(8*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(7*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(0*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(15*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(21*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(1*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(16*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(11*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(3*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(12*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(9*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(5*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(28*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(22*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(20*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(5*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(25*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(20*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(15*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(2*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(15*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(16*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(25*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(24*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(4*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(23*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(25*((1-abs((t-49)))+abs((abs((t-49))-1)))))",
"((((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(25*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(25*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(0*((1-abs((t-3)))+abs((abs((t-3))-1)))))\n((((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(33*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(0*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(25*((1-abs((t-3)))+abs((abs((t-3))-1)))))",
"(((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(9*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(10*((1-abs((t-2)))+abs((abs((t-2))-1)))))\n(((5*((1-abs((t-0)))+abs((abs((t-0))-1))))+(0*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(5*((1-abs((t-2)))+abs((abs((t-2))-1)))))",
"(((((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(1*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(1*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(20*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(25*((1-abs((t-4)))+abs((abs((t-4))-1)))))\n(((((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(0*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(0*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(20*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(25*((1-abs((t-4)))+abs((abs((t-4))-1)))))",
"((((((((((((((((((((((((((((((((((((((((((((((((((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(0*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(0*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(1*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(0*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(0*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(0*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(0*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(0*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(0*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(0*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(0*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(0*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(0*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(0*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(0*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(0*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(0*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(0*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(0*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(0*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(0*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(0*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(0*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(0*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(0*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(0*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(0*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(0*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(0*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(0*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(0*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(0*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(0*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(0*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(0*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(0*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(0*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(0*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(0*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(0*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(0*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(0*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(0*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(0*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(0*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(0*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(0*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(0*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(0*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n((((((((((((((((((((((((((((((((((((((((((((((((((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(0*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(0*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(0*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(0*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(0*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(0*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(0*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(0*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(0*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(0*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(0*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(0*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(0*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(0*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(0*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(0*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(0*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(0*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(0*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(0*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(0*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(0*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(0*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(0*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(0*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(0*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(0*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(0*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(0*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(0*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(0*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(0*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(0*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(0*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(0*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(0*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(0*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(0*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(0*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(0*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(0*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(0*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(0*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(0*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(0*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(0*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(0*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(0*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(0*((1-abs((t-49)))+abs((abs((t-49))-1)))))",
"(((((1*((1-abs((t-0)))+abs((abs((t-0))-1))))+(2*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(3*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(1*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(5*((1-abs((t-4)))+abs((abs((t-4))-1)))))\n(((((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(3*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(1*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(5*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(0*((1-abs((t-4)))+abs((abs((t-4))-1)))))",
"((((((((((3*((1-abs((t-0)))+abs((abs((t-0))-1))))+(1*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(4*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(0*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(1*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(5*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(1*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(5*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(2*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(4*((1-abs((t-9)))+abs((abs((t-9))-1)))))\n((((((((((1*((1-abs((t-0)))+abs((abs((t-0))-1))))+(0*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(3*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(1*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(0*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(4*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(3*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(1*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(5*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(4*((1-abs((t-9)))+abs((abs((t-9))-1)))))",
"(25*((1-abs((t-0)))+abs((abs((t-0))-1))))\n(2*((1-abs((t-0)))+abs((abs((t-0))-1))))",
"((((((((((((((((((((((((((((((((((((((((((((((((((23*((1-abs((t-0)))+abs((abs((t-0))-1))))+(15*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(17*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(9*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(12*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(17*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(7*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(3*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(11*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(5*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(24*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(16*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(14*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(15*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(7*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(17*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(25*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(5*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(11*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(21*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(17*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(9*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(20*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(11*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(3*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(18*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(7*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(9*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(20*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(13*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(9*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(17*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(9*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(6*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(4*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(19*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(22*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(2*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(18*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(5*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(10*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(9*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(10*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(2*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(4*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(5*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(0*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(2*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(20*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(3*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n((((((((((((((((((((((((((((((((((((((((((((((((((21*((1-abs((t-0)))+abs((abs((t-0))-1))))+(19*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(10*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(20*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(16*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(0*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(20*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(1*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(20*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(14*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(23*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(22*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(9*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(8*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(2*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(9*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(5*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(14*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(4*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(12*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(10*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(24*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(18*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(13*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(0*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(12*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(13*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(23*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(25*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(20*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(13*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(1*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(13*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(11*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(25*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(4*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(11*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(15*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(3*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(13*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(15*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(3*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(6*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(1*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(20*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(8*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(5*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(3*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(8*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(3*((1-abs((t-49)))+abs((abs((t-49))-1)))))",
"((((((((((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(1*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(3*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(3*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(7*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(1*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(4*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(0*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(2*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(7*((1-abs((t-9)))+abs((abs((t-9))-1)))))\n((((((((((4*((1-abs((t-0)))+abs((abs((t-0))-1))))+(5*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(3*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(6*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(7*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(6*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(0*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(6*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(5*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(1*((1-abs((t-9)))+abs((abs((t-9))-1)))))",
"(((((((6*((1-abs((t-0)))+abs((abs((t-0))-1))))+(1*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(6*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(0*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(5*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(4*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(5*((1-abs((t-6)))+abs((abs((t-6))-1)))))\n(((((((12*((1-abs((t-0)))+abs((abs((t-0))-1))))+(5*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(6*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(6*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(1*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(3*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(5*((1-abs((t-6)))+abs((abs((t-6))-1)))))",
"((((((((((((((((((((((((((((((((((((((((((((((((((10*((1-abs((t-0)))+abs((abs((t-0))-1))))+(2*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(9*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(18*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(15*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(19*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(16*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(3*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(4*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(18*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(7*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(20*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(9*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(14*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(16*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(17*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(22*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(9*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(6*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(16*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(10*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(22*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(6*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(3*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(9*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(25*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(0*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(18*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(15*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(3*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(9*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(4*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(1*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(8*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(6*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(20*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(16*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(8*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(3*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(15*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(1*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(8*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(5*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(6*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(22*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(3*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(22*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(9*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(17*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(4*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n((((((((((((((((((((((((((((((((((((((((((((((((((11*((1-abs((t-0)))+abs((abs((t-0))-1))))+(8*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(14*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(3*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(23*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(7*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(12*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(9*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(3*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(24*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(13*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(6*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(5*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(21*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(13*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(1*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(16*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(24*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(19*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(5*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(4*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(4*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(0*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(8*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(7*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(0*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(15*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(21*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(1*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(16*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(11*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(3*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(12*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(9*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(5*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(28*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(22*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(20*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(5*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(25*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(20*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(15*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(2*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(15*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(16*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(25*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(24*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(4*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(23*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(25*((1-abs((t-49)))+abs((abs((t-49))-1)))))",
"((((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(25*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(25*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(0*((1-abs((t-3)))+abs((abs((t-3))-1)))))\n((((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(33*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(0*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(12*((1-abs((t-3)))+abs((abs((t-3))-1)))))",
"(((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(17*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(10*((1-abs((t-2)))+abs((abs((t-2))-1)))))\n(((5*((1-abs((t-0)))+abs((abs((t-0))-1))))+(0*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(5*((1-abs((t-2)))+abs((abs((t-2))-1)))))",
"((((((((((((((((((((((((((((((((((((((((((((((((((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(0*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(0*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(0*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(0*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(0*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(0*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(0*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(0*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(0*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(0*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(0*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(0*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(0*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(0*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(0*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(0*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(0*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(0*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(0*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(0*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(0*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(0*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(0*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(0*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(0*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(0*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(0*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(0*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(0*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(0*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(0*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(0*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(0*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(0*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(0*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(0*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(0*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(0*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(0*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(0*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(0*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(0*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(0*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(0*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(0*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(0*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(0*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(0*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(0*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n((((((((((((((((((((((((((((((((((((((((((((((((((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(0*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(0*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(0*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(0*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(0*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(0*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(0*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(0*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(0*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(0*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(0*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(0*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(0*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(0*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(0*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(0*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(0*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(0*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(0*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(0*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(0*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(0*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(0*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(0*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(0*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(0*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(0*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(0*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(0*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(0*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(0*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(0*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(0*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(0*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(0*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(0*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(0*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(0*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(0*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(0*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(0*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(0*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(0*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(0*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(0*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(0*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(0*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(0*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(0*((1-abs((t-49)))+abs((abs((t-49))-1)))))",
"(((4*((1-abs((t-0)))+abs((abs((t-0))-1))))+(4*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(4*((1-abs((t-2)))+abs((abs((t-2))-1)))))\n(((2*((1-abs((t-0)))+abs((abs((t-0))-1))))+(4*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(2*((1-abs((t-2)))+abs((abs((t-2))-1)))))",
"((((((((((((((((((((((((((((((((((((((((((((((((((24*((1-abs((t-0)))+abs((abs((t-0))-1))))+(16*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(7*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(16*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(3*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(9*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(9*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(19*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(18*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(25*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(4*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(20*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(12*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(11*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(15*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(14*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(23*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(23*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(13*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(12*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(5*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(19*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(24*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(0*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(9*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(4*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(24*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(1*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(17*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(17*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(18*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(24*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(16*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(21*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(23*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(18*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(20*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(3*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(23*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(4*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(17*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(1*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(1*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(14*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(0*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(14*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(15*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(4*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(3*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(22*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n((((((((((((((((((((((((((((((((((((((((((((((((((22*((1-abs((t-0)))+abs((abs((t-0))-1))))+(22*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(20*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(14*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(8*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(4*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(20*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(20*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(0*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(7*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(16*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(20*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(21*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(10*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(10*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(7*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(4*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(11*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(4*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(11*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(14*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(22*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(11*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(7*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(12*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(24*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(3*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(15*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(10*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(7*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(21*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(9*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(4*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(17*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(10*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(5*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(23*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(6*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(2*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(16*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(15*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(24*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(9*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(7*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(6*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(14*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(16*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(16*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(6*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(7*((1-abs((t-49)))+abs((abs((t-49))-1)))))",
"(((1*((1-abs((t-0)))+abs((abs((t-0))-1))))+(2*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(24*((1-abs((t-2)))+abs((abs((t-2))-1)))))\n(((2*((1-abs((t-0)))+abs((abs((t-0))-1))))+(4*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(0*((1-abs((t-2)))+abs((abs((t-2))-1)))))",
"(((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(5*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(10*((1-abs((t-2)))+abs((abs((t-2))-1)))))\n(((5*((1-abs((t-0)))+abs((abs((t-0))-1))))+(0*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(5*((1-abs((t-2)))+abs((abs((t-2))-1)))))",
"(((((((((((((((((((((((((((((((((((((((((((((((((24*((1-abs((t-0)))+abs((abs((t-0))-1))))+(4*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(13*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(9*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(17*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(12*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(13*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(15*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(9*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(10*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(17*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(6*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(14*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(6*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(25*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(6*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(15*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(19*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(12*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(16*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(4*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(15*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(10*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(1*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(10*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(20*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(21*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(4*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(7*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(4*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(23*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(20*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(5*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(6*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(12*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(7*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(0*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(2*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(14*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(6*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(11*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(19*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(6*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(10*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(14*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(17*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(5*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(12*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(23*((1-abs((t-48)))+abs((abs((t-48))-1)))))\n(((((((((((((((((((((((((((((((((((((((((((((((((4*((1-abs((t-0)))+abs((abs((t-0))-1))))+(19*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(21*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(24*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(1*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(1*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(20*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(14*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(17*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(14*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(20*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(22*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(1*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(16*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(5*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(3*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(25*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(11*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(16*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(0*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(18*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(13*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(2*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(0*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(7*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(10*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(10*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(14*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(17*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(15*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(19*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(20*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(2*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(23*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(1*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(4*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(4*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(5*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(6*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(21*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(21*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(12*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(23*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(25*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(16*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(10*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(17*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(14*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(2*((1-abs((t-48)))+abs((abs((t-48))-1)))))",
"((((((((((((((((((((((((((((((((((((((((((((((((((3*((1-abs((t-0)))+abs((abs((t-0))-1))))+(20*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(24*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(7*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(5*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(1*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(7*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(4*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(0*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(11*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(5*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(9*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(5*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(2*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(13*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(16*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(1*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(24*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(22*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(1*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(0*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(15*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(18*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(5*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(5*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(2*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(1*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(16*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(18*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(12*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(9*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(23*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(23*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(3*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(7*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(8*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(6*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(11*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(21*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(21*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(10*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(8*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(21*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(2*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(24*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(0*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(2*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(24*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(3*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(4*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n((((((((((((((((((((((((((((((((((((((((((((((((((6*((1-abs((t-0)))+abs((abs((t-0))-1))))+(8*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(16*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(8*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(8*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(5*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(1*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(6*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(8*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(22*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(0*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(22*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(15*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(21*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(7*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(23*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(2*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(11*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(1*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(20*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(13*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(0*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(3*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(24*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(23*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(20*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(23*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(1*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(21*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(8*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(16*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(10*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(12*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(1*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(1*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(8*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(15*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(9*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(20*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(13*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(10*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(2*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(19*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(16*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(2*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(1*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(20*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(18*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(5*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(3*((1-abs((t-49)))+abs((abs((t-49))-1)))))",
"(((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(2*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(10*((1-abs((t-2)))+abs((abs((t-2))-1)))))\n(((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(3*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(12*((1-abs((t-2)))+abs((abs((t-2))-1)))))",
"((((((((((((((((((((((((((((((((((((((((((((((((((5*((1-abs((t-0)))+abs((abs((t-0))-1))))+(10*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(16*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(17*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(9*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(10*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(15*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(15*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(15*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(11*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(0*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(2*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(17*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(3*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(9*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(4*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(20*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(16*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(21*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(11*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(14*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(17*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(8*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(8*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(7*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(16*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(21*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(11*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(17*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(1*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(9*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(24*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(13*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(12*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(16*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(5*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(18*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(25*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(12*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(12*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(14*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(10*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(6*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(7*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(15*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(7*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(8*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(11*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(8*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(15*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n((((((((((((((((((((((((((((((((((((((((((((((((((13*((1-abs((t-0)))+abs((abs((t-0))-1))))+(18*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(21*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(3*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(18*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(14*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(6*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(4*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(2*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(3*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(22*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(18*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(11*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(19*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(9*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(25*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(5*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(2*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(23*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(22*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(1*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(2*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(15*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(23*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(23*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(7*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(5*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(17*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(4*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(2*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(7*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(19*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(14*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(19*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(16*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(3*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(17*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(11*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(14*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(25*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(13*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(15*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(15*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(1*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(22*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(6*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(9*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(15*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(13*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(0*((1-abs((t-49)))+abs((abs((t-49))-1)))))",
"(((((((((((((((((((((((((((((((((((((((((((((((((16*((1-abs((t-0)))+abs((abs((t-0))-1))))+(15*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(2*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(19*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(11*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(4*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(23*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(1*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(0*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(19*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(3*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(0*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(23*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(10*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(11*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(16*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(17*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(19*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(20*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(6*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(2*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(8*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(11*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(18*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(6*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(8*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(14*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(0*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(18*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(23*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(4*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(13*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(6*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(1*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(7*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(20*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(4*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(21*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(2*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(15*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(8*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(6*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(5*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(24*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(19*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(1*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(6*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(0*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(11*((1-abs((t-48)))+abs((abs((t-48))-1)))))\n(((((((((((((((((((((((((((((((((((((((((((((((((20*((1-abs((t-0)))+abs((abs((t-0))-1))))+(12*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(18*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(25*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(14*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(19*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(7*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(20*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(22*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(7*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(3*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(17*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(8*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(14*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(11*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(20*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(1*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(18*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(24*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(7*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(7*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(4*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(11*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(24*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(24*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(2*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(0*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(9*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(5*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(5*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(12*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(0*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(13*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(9*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(16*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(4*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(19*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(17*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(9*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(23*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(23*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(4*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(11*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(21*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(14*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(23*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(13*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(13*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(0*((1-abs((t-48)))+abs((abs((t-48))-1)))))",
"((((((((((((((((((((((((((((((((((((((((((((((((((17*((1-abs((t-0)))+abs((abs((t-0))-1))))+(9*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(7*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(1*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(13*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(25*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(24*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(3*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(8*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(11*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(9*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(5*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(11*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(15*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(5*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(4*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(4*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(7*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(15*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(6*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(7*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(2*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(6*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(0*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(13*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(41*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(5*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(20*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(24*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(19*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(9*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(11*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(18*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(1*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(5*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(7*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(12*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(5*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(11*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(11*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(6*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(9*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(1*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(23*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(6*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(4*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(4*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(5*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(6*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(3*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n((((((((((((((((((((((((((((((((((((((((((((((((((3*((1-abs((t-0)))+abs((abs((t-0))-1))))+(7*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(12*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(12*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(1*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(22*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(9*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(11*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(11*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(12*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(11*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(14*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(7*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(7*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(21*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(5*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(16*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(0*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(12*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(2*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(6*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(8*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(21*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(4*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(17*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(6*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(8*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(2*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(19*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(11*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(5*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(8*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(13*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(17*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(21*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(18*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(3*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(17*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(17*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(12*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(18*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(3*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(23*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(14*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(18*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(23*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(2*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(17*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(15*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(8*((1-abs((t-49)))+abs((abs((t-49))-1)))))",
"(((((((((((((((((((((((((((((((((((((((((((((((((4*((1-abs((t-0)))+abs((abs((t-0))-1))))+(11*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(23*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(17*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(15*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(5*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(21*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(15*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(13*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(3*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(19*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(17*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(16*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(19*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(1*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(19*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(10*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(16*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(8*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(5*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(13*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(22*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(23*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(24*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(1*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(17*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(10*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(6*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(4*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(8*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(22*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(1*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(22*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(24*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(11*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(7*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(9*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(24*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(22*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(13*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(3*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(19*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(16*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(1*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(13*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(19*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(12*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(22*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(11*((1-abs((t-48)))+abs((abs((t-48))-1)))))\n(((((((((((((((((((((((((((((((((((((((((((((((((21*((1-abs((t-0)))+abs((abs((t-0))-1))))+(17*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(19*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(7*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(4*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(16*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(5*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(17*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(13*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(15*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(6*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(5*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(15*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(15*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(12*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(6*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(13*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(0*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(22*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(10*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(21*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(4*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(25*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(22*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(4*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(16*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(15*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(9*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(22*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(23*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(14*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(11*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(3*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(17*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(17*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(16*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(11*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(2*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(18*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(8*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(18*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(25*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(6*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(24*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(18*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(9*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(20*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(1*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(20*((1-abs((t-48)))+abs((abs((t-48))-1)))))",
"(((((((((((((((((((((((((((((((((((((((((((((((((11*((1-abs((t-0)))+abs((abs((t-0))-1))))+(18*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(8*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(25*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(13*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(23*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(4*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(14*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(17*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(10*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(8*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(3*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(19*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(19*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(4*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(19*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(6*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(14*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(18*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(20*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(10*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(3*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(24*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(9*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(5*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(13*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(12*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(21*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(0*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(24*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(22*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(8*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(1*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(4*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(10*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(19*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(6*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(21*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(3*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(8*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(7*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(19*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(12*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(6*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(24*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(20*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(8*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(19*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(25*((1-abs((t-48)))+abs((abs((t-48))-1)))))\n(((((((((((((((((((((((((((((((((((((((((((((((((14*((1-abs((t-0)))+abs((abs((t-0))-1))))+(4*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(18*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(15*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(19*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(18*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(16*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(7*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(21*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(17*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(5*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(14*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(17*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(2*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(18*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(10*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(14*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(13*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(14*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(8*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(0*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(7*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(21*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(6*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(13*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(22*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(7*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(4*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(15*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(5*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(9*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(17*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(4*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(0*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(21*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(15*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(18*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(25*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(4*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(21*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(2*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(12*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(14*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(23*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(20*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(6*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(23*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(13*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(12*((1-abs((t-48)))+abs((abs((t-48))-1)))))",
"(0*((1-abs((t-0)))+abs((abs((t-0))-1))))\n(0*((1-abs((t-0)))+abs((abs((t-0))-1))))"
]
} | 2CODEFORCES
|
593_C. Beautiful Function_138 | Every day Ruslan tried to count sheep to fall asleep, but this didn't help. Now he has found a more interesting thing to do. First, he thinks of some set of circles on a plane, and then tries to choose a beautiful set of points, such that there is at least one point from the set inside or on the border of each of the imagined circles.
Yesterday Ruslan tried to solve this problem for the case when the set of points is considered beautiful if it is given as (xt = f(t), yt = g(t)), where argument t takes all integer values from 0 to 50. Moreover, f(t) and g(t) should be correct functions.
Assume that w(t) and h(t) are some correct functions, and c is an integer ranging from 0 to 50. The function s(t) is correct if it's obtained by one of the following rules:
1. s(t) = abs(w(t)), where abs(x) means taking the absolute value of a number x, i.e. |x|;
2. s(t) = (w(t) + h(t));
3. s(t) = (w(t) - h(t));
4. s(t) = (w(t) * h(t)), where * means multiplication, i.e. (w(t)·h(t));
5. s(t) = c;
6. s(t) = t;
Yesterday Ruslan thought on and on, but he could not cope with the task. Now he asks you to write a program that computes the appropriate f(t) and g(t) for any set of at most 50 circles.
In each of the functions f(t) and g(t) you are allowed to use no more than 50 multiplications. The length of any function should not exceed 100·n characters. The function should not contain spaces.
Ruslan can't keep big numbers in his memory, so you should choose f(t) and g(t), such that for all integer t from 0 to 50 value of f(t) and g(t) and all the intermediate calculations won't exceed 109 by their absolute value.
Input
The first line of the input contains number n (1 ≤ n ≤ 50) — the number of circles Ruslan thinks of. Next follow n lines, each of them containing three integers xi, yi and ri (0 ≤ xi, yi ≤ 50, 2 ≤ ri ≤ 50) — the coordinates of the center and the raduis of the i-th circle.
Output
In the first line print a correct function f(t). In the second line print a correct function g(t). The set of the points (xt = f(t), yt = g(t)) (0 ≤ t ≤ 50) must satisfy the condition, that there is at least one point inside or on the border of each of the circles, Ruslan thinks of at the beginning.
Examples
Input
3
0 10 4
10 0 4
20 10 4
Output
t
abs((t-10))
Note
Correct functions:
1. 10
2. (1+2)
3. ((t-3)+(t*4))
4. abs((t-10))
5. (abs((((23-t)*(t*t))+((45+12)*(t*t))))*((5*t)+((12*t)-13)))
6. abs((t-(abs((t*31))+14))))
Incorrect functions:
1. 3+5+7 (not enough brackets, it should be ((3+5)+7) or (3+(5+7)))
2. abs(t-3) (not enough brackets, it should be abs((t-3))
3. 2+(2-3 (one bracket too many)
4. 1(t+5) (no arithmetic operation between 1 and the bracket)
5. 5000*5000 (the number exceeds the maximum)
<image> The picture shows one of the possible solutions | def f(x):
if x == n:
return "0"
if x == 0:
return "(" + str(X[0]) + "+" + f(1) + ")"
ss = "(abs((t-" + str(x-1) + "))-abs((t-" + str(x) + ")))"
tmp = (X[x] - X[x - 1]) // 2
re = (X[x] - X[x - 1]) - 2 * tmp
X[x] -= re
if tmp < 0:
tmp = "(0" +str(tmp)+")"
ss = "((" + str(tmp) + "*" + ss + ")" + "+" + str(tmp) + ")"
return "(" + ss + "+" + f(x + 1) + ")"
n = int(input())
#c = [(int(_) for _ in input().split()) for i in range(n)]
c = [[int(x) for x in input().split()] for i in range(n)]
#print(n, c)
X = [c[i][0] for i in range(n)]
Y = [c[i][1] for i in range(n)]
#print(X)
#print(Y)
print(f(0))
#print(X)
X = Y
print(f(0))
# Made By Mostafa_Khaled | 3Python3
| {
"input": [
"3\n0 10 4\n10 0 4\n20 10 4\n",
"3\n9 5 8\n8 9 10\n9 5 2\n",
"50\n48 45 42\n32 45 8\n15 41 47\n32 29 38\n7 16 48\n19 9 21\n18 40 5\n39 40 7\n37 0 6\n42 15 37\n9 33 37\n40 41 33\n25 43 2\n23 21 38\n30 20 32\n28 15 5\n47 9 19\n47 22 26\n26 9 18\n24 23 24\n11 29 5\n38 44 9\n49 22 42\n1 15 32\n18 25 21\n8 48 39\n48 7 26\n3 30 26\n34 21 47\n34 14 4\n36 43 40\n49 19 12\n33 8 30\n42 35 28\n47 21 14\n36 11 27\n40 46 17\n7 12 32\n47 5 4\n9 33 43\n35 31 3\n3 48 43\n2 19 9\n29 15 36\n1 13 2\n28 28 19\n31 33 21\n9 33 18\n7 12 22\n45 14 23\n",
"3\n3 3 3\n5 9 3\n49 1 7\n",
"5\n0 0 2\n1 1 2\n3 3 2\n40 40 2\n50 50 50\n",
"3\n0 10 4\n10 0 4\n20 10 4\n",
"50\n1 1 2\n1 1 42\n0 0 46\n1 1 16\n1 0 9\n0 0 43\n1 0 39\n1 1 41\n1 1 6\n1 1 43\n0 1 25\n0 1 40\n0 0 11\n0 1 27\n1 0 5\n1 0 9\n1 1 49\n0 0 25\n0 0 32\n0 1 6\n0 1 31\n1 1 22\n0 0 47\n0 1 6\n0 0 6\n0 1 49\n1 0 44\n0 0 50\n1 0 3\n0 1 15\n1 0 37\n0 0 14\n1 1 28\n1 1 49\n1 0 9\n0 1 12\n0 0 35\n1 0 42\n1 1 28\n0 1 20\n1 1 24\n1 1 33\n0 0 38\n1 0 17\n0 1 21\n0 0 22\n1 1 37\n0 1 34\n0 1 46\n1 1 21\n",
"5\n2 0 4\n5 6 10\n7 2 8\n3 10 8\n8 2 9\n",
"49\n48 9 48\n9 38 8\n27 43 43\n19 48 2\n35 3 11\n25 3 37\n26 40 20\n30 28 46\n19 35 44\n20 28 43\n34 40 37\n12 45 47\n28 2 38\n13 32 31\n50 10 28\n12 6 19\n31 50 5\n38 22 8\n25 33 50\n32 1 42\n8 37 26\n31 27 25\n21 4 25\n3 1 47\n21 15 42\n40 21 27\n43 20 9\n9 29 21\n15 35 36\n9 30 6\n46 39 22\n41 40 47\n11 5 32\n12 47 23\n24 2 27\n15 9 24\n0 8 45\n4 11 3\n28 13 27\n12 43 30\n23 42 40\n38 24 9\n13 46 42\n20 50 41\n29 32 11\n35 21 12\n10 34 47\n24 29 3\n46 4 7\n",
"10\n7 3 5\n2 1 6\n8 6 2\n1 2 6\n2 0 9\n10 9 2\n2 6 4\n10 3 6\n4 6 3\n9 9 2\n",
"50\n7 13 2\n41 17 2\n49 32 2\n22 16 2\n11 16 2\n2 10 2\n15 2 2\n8 12 2\n1 17 2\n22 44 2\n10 1 2\n18 45 2\n11 31 2\n4 43 2\n26 14 2\n33 47 2\n3 5 2\n49 22 2\n44 3 2\n3 41 2\n0 26 2\n30 1 2\n37 6 2\n10 48 2\n11 47 2\n5 41 2\n2 46 2\n32 3 2\n37 42 2\n25 17 2\n18 32 2\n47 21 2\n46 24 2\n7 2 2\n14 2 2\n17 17 2\n13 30 2\n23 19 2\n43 40 2\n42 26 2\n20 20 2\n17 5 2\n43 38 2\n4 32 2\n48 4 2\n1 3 2\n4 41 2\n49 36 2\n7 10 2\n9 6 2\n",
"49\n36 12 10\n50 6 19\n13 31 36\n15 47 9\n23 43 11\n31 17 14\n25 28 7\n2 20 50\n42 7 4\n7 12 43\n20 33 34\n27 44 26\n19 39 21\n40 29 16\n37 1 2\n13 27 26\n2 4 47\n49 30 13\n4 14 36\n21 36 18\n42 32 22\n21 22 18\n23 35 43\n15 31 27\n17 46 8\n22 3 34\n3 50 19\n47 47 9\n18 42 20\n30 26 42\n44 32 47\n29 20 42\n35 33 20\n43 16 9\n45 24 12\n11 1 21\n32 50 9\n38 19 48\n21 31 7\n5 42 5\n23 0 21\n39 50 8\n42 21 12\n21 20 41\n43 44 23\n43 34 4\n31 2 28\n7 0 38\n28 35 46\n",
"1\n50 50 50\n",
"3\n0 0 2\n5 7 5\n20 25 10\n",
"50\n10 26 2\n20 36 2\n32 43 2\n34 6 2\n19 37 2\n20 29 2\n31 12 2\n30 9 2\n31 5 2\n23 6 2\n0 44 2\n5 36 2\n34 22 2\n6 39 2\n19 18 2\n9 50 2\n40 11 2\n32 4 2\n42 46 2\n22 45 2\n28 2 2\n34 4 2\n16 30 2\n17 47 2\n14 46 2\n32 36 2\n43 11 2\n22 34 2\n34 9 2\n2 4 2\n18 15 2\n48 38 2\n27 28 2\n24 38 2\n33 32 2\n11 7 2\n37 35 2\n50 23 2\n25 28 2\n25 50 2\n28 26 2\n20 31 2\n12 31 2\n15 2 2\n31 45 2\n14 12 2\n16 18 2\n23 30 2\n16 26 2\n30 0 2\n",
"49\n33 40 10\n30 24 11\n4 36 23\n38 50 18\n23 28 29\n9 39 21\n47 15 35\n2 41 27\n1 45 28\n39 15 24\n7 7 28\n1 34 6\n47 17 43\n20 28 12\n23 22 15\n33 41 23\n34 3 44\n39 37 25\n41 49 39\n13 14 26\n4 35 18\n17 8 45\n23 23 16\n37 48 40\n12 48 29\n16 5 6\n29 1 5\n1 18 27\n37 11 3\n46 11 44\n9 25 40\n26 1 17\n12 26 45\n3 18 19\n15 32 38\n41 8 27\n8 39 35\n42 35 13\n5 19 43\n31 47 4\n16 47 38\n12 9 23\n10 23 3\n49 43 16\n38 28 6\n3 46 38\n13 27 28\n0 26 3\n23 1 15\n",
"1\n0 0 2\n",
"50\n34 7 2\n18 14 2\n15 24 2\n2 24 2\n27 2 2\n50 45 2\n49 19 2\n7 23 2\n16 22 2\n23 25 2\n18 23 2\n11 29 2\n22 14 2\n31 15 2\n10 42 2\n8 11 2\n9 33 2\n15 0 2\n30 25 2\n12 4 2\n14 13 2\n5 16 2\n13 43 2\n1 8 2\n26 34 2\n44 13 2\n10 17 2\n40 5 2\n48 39 2\n39 23 2\n19 10 2\n22 17 2\n36 26 2\n2 34 2\n11 42 2\n14 37 2\n25 7 2\n11 35 2\n22 34 2\n22 25 2\n12 36 2\n18 6 2\n2 47 2\n47 29 2\n13 37 2\n8 46 2\n9 4 2\n11 34 2\n12 31 2\n7 16 2\n",
"49\n9 43 6\n23 35 9\n46 39 11\n34 14 12\n30 8 4\n10 32 7\n43 10 45\n30 34 27\n27 26 21\n7 31 14\n38 13 33\n34 11 46\n33 31 32\n38 31 7\n3 24 13\n38 12 41\n21 26 32\n33 0 43\n17 44 25\n11 21 27\n27 43 28\n45 8 38\n47 50 47\n49 45 8\n2 9 34\n34 32 49\n21 30 9\n13 19 38\n8 45 32\n16 47 35\n45 28 14\n3 25 43\n45 7 32\n49 35 12\n22 35 35\n14 33 42\n19 23 10\n49 4 2\n44 37 40\n27 17 15\n7 37 30\n38 50 39\n32 12 19\n3 48 9\n26 36 27\n38 18 39\n25 40 50\n45 3 2\n23 40 36\n",
"50\n47 43 2\n31 38 2\n35 21 2\n18 41 2\n24 33 2\n35 0 2\n15 41 2\n6 3 2\n23 40 2\n11 29 2\n48 46 2\n33 45 2\n28 18 2\n31 14 2\n14 4 2\n35 18 2\n50 11 2\n10 28 2\n23 9 2\n43 25 2\n34 21 2\n19 49 2\n40 37 2\n22 27 2\n7 1 2\n37 24 2\n14 26 2\n18 46 2\n40 50 2\n21 40 2\n19 26 2\n35 2 2\n19 27 2\n13 23 2\n9 50 2\n38 9 2\n44 22 2\n5 30 2\n36 7 2\n10 26 2\n21 30 2\n19 6 2\n21 13 2\n5 3 2\n9 41 2\n10 17 2\n1 11 2\n5 6 2\n40 17 2\n6 7 2\n",
"10\n1 9 2\n3 10 2\n7 7 2\n6 12 2\n14 15 2\n2 12 2\n8 0 2\n0 12 2\n4 11 2\n15 9 2\n",
"7\n13 15 5\n2 10 3\n12 12 8\n9 12 11\n10 3 10\n9 6 13\n11 10 3\n",
"50\n0 1 2\n1 0 2\n1 1 2\n1 1 2\n1 1 2\n1 1 2\n0 1 2\n0 1 2\n0 0 2\n1 0 2\n1 1 2\n1 0 2\n1 0 2\n1 0 2\n1 0 2\n0 0 2\n0 1 2\n1 0 2\n1 0 2\n0 0 2\n0 1 2\n0 1 2\n0 1 2\n0 1 2\n0 1 2\n1 0 2\n0 0 2\n1 1 2\n0 0 2\n0 1 2\n0 0 2\n1 0 2\n1 1 2\n0 0 2\n0 0 2\n1 1 2\n0 1 2\n0 1 2\n1 0 2\n0 0 2\n1 0 2\n0 1 2\n0 0 2\n1 1 2\n1 1 2\n0 1 2\n0 0 2\n0 0 2\n0 0 2\n0 0 2\n",
"49\n22 28 2\n37 8 19\n17 36 19\n50 31 10\n26 39 17\n46 37 45\n8 33 30\n29 14 19\n34 42 37\n20 35 34\n17 10 39\n6 28 16\n38 35 27\n39 4 41\n8 37 7\n39 21 4\n12 28 20\n28 27 29\n36 28 10\n41 16 22\n21 0 20\n6 15 4\n48 43 21\n19 12 18\n10 27 15\n27 44 12\n25 14 19\n43 8 43\n1 31 26\n49 11 4\n45 18 7\n16 35 48\n2 8 21\n8 0 30\n20 42 5\n39 30 2\n13 36 34\n43 50 50\n7 9 43\n17 42 10\n15 5 21\n39 25 18\n25 29 35\n12 46 15\n48 41 6\n41 13 17\n16 46 15\n38 27 39\n50 25 16\n",
"1\n1 1 32\n",
"50\n21 22 2\n4 16 2\n19 29 2\n37 7 2\n31 47 2\n38 15 2\n32 24 2\n7 18 2\n9 7 2\n36 48 2\n14 26 2\n40 12 2\n18 10 2\n29 42 2\n32 27 2\n34 3 2\n44 33 2\n19 49 2\n12 39 2\n33 10 2\n21 8 2\n44 9 2\n13 0 2\n6 16 2\n18 15 2\n50 1 2\n31 31 2\n36 43 2\n30 2 2\n7 33 2\n18 22 2\n9 7 2\n3 25 2\n17 18 2\n13 10 2\n41 41 2\n32 44 2\n17 40 2\n7 11 2\n31 50 2\n3 40 2\n17 30 2\n10 5 2\n13 30 2\n44 33 2\n6 50 2\n45 49 2\n18 9 2\n35 46 2\n8 50 2\n",
"4\n0 0 2\n50 50 2\n50 0 2\n0 50 2\n",
"3\n9 5 8\n8 9 3\n9 5 2\n",
"50\n48 45 42\n32 45 8\n15 41 47\n32 29 38\n7 16 48\n19 9 21\n18 40 5\n39 40 7\n37 0 6\n50 15 37\n9 33 37\n40 41 33\n25 43 2\n23 21 38\n30 20 32\n28 15 5\n47 9 19\n47 22 26\n26 9 18\n24 23 24\n11 29 5\n38 44 9\n49 22 42\n1 15 32\n18 25 21\n8 48 39\n48 7 26\n3 30 26\n34 21 47\n34 14 4\n36 43 40\n49 19 12\n33 8 30\n42 35 28\n47 21 14\n36 11 27\n40 46 17\n7 12 32\n47 5 4\n9 33 43\n35 31 3\n3 48 43\n2 19 9\n29 15 36\n1 13 2\n28 28 19\n31 33 21\n9 33 18\n7 12 22\n45 14 23\n",
"3\n3 4 3\n5 9 3\n49 1 7\n",
"5\n0 0 2\n1 1 2\n3 0 2\n40 40 2\n50 50 50\n",
"3\n1 10 4\n10 0 4\n20 10 4\n",
"50\n1 1 2\n1 1 42\n0 0 46\n1 1 16\n1 0 9\n0 0 43\n1 0 39\n1 1 41\n1 1 6\n1 1 43\n0 1 25\n0 1 40\n0 0 11\n0 1 27\n1 0 5\n1 0 9\n1 1 49\n0 0 25\n0 0 32\n0 1 6\n0 1 31\n1 1 22\n0 0 47\n0 1 6\n0 0 6\n0 1 49\n1 0 44\n0 0 50\n1 0 3\n0 1 15\n1 0 37\n0 0 14\n1 1 28\n1 1 49\n1 0 9\n0 1 12\n0 0 35\n1 1 42\n1 1 28\n0 1 20\n1 1 24\n1 1 33\n0 0 38\n1 0 17\n0 1 21\n0 0 22\n1 1 37\n0 1 34\n0 1 46\n1 1 21\n",
"5\n2 0 4\n5 6 10\n7 2 8\n3 10 8\n8 0 9\n",
"49\n48 9 48\n9 38 8\n27 43 43\n19 48 2\n35 3 11\n25 3 37\n26 40 20\n30 28 46\n19 35 44\n20 28 57\n34 40 37\n12 45 47\n28 2 38\n13 32 31\n50 10 28\n12 6 19\n31 50 5\n38 22 8\n25 33 50\n32 1 42\n8 37 26\n31 27 25\n21 4 25\n3 1 47\n21 15 42\n40 21 27\n43 20 9\n9 29 21\n15 35 36\n9 30 6\n46 39 22\n41 40 47\n11 5 32\n12 47 23\n24 2 27\n15 9 24\n0 8 45\n4 11 3\n28 13 27\n12 43 30\n23 42 40\n38 24 9\n13 46 42\n20 50 41\n29 32 11\n35 21 12\n10 34 47\n24 29 3\n46 4 7\n",
"10\n7 3 5\n2 0 6\n8 6 2\n1 2 6\n2 0 9\n10 9 2\n2 6 4\n10 3 6\n4 6 3\n9 9 2\n",
"50\n7 13 2\n41 17 2\n49 32 2\n14 16 2\n11 16 2\n2 10 2\n15 2 2\n8 12 2\n1 17 2\n22 44 2\n10 1 2\n18 45 2\n11 31 2\n4 43 2\n26 14 2\n33 47 2\n3 5 2\n49 22 2\n44 3 2\n3 41 2\n0 26 2\n30 1 2\n37 6 2\n10 48 2\n11 47 2\n5 41 2\n2 46 2\n32 3 2\n37 42 2\n25 17 2\n18 32 2\n47 21 2\n46 24 2\n7 2 2\n14 2 2\n17 17 2\n13 30 2\n23 19 2\n43 40 2\n42 26 2\n20 20 2\n17 5 2\n43 38 2\n4 32 2\n48 4 2\n1 3 2\n4 41 2\n49 36 2\n7 10 2\n9 6 2\n",
"1\n50 50 63\n",
"3\n0 0 3\n5 7 5\n20 25 10\n",
"50\n10 26 2\n20 36 2\n32 43 2\n34 6 2\n19 37 2\n20 29 2\n31 12 2\n30 9 2\n31 5 2\n23 6 2\n0 44 2\n5 36 2\n34 22 2\n6 39 2\n19 18 2\n9 50 2\n40 11 2\n32 4 2\n42 46 2\n22 45 2\n28 2 2\n34 4 2\n16 30 2\n17 47 2\n14 46 2\n32 15 2\n43 11 2\n22 34 2\n34 9 2\n2 4 2\n18 15 2\n48 38 2\n27 28 2\n24 38 2\n33 32 2\n11 7 2\n37 35 2\n50 23 2\n25 28 2\n25 50 2\n28 26 2\n20 31 2\n12 31 2\n15 2 2\n31 45 2\n14 12 2\n16 18 2\n23 30 2\n16 26 2\n30 0 2\n",
"49\n33 40 10\n30 24 11\n4 36 23\n38 50 18\n23 28 29\n9 39 21\n47 15 35\n2 41 27\n1 45 28\n39 15 24\n7 7 28\n1 34 6\n47 17 43\n20 28 12\n23 22 15\n33 41 23\n34 3 44\n39 37 25\n41 49 39\n13 14 26\n4 14 18\n17 8 45\n23 23 16\n37 48 40\n12 48 29\n16 5 6\n29 1 5\n1 18 27\n37 11 3\n46 11 44\n9 25 40\n26 1 17\n12 26 45\n3 18 19\n15 32 38\n41 8 27\n8 39 35\n42 35 13\n5 19 43\n31 47 4\n16 47 38\n12 9 23\n10 23 3\n49 43 16\n38 28 6\n3 46 38\n13 27 28\n0 26 3\n23 1 15\n",
"50\n34 7 2\n18 14 2\n15 24 2\n2 24 2\n27 2 2\n50 45 2\n49 19 2\n7 23 2\n16 22 2\n23 25 2\n18 23 2\n11 29 2\n22 14 2\n31 15 2\n10 42 2\n8 11 2\n9 33 2\n15 0 2\n30 25 2\n12 4 2\n14 13 2\n5 16 2\n13 43 2\n1 8 2\n26 34 2\n83 13 2\n10 17 2\n40 5 2\n48 39 2\n39 23 2\n19 10 2\n22 17 2\n36 26 2\n2 34 2\n11 42 2\n14 37 2\n25 7 2\n11 35 2\n22 34 2\n22 25 2\n12 36 2\n18 6 2\n2 47 2\n47 29 2\n13 37 2\n8 46 2\n9 4 2\n11 34 2\n12 31 2\n7 16 2\n",
"49\n9 43 6\n23 35 9\n46 39 11\n34 14 12\n30 8 4\n10 32 7\n43 10 45\n30 34 27\n27 26 21\n7 31 14\n38 13 33\n34 11 46\n33 31 32\n38 31 7\n3 24 13\n38 12 41\n21 26 32\n33 0 43\n17 44 25\n11 21 27\n27 43 28\n45 8 38\n47 50 47\n49 45 8\n2 9 34\n34 32 49\n21 30 9\n13 19 38\n8 45 32\n16 47 35\n45 28 14\n3 22 43\n45 7 32\n49 35 12\n22 35 35\n14 33 42\n19 23 10\n49 4 2\n44 37 40\n27 17 15\n7 37 30\n38 50 39\n32 12 19\n3 48 9\n26 36 27\n38 18 39\n25 40 50\n45 3 2\n23 40 36\n",
"50\n47 43 2\n31 38 2\n35 21 2\n18 41 2\n24 33 2\n35 0 2\n15 41 2\n6 3 2\n23 40 2\n11 29 2\n48 46 2\n33 45 2\n28 18 2\n31 17 2\n14 4 2\n35 18 2\n50 11 2\n10 28 2\n23 9 2\n43 25 2\n34 21 2\n19 49 2\n40 37 2\n22 27 2\n7 1 2\n37 24 2\n14 26 2\n18 46 2\n40 50 2\n21 40 2\n19 26 2\n35 2 2\n19 27 2\n13 23 2\n9 50 2\n38 9 2\n44 22 2\n5 30 2\n36 7 2\n10 26 2\n21 30 2\n19 6 2\n21 13 2\n5 3 2\n9 41 2\n10 17 2\n1 11 2\n5 6 2\n40 17 2\n6 7 2\n",
"10\n1 9 2\n3 10 2\n7 7 2\n6 12 2\n14 15 2\n2 12 2\n8 0 2\n1 12 2\n4 11 2\n15 9 2\n",
"7\n13 25 5\n2 10 3\n12 12 8\n9 12 11\n10 3 10\n9 6 13\n11 10 3\n",
"49\n22 28 2\n37 8 19\n17 36 19\n50 31 10\n26 39 17\n46 37 45\n8 33 30\n29 14 19\n34 42 37\n20 35 34\n17 10 39\n6 28 16\n38 35 27\n39 4 41\n8 37 7\n39 21 4\n12 28 20\n28 27 29\n36 28 10\n41 16 22\n21 0 20\n6 15 4\n48 43 21\n19 12 18\n10 27 15\n27 44 12\n25 14 19\n43 8 43\n1 31 26\n49 11 4\n45 18 7\n16 35 48\n2 8 21\n8 0 30\n20 42 5\n39 30 2\n13 36 64\n43 50 50\n7 9 43\n17 42 10\n15 5 21\n39 25 18\n25 29 35\n12 46 15\n48 41 6\n41 13 17\n16 46 15\n38 27 39\n50 25 16\n",
"1\n1 1 11\n",
"50\n21 22 2\n4 16 2\n19 29 2\n37 7 2\n31 47 2\n38 15 2\n32 24 2\n7 18 2\n9 7 2\n36 48 2\n14 26 2\n40 12 2\n18 10 2\n29 42 2\n32 27 2\n34 3 2\n44 33 2\n19 49 2\n12 39 2\n33 10 2\n21 8 2\n44 9 2\n13 0 2\n6 16 2\n18 15 2\n50 1 2\n31 31 2\n36 43 2\n30 2 2\n7 33 2\n18 22 2\n9 7 2\n3 25 2\n17 18 2\n13 10 2\n41 57 2\n32 44 2\n17 40 2\n7 11 2\n31 50 2\n3 40 2\n17 30 2\n10 5 2\n13 30 2\n44 33 2\n6 50 2\n45 49 2\n18 9 2\n35 46 2\n8 50 2\n",
"4\n0 0 2\n50 66 2\n50 0 2\n0 50 2\n",
"3\n0 10 4\n18 0 4\n20 10 4\n",
"5\n0 0 2\n2 1 2\n3 0 2\n40 40 2\n50 50 50\n",
"50\n1 1 2\n1 1 42\n0 0 46\n2 1 16\n1 0 9\n0 0 43\n1 0 39\n1 1 41\n1 1 6\n1 1 43\n0 1 25\n0 1 40\n0 0 11\n0 1 27\n1 0 5\n1 0 9\n1 1 49\n0 0 25\n0 0 32\n0 1 6\n0 1 31\n1 1 22\n0 0 47\n0 1 6\n0 0 6\n0 1 49\n1 0 44\n0 0 50\n1 0 3\n0 1 15\n1 0 37\n0 0 14\n1 1 28\n1 1 49\n1 0 9\n0 1 12\n0 0 35\n1 1 42\n1 1 28\n0 1 20\n1 1 24\n1 1 33\n0 0 38\n1 0 17\n0 1 21\n0 0 22\n1 1 37\n0 1 34\n0 1 46\n1 1 21\n",
"5\n2 0 4\n5 6 10\n7 2 8\n3 10 8\n10 0 9\n",
"10\n7 3 5\n2 0 6\n8 6 2\n1 2 6\n2 0 9\n10 9 2\n2 6 4\n10 3 6\n4 11 3\n9 9 2\n",
"1\n50 5 63\n",
"50\n47 43 2\n31 38 2\n35 21 2\n18 41 2\n24 33 2\n35 0 2\n15 41 2\n6 3 2\n23 40 2\n11 29 2\n48 46 2\n33 45 2\n28 18 2\n31 17 2\n14 4 2\n35 18 2\n50 11 2\n10 28 2\n23 9 2\n43 25 2\n34 21 2\n19 49 2\n40 37 2\n22 27 2\n7 1 2\n37 24 2\n14 26 2\n18 46 2\n40 50 2\n27 40 2\n19 26 2\n35 2 2\n19 27 2\n13 23 2\n9 50 2\n38 9 2\n44 22 2\n5 30 2\n36 7 2\n10 26 2\n21 30 2\n19 6 2\n21 13 2\n5 3 2\n9 41 2\n10 17 2\n1 11 2\n5 6 2\n40 17 2\n6 7 2\n",
"10\n1 9 2\n3 10 2\n7 7 2\n6 12 2\n14 15 2\n2 12 2\n8 0 2\n1 12 2\n4 11 2\n15 3 2\n",
"7\n13 25 5\n2 10 3\n12 12 8\n1 12 11\n10 3 10\n9 6 13\n11 10 3\n",
"50\n21 22 2\n4 16 2\n19 29 2\n37 7 2\n31 47 2\n38 15 2\n32 24 2\n7 18 2\n9 7 2\n36 48 2\n14 26 2\n40 12 2\n18 10 2\n29 42 2\n32 27 2\n34 3 2\n44 33 2\n19 49 2\n12 39 2\n33 10 2\n21 8 2\n44 9 2\n13 0 2\n6 16 2\n18 15 2\n50 1 2\n1 31 2\n36 43 2\n30 2 2\n7 33 2\n18 22 2\n9 7 2\n3 25 2\n17 18 2\n13 10 2\n41 57 2\n32 44 2\n17 40 2\n7 11 2\n31 50 2\n3 40 2\n17 30 2\n10 5 2\n13 30 2\n44 33 2\n6 50 2\n45 49 2\n18 9 2\n35 46 2\n8 50 2\n",
"4\n0 0 2\n50 66 2\n50 0 2\n0 24 2\n",
"3\n0 10 4\n35 0 4\n20 10 4\n",
"50\n0 1 2\n1 0 2\n1 1 2\n1 1 2\n1 1 2\n1 1 2\n0 1 2\n0 1 2\n0 0 2\n1 0 2\n1 1 2\n1 0 2\n1 0 2\n1 0 2\n1 0 2\n0 0 2\n0 1 2\n1 0 2\n1 0 2\n0 0 2\n0 1 2\n0 1 2\n0 1 2\n0 1 2\n0 1 0\n1 0 2\n0 0 2\n1 1 2\n0 0 2\n0 1 2\n0 0 2\n1 0 2\n1 1 2\n0 0 2\n0 0 2\n1 1 2\n0 1 2\n0 1 2\n1 0 2\n0 0 2\n1 0 2\n0 1 2\n0 0 2\n1 1 2\n1 1 2\n0 1 2\n0 0 2\n0 0 2\n0 0 2\n0 0 2\n",
"3\n9 5 3\n8 9 3\n9 5 2\n",
"50\n48 45 42\n32 45 8\n15 41 47\n32 29 38\n7 16 48\n19 9 21\n18 40 5\n39 40 0\n37 0 6\n50 15 37\n9 33 37\n40 41 33\n25 43 2\n23 21 38\n30 20 32\n28 15 5\n47 9 19\n47 22 26\n26 9 18\n24 23 24\n11 29 5\n38 44 9\n49 22 42\n1 15 32\n18 25 21\n8 48 39\n48 7 26\n3 30 26\n34 21 47\n34 14 4\n36 43 40\n49 19 12\n33 8 30\n42 35 28\n47 21 14\n36 11 27\n40 46 17\n7 12 32\n47 5 4\n9 33 43\n35 31 3\n3 48 43\n2 19 9\n29 15 36\n1 13 2\n28 28 19\n31 33 21\n9 33 18\n7 12 22\n45 14 23\n",
"3\n3 4 6\n5 9 3\n49 1 7\n",
"3\n1 10 5\n10 0 4\n20 10 4\n",
"49\n48 9 48\n9 38 8\n27 43 43\n19 48 4\n35 3 11\n25 3 37\n26 40 20\n30 28 46\n19 35 44\n20 28 57\n34 40 37\n12 45 47\n28 2 38\n13 32 31\n50 10 28\n12 6 19\n31 50 5\n38 22 8\n25 33 50\n32 1 42\n8 37 26\n31 27 25\n21 4 25\n3 1 47\n21 15 42\n40 21 27\n43 20 9\n9 29 21\n15 35 36\n9 30 6\n46 39 22\n41 40 47\n11 5 32\n12 47 23\n24 2 27\n15 9 24\n0 8 45\n4 11 3\n28 13 27\n12 43 30\n23 42 40\n38 24 9\n13 46 42\n20 50 41\n29 32 11\n35 21 12\n10 34 47\n24 29 3\n46 4 7\n",
"50\n7 13 2\n41 17 2\n49 32 2\n14 16 2\n11 16 2\n2 10 2\n15 2 2\n8 12 2\n1 17 2\n22 44 2\n10 1 2\n18 45 2\n11 31 2\n4 43 2\n26 14 2\n33 47 2\n3 5 2\n49 22 2\n44 3 2\n3 41 2\n0 26 2\n30 1 2\n37 6 2\n10 48 2\n11 47 2\n5 41 2\n2 46 2\n32 3 2\n37 42 2\n25 17 2\n18 32 2\n47 21 2\n46 24 2\n7 2 2\n14 2 2\n17 17 2\n13 30 2\n23 19 2\n43 40 2\n42 26 2\n20 20 2\n17 5 2\n43 38 2\n4 32 0\n48 4 2\n1 3 2\n4 41 2\n49 36 2\n7 10 2\n9 6 2\n",
"3\n1 0 3\n5 7 5\n20 25 10\n",
"50\n10 26 2\n20 36 2\n32 43 2\n34 6 2\n19 37 2\n20 29 2\n31 12 2\n30 9 2\n31 5 2\n23 6 2\n0 44 2\n5 36 2\n34 22 2\n6 39 2\n19 18 2\n9 50 2\n40 11 2\n32 4 2\n42 46 2\n22 45 2\n28 2 2\n34 4 2\n16 30 2\n17 47 2\n14 46 2\n32 15 2\n43 11 2\n22 34 2\n34 9 2\n2 4 2\n18 15 2\n48 38 2\n27 28 2\n24 38 2\n33 32 2\n11 7 2\n37 35 2\n50 23 4\n25 28 2\n25 50 2\n28 26 2\n20 31 2\n12 31 2\n15 2 2\n31 45 2\n14 12 2\n16 18 2\n23 30 2\n16 26 2\n30 0 2\n",
"49\n33 40 10\n30 24 11\n4 36 23\n38 50 18\n23 28 29\n9 39 21\n47 15 35\n2 41 27\n1 45 28\n39 15 24\n7 7 28\n1 34 6\n47 17 43\n20 28 12\n23 22 15\n33 41 23\n34 3 44\n39 37 25\n41 49 39\n13 14 26\n4 14 18\n17 8 45\n23 23 16\n37 48 40\n12 48 29\n16 5 6\n29 1 5\n1 18 27\n37 11 3\n46 11 44\n9 25 40\n26 1 17\n12 26 45\n3 18 19\n15 32 38\n41 9 27\n8 39 35\n42 35 13\n5 19 43\n31 47 4\n16 47 38\n12 9 23\n10 23 3\n49 43 16\n38 28 6\n3 46 38\n13 27 28\n0 26 3\n23 1 15\n",
"50\n34 7 2\n18 14 2\n15 24 2\n2 24 2\n27 2 2\n50 45 2\n49 19 2\n7 23 2\n16 22 2\n23 25 2\n18 23 2\n11 29 2\n22 14 2\n31 15 2\n10 42 2\n8 11 4\n9 33 2\n15 0 2\n30 25 2\n12 4 2\n14 13 2\n5 16 2\n13 43 2\n1 8 2\n26 34 2\n83 13 2\n10 17 2\n40 5 2\n48 39 2\n39 23 2\n19 10 2\n22 17 2\n36 26 2\n2 34 2\n11 42 2\n14 37 2\n25 7 2\n11 35 2\n22 34 2\n22 25 2\n12 36 2\n18 6 2\n2 47 2\n47 29 2\n13 37 2\n8 46 2\n9 4 2\n11 34 2\n12 31 2\n7 16 2\n",
"49\n9 43 6\n23 35 9\n46 39 11\n34 14 12\n30 8 4\n10 32 7\n43 10 45\n30 34 27\n27 26 21\n7 31 14\n38 13 33\n34 11 46\n33 31 32\n38 31 7\n3 24 13\n38 12 41\n21 26 32\n33 0 43\n17 44 25\n11 21 27\n27 43 28\n45 8 38\n47 50 47\n49 45 8\n2 9 34\n34 32 49\n21 30 9\n13 19 38\n8 45 32\n16 47 35\n45 28 14\n3 22 43\n45 7 32\n49 35 12\n22 35 35\n14 33 42\n19 23 10\n49 4 2\n44 37 40\n27 17 15\n7 37 30\n38 50 39\n32 12 19\n3 48 9\n26 36 27\n38 18 39\n25 40 39\n45 3 2\n23 40 36\n",
"49\n22 28 2\n37 8 19\n17 36 19\n50 31 10\n26 39 17\n46 37 45\n8 33 30\n29 14 19\n34 42 37\n20 35 34\n17 10 39\n6 28 16\n38 35 27\n39 4 41\n8 37 7\n39 21 4\n12 28 20\n28 27 29\n36 28 10\n41 16 22\n21 0 20\n6 15 4\n48 43 21\n19 12 18\n10 27 15\n27 44 12\n25 14 19\n43 8 43\n1 31 26\n49 11 4\n45 18 7\n16 35 48\n2 8 20\n8 0 30\n20 42 5\n39 30 2\n13 36 64\n43 50 50\n7 9 43\n17 42 10\n15 5 21\n39 25 18\n25 29 35\n12 46 15\n48 41 6\n41 13 17\n16 46 15\n38 27 39\n50 25 16\n",
"1\n1 1 14\n"
],
"output": [
"(((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(5*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(10*((1-abs((t-2)))+abs((abs((t-2))-1)))))\n(((5*((1-abs((t-0)))+abs((abs((t-0))-1))))+(0*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(5*((1-abs((t-2)))+abs((abs((t-2))-1)))))\n",
"(((4*((1-abs((t-0)))+abs((abs((t-0))-1))))+(4*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(4*((1-abs((t-2)))+abs((abs((t-2))-1)))))\n(((2*((1-abs((t-0)))+abs((abs((t-0))-1))))+(4*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(2*((1-abs((t-2)))+abs((abs((t-2))-1)))))\n",
"((((((((((((((((((((((((((((((((((((((((((((((((((24*((1-abs((t-0)))+abs((abs((t-0))-1))))+(16*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(7*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(16*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(3*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(9*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(9*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(19*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(18*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(21*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(4*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(20*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(12*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(11*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(15*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(14*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(23*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(23*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(13*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(12*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(5*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(19*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(24*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(0*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(9*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(4*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(24*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(1*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(17*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(17*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(18*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(24*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(16*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(21*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(23*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(18*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(20*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(3*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(23*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(4*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(17*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(1*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(1*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(14*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(0*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(14*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(15*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(4*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(3*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(22*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n((((((((((((((((((((((((((((((((((((((((((((((((((22*((1-abs((t-0)))+abs((abs((t-0))-1))))+(22*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(20*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(14*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(8*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(4*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(20*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(20*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(0*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(7*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(16*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(20*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(21*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(10*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(10*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(7*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(4*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(11*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(4*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(11*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(14*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(22*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(11*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(7*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(12*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(24*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(3*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(15*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(10*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(7*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(21*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(9*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(4*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(17*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(10*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(5*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(23*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(6*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(2*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(16*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(15*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(24*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(9*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(7*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(6*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(14*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(16*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(16*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(6*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(7*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n",
"(((1*((1-abs((t-0)))+abs((abs((t-0))-1))))+(2*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(24*((1-abs((t-2)))+abs((abs((t-2))-1)))))\n(((1*((1-abs((t-0)))+abs((abs((t-0))-1))))+(4*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(0*((1-abs((t-2)))+abs((abs((t-2))-1)))))\n",
"(((((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(0*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(1*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(20*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(25*((1-abs((t-4)))+abs((abs((t-4))-1)))))\n(((((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(0*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(1*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(20*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(25*((1-abs((t-4)))+abs((abs((t-4))-1)))))\n",
"(((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(5*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(10*((1-abs((t-2)))+abs((abs((t-2))-1)))))\n(((5*((1-abs((t-0)))+abs((abs((t-0))-1))))+(0*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(5*((1-abs((t-2)))+abs((abs((t-2))-1)))))\n",
"((((((((((((((((((((((((((((((((((((((((((((((((((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(0*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(0*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(0*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(0*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(0*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(0*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(0*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(0*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(0*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(0*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(0*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(0*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(0*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(0*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(0*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(0*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(0*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(0*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(0*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(0*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(0*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(0*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(0*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(0*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(0*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(0*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(0*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(0*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(0*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(0*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(0*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(0*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(0*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(0*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(0*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(0*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(0*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(0*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(0*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(0*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(0*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(0*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(0*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(0*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(0*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(0*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(0*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(0*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(0*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n((((((((((((((((((((((((((((((((((((((((((((((((((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(0*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(0*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(0*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(0*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(0*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(0*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(0*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(0*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(0*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(0*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(0*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(0*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(0*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(0*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(0*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(0*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(0*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(0*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(0*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(0*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(0*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(0*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(0*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(0*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(0*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(0*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(0*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(0*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(0*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(0*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(0*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(0*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(0*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(0*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(0*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(0*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(0*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(0*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(0*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(0*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(0*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(0*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(0*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(0*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(0*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(0*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(0*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(0*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(0*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n",
"(((((1*((1-abs((t-0)))+abs((abs((t-0))-1))))+(2*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(3*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(1*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(4*((1-abs((t-4)))+abs((abs((t-4))-1)))))\n(((((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(3*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(1*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(5*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(1*((1-abs((t-4)))+abs((abs((t-4))-1)))))\n",
"(((((((((((((((((((((((((((((((((((((((((((((((((24*((1-abs((t-0)))+abs((abs((t-0))-1))))+(4*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(13*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(9*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(17*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(12*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(13*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(15*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(9*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(10*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(17*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(6*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(14*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(6*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(25*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(6*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(15*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(19*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(12*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(16*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(4*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(15*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(10*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(1*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(10*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(20*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(21*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(4*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(7*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(4*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(23*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(20*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(5*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(6*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(12*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(7*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(0*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(2*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(14*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(6*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(11*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(19*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(6*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(10*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(14*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(17*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(5*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(12*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(23*((1-abs((t-48)))+abs((abs((t-48))-1)))))\n(((((((((((((((((((((((((((((((((((((((((((((((((4*((1-abs((t-0)))+abs((abs((t-0))-1))))+(19*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(21*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(24*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(1*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(1*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(20*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(14*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(17*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(14*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(20*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(22*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(1*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(16*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(5*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(3*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(25*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(11*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(16*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(0*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(18*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(13*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(2*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(0*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(7*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(10*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(10*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(14*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(17*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(15*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(19*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(20*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(2*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(23*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(1*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(4*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(4*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(5*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(6*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(21*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(21*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(12*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(23*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(25*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(16*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(10*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(17*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(14*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(2*((1-abs((t-48)))+abs((abs((t-48))-1)))))\n",
"((((((((((3*((1-abs((t-0)))+abs((abs((t-0))-1))))+(1*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(4*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(0*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(1*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(5*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(1*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(5*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(2*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(4*((1-abs((t-9)))+abs((abs((t-9))-1)))))\n((((((((((1*((1-abs((t-0)))+abs((abs((t-0))-1))))+(0*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(3*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(1*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(0*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(4*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(3*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(1*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(3*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(4*((1-abs((t-9)))+abs((abs((t-9))-1)))))\n",
"((((((((((((((((((((((((((((((((((((((((((((((((((3*((1-abs((t-0)))+abs((abs((t-0))-1))))+(20*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(24*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(11*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(5*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(1*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(7*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(4*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(0*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(11*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(5*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(9*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(5*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(2*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(13*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(16*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(1*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(24*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(22*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(1*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(0*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(15*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(18*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(5*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(5*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(2*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(1*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(16*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(18*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(12*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(9*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(23*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(23*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(3*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(7*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(8*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(6*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(11*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(21*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(21*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(10*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(8*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(21*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(2*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(24*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(0*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(2*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(24*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(3*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(4*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n((((((((((((((((((((((((((((((((((((((((((((((((((6*((1-abs((t-0)))+abs((abs((t-0))-1))))+(8*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(16*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(8*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(8*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(5*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(1*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(6*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(8*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(22*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(0*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(22*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(15*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(21*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(7*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(23*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(2*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(11*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(1*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(20*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(13*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(0*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(3*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(24*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(23*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(20*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(23*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(1*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(21*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(8*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(16*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(10*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(12*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(1*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(1*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(8*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(15*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(9*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(20*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(13*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(10*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(2*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(19*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(16*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(2*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(1*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(20*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(18*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(5*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(3*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n",
"(((((((((((((((((((((((((((((((((((((((((((((((((18*((1-abs((t-0)))+abs((abs((t-0))-1))))+(25*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(6*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(7*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(11*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(15*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(12*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(1*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(21*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(3*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(10*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(13*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(9*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(20*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(18*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(6*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(1*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(24*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(2*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(10*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(21*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(10*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(11*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(7*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(8*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(11*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(1*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(23*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(9*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(15*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(22*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(14*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(17*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(21*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(22*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(5*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(16*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(19*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(10*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(2*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(11*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(19*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(21*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(10*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(21*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(21*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(15*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(3*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(14*((1-abs((t-48)))+abs((abs((t-48))-1)))))\n(((((((((((((((((((((((((((((((((((((((((((((((((6*((1-abs((t-0)))+abs((abs((t-0))-1))))+(3*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(15*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(23*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(21*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(8*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(14*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(10*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(3*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(6*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(16*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(22*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(19*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(14*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(0*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(13*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(2*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(15*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(7*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(18*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(16*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(11*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(17*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(15*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(23*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(1*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(25*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(23*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(21*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(13*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(16*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(10*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(16*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(8*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(12*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(0*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(25*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(9*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(15*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(21*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(0*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(25*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(10*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(10*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(22*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(17*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(1*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(0*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(17*((1-abs((t-48)))+abs((abs((t-48))-1)))))\n",
"(25*((1-abs((t-0)))+abs((abs((t-0))-1))))\n(25*((1-abs((t-0)))+abs((abs((t-0))-1))))\n",
"(((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(2*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(10*((1-abs((t-2)))+abs((abs((t-2))-1)))))\n(((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(3*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(12*((1-abs((t-2)))+abs((abs((t-2))-1)))))\n",
"((((((((((((((((((((((((((((((((((((((((((((((((((5*((1-abs((t-0)))+abs((abs((t-0))-1))))+(10*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(16*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(17*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(9*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(10*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(15*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(15*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(15*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(11*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(0*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(2*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(17*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(3*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(9*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(4*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(20*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(16*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(21*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(11*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(14*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(17*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(8*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(8*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(7*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(16*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(21*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(11*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(17*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(1*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(9*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(24*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(13*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(12*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(16*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(5*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(18*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(25*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(12*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(12*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(14*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(10*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(6*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(7*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(15*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(7*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(8*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(11*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(8*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(15*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n((((((((((((((((((((((((((((((((((((((((((((((((((13*((1-abs((t-0)))+abs((abs((t-0))-1))))+(18*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(21*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(3*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(18*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(14*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(6*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(4*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(2*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(3*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(22*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(18*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(11*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(19*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(9*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(25*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(5*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(2*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(23*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(22*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(1*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(2*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(15*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(23*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(23*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(18*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(5*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(17*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(4*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(2*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(7*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(19*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(14*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(19*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(16*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(3*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(17*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(11*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(14*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(25*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(13*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(15*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(15*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(1*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(22*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(6*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(9*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(15*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(13*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(0*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n",
"(((((((((((((((((((((((((((((((((((((((((((((((((16*((1-abs((t-0)))+abs((abs((t-0))-1))))+(15*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(2*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(19*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(11*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(4*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(23*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(1*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(0*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(19*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(3*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(0*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(23*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(10*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(11*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(16*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(17*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(19*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(20*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(6*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(2*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(8*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(11*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(18*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(6*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(8*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(14*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(0*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(18*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(23*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(4*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(13*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(6*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(1*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(7*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(20*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(4*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(21*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(2*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(15*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(8*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(6*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(5*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(24*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(19*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(1*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(6*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(0*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(11*((1-abs((t-48)))+abs((abs((t-48))-1)))))\n(((((((((((((((((((((((((((((((((((((((((((((((((20*((1-abs((t-0)))+abs((abs((t-0))-1))))+(12*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(18*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(25*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(14*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(19*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(7*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(20*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(22*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(7*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(3*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(17*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(8*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(14*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(11*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(20*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(1*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(18*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(24*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(7*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(17*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(4*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(11*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(24*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(24*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(2*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(0*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(9*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(5*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(5*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(12*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(0*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(13*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(9*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(16*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(4*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(19*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(17*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(9*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(23*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(23*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(4*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(11*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(21*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(14*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(23*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(13*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(13*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(0*((1-abs((t-48)))+abs((abs((t-48))-1)))))\n",
"(0*((1-abs((t-0)))+abs((abs((t-0))-1))))\n(0*((1-abs((t-0)))+abs((abs((t-0))-1))))\n",
"((((((((((((((((((((((((((((((((((((((((((((((((((17*((1-abs((t-0)))+abs((abs((t-0))-1))))+(9*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(7*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(1*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(13*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(25*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(24*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(3*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(8*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(11*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(9*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(5*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(11*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(15*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(5*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(4*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(4*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(7*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(15*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(6*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(7*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(2*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(6*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(0*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(13*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(22*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(5*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(20*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(24*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(19*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(9*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(11*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(18*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(1*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(5*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(7*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(12*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(5*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(11*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(11*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(6*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(9*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(1*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(23*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(6*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(4*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(4*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(5*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(6*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(3*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n((((((((((((((((((((((((((((((((((((((((((((((((((3*((1-abs((t-0)))+abs((abs((t-0))-1))))+(7*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(12*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(12*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(1*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(22*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(9*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(11*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(11*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(12*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(11*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(14*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(7*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(7*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(21*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(5*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(16*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(0*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(12*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(2*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(6*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(8*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(21*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(4*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(17*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(6*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(8*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(2*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(19*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(11*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(5*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(8*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(13*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(17*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(21*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(18*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(3*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(17*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(17*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(12*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(18*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(3*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(23*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(14*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(18*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(23*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(2*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(17*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(15*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(8*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n",
"(((((((((((((((((((((((((((((((((((((((((((((((((4*((1-abs((t-0)))+abs((abs((t-0))-1))))+(11*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(23*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(17*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(15*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(5*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(21*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(15*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(13*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(3*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(19*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(17*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(16*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(19*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(1*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(19*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(10*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(16*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(8*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(5*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(13*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(22*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(23*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(24*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(1*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(17*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(10*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(6*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(4*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(8*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(22*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(1*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(22*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(24*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(11*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(7*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(9*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(24*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(22*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(13*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(3*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(19*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(16*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(1*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(13*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(19*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(12*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(22*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(11*((1-abs((t-48)))+abs((abs((t-48))-1)))))\n(((((((((((((((((((((((((((((((((((((((((((((((((21*((1-abs((t-0)))+abs((abs((t-0))-1))))+(17*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(19*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(7*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(4*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(16*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(5*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(17*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(13*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(15*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(6*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(5*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(15*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(15*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(12*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(6*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(13*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(0*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(22*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(10*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(21*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(4*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(25*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(22*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(4*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(16*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(15*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(9*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(22*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(23*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(14*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(12*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(3*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(17*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(17*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(16*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(11*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(2*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(18*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(8*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(18*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(25*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(6*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(24*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(18*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(9*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(20*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(1*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(20*((1-abs((t-48)))+abs((abs((t-48))-1)))))\n",
"((((((((((((((((((((((((((((((((((((((((((((((((((23*((1-abs((t-0)))+abs((abs((t-0))-1))))+(15*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(17*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(9*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(12*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(17*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(7*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(3*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(11*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(5*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(24*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(16*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(14*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(15*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(7*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(17*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(25*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(5*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(11*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(21*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(17*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(9*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(20*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(11*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(3*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(18*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(7*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(9*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(20*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(10*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(9*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(17*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(9*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(6*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(4*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(19*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(22*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(2*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(18*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(5*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(10*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(9*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(10*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(2*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(4*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(5*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(0*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(2*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(20*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(3*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n((((((((((((((((((((((((((((((((((((((((((((((((((21*((1-abs((t-0)))+abs((abs((t-0))-1))))+(19*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(10*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(20*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(16*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(0*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(20*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(1*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(20*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(14*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(23*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(22*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(9*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(7*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(2*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(9*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(5*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(14*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(4*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(12*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(10*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(24*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(18*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(13*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(0*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(12*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(13*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(23*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(25*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(20*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(13*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(1*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(13*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(11*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(25*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(4*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(11*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(15*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(3*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(13*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(15*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(3*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(6*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(1*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(20*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(8*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(5*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(3*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(8*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(3*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n",
"((((((((((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(1*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(3*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(3*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(7*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(1*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(4*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(0*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(2*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(7*((1-abs((t-9)))+abs((abs((t-9))-1)))))\n((((((((((4*((1-abs((t-0)))+abs((abs((t-0))-1))))+(5*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(3*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(6*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(7*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(6*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(0*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(6*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(5*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(4*((1-abs((t-9)))+abs((abs((t-9))-1)))))\n",
"(((((((6*((1-abs((t-0)))+abs((abs((t-0))-1))))+(1*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(6*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(4*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(5*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(4*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(5*((1-abs((t-6)))+abs((abs((t-6))-1)))))\n(((((((7*((1-abs((t-0)))+abs((abs((t-0))-1))))+(5*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(6*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(6*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(1*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(3*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(5*((1-abs((t-6)))+abs((abs((t-6))-1)))))\n",
"((((((((((((((((((((((((((((((((((((((((((((((((((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(0*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(0*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(0*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(0*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(0*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(0*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(0*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(0*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(0*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(0*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(0*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(0*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(0*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(0*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(0*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(0*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(0*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(0*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(0*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(0*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(0*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(0*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(0*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(0*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(0*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(0*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(0*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(0*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(0*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(0*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(0*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(0*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(0*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(0*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(0*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(0*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(0*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(0*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(0*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(0*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(0*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(0*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(0*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(0*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(0*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(0*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(0*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(0*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(0*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n((((((((((((((((((((((((((((((((((((((((((((((((((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(0*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(0*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(0*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(0*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(0*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(0*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(0*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(0*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(0*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(0*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(0*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(0*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(0*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(0*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(0*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(0*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(0*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(0*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(0*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(0*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(0*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(0*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(0*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(0*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(0*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(0*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(0*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(0*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(0*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(0*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(0*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(0*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(0*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(0*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(0*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(0*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(0*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(0*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(0*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(0*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(0*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(0*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(0*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(0*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(0*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(0*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(0*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(0*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(0*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n",
"(((((((((((((((((((((((((((((((((((((((((((((((((11*((1-abs((t-0)))+abs((abs((t-0))-1))))+(18*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(8*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(25*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(13*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(23*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(4*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(14*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(17*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(10*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(8*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(3*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(19*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(19*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(4*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(19*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(6*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(14*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(18*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(20*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(10*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(3*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(24*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(9*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(5*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(13*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(12*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(21*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(0*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(24*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(22*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(8*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(1*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(4*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(10*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(19*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(6*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(21*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(3*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(8*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(7*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(19*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(12*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(6*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(24*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(20*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(8*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(19*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(25*((1-abs((t-48)))+abs((abs((t-48))-1)))))\n(((((((((((((((((((((((((((((((((((((((((((((((((14*((1-abs((t-0)))+abs((abs((t-0))-1))))+(4*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(18*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(15*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(19*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(18*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(16*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(7*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(21*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(17*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(5*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(14*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(17*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(2*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(18*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(10*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(14*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(13*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(14*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(8*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(0*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(7*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(21*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(6*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(13*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(22*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(7*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(4*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(15*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(5*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(9*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(17*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(4*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(0*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(21*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(15*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(18*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(25*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(4*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(21*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(2*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(12*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(14*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(23*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(20*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(6*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(23*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(13*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(12*((1-abs((t-48)))+abs((abs((t-48))-1)))))\n",
"(0*((1-abs((t-0)))+abs((abs((t-0))-1))))\n(0*((1-abs((t-0)))+abs((abs((t-0))-1))))\n",
"((((((((((((((((((((((((((((((((((((((((((((((((((10*((1-abs((t-0)))+abs((abs((t-0))-1))))+(2*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(9*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(18*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(15*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(19*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(16*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(3*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(4*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(18*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(7*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(20*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(9*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(14*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(16*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(17*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(22*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(9*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(6*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(16*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(10*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(22*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(6*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(3*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(9*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(25*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(15*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(18*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(15*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(3*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(9*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(4*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(1*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(8*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(6*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(20*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(16*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(8*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(3*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(15*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(1*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(8*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(5*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(6*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(22*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(3*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(22*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(9*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(17*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(4*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n((((((((((((((((((((((((((((((((((((((((((((((((((11*((1-abs((t-0)))+abs((abs((t-0))-1))))+(8*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(14*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(3*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(23*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(7*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(12*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(9*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(3*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(24*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(13*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(6*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(5*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(21*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(13*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(1*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(16*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(24*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(19*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(5*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(4*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(4*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(0*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(8*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(7*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(0*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(15*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(21*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(1*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(16*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(11*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(3*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(12*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(9*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(5*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(20*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(22*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(20*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(5*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(25*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(20*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(15*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(2*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(15*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(16*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(25*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(24*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(4*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(23*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(25*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n",
"((((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(25*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(25*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(0*((1-abs((t-3)))+abs((abs((t-3))-1)))))\n((((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(25*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(0*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(25*((1-abs((t-3)))+abs((abs((t-3))-1)))))\n",
"(((4*((1-abs((t-0)))+abs((abs((t-0))-1))))+(4*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(4*((1-abs((t-2)))+abs((abs((t-2))-1)))))\n(((2*((1-abs((t-0)))+abs((abs((t-0))-1))))+(4*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(2*((1-abs((t-2)))+abs((abs((t-2))-1)))))",
"((((((((((((((((((((((((((((((((((((((((((((((((((24*((1-abs((t-0)))+abs((abs((t-0))-1))))+(16*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(7*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(16*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(3*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(9*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(9*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(19*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(18*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(25*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(4*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(20*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(12*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(11*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(15*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(14*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(23*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(23*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(13*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(12*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(5*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(19*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(24*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(0*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(9*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(4*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(24*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(1*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(17*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(17*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(18*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(24*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(16*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(21*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(23*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(18*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(20*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(3*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(23*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(4*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(17*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(1*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(1*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(14*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(0*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(14*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(15*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(4*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(3*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(22*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n((((((((((((((((((((((((((((((((((((((((((((((((((22*((1-abs((t-0)))+abs((abs((t-0))-1))))+(22*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(20*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(14*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(8*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(4*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(20*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(20*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(0*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(7*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(16*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(20*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(21*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(10*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(10*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(7*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(4*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(11*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(4*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(11*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(14*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(22*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(11*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(7*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(12*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(24*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(3*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(15*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(10*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(7*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(21*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(9*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(4*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(17*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(10*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(5*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(23*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(6*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(2*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(16*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(15*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(24*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(9*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(7*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(6*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(14*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(16*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(16*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(6*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(7*((1-abs((t-49)))+abs((abs((t-49))-1)))))",
"(((1*((1-abs((t-0)))+abs((abs((t-0))-1))))+(2*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(24*((1-abs((t-2)))+abs((abs((t-2))-1)))))\n(((2*((1-abs((t-0)))+abs((abs((t-0))-1))))+(4*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(0*((1-abs((t-2)))+abs((abs((t-2))-1)))))",
"(((((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(0*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(1*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(20*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(25*((1-abs((t-4)))+abs((abs((t-4))-1)))))\n(((((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(0*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(0*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(20*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(25*((1-abs((t-4)))+abs((abs((t-4))-1)))))",
"(((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(5*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(10*((1-abs((t-2)))+abs((abs((t-2))-1)))))\n(((5*((1-abs((t-0)))+abs((abs((t-0))-1))))+(0*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(5*((1-abs((t-2)))+abs((abs((t-2))-1)))))",
"((((((((((((((((((((((((((((((((((((((((((((((((((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(0*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(0*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(0*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(0*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(0*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(0*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(0*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(0*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(0*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(0*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(0*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(0*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(0*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(0*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(0*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(0*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(0*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(0*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(0*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(0*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(0*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(0*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(0*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(0*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(0*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(0*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(0*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(0*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(0*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(0*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(0*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(0*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(0*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(0*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(0*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(0*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(0*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(0*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(0*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(0*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(0*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(0*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(0*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(0*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(0*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(0*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(0*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(0*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(0*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n((((((((((((((((((((((((((((((((((((((((((((((((((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(0*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(0*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(0*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(0*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(0*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(0*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(0*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(0*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(0*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(0*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(0*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(0*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(0*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(0*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(0*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(0*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(0*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(0*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(0*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(0*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(0*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(0*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(0*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(0*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(0*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(0*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(0*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(0*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(0*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(0*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(0*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(0*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(0*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(0*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(0*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(0*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(0*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(0*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(0*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(0*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(0*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(0*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(0*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(0*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(0*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(0*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(0*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(0*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(0*((1-abs((t-49)))+abs((abs((t-49))-1)))))",
"(((((1*((1-abs((t-0)))+abs((abs((t-0))-1))))+(2*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(3*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(1*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(4*((1-abs((t-4)))+abs((abs((t-4))-1)))))\n(((((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(3*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(1*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(5*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(0*((1-abs((t-4)))+abs((abs((t-4))-1)))))",
"(((((((((((((((((((((((((((((((((((((((((((((((((24*((1-abs((t-0)))+abs((abs((t-0))-1))))+(4*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(13*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(9*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(17*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(12*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(13*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(15*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(9*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(10*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(17*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(6*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(14*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(6*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(25*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(6*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(15*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(19*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(12*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(16*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(4*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(15*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(10*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(1*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(10*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(20*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(21*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(4*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(7*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(4*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(23*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(20*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(5*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(6*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(12*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(7*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(0*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(2*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(14*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(6*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(11*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(19*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(6*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(10*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(14*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(17*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(5*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(12*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(23*((1-abs((t-48)))+abs((abs((t-48))-1)))))\n(((((((((((((((((((((((((((((((((((((((((((((((((4*((1-abs((t-0)))+abs((abs((t-0))-1))))+(19*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(21*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(24*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(1*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(1*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(20*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(14*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(17*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(14*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(20*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(22*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(1*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(16*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(5*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(3*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(25*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(11*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(16*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(0*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(18*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(13*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(2*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(0*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(7*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(10*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(10*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(14*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(17*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(15*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(19*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(20*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(2*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(23*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(1*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(4*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(4*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(5*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(6*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(21*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(21*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(12*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(23*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(25*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(16*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(10*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(17*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(14*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(2*((1-abs((t-48)))+abs((abs((t-48))-1)))))",
"((((((((((3*((1-abs((t-0)))+abs((abs((t-0))-1))))+(1*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(4*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(0*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(1*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(5*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(1*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(5*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(2*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(4*((1-abs((t-9)))+abs((abs((t-9))-1)))))\n((((((((((1*((1-abs((t-0)))+abs((abs((t-0))-1))))+(0*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(3*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(1*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(0*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(4*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(3*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(1*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(3*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(4*((1-abs((t-9)))+abs((abs((t-9))-1)))))",
"((((((((((((((((((((((((((((((((((((((((((((((((((3*((1-abs((t-0)))+abs((abs((t-0))-1))))+(20*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(24*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(7*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(5*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(1*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(7*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(4*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(0*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(11*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(5*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(9*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(5*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(2*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(13*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(16*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(1*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(24*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(22*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(1*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(0*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(15*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(18*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(5*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(5*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(2*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(1*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(16*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(18*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(12*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(9*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(23*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(23*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(3*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(7*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(8*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(6*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(11*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(21*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(21*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(10*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(8*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(21*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(2*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(24*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(0*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(2*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(24*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(3*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(4*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n((((((((((((((((((((((((((((((((((((((((((((((((((6*((1-abs((t-0)))+abs((abs((t-0))-1))))+(8*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(16*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(8*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(8*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(5*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(1*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(6*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(8*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(22*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(0*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(22*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(15*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(21*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(7*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(23*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(2*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(11*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(1*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(20*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(13*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(0*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(3*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(24*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(23*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(20*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(23*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(1*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(21*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(8*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(16*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(10*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(12*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(1*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(1*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(8*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(15*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(9*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(20*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(13*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(10*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(2*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(19*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(16*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(2*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(1*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(20*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(18*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(5*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(3*((1-abs((t-49)))+abs((abs((t-49))-1)))))",
"(25*((1-abs((t-0)))+abs((abs((t-0))-1))))\n(25*((1-abs((t-0)))+abs((abs((t-0))-1))))",
"(((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(2*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(10*((1-abs((t-2)))+abs((abs((t-2))-1)))))\n(((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(3*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(12*((1-abs((t-2)))+abs((abs((t-2))-1)))))",
"((((((((((((((((((((((((((((((((((((((((((((((((((5*((1-abs((t-0)))+abs((abs((t-0))-1))))+(10*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(16*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(17*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(9*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(10*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(15*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(15*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(15*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(11*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(0*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(2*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(17*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(3*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(9*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(4*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(20*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(16*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(21*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(11*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(14*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(17*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(8*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(8*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(7*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(16*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(21*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(11*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(17*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(1*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(9*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(24*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(13*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(12*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(16*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(5*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(18*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(25*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(12*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(12*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(14*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(10*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(6*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(7*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(15*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(7*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(8*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(11*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(8*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(15*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n((((((((((((((((((((((((((((((((((((((((((((((((((13*((1-abs((t-0)))+abs((abs((t-0))-1))))+(18*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(21*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(3*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(18*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(14*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(6*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(4*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(2*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(3*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(22*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(18*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(11*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(19*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(9*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(25*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(5*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(2*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(23*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(22*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(1*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(2*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(15*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(23*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(23*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(7*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(5*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(17*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(4*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(2*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(7*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(19*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(14*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(19*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(16*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(3*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(17*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(11*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(14*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(25*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(13*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(15*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(15*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(1*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(22*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(6*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(9*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(15*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(13*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(0*((1-abs((t-49)))+abs((abs((t-49))-1)))))",
"(((((((((((((((((((((((((((((((((((((((((((((((((16*((1-abs((t-0)))+abs((abs((t-0))-1))))+(15*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(2*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(19*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(11*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(4*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(23*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(1*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(0*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(19*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(3*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(0*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(23*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(10*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(11*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(16*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(17*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(19*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(20*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(6*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(2*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(8*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(11*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(18*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(6*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(8*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(14*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(0*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(18*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(23*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(4*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(13*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(6*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(1*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(7*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(20*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(4*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(21*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(2*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(15*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(8*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(6*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(5*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(24*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(19*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(1*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(6*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(0*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(11*((1-abs((t-48)))+abs((abs((t-48))-1)))))\n(((((((((((((((((((((((((((((((((((((((((((((((((20*((1-abs((t-0)))+abs((abs((t-0))-1))))+(12*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(18*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(25*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(14*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(19*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(7*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(20*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(22*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(7*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(3*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(17*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(8*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(14*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(11*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(20*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(1*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(18*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(24*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(7*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(7*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(4*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(11*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(24*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(24*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(2*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(0*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(9*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(5*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(5*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(12*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(0*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(13*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(9*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(16*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(4*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(19*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(17*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(9*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(23*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(23*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(4*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(11*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(21*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(14*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(23*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(13*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(13*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(0*((1-abs((t-48)))+abs((abs((t-48))-1)))))",
"((((((((((((((((((((((((((((((((((((((((((((((((((17*((1-abs((t-0)))+abs((abs((t-0))-1))))+(9*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(7*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(1*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(13*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(25*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(24*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(3*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(8*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(11*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(9*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(5*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(11*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(15*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(5*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(4*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(4*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(7*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(15*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(6*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(7*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(2*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(6*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(0*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(13*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(41*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(5*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(20*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(24*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(19*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(9*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(11*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(18*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(1*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(5*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(7*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(12*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(5*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(11*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(11*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(6*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(9*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(1*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(23*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(6*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(4*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(4*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(5*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(6*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(3*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n((((((((((((((((((((((((((((((((((((((((((((((((((3*((1-abs((t-0)))+abs((abs((t-0))-1))))+(7*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(12*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(12*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(1*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(22*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(9*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(11*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(11*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(12*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(11*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(14*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(7*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(7*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(21*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(5*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(16*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(0*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(12*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(2*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(6*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(8*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(21*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(4*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(17*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(6*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(8*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(2*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(19*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(11*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(5*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(8*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(13*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(17*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(21*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(18*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(3*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(17*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(17*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(12*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(18*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(3*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(23*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(14*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(18*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(23*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(2*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(17*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(15*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(8*((1-abs((t-49)))+abs((abs((t-49))-1)))))",
"(((((((((((((((((((((((((((((((((((((((((((((((((4*((1-abs((t-0)))+abs((abs((t-0))-1))))+(11*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(23*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(17*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(15*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(5*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(21*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(15*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(13*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(3*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(19*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(17*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(16*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(19*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(1*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(19*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(10*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(16*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(8*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(5*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(13*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(22*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(23*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(24*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(1*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(17*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(10*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(6*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(4*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(8*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(22*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(1*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(22*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(24*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(11*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(7*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(9*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(24*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(22*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(13*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(3*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(19*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(16*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(1*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(13*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(19*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(12*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(22*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(11*((1-abs((t-48)))+abs((abs((t-48))-1)))))\n(((((((((((((((((((((((((((((((((((((((((((((((((21*((1-abs((t-0)))+abs((abs((t-0))-1))))+(17*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(19*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(7*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(4*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(16*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(5*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(17*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(13*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(15*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(6*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(5*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(15*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(15*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(12*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(6*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(13*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(0*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(22*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(10*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(21*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(4*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(25*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(22*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(4*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(16*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(15*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(9*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(22*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(23*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(14*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(11*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(3*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(17*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(17*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(16*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(11*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(2*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(18*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(8*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(18*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(25*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(6*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(24*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(18*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(9*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(20*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(1*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(20*((1-abs((t-48)))+abs((abs((t-48))-1)))))",
"((((((((((((((((((((((((((((((((((((((((((((((((((23*((1-abs((t-0)))+abs((abs((t-0))-1))))+(15*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(17*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(9*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(12*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(17*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(7*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(3*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(11*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(5*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(24*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(16*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(14*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(15*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(7*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(17*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(25*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(5*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(11*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(21*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(17*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(9*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(20*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(11*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(3*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(18*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(7*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(9*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(20*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(10*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(9*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(17*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(9*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(6*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(4*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(19*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(22*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(2*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(18*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(5*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(10*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(9*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(10*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(2*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(4*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(5*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(0*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(2*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(20*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(3*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n((((((((((((((((((((((((((((((((((((((((((((((((((21*((1-abs((t-0)))+abs((abs((t-0))-1))))+(19*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(10*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(20*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(16*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(0*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(20*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(1*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(20*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(14*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(23*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(22*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(9*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(8*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(2*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(9*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(5*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(14*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(4*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(12*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(10*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(24*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(18*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(13*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(0*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(12*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(13*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(23*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(25*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(20*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(13*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(1*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(13*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(11*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(25*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(4*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(11*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(15*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(3*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(13*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(15*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(3*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(6*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(1*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(20*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(8*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(5*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(3*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(8*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(3*((1-abs((t-49)))+abs((abs((t-49))-1)))))",
"((((((((((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(1*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(3*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(3*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(7*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(1*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(4*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(0*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(2*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(7*((1-abs((t-9)))+abs((abs((t-9))-1)))))\n((((((((((4*((1-abs((t-0)))+abs((abs((t-0))-1))))+(5*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(3*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(6*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(7*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(6*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(0*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(6*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(5*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(4*((1-abs((t-9)))+abs((abs((t-9))-1)))))",
"(((((((6*((1-abs((t-0)))+abs((abs((t-0))-1))))+(1*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(6*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(4*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(5*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(4*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(5*((1-abs((t-6)))+abs((abs((t-6))-1)))))\n(((((((12*((1-abs((t-0)))+abs((abs((t-0))-1))))+(5*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(6*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(6*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(1*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(3*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(5*((1-abs((t-6)))+abs((abs((t-6))-1)))))",
"(((((((((((((((((((((((((((((((((((((((((((((((((11*((1-abs((t-0)))+abs((abs((t-0))-1))))+(18*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(8*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(25*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(13*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(23*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(4*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(14*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(17*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(10*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(8*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(3*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(19*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(19*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(4*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(19*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(6*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(14*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(18*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(20*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(10*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(3*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(24*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(9*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(5*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(13*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(12*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(21*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(0*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(24*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(22*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(8*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(1*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(4*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(10*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(19*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(6*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(21*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(3*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(8*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(7*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(19*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(12*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(6*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(24*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(20*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(8*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(19*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(25*((1-abs((t-48)))+abs((abs((t-48))-1)))))\n(((((((((((((((((((((((((((((((((((((((((((((((((14*((1-abs((t-0)))+abs((abs((t-0))-1))))+(4*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(18*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(15*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(19*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(18*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(16*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(7*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(21*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(17*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(5*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(14*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(17*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(2*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(18*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(10*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(14*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(13*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(14*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(8*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(0*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(7*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(21*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(6*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(13*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(22*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(7*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(4*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(15*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(5*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(9*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(17*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(4*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(0*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(21*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(15*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(18*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(25*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(4*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(21*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(2*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(12*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(14*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(23*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(20*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(6*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(23*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(13*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(12*((1-abs((t-48)))+abs((abs((t-48))-1)))))",
"(0*((1-abs((t-0)))+abs((abs((t-0))-1))))\n(0*((1-abs((t-0)))+abs((abs((t-0))-1))))",
"((((((((((((((((((((((((((((((((((((((((((((((((((10*((1-abs((t-0)))+abs((abs((t-0))-1))))+(2*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(9*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(18*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(15*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(19*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(16*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(3*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(4*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(18*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(7*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(20*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(9*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(14*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(16*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(17*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(22*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(9*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(6*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(16*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(10*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(22*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(6*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(3*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(9*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(25*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(15*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(18*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(15*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(3*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(9*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(4*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(1*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(8*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(6*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(20*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(16*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(8*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(3*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(15*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(1*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(8*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(5*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(6*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(22*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(3*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(22*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(9*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(17*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(4*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n((((((((((((((((((((((((((((((((((((((((((((((((((11*((1-abs((t-0)))+abs((abs((t-0))-1))))+(8*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(14*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(3*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(23*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(7*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(12*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(9*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(3*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(24*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(13*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(6*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(5*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(21*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(13*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(1*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(16*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(24*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(19*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(5*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(4*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(4*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(0*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(8*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(7*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(0*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(15*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(21*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(1*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(16*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(11*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(3*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(12*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(9*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(5*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(28*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(22*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(20*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(5*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(25*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(20*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(15*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(2*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(15*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(16*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(25*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(24*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(4*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(23*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(25*((1-abs((t-49)))+abs((abs((t-49))-1)))))",
"((((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(25*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(25*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(0*((1-abs((t-3)))+abs((abs((t-3))-1)))))\n((((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(33*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(0*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(25*((1-abs((t-3)))+abs((abs((t-3))-1)))))",
"(((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(9*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(10*((1-abs((t-2)))+abs((abs((t-2))-1)))))\n(((5*((1-abs((t-0)))+abs((abs((t-0))-1))))+(0*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(5*((1-abs((t-2)))+abs((abs((t-2))-1)))))",
"(((((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(1*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(1*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(20*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(25*((1-abs((t-4)))+abs((abs((t-4))-1)))))\n(((((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(0*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(0*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(20*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(25*((1-abs((t-4)))+abs((abs((t-4))-1)))))",
"((((((((((((((((((((((((((((((((((((((((((((((((((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(0*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(0*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(1*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(0*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(0*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(0*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(0*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(0*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(0*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(0*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(0*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(0*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(0*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(0*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(0*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(0*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(0*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(0*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(0*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(0*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(0*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(0*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(0*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(0*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(0*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(0*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(0*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(0*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(0*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(0*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(0*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(0*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(0*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(0*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(0*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(0*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(0*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(0*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(0*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(0*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(0*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(0*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(0*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(0*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(0*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(0*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(0*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(0*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(0*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n((((((((((((((((((((((((((((((((((((((((((((((((((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(0*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(0*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(0*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(0*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(0*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(0*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(0*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(0*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(0*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(0*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(0*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(0*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(0*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(0*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(0*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(0*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(0*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(0*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(0*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(0*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(0*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(0*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(0*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(0*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(0*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(0*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(0*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(0*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(0*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(0*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(0*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(0*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(0*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(0*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(0*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(0*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(0*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(0*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(0*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(0*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(0*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(0*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(0*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(0*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(0*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(0*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(0*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(0*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(0*((1-abs((t-49)))+abs((abs((t-49))-1)))))",
"(((((1*((1-abs((t-0)))+abs((abs((t-0))-1))))+(2*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(3*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(1*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(5*((1-abs((t-4)))+abs((abs((t-4))-1)))))\n(((((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(3*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(1*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(5*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(0*((1-abs((t-4)))+abs((abs((t-4))-1)))))",
"((((((((((3*((1-abs((t-0)))+abs((abs((t-0))-1))))+(1*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(4*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(0*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(1*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(5*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(1*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(5*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(2*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(4*((1-abs((t-9)))+abs((abs((t-9))-1)))))\n((((((((((1*((1-abs((t-0)))+abs((abs((t-0))-1))))+(0*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(3*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(1*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(0*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(4*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(3*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(1*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(5*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(4*((1-abs((t-9)))+abs((abs((t-9))-1)))))",
"(25*((1-abs((t-0)))+abs((abs((t-0))-1))))\n(2*((1-abs((t-0)))+abs((abs((t-0))-1))))",
"((((((((((((((((((((((((((((((((((((((((((((((((((23*((1-abs((t-0)))+abs((abs((t-0))-1))))+(15*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(17*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(9*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(12*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(17*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(7*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(3*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(11*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(5*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(24*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(16*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(14*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(15*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(7*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(17*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(25*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(5*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(11*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(21*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(17*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(9*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(20*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(11*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(3*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(18*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(7*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(9*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(20*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(13*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(9*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(17*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(9*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(6*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(4*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(19*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(22*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(2*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(18*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(5*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(10*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(9*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(10*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(2*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(4*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(5*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(0*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(2*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(20*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(3*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n((((((((((((((((((((((((((((((((((((((((((((((((((21*((1-abs((t-0)))+abs((abs((t-0))-1))))+(19*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(10*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(20*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(16*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(0*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(20*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(1*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(20*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(14*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(23*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(22*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(9*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(8*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(2*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(9*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(5*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(14*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(4*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(12*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(10*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(24*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(18*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(13*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(0*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(12*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(13*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(23*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(25*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(20*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(13*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(1*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(13*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(11*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(25*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(4*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(11*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(15*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(3*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(13*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(15*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(3*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(6*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(1*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(20*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(8*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(5*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(3*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(8*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(3*((1-abs((t-49)))+abs((abs((t-49))-1)))))",
"((((((((((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(1*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(3*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(3*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(7*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(1*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(4*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(0*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(2*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(7*((1-abs((t-9)))+abs((abs((t-9))-1)))))\n((((((((((4*((1-abs((t-0)))+abs((abs((t-0))-1))))+(5*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(3*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(6*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(7*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(6*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(0*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(6*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(5*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(1*((1-abs((t-9)))+abs((abs((t-9))-1)))))",
"(((((((6*((1-abs((t-0)))+abs((abs((t-0))-1))))+(1*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(6*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(0*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(5*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(4*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(5*((1-abs((t-6)))+abs((abs((t-6))-1)))))\n(((((((12*((1-abs((t-0)))+abs((abs((t-0))-1))))+(5*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(6*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(6*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(1*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(3*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(5*((1-abs((t-6)))+abs((abs((t-6))-1)))))",
"((((((((((((((((((((((((((((((((((((((((((((((((((10*((1-abs((t-0)))+abs((abs((t-0))-1))))+(2*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(9*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(18*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(15*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(19*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(16*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(3*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(4*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(18*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(7*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(20*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(9*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(14*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(16*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(17*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(22*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(9*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(6*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(16*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(10*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(22*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(6*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(3*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(9*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(25*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(0*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(18*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(15*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(3*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(9*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(4*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(1*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(8*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(6*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(20*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(16*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(8*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(3*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(15*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(1*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(8*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(5*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(6*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(22*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(3*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(22*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(9*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(17*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(4*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n((((((((((((((((((((((((((((((((((((((((((((((((((11*((1-abs((t-0)))+abs((abs((t-0))-1))))+(8*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(14*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(3*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(23*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(7*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(12*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(9*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(3*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(24*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(13*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(6*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(5*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(21*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(13*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(1*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(16*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(24*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(19*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(5*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(4*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(4*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(0*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(8*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(7*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(0*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(15*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(21*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(1*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(16*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(11*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(3*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(12*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(9*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(5*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(28*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(22*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(20*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(5*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(25*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(20*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(15*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(2*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(15*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(16*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(25*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(24*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(4*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(23*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(25*((1-abs((t-49)))+abs((abs((t-49))-1)))))",
"((((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(25*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(25*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(0*((1-abs((t-3)))+abs((abs((t-3))-1)))))\n((((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(33*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(0*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(12*((1-abs((t-3)))+abs((abs((t-3))-1)))))",
"(((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(17*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(10*((1-abs((t-2)))+abs((abs((t-2))-1)))))\n(((5*((1-abs((t-0)))+abs((abs((t-0))-1))))+(0*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(5*((1-abs((t-2)))+abs((abs((t-2))-1)))))",
"((((((((((((((((((((((((((((((((((((((((((((((((((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(0*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(0*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(0*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(0*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(0*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(0*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(0*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(0*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(0*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(0*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(0*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(0*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(0*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(0*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(0*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(0*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(0*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(0*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(0*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(0*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(0*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(0*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(0*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(0*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(0*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(0*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(0*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(0*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(0*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(0*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(0*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(0*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(0*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(0*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(0*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(0*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(0*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(0*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(0*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(0*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(0*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(0*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(0*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(0*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(0*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(0*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(0*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(0*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(0*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n((((((((((((((((((((((((((((((((((((((((((((((((((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(0*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(0*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(0*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(0*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(0*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(0*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(0*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(0*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(0*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(0*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(0*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(0*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(0*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(0*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(0*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(0*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(0*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(0*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(0*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(0*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(0*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(0*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(0*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(0*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(0*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(0*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(0*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(0*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(0*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(0*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(0*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(0*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(0*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(0*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(0*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(0*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(0*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(0*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(0*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(0*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(0*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(0*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(0*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(0*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(0*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(0*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(0*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(0*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(0*((1-abs((t-49)))+abs((abs((t-49))-1)))))",
"(((4*((1-abs((t-0)))+abs((abs((t-0))-1))))+(4*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(4*((1-abs((t-2)))+abs((abs((t-2))-1)))))\n(((2*((1-abs((t-0)))+abs((abs((t-0))-1))))+(4*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(2*((1-abs((t-2)))+abs((abs((t-2))-1)))))",
"((((((((((((((((((((((((((((((((((((((((((((((((((24*((1-abs((t-0)))+abs((abs((t-0))-1))))+(16*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(7*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(16*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(3*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(9*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(9*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(19*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(18*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(25*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(4*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(20*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(12*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(11*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(15*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(14*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(23*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(23*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(13*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(12*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(5*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(19*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(24*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(0*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(9*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(4*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(24*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(1*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(17*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(17*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(18*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(24*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(16*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(21*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(23*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(18*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(20*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(3*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(23*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(4*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(17*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(1*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(1*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(14*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(0*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(14*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(15*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(4*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(3*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(22*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n((((((((((((((((((((((((((((((((((((((((((((((((((22*((1-abs((t-0)))+abs((abs((t-0))-1))))+(22*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(20*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(14*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(8*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(4*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(20*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(20*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(0*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(7*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(16*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(20*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(21*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(10*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(10*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(7*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(4*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(11*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(4*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(11*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(14*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(22*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(11*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(7*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(12*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(24*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(3*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(15*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(10*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(7*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(21*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(9*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(4*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(17*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(10*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(5*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(23*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(6*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(2*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(16*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(15*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(24*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(9*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(7*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(6*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(14*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(16*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(16*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(6*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(7*((1-abs((t-49)))+abs((abs((t-49))-1)))))",
"(((1*((1-abs((t-0)))+abs((abs((t-0))-1))))+(2*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(24*((1-abs((t-2)))+abs((abs((t-2))-1)))))\n(((2*((1-abs((t-0)))+abs((abs((t-0))-1))))+(4*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(0*((1-abs((t-2)))+abs((abs((t-2))-1)))))",
"(((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(5*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(10*((1-abs((t-2)))+abs((abs((t-2))-1)))))\n(((5*((1-abs((t-0)))+abs((abs((t-0))-1))))+(0*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(5*((1-abs((t-2)))+abs((abs((t-2))-1)))))",
"(((((((((((((((((((((((((((((((((((((((((((((((((24*((1-abs((t-0)))+abs((abs((t-0))-1))))+(4*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(13*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(9*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(17*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(12*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(13*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(15*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(9*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(10*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(17*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(6*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(14*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(6*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(25*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(6*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(15*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(19*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(12*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(16*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(4*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(15*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(10*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(1*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(10*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(20*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(21*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(4*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(7*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(4*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(23*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(20*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(5*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(6*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(12*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(7*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(0*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(2*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(14*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(6*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(11*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(19*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(6*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(10*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(14*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(17*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(5*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(12*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(23*((1-abs((t-48)))+abs((abs((t-48))-1)))))\n(((((((((((((((((((((((((((((((((((((((((((((((((4*((1-abs((t-0)))+abs((abs((t-0))-1))))+(19*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(21*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(24*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(1*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(1*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(20*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(14*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(17*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(14*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(20*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(22*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(1*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(16*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(5*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(3*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(25*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(11*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(16*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(0*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(18*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(13*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(2*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(0*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(7*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(10*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(10*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(14*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(17*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(15*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(19*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(20*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(2*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(23*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(1*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(4*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(4*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(5*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(6*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(21*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(21*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(12*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(23*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(25*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(16*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(10*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(17*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(14*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(2*((1-abs((t-48)))+abs((abs((t-48))-1)))))",
"((((((((((((((((((((((((((((((((((((((((((((((((((3*((1-abs((t-0)))+abs((abs((t-0))-1))))+(20*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(24*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(7*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(5*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(1*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(7*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(4*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(0*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(11*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(5*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(9*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(5*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(2*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(13*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(16*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(1*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(24*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(22*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(1*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(0*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(15*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(18*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(5*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(5*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(2*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(1*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(16*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(18*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(12*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(9*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(23*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(23*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(3*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(7*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(8*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(6*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(11*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(21*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(21*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(10*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(8*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(21*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(2*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(24*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(0*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(2*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(24*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(3*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(4*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n((((((((((((((((((((((((((((((((((((((((((((((((((6*((1-abs((t-0)))+abs((abs((t-0))-1))))+(8*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(16*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(8*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(8*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(5*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(1*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(6*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(8*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(22*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(0*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(22*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(15*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(21*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(7*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(23*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(2*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(11*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(1*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(20*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(13*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(0*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(3*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(24*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(23*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(20*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(23*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(1*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(21*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(8*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(16*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(10*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(12*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(1*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(1*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(8*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(15*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(9*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(20*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(13*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(10*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(2*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(19*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(16*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(2*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(1*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(20*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(18*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(5*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(3*((1-abs((t-49)))+abs((abs((t-49))-1)))))",
"(((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(2*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(10*((1-abs((t-2)))+abs((abs((t-2))-1)))))\n(((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(3*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(12*((1-abs((t-2)))+abs((abs((t-2))-1)))))",
"((((((((((((((((((((((((((((((((((((((((((((((((((5*((1-abs((t-0)))+abs((abs((t-0))-1))))+(10*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(16*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(17*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(9*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(10*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(15*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(15*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(15*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(11*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(0*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(2*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(17*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(3*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(9*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(4*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(20*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(16*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(21*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(11*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(14*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(17*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(8*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(8*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(7*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(16*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(21*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(11*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(17*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(1*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(9*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(24*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(13*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(12*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(16*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(5*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(18*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(25*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(12*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(12*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(14*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(10*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(6*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(7*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(15*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(7*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(8*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(11*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(8*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(15*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n((((((((((((((((((((((((((((((((((((((((((((((((((13*((1-abs((t-0)))+abs((abs((t-0))-1))))+(18*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(21*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(3*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(18*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(14*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(6*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(4*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(2*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(3*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(22*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(18*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(11*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(19*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(9*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(25*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(5*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(2*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(23*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(22*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(1*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(2*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(15*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(23*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(23*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(7*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(5*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(17*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(4*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(2*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(7*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(19*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(14*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(19*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(16*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(3*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(17*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(11*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(14*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(25*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(13*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(15*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(15*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(1*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(22*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(6*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(9*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(15*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(13*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(0*((1-abs((t-49)))+abs((abs((t-49))-1)))))",
"(((((((((((((((((((((((((((((((((((((((((((((((((16*((1-abs((t-0)))+abs((abs((t-0))-1))))+(15*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(2*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(19*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(11*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(4*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(23*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(1*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(0*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(19*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(3*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(0*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(23*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(10*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(11*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(16*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(17*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(19*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(20*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(6*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(2*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(8*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(11*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(18*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(6*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(8*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(14*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(0*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(18*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(23*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(4*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(13*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(6*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(1*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(7*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(20*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(4*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(21*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(2*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(15*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(8*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(6*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(5*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(24*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(19*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(1*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(6*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(0*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(11*((1-abs((t-48)))+abs((abs((t-48))-1)))))\n(((((((((((((((((((((((((((((((((((((((((((((((((20*((1-abs((t-0)))+abs((abs((t-0))-1))))+(12*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(18*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(25*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(14*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(19*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(7*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(20*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(22*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(7*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(3*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(17*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(8*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(14*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(11*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(20*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(1*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(18*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(24*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(7*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(7*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(4*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(11*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(24*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(24*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(2*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(0*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(9*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(5*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(5*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(12*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(0*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(13*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(9*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(16*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(4*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(19*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(17*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(9*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(23*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(23*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(4*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(11*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(21*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(14*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(23*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(13*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(13*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(0*((1-abs((t-48)))+abs((abs((t-48))-1)))))",
"((((((((((((((((((((((((((((((((((((((((((((((((((17*((1-abs((t-0)))+abs((abs((t-0))-1))))+(9*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(7*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(1*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(13*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(25*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(24*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(3*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(8*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(11*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(9*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(5*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(11*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(15*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(5*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(4*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(4*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(7*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(15*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(6*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(7*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(2*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(6*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(0*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(13*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(41*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(5*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(20*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(24*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(19*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(9*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(11*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(18*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(1*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(5*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(7*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(12*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(5*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(11*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(11*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(6*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(9*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(1*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(23*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(6*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(4*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(4*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(5*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(6*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(3*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n((((((((((((((((((((((((((((((((((((((((((((((((((3*((1-abs((t-0)))+abs((abs((t-0))-1))))+(7*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(12*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(12*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(1*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(22*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(9*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(11*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(11*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(12*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(11*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(14*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(7*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(7*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(21*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(5*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(16*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(0*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(12*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(2*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(6*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(8*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(21*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(4*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(17*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(6*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(8*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(2*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(19*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(11*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(5*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(8*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(13*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(17*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(21*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(18*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(3*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(17*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(17*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(12*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(18*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(3*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(23*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(14*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(18*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(23*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(2*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(17*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(15*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(8*((1-abs((t-49)))+abs((abs((t-49))-1)))))",
"(((((((((((((((((((((((((((((((((((((((((((((((((4*((1-abs((t-0)))+abs((abs((t-0))-1))))+(11*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(23*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(17*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(15*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(5*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(21*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(15*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(13*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(3*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(19*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(17*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(16*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(19*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(1*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(19*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(10*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(16*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(8*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(5*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(13*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(22*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(23*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(24*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(1*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(17*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(10*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(6*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(4*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(8*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(22*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(1*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(22*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(24*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(11*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(7*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(9*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(24*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(22*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(13*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(3*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(19*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(16*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(1*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(13*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(19*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(12*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(22*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(11*((1-abs((t-48)))+abs((abs((t-48))-1)))))\n(((((((((((((((((((((((((((((((((((((((((((((((((21*((1-abs((t-0)))+abs((abs((t-0))-1))))+(17*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(19*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(7*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(4*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(16*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(5*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(17*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(13*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(15*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(6*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(5*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(15*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(15*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(12*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(6*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(13*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(0*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(22*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(10*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(21*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(4*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(25*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(22*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(4*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(16*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(15*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(9*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(22*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(23*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(14*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(11*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(3*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(17*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(17*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(16*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(11*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(2*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(18*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(8*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(18*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(25*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(6*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(24*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(18*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(9*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(20*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(1*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(20*((1-abs((t-48)))+abs((abs((t-48))-1)))))",
"(((((((((((((((((((((((((((((((((((((((((((((((((11*((1-abs((t-0)))+abs((abs((t-0))-1))))+(18*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(8*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(25*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(13*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(23*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(4*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(14*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(17*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(10*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(8*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(3*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(19*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(19*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(4*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(19*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(6*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(14*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(18*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(20*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(10*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(3*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(24*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(9*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(5*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(13*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(12*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(21*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(0*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(24*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(22*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(8*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(1*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(4*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(10*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(19*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(6*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(21*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(3*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(8*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(7*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(19*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(12*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(6*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(24*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(20*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(8*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(19*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(25*((1-abs((t-48)))+abs((abs((t-48))-1)))))\n(((((((((((((((((((((((((((((((((((((((((((((((((14*((1-abs((t-0)))+abs((abs((t-0))-1))))+(4*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(18*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(15*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(19*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(18*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(16*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(7*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(21*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(17*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(5*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(14*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(17*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(2*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(18*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(10*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(14*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(13*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(14*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(8*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(0*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(7*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(21*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(6*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(13*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(22*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(7*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(4*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(15*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(5*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(9*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(17*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(4*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(0*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(21*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(15*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(18*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(25*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(4*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(21*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(2*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(12*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(14*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(23*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(20*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(6*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(23*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(13*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(12*((1-abs((t-48)))+abs((abs((t-48))-1)))))",
"(0*((1-abs((t-0)))+abs((abs((t-0))-1))))\n(0*((1-abs((t-0)))+abs((abs((t-0))-1))))"
]
} | 2CODEFORCES
|
593_C. Beautiful Function_139 | Every day Ruslan tried to count sheep to fall asleep, but this didn't help. Now he has found a more interesting thing to do. First, he thinks of some set of circles on a plane, and then tries to choose a beautiful set of points, such that there is at least one point from the set inside or on the border of each of the imagined circles.
Yesterday Ruslan tried to solve this problem for the case when the set of points is considered beautiful if it is given as (xt = f(t), yt = g(t)), where argument t takes all integer values from 0 to 50. Moreover, f(t) and g(t) should be correct functions.
Assume that w(t) and h(t) are some correct functions, and c is an integer ranging from 0 to 50. The function s(t) is correct if it's obtained by one of the following rules:
1. s(t) = abs(w(t)), where abs(x) means taking the absolute value of a number x, i.e. |x|;
2. s(t) = (w(t) + h(t));
3. s(t) = (w(t) - h(t));
4. s(t) = (w(t) * h(t)), where * means multiplication, i.e. (w(t)·h(t));
5. s(t) = c;
6. s(t) = t;
Yesterday Ruslan thought on and on, but he could not cope with the task. Now he asks you to write a program that computes the appropriate f(t) and g(t) for any set of at most 50 circles.
In each of the functions f(t) and g(t) you are allowed to use no more than 50 multiplications. The length of any function should not exceed 100·n characters. The function should not contain spaces.
Ruslan can't keep big numbers in his memory, so you should choose f(t) and g(t), such that for all integer t from 0 to 50 value of f(t) and g(t) and all the intermediate calculations won't exceed 109 by their absolute value.
Input
The first line of the input contains number n (1 ≤ n ≤ 50) — the number of circles Ruslan thinks of. Next follow n lines, each of them containing three integers xi, yi and ri (0 ≤ xi, yi ≤ 50, 2 ≤ ri ≤ 50) — the coordinates of the center and the raduis of the i-th circle.
Output
In the first line print a correct function f(t). In the second line print a correct function g(t). The set of the points (xt = f(t), yt = g(t)) (0 ≤ t ≤ 50) must satisfy the condition, that there is at least one point inside or on the border of each of the circles, Ruslan thinks of at the beginning.
Examples
Input
3
0 10 4
10 0 4
20 10 4
Output
t
abs((t-10))
Note
Correct functions:
1. 10
2. (1+2)
3. ((t-3)+(t*4))
4. abs((t-10))
5. (abs((((23-t)*(t*t))+((45+12)*(t*t))))*((5*t)+((12*t)-13)))
6. abs((t-(abs((t*31))+14))))
Incorrect functions:
1. 3+5+7 (not enough brackets, it should be ((3+5)+7) or (3+(5+7)))
2. abs(t-3) (not enough brackets, it should be abs((t-3))
3. 2+(2-3 (one bracket too many)
4. 1(t+5) (no arithmetic operation between 1 and the bracket)
5. 5000*5000 (the number exceeds the maximum)
<image> The picture shows one of the possible solutions | import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.io.IOException;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskC solver = new TaskC();
solver.solve(1, in, out);
out.close();
}
static class TaskC {
public void solve(int testNumber, InputReader in, PrintWriter out) {
int n = in.nextInt();
int[] x = new int[n], y = new int[n];
for (int i = 0; i < n; ++i) {
x[i] = in.nextInt();
y[i] = in.nextInt();
in.nextInt();
}
out.println(solve(x) + "\n" + solve(y));
}
private String solve(int[] a) {
String result = "";
String pattern = "(%d*((1-abs((t-%d)))+abs((abs((t-%d))-1))))";
for (int i = 0; i < a.length; ++i) {
String current = String.format(pattern, a[i] / 2, i, i);
if (i > 0) result = "(" + result + "+" + current + ")";
else result = current;
}
return result;
}
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1)
throw new UnknownError();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new UnknownError();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public int nextInt() {
return Integer.parseInt(next());
}
public String next() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuffer res = new StringBuffer();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
private boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
}
}
| 4JAVA
| {
"input": [
"3\n0 10 4\n10 0 4\n20 10 4\n",
"3\n9 5 8\n8 9 10\n9 5 2\n",
"50\n48 45 42\n32 45 8\n15 41 47\n32 29 38\n7 16 48\n19 9 21\n18 40 5\n39 40 7\n37 0 6\n42 15 37\n9 33 37\n40 41 33\n25 43 2\n23 21 38\n30 20 32\n28 15 5\n47 9 19\n47 22 26\n26 9 18\n24 23 24\n11 29 5\n38 44 9\n49 22 42\n1 15 32\n18 25 21\n8 48 39\n48 7 26\n3 30 26\n34 21 47\n34 14 4\n36 43 40\n49 19 12\n33 8 30\n42 35 28\n47 21 14\n36 11 27\n40 46 17\n7 12 32\n47 5 4\n9 33 43\n35 31 3\n3 48 43\n2 19 9\n29 15 36\n1 13 2\n28 28 19\n31 33 21\n9 33 18\n7 12 22\n45 14 23\n",
"3\n3 3 3\n5 9 3\n49 1 7\n",
"5\n0 0 2\n1 1 2\n3 3 2\n40 40 2\n50 50 50\n",
"3\n0 10 4\n10 0 4\n20 10 4\n",
"50\n1 1 2\n1 1 42\n0 0 46\n1 1 16\n1 0 9\n0 0 43\n1 0 39\n1 1 41\n1 1 6\n1 1 43\n0 1 25\n0 1 40\n0 0 11\n0 1 27\n1 0 5\n1 0 9\n1 1 49\n0 0 25\n0 0 32\n0 1 6\n0 1 31\n1 1 22\n0 0 47\n0 1 6\n0 0 6\n0 1 49\n1 0 44\n0 0 50\n1 0 3\n0 1 15\n1 0 37\n0 0 14\n1 1 28\n1 1 49\n1 0 9\n0 1 12\n0 0 35\n1 0 42\n1 1 28\n0 1 20\n1 1 24\n1 1 33\n0 0 38\n1 0 17\n0 1 21\n0 0 22\n1 1 37\n0 1 34\n0 1 46\n1 1 21\n",
"5\n2 0 4\n5 6 10\n7 2 8\n3 10 8\n8 2 9\n",
"49\n48 9 48\n9 38 8\n27 43 43\n19 48 2\n35 3 11\n25 3 37\n26 40 20\n30 28 46\n19 35 44\n20 28 43\n34 40 37\n12 45 47\n28 2 38\n13 32 31\n50 10 28\n12 6 19\n31 50 5\n38 22 8\n25 33 50\n32 1 42\n8 37 26\n31 27 25\n21 4 25\n3 1 47\n21 15 42\n40 21 27\n43 20 9\n9 29 21\n15 35 36\n9 30 6\n46 39 22\n41 40 47\n11 5 32\n12 47 23\n24 2 27\n15 9 24\n0 8 45\n4 11 3\n28 13 27\n12 43 30\n23 42 40\n38 24 9\n13 46 42\n20 50 41\n29 32 11\n35 21 12\n10 34 47\n24 29 3\n46 4 7\n",
"10\n7 3 5\n2 1 6\n8 6 2\n1 2 6\n2 0 9\n10 9 2\n2 6 4\n10 3 6\n4 6 3\n9 9 2\n",
"50\n7 13 2\n41 17 2\n49 32 2\n22 16 2\n11 16 2\n2 10 2\n15 2 2\n8 12 2\n1 17 2\n22 44 2\n10 1 2\n18 45 2\n11 31 2\n4 43 2\n26 14 2\n33 47 2\n3 5 2\n49 22 2\n44 3 2\n3 41 2\n0 26 2\n30 1 2\n37 6 2\n10 48 2\n11 47 2\n5 41 2\n2 46 2\n32 3 2\n37 42 2\n25 17 2\n18 32 2\n47 21 2\n46 24 2\n7 2 2\n14 2 2\n17 17 2\n13 30 2\n23 19 2\n43 40 2\n42 26 2\n20 20 2\n17 5 2\n43 38 2\n4 32 2\n48 4 2\n1 3 2\n4 41 2\n49 36 2\n7 10 2\n9 6 2\n",
"49\n36 12 10\n50 6 19\n13 31 36\n15 47 9\n23 43 11\n31 17 14\n25 28 7\n2 20 50\n42 7 4\n7 12 43\n20 33 34\n27 44 26\n19 39 21\n40 29 16\n37 1 2\n13 27 26\n2 4 47\n49 30 13\n4 14 36\n21 36 18\n42 32 22\n21 22 18\n23 35 43\n15 31 27\n17 46 8\n22 3 34\n3 50 19\n47 47 9\n18 42 20\n30 26 42\n44 32 47\n29 20 42\n35 33 20\n43 16 9\n45 24 12\n11 1 21\n32 50 9\n38 19 48\n21 31 7\n5 42 5\n23 0 21\n39 50 8\n42 21 12\n21 20 41\n43 44 23\n43 34 4\n31 2 28\n7 0 38\n28 35 46\n",
"1\n50 50 50\n",
"3\n0 0 2\n5 7 5\n20 25 10\n",
"50\n10 26 2\n20 36 2\n32 43 2\n34 6 2\n19 37 2\n20 29 2\n31 12 2\n30 9 2\n31 5 2\n23 6 2\n0 44 2\n5 36 2\n34 22 2\n6 39 2\n19 18 2\n9 50 2\n40 11 2\n32 4 2\n42 46 2\n22 45 2\n28 2 2\n34 4 2\n16 30 2\n17 47 2\n14 46 2\n32 36 2\n43 11 2\n22 34 2\n34 9 2\n2 4 2\n18 15 2\n48 38 2\n27 28 2\n24 38 2\n33 32 2\n11 7 2\n37 35 2\n50 23 2\n25 28 2\n25 50 2\n28 26 2\n20 31 2\n12 31 2\n15 2 2\n31 45 2\n14 12 2\n16 18 2\n23 30 2\n16 26 2\n30 0 2\n",
"49\n33 40 10\n30 24 11\n4 36 23\n38 50 18\n23 28 29\n9 39 21\n47 15 35\n2 41 27\n1 45 28\n39 15 24\n7 7 28\n1 34 6\n47 17 43\n20 28 12\n23 22 15\n33 41 23\n34 3 44\n39 37 25\n41 49 39\n13 14 26\n4 35 18\n17 8 45\n23 23 16\n37 48 40\n12 48 29\n16 5 6\n29 1 5\n1 18 27\n37 11 3\n46 11 44\n9 25 40\n26 1 17\n12 26 45\n3 18 19\n15 32 38\n41 8 27\n8 39 35\n42 35 13\n5 19 43\n31 47 4\n16 47 38\n12 9 23\n10 23 3\n49 43 16\n38 28 6\n3 46 38\n13 27 28\n0 26 3\n23 1 15\n",
"1\n0 0 2\n",
"50\n34 7 2\n18 14 2\n15 24 2\n2 24 2\n27 2 2\n50 45 2\n49 19 2\n7 23 2\n16 22 2\n23 25 2\n18 23 2\n11 29 2\n22 14 2\n31 15 2\n10 42 2\n8 11 2\n9 33 2\n15 0 2\n30 25 2\n12 4 2\n14 13 2\n5 16 2\n13 43 2\n1 8 2\n26 34 2\n44 13 2\n10 17 2\n40 5 2\n48 39 2\n39 23 2\n19 10 2\n22 17 2\n36 26 2\n2 34 2\n11 42 2\n14 37 2\n25 7 2\n11 35 2\n22 34 2\n22 25 2\n12 36 2\n18 6 2\n2 47 2\n47 29 2\n13 37 2\n8 46 2\n9 4 2\n11 34 2\n12 31 2\n7 16 2\n",
"49\n9 43 6\n23 35 9\n46 39 11\n34 14 12\n30 8 4\n10 32 7\n43 10 45\n30 34 27\n27 26 21\n7 31 14\n38 13 33\n34 11 46\n33 31 32\n38 31 7\n3 24 13\n38 12 41\n21 26 32\n33 0 43\n17 44 25\n11 21 27\n27 43 28\n45 8 38\n47 50 47\n49 45 8\n2 9 34\n34 32 49\n21 30 9\n13 19 38\n8 45 32\n16 47 35\n45 28 14\n3 25 43\n45 7 32\n49 35 12\n22 35 35\n14 33 42\n19 23 10\n49 4 2\n44 37 40\n27 17 15\n7 37 30\n38 50 39\n32 12 19\n3 48 9\n26 36 27\n38 18 39\n25 40 50\n45 3 2\n23 40 36\n",
"50\n47 43 2\n31 38 2\n35 21 2\n18 41 2\n24 33 2\n35 0 2\n15 41 2\n6 3 2\n23 40 2\n11 29 2\n48 46 2\n33 45 2\n28 18 2\n31 14 2\n14 4 2\n35 18 2\n50 11 2\n10 28 2\n23 9 2\n43 25 2\n34 21 2\n19 49 2\n40 37 2\n22 27 2\n7 1 2\n37 24 2\n14 26 2\n18 46 2\n40 50 2\n21 40 2\n19 26 2\n35 2 2\n19 27 2\n13 23 2\n9 50 2\n38 9 2\n44 22 2\n5 30 2\n36 7 2\n10 26 2\n21 30 2\n19 6 2\n21 13 2\n5 3 2\n9 41 2\n10 17 2\n1 11 2\n5 6 2\n40 17 2\n6 7 2\n",
"10\n1 9 2\n3 10 2\n7 7 2\n6 12 2\n14 15 2\n2 12 2\n8 0 2\n0 12 2\n4 11 2\n15 9 2\n",
"7\n13 15 5\n2 10 3\n12 12 8\n9 12 11\n10 3 10\n9 6 13\n11 10 3\n",
"50\n0 1 2\n1 0 2\n1 1 2\n1 1 2\n1 1 2\n1 1 2\n0 1 2\n0 1 2\n0 0 2\n1 0 2\n1 1 2\n1 0 2\n1 0 2\n1 0 2\n1 0 2\n0 0 2\n0 1 2\n1 0 2\n1 0 2\n0 0 2\n0 1 2\n0 1 2\n0 1 2\n0 1 2\n0 1 2\n1 0 2\n0 0 2\n1 1 2\n0 0 2\n0 1 2\n0 0 2\n1 0 2\n1 1 2\n0 0 2\n0 0 2\n1 1 2\n0 1 2\n0 1 2\n1 0 2\n0 0 2\n1 0 2\n0 1 2\n0 0 2\n1 1 2\n1 1 2\n0 1 2\n0 0 2\n0 0 2\n0 0 2\n0 0 2\n",
"49\n22 28 2\n37 8 19\n17 36 19\n50 31 10\n26 39 17\n46 37 45\n8 33 30\n29 14 19\n34 42 37\n20 35 34\n17 10 39\n6 28 16\n38 35 27\n39 4 41\n8 37 7\n39 21 4\n12 28 20\n28 27 29\n36 28 10\n41 16 22\n21 0 20\n6 15 4\n48 43 21\n19 12 18\n10 27 15\n27 44 12\n25 14 19\n43 8 43\n1 31 26\n49 11 4\n45 18 7\n16 35 48\n2 8 21\n8 0 30\n20 42 5\n39 30 2\n13 36 34\n43 50 50\n7 9 43\n17 42 10\n15 5 21\n39 25 18\n25 29 35\n12 46 15\n48 41 6\n41 13 17\n16 46 15\n38 27 39\n50 25 16\n",
"1\n1 1 32\n",
"50\n21 22 2\n4 16 2\n19 29 2\n37 7 2\n31 47 2\n38 15 2\n32 24 2\n7 18 2\n9 7 2\n36 48 2\n14 26 2\n40 12 2\n18 10 2\n29 42 2\n32 27 2\n34 3 2\n44 33 2\n19 49 2\n12 39 2\n33 10 2\n21 8 2\n44 9 2\n13 0 2\n6 16 2\n18 15 2\n50 1 2\n31 31 2\n36 43 2\n30 2 2\n7 33 2\n18 22 2\n9 7 2\n3 25 2\n17 18 2\n13 10 2\n41 41 2\n32 44 2\n17 40 2\n7 11 2\n31 50 2\n3 40 2\n17 30 2\n10 5 2\n13 30 2\n44 33 2\n6 50 2\n45 49 2\n18 9 2\n35 46 2\n8 50 2\n",
"4\n0 0 2\n50 50 2\n50 0 2\n0 50 2\n",
"3\n9 5 8\n8 9 3\n9 5 2\n",
"50\n48 45 42\n32 45 8\n15 41 47\n32 29 38\n7 16 48\n19 9 21\n18 40 5\n39 40 7\n37 0 6\n50 15 37\n9 33 37\n40 41 33\n25 43 2\n23 21 38\n30 20 32\n28 15 5\n47 9 19\n47 22 26\n26 9 18\n24 23 24\n11 29 5\n38 44 9\n49 22 42\n1 15 32\n18 25 21\n8 48 39\n48 7 26\n3 30 26\n34 21 47\n34 14 4\n36 43 40\n49 19 12\n33 8 30\n42 35 28\n47 21 14\n36 11 27\n40 46 17\n7 12 32\n47 5 4\n9 33 43\n35 31 3\n3 48 43\n2 19 9\n29 15 36\n1 13 2\n28 28 19\n31 33 21\n9 33 18\n7 12 22\n45 14 23\n",
"3\n3 4 3\n5 9 3\n49 1 7\n",
"5\n0 0 2\n1 1 2\n3 0 2\n40 40 2\n50 50 50\n",
"3\n1 10 4\n10 0 4\n20 10 4\n",
"50\n1 1 2\n1 1 42\n0 0 46\n1 1 16\n1 0 9\n0 0 43\n1 0 39\n1 1 41\n1 1 6\n1 1 43\n0 1 25\n0 1 40\n0 0 11\n0 1 27\n1 0 5\n1 0 9\n1 1 49\n0 0 25\n0 0 32\n0 1 6\n0 1 31\n1 1 22\n0 0 47\n0 1 6\n0 0 6\n0 1 49\n1 0 44\n0 0 50\n1 0 3\n0 1 15\n1 0 37\n0 0 14\n1 1 28\n1 1 49\n1 0 9\n0 1 12\n0 0 35\n1 1 42\n1 1 28\n0 1 20\n1 1 24\n1 1 33\n0 0 38\n1 0 17\n0 1 21\n0 0 22\n1 1 37\n0 1 34\n0 1 46\n1 1 21\n",
"5\n2 0 4\n5 6 10\n7 2 8\n3 10 8\n8 0 9\n",
"49\n48 9 48\n9 38 8\n27 43 43\n19 48 2\n35 3 11\n25 3 37\n26 40 20\n30 28 46\n19 35 44\n20 28 57\n34 40 37\n12 45 47\n28 2 38\n13 32 31\n50 10 28\n12 6 19\n31 50 5\n38 22 8\n25 33 50\n32 1 42\n8 37 26\n31 27 25\n21 4 25\n3 1 47\n21 15 42\n40 21 27\n43 20 9\n9 29 21\n15 35 36\n9 30 6\n46 39 22\n41 40 47\n11 5 32\n12 47 23\n24 2 27\n15 9 24\n0 8 45\n4 11 3\n28 13 27\n12 43 30\n23 42 40\n38 24 9\n13 46 42\n20 50 41\n29 32 11\n35 21 12\n10 34 47\n24 29 3\n46 4 7\n",
"10\n7 3 5\n2 0 6\n8 6 2\n1 2 6\n2 0 9\n10 9 2\n2 6 4\n10 3 6\n4 6 3\n9 9 2\n",
"50\n7 13 2\n41 17 2\n49 32 2\n14 16 2\n11 16 2\n2 10 2\n15 2 2\n8 12 2\n1 17 2\n22 44 2\n10 1 2\n18 45 2\n11 31 2\n4 43 2\n26 14 2\n33 47 2\n3 5 2\n49 22 2\n44 3 2\n3 41 2\n0 26 2\n30 1 2\n37 6 2\n10 48 2\n11 47 2\n5 41 2\n2 46 2\n32 3 2\n37 42 2\n25 17 2\n18 32 2\n47 21 2\n46 24 2\n7 2 2\n14 2 2\n17 17 2\n13 30 2\n23 19 2\n43 40 2\n42 26 2\n20 20 2\n17 5 2\n43 38 2\n4 32 2\n48 4 2\n1 3 2\n4 41 2\n49 36 2\n7 10 2\n9 6 2\n",
"1\n50 50 63\n",
"3\n0 0 3\n5 7 5\n20 25 10\n",
"50\n10 26 2\n20 36 2\n32 43 2\n34 6 2\n19 37 2\n20 29 2\n31 12 2\n30 9 2\n31 5 2\n23 6 2\n0 44 2\n5 36 2\n34 22 2\n6 39 2\n19 18 2\n9 50 2\n40 11 2\n32 4 2\n42 46 2\n22 45 2\n28 2 2\n34 4 2\n16 30 2\n17 47 2\n14 46 2\n32 15 2\n43 11 2\n22 34 2\n34 9 2\n2 4 2\n18 15 2\n48 38 2\n27 28 2\n24 38 2\n33 32 2\n11 7 2\n37 35 2\n50 23 2\n25 28 2\n25 50 2\n28 26 2\n20 31 2\n12 31 2\n15 2 2\n31 45 2\n14 12 2\n16 18 2\n23 30 2\n16 26 2\n30 0 2\n",
"49\n33 40 10\n30 24 11\n4 36 23\n38 50 18\n23 28 29\n9 39 21\n47 15 35\n2 41 27\n1 45 28\n39 15 24\n7 7 28\n1 34 6\n47 17 43\n20 28 12\n23 22 15\n33 41 23\n34 3 44\n39 37 25\n41 49 39\n13 14 26\n4 14 18\n17 8 45\n23 23 16\n37 48 40\n12 48 29\n16 5 6\n29 1 5\n1 18 27\n37 11 3\n46 11 44\n9 25 40\n26 1 17\n12 26 45\n3 18 19\n15 32 38\n41 8 27\n8 39 35\n42 35 13\n5 19 43\n31 47 4\n16 47 38\n12 9 23\n10 23 3\n49 43 16\n38 28 6\n3 46 38\n13 27 28\n0 26 3\n23 1 15\n",
"50\n34 7 2\n18 14 2\n15 24 2\n2 24 2\n27 2 2\n50 45 2\n49 19 2\n7 23 2\n16 22 2\n23 25 2\n18 23 2\n11 29 2\n22 14 2\n31 15 2\n10 42 2\n8 11 2\n9 33 2\n15 0 2\n30 25 2\n12 4 2\n14 13 2\n5 16 2\n13 43 2\n1 8 2\n26 34 2\n83 13 2\n10 17 2\n40 5 2\n48 39 2\n39 23 2\n19 10 2\n22 17 2\n36 26 2\n2 34 2\n11 42 2\n14 37 2\n25 7 2\n11 35 2\n22 34 2\n22 25 2\n12 36 2\n18 6 2\n2 47 2\n47 29 2\n13 37 2\n8 46 2\n9 4 2\n11 34 2\n12 31 2\n7 16 2\n",
"49\n9 43 6\n23 35 9\n46 39 11\n34 14 12\n30 8 4\n10 32 7\n43 10 45\n30 34 27\n27 26 21\n7 31 14\n38 13 33\n34 11 46\n33 31 32\n38 31 7\n3 24 13\n38 12 41\n21 26 32\n33 0 43\n17 44 25\n11 21 27\n27 43 28\n45 8 38\n47 50 47\n49 45 8\n2 9 34\n34 32 49\n21 30 9\n13 19 38\n8 45 32\n16 47 35\n45 28 14\n3 22 43\n45 7 32\n49 35 12\n22 35 35\n14 33 42\n19 23 10\n49 4 2\n44 37 40\n27 17 15\n7 37 30\n38 50 39\n32 12 19\n3 48 9\n26 36 27\n38 18 39\n25 40 50\n45 3 2\n23 40 36\n",
"50\n47 43 2\n31 38 2\n35 21 2\n18 41 2\n24 33 2\n35 0 2\n15 41 2\n6 3 2\n23 40 2\n11 29 2\n48 46 2\n33 45 2\n28 18 2\n31 17 2\n14 4 2\n35 18 2\n50 11 2\n10 28 2\n23 9 2\n43 25 2\n34 21 2\n19 49 2\n40 37 2\n22 27 2\n7 1 2\n37 24 2\n14 26 2\n18 46 2\n40 50 2\n21 40 2\n19 26 2\n35 2 2\n19 27 2\n13 23 2\n9 50 2\n38 9 2\n44 22 2\n5 30 2\n36 7 2\n10 26 2\n21 30 2\n19 6 2\n21 13 2\n5 3 2\n9 41 2\n10 17 2\n1 11 2\n5 6 2\n40 17 2\n6 7 2\n",
"10\n1 9 2\n3 10 2\n7 7 2\n6 12 2\n14 15 2\n2 12 2\n8 0 2\n1 12 2\n4 11 2\n15 9 2\n",
"7\n13 25 5\n2 10 3\n12 12 8\n9 12 11\n10 3 10\n9 6 13\n11 10 3\n",
"49\n22 28 2\n37 8 19\n17 36 19\n50 31 10\n26 39 17\n46 37 45\n8 33 30\n29 14 19\n34 42 37\n20 35 34\n17 10 39\n6 28 16\n38 35 27\n39 4 41\n8 37 7\n39 21 4\n12 28 20\n28 27 29\n36 28 10\n41 16 22\n21 0 20\n6 15 4\n48 43 21\n19 12 18\n10 27 15\n27 44 12\n25 14 19\n43 8 43\n1 31 26\n49 11 4\n45 18 7\n16 35 48\n2 8 21\n8 0 30\n20 42 5\n39 30 2\n13 36 64\n43 50 50\n7 9 43\n17 42 10\n15 5 21\n39 25 18\n25 29 35\n12 46 15\n48 41 6\n41 13 17\n16 46 15\n38 27 39\n50 25 16\n",
"1\n1 1 11\n",
"50\n21 22 2\n4 16 2\n19 29 2\n37 7 2\n31 47 2\n38 15 2\n32 24 2\n7 18 2\n9 7 2\n36 48 2\n14 26 2\n40 12 2\n18 10 2\n29 42 2\n32 27 2\n34 3 2\n44 33 2\n19 49 2\n12 39 2\n33 10 2\n21 8 2\n44 9 2\n13 0 2\n6 16 2\n18 15 2\n50 1 2\n31 31 2\n36 43 2\n30 2 2\n7 33 2\n18 22 2\n9 7 2\n3 25 2\n17 18 2\n13 10 2\n41 57 2\n32 44 2\n17 40 2\n7 11 2\n31 50 2\n3 40 2\n17 30 2\n10 5 2\n13 30 2\n44 33 2\n6 50 2\n45 49 2\n18 9 2\n35 46 2\n8 50 2\n",
"4\n0 0 2\n50 66 2\n50 0 2\n0 50 2\n",
"3\n0 10 4\n18 0 4\n20 10 4\n",
"5\n0 0 2\n2 1 2\n3 0 2\n40 40 2\n50 50 50\n",
"50\n1 1 2\n1 1 42\n0 0 46\n2 1 16\n1 0 9\n0 0 43\n1 0 39\n1 1 41\n1 1 6\n1 1 43\n0 1 25\n0 1 40\n0 0 11\n0 1 27\n1 0 5\n1 0 9\n1 1 49\n0 0 25\n0 0 32\n0 1 6\n0 1 31\n1 1 22\n0 0 47\n0 1 6\n0 0 6\n0 1 49\n1 0 44\n0 0 50\n1 0 3\n0 1 15\n1 0 37\n0 0 14\n1 1 28\n1 1 49\n1 0 9\n0 1 12\n0 0 35\n1 1 42\n1 1 28\n0 1 20\n1 1 24\n1 1 33\n0 0 38\n1 0 17\n0 1 21\n0 0 22\n1 1 37\n0 1 34\n0 1 46\n1 1 21\n",
"5\n2 0 4\n5 6 10\n7 2 8\n3 10 8\n10 0 9\n",
"10\n7 3 5\n2 0 6\n8 6 2\n1 2 6\n2 0 9\n10 9 2\n2 6 4\n10 3 6\n4 11 3\n9 9 2\n",
"1\n50 5 63\n",
"50\n47 43 2\n31 38 2\n35 21 2\n18 41 2\n24 33 2\n35 0 2\n15 41 2\n6 3 2\n23 40 2\n11 29 2\n48 46 2\n33 45 2\n28 18 2\n31 17 2\n14 4 2\n35 18 2\n50 11 2\n10 28 2\n23 9 2\n43 25 2\n34 21 2\n19 49 2\n40 37 2\n22 27 2\n7 1 2\n37 24 2\n14 26 2\n18 46 2\n40 50 2\n27 40 2\n19 26 2\n35 2 2\n19 27 2\n13 23 2\n9 50 2\n38 9 2\n44 22 2\n5 30 2\n36 7 2\n10 26 2\n21 30 2\n19 6 2\n21 13 2\n5 3 2\n9 41 2\n10 17 2\n1 11 2\n5 6 2\n40 17 2\n6 7 2\n",
"10\n1 9 2\n3 10 2\n7 7 2\n6 12 2\n14 15 2\n2 12 2\n8 0 2\n1 12 2\n4 11 2\n15 3 2\n",
"7\n13 25 5\n2 10 3\n12 12 8\n1 12 11\n10 3 10\n9 6 13\n11 10 3\n",
"50\n21 22 2\n4 16 2\n19 29 2\n37 7 2\n31 47 2\n38 15 2\n32 24 2\n7 18 2\n9 7 2\n36 48 2\n14 26 2\n40 12 2\n18 10 2\n29 42 2\n32 27 2\n34 3 2\n44 33 2\n19 49 2\n12 39 2\n33 10 2\n21 8 2\n44 9 2\n13 0 2\n6 16 2\n18 15 2\n50 1 2\n1 31 2\n36 43 2\n30 2 2\n7 33 2\n18 22 2\n9 7 2\n3 25 2\n17 18 2\n13 10 2\n41 57 2\n32 44 2\n17 40 2\n7 11 2\n31 50 2\n3 40 2\n17 30 2\n10 5 2\n13 30 2\n44 33 2\n6 50 2\n45 49 2\n18 9 2\n35 46 2\n8 50 2\n",
"4\n0 0 2\n50 66 2\n50 0 2\n0 24 2\n",
"3\n0 10 4\n35 0 4\n20 10 4\n",
"50\n0 1 2\n1 0 2\n1 1 2\n1 1 2\n1 1 2\n1 1 2\n0 1 2\n0 1 2\n0 0 2\n1 0 2\n1 1 2\n1 0 2\n1 0 2\n1 0 2\n1 0 2\n0 0 2\n0 1 2\n1 0 2\n1 0 2\n0 0 2\n0 1 2\n0 1 2\n0 1 2\n0 1 2\n0 1 0\n1 0 2\n0 0 2\n1 1 2\n0 0 2\n0 1 2\n0 0 2\n1 0 2\n1 1 2\n0 0 2\n0 0 2\n1 1 2\n0 1 2\n0 1 2\n1 0 2\n0 0 2\n1 0 2\n0 1 2\n0 0 2\n1 1 2\n1 1 2\n0 1 2\n0 0 2\n0 0 2\n0 0 2\n0 0 2\n",
"3\n9 5 3\n8 9 3\n9 5 2\n",
"50\n48 45 42\n32 45 8\n15 41 47\n32 29 38\n7 16 48\n19 9 21\n18 40 5\n39 40 0\n37 0 6\n50 15 37\n9 33 37\n40 41 33\n25 43 2\n23 21 38\n30 20 32\n28 15 5\n47 9 19\n47 22 26\n26 9 18\n24 23 24\n11 29 5\n38 44 9\n49 22 42\n1 15 32\n18 25 21\n8 48 39\n48 7 26\n3 30 26\n34 21 47\n34 14 4\n36 43 40\n49 19 12\n33 8 30\n42 35 28\n47 21 14\n36 11 27\n40 46 17\n7 12 32\n47 5 4\n9 33 43\n35 31 3\n3 48 43\n2 19 9\n29 15 36\n1 13 2\n28 28 19\n31 33 21\n9 33 18\n7 12 22\n45 14 23\n",
"3\n3 4 6\n5 9 3\n49 1 7\n",
"3\n1 10 5\n10 0 4\n20 10 4\n",
"49\n48 9 48\n9 38 8\n27 43 43\n19 48 4\n35 3 11\n25 3 37\n26 40 20\n30 28 46\n19 35 44\n20 28 57\n34 40 37\n12 45 47\n28 2 38\n13 32 31\n50 10 28\n12 6 19\n31 50 5\n38 22 8\n25 33 50\n32 1 42\n8 37 26\n31 27 25\n21 4 25\n3 1 47\n21 15 42\n40 21 27\n43 20 9\n9 29 21\n15 35 36\n9 30 6\n46 39 22\n41 40 47\n11 5 32\n12 47 23\n24 2 27\n15 9 24\n0 8 45\n4 11 3\n28 13 27\n12 43 30\n23 42 40\n38 24 9\n13 46 42\n20 50 41\n29 32 11\n35 21 12\n10 34 47\n24 29 3\n46 4 7\n",
"50\n7 13 2\n41 17 2\n49 32 2\n14 16 2\n11 16 2\n2 10 2\n15 2 2\n8 12 2\n1 17 2\n22 44 2\n10 1 2\n18 45 2\n11 31 2\n4 43 2\n26 14 2\n33 47 2\n3 5 2\n49 22 2\n44 3 2\n3 41 2\n0 26 2\n30 1 2\n37 6 2\n10 48 2\n11 47 2\n5 41 2\n2 46 2\n32 3 2\n37 42 2\n25 17 2\n18 32 2\n47 21 2\n46 24 2\n7 2 2\n14 2 2\n17 17 2\n13 30 2\n23 19 2\n43 40 2\n42 26 2\n20 20 2\n17 5 2\n43 38 2\n4 32 0\n48 4 2\n1 3 2\n4 41 2\n49 36 2\n7 10 2\n9 6 2\n",
"3\n1 0 3\n5 7 5\n20 25 10\n",
"50\n10 26 2\n20 36 2\n32 43 2\n34 6 2\n19 37 2\n20 29 2\n31 12 2\n30 9 2\n31 5 2\n23 6 2\n0 44 2\n5 36 2\n34 22 2\n6 39 2\n19 18 2\n9 50 2\n40 11 2\n32 4 2\n42 46 2\n22 45 2\n28 2 2\n34 4 2\n16 30 2\n17 47 2\n14 46 2\n32 15 2\n43 11 2\n22 34 2\n34 9 2\n2 4 2\n18 15 2\n48 38 2\n27 28 2\n24 38 2\n33 32 2\n11 7 2\n37 35 2\n50 23 4\n25 28 2\n25 50 2\n28 26 2\n20 31 2\n12 31 2\n15 2 2\n31 45 2\n14 12 2\n16 18 2\n23 30 2\n16 26 2\n30 0 2\n",
"49\n33 40 10\n30 24 11\n4 36 23\n38 50 18\n23 28 29\n9 39 21\n47 15 35\n2 41 27\n1 45 28\n39 15 24\n7 7 28\n1 34 6\n47 17 43\n20 28 12\n23 22 15\n33 41 23\n34 3 44\n39 37 25\n41 49 39\n13 14 26\n4 14 18\n17 8 45\n23 23 16\n37 48 40\n12 48 29\n16 5 6\n29 1 5\n1 18 27\n37 11 3\n46 11 44\n9 25 40\n26 1 17\n12 26 45\n3 18 19\n15 32 38\n41 9 27\n8 39 35\n42 35 13\n5 19 43\n31 47 4\n16 47 38\n12 9 23\n10 23 3\n49 43 16\n38 28 6\n3 46 38\n13 27 28\n0 26 3\n23 1 15\n",
"50\n34 7 2\n18 14 2\n15 24 2\n2 24 2\n27 2 2\n50 45 2\n49 19 2\n7 23 2\n16 22 2\n23 25 2\n18 23 2\n11 29 2\n22 14 2\n31 15 2\n10 42 2\n8 11 4\n9 33 2\n15 0 2\n30 25 2\n12 4 2\n14 13 2\n5 16 2\n13 43 2\n1 8 2\n26 34 2\n83 13 2\n10 17 2\n40 5 2\n48 39 2\n39 23 2\n19 10 2\n22 17 2\n36 26 2\n2 34 2\n11 42 2\n14 37 2\n25 7 2\n11 35 2\n22 34 2\n22 25 2\n12 36 2\n18 6 2\n2 47 2\n47 29 2\n13 37 2\n8 46 2\n9 4 2\n11 34 2\n12 31 2\n7 16 2\n",
"49\n9 43 6\n23 35 9\n46 39 11\n34 14 12\n30 8 4\n10 32 7\n43 10 45\n30 34 27\n27 26 21\n7 31 14\n38 13 33\n34 11 46\n33 31 32\n38 31 7\n3 24 13\n38 12 41\n21 26 32\n33 0 43\n17 44 25\n11 21 27\n27 43 28\n45 8 38\n47 50 47\n49 45 8\n2 9 34\n34 32 49\n21 30 9\n13 19 38\n8 45 32\n16 47 35\n45 28 14\n3 22 43\n45 7 32\n49 35 12\n22 35 35\n14 33 42\n19 23 10\n49 4 2\n44 37 40\n27 17 15\n7 37 30\n38 50 39\n32 12 19\n3 48 9\n26 36 27\n38 18 39\n25 40 39\n45 3 2\n23 40 36\n",
"49\n22 28 2\n37 8 19\n17 36 19\n50 31 10\n26 39 17\n46 37 45\n8 33 30\n29 14 19\n34 42 37\n20 35 34\n17 10 39\n6 28 16\n38 35 27\n39 4 41\n8 37 7\n39 21 4\n12 28 20\n28 27 29\n36 28 10\n41 16 22\n21 0 20\n6 15 4\n48 43 21\n19 12 18\n10 27 15\n27 44 12\n25 14 19\n43 8 43\n1 31 26\n49 11 4\n45 18 7\n16 35 48\n2 8 20\n8 0 30\n20 42 5\n39 30 2\n13 36 64\n43 50 50\n7 9 43\n17 42 10\n15 5 21\n39 25 18\n25 29 35\n12 46 15\n48 41 6\n41 13 17\n16 46 15\n38 27 39\n50 25 16\n",
"1\n1 1 14\n"
],
"output": [
"(((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(5*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(10*((1-abs((t-2)))+abs((abs((t-2))-1)))))\n(((5*((1-abs((t-0)))+abs((abs((t-0))-1))))+(0*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(5*((1-abs((t-2)))+abs((abs((t-2))-1)))))\n",
"(((4*((1-abs((t-0)))+abs((abs((t-0))-1))))+(4*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(4*((1-abs((t-2)))+abs((abs((t-2))-1)))))\n(((2*((1-abs((t-0)))+abs((abs((t-0))-1))))+(4*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(2*((1-abs((t-2)))+abs((abs((t-2))-1)))))\n",
"((((((((((((((((((((((((((((((((((((((((((((((((((24*((1-abs((t-0)))+abs((abs((t-0))-1))))+(16*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(7*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(16*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(3*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(9*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(9*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(19*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(18*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(21*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(4*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(20*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(12*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(11*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(15*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(14*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(23*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(23*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(13*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(12*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(5*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(19*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(24*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(0*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(9*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(4*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(24*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(1*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(17*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(17*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(18*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(24*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(16*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(21*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(23*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(18*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(20*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(3*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(23*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(4*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(17*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(1*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(1*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(14*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(0*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(14*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(15*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(4*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(3*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(22*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n((((((((((((((((((((((((((((((((((((((((((((((((((22*((1-abs((t-0)))+abs((abs((t-0))-1))))+(22*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(20*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(14*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(8*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(4*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(20*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(20*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(0*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(7*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(16*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(20*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(21*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(10*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(10*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(7*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(4*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(11*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(4*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(11*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(14*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(22*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(11*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(7*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(12*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(24*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(3*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(15*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(10*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(7*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(21*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(9*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(4*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(17*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(10*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(5*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(23*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(6*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(2*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(16*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(15*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(24*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(9*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(7*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(6*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(14*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(16*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(16*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(6*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(7*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n",
"(((1*((1-abs((t-0)))+abs((abs((t-0))-1))))+(2*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(24*((1-abs((t-2)))+abs((abs((t-2))-1)))))\n(((1*((1-abs((t-0)))+abs((abs((t-0))-1))))+(4*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(0*((1-abs((t-2)))+abs((abs((t-2))-1)))))\n",
"(((((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(0*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(1*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(20*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(25*((1-abs((t-4)))+abs((abs((t-4))-1)))))\n(((((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(0*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(1*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(20*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(25*((1-abs((t-4)))+abs((abs((t-4))-1)))))\n",
"(((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(5*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(10*((1-abs((t-2)))+abs((abs((t-2))-1)))))\n(((5*((1-abs((t-0)))+abs((abs((t-0))-1))))+(0*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(5*((1-abs((t-2)))+abs((abs((t-2))-1)))))\n",
"((((((((((((((((((((((((((((((((((((((((((((((((((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(0*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(0*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(0*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(0*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(0*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(0*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(0*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(0*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(0*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(0*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(0*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(0*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(0*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(0*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(0*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(0*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(0*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(0*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(0*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(0*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(0*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(0*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(0*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(0*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(0*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(0*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(0*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(0*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(0*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(0*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(0*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(0*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(0*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(0*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(0*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(0*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(0*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(0*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(0*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(0*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(0*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(0*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(0*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(0*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(0*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(0*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(0*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(0*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(0*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n((((((((((((((((((((((((((((((((((((((((((((((((((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(0*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(0*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(0*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(0*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(0*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(0*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(0*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(0*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(0*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(0*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(0*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(0*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(0*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(0*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(0*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(0*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(0*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(0*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(0*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(0*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(0*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(0*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(0*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(0*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(0*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(0*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(0*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(0*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(0*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(0*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(0*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(0*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(0*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(0*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(0*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(0*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(0*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(0*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(0*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(0*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(0*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(0*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(0*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(0*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(0*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(0*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(0*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(0*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(0*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n",
"(((((1*((1-abs((t-0)))+abs((abs((t-0))-1))))+(2*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(3*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(1*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(4*((1-abs((t-4)))+abs((abs((t-4))-1)))))\n(((((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(3*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(1*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(5*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(1*((1-abs((t-4)))+abs((abs((t-4))-1)))))\n",
"(((((((((((((((((((((((((((((((((((((((((((((((((24*((1-abs((t-0)))+abs((abs((t-0))-1))))+(4*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(13*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(9*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(17*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(12*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(13*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(15*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(9*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(10*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(17*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(6*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(14*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(6*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(25*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(6*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(15*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(19*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(12*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(16*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(4*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(15*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(10*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(1*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(10*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(20*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(21*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(4*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(7*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(4*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(23*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(20*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(5*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(6*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(12*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(7*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(0*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(2*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(14*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(6*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(11*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(19*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(6*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(10*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(14*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(17*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(5*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(12*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(23*((1-abs((t-48)))+abs((abs((t-48))-1)))))\n(((((((((((((((((((((((((((((((((((((((((((((((((4*((1-abs((t-0)))+abs((abs((t-0))-1))))+(19*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(21*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(24*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(1*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(1*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(20*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(14*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(17*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(14*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(20*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(22*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(1*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(16*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(5*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(3*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(25*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(11*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(16*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(0*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(18*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(13*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(2*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(0*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(7*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(10*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(10*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(14*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(17*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(15*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(19*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(20*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(2*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(23*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(1*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(4*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(4*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(5*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(6*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(21*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(21*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(12*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(23*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(25*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(16*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(10*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(17*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(14*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(2*((1-abs((t-48)))+abs((abs((t-48))-1)))))\n",
"((((((((((3*((1-abs((t-0)))+abs((abs((t-0))-1))))+(1*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(4*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(0*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(1*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(5*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(1*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(5*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(2*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(4*((1-abs((t-9)))+abs((abs((t-9))-1)))))\n((((((((((1*((1-abs((t-0)))+abs((abs((t-0))-1))))+(0*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(3*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(1*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(0*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(4*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(3*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(1*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(3*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(4*((1-abs((t-9)))+abs((abs((t-9))-1)))))\n",
"((((((((((((((((((((((((((((((((((((((((((((((((((3*((1-abs((t-0)))+abs((abs((t-0))-1))))+(20*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(24*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(11*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(5*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(1*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(7*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(4*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(0*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(11*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(5*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(9*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(5*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(2*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(13*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(16*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(1*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(24*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(22*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(1*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(0*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(15*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(18*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(5*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(5*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(2*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(1*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(16*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(18*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(12*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(9*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(23*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(23*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(3*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(7*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(8*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(6*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(11*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(21*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(21*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(10*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(8*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(21*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(2*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(24*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(0*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(2*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(24*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(3*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(4*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n((((((((((((((((((((((((((((((((((((((((((((((((((6*((1-abs((t-0)))+abs((abs((t-0))-1))))+(8*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(16*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(8*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(8*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(5*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(1*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(6*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(8*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(22*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(0*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(22*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(15*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(21*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(7*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(23*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(2*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(11*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(1*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(20*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(13*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(0*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(3*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(24*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(23*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(20*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(23*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(1*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(21*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(8*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(16*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(10*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(12*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(1*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(1*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(8*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(15*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(9*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(20*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(13*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(10*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(2*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(19*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(16*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(2*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(1*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(20*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(18*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(5*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(3*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n",
"(((((((((((((((((((((((((((((((((((((((((((((((((18*((1-abs((t-0)))+abs((abs((t-0))-1))))+(25*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(6*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(7*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(11*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(15*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(12*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(1*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(21*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(3*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(10*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(13*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(9*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(20*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(18*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(6*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(1*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(24*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(2*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(10*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(21*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(10*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(11*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(7*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(8*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(11*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(1*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(23*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(9*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(15*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(22*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(14*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(17*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(21*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(22*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(5*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(16*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(19*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(10*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(2*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(11*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(19*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(21*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(10*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(21*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(21*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(15*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(3*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(14*((1-abs((t-48)))+abs((abs((t-48))-1)))))\n(((((((((((((((((((((((((((((((((((((((((((((((((6*((1-abs((t-0)))+abs((abs((t-0))-1))))+(3*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(15*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(23*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(21*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(8*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(14*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(10*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(3*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(6*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(16*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(22*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(19*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(14*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(0*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(13*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(2*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(15*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(7*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(18*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(16*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(11*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(17*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(15*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(23*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(1*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(25*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(23*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(21*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(13*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(16*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(10*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(16*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(8*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(12*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(0*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(25*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(9*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(15*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(21*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(0*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(25*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(10*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(10*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(22*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(17*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(1*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(0*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(17*((1-abs((t-48)))+abs((abs((t-48))-1)))))\n",
"(25*((1-abs((t-0)))+abs((abs((t-0))-1))))\n(25*((1-abs((t-0)))+abs((abs((t-0))-1))))\n",
"(((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(2*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(10*((1-abs((t-2)))+abs((abs((t-2))-1)))))\n(((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(3*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(12*((1-abs((t-2)))+abs((abs((t-2))-1)))))\n",
"((((((((((((((((((((((((((((((((((((((((((((((((((5*((1-abs((t-0)))+abs((abs((t-0))-1))))+(10*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(16*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(17*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(9*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(10*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(15*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(15*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(15*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(11*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(0*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(2*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(17*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(3*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(9*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(4*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(20*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(16*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(21*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(11*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(14*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(17*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(8*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(8*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(7*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(16*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(21*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(11*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(17*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(1*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(9*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(24*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(13*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(12*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(16*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(5*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(18*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(25*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(12*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(12*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(14*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(10*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(6*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(7*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(15*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(7*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(8*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(11*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(8*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(15*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n((((((((((((((((((((((((((((((((((((((((((((((((((13*((1-abs((t-0)))+abs((abs((t-0))-1))))+(18*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(21*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(3*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(18*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(14*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(6*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(4*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(2*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(3*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(22*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(18*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(11*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(19*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(9*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(25*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(5*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(2*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(23*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(22*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(1*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(2*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(15*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(23*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(23*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(18*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(5*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(17*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(4*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(2*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(7*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(19*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(14*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(19*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(16*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(3*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(17*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(11*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(14*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(25*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(13*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(15*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(15*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(1*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(22*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(6*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(9*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(15*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(13*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(0*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n",
"(((((((((((((((((((((((((((((((((((((((((((((((((16*((1-abs((t-0)))+abs((abs((t-0))-1))))+(15*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(2*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(19*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(11*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(4*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(23*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(1*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(0*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(19*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(3*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(0*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(23*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(10*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(11*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(16*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(17*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(19*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(20*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(6*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(2*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(8*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(11*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(18*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(6*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(8*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(14*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(0*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(18*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(23*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(4*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(13*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(6*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(1*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(7*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(20*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(4*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(21*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(2*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(15*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(8*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(6*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(5*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(24*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(19*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(1*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(6*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(0*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(11*((1-abs((t-48)))+abs((abs((t-48))-1)))))\n(((((((((((((((((((((((((((((((((((((((((((((((((20*((1-abs((t-0)))+abs((abs((t-0))-1))))+(12*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(18*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(25*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(14*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(19*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(7*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(20*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(22*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(7*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(3*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(17*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(8*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(14*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(11*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(20*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(1*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(18*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(24*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(7*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(17*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(4*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(11*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(24*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(24*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(2*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(0*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(9*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(5*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(5*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(12*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(0*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(13*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(9*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(16*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(4*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(19*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(17*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(9*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(23*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(23*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(4*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(11*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(21*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(14*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(23*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(13*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(13*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(0*((1-abs((t-48)))+abs((abs((t-48))-1)))))\n",
"(0*((1-abs((t-0)))+abs((abs((t-0))-1))))\n(0*((1-abs((t-0)))+abs((abs((t-0))-1))))\n",
"((((((((((((((((((((((((((((((((((((((((((((((((((17*((1-abs((t-0)))+abs((abs((t-0))-1))))+(9*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(7*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(1*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(13*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(25*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(24*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(3*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(8*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(11*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(9*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(5*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(11*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(15*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(5*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(4*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(4*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(7*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(15*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(6*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(7*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(2*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(6*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(0*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(13*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(22*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(5*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(20*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(24*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(19*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(9*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(11*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(18*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(1*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(5*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(7*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(12*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(5*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(11*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(11*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(6*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(9*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(1*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(23*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(6*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(4*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(4*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(5*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(6*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(3*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n((((((((((((((((((((((((((((((((((((((((((((((((((3*((1-abs((t-0)))+abs((abs((t-0))-1))))+(7*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(12*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(12*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(1*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(22*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(9*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(11*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(11*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(12*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(11*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(14*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(7*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(7*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(21*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(5*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(16*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(0*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(12*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(2*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(6*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(8*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(21*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(4*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(17*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(6*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(8*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(2*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(19*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(11*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(5*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(8*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(13*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(17*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(21*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(18*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(3*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(17*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(17*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(12*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(18*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(3*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(23*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(14*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(18*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(23*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(2*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(17*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(15*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(8*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n",
"(((((((((((((((((((((((((((((((((((((((((((((((((4*((1-abs((t-0)))+abs((abs((t-0))-1))))+(11*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(23*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(17*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(15*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(5*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(21*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(15*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(13*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(3*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(19*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(17*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(16*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(19*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(1*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(19*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(10*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(16*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(8*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(5*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(13*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(22*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(23*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(24*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(1*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(17*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(10*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(6*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(4*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(8*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(22*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(1*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(22*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(24*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(11*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(7*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(9*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(24*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(22*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(13*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(3*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(19*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(16*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(1*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(13*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(19*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(12*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(22*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(11*((1-abs((t-48)))+abs((abs((t-48))-1)))))\n(((((((((((((((((((((((((((((((((((((((((((((((((21*((1-abs((t-0)))+abs((abs((t-0))-1))))+(17*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(19*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(7*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(4*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(16*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(5*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(17*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(13*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(15*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(6*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(5*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(15*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(15*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(12*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(6*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(13*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(0*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(22*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(10*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(21*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(4*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(25*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(22*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(4*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(16*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(15*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(9*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(22*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(23*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(14*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(12*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(3*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(17*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(17*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(16*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(11*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(2*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(18*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(8*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(18*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(25*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(6*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(24*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(18*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(9*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(20*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(1*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(20*((1-abs((t-48)))+abs((abs((t-48))-1)))))\n",
"((((((((((((((((((((((((((((((((((((((((((((((((((23*((1-abs((t-0)))+abs((abs((t-0))-1))))+(15*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(17*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(9*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(12*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(17*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(7*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(3*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(11*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(5*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(24*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(16*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(14*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(15*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(7*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(17*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(25*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(5*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(11*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(21*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(17*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(9*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(20*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(11*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(3*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(18*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(7*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(9*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(20*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(10*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(9*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(17*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(9*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(6*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(4*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(19*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(22*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(2*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(18*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(5*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(10*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(9*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(10*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(2*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(4*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(5*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(0*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(2*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(20*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(3*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n((((((((((((((((((((((((((((((((((((((((((((((((((21*((1-abs((t-0)))+abs((abs((t-0))-1))))+(19*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(10*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(20*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(16*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(0*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(20*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(1*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(20*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(14*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(23*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(22*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(9*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(7*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(2*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(9*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(5*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(14*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(4*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(12*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(10*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(24*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(18*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(13*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(0*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(12*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(13*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(23*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(25*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(20*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(13*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(1*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(13*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(11*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(25*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(4*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(11*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(15*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(3*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(13*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(15*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(3*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(6*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(1*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(20*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(8*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(5*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(3*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(8*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(3*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n",
"((((((((((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(1*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(3*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(3*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(7*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(1*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(4*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(0*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(2*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(7*((1-abs((t-9)))+abs((abs((t-9))-1)))))\n((((((((((4*((1-abs((t-0)))+abs((abs((t-0))-1))))+(5*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(3*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(6*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(7*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(6*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(0*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(6*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(5*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(4*((1-abs((t-9)))+abs((abs((t-9))-1)))))\n",
"(((((((6*((1-abs((t-0)))+abs((abs((t-0))-1))))+(1*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(6*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(4*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(5*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(4*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(5*((1-abs((t-6)))+abs((abs((t-6))-1)))))\n(((((((7*((1-abs((t-0)))+abs((abs((t-0))-1))))+(5*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(6*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(6*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(1*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(3*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(5*((1-abs((t-6)))+abs((abs((t-6))-1)))))\n",
"((((((((((((((((((((((((((((((((((((((((((((((((((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(0*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(0*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(0*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(0*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(0*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(0*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(0*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(0*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(0*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(0*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(0*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(0*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(0*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(0*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(0*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(0*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(0*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(0*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(0*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(0*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(0*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(0*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(0*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(0*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(0*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(0*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(0*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(0*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(0*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(0*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(0*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(0*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(0*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(0*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(0*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(0*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(0*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(0*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(0*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(0*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(0*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(0*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(0*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(0*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(0*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(0*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(0*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(0*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(0*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n((((((((((((((((((((((((((((((((((((((((((((((((((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(0*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(0*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(0*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(0*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(0*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(0*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(0*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(0*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(0*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(0*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(0*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(0*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(0*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(0*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(0*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(0*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(0*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(0*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(0*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(0*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(0*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(0*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(0*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(0*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(0*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(0*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(0*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(0*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(0*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(0*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(0*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(0*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(0*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(0*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(0*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(0*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(0*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(0*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(0*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(0*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(0*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(0*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(0*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(0*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(0*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(0*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(0*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(0*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(0*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n",
"(((((((((((((((((((((((((((((((((((((((((((((((((11*((1-abs((t-0)))+abs((abs((t-0))-1))))+(18*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(8*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(25*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(13*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(23*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(4*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(14*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(17*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(10*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(8*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(3*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(19*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(19*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(4*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(19*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(6*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(14*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(18*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(20*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(10*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(3*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(24*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(9*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(5*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(13*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(12*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(21*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(0*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(24*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(22*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(8*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(1*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(4*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(10*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(19*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(6*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(21*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(3*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(8*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(7*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(19*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(12*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(6*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(24*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(20*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(8*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(19*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(25*((1-abs((t-48)))+abs((abs((t-48))-1)))))\n(((((((((((((((((((((((((((((((((((((((((((((((((14*((1-abs((t-0)))+abs((abs((t-0))-1))))+(4*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(18*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(15*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(19*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(18*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(16*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(7*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(21*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(17*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(5*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(14*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(17*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(2*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(18*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(10*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(14*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(13*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(14*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(8*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(0*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(7*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(21*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(6*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(13*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(22*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(7*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(4*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(15*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(5*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(9*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(17*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(4*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(0*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(21*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(15*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(18*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(25*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(4*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(21*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(2*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(12*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(14*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(23*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(20*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(6*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(23*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(13*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(12*((1-abs((t-48)))+abs((abs((t-48))-1)))))\n",
"(0*((1-abs((t-0)))+abs((abs((t-0))-1))))\n(0*((1-abs((t-0)))+abs((abs((t-0))-1))))\n",
"((((((((((((((((((((((((((((((((((((((((((((((((((10*((1-abs((t-0)))+abs((abs((t-0))-1))))+(2*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(9*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(18*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(15*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(19*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(16*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(3*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(4*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(18*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(7*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(20*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(9*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(14*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(16*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(17*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(22*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(9*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(6*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(16*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(10*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(22*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(6*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(3*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(9*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(25*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(15*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(18*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(15*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(3*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(9*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(4*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(1*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(8*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(6*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(20*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(16*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(8*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(3*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(15*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(1*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(8*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(5*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(6*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(22*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(3*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(22*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(9*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(17*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(4*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n((((((((((((((((((((((((((((((((((((((((((((((((((11*((1-abs((t-0)))+abs((abs((t-0))-1))))+(8*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(14*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(3*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(23*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(7*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(12*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(9*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(3*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(24*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(13*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(6*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(5*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(21*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(13*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(1*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(16*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(24*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(19*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(5*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(4*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(4*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(0*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(8*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(7*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(0*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(15*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(21*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(1*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(16*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(11*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(3*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(12*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(9*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(5*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(20*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(22*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(20*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(5*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(25*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(20*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(15*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(2*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(15*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(16*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(25*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(24*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(4*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(23*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(25*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n",
"((((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(25*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(25*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(0*((1-abs((t-3)))+abs((abs((t-3))-1)))))\n((((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(25*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(0*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(25*((1-abs((t-3)))+abs((abs((t-3))-1)))))\n",
"(((4*((1-abs((t-0)))+abs((abs((t-0))-1))))+(4*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(4*((1-abs((t-2)))+abs((abs((t-2))-1)))))\n(((2*((1-abs((t-0)))+abs((abs((t-0))-1))))+(4*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(2*((1-abs((t-2)))+abs((abs((t-2))-1)))))",
"((((((((((((((((((((((((((((((((((((((((((((((((((24*((1-abs((t-0)))+abs((abs((t-0))-1))))+(16*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(7*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(16*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(3*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(9*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(9*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(19*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(18*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(25*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(4*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(20*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(12*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(11*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(15*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(14*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(23*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(23*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(13*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(12*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(5*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(19*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(24*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(0*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(9*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(4*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(24*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(1*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(17*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(17*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(18*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(24*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(16*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(21*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(23*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(18*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(20*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(3*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(23*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(4*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(17*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(1*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(1*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(14*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(0*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(14*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(15*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(4*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(3*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(22*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n((((((((((((((((((((((((((((((((((((((((((((((((((22*((1-abs((t-0)))+abs((abs((t-0))-1))))+(22*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(20*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(14*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(8*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(4*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(20*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(20*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(0*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(7*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(16*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(20*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(21*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(10*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(10*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(7*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(4*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(11*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(4*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(11*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(14*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(22*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(11*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(7*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(12*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(24*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(3*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(15*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(10*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(7*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(21*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(9*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(4*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(17*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(10*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(5*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(23*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(6*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(2*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(16*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(15*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(24*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(9*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(7*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(6*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(14*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(16*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(16*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(6*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(7*((1-abs((t-49)))+abs((abs((t-49))-1)))))",
"(((1*((1-abs((t-0)))+abs((abs((t-0))-1))))+(2*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(24*((1-abs((t-2)))+abs((abs((t-2))-1)))))\n(((2*((1-abs((t-0)))+abs((abs((t-0))-1))))+(4*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(0*((1-abs((t-2)))+abs((abs((t-2))-1)))))",
"(((((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(0*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(1*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(20*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(25*((1-abs((t-4)))+abs((abs((t-4))-1)))))\n(((((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(0*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(0*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(20*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(25*((1-abs((t-4)))+abs((abs((t-4))-1)))))",
"(((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(5*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(10*((1-abs((t-2)))+abs((abs((t-2))-1)))))\n(((5*((1-abs((t-0)))+abs((abs((t-0))-1))))+(0*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(5*((1-abs((t-2)))+abs((abs((t-2))-1)))))",
"((((((((((((((((((((((((((((((((((((((((((((((((((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(0*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(0*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(0*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(0*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(0*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(0*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(0*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(0*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(0*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(0*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(0*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(0*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(0*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(0*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(0*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(0*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(0*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(0*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(0*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(0*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(0*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(0*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(0*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(0*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(0*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(0*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(0*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(0*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(0*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(0*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(0*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(0*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(0*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(0*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(0*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(0*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(0*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(0*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(0*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(0*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(0*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(0*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(0*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(0*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(0*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(0*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(0*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(0*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(0*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n((((((((((((((((((((((((((((((((((((((((((((((((((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(0*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(0*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(0*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(0*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(0*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(0*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(0*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(0*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(0*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(0*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(0*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(0*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(0*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(0*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(0*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(0*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(0*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(0*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(0*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(0*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(0*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(0*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(0*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(0*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(0*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(0*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(0*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(0*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(0*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(0*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(0*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(0*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(0*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(0*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(0*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(0*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(0*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(0*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(0*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(0*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(0*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(0*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(0*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(0*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(0*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(0*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(0*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(0*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(0*((1-abs((t-49)))+abs((abs((t-49))-1)))))",
"(((((1*((1-abs((t-0)))+abs((abs((t-0))-1))))+(2*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(3*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(1*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(4*((1-abs((t-4)))+abs((abs((t-4))-1)))))\n(((((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(3*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(1*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(5*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(0*((1-abs((t-4)))+abs((abs((t-4))-1)))))",
"(((((((((((((((((((((((((((((((((((((((((((((((((24*((1-abs((t-0)))+abs((abs((t-0))-1))))+(4*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(13*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(9*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(17*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(12*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(13*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(15*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(9*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(10*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(17*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(6*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(14*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(6*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(25*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(6*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(15*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(19*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(12*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(16*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(4*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(15*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(10*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(1*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(10*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(20*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(21*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(4*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(7*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(4*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(23*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(20*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(5*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(6*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(12*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(7*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(0*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(2*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(14*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(6*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(11*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(19*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(6*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(10*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(14*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(17*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(5*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(12*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(23*((1-abs((t-48)))+abs((abs((t-48))-1)))))\n(((((((((((((((((((((((((((((((((((((((((((((((((4*((1-abs((t-0)))+abs((abs((t-0))-1))))+(19*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(21*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(24*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(1*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(1*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(20*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(14*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(17*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(14*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(20*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(22*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(1*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(16*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(5*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(3*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(25*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(11*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(16*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(0*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(18*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(13*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(2*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(0*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(7*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(10*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(10*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(14*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(17*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(15*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(19*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(20*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(2*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(23*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(1*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(4*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(4*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(5*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(6*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(21*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(21*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(12*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(23*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(25*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(16*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(10*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(17*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(14*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(2*((1-abs((t-48)))+abs((abs((t-48))-1)))))",
"((((((((((3*((1-abs((t-0)))+abs((abs((t-0))-1))))+(1*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(4*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(0*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(1*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(5*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(1*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(5*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(2*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(4*((1-abs((t-9)))+abs((abs((t-9))-1)))))\n((((((((((1*((1-abs((t-0)))+abs((abs((t-0))-1))))+(0*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(3*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(1*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(0*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(4*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(3*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(1*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(3*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(4*((1-abs((t-9)))+abs((abs((t-9))-1)))))",
"((((((((((((((((((((((((((((((((((((((((((((((((((3*((1-abs((t-0)))+abs((abs((t-0))-1))))+(20*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(24*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(7*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(5*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(1*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(7*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(4*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(0*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(11*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(5*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(9*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(5*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(2*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(13*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(16*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(1*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(24*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(22*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(1*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(0*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(15*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(18*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(5*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(5*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(2*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(1*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(16*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(18*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(12*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(9*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(23*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(23*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(3*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(7*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(8*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(6*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(11*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(21*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(21*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(10*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(8*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(21*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(2*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(24*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(0*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(2*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(24*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(3*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(4*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n((((((((((((((((((((((((((((((((((((((((((((((((((6*((1-abs((t-0)))+abs((abs((t-0))-1))))+(8*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(16*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(8*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(8*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(5*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(1*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(6*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(8*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(22*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(0*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(22*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(15*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(21*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(7*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(23*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(2*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(11*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(1*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(20*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(13*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(0*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(3*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(24*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(23*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(20*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(23*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(1*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(21*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(8*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(16*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(10*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(12*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(1*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(1*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(8*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(15*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(9*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(20*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(13*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(10*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(2*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(19*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(16*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(2*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(1*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(20*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(18*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(5*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(3*((1-abs((t-49)))+abs((abs((t-49))-1)))))",
"(25*((1-abs((t-0)))+abs((abs((t-0))-1))))\n(25*((1-abs((t-0)))+abs((abs((t-0))-1))))",
"(((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(2*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(10*((1-abs((t-2)))+abs((abs((t-2))-1)))))\n(((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(3*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(12*((1-abs((t-2)))+abs((abs((t-2))-1)))))",
"((((((((((((((((((((((((((((((((((((((((((((((((((5*((1-abs((t-0)))+abs((abs((t-0))-1))))+(10*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(16*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(17*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(9*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(10*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(15*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(15*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(15*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(11*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(0*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(2*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(17*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(3*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(9*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(4*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(20*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(16*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(21*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(11*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(14*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(17*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(8*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(8*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(7*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(16*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(21*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(11*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(17*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(1*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(9*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(24*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(13*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(12*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(16*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(5*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(18*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(25*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(12*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(12*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(14*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(10*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(6*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(7*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(15*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(7*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(8*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(11*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(8*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(15*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n((((((((((((((((((((((((((((((((((((((((((((((((((13*((1-abs((t-0)))+abs((abs((t-0))-1))))+(18*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(21*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(3*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(18*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(14*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(6*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(4*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(2*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(3*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(22*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(18*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(11*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(19*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(9*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(25*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(5*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(2*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(23*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(22*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(1*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(2*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(15*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(23*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(23*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(7*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(5*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(17*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(4*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(2*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(7*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(19*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(14*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(19*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(16*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(3*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(17*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(11*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(14*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(25*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(13*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(15*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(15*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(1*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(22*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(6*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(9*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(15*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(13*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(0*((1-abs((t-49)))+abs((abs((t-49))-1)))))",
"(((((((((((((((((((((((((((((((((((((((((((((((((16*((1-abs((t-0)))+abs((abs((t-0))-1))))+(15*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(2*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(19*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(11*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(4*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(23*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(1*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(0*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(19*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(3*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(0*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(23*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(10*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(11*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(16*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(17*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(19*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(20*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(6*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(2*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(8*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(11*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(18*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(6*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(8*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(14*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(0*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(18*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(23*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(4*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(13*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(6*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(1*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(7*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(20*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(4*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(21*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(2*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(15*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(8*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(6*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(5*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(24*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(19*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(1*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(6*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(0*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(11*((1-abs((t-48)))+abs((abs((t-48))-1)))))\n(((((((((((((((((((((((((((((((((((((((((((((((((20*((1-abs((t-0)))+abs((abs((t-0))-1))))+(12*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(18*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(25*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(14*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(19*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(7*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(20*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(22*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(7*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(3*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(17*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(8*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(14*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(11*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(20*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(1*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(18*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(24*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(7*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(7*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(4*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(11*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(24*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(24*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(2*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(0*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(9*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(5*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(5*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(12*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(0*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(13*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(9*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(16*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(4*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(19*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(17*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(9*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(23*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(23*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(4*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(11*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(21*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(14*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(23*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(13*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(13*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(0*((1-abs((t-48)))+abs((abs((t-48))-1)))))",
"((((((((((((((((((((((((((((((((((((((((((((((((((17*((1-abs((t-0)))+abs((abs((t-0))-1))))+(9*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(7*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(1*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(13*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(25*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(24*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(3*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(8*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(11*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(9*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(5*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(11*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(15*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(5*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(4*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(4*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(7*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(15*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(6*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(7*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(2*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(6*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(0*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(13*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(41*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(5*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(20*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(24*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(19*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(9*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(11*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(18*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(1*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(5*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(7*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(12*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(5*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(11*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(11*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(6*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(9*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(1*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(23*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(6*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(4*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(4*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(5*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(6*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(3*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n((((((((((((((((((((((((((((((((((((((((((((((((((3*((1-abs((t-0)))+abs((abs((t-0))-1))))+(7*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(12*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(12*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(1*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(22*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(9*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(11*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(11*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(12*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(11*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(14*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(7*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(7*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(21*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(5*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(16*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(0*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(12*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(2*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(6*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(8*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(21*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(4*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(17*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(6*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(8*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(2*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(19*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(11*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(5*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(8*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(13*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(17*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(21*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(18*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(3*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(17*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(17*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(12*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(18*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(3*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(23*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(14*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(18*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(23*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(2*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(17*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(15*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(8*((1-abs((t-49)))+abs((abs((t-49))-1)))))",
"(((((((((((((((((((((((((((((((((((((((((((((((((4*((1-abs((t-0)))+abs((abs((t-0))-1))))+(11*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(23*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(17*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(15*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(5*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(21*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(15*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(13*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(3*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(19*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(17*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(16*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(19*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(1*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(19*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(10*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(16*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(8*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(5*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(13*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(22*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(23*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(24*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(1*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(17*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(10*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(6*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(4*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(8*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(22*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(1*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(22*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(24*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(11*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(7*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(9*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(24*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(22*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(13*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(3*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(19*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(16*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(1*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(13*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(19*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(12*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(22*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(11*((1-abs((t-48)))+abs((abs((t-48))-1)))))\n(((((((((((((((((((((((((((((((((((((((((((((((((21*((1-abs((t-0)))+abs((abs((t-0))-1))))+(17*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(19*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(7*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(4*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(16*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(5*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(17*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(13*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(15*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(6*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(5*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(15*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(15*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(12*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(6*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(13*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(0*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(22*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(10*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(21*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(4*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(25*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(22*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(4*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(16*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(15*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(9*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(22*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(23*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(14*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(11*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(3*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(17*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(17*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(16*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(11*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(2*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(18*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(8*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(18*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(25*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(6*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(24*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(18*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(9*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(20*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(1*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(20*((1-abs((t-48)))+abs((abs((t-48))-1)))))",
"((((((((((((((((((((((((((((((((((((((((((((((((((23*((1-abs((t-0)))+abs((abs((t-0))-1))))+(15*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(17*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(9*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(12*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(17*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(7*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(3*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(11*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(5*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(24*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(16*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(14*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(15*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(7*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(17*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(25*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(5*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(11*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(21*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(17*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(9*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(20*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(11*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(3*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(18*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(7*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(9*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(20*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(10*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(9*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(17*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(9*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(6*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(4*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(19*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(22*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(2*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(18*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(5*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(10*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(9*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(10*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(2*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(4*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(5*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(0*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(2*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(20*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(3*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n((((((((((((((((((((((((((((((((((((((((((((((((((21*((1-abs((t-0)))+abs((abs((t-0))-1))))+(19*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(10*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(20*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(16*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(0*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(20*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(1*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(20*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(14*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(23*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(22*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(9*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(8*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(2*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(9*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(5*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(14*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(4*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(12*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(10*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(24*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(18*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(13*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(0*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(12*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(13*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(23*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(25*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(20*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(13*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(1*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(13*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(11*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(25*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(4*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(11*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(15*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(3*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(13*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(15*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(3*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(6*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(1*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(20*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(8*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(5*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(3*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(8*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(3*((1-abs((t-49)))+abs((abs((t-49))-1)))))",
"((((((((((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(1*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(3*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(3*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(7*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(1*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(4*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(0*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(2*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(7*((1-abs((t-9)))+abs((abs((t-9))-1)))))\n((((((((((4*((1-abs((t-0)))+abs((abs((t-0))-1))))+(5*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(3*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(6*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(7*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(6*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(0*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(6*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(5*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(4*((1-abs((t-9)))+abs((abs((t-9))-1)))))",
"(((((((6*((1-abs((t-0)))+abs((abs((t-0))-1))))+(1*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(6*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(4*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(5*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(4*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(5*((1-abs((t-6)))+abs((abs((t-6))-1)))))\n(((((((12*((1-abs((t-0)))+abs((abs((t-0))-1))))+(5*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(6*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(6*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(1*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(3*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(5*((1-abs((t-6)))+abs((abs((t-6))-1)))))",
"(((((((((((((((((((((((((((((((((((((((((((((((((11*((1-abs((t-0)))+abs((abs((t-0))-1))))+(18*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(8*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(25*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(13*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(23*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(4*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(14*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(17*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(10*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(8*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(3*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(19*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(19*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(4*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(19*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(6*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(14*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(18*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(20*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(10*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(3*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(24*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(9*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(5*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(13*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(12*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(21*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(0*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(24*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(22*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(8*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(1*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(4*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(10*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(19*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(6*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(21*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(3*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(8*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(7*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(19*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(12*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(6*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(24*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(20*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(8*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(19*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(25*((1-abs((t-48)))+abs((abs((t-48))-1)))))\n(((((((((((((((((((((((((((((((((((((((((((((((((14*((1-abs((t-0)))+abs((abs((t-0))-1))))+(4*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(18*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(15*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(19*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(18*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(16*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(7*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(21*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(17*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(5*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(14*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(17*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(2*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(18*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(10*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(14*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(13*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(14*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(8*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(0*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(7*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(21*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(6*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(13*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(22*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(7*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(4*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(15*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(5*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(9*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(17*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(4*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(0*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(21*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(15*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(18*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(25*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(4*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(21*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(2*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(12*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(14*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(23*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(20*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(6*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(23*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(13*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(12*((1-abs((t-48)))+abs((abs((t-48))-1)))))",
"(0*((1-abs((t-0)))+abs((abs((t-0))-1))))\n(0*((1-abs((t-0)))+abs((abs((t-0))-1))))",
"((((((((((((((((((((((((((((((((((((((((((((((((((10*((1-abs((t-0)))+abs((abs((t-0))-1))))+(2*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(9*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(18*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(15*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(19*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(16*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(3*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(4*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(18*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(7*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(20*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(9*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(14*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(16*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(17*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(22*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(9*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(6*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(16*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(10*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(22*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(6*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(3*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(9*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(25*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(15*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(18*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(15*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(3*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(9*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(4*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(1*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(8*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(6*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(20*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(16*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(8*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(3*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(15*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(1*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(8*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(5*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(6*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(22*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(3*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(22*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(9*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(17*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(4*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n((((((((((((((((((((((((((((((((((((((((((((((((((11*((1-abs((t-0)))+abs((abs((t-0))-1))))+(8*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(14*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(3*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(23*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(7*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(12*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(9*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(3*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(24*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(13*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(6*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(5*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(21*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(13*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(1*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(16*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(24*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(19*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(5*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(4*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(4*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(0*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(8*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(7*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(0*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(15*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(21*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(1*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(16*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(11*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(3*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(12*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(9*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(5*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(28*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(22*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(20*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(5*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(25*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(20*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(15*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(2*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(15*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(16*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(25*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(24*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(4*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(23*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(25*((1-abs((t-49)))+abs((abs((t-49))-1)))))",
"((((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(25*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(25*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(0*((1-abs((t-3)))+abs((abs((t-3))-1)))))\n((((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(33*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(0*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(25*((1-abs((t-3)))+abs((abs((t-3))-1)))))",
"(((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(9*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(10*((1-abs((t-2)))+abs((abs((t-2))-1)))))\n(((5*((1-abs((t-0)))+abs((abs((t-0))-1))))+(0*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(5*((1-abs((t-2)))+abs((abs((t-2))-1)))))",
"(((((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(1*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(1*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(20*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(25*((1-abs((t-4)))+abs((abs((t-4))-1)))))\n(((((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(0*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(0*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(20*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(25*((1-abs((t-4)))+abs((abs((t-4))-1)))))",
"((((((((((((((((((((((((((((((((((((((((((((((((((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(0*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(0*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(1*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(0*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(0*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(0*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(0*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(0*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(0*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(0*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(0*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(0*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(0*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(0*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(0*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(0*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(0*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(0*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(0*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(0*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(0*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(0*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(0*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(0*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(0*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(0*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(0*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(0*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(0*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(0*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(0*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(0*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(0*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(0*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(0*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(0*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(0*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(0*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(0*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(0*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(0*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(0*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(0*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(0*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(0*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(0*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(0*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(0*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(0*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n((((((((((((((((((((((((((((((((((((((((((((((((((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(0*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(0*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(0*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(0*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(0*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(0*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(0*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(0*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(0*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(0*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(0*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(0*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(0*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(0*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(0*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(0*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(0*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(0*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(0*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(0*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(0*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(0*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(0*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(0*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(0*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(0*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(0*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(0*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(0*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(0*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(0*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(0*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(0*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(0*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(0*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(0*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(0*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(0*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(0*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(0*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(0*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(0*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(0*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(0*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(0*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(0*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(0*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(0*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(0*((1-abs((t-49)))+abs((abs((t-49))-1)))))",
"(((((1*((1-abs((t-0)))+abs((abs((t-0))-1))))+(2*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(3*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(1*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(5*((1-abs((t-4)))+abs((abs((t-4))-1)))))\n(((((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(3*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(1*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(5*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(0*((1-abs((t-4)))+abs((abs((t-4))-1)))))",
"((((((((((3*((1-abs((t-0)))+abs((abs((t-0))-1))))+(1*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(4*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(0*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(1*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(5*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(1*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(5*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(2*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(4*((1-abs((t-9)))+abs((abs((t-9))-1)))))\n((((((((((1*((1-abs((t-0)))+abs((abs((t-0))-1))))+(0*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(3*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(1*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(0*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(4*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(3*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(1*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(5*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(4*((1-abs((t-9)))+abs((abs((t-9))-1)))))",
"(25*((1-abs((t-0)))+abs((abs((t-0))-1))))\n(2*((1-abs((t-0)))+abs((abs((t-0))-1))))",
"((((((((((((((((((((((((((((((((((((((((((((((((((23*((1-abs((t-0)))+abs((abs((t-0))-1))))+(15*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(17*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(9*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(12*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(17*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(7*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(3*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(11*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(5*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(24*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(16*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(14*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(15*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(7*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(17*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(25*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(5*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(11*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(21*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(17*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(9*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(20*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(11*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(3*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(18*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(7*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(9*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(20*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(13*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(9*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(17*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(9*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(6*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(4*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(19*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(22*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(2*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(18*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(5*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(10*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(9*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(10*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(2*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(4*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(5*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(0*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(2*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(20*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(3*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n((((((((((((((((((((((((((((((((((((((((((((((((((21*((1-abs((t-0)))+abs((abs((t-0))-1))))+(19*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(10*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(20*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(16*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(0*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(20*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(1*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(20*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(14*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(23*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(22*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(9*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(8*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(2*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(9*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(5*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(14*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(4*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(12*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(10*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(24*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(18*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(13*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(0*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(12*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(13*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(23*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(25*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(20*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(13*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(1*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(13*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(11*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(25*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(4*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(11*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(15*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(3*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(13*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(15*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(3*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(6*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(1*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(20*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(8*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(5*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(3*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(8*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(3*((1-abs((t-49)))+abs((abs((t-49))-1)))))",
"((((((((((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(1*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(3*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(3*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(7*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(1*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(4*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(0*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(2*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(7*((1-abs((t-9)))+abs((abs((t-9))-1)))))\n((((((((((4*((1-abs((t-0)))+abs((abs((t-0))-1))))+(5*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(3*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(6*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(7*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(6*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(0*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(6*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(5*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(1*((1-abs((t-9)))+abs((abs((t-9))-1)))))",
"(((((((6*((1-abs((t-0)))+abs((abs((t-0))-1))))+(1*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(6*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(0*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(5*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(4*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(5*((1-abs((t-6)))+abs((abs((t-6))-1)))))\n(((((((12*((1-abs((t-0)))+abs((abs((t-0))-1))))+(5*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(6*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(6*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(1*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(3*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(5*((1-abs((t-6)))+abs((abs((t-6))-1)))))",
"((((((((((((((((((((((((((((((((((((((((((((((((((10*((1-abs((t-0)))+abs((abs((t-0))-1))))+(2*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(9*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(18*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(15*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(19*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(16*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(3*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(4*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(18*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(7*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(20*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(9*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(14*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(16*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(17*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(22*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(9*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(6*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(16*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(10*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(22*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(6*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(3*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(9*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(25*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(0*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(18*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(15*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(3*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(9*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(4*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(1*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(8*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(6*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(20*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(16*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(8*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(3*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(15*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(1*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(8*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(5*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(6*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(22*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(3*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(22*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(9*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(17*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(4*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n((((((((((((((((((((((((((((((((((((((((((((((((((11*((1-abs((t-0)))+abs((abs((t-0))-1))))+(8*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(14*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(3*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(23*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(7*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(12*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(9*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(3*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(24*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(13*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(6*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(5*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(21*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(13*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(1*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(16*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(24*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(19*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(5*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(4*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(4*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(0*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(8*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(7*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(0*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(15*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(21*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(1*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(16*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(11*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(3*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(12*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(9*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(5*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(28*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(22*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(20*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(5*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(25*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(20*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(15*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(2*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(15*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(16*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(25*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(24*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(4*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(23*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(25*((1-abs((t-49)))+abs((abs((t-49))-1)))))",
"((((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(25*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(25*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(0*((1-abs((t-3)))+abs((abs((t-3))-1)))))\n((((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(33*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(0*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(12*((1-abs((t-3)))+abs((abs((t-3))-1)))))",
"(((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(17*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(10*((1-abs((t-2)))+abs((abs((t-2))-1)))))\n(((5*((1-abs((t-0)))+abs((abs((t-0))-1))))+(0*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(5*((1-abs((t-2)))+abs((abs((t-2))-1)))))",
"((((((((((((((((((((((((((((((((((((((((((((((((((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(0*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(0*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(0*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(0*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(0*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(0*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(0*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(0*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(0*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(0*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(0*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(0*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(0*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(0*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(0*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(0*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(0*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(0*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(0*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(0*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(0*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(0*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(0*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(0*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(0*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(0*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(0*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(0*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(0*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(0*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(0*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(0*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(0*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(0*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(0*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(0*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(0*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(0*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(0*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(0*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(0*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(0*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(0*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(0*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(0*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(0*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(0*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(0*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(0*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n((((((((((((((((((((((((((((((((((((((((((((((((((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(0*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(0*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(0*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(0*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(0*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(0*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(0*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(0*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(0*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(0*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(0*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(0*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(0*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(0*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(0*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(0*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(0*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(0*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(0*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(0*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(0*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(0*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(0*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(0*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(0*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(0*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(0*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(0*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(0*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(0*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(0*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(0*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(0*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(0*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(0*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(0*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(0*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(0*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(0*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(0*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(0*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(0*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(0*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(0*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(0*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(0*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(0*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(0*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(0*((1-abs((t-49)))+abs((abs((t-49))-1)))))",
"(((4*((1-abs((t-0)))+abs((abs((t-0))-1))))+(4*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(4*((1-abs((t-2)))+abs((abs((t-2))-1)))))\n(((2*((1-abs((t-0)))+abs((abs((t-0))-1))))+(4*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(2*((1-abs((t-2)))+abs((abs((t-2))-1)))))",
"((((((((((((((((((((((((((((((((((((((((((((((((((24*((1-abs((t-0)))+abs((abs((t-0))-1))))+(16*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(7*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(16*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(3*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(9*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(9*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(19*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(18*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(25*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(4*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(20*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(12*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(11*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(15*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(14*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(23*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(23*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(13*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(12*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(5*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(19*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(24*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(0*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(9*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(4*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(24*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(1*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(17*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(17*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(18*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(24*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(16*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(21*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(23*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(18*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(20*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(3*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(23*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(4*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(17*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(1*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(1*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(14*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(0*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(14*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(15*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(4*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(3*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(22*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n((((((((((((((((((((((((((((((((((((((((((((((((((22*((1-abs((t-0)))+abs((abs((t-0))-1))))+(22*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(20*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(14*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(8*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(4*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(20*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(20*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(0*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(7*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(16*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(20*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(21*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(10*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(10*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(7*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(4*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(11*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(4*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(11*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(14*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(22*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(11*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(7*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(12*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(24*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(3*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(15*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(10*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(7*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(21*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(9*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(4*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(17*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(10*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(5*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(23*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(6*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(2*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(16*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(15*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(24*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(9*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(7*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(6*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(14*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(16*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(16*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(6*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(7*((1-abs((t-49)))+abs((abs((t-49))-1)))))",
"(((1*((1-abs((t-0)))+abs((abs((t-0))-1))))+(2*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(24*((1-abs((t-2)))+abs((abs((t-2))-1)))))\n(((2*((1-abs((t-0)))+abs((abs((t-0))-1))))+(4*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(0*((1-abs((t-2)))+abs((abs((t-2))-1)))))",
"(((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(5*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(10*((1-abs((t-2)))+abs((abs((t-2))-1)))))\n(((5*((1-abs((t-0)))+abs((abs((t-0))-1))))+(0*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(5*((1-abs((t-2)))+abs((abs((t-2))-1)))))",
"(((((((((((((((((((((((((((((((((((((((((((((((((24*((1-abs((t-0)))+abs((abs((t-0))-1))))+(4*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(13*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(9*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(17*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(12*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(13*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(15*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(9*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(10*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(17*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(6*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(14*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(6*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(25*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(6*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(15*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(19*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(12*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(16*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(4*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(15*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(10*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(1*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(10*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(20*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(21*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(4*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(7*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(4*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(23*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(20*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(5*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(6*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(12*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(7*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(0*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(2*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(14*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(6*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(11*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(19*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(6*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(10*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(14*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(17*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(5*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(12*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(23*((1-abs((t-48)))+abs((abs((t-48))-1)))))\n(((((((((((((((((((((((((((((((((((((((((((((((((4*((1-abs((t-0)))+abs((abs((t-0))-1))))+(19*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(21*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(24*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(1*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(1*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(20*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(14*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(17*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(14*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(20*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(22*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(1*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(16*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(5*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(3*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(25*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(11*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(16*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(0*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(18*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(13*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(2*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(0*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(7*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(10*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(10*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(14*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(17*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(15*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(19*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(20*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(2*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(23*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(1*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(4*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(4*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(5*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(6*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(21*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(21*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(12*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(23*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(25*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(16*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(10*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(17*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(14*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(2*((1-abs((t-48)))+abs((abs((t-48))-1)))))",
"((((((((((((((((((((((((((((((((((((((((((((((((((3*((1-abs((t-0)))+abs((abs((t-0))-1))))+(20*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(24*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(7*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(5*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(1*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(7*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(4*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(0*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(11*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(5*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(9*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(5*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(2*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(13*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(16*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(1*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(24*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(22*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(1*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(0*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(15*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(18*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(5*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(5*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(2*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(1*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(16*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(18*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(12*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(9*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(23*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(23*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(3*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(7*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(8*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(6*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(11*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(21*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(21*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(10*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(8*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(21*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(2*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(24*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(0*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(2*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(24*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(3*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(4*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n((((((((((((((((((((((((((((((((((((((((((((((((((6*((1-abs((t-0)))+abs((abs((t-0))-1))))+(8*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(16*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(8*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(8*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(5*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(1*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(6*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(8*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(22*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(0*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(22*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(15*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(21*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(7*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(23*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(2*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(11*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(1*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(20*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(13*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(0*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(3*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(24*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(23*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(20*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(23*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(1*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(21*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(8*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(16*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(10*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(12*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(1*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(1*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(8*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(15*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(9*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(20*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(13*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(10*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(2*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(19*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(16*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(2*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(1*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(20*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(18*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(5*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(3*((1-abs((t-49)))+abs((abs((t-49))-1)))))",
"(((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(2*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(10*((1-abs((t-2)))+abs((abs((t-2))-1)))))\n(((0*((1-abs((t-0)))+abs((abs((t-0))-1))))+(3*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(12*((1-abs((t-2)))+abs((abs((t-2))-1)))))",
"((((((((((((((((((((((((((((((((((((((((((((((((((5*((1-abs((t-0)))+abs((abs((t-0))-1))))+(10*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(16*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(17*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(9*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(10*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(15*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(15*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(15*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(11*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(0*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(2*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(17*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(3*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(9*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(4*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(20*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(16*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(21*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(11*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(14*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(17*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(8*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(8*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(7*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(16*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(21*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(11*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(17*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(1*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(9*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(24*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(13*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(12*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(16*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(5*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(18*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(25*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(12*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(12*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(14*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(10*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(6*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(7*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(15*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(7*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(8*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(11*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(8*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(15*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n((((((((((((((((((((((((((((((((((((((((((((((((((13*((1-abs((t-0)))+abs((abs((t-0))-1))))+(18*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(21*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(3*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(18*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(14*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(6*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(4*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(2*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(3*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(22*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(18*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(11*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(19*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(9*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(25*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(5*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(2*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(23*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(22*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(1*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(2*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(15*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(23*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(23*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(7*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(5*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(17*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(4*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(2*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(7*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(19*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(14*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(19*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(16*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(3*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(17*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(11*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(14*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(25*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(13*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(15*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(15*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(1*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(22*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(6*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(9*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(15*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(13*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(0*((1-abs((t-49)))+abs((abs((t-49))-1)))))",
"(((((((((((((((((((((((((((((((((((((((((((((((((16*((1-abs((t-0)))+abs((abs((t-0))-1))))+(15*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(2*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(19*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(11*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(4*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(23*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(1*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(0*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(19*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(3*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(0*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(23*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(10*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(11*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(16*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(17*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(19*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(20*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(6*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(2*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(8*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(11*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(18*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(6*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(8*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(14*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(0*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(18*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(23*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(4*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(13*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(6*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(1*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(7*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(20*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(4*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(21*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(2*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(15*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(8*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(6*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(5*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(24*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(19*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(1*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(6*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(0*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(11*((1-abs((t-48)))+abs((abs((t-48))-1)))))\n(((((((((((((((((((((((((((((((((((((((((((((((((20*((1-abs((t-0)))+abs((abs((t-0))-1))))+(12*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(18*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(25*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(14*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(19*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(7*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(20*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(22*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(7*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(3*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(17*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(8*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(14*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(11*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(20*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(1*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(18*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(24*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(7*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(7*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(4*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(11*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(24*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(24*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(2*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(0*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(9*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(5*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(5*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(12*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(0*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(13*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(9*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(16*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(4*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(19*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(17*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(9*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(23*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(23*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(4*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(11*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(21*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(14*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(23*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(13*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(13*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(0*((1-abs((t-48)))+abs((abs((t-48))-1)))))",
"((((((((((((((((((((((((((((((((((((((((((((((((((17*((1-abs((t-0)))+abs((abs((t-0))-1))))+(9*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(7*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(1*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(13*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(25*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(24*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(3*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(8*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(11*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(9*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(5*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(11*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(15*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(5*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(4*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(4*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(7*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(15*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(6*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(7*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(2*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(6*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(0*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(13*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(41*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(5*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(20*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(24*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(19*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(9*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(11*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(18*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(1*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(5*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(7*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(12*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(5*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(11*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(11*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(6*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(9*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(1*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(23*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(6*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(4*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(4*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(5*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(6*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(3*((1-abs((t-49)))+abs((abs((t-49))-1)))))\n((((((((((((((((((((((((((((((((((((((((((((((((((3*((1-abs((t-0)))+abs((abs((t-0))-1))))+(7*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(12*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(12*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(1*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(22*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(9*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(11*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(11*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(12*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(11*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(14*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(7*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(7*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(21*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(5*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(16*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(0*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(12*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(2*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(6*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(8*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(21*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(4*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(17*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(6*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(8*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(2*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(19*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(11*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(5*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(8*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(13*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(17*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(21*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(18*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(3*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(17*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(17*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(12*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(18*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(3*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(23*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(14*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(18*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(23*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(2*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(17*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(15*((1-abs((t-48)))+abs((abs((t-48))-1)))))+(8*((1-abs((t-49)))+abs((abs((t-49))-1)))))",
"(((((((((((((((((((((((((((((((((((((((((((((((((4*((1-abs((t-0)))+abs((abs((t-0))-1))))+(11*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(23*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(17*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(15*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(5*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(21*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(15*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(13*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(3*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(19*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(17*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(16*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(19*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(1*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(19*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(10*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(16*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(8*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(5*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(13*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(22*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(23*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(24*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(1*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(17*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(10*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(6*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(4*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(8*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(22*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(1*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(22*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(24*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(11*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(7*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(9*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(24*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(22*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(13*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(3*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(19*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(16*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(1*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(13*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(19*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(12*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(22*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(11*((1-abs((t-48)))+abs((abs((t-48))-1)))))\n(((((((((((((((((((((((((((((((((((((((((((((((((21*((1-abs((t-0)))+abs((abs((t-0))-1))))+(17*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(19*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(7*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(4*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(16*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(5*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(17*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(13*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(15*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(6*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(5*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(15*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(15*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(12*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(6*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(13*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(0*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(22*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(10*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(21*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(4*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(25*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(22*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(4*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(16*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(15*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(9*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(22*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(23*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(14*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(11*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(3*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(17*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(17*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(16*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(11*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(2*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(18*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(8*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(18*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(25*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(6*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(24*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(18*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(9*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(20*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(1*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(20*((1-abs((t-48)))+abs((abs((t-48))-1)))))",
"(((((((((((((((((((((((((((((((((((((((((((((((((11*((1-abs((t-0)))+abs((abs((t-0))-1))))+(18*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(8*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(25*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(13*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(23*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(4*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(14*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(17*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(10*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(8*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(3*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(19*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(19*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(4*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(19*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(6*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(14*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(18*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(20*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(10*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(3*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(24*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(9*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(5*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(13*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(12*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(21*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(0*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(24*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(22*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(8*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(1*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(4*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(10*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(19*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(6*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(21*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(3*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(8*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(7*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(19*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(12*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(6*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(24*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(20*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(8*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(19*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(25*((1-abs((t-48)))+abs((abs((t-48))-1)))))\n(((((((((((((((((((((((((((((((((((((((((((((((((14*((1-abs((t-0)))+abs((abs((t-0))-1))))+(4*((1-abs((t-1)))+abs((abs((t-1))-1)))))+(18*((1-abs((t-2)))+abs((abs((t-2))-1)))))+(15*((1-abs((t-3)))+abs((abs((t-3))-1)))))+(19*((1-abs((t-4)))+abs((abs((t-4))-1)))))+(18*((1-abs((t-5)))+abs((abs((t-5))-1)))))+(16*((1-abs((t-6)))+abs((abs((t-6))-1)))))+(7*((1-abs((t-7)))+abs((abs((t-7))-1)))))+(21*((1-abs((t-8)))+abs((abs((t-8))-1)))))+(17*((1-abs((t-9)))+abs((abs((t-9))-1)))))+(5*((1-abs((t-10)))+abs((abs((t-10))-1)))))+(14*((1-abs((t-11)))+abs((abs((t-11))-1)))))+(17*((1-abs((t-12)))+abs((abs((t-12))-1)))))+(2*((1-abs((t-13)))+abs((abs((t-13))-1)))))+(18*((1-abs((t-14)))+abs((abs((t-14))-1)))))+(10*((1-abs((t-15)))+abs((abs((t-15))-1)))))+(14*((1-abs((t-16)))+abs((abs((t-16))-1)))))+(13*((1-abs((t-17)))+abs((abs((t-17))-1)))))+(14*((1-abs((t-18)))+abs((abs((t-18))-1)))))+(8*((1-abs((t-19)))+abs((abs((t-19))-1)))))+(0*((1-abs((t-20)))+abs((abs((t-20))-1)))))+(7*((1-abs((t-21)))+abs((abs((t-21))-1)))))+(21*((1-abs((t-22)))+abs((abs((t-22))-1)))))+(6*((1-abs((t-23)))+abs((abs((t-23))-1)))))+(13*((1-abs((t-24)))+abs((abs((t-24))-1)))))+(22*((1-abs((t-25)))+abs((abs((t-25))-1)))))+(7*((1-abs((t-26)))+abs((abs((t-26))-1)))))+(4*((1-abs((t-27)))+abs((abs((t-27))-1)))))+(15*((1-abs((t-28)))+abs((abs((t-28))-1)))))+(5*((1-abs((t-29)))+abs((abs((t-29))-1)))))+(9*((1-abs((t-30)))+abs((abs((t-30))-1)))))+(17*((1-abs((t-31)))+abs((abs((t-31))-1)))))+(4*((1-abs((t-32)))+abs((abs((t-32))-1)))))+(0*((1-abs((t-33)))+abs((abs((t-33))-1)))))+(21*((1-abs((t-34)))+abs((abs((t-34))-1)))))+(15*((1-abs((t-35)))+abs((abs((t-35))-1)))))+(18*((1-abs((t-36)))+abs((abs((t-36))-1)))))+(25*((1-abs((t-37)))+abs((abs((t-37))-1)))))+(4*((1-abs((t-38)))+abs((abs((t-38))-1)))))+(21*((1-abs((t-39)))+abs((abs((t-39))-1)))))+(2*((1-abs((t-40)))+abs((abs((t-40))-1)))))+(12*((1-abs((t-41)))+abs((abs((t-41))-1)))))+(14*((1-abs((t-42)))+abs((abs((t-42))-1)))))+(23*((1-abs((t-43)))+abs((abs((t-43))-1)))))+(20*((1-abs((t-44)))+abs((abs((t-44))-1)))))+(6*((1-abs((t-45)))+abs((abs((t-45))-1)))))+(23*((1-abs((t-46)))+abs((abs((t-46))-1)))))+(13*((1-abs((t-47)))+abs((abs((t-47))-1)))))+(12*((1-abs((t-48)))+abs((abs((t-48))-1)))))",
"(0*((1-abs((t-0)))+abs((abs((t-0))-1))))\n(0*((1-abs((t-0)))+abs((abs((t-0))-1))))"
]
} | 2CODEFORCES
|
615_A. Bulbs_140 | Vasya wants to turn on Christmas lights consisting of m bulbs. Initially, all bulbs are turned off. There are n buttons, each of them is connected to some set of bulbs. Vasya can press any of these buttons. When the button is pressed, it turns on all the bulbs it's connected to. Can Vasya light up all the bulbs?
If Vasya presses the button such that some bulbs connected to it are already turned on, they do not change their state, i.e. remain turned on.
Input
The first line of the input contains integers n and m (1 ≤ n, m ≤ 100) — the number of buttons and the number of bulbs respectively.
Each of the next n lines contains xi (0 ≤ xi ≤ m) — the number of bulbs that are turned on by the i-th button, and then xi numbers yij (1 ≤ yij ≤ m) — the numbers of these bulbs.
Output
If it's possible to turn on all m bulbs print "YES", otherwise print "NO".
Examples
Input
3 4
2 1 4
3 1 3 1
1 2
Output
YES
Input
3 3
1 1
1 2
1 1
Output
NO
Note
In the first sample you can press each button once and turn on all the bulbs. In the 2 sample it is impossible to turn on the 3-rd lamp. | n, m = map(int, raw_input().split())
lines = [map(int, raw_input().split())[1:] for i in xrange(n)]
ans = set()
for i in lines:
ans = ans.union(set(i))
print "YES" if len(ans)==m else "NO"
| 1Python2
| {
"input": [
"3 4\n2 1 4\n3 1 3 1\n1 2\n",
"3 3\n1 1\n1 2\n1 1\n",
"3 4\n1 1\n1 2\n1 3\n",
"1 100\n99 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99\n",
"2 5\n4 3 1 4 2\n4 2 3 4 5\n",
"1 1\n0\n",
"5 6\n3 1 2 6\n3 1 2 6\n1 1\n2 3 4\n3 1 5 6\n",
"2 4\n3 2 3 4\n1 1\n",
"1 100\n100 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100\n",
"1 5\n5 1 1 1 1 5\n",
"1 5\n5 4 4 1 2 3\n",
"1 10\n10 1 2 3 4 5 6 7 8 9 10\n",
"1 4\n3 2 3 4\n",
"5 1\n0\n0\n0\n0\n0\n",
"2 4\n3 1 2 3\n1 4\n",
"5 7\n2 6 7\n5 1 1 1 1 1\n3 6 5 4\n0\n4 4 3 2 1\n",
"1 3\n3 1 2 1\n",
"5 2\n1 1\n1 1\n1 1\n1 1\n1 1\n",
"100 100\n0\n0\n0\n1 53\n0\n0\n1 34\n1 54\n0\n1 14\n0\n1 33\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n1 82\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n1 34\n0\n0\n1 26\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n1 34\n0\n0\n0\n0\n0\n1 3\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n1 40\n0\n0\n0\n1 26\n0\n0\n0\n0\n0\n1 97\n0\n1 5\n0\n0\n0\n0\n0\n",
"1 4\n3 1 2 3\n",
"1 1\n1 1\n",
"100 100\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n",
"1 5\n5 1 2 3 4 5\n",
"5 6\n3 1 2 6\n3 1 2 6\n1 1\n2 3 6\n3 1 5 6\n",
"5 7\n2 6 7\n5 1 1 1 1 1\n3 6 5 5\n0\n4 4 3 2 1\n",
"1 100\n100 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 16 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100\n",
"1 5\n5 1 1 1 2 5\n",
"1 5\n3 1 2 1\n",
"100 100\n0\n0\n0\n1 53\n0\n0\n1 34\n1 54\n0\n1 14\n0\n1 33\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n1 82\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n1 22\n0\n0\n1 26\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n1 34\n0\n0\n0\n0\n0\n1 3\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n1 40\n0\n0\n0\n1 26\n0\n0\n0\n0\n0\n1 97\n0\n1 5\n0\n0\n0\n0\n0\n",
"3 4\n2 1 4\n3 1 3 1\n1 1\n",
"3 4\n0 1 4\n3 1 3 1\n1 1\n",
"3 3\n1 1\n1 2\n1 3\n",
"1 100\n99 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 50 93 94 95 96 97 98 99\n",
"0 1\n0\n",
"5 6\n3 1 3 6\n3 1 2 6\n1 1\n2 3 4\n3 1 5 6\n",
"1 100\n100 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 13 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100\n",
"1 6\n5 1 1 1 1 5\n",
"1 5\n5 4 4 1 4 3\n",
"5 2\n1 1\n1 1\n1 1\n1 1\n0 1\n",
"1 8\n3 1 2 3\n",
"3 3\n1 1\n0 2\n1 1\n",
"5 6\n3 1 2 6\n3 1 2 6\n1 1\n2 3 6\n3 2 5 6\n",
"1 100\n100 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 16 18 19 20 21 22 23 24 25 26 27 28 29 30 31 31 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100\n",
"5 7\n2 6 5\n5 1 1 1 1 1\n3 6 5 5\n0\n4 4 3 2 1\n",
"1 4\n3 1 2 1\n",
"1 100\n99 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 19 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 50 93 94 95 96 97 98 99\n",
"0 1\n1\n",
"1 6\n5 1 1 1 2 5\n",
"1 9\n3 1 2 3\n",
"5 6\n3 1 2 6\n3 1 2 6\n1 1\n2 3 6\n3 2 5 1\n",
"1 100\n100 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 16 18 19 20 21 22 23 24 25 26 27 28 29 30 31 31 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 74 99 100\n",
"5 7\n2 6 5\n5 1 1 2 1 1\n3 6 5 5\n0\n4 4 3 2 1\n",
"0 4\n3 1 2 1\n",
"1 100\n99 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 19 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 23 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 50 93 94 95 96 97 98 99\n",
"0 2\n1\n",
"0 9\n3 1 2 3\n",
"1 100\n100 1 2 3 4 5 6 7 8 9 10 11 2 13 14 15 16 16 18 19 20 21 22 23 24 25 26 27 28 29 30 31 31 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 74 99 100\n",
"0 4\n4 1 2 1\n",
"1 100\n99 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 19 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 50 66 67 68 69 70 71 72 73 23 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 50 93 94 95 96 97 98 99\n",
"0 5\n3 1 2 3\n",
"1 100\n100 1 2 3 4 5 6 7 8 9 10 11 2 13 14 15 16 16 18 19 20 21 22 23 24 25 26 27 28 29 30 31 31 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 15 91 92 93 94 95 96 97 74 99 100\n",
"0 4\n4 0 2 1\n",
"1 100\n99 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 19 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 41 50 66 67 68 69 70 71 72 73 23 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 50 93 94 95 96 97 98 99\n",
"0 5\n3 1 2 2\n",
"0 4\n4 0 3 1\n",
"1 100\n99 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 19 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 41 50 66 67 68 69 73 71 72 73 23 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 50 93 94 95 96 97 98 99\n",
"0 5\n0 1 2 2\n",
"0 4\n4 1 3 1\n",
"1 100\n99 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 19 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 59 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 41 50 66 67 68 69 73 71 72 73 23 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 50 93 94 95 96 97 98 99\n",
"1 100\n99 1 2 3 4 8 6 7 8 9 10 11 12 13 14 15 19 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 59 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 41 50 66 67 68 69 73 71 72 73 23 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 50 93 94 95 96 97 98 99\n",
"1 100\n99 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 34 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99\n",
"2 5\n4 3 1 4 4\n4 2 3 4 5\n",
"0 2\n0\n",
"5 6\n3 1 2 6\n3 1 2 6\n1 1\n2 3 4\n3 1 2 6\n",
"1 100\n100 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 67 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100\n",
"0 5\n5 4 4 1 2 3\n",
"1 4\n3 3 3 4\n",
"5 7\n2 6 7\n5 1 1 1 1 1\n3 6 5 4\n0\n4 4 2 2 1\n",
"100 100\n0\n0\n0\n1 72\n0\n0\n1 34\n1 54\n0\n1 14\n0\n1 33\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n1 82\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n1 34\n0\n0\n1 26\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n1 34\n0\n0\n0\n0\n0\n1 3\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n1 40\n0\n0\n0\n1 26\n0\n0\n0\n0\n0\n1 97\n0\n1 5\n0\n0\n0\n0\n0\n",
"0 4\n3 1 2 3\n",
"1 5\n5 1 2 3 4 1\n",
"1 100\n100 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 24 16 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100\n",
"1 8\n5 1 1 1 2 5\n",
"3 8\n0 1 4\n3 1 3 1\n1 1\n",
"1 100\n99 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 10 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 50 93 94 95 96 97 98 99\n",
"0 1\n-1\n",
"5 6\n3 1 3 6\n3 1 2 2\n1 1\n2 3 4\n3 1 5 6\n",
"1 100\n100 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 74 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 13 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100\n",
"1 6\n4 1 1 1 1 5\n",
"0 2\n1 1\n1 1\n1 1\n1 1\n0 1\n",
"1 8\n2 1 2 3\n",
"1 100\n100 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 16 18 19 20 21 22 23 24 25 26 27 28 29 30 31 31 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 1 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100\n",
"5 7\n2 6 5\n5 1 1 1 1 1\n3 6 2 5\n0\n4 4 3 2 1\n",
"1 4\n3 2 2 1\n",
"1 9\n3 1 4 3\n",
"5 6\n3 1 2 1\n3 1 2 6\n1 1\n2 3 6\n3 2 5 1\n",
"1 100\n100 1 2 3 4 5 3 7 8 9 10 11 12 13 14 15 16 16 18 19 20 21 22 23 24 25 26 27 28 29 30 31 31 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 74 99 100\n",
"5 7\n2 6 5\n1 1 1 2 1 1\n3 6 5 5\n0\n4 4 3 2 1\n",
"0 7\n3 1 2 1\n",
"1 100\n5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 19 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 23 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 50 93 94 95 96 97 98 99\n",
"0 9\n3 1 3 3\n",
"1 100\n100 1 2 3 4 6 6 7 8 9 10 11 2 13 14 15 16 16 18 19 20 21 22 23 24 25 26 27 28 29 30 31 31 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 74 99 100\n",
"0 7\n4 1 2 1\n",
"1 100\n99 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 19 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 93 60 61 62 63 64 50 66 67 68 69 70 71 72 73 23 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 50 93 94 95 96 97 98 99\n",
"0 5\n2 1 2 3\n",
"1 100\n100 1 2 3 4 5 6 7 8 9 10 11 2 13 14 15 16 16 18 19 20 21 22 23 24 25 26 27 28 29 30 31 31 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 13 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 15 91 92 93 94 95 96 97 74 99 100\n",
"1 100\n99 1 2 3 4 3 6 7 8 9 10 11 12 13 14 15 19 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 41 50 66 67 68 69 70 71 72 73 23 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 50 93 94 95 96 97 98 99\n",
"0 5\n4 1 2 3\n",
"1 100\n99 1 2 3 7 5 6 7 8 9 10 11 12 13 14 15 19 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 41 50 66 67 68 69 73 71 72 73 23 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 50 93 94 95 96 97 98 99\n",
"0 5\n0 1 0 2\n",
"0 4\n4 1 3 2\n",
"1 100\n99 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 34 23 24 25 26 27 28 29 30 31 30 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99\n",
"0 4\n0\n",
"5 6\n3 1 2 6\n3 1 2 6\n1 1\n2 3 1\n3 1 2 6\n",
"1 100\n100 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 67 51 52 53 54 55 56 57 58 60 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100\n",
"100 100\n0\n0\n0\n1 72\n0\n0\n1 34\n1 54\n0\n1 14\n0\n1 36\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n1 82\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n1 34\n0\n0\n1 26\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n1 34\n0\n0\n0\n0\n0\n1 3\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n1 40\n0\n0\n0\n1 26\n0\n0\n0\n0\n0\n1 97\n0\n1 5\n0\n0\n0\n0\n0\n",
"0 4\n3 1 4 3\n",
"1 5\n1 1 2 3 4 1\n",
"1 100\n100 1 2 3 4 5 6 7 8 9 14 11 12 13 14 15 24 16 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100\n",
"1 8\n5 2 1 1 2 5\n"
],
"output": [
"YES\n",
"NO\n",
"NO\n",
"NO\n",
"YES\n",
"NO\n",
"YES\n",
"YES\n",
"YES\n",
"NO\n",
"NO\n",
"YES\n",
"NO\n",
"NO\n",
"YES\n",
"YES\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"YES\n",
"NO\n",
"YES\n",
"NO\n",
"YES\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"YES\n",
"NO\n",
"NO\n",
"YES\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"YES\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"YES\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n"
]
} | 2CODEFORCES
|
615_A. Bulbs_141 | Vasya wants to turn on Christmas lights consisting of m bulbs. Initially, all bulbs are turned off. There are n buttons, each of them is connected to some set of bulbs. Vasya can press any of these buttons. When the button is pressed, it turns on all the bulbs it's connected to. Can Vasya light up all the bulbs?
If Vasya presses the button such that some bulbs connected to it are already turned on, they do not change their state, i.e. remain turned on.
Input
The first line of the input contains integers n and m (1 ≤ n, m ≤ 100) — the number of buttons and the number of bulbs respectively.
Each of the next n lines contains xi (0 ≤ xi ≤ m) — the number of bulbs that are turned on by the i-th button, and then xi numbers yij (1 ≤ yij ≤ m) — the numbers of these bulbs.
Output
If it's possible to turn on all m bulbs print "YES", otherwise print "NO".
Examples
Input
3 4
2 1 4
3 1 3 1
1 2
Output
YES
Input
3 3
1 1
1 2
1 1
Output
NO
Note
In the first sample you can press each button once and turn on all the bulbs. In the 2 sample it is impossible to turn on the 3-rd lamp. | #include <bits/stdc++.h>
using namespace std;
void solve() {
int n, k;
cin >> n >> k;
vector<int> mas(k, 0);
for (int i = 0; i < n; i++) {
int m;
cin >> m;
for (int i = 0; i < m; i++) {
int x;
cin >> x;
mas[x - 1]++;
}
}
for (int i = 0; i < k; i++) {
if (mas[i] == 0) {
cout << "NO";
return;
}
}
cout << "YES";
}
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
int tst = 1;
while (tst--) solve();
return 0;
}
| 2C++
| {
"input": [
"3 4\n2 1 4\n3 1 3 1\n1 2\n",
"3 3\n1 1\n1 2\n1 1\n",
"3 4\n1 1\n1 2\n1 3\n",
"1 100\n99 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99\n",
"2 5\n4 3 1 4 2\n4 2 3 4 5\n",
"1 1\n0\n",
"5 6\n3 1 2 6\n3 1 2 6\n1 1\n2 3 4\n3 1 5 6\n",
"2 4\n3 2 3 4\n1 1\n",
"1 100\n100 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100\n",
"1 5\n5 1 1 1 1 5\n",
"1 5\n5 4 4 1 2 3\n",
"1 10\n10 1 2 3 4 5 6 7 8 9 10\n",
"1 4\n3 2 3 4\n",
"5 1\n0\n0\n0\n0\n0\n",
"2 4\n3 1 2 3\n1 4\n",
"5 7\n2 6 7\n5 1 1 1 1 1\n3 6 5 4\n0\n4 4 3 2 1\n",
"1 3\n3 1 2 1\n",
"5 2\n1 1\n1 1\n1 1\n1 1\n1 1\n",
"100 100\n0\n0\n0\n1 53\n0\n0\n1 34\n1 54\n0\n1 14\n0\n1 33\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n1 82\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n1 34\n0\n0\n1 26\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n1 34\n0\n0\n0\n0\n0\n1 3\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n1 40\n0\n0\n0\n1 26\n0\n0\n0\n0\n0\n1 97\n0\n1 5\n0\n0\n0\n0\n0\n",
"1 4\n3 1 2 3\n",
"1 1\n1 1\n",
"100 100\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n",
"1 5\n5 1 2 3 4 5\n",
"5 6\n3 1 2 6\n3 1 2 6\n1 1\n2 3 6\n3 1 5 6\n",
"5 7\n2 6 7\n5 1 1 1 1 1\n3 6 5 5\n0\n4 4 3 2 1\n",
"1 100\n100 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 16 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100\n",
"1 5\n5 1 1 1 2 5\n",
"1 5\n3 1 2 1\n",
"100 100\n0\n0\n0\n1 53\n0\n0\n1 34\n1 54\n0\n1 14\n0\n1 33\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n1 82\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n1 22\n0\n0\n1 26\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n1 34\n0\n0\n0\n0\n0\n1 3\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n1 40\n0\n0\n0\n1 26\n0\n0\n0\n0\n0\n1 97\n0\n1 5\n0\n0\n0\n0\n0\n",
"3 4\n2 1 4\n3 1 3 1\n1 1\n",
"3 4\n0 1 4\n3 1 3 1\n1 1\n",
"3 3\n1 1\n1 2\n1 3\n",
"1 100\n99 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 50 93 94 95 96 97 98 99\n",
"0 1\n0\n",
"5 6\n3 1 3 6\n3 1 2 6\n1 1\n2 3 4\n3 1 5 6\n",
"1 100\n100 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 13 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100\n",
"1 6\n5 1 1 1 1 5\n",
"1 5\n5 4 4 1 4 3\n",
"5 2\n1 1\n1 1\n1 1\n1 1\n0 1\n",
"1 8\n3 1 2 3\n",
"3 3\n1 1\n0 2\n1 1\n",
"5 6\n3 1 2 6\n3 1 2 6\n1 1\n2 3 6\n3 2 5 6\n",
"1 100\n100 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 16 18 19 20 21 22 23 24 25 26 27 28 29 30 31 31 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100\n",
"5 7\n2 6 5\n5 1 1 1 1 1\n3 6 5 5\n0\n4 4 3 2 1\n",
"1 4\n3 1 2 1\n",
"1 100\n99 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 19 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 50 93 94 95 96 97 98 99\n",
"0 1\n1\n",
"1 6\n5 1 1 1 2 5\n",
"1 9\n3 1 2 3\n",
"5 6\n3 1 2 6\n3 1 2 6\n1 1\n2 3 6\n3 2 5 1\n",
"1 100\n100 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 16 18 19 20 21 22 23 24 25 26 27 28 29 30 31 31 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 74 99 100\n",
"5 7\n2 6 5\n5 1 1 2 1 1\n3 6 5 5\n0\n4 4 3 2 1\n",
"0 4\n3 1 2 1\n",
"1 100\n99 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 19 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 23 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 50 93 94 95 96 97 98 99\n",
"0 2\n1\n",
"0 9\n3 1 2 3\n",
"1 100\n100 1 2 3 4 5 6 7 8 9 10 11 2 13 14 15 16 16 18 19 20 21 22 23 24 25 26 27 28 29 30 31 31 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 74 99 100\n",
"0 4\n4 1 2 1\n",
"1 100\n99 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 19 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 50 66 67 68 69 70 71 72 73 23 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 50 93 94 95 96 97 98 99\n",
"0 5\n3 1 2 3\n",
"1 100\n100 1 2 3 4 5 6 7 8 9 10 11 2 13 14 15 16 16 18 19 20 21 22 23 24 25 26 27 28 29 30 31 31 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 15 91 92 93 94 95 96 97 74 99 100\n",
"0 4\n4 0 2 1\n",
"1 100\n99 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 19 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 41 50 66 67 68 69 70 71 72 73 23 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 50 93 94 95 96 97 98 99\n",
"0 5\n3 1 2 2\n",
"0 4\n4 0 3 1\n",
"1 100\n99 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 19 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 41 50 66 67 68 69 73 71 72 73 23 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 50 93 94 95 96 97 98 99\n",
"0 5\n0 1 2 2\n",
"0 4\n4 1 3 1\n",
"1 100\n99 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 19 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 59 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 41 50 66 67 68 69 73 71 72 73 23 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 50 93 94 95 96 97 98 99\n",
"1 100\n99 1 2 3 4 8 6 7 8 9 10 11 12 13 14 15 19 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 59 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 41 50 66 67 68 69 73 71 72 73 23 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 50 93 94 95 96 97 98 99\n",
"1 100\n99 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 34 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99\n",
"2 5\n4 3 1 4 4\n4 2 3 4 5\n",
"0 2\n0\n",
"5 6\n3 1 2 6\n3 1 2 6\n1 1\n2 3 4\n3 1 2 6\n",
"1 100\n100 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 67 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100\n",
"0 5\n5 4 4 1 2 3\n",
"1 4\n3 3 3 4\n",
"5 7\n2 6 7\n5 1 1 1 1 1\n3 6 5 4\n0\n4 4 2 2 1\n",
"100 100\n0\n0\n0\n1 72\n0\n0\n1 34\n1 54\n0\n1 14\n0\n1 33\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n1 82\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n1 34\n0\n0\n1 26\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n1 34\n0\n0\n0\n0\n0\n1 3\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n1 40\n0\n0\n0\n1 26\n0\n0\n0\n0\n0\n1 97\n0\n1 5\n0\n0\n0\n0\n0\n",
"0 4\n3 1 2 3\n",
"1 5\n5 1 2 3 4 1\n",
"1 100\n100 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 24 16 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100\n",
"1 8\n5 1 1 1 2 5\n",
"3 8\n0 1 4\n3 1 3 1\n1 1\n",
"1 100\n99 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 10 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 50 93 94 95 96 97 98 99\n",
"0 1\n-1\n",
"5 6\n3 1 3 6\n3 1 2 2\n1 1\n2 3 4\n3 1 5 6\n",
"1 100\n100 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 74 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 13 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100\n",
"1 6\n4 1 1 1 1 5\n",
"0 2\n1 1\n1 1\n1 1\n1 1\n0 1\n",
"1 8\n2 1 2 3\n",
"1 100\n100 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 16 18 19 20 21 22 23 24 25 26 27 28 29 30 31 31 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 1 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100\n",
"5 7\n2 6 5\n5 1 1 1 1 1\n3 6 2 5\n0\n4 4 3 2 1\n",
"1 4\n3 2 2 1\n",
"1 9\n3 1 4 3\n",
"5 6\n3 1 2 1\n3 1 2 6\n1 1\n2 3 6\n3 2 5 1\n",
"1 100\n100 1 2 3 4 5 3 7 8 9 10 11 12 13 14 15 16 16 18 19 20 21 22 23 24 25 26 27 28 29 30 31 31 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 74 99 100\n",
"5 7\n2 6 5\n1 1 1 2 1 1\n3 6 5 5\n0\n4 4 3 2 1\n",
"0 7\n3 1 2 1\n",
"1 100\n5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 19 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 23 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 50 93 94 95 96 97 98 99\n",
"0 9\n3 1 3 3\n",
"1 100\n100 1 2 3 4 6 6 7 8 9 10 11 2 13 14 15 16 16 18 19 20 21 22 23 24 25 26 27 28 29 30 31 31 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 74 99 100\n",
"0 7\n4 1 2 1\n",
"1 100\n99 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 19 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 93 60 61 62 63 64 50 66 67 68 69 70 71 72 73 23 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 50 93 94 95 96 97 98 99\n",
"0 5\n2 1 2 3\n",
"1 100\n100 1 2 3 4 5 6 7 8 9 10 11 2 13 14 15 16 16 18 19 20 21 22 23 24 25 26 27 28 29 30 31 31 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 13 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 15 91 92 93 94 95 96 97 74 99 100\n",
"1 100\n99 1 2 3 4 3 6 7 8 9 10 11 12 13 14 15 19 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 41 50 66 67 68 69 70 71 72 73 23 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 50 93 94 95 96 97 98 99\n",
"0 5\n4 1 2 3\n",
"1 100\n99 1 2 3 7 5 6 7 8 9 10 11 12 13 14 15 19 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 41 50 66 67 68 69 73 71 72 73 23 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 50 93 94 95 96 97 98 99\n",
"0 5\n0 1 0 2\n",
"0 4\n4 1 3 2\n",
"1 100\n99 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 34 23 24 25 26 27 28 29 30 31 30 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99\n",
"0 4\n0\n",
"5 6\n3 1 2 6\n3 1 2 6\n1 1\n2 3 1\n3 1 2 6\n",
"1 100\n100 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 67 51 52 53 54 55 56 57 58 60 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100\n",
"100 100\n0\n0\n0\n1 72\n0\n0\n1 34\n1 54\n0\n1 14\n0\n1 36\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n1 82\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n1 34\n0\n0\n1 26\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n1 34\n0\n0\n0\n0\n0\n1 3\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n1 40\n0\n0\n0\n1 26\n0\n0\n0\n0\n0\n1 97\n0\n1 5\n0\n0\n0\n0\n0\n",
"0 4\n3 1 4 3\n",
"1 5\n1 1 2 3 4 1\n",
"1 100\n100 1 2 3 4 5 6 7 8 9 14 11 12 13 14 15 24 16 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100\n",
"1 8\n5 2 1 1 2 5\n"
],
"output": [
"YES\n",
"NO\n",
"NO\n",
"NO\n",
"YES\n",
"NO\n",
"YES\n",
"YES\n",
"YES\n",
"NO\n",
"NO\n",
"YES\n",
"NO\n",
"NO\n",
"YES\n",
"YES\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"YES\n",
"NO\n",
"YES\n",
"NO\n",
"YES\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"YES\n",
"NO\n",
"NO\n",
"YES\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"YES\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"YES\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n"
]
} | 2CODEFORCES
|
615_A. Bulbs_142 | Vasya wants to turn on Christmas lights consisting of m bulbs. Initially, all bulbs are turned off. There are n buttons, each of them is connected to some set of bulbs. Vasya can press any of these buttons. When the button is pressed, it turns on all the bulbs it's connected to. Can Vasya light up all the bulbs?
If Vasya presses the button such that some bulbs connected to it are already turned on, they do not change their state, i.e. remain turned on.
Input
The first line of the input contains integers n and m (1 ≤ n, m ≤ 100) — the number of buttons and the number of bulbs respectively.
Each of the next n lines contains xi (0 ≤ xi ≤ m) — the number of bulbs that are turned on by the i-th button, and then xi numbers yij (1 ≤ yij ≤ m) — the numbers of these bulbs.
Output
If it's possible to turn on all m bulbs print "YES", otherwise print "NO".
Examples
Input
3 4
2 1 4
3 1 3 1
1 2
Output
YES
Input
3 3
1 1
1 2
1 1
Output
NO
Note
In the first sample you can press each button once and turn on all the bulbs. In the 2 sample it is impossible to turn on the 3-rd lamp. | import math
nm = input().split()
n = int(nm[0])
m = int(nm[1])
lis = [ 0 for i in range(m+1)]
for _ in range(n) :
inp = list(map(int, input().split()))
inp.pop(0)
for i in inp:
lis[i]=1
prev = i
if sum(lis)==m:
print("YES")
else:
print("NO") | 3Python3
| {
"input": [
"3 4\n2 1 4\n3 1 3 1\n1 2\n",
"3 3\n1 1\n1 2\n1 1\n",
"3 4\n1 1\n1 2\n1 3\n",
"1 100\n99 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99\n",
"2 5\n4 3 1 4 2\n4 2 3 4 5\n",
"1 1\n0\n",
"5 6\n3 1 2 6\n3 1 2 6\n1 1\n2 3 4\n3 1 5 6\n",
"2 4\n3 2 3 4\n1 1\n",
"1 100\n100 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100\n",
"1 5\n5 1 1 1 1 5\n",
"1 5\n5 4 4 1 2 3\n",
"1 10\n10 1 2 3 4 5 6 7 8 9 10\n",
"1 4\n3 2 3 4\n",
"5 1\n0\n0\n0\n0\n0\n",
"2 4\n3 1 2 3\n1 4\n",
"5 7\n2 6 7\n5 1 1 1 1 1\n3 6 5 4\n0\n4 4 3 2 1\n",
"1 3\n3 1 2 1\n",
"5 2\n1 1\n1 1\n1 1\n1 1\n1 1\n",
"100 100\n0\n0\n0\n1 53\n0\n0\n1 34\n1 54\n0\n1 14\n0\n1 33\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n1 82\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n1 34\n0\n0\n1 26\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n1 34\n0\n0\n0\n0\n0\n1 3\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n1 40\n0\n0\n0\n1 26\n0\n0\n0\n0\n0\n1 97\n0\n1 5\n0\n0\n0\n0\n0\n",
"1 4\n3 1 2 3\n",
"1 1\n1 1\n",
"100 100\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n",
"1 5\n5 1 2 3 4 5\n",
"5 6\n3 1 2 6\n3 1 2 6\n1 1\n2 3 6\n3 1 5 6\n",
"5 7\n2 6 7\n5 1 1 1 1 1\n3 6 5 5\n0\n4 4 3 2 1\n",
"1 100\n100 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 16 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100\n",
"1 5\n5 1 1 1 2 5\n",
"1 5\n3 1 2 1\n",
"100 100\n0\n0\n0\n1 53\n0\n0\n1 34\n1 54\n0\n1 14\n0\n1 33\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n1 82\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n1 22\n0\n0\n1 26\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n1 34\n0\n0\n0\n0\n0\n1 3\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n1 40\n0\n0\n0\n1 26\n0\n0\n0\n0\n0\n1 97\n0\n1 5\n0\n0\n0\n0\n0\n",
"3 4\n2 1 4\n3 1 3 1\n1 1\n",
"3 4\n0 1 4\n3 1 3 1\n1 1\n",
"3 3\n1 1\n1 2\n1 3\n",
"1 100\n99 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 50 93 94 95 96 97 98 99\n",
"0 1\n0\n",
"5 6\n3 1 3 6\n3 1 2 6\n1 1\n2 3 4\n3 1 5 6\n",
"1 100\n100 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 13 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100\n",
"1 6\n5 1 1 1 1 5\n",
"1 5\n5 4 4 1 4 3\n",
"5 2\n1 1\n1 1\n1 1\n1 1\n0 1\n",
"1 8\n3 1 2 3\n",
"3 3\n1 1\n0 2\n1 1\n",
"5 6\n3 1 2 6\n3 1 2 6\n1 1\n2 3 6\n3 2 5 6\n",
"1 100\n100 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 16 18 19 20 21 22 23 24 25 26 27 28 29 30 31 31 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100\n",
"5 7\n2 6 5\n5 1 1 1 1 1\n3 6 5 5\n0\n4 4 3 2 1\n",
"1 4\n3 1 2 1\n",
"1 100\n99 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 19 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 50 93 94 95 96 97 98 99\n",
"0 1\n1\n",
"1 6\n5 1 1 1 2 5\n",
"1 9\n3 1 2 3\n",
"5 6\n3 1 2 6\n3 1 2 6\n1 1\n2 3 6\n3 2 5 1\n",
"1 100\n100 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 16 18 19 20 21 22 23 24 25 26 27 28 29 30 31 31 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 74 99 100\n",
"5 7\n2 6 5\n5 1 1 2 1 1\n3 6 5 5\n0\n4 4 3 2 1\n",
"0 4\n3 1 2 1\n",
"1 100\n99 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 19 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 23 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 50 93 94 95 96 97 98 99\n",
"0 2\n1\n",
"0 9\n3 1 2 3\n",
"1 100\n100 1 2 3 4 5 6 7 8 9 10 11 2 13 14 15 16 16 18 19 20 21 22 23 24 25 26 27 28 29 30 31 31 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 74 99 100\n",
"0 4\n4 1 2 1\n",
"1 100\n99 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 19 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 50 66 67 68 69 70 71 72 73 23 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 50 93 94 95 96 97 98 99\n",
"0 5\n3 1 2 3\n",
"1 100\n100 1 2 3 4 5 6 7 8 9 10 11 2 13 14 15 16 16 18 19 20 21 22 23 24 25 26 27 28 29 30 31 31 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 15 91 92 93 94 95 96 97 74 99 100\n",
"0 4\n4 0 2 1\n",
"1 100\n99 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 19 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 41 50 66 67 68 69 70 71 72 73 23 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 50 93 94 95 96 97 98 99\n",
"0 5\n3 1 2 2\n",
"0 4\n4 0 3 1\n",
"1 100\n99 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 19 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 41 50 66 67 68 69 73 71 72 73 23 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 50 93 94 95 96 97 98 99\n",
"0 5\n0 1 2 2\n",
"0 4\n4 1 3 1\n",
"1 100\n99 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 19 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 59 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 41 50 66 67 68 69 73 71 72 73 23 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 50 93 94 95 96 97 98 99\n",
"1 100\n99 1 2 3 4 8 6 7 8 9 10 11 12 13 14 15 19 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 59 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 41 50 66 67 68 69 73 71 72 73 23 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 50 93 94 95 96 97 98 99\n",
"1 100\n99 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 34 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99\n",
"2 5\n4 3 1 4 4\n4 2 3 4 5\n",
"0 2\n0\n",
"5 6\n3 1 2 6\n3 1 2 6\n1 1\n2 3 4\n3 1 2 6\n",
"1 100\n100 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 67 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100\n",
"0 5\n5 4 4 1 2 3\n",
"1 4\n3 3 3 4\n",
"5 7\n2 6 7\n5 1 1 1 1 1\n3 6 5 4\n0\n4 4 2 2 1\n",
"100 100\n0\n0\n0\n1 72\n0\n0\n1 34\n1 54\n0\n1 14\n0\n1 33\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n1 82\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n1 34\n0\n0\n1 26\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n1 34\n0\n0\n0\n0\n0\n1 3\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n1 40\n0\n0\n0\n1 26\n0\n0\n0\n0\n0\n1 97\n0\n1 5\n0\n0\n0\n0\n0\n",
"0 4\n3 1 2 3\n",
"1 5\n5 1 2 3 4 1\n",
"1 100\n100 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 24 16 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100\n",
"1 8\n5 1 1 1 2 5\n",
"3 8\n0 1 4\n3 1 3 1\n1 1\n",
"1 100\n99 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 10 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 50 93 94 95 96 97 98 99\n",
"0 1\n-1\n",
"5 6\n3 1 3 6\n3 1 2 2\n1 1\n2 3 4\n3 1 5 6\n",
"1 100\n100 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 74 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 13 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100\n",
"1 6\n4 1 1 1 1 5\n",
"0 2\n1 1\n1 1\n1 1\n1 1\n0 1\n",
"1 8\n2 1 2 3\n",
"1 100\n100 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 16 18 19 20 21 22 23 24 25 26 27 28 29 30 31 31 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 1 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100\n",
"5 7\n2 6 5\n5 1 1 1 1 1\n3 6 2 5\n0\n4 4 3 2 1\n",
"1 4\n3 2 2 1\n",
"1 9\n3 1 4 3\n",
"5 6\n3 1 2 1\n3 1 2 6\n1 1\n2 3 6\n3 2 5 1\n",
"1 100\n100 1 2 3 4 5 3 7 8 9 10 11 12 13 14 15 16 16 18 19 20 21 22 23 24 25 26 27 28 29 30 31 31 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 74 99 100\n",
"5 7\n2 6 5\n1 1 1 2 1 1\n3 6 5 5\n0\n4 4 3 2 1\n",
"0 7\n3 1 2 1\n",
"1 100\n5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 19 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 23 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 50 93 94 95 96 97 98 99\n",
"0 9\n3 1 3 3\n",
"1 100\n100 1 2 3 4 6 6 7 8 9 10 11 2 13 14 15 16 16 18 19 20 21 22 23 24 25 26 27 28 29 30 31 31 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 74 99 100\n",
"0 7\n4 1 2 1\n",
"1 100\n99 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 19 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 93 60 61 62 63 64 50 66 67 68 69 70 71 72 73 23 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 50 93 94 95 96 97 98 99\n",
"0 5\n2 1 2 3\n",
"1 100\n100 1 2 3 4 5 6 7 8 9 10 11 2 13 14 15 16 16 18 19 20 21 22 23 24 25 26 27 28 29 30 31 31 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 13 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 15 91 92 93 94 95 96 97 74 99 100\n",
"1 100\n99 1 2 3 4 3 6 7 8 9 10 11 12 13 14 15 19 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 41 50 66 67 68 69 70 71 72 73 23 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 50 93 94 95 96 97 98 99\n",
"0 5\n4 1 2 3\n",
"1 100\n99 1 2 3 7 5 6 7 8 9 10 11 12 13 14 15 19 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 41 50 66 67 68 69 73 71 72 73 23 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 50 93 94 95 96 97 98 99\n",
"0 5\n0 1 0 2\n",
"0 4\n4 1 3 2\n",
"1 100\n99 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 34 23 24 25 26 27 28 29 30 31 30 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99\n",
"0 4\n0\n",
"5 6\n3 1 2 6\n3 1 2 6\n1 1\n2 3 1\n3 1 2 6\n",
"1 100\n100 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 67 51 52 53 54 55 56 57 58 60 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100\n",
"100 100\n0\n0\n0\n1 72\n0\n0\n1 34\n1 54\n0\n1 14\n0\n1 36\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n1 82\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n1 34\n0\n0\n1 26\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n1 34\n0\n0\n0\n0\n0\n1 3\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n1 40\n0\n0\n0\n1 26\n0\n0\n0\n0\n0\n1 97\n0\n1 5\n0\n0\n0\n0\n0\n",
"0 4\n3 1 4 3\n",
"1 5\n1 1 2 3 4 1\n",
"1 100\n100 1 2 3 4 5 6 7 8 9 14 11 12 13 14 15 24 16 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100\n",
"1 8\n5 2 1 1 2 5\n"
],
"output": [
"YES\n",
"NO\n",
"NO\n",
"NO\n",
"YES\n",
"NO\n",
"YES\n",
"YES\n",
"YES\n",
"NO\n",
"NO\n",
"YES\n",
"NO\n",
"NO\n",
"YES\n",
"YES\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"YES\n",
"NO\n",
"YES\n",
"NO\n",
"YES\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"YES\n",
"NO\n",
"NO\n",
"YES\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"YES\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"YES\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n"
]
} | 2CODEFORCES
|
615_A. Bulbs_143 | Vasya wants to turn on Christmas lights consisting of m bulbs. Initially, all bulbs are turned off. There are n buttons, each of them is connected to some set of bulbs. Vasya can press any of these buttons. When the button is pressed, it turns on all the bulbs it's connected to. Can Vasya light up all the bulbs?
If Vasya presses the button such that some bulbs connected to it are already turned on, they do not change their state, i.e. remain turned on.
Input
The first line of the input contains integers n and m (1 ≤ n, m ≤ 100) — the number of buttons and the number of bulbs respectively.
Each of the next n lines contains xi (0 ≤ xi ≤ m) — the number of bulbs that are turned on by the i-th button, and then xi numbers yij (1 ≤ yij ≤ m) — the numbers of these bulbs.
Output
If it's possible to turn on all m bulbs print "YES", otherwise print "NO".
Examples
Input
3 4
2 1 4
3 1 3 1
1 2
Output
YES
Input
3 3
1 1
1 2
1 1
Output
NO
Note
In the first sample you can press each button once and turn on all the bulbs. In the 2 sample it is impossible to turn on the 3-rd lamp. | import java.util.*;
public class Za {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int m = sc.nextInt();
String x = " ";
for (int i = 1; i <= m; i++)
x += i + " ";
for (int j = 1; j <= n; j++) {
int k = sc.nextInt();
for (int l = 0; l < k; l++) {
int p = sc.nextInt();
if (x.contains(" " + p + " "))
x = x.replaceAll(" " + p + " ", " ");
}
}
boolean zaza = true;
for (int q = 0; q < x.length(); q++) {
if (Character.isDigit(x.charAt(q))) {
zaza = false;
break;
}
}
if (zaza) System.out.print("YES");
else System.out.print("NO");
}
} | 4JAVA
| {
"input": [
"3 4\n2 1 4\n3 1 3 1\n1 2\n",
"3 3\n1 1\n1 2\n1 1\n",
"3 4\n1 1\n1 2\n1 3\n",
"1 100\n99 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99\n",
"2 5\n4 3 1 4 2\n4 2 3 4 5\n",
"1 1\n0\n",
"5 6\n3 1 2 6\n3 1 2 6\n1 1\n2 3 4\n3 1 5 6\n",
"2 4\n3 2 3 4\n1 1\n",
"1 100\n100 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100\n",
"1 5\n5 1 1 1 1 5\n",
"1 5\n5 4 4 1 2 3\n",
"1 10\n10 1 2 3 4 5 6 7 8 9 10\n",
"1 4\n3 2 3 4\n",
"5 1\n0\n0\n0\n0\n0\n",
"2 4\n3 1 2 3\n1 4\n",
"5 7\n2 6 7\n5 1 1 1 1 1\n3 6 5 4\n0\n4 4 3 2 1\n",
"1 3\n3 1 2 1\n",
"5 2\n1 1\n1 1\n1 1\n1 1\n1 1\n",
"100 100\n0\n0\n0\n1 53\n0\n0\n1 34\n1 54\n0\n1 14\n0\n1 33\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n1 82\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n1 34\n0\n0\n1 26\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n1 34\n0\n0\n0\n0\n0\n1 3\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n1 40\n0\n0\n0\n1 26\n0\n0\n0\n0\n0\n1 97\n0\n1 5\n0\n0\n0\n0\n0\n",
"1 4\n3 1 2 3\n",
"1 1\n1 1\n",
"100 100\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n",
"1 5\n5 1 2 3 4 5\n",
"5 6\n3 1 2 6\n3 1 2 6\n1 1\n2 3 6\n3 1 5 6\n",
"5 7\n2 6 7\n5 1 1 1 1 1\n3 6 5 5\n0\n4 4 3 2 1\n",
"1 100\n100 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 16 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100\n",
"1 5\n5 1 1 1 2 5\n",
"1 5\n3 1 2 1\n",
"100 100\n0\n0\n0\n1 53\n0\n0\n1 34\n1 54\n0\n1 14\n0\n1 33\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n1 82\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n1 22\n0\n0\n1 26\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n1 34\n0\n0\n0\n0\n0\n1 3\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n1 40\n0\n0\n0\n1 26\n0\n0\n0\n0\n0\n1 97\n0\n1 5\n0\n0\n0\n0\n0\n",
"3 4\n2 1 4\n3 1 3 1\n1 1\n",
"3 4\n0 1 4\n3 1 3 1\n1 1\n",
"3 3\n1 1\n1 2\n1 3\n",
"1 100\n99 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 50 93 94 95 96 97 98 99\n",
"0 1\n0\n",
"5 6\n3 1 3 6\n3 1 2 6\n1 1\n2 3 4\n3 1 5 6\n",
"1 100\n100 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 13 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100\n",
"1 6\n5 1 1 1 1 5\n",
"1 5\n5 4 4 1 4 3\n",
"5 2\n1 1\n1 1\n1 1\n1 1\n0 1\n",
"1 8\n3 1 2 3\n",
"3 3\n1 1\n0 2\n1 1\n",
"5 6\n3 1 2 6\n3 1 2 6\n1 1\n2 3 6\n3 2 5 6\n",
"1 100\n100 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 16 18 19 20 21 22 23 24 25 26 27 28 29 30 31 31 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100\n",
"5 7\n2 6 5\n5 1 1 1 1 1\n3 6 5 5\n0\n4 4 3 2 1\n",
"1 4\n3 1 2 1\n",
"1 100\n99 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 19 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 50 93 94 95 96 97 98 99\n",
"0 1\n1\n",
"1 6\n5 1 1 1 2 5\n",
"1 9\n3 1 2 3\n",
"5 6\n3 1 2 6\n3 1 2 6\n1 1\n2 3 6\n3 2 5 1\n",
"1 100\n100 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 16 18 19 20 21 22 23 24 25 26 27 28 29 30 31 31 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 74 99 100\n",
"5 7\n2 6 5\n5 1 1 2 1 1\n3 6 5 5\n0\n4 4 3 2 1\n",
"0 4\n3 1 2 1\n",
"1 100\n99 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 19 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 23 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 50 93 94 95 96 97 98 99\n",
"0 2\n1\n",
"0 9\n3 1 2 3\n",
"1 100\n100 1 2 3 4 5 6 7 8 9 10 11 2 13 14 15 16 16 18 19 20 21 22 23 24 25 26 27 28 29 30 31 31 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 74 99 100\n",
"0 4\n4 1 2 1\n",
"1 100\n99 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 19 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 50 66 67 68 69 70 71 72 73 23 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 50 93 94 95 96 97 98 99\n",
"0 5\n3 1 2 3\n",
"1 100\n100 1 2 3 4 5 6 7 8 9 10 11 2 13 14 15 16 16 18 19 20 21 22 23 24 25 26 27 28 29 30 31 31 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 15 91 92 93 94 95 96 97 74 99 100\n",
"0 4\n4 0 2 1\n",
"1 100\n99 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 19 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 41 50 66 67 68 69 70 71 72 73 23 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 50 93 94 95 96 97 98 99\n",
"0 5\n3 1 2 2\n",
"0 4\n4 0 3 1\n",
"1 100\n99 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 19 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 41 50 66 67 68 69 73 71 72 73 23 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 50 93 94 95 96 97 98 99\n",
"0 5\n0 1 2 2\n",
"0 4\n4 1 3 1\n",
"1 100\n99 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 19 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 59 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 41 50 66 67 68 69 73 71 72 73 23 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 50 93 94 95 96 97 98 99\n",
"1 100\n99 1 2 3 4 8 6 7 8 9 10 11 12 13 14 15 19 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 59 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 41 50 66 67 68 69 73 71 72 73 23 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 50 93 94 95 96 97 98 99\n",
"1 100\n99 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 34 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99\n",
"2 5\n4 3 1 4 4\n4 2 3 4 5\n",
"0 2\n0\n",
"5 6\n3 1 2 6\n3 1 2 6\n1 1\n2 3 4\n3 1 2 6\n",
"1 100\n100 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 67 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100\n",
"0 5\n5 4 4 1 2 3\n",
"1 4\n3 3 3 4\n",
"5 7\n2 6 7\n5 1 1 1 1 1\n3 6 5 4\n0\n4 4 2 2 1\n",
"100 100\n0\n0\n0\n1 72\n0\n0\n1 34\n1 54\n0\n1 14\n0\n1 33\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n1 82\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n1 34\n0\n0\n1 26\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n1 34\n0\n0\n0\n0\n0\n1 3\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n1 40\n0\n0\n0\n1 26\n0\n0\n0\n0\n0\n1 97\n0\n1 5\n0\n0\n0\n0\n0\n",
"0 4\n3 1 2 3\n",
"1 5\n5 1 2 3 4 1\n",
"1 100\n100 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 24 16 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100\n",
"1 8\n5 1 1 1 2 5\n",
"3 8\n0 1 4\n3 1 3 1\n1 1\n",
"1 100\n99 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 10 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 50 93 94 95 96 97 98 99\n",
"0 1\n-1\n",
"5 6\n3 1 3 6\n3 1 2 2\n1 1\n2 3 4\n3 1 5 6\n",
"1 100\n100 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 74 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 13 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100\n",
"1 6\n4 1 1 1 1 5\n",
"0 2\n1 1\n1 1\n1 1\n1 1\n0 1\n",
"1 8\n2 1 2 3\n",
"1 100\n100 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 16 18 19 20 21 22 23 24 25 26 27 28 29 30 31 31 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 1 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100\n",
"5 7\n2 6 5\n5 1 1 1 1 1\n3 6 2 5\n0\n4 4 3 2 1\n",
"1 4\n3 2 2 1\n",
"1 9\n3 1 4 3\n",
"5 6\n3 1 2 1\n3 1 2 6\n1 1\n2 3 6\n3 2 5 1\n",
"1 100\n100 1 2 3 4 5 3 7 8 9 10 11 12 13 14 15 16 16 18 19 20 21 22 23 24 25 26 27 28 29 30 31 31 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 74 99 100\n",
"5 7\n2 6 5\n1 1 1 2 1 1\n3 6 5 5\n0\n4 4 3 2 1\n",
"0 7\n3 1 2 1\n",
"1 100\n5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 19 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 23 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 50 93 94 95 96 97 98 99\n",
"0 9\n3 1 3 3\n",
"1 100\n100 1 2 3 4 6 6 7 8 9 10 11 2 13 14 15 16 16 18 19 20 21 22 23 24 25 26 27 28 29 30 31 31 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 74 99 100\n",
"0 7\n4 1 2 1\n",
"1 100\n99 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 19 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 93 60 61 62 63 64 50 66 67 68 69 70 71 72 73 23 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 50 93 94 95 96 97 98 99\n",
"0 5\n2 1 2 3\n",
"1 100\n100 1 2 3 4 5 6 7 8 9 10 11 2 13 14 15 16 16 18 19 20 21 22 23 24 25 26 27 28 29 30 31 31 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 13 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 15 91 92 93 94 95 96 97 74 99 100\n",
"1 100\n99 1 2 3 4 3 6 7 8 9 10 11 12 13 14 15 19 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 41 50 66 67 68 69 70 71 72 73 23 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 50 93 94 95 96 97 98 99\n",
"0 5\n4 1 2 3\n",
"1 100\n99 1 2 3 7 5 6 7 8 9 10 11 12 13 14 15 19 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 41 50 66 67 68 69 73 71 72 73 23 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 50 93 94 95 96 97 98 99\n",
"0 5\n0 1 0 2\n",
"0 4\n4 1 3 2\n",
"1 100\n99 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 34 23 24 25 26 27 28 29 30 31 30 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99\n",
"0 4\n0\n",
"5 6\n3 1 2 6\n3 1 2 6\n1 1\n2 3 1\n3 1 2 6\n",
"1 100\n100 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 67 51 52 53 54 55 56 57 58 60 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100\n",
"100 100\n0\n0\n0\n1 72\n0\n0\n1 34\n1 54\n0\n1 14\n0\n1 36\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n1 82\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n1 34\n0\n0\n1 26\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n1 34\n0\n0\n0\n0\n0\n1 3\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n1 40\n0\n0\n0\n1 26\n0\n0\n0\n0\n0\n1 97\n0\n1 5\n0\n0\n0\n0\n0\n",
"0 4\n3 1 4 3\n",
"1 5\n1 1 2 3 4 1\n",
"1 100\n100 1 2 3 4 5 6 7 8 9 14 11 12 13 14 15 24 16 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100\n",
"1 8\n5 2 1 1 2 5\n"
],
"output": [
"YES\n",
"NO\n",
"NO\n",
"NO\n",
"YES\n",
"NO\n",
"YES\n",
"YES\n",
"YES\n",
"NO\n",
"NO\n",
"YES\n",
"NO\n",
"NO\n",
"YES\n",
"YES\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"YES\n",
"NO\n",
"YES\n",
"NO\n",
"YES\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"YES\n",
"NO\n",
"NO\n",
"YES\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"YES\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"YES\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n"
]
} | 2CODEFORCES
|
634_C. Factory Repairs_144 | A factory produces thimbles in bulk. Typically, it can produce up to a thimbles a day. However, some of the machinery is defective, so it can currently only produce b thimbles each day. The factory intends to choose a k-day period to do maintenance and construction; it cannot produce any thimbles during this time, but will be restored to its full production of a thimbles per day after the k days are complete.
Initially, no orders are pending. The factory receives updates of the form di, ai, indicating that ai new orders have been placed for the di-th day. Each order requires a single thimble to be produced on precisely the specified day. The factory may opt to fill as many or as few of the orders in a single batch as it likes.
As orders come in, the factory owner would like to know the maximum number of orders he will be able to fill if he starts repairs on a given day pi. Help the owner answer his questions.
Input
The first line contains five integers n, k, a, b, and q (1 ≤ k ≤ n ≤ 200 000, 1 ≤ b < a ≤ 10 000, 1 ≤ q ≤ 200 000) — the number of days, the length of the repair time, the production rates of the factory, and the number of updates, respectively.
The next q lines contain the descriptions of the queries. Each query is of one of the following two forms:
* 1 di ai (1 ≤ di ≤ n, 1 ≤ ai ≤ 10 000), representing an update of ai orders on day di, or
* 2 pi (1 ≤ pi ≤ n - k + 1), representing a question: at the moment, how many orders could be filled if the factory decided to commence repairs on day pi?
It's guaranteed that the input will contain at least one query of the second type.
Output
For each query of the second type, print a line containing a single integer — the maximum number of orders that the factory can fill over all n days.
Examples
Input
5 2 2 1 8
1 1 2
1 5 3
1 2 1
2 2
1 4 2
1 3 2
2 1
2 3
Output
3
6
4
Input
5 4 10 1 6
1 1 5
1 5 5
1 3 2
1 5 2
2 1
2 2
Output
7
1
Note
Consider the first sample.
We produce up to 1 thimble a day currently and will produce up to 2 thimbles a day after repairs. Repairs take 2 days.
For the first question, we are able to fill 1 order on day 1, no orders on days 2 and 3 since we are repairing, no orders on day 4 since no thimbles have been ordered for that day, and 2 orders for day 5 since we are limited to our production capacity, for a total of 3 orders filled.
For the third question, we are able to fill 1 order on day 1, 1 order on day 2, and 2 orders on day 5, for a total of 4 orders. | #include <bits/stdc++.h>
using namespace std;
long long tree[1000000][2];
long long ar[1000000];
int a, b;
long long query(int x, int l, int r, int s, int e, bool k) {
if (l > e || r < s || s > e) return 0;
if (l >= s && r <= e)
return tree[x][k];
else {
return query(x * 2, l, (l + r) / 2, s, e, k) +
query(x * 2 + 1, (l + r) / 2 + 1, r, s, e, k);
}
}
void upd(int x, int l, int r, int v) {
if (v > r || v < l) return;
if (l == r && v == l) {
tree[x][0] = min(ar[v], b + 0LL);
tree[x][1] = min(ar[v], a + 0LL);
} else {
upd(x * 2, l, (l + r) / 2, v);
upd(x * 2 + 1, (l + r) / 2 + 1, r, v);
tree[x][0] = tree[x * 2][0] + tree[x * 2 + 1][0];
tree[x][1] = tree[x * 2][1] + tree[x * 2 + 1][1];
}
}
int main() {
int n, k, q;
cin >> n >> k >> a >> b >> q;
while (q--) {
int typ;
scanf("%d", &typ);
if (typ == 1) {
int d, x;
scanf("%d%d", &d, &x);
ar[d] += x;
upd(1, 1, n, d);
} else {
int p;
scanf("%d", &p);
printf("%I64d\n",
query(1, 1, n, 1, p - 1, 0) + query(1, 1, n, p + k, n, 1));
}
}
}
| 2C++
| {
"input": [
"5 4 10 1 6\n1 1 5\n1 5 5\n1 3 2\n1 5 2\n2 1\n2 2\n",
"5 2 2 1 8\n1 1 2\n1 5 3\n1 2 1\n2 2\n1 4 2\n1 3 2\n2 1\n2 3\n",
"1 1 2 1 1\n2 1\n",
"1 1 2 2 1\n2 1\n",
"5 2 2 1 8\n1 1 2\n1 5 3\n1 2 1\n2 2\n1 4 2\n1 3 0\n2 1\n2 3\n",
"5 2 2 2 8\n1 1 2\n1 5 3\n1 2 1\n2 2\n1 4 2\n1 3 2\n2 1\n2 3\n",
"5 2 2 1 8\n1 1 2\n1 5 3\n1 2 1\n2 2\n1 5 2\n1 3 0\n2 1\n2 3\n",
"5 2 2 2 8\n1 1 2\n1 5 3\n1 2 0\n2 2\n1 4 2\n1 3 2\n2 1\n2 3\n",
"5 2 2 1 8\n1 1 2\n1 5 3\n1 2 1\n2 2\n1 2 2\n1 3 1\n2 1\n2 3\n",
"5 1 2 1 8\n1 1 2\n1 5 3\n1 2 1\n2 2\n1 2 2\n1 3 1\n2 1\n2 3\n",
"5 2 2 1 8\n1 1 3\n1 5 3\n1 2 1\n2 2\n1 4 2\n1 3 2\n2 1\n2 3\n",
"5 1 2 2 8\n1 1 2\n1 5 3\n1 2 1\n2 2\n1 4 2\n1 3 2\n2 1\n2 3\n",
"5 2 4 2 8\n1 1 2\n1 5 3\n1 2 0\n2 2\n1 4 2\n1 3 2\n2 1\n2 3\n",
"5 1 2 1 8\n1 1 2\n1 5 3\n1 3 1\n2 2\n1 2 2\n1 3 1\n2 2\n2 3\n",
"5 1 2 2 8\n1 1 2\n1 5 3\n1 1 1\n2 2\n1 4 2\n1 3 2\n2 1\n2 3\n",
"10 4 10 1 6\n1 1 5\n1 5 5\n1 3 2\n1 5 2\n2 1\n2 2\n",
"5 2 1 1 8\n1 1 2\n1 5 3\n1 2 1\n2 2\n1 4 2\n1 3 2\n2 1\n2 3\n",
"5 3 2 1 8\n1 1 2\n1 5 3\n1 2 1\n2 2\n1 4 2\n1 3 0\n2 1\n2 3\n",
"1 1 2 3 1\n2 1\n",
"1 1 1 1 1\n2 1\n",
"5 2 2 1 8\n1 1 2\n1 5 3\n1 2 1\n2 2\n1 2 2\n1 3 2\n2 1\n2 3\n",
"1 1 0 2 1\n2 1\n",
"1 1 2 6 1\n2 1\n",
"5 2 2 1 8\n1 1 2\n1 5 3\n1 2 1\n2 2\n1 2 2\n1 3 0\n2 1\n2 3\n",
"2 1 1 1 1\n2 1\n",
"2 1 2 6 1\n2 1\n",
"2 2 1 1 1\n2 1\n",
"2 1 1 6 1\n2 1\n",
"2 1 0 6 1\n2 1\n",
"5 1 2 1 8\n1 1 2\n1 5 3\n1 2 1\n2 2\n1 2 2\n1 3 1\n2 2\n2 3\n",
"5 2 2 1 8\n1 1 2\n1 5 6\n1 2 1\n2 2\n1 4 2\n1 3 0\n2 1\n2 3\n",
"5 2 2 1 8\n1 1 4\n1 5 3\n1 2 1\n2 2\n1 2 2\n1 3 2\n2 1\n2 3\n",
"2 1 1 1 1\n2 2\n",
"2 1 2 6 1\n2 2\n",
"5 2 2 1 8\n1 1 2\n1 5 3\n1 3 1\n2 2\n1 2 2\n1 3 1\n2 1\n2 3\n",
"5 2 2 1 8\n1 1 7\n1 5 3\n1 2 1\n2 2\n1 2 2\n1 3 2\n2 1\n2 3\n",
"2 1 2 10 1\n2 2\n",
"5 1 2 1 8\n1 1 2\n1 4 3\n1 3 1\n2 2\n1 2 2\n1 3 1\n2 2\n2 3\n",
"7 2 2 1 8\n1 1 7\n1 5 3\n1 2 1\n2 2\n1 2 2\n1 3 2\n2 1\n2 3\n",
"2 1 2 11 1\n2 2\n",
"7 2 2 1 8\n1 1 7\n1 5 3\n1 2 1\n2 2\n1 2 1\n1 3 2\n2 1\n2 3\n",
"2 0 2 11 1\n2 2\n",
"7 2 2 1 8\n1 1 7\n1 5 3\n1 2 1\n2 2\n1 2 1\n1 4 2\n2 1\n2 3\n",
"7 2 2 1 8\n1 1 7\n1 5 2\n1 2 1\n2 2\n1 2 1\n1 4 2\n2 1\n2 3\n",
"7 2 2 1 8\n1 1 4\n1 5 2\n1 2 1\n2 2\n1 2 1\n1 4 2\n2 1\n2 3\n",
"1 1 4 2 1\n2 1\n",
"1 1 1 3 1\n2 1\n",
"5 2 2 2 8\n1 1 2\n1 5 3\n1 2 1\n2 2\n1 4 3\n1 3 2\n2 1\n2 3\n",
"1 1 1 2 1\n2 1\n",
"5 2 2 1 8\n1 1 2\n1 5 3\n1 2 2\n2 2\n1 2 2\n1 3 2\n2 1\n2 3\n",
"1 1 0 1 1\n2 1\n",
"1 1 3 6 1\n2 1\n",
"5 2 2 1 8\n1 1 1\n1 5 3\n1 2 1\n2 2\n1 2 2\n1 3 0\n2 1\n2 3\n",
"2 2 1 2 1\n2 1\n"
],
"output": [
"7\n1\n",
"3\n6\n4\n",
"0\n",
"0\n",
"3\n4\n4\n",
"4\n6\n5\n",
"3\n2\n4\n",
"4\n6\n4\n",
"3\n3\n4\n",
"3\n5\n4\n",
"3\n6\n4\n",
"4\n7\n7\n",
"5\n7\n5\n",
"4\n5\n4\n",
"4\n6\n6\n",
"7\n1\n",
"2\n3\n3\n",
"3\n4\n2\n",
"0\n",
"0\n",
"3\n4\n4\n",
"0\n",
"0\n",
"3\n2\n4\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"3\n4\n4\n",
"3\n4\n4\n",
"3\n4\n4\n",
"0\n",
"0\n",
"3\n4\n4\n",
"3\n4\n4\n",
"0\n",
"4\n5\n4\n",
"3\n4\n4\n",
"0\n",
"3\n4\n4\n",
"0\n",
"3\n4\n4\n",
"3\n4\n4\n",
"3\n4\n4\n",
"0\n",
"0\n",
"4\n6\n5\n",
"0\n",
"3\n4\n4\n",
"0\n",
"0\n",
"3\n2\n4\n",
"0\n"
]
} | 2CODEFORCES
|
634_C. Factory Repairs_145 | A factory produces thimbles in bulk. Typically, it can produce up to a thimbles a day. However, some of the machinery is defective, so it can currently only produce b thimbles each day. The factory intends to choose a k-day period to do maintenance and construction; it cannot produce any thimbles during this time, but will be restored to its full production of a thimbles per day after the k days are complete.
Initially, no orders are pending. The factory receives updates of the form di, ai, indicating that ai new orders have been placed for the di-th day. Each order requires a single thimble to be produced on precisely the specified day. The factory may opt to fill as many or as few of the orders in a single batch as it likes.
As orders come in, the factory owner would like to know the maximum number of orders he will be able to fill if he starts repairs on a given day pi. Help the owner answer his questions.
Input
The first line contains five integers n, k, a, b, and q (1 ≤ k ≤ n ≤ 200 000, 1 ≤ b < a ≤ 10 000, 1 ≤ q ≤ 200 000) — the number of days, the length of the repair time, the production rates of the factory, and the number of updates, respectively.
The next q lines contain the descriptions of the queries. Each query is of one of the following two forms:
* 1 di ai (1 ≤ di ≤ n, 1 ≤ ai ≤ 10 000), representing an update of ai orders on day di, or
* 2 pi (1 ≤ pi ≤ n - k + 1), representing a question: at the moment, how many orders could be filled if the factory decided to commence repairs on day pi?
It's guaranteed that the input will contain at least one query of the second type.
Output
For each query of the second type, print a line containing a single integer — the maximum number of orders that the factory can fill over all n days.
Examples
Input
5 2 2 1 8
1 1 2
1 5 3
1 2 1
2 2
1 4 2
1 3 2
2 1
2 3
Output
3
6
4
Input
5 4 10 1 6
1 1 5
1 5 5
1 3 2
1 5 2
2 1
2 2
Output
7
1
Note
Consider the first sample.
We produce up to 1 thimble a day currently and will produce up to 2 thimbles a day after repairs. Repairs take 2 days.
For the first question, we are able to fill 1 order on day 1, no orders on days 2 and 3 since we are repairing, no orders on day 4 since no thimbles have been ordered for that day, and 2 orders for day 5 since we are limited to our production capacity, for a total of 3 orders filled.
For the third question, we are able to fill 1 order on day 1, 1 order on day 2, and 2 orders on day 5, for a total of 4 orders. | from functools import reduce
class SegmentTree():
def __init__(self, L, function = lambda x,y: x+y, initilizer = None):
self.function = function
self.initilizer = initilizer
N = self.size = len(L)
M = 1 << N.bit_length()
self.margin = 2*M - N
self.L = [None for i in range(self.margin)] + L
for i in range(M-1, 0, -1):
x, y = self.L[i<<1], self.L[i<<1|1]
self.L[i] = None if x is None or y is None else function(x, y)
def modify(self, pos, value):
p = pos + self.margin
self.L[p] = value
while p > 1:
x, y = self.L[p], self.L[p^1]
if p&1: x, y = y, x
self.L[p>>1] = None if x is None or y is None else self.function(x, y)
p>>=1
def query(self, left, right):
l, r = left + self.margin, right + self.margin
stack = []
void = True
if self.initilizer is not None:
void = False
result = self.initilizer
while l < r:
if l&1:
if void:
result = self.L[l]
void = False
else:
result = self.function(result, self.L[l])
l+=1
if r&1:
r-=1
stack.append(self.L[r])
l>>=1
r>>=1
init = stack.pop() if void else result
return reduce(self.function, reversed(stack), init)
import sys
n, k, a, b, q = [int(x) for x in input().split()]
orders = [0]*(n+2)
a_tree, b_tree = SegmentTree(orders, initilizer = 0), SegmentTree(orders, initilizer = 0)
for line in sys.stdin:
s = [int(x) for x in line.split()]
if s[0] == 1:
orders[s[1]] += s[2]
a_tree.modify(s[1], min(a, orders[s[1]]))
b_tree.modify(s[1], min(b, orders[s[1]]))
else:
query = b_tree.query(0, s[1]) + a_tree.query(s[1]+k, n+1)
print(query)
| 3Python3
| {
"input": [
"5 4 10 1 6\n1 1 5\n1 5 5\n1 3 2\n1 5 2\n2 1\n2 2\n",
"5 2 2 1 8\n1 1 2\n1 5 3\n1 2 1\n2 2\n1 4 2\n1 3 2\n2 1\n2 3\n",
"1 1 2 1 1\n2 1\n",
"1 1 2 2 1\n2 1\n",
"5 2 2 1 8\n1 1 2\n1 5 3\n1 2 1\n2 2\n1 4 2\n1 3 0\n2 1\n2 3\n",
"5 2 2 2 8\n1 1 2\n1 5 3\n1 2 1\n2 2\n1 4 2\n1 3 2\n2 1\n2 3\n",
"5 2 2 1 8\n1 1 2\n1 5 3\n1 2 1\n2 2\n1 5 2\n1 3 0\n2 1\n2 3\n",
"5 2 2 2 8\n1 1 2\n1 5 3\n1 2 0\n2 2\n1 4 2\n1 3 2\n2 1\n2 3\n",
"5 2 2 1 8\n1 1 2\n1 5 3\n1 2 1\n2 2\n1 2 2\n1 3 1\n2 1\n2 3\n",
"5 1 2 1 8\n1 1 2\n1 5 3\n1 2 1\n2 2\n1 2 2\n1 3 1\n2 1\n2 3\n",
"5 2 2 1 8\n1 1 3\n1 5 3\n1 2 1\n2 2\n1 4 2\n1 3 2\n2 1\n2 3\n",
"5 1 2 2 8\n1 1 2\n1 5 3\n1 2 1\n2 2\n1 4 2\n1 3 2\n2 1\n2 3\n",
"5 2 4 2 8\n1 1 2\n1 5 3\n1 2 0\n2 2\n1 4 2\n1 3 2\n2 1\n2 3\n",
"5 1 2 1 8\n1 1 2\n1 5 3\n1 3 1\n2 2\n1 2 2\n1 3 1\n2 2\n2 3\n",
"5 1 2 2 8\n1 1 2\n1 5 3\n1 1 1\n2 2\n1 4 2\n1 3 2\n2 1\n2 3\n",
"10 4 10 1 6\n1 1 5\n1 5 5\n1 3 2\n1 5 2\n2 1\n2 2\n",
"5 2 1 1 8\n1 1 2\n1 5 3\n1 2 1\n2 2\n1 4 2\n1 3 2\n2 1\n2 3\n",
"5 3 2 1 8\n1 1 2\n1 5 3\n1 2 1\n2 2\n1 4 2\n1 3 0\n2 1\n2 3\n",
"1 1 2 3 1\n2 1\n",
"1 1 1 1 1\n2 1\n",
"5 2 2 1 8\n1 1 2\n1 5 3\n1 2 1\n2 2\n1 2 2\n1 3 2\n2 1\n2 3\n",
"1 1 0 2 1\n2 1\n",
"1 1 2 6 1\n2 1\n",
"5 2 2 1 8\n1 1 2\n1 5 3\n1 2 1\n2 2\n1 2 2\n1 3 0\n2 1\n2 3\n",
"2 1 1 1 1\n2 1\n",
"2 1 2 6 1\n2 1\n",
"2 2 1 1 1\n2 1\n",
"2 1 1 6 1\n2 1\n",
"2 1 0 6 1\n2 1\n",
"5 1 2 1 8\n1 1 2\n1 5 3\n1 2 1\n2 2\n1 2 2\n1 3 1\n2 2\n2 3\n",
"5 2 2 1 8\n1 1 2\n1 5 6\n1 2 1\n2 2\n1 4 2\n1 3 0\n2 1\n2 3\n",
"5 2 2 1 8\n1 1 4\n1 5 3\n1 2 1\n2 2\n1 2 2\n1 3 2\n2 1\n2 3\n",
"2 1 1 1 1\n2 2\n",
"2 1 2 6 1\n2 2\n",
"5 2 2 1 8\n1 1 2\n1 5 3\n1 3 1\n2 2\n1 2 2\n1 3 1\n2 1\n2 3\n",
"5 2 2 1 8\n1 1 7\n1 5 3\n1 2 1\n2 2\n1 2 2\n1 3 2\n2 1\n2 3\n",
"2 1 2 10 1\n2 2\n",
"5 1 2 1 8\n1 1 2\n1 4 3\n1 3 1\n2 2\n1 2 2\n1 3 1\n2 2\n2 3\n",
"7 2 2 1 8\n1 1 7\n1 5 3\n1 2 1\n2 2\n1 2 2\n1 3 2\n2 1\n2 3\n",
"2 1 2 11 1\n2 2\n",
"7 2 2 1 8\n1 1 7\n1 5 3\n1 2 1\n2 2\n1 2 1\n1 3 2\n2 1\n2 3\n",
"2 0 2 11 1\n2 2\n",
"7 2 2 1 8\n1 1 7\n1 5 3\n1 2 1\n2 2\n1 2 1\n1 4 2\n2 1\n2 3\n",
"7 2 2 1 8\n1 1 7\n1 5 2\n1 2 1\n2 2\n1 2 1\n1 4 2\n2 1\n2 3\n",
"7 2 2 1 8\n1 1 4\n1 5 2\n1 2 1\n2 2\n1 2 1\n1 4 2\n2 1\n2 3\n",
"1 1 4 2 1\n2 1\n",
"1 1 1 3 1\n2 1\n",
"5 2 2 2 8\n1 1 2\n1 5 3\n1 2 1\n2 2\n1 4 3\n1 3 2\n2 1\n2 3\n",
"1 1 1 2 1\n2 1\n",
"5 2 2 1 8\n1 1 2\n1 5 3\n1 2 2\n2 2\n1 2 2\n1 3 2\n2 1\n2 3\n",
"1 1 0 1 1\n2 1\n",
"1 1 3 6 1\n2 1\n",
"5 2 2 1 8\n1 1 1\n1 5 3\n1 2 1\n2 2\n1 2 2\n1 3 0\n2 1\n2 3\n",
"2 2 1 2 1\n2 1\n"
],
"output": [
"7\n1\n",
"3\n6\n4\n",
"0\n",
"0\n",
"3\n4\n4\n",
"4\n6\n5\n",
"3\n2\n4\n",
"4\n6\n4\n",
"3\n3\n4\n",
"3\n5\n4\n",
"3\n6\n4\n",
"4\n7\n7\n",
"5\n7\n5\n",
"4\n5\n4\n",
"4\n6\n6\n",
"7\n1\n",
"2\n3\n3\n",
"3\n4\n2\n",
"0\n",
"0\n",
"3\n4\n4\n",
"0\n",
"0\n",
"3\n2\n4\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"3\n4\n4\n",
"3\n4\n4\n",
"3\n4\n4\n",
"0\n",
"0\n",
"3\n4\n4\n",
"3\n4\n4\n",
"0\n",
"4\n5\n4\n",
"3\n4\n4\n",
"0\n",
"3\n4\n4\n",
"0\n",
"3\n4\n4\n",
"3\n4\n4\n",
"3\n4\n4\n",
"0\n",
"0\n",
"4\n6\n5\n",
"0\n",
"3\n4\n4\n",
"0\n",
"0\n",
"3\n2\n4\n",
"0\n"
]
} | 2CODEFORCES
|
634_C. Factory Repairs_146 | A factory produces thimbles in bulk. Typically, it can produce up to a thimbles a day. However, some of the machinery is defective, so it can currently only produce b thimbles each day. The factory intends to choose a k-day period to do maintenance and construction; it cannot produce any thimbles during this time, but will be restored to its full production of a thimbles per day after the k days are complete.
Initially, no orders are pending. The factory receives updates of the form di, ai, indicating that ai new orders have been placed for the di-th day. Each order requires a single thimble to be produced on precisely the specified day. The factory may opt to fill as many or as few of the orders in a single batch as it likes.
As orders come in, the factory owner would like to know the maximum number of orders he will be able to fill if he starts repairs on a given day pi. Help the owner answer his questions.
Input
The first line contains five integers n, k, a, b, and q (1 ≤ k ≤ n ≤ 200 000, 1 ≤ b < a ≤ 10 000, 1 ≤ q ≤ 200 000) — the number of days, the length of the repair time, the production rates of the factory, and the number of updates, respectively.
The next q lines contain the descriptions of the queries. Each query is of one of the following two forms:
* 1 di ai (1 ≤ di ≤ n, 1 ≤ ai ≤ 10 000), representing an update of ai orders on day di, or
* 2 pi (1 ≤ pi ≤ n - k + 1), representing a question: at the moment, how many orders could be filled if the factory decided to commence repairs on day pi?
It's guaranteed that the input will contain at least one query of the second type.
Output
For each query of the second type, print a line containing a single integer — the maximum number of orders that the factory can fill over all n days.
Examples
Input
5 2 2 1 8
1 1 2
1 5 3
1 2 1
2 2
1 4 2
1 3 2
2 1
2 3
Output
3
6
4
Input
5 4 10 1 6
1 1 5
1 5 5
1 3 2
1 5 2
2 1
2 2
Output
7
1
Note
Consider the first sample.
We produce up to 1 thimble a day currently and will produce up to 2 thimbles a day after repairs. Repairs take 2 days.
For the first question, we are able to fill 1 order on day 1, no orders on days 2 and 3 since we are repairing, no orders on day 4 since no thimbles have been ordered for that day, and 2 orders for day 5 since we are limited to our production capacity, for a total of 3 orders filled.
For the third question, we are able to fill 1 order on day 1, 1 order on day 2, and 2 orders on day 5, for a total of 4 orders. | import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.StringTokenizer;
import java.io.IOException;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author ATailouloute
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
QuickScanner in = new QuickScanner(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskD solver = new TaskD();
solver.solve(1, in, out);
out.close();
}
static class TaskD {
public void solve(int testNumber, QuickScanner in, PrintWriter out) {
int n = in.nextInt();
int k = in.nextInt();
int a = in.nextInt();
int b = in.nextInt();
int q = in.nextInt();
IntFenwickTree ftA = new IntFenwickTree();
IntFenwickTree ftB = new IntFenwickTree();
for (int i = 0; i < q; i++) {
int op = in.nextInt();
if (op == 1) {
int di = in.nextInt();
int ai = in.nextInt();
ftA.incr(di, ai);
ftB.incr(di, ai);
int x = ftA.read(di, di);
int y = ftB.read(di, di);
if (a < x) ftA.incr(di, a - x);
if (b < y) ftB.incr(di, b - y);
} else {
int pi = in.nextInt();
int before = 0, after = 0;
if (pi > 1) before = ftB.read(1, pi - 1);
if (pi + k <= n) after = ftA.read(pi + k, n);
out.println(before + after);
}
}
}
}
static class QuickScanner {
BufferedReader br;
StringTokenizer st;
InputStream is;
public QuickScanner(InputStream stream) {
is = stream;
br = new BufferedReader(new InputStreamReader(stream), 32768);
}
public String nextToken() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return st.nextToken();
}
public int nextInt() {
return Integer.parseInt(nextToken());
}
}
static class IntFenwickTree {
final static int MAX = (int) 1e6;
private int[] bit;
public IntFenwickTree() {
this(MAX);
}
public IntFenwickTree(int max) {
bit = new int[max];
}
public int read(int idx) {
int ret = 0;
for (; idx > 0; idx -= (idx & -idx)) {
ret += bit[idx];
}
return ret;
}
public int read(int from, int to) {
return read(to) - (from > 0 ? read(from - 1) : 0);
}
public void incr(int idx, int by) {
for (; idx < bit.length; idx += (idx & -idx)) {
bit[idx] += by;
}
}
}
}
| 4JAVA
| {
"input": [
"5 4 10 1 6\n1 1 5\n1 5 5\n1 3 2\n1 5 2\n2 1\n2 2\n",
"5 2 2 1 8\n1 1 2\n1 5 3\n1 2 1\n2 2\n1 4 2\n1 3 2\n2 1\n2 3\n",
"1 1 2 1 1\n2 1\n",
"1 1 2 2 1\n2 1\n",
"5 2 2 1 8\n1 1 2\n1 5 3\n1 2 1\n2 2\n1 4 2\n1 3 0\n2 1\n2 3\n",
"5 2 2 2 8\n1 1 2\n1 5 3\n1 2 1\n2 2\n1 4 2\n1 3 2\n2 1\n2 3\n",
"5 2 2 1 8\n1 1 2\n1 5 3\n1 2 1\n2 2\n1 5 2\n1 3 0\n2 1\n2 3\n",
"5 2 2 2 8\n1 1 2\n1 5 3\n1 2 0\n2 2\n1 4 2\n1 3 2\n2 1\n2 3\n",
"5 2 2 1 8\n1 1 2\n1 5 3\n1 2 1\n2 2\n1 2 2\n1 3 1\n2 1\n2 3\n",
"5 1 2 1 8\n1 1 2\n1 5 3\n1 2 1\n2 2\n1 2 2\n1 3 1\n2 1\n2 3\n",
"5 2 2 1 8\n1 1 3\n1 5 3\n1 2 1\n2 2\n1 4 2\n1 3 2\n2 1\n2 3\n",
"5 1 2 2 8\n1 1 2\n1 5 3\n1 2 1\n2 2\n1 4 2\n1 3 2\n2 1\n2 3\n",
"5 2 4 2 8\n1 1 2\n1 5 3\n1 2 0\n2 2\n1 4 2\n1 3 2\n2 1\n2 3\n",
"5 1 2 1 8\n1 1 2\n1 5 3\n1 3 1\n2 2\n1 2 2\n1 3 1\n2 2\n2 3\n",
"5 1 2 2 8\n1 1 2\n1 5 3\n1 1 1\n2 2\n1 4 2\n1 3 2\n2 1\n2 3\n",
"10 4 10 1 6\n1 1 5\n1 5 5\n1 3 2\n1 5 2\n2 1\n2 2\n",
"5 2 1 1 8\n1 1 2\n1 5 3\n1 2 1\n2 2\n1 4 2\n1 3 2\n2 1\n2 3\n",
"5 3 2 1 8\n1 1 2\n1 5 3\n1 2 1\n2 2\n1 4 2\n1 3 0\n2 1\n2 3\n",
"1 1 2 3 1\n2 1\n",
"1 1 1 1 1\n2 1\n",
"5 2 2 1 8\n1 1 2\n1 5 3\n1 2 1\n2 2\n1 2 2\n1 3 2\n2 1\n2 3\n",
"1 1 0 2 1\n2 1\n",
"1 1 2 6 1\n2 1\n",
"5 2 2 1 8\n1 1 2\n1 5 3\n1 2 1\n2 2\n1 2 2\n1 3 0\n2 1\n2 3\n",
"2 1 1 1 1\n2 1\n",
"2 1 2 6 1\n2 1\n",
"2 2 1 1 1\n2 1\n",
"2 1 1 6 1\n2 1\n",
"2 1 0 6 1\n2 1\n",
"5 1 2 1 8\n1 1 2\n1 5 3\n1 2 1\n2 2\n1 2 2\n1 3 1\n2 2\n2 3\n",
"5 2 2 1 8\n1 1 2\n1 5 6\n1 2 1\n2 2\n1 4 2\n1 3 0\n2 1\n2 3\n",
"5 2 2 1 8\n1 1 4\n1 5 3\n1 2 1\n2 2\n1 2 2\n1 3 2\n2 1\n2 3\n",
"2 1 1 1 1\n2 2\n",
"2 1 2 6 1\n2 2\n",
"5 2 2 1 8\n1 1 2\n1 5 3\n1 3 1\n2 2\n1 2 2\n1 3 1\n2 1\n2 3\n",
"5 2 2 1 8\n1 1 7\n1 5 3\n1 2 1\n2 2\n1 2 2\n1 3 2\n2 1\n2 3\n",
"2 1 2 10 1\n2 2\n",
"5 1 2 1 8\n1 1 2\n1 4 3\n1 3 1\n2 2\n1 2 2\n1 3 1\n2 2\n2 3\n",
"7 2 2 1 8\n1 1 7\n1 5 3\n1 2 1\n2 2\n1 2 2\n1 3 2\n2 1\n2 3\n",
"2 1 2 11 1\n2 2\n",
"7 2 2 1 8\n1 1 7\n1 5 3\n1 2 1\n2 2\n1 2 1\n1 3 2\n2 1\n2 3\n",
"2 0 2 11 1\n2 2\n",
"7 2 2 1 8\n1 1 7\n1 5 3\n1 2 1\n2 2\n1 2 1\n1 4 2\n2 1\n2 3\n",
"7 2 2 1 8\n1 1 7\n1 5 2\n1 2 1\n2 2\n1 2 1\n1 4 2\n2 1\n2 3\n",
"7 2 2 1 8\n1 1 4\n1 5 2\n1 2 1\n2 2\n1 2 1\n1 4 2\n2 1\n2 3\n",
"1 1 4 2 1\n2 1\n",
"1 1 1 3 1\n2 1\n",
"5 2 2 2 8\n1 1 2\n1 5 3\n1 2 1\n2 2\n1 4 3\n1 3 2\n2 1\n2 3\n",
"1 1 1 2 1\n2 1\n",
"5 2 2 1 8\n1 1 2\n1 5 3\n1 2 2\n2 2\n1 2 2\n1 3 2\n2 1\n2 3\n",
"1 1 0 1 1\n2 1\n",
"1 1 3 6 1\n2 1\n",
"5 2 2 1 8\n1 1 1\n1 5 3\n1 2 1\n2 2\n1 2 2\n1 3 0\n2 1\n2 3\n",
"2 2 1 2 1\n2 1\n"
],
"output": [
"7\n1\n",
"3\n6\n4\n",
"0\n",
"0\n",
"3\n4\n4\n",
"4\n6\n5\n",
"3\n2\n4\n",
"4\n6\n4\n",
"3\n3\n4\n",
"3\n5\n4\n",
"3\n6\n4\n",
"4\n7\n7\n",
"5\n7\n5\n",
"4\n5\n4\n",
"4\n6\n6\n",
"7\n1\n",
"2\n3\n3\n",
"3\n4\n2\n",
"0\n",
"0\n",
"3\n4\n4\n",
"0\n",
"0\n",
"3\n2\n4\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"3\n4\n4\n",
"3\n4\n4\n",
"3\n4\n4\n",
"0\n",
"0\n",
"3\n4\n4\n",
"3\n4\n4\n",
"0\n",
"4\n5\n4\n",
"3\n4\n4\n",
"0\n",
"3\n4\n4\n",
"0\n",
"3\n4\n4\n",
"3\n4\n4\n",
"3\n4\n4\n",
"0\n",
"0\n",
"4\n6\n5\n",
"0\n",
"3\n4\n4\n",
"0\n",
"0\n",
"3\n2\n4\n",
"0\n"
]
} | 2CODEFORCES
|
663_A. Rebus_147 | You are given a rebus of form ? + ? - ? + ? = n, consisting of only question marks, separated by arithmetic operation '+' and '-', equality and positive integer n. The goal is to replace each question mark with some positive integer from 1 to n, such that equality holds.
Input
The only line of the input contains a rebus. It's guaranteed that it contains no more than 100 question marks, integer n is positive and doesn't exceed 1 000 000, all letters and integers are separated by spaces, arithmetic operations are located only between question marks.
Output
The first line of the output should contain "Possible" (without quotes) if rebus has a solution and "Impossible" (without quotes) otherwise.
If the answer exists, the second line should contain any valid rebus with question marks replaced by integers from 1 to n. Follow the format given in the samples.
Examples
Input
? + ? - ? + ? + ? = 42
Output
Possible
9 + 13 - 39 + 28 + 31 = 42
Input
? - ? = 1
Output
Impossible
Input
? = 1000000
Output
Possible
1000000 = 1000000 | class Number:
def __init__(sign, number=None):
self.__sign = sign
self.__number = number
def solve_rebus(left_part, right_part):
added = left_part.count("+") + 1
subtracted = left_part.count("-")
max_number = added * right_part - subtracted
min_number = added - subtracted * right_part
if not min_number <= right_part <= max_number:
return False, None
result_added = [right_part for i in range(added)]
result_subtracted = [1 for i in range(subtracted)]
curr_summ = max_number
curr_added = 0
curr_subtracted = 0
while curr_summ > right_part:
if curr_added != added:
diff = min(curr_summ - right_part, right_part - 1)
curr_summ -= diff
result_added[curr_added] -= diff
curr_added += 1
elif curr_subtracted != subtracted:
diff = min(curr_summ - right_part, right_part - 1)
curr_summ -= diff
result_subtracted[curr_subtracted] += diff
curr_subtracted += 1
answer = [str(result_added[0])]
curr_added = 1
curr_subtracted = 0
for sign in left_part[1::2]:
if sign == "-":
answer.extend(["-", str(result_subtracted[curr_subtracted])])
curr_subtracted += 1
else:
answer.extend(["+", str(result_added[curr_added])])
curr_added += 1
return True, answer
all_input = raw_input().split()
left_part, right_part = all_input[:-2], int(all_input[-1])
is_possible, answer = solve_rebus(left_part, right_part)
if is_possible:
print "Possible"
print "{left_part} = {right_part}".format(left_part=" ".join(answer), right_part=right_part)
else:
print "Impossible"
| 1Python2
| {
"input": [
"? - ? = 1\n",
"? + ? - ? + ? + ? = 42\n",
"? = 1000000\n",
"? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? - ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? = 33\n",
"? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? + ? - ? - ? = 999999\n",
"? - ? + ? - ? + ? + ? + ? + ? = 2\n",
"? - ? + ? + ? + ? + ? - ? - ? - ? - ? + ? - ? - ? - ? + ? - ? + ? + ? + ? - ? + ? + ? + ? - ? + ? + ? - ? + ? - ? + ? - ? - ? + ? + ? + ? + ? + ? + ? + ? - ? + ? + ? + ? + ? - ? - ? - ? + ? - ? - ? - ? - ? - ? - ? + ? - ? + ? + ? - ? - ? - ? - ? + ? - ? - ? + ? + ? - ? + ? + ? - ? - ? - ? + ? + ? - ? - ? + ? - ? - ? + ? - ? + ? - ? - ? - ? - ? + ? - ? + ? - ? + ? + ? + ? - ? + ? + ? - ? - ? + ? = 123456\n",
"? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? + ? - ? - ? - ? - ? - ? - ? + ? - ? - ? - ? - ? - ? - ? + ? - ? - ? - ? - ? - ? - ? - ? - ? + ? - ? - ? - ? - ? + ? - ? - ? - ? - ? - ? + ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? = 19\n",
"? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? = 100\n",
"? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? = 93\n",
"? + ? + ? + ? - ? + ? + ? + ? + ? + ? + ? + ? - ? + ? - ? + ? + ? + ? + ? + ? + ? + ? - ? - ? + ? + ? + ? + ? + ? - ? - ? + ? + ? - ? + ? - ? - ? + ? + ? + ? + ? + ? + ? + ? + ? - ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? - ? + ? + ? + ? + ? - ? + ? + ? + ? + ? + ? + ? + ? - ? + ? + ? + ? + ? - ? - ? + ? + ? + ? + ? - ? + ? + ? + ? - ? + ? - ? + ? + ? + ? + ? + ? + ? - ? + ? + ? + ? + ? + ? = 3\n",
"? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? = 43386\n",
"? - ? + ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? = 57\n",
"? + ? + ? + ? + ? + ? + ? + ? + ? + ? - ? = 5\n",
"? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? + ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? + ? - ? - ? - ? - ? + ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? = 32\n",
"? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? = 9\n",
"? + ? - ? - ? - ? + ? + ? - ? + ? + ? - ? - ? - ? - ? - ? - ? + ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? + ? - ? - ? - ? - ? + ? - ? - ? - ? + ? - ? - ? - ? + ? - ? - ? - ? - ? - ? + ? - ? - ? - ? + ? - ? - ? - ? - ? - ? - ? - ? - ? - ? + ? - ? - ? - ? + ? - ? - ? - ? + ? - ? - ? + ? - ? + ? - ? - ? - ? - ? + ? - ? - ? - ? - ? - ? - ? + ? - ? - ? - ? - ? - ? - ? - ? - ? = 5\n",
"? - ? + ? + ? - ? + ? - ? + ? + ? + ? + ? + ? + ? + ? - ? + ? + ? - ? + ? + ? - ? + ? + ? - ? + ? + ? + ? + ? + ? + ? + ? + ? - ? + ? - ? + ? + ? - ? + ? - ? + ? + ? + ? + ? + ? + ? - ? + ? - ? + ? - ? + ? + ? + ? + ? + ? + ? - ? + ? - ? + ? + ? + ? + ? - ? + ? + ? + ? + ? + ? + ? + ? - ? - ? - ? + ? - ? + ? + ? + ? + ? - ? - ? + ? + ? - ? - ? + ? = 1000000\n",
"? + ? - ? + ? + ? = 42\n",
"? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? - ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? - ? + ? + ? + ? + ? + ? + ? + ? - ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? - ? + ? + ? - ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? - ? + ? - ? + ? + ? + ? + ? + ? + ? + ? - ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? = 15\n",
"? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? + ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? + ? - ? - ? - ? + ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? + ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? = 37\n",
"? + ? + ? - ? + ? - ? - ? - ? - ? - ? + ? - ? + ? + ? - ? + ? - ? + ? + ? - ? + ? - ? + ? + ? + ? - ? - ? - ? + ? - ? - ? + ? - ? - ? + ? - ? + ? + ? - ? + ? - ? - ? + ? + ? - ? - ? - ? + ? - ? - ? - ? + ? - ? - ? - ? + ? - ? - ? - ? - ? - ? - ? - ? + ? - ? - ? - ? - ? - ? - ? - ? - ? + ? - ? + ? - ? - ? + ? - ? - ? - ? - ? + ? + ? - ? + ? + ? - ? + ? - ? + ? - ? + ? - ? - ? - ? - ? - ? + ? - ? = 837454\n",
"? + ? + ? + ? + ? - ? = 3\n",
"? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? + ? + ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? + ? - ? + ? + ? - ? - ? - ? + ? - ? + ? - ? - ? - ? - ? - ? + ? - ? + ? - ? - ? - ? - ? - ? - ? + ? - ? + ? - ? + ? - ? - ? + ? - ? + ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? + ? - ? - ? - ? - ? - ? + ? - ? - ? - ? - ? - ? + ? - ? - ? - ? + ? - ? + ? - ? - ? = 4\n",
"? + ? - ? + ? + ? - ? + ? + ? + ? - ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? - ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? - ? + ? + ? - ? + ? + ? - ? + ? + ? + ? + ? + ? + ? + ? + ? - ? + ? + ? + ? + ? - ? + ? - ? + ? - ? + ? + ? + ? + ? + ? + ? - ? + ? - ? - ? - ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? - ? + ? - ? + ? + ? + ? + ? + ? + ? - ? + ? + ? - ? - ? + ? + ? = 4\n",
"? + ? + ? + ? - ? = 2\n",
"? + ? + ? + ? + ? - ? - ? = 2\n",
"? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? + ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? + ? - ? - ? - ? + ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? = 31\n",
"? + ? + ? + ? + ? + ? + ? + ? - ? - ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? - ? + ? + ? - ? - ? + ? + ? - ? - ? + ? + ? + ? - ? - ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? - ? + ? + ? + ? - ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? - ? + ? + ? + ? + ? + ? + ? - ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? - ? - ? + ? + ? + ? - ? + ? + ? - ? - ? + ? - ? + ? + ? + ? = 4\n",
"? - ? + ? - ? + ? + ? - ? + ? - ? + ? + ? - ? + ? - ? - ? + ? - ? - ? + ? - ? + ? - ? - ? - ? - ? - ? + ? - ? + ? + ? + ? + ? + ? + ? + ? + ? - ? - ? + ? - ? + ? + ? - ? + ? - ? + ? - ? - ? + ? - ? - ? + ? - ? - ? - ? + ? - ? - ? + ? - ? + ? + ? - ? - ? + ? - ? - ? + ? + ? - ? + ? - ? + ? + ? + ? + ? + ? - ? - ? + ? - ? - ? - ? + ? = 254253\n",
"? + ? - ? = 1\n",
"? + ? - ? + ? + ? = 2\n",
"? + ? + ? + ? + ? + ? + ? + ? + ? + ? - ? = 9\n",
"? - ? = 2\n",
"? = 1000001\n",
"? - ? + ? - ? + ? + ? + ? + ? = 4\n",
"? + ? - ? + ? + ? = 82\n",
"? = 1001000\n",
"? = 1001010\n",
"? + ? - ? + ? + ? = 25\n",
"? + ? + ? + ? + ? - ? = 6\n",
"? + ? - ? + ? + ? = 35\n",
"? = 1001100\n",
"? = 0001100\n",
"? = 0001000\n",
"? - ? + ? - ? + ? + ? + ? + ? = 3\n",
"? = 1001001\n",
"? + ? + ? + ? + ? - ? = 4\n",
"? - ? + ? + ? + ? + ? - ? - ? - ? - ? + ? - ? - ? - ? + ? - ? + ? + ? + ? - ? + ? + ? + ? - ? + ? + ? - ? + ? - ? + ? - ? - ? + ? + ? + ? + ? + ? + ? + ? - ? + ? + ? + ? + ? - ? - ? - ? + ? - ? - ? - ? - ? - ? - ? + ? - ? + ? + ? - ? - ? - ? - ? + ? - ? - ? + ? + ? - ? + ? + ? - ? - ? - ? + ? + ? - ? - ? + ? - ? - ? + ? - ? + ? - ? - ? - ? - ? + ? - ? + ? - ? + ? + ? + ? - ? + ? + ? - ? - ? + ? = 124503\n",
"? + ? - ? + ? + ? = 65\n",
"? = 1100001\n",
"? = 1101001\n",
"? + ? - ? + ? + ? = 112\n",
"? = 1011000\n",
"? = 1111000\n",
"? + ? - ? + ? + ? = 6\n",
"? = 1100000\n",
"? = 1000010\n",
"? = 1101100\n",
"? = 0101000\n",
"? + ? - ? + ? + ? = 104\n",
"? = 1101101\n",
"? = 0011000\n",
"? = 0100000\n",
"? = 0101010\n",
"? = 1101000\n",
"? + ? - ? + ? + ? = 66\n",
"? = 1011010\n",
"? = 0001101\n",
"? = 0011010\n",
"? = 0001010\n",
"? = 0001110\n",
"? + ? + ? + ? + ? - ? = 5\n",
"? + ? - ? = 2\n",
"? = 1000101\n",
"? = 1011001\n",
"? = 1001011\n",
"? = 1111001\n",
"? - ? + ? + ? + ? + ? - ? - ? - ? - ? + ? - ? - ? - ? + ? - ? + ? + ? + ? - ? + ? + ? + ? - ? + ? + ? - ? + ? - ? + ? - ? - ? + ? + ? + ? + ? + ? + ? + ? - ? + ? + ? + ? + ? - ? - ? - ? + ? - ? - ? - ? - ? - ? - ? + ? - ? + ? + ? - ? - ? - ? - ? + ? - ? - ? + ? + ? - ? + ? + ? - ? - ? - ? + ? + ? - ? - ? + ? - ? - ? + ? - ? + ? - ? - ? - ? - ? + ? - ? + ? - ? + ? + ? + ? - ? + ? + ? - ? - ? + ? = 104333\n",
"? + ? - ? + ? + ? = 117\n",
"? = 1101011\n",
"? = 0011100\n",
"? = 1100100\n",
"? = 0101100\n",
"? = 0100100\n",
"? = 0010010\n",
"? = 1010101\n",
"? = 1000011\n",
"? = 1100011\n",
"? = 0101110\n",
"? + ? - ? + ? + ? = 54\n",
"? = 0000010\n",
"? = 1100111\n",
"? = 0101001\n",
"? = 1111100\n",
"? = 0010000\n",
"? = 0100010\n",
"? + ? - ? + ? + ? = 125\n",
"? + ? - ? + ? + ? = 0\n",
"? - ? = 3\n",
"? + ? + ? + ? + ? - ? = 1\n",
"? - ? = 4\n",
"? - ? + ? - ? + ? + ? + ? + ? = 0\n",
"? - ? + ? - ? + ? + ? + ? + ? = 1\n",
"? - ? = -1\n",
"? + ? - ? - ? - ? + ? + ? - ? + ? + ? - ? - ? - ? - ? - ? - ? + ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? + ? - ? - ? - ? - ? + ? - ? - ? - ? + ? - ? - ? - ? + ? - ? - ? - ? - ? - ? + ? - ? - ? - ? + ? - ? - ? - ? - ? - ? - ? - ? - ? - ? + ? - ? - ? - ? + ? - ? - ? - ? + ? - ? - ? + ? - ? + ? - ? - ? - ? - ? + ? - ? - ? - ? - ? - ? - ? + ? - ? - ? - ? - ? - ? - ? - ? - ? = 1\n",
"? + ? - ? + ? + ? = 1\n",
"? + ? + ? + ? + ? - ? = 0\n",
"? + ? - ? = 0\n",
"? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? = 94\n"
],
"output": [
"Impossible\n",
"Possible\n40 + 1 - 1 + 1 + 1 = 42\n",
"Possible\n1000000 = 1000000\n",
"Possible\n1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 - 33 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 = 33\n",
"Possible\n999999 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 + 98 - 1 - 1 = 999999\n",
"Possible\n1 - 2 + 1 - 2 + 1 + 1 + 1 + 1 = 2\n",
"Possible\n123456 - 1 + 2 + 1 + 1 + 1 - 1 - 1 - 1 - 1 + 1 - 1 - 1 - 1 + 1 - 1 + 1 + 1 + 1 - 1 + 1 + 1 + 1 - 1 + 1 + 1 - 1 + 1 - 1 + 1 - 1 - 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 - 1 + 1 + 1 + 1 + 1 - 1 - 1 - 1 + 1 - 1 - 1 - 1 - 1 - 1 - 1 + 1 - 1 + 1 + 1 - 1 - 1 - 1 - 1 + 1 - 1 - 1 + 1 + 1 - 1 + 1 + 1 - 1 - 1 - 1 + 1 + 1 - 1 - 1 + 1 - 1 - 1 + 1 - 1 + 1 - 1 - 1 - 1 - 1 + 1 - 1 + 1 - 1 + 1 + 1 + 1 - 1 + 1 + 1 - 1 - 1 + 1 = 123456\n",
"Possible\n19 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 + 19 - 1 - 1 - 1 - 1 - 1 - 1 + 19 - 1 - 1 - 1 - 1 - 1 - 1 + 19 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 + 19 - 1 - 1 - 1 - 1 + 11 - 1 - 1 - 1 - 1 - 1 + 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 = 19\n",
"Possible\n1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 = 100\n",
"Impossible\n",
"Impossible\n",
"Impossible\n",
"Possible\n57 - 1 + 18 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 = 57\n",
"Possible\n1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 - 5 = 5\n",
"Possible\n32 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 + 32 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 + 32 - 1 - 1 - 1 - 1 + 32 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 = 32\n",
"Impossible\n",
"Possible\n5 + 5 - 1 - 1 - 1 + 5 + 5 - 1 + 5 + 5 - 1 - 1 - 1 - 1 - 1 - 1 + 5 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 + 5 - 1 - 1 - 1 - 1 + 5 - 1 - 1 - 1 + 5 - 1 - 1 - 1 + 5 - 1 - 1 - 1 - 1 - 1 + 5 - 1 - 1 - 1 + 5 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 + 5 - 1 - 1 - 1 + 5 - 1 - 1 - 1 + 5 - 1 - 1 + 2 - 1 + 1 - 1 - 1 - 1 - 1 + 1 - 1 - 1 - 1 - 1 - 1 - 1 + 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 = 5\n",
"Possible\n999963 - 1 + 1 + 1 - 1 + 1 - 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 - 1 + 1 + 1 - 1 + 1 + 1 - 1 + 1 + 1 - 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 - 1 + 1 - 1 + 1 + 1 - 1 + 1 - 1 + 1 + 1 + 1 + 1 + 1 + 1 - 1 + 1 - 1 + 1 - 1 + 1 + 1 + 1 + 1 + 1 + 1 - 1 + 1 - 1 + 1 + 1 + 1 + 1 - 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 - 1 - 1 - 1 + 1 - 1 + 1 + 1 + 1 + 1 - 1 - 1 + 1 + 1 - 1 - 1 + 1 = 1000000\n",
"Possible\n40 + 1 - 1 + 1 + 1 = 42\n",
"Possible\n1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 - 15 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 - 15 + 1 + 1 + 1 + 1 + 1 + 1 + 1 - 15 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 - 15 + 1 + 1 - 14 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 - 1 + 1 - 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 - 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 = 15\n",
"Possible\n37 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 + 37 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 + 37 - 1 - 1 - 1 + 20 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 + 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 = 37\n",
"Possible\n837454 + 28 + 1 - 1 + 1 - 1 - 1 - 1 - 1 - 1 + 1 - 1 + 1 + 1 - 1 + 1 - 1 + 1 + 1 - 1 + 1 - 1 + 1 + 1 + 1 - 1 - 1 - 1 + 1 - 1 - 1 + 1 - 1 - 1 + 1 - 1 + 1 + 1 - 1 + 1 - 1 - 1 + 1 + 1 - 1 - 1 - 1 + 1 - 1 - 1 - 1 + 1 - 1 - 1 - 1 + 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 + 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 + 1 - 1 + 1 - 1 - 1 + 1 - 1 - 1 - 1 - 1 + 1 + 1 - 1 + 1 + 1 - 1 + 1 - 1 + 1 - 1 + 1 - 1 - 1 - 1 - 1 - 1 + 1 - 1 = 837454\n",
"Possible\n1 + 1 + 1 + 1 + 1 - 2 = 3\n",
"Impossible\n",
"Possible\n1 + 1 - 4 + 1 + 1 - 4 + 1 + 1 + 1 - 4 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 - 4 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 - 4 + 1 + 1 - 4 + 1 + 1 - 4 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 - 4 + 1 + 1 + 1 + 1 - 4 + 1 - 4 + 1 - 4 + 1 + 1 + 1 + 1 + 1 + 1 - 4 + 1 - 4 - 4 - 4 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 - 4 + 1 - 4 + 1 + 1 + 1 + 1 + 1 + 1 - 4 + 1 + 1 - 3 - 1 + 1 + 1 = 4\n",
"Possible\n1 + 1 + 1 + 1 - 2 = 2\n",
"Possible\n1 + 1 + 1 + 1 + 1 - 2 - 1 = 2\n",
"Impossible\n",
"Possible\n1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 - 4 - 4 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 - 4 + 1 + 1 - 4 - 4 + 1 + 1 - 4 - 4 + 1 + 1 + 1 - 4 - 4 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 - 4 + 1 + 1 + 1 - 4 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 - 4 + 1 + 1 + 1 + 1 + 1 + 1 - 4 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 - 4 - 4 + 1 + 1 + 1 - 4 + 1 + 1 - 4 - 4 + 1 - 4 + 1 + 1 + 1 = 4\n",
"Possible\n254253 - 1 + 2 - 1 + 1 + 1 - 1 + 1 - 1 + 1 + 1 - 1 + 1 - 1 - 1 + 1 - 1 - 1 + 1 - 1 + 1 - 1 - 1 - 1 - 1 - 1 + 1 - 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 - 1 - 1 + 1 - 1 + 1 + 1 - 1 + 1 - 1 + 1 - 1 - 1 + 1 - 1 - 1 + 1 - 1 - 1 - 1 + 1 - 1 - 1 + 1 - 1 + 1 + 1 - 1 - 1 + 1 - 1 - 1 + 1 + 1 - 1 + 1 - 1 + 1 + 1 + 1 + 1 + 1 - 1 - 1 + 1 - 1 - 1 - 1 + 1 = 254253\n",
"Possible\n1 + 1 - 1 = 1\n",
"Possible\n1 + 1 - 2 + 1 + 1 = 2\n",
"Possible \n1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 - 1 = 9 \n",
"Impossible \n",
"Possible \n1000001 = 1000001 \n",
"Possible \n1 - 1 + 1 - 1 + 1 + 1 + 1 + 1 = 4 \n",
"Possible \n80 + 1 - 1 + 1 + 1 = 82 \n",
"Possible \n1001000 = 1001000 \n",
"Possible \n1001010 = 1001010 \n",
"Possible \n23 + 1 - 1 + 1 + 1 = 25 \n",
"Possible \n3 + 1 + 1 + 1 + 1 - 1 = 6 \n",
"Possible \n33 + 1 - 1 + 1 + 1 = 35 \n",
"Possible \n1001100 = 1001100 \n",
"Possible \n1100 = 1100 \n",
"Possible \n1000 = 1000 \n",
"Possible \n1 - 2 + 1 - 1 + 1 + 1 + 1 + 1 = 3 \n",
"Possible \n1001001 = 1001001 \n",
"Possible \n1 + 1 + 1 + 1 + 1 - 1 = 4 \n",
"Possible \n124503 - 1 + 2 + 1 + 1 + 1 - 1 - 1 - 1 - 1 + 1 - 1 - 1 - 1 + 1 - 1 + 1 + 1 + 1 - 1 + 1 + 1 + 1 - 1 + 1 + 1 - 1 + 1 - 1 + 1 - 1 - 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 - 1 + 1 + 1 + 1 + 1 - 1 - 1 - 1 + 1 - 1 - 1 - 1 - 1 - 1 - 1 + 1 - 1 + 1 + 1 - 1 - 1 - 1 - 1 + 1 - 1 - 1 + 1 + 1 - 1 + 1 + 1 - 1 - 1 - 1 + 1 + 1 - 1 - 1 + 1 - 1 - 1 + 1 - 1 + 1 - 1 - 1 - 1 - 1 + 1 - 1 + 1 - 1 + 1 + 1 + 1 - 1 + 1 + 1 - 1 - 1 + 1 = 124503 \n",
"Possible \n63 + 1 - 1 + 1 + 1 = 65 \n",
"Possible \n1100001 = 1100001 \n",
"Possible \n1101001 = 1101001 \n",
"Possible \n110 + 1 - 1 + 1 + 1 = 112 \n",
"Possible \n1011000 = 1011000 \n",
"Possible \n1111000 = 1111000 \n",
"Possible \n4 + 1 - 1 + 1 + 1 = 6 \n",
"Possible \n1100000 = 1100000 \n",
"Possible \n1000010 = 1000010 \n",
"Possible \n1101100 = 1101100 \n",
"Possible \n101000 = 101000 \n",
"Possible \n102 + 1 - 1 + 1 + 1 = 104 \n",
"Possible \n1101101 = 1101101 \n",
"Possible \n11000 = 11000 \n",
"Possible \n100000 = 100000 \n",
"Possible \n101010 = 101010 \n",
"Possible \n1101000 = 1101000 \n",
"Possible \n64 + 1 - 1 + 1 + 1 = 66 \n",
"Possible \n1011010 = 1011010 \n",
"Possible \n1101 = 1101 \n",
"Possible \n11010 = 11010 \n",
"Possible \n1010 = 1010 \n",
"Possible \n1110 = 1110 \n",
"Possible \n2 + 1 + 1 + 1 + 1 - 1 = 5 \n",
"Possible \n2 + 1 - 1 = 2 \n",
"Possible \n1000101 = 1000101 \n",
"Possible \n1011001 = 1011001 \n",
"Possible \n1001011 = 1001011 \n",
"Possible \n1111001 = 1111001 \n",
"Possible \n104333 - 1 + 2 + 1 + 1 + 1 - 1 - 1 - 1 - 1 + 1 - 1 - 1 - 1 + 1 - 1 + 1 + 1 + 1 - 1 + 1 + 1 + 1 - 1 + 1 + 1 - 1 + 1 - 1 + 1 - 1 - 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 - 1 + 1 + 1 + 1 + 1 - 1 - 1 - 1 + 1 - 1 - 1 - 1 - 1 - 1 - 1 + 1 - 1 + 1 + 1 - 1 - 1 - 1 - 1 + 1 - 1 - 1 + 1 + 1 - 1 + 1 + 1 - 1 - 1 - 1 + 1 + 1 - 1 - 1 + 1 - 1 - 1 + 1 - 1 + 1 - 1 - 1 - 1 - 1 + 1 - 1 + 1 - 1 + 1 + 1 + 1 - 1 + 1 + 1 - 1 - 1 + 1 = 104333 \n",
"Possible \n115 + 1 - 1 + 1 + 1 = 117 \n",
"Possible \n1101011 = 1101011 \n",
"Possible \n11100 = 11100 \n",
"Possible \n1100100 = 1100100 \n",
"Possible \n101100 = 101100 \n",
"Possible \n100100 = 100100 \n",
"Possible \n10010 = 10010 \n",
"Possible \n1010101 = 1010101 \n",
"Possible \n1000011 = 1000011 \n",
"Possible \n1100011 = 1100011 \n",
"Possible \n101110 = 101110 \n",
"Possible \n52 + 1 - 1 + 1 + 1 = 54 \n",
"Possible \n10 = 10 \n",
"Possible \n1100111 = 1100111 \n",
"Possible \n101001 = 101001 \n",
"Possible \n1111100 = 1111100 \n",
"Possible \n10000 = 10000 \n",
"Possible \n100010 = 100010 \n",
"Possible \n123 + 1 - 1 + 1 + 1 = 125 \n",
"Impossible \n",
"Impossible \n",
"Impossible \n",
"Impossible \n",
"Impossible \n",
"Impossible \n",
"Impossible \n",
"Impossible \n",
"Impossible \n",
"Impossible \n",
"Impossible \n",
"Impossible \n"
]
} | 2CODEFORCES
|
663_A. Rebus_148 | You are given a rebus of form ? + ? - ? + ? = n, consisting of only question marks, separated by arithmetic operation '+' and '-', equality and positive integer n. The goal is to replace each question mark with some positive integer from 1 to n, such that equality holds.
Input
The only line of the input contains a rebus. It's guaranteed that it contains no more than 100 question marks, integer n is positive and doesn't exceed 1 000 000, all letters and integers are separated by spaces, arithmetic operations are located only between question marks.
Output
The first line of the output should contain "Possible" (without quotes) if rebus has a solution and "Impossible" (without quotes) otherwise.
If the answer exists, the second line should contain any valid rebus with question marks replaced by integers from 1 to n. Follow the format given in the samples.
Examples
Input
? + ? - ? + ? + ? = 42
Output
Possible
9 + 13 - 39 + 28 + 31 = 42
Input
? - ? = 1
Output
Impossible
Input
? = 1000000
Output
Possible
1000000 = 1000000 | #include <bits/stdc++.h>
using namespace std;
string s[505];
vector<int> P, N;
int main() {
int id = 0, pos = 0, neg = 0;
while (cin >> s[id]) {
if (s[id] == "=") break;
if (s[id] == "?") {
if (id == 0 || s[id - 1] == "+")
pos++;
else
neg++;
}
id++;
cin >> s[id];
if (s[id] == "=") break;
id++;
}
int n;
cin >> n;
int dif = pos - neg;
for (int i = 0; i < pos; i++) P.push_back(1);
for (int i = 0; i < neg; i++) N.push_back(1);
if (dif < n) {
int i = 0;
while (dif < n && i < pos) {
if (dif + n - 1 < n) {
dif += n - 1;
P[i++] = n;
} else {
P[i++] = 1 + n - dif;
dif = n;
}
}
if (dif != n) {
cout << "Impossible" << endl;
return 0;
}
} else if (dif > n) {
int i = 0;
while (dif > n && i < neg) {
if (dif - n + 1 > n) {
dif -= n - 1;
N[i++] = n;
} else {
N[i++] = 1 + dif - n;
dif = n;
}
}
if (dif != n) {
cout << "Impossible" << endl;
return 0;
}
}
cout << "Possible" << endl;
for (int i = 0, j = 0, k = 0; i <= id; i++) {
if (s[i] == "?") {
if (i == 0 || s[i - 1] == "+")
cout << P[j++];
else
cout << N[k++];
} else
cout << " " << s[i];
}
cout << " " << n << endl;
return 0;
}
| 2C++
| {
"input": [
"? - ? = 1\n",
"? + ? - ? + ? + ? = 42\n",
"? = 1000000\n",
"? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? - ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? = 33\n",
"? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? + ? - ? - ? = 999999\n",
"? - ? + ? - ? + ? + ? + ? + ? = 2\n",
"? - ? + ? + ? + ? + ? - ? - ? - ? - ? + ? - ? - ? - ? + ? - ? + ? + ? + ? - ? + ? + ? + ? - ? + ? + ? - ? + ? - ? + ? - ? - ? + ? + ? + ? + ? + ? + ? + ? - ? + ? + ? + ? + ? - ? - ? - ? + ? - ? - ? - ? - ? - ? - ? + ? - ? + ? + ? - ? - ? - ? - ? + ? - ? - ? + ? + ? - ? + ? + ? - ? - ? - ? + ? + ? - ? - ? + ? - ? - ? + ? - ? + ? - ? - ? - ? - ? + ? - ? + ? - ? + ? + ? + ? - ? + ? + ? - ? - ? + ? = 123456\n",
"? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? + ? - ? - ? - ? - ? - ? - ? + ? - ? - ? - ? - ? - ? - ? + ? - ? - ? - ? - ? - ? - ? - ? - ? + ? - ? - ? - ? - ? + ? - ? - ? - ? - ? - ? + ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? = 19\n",
"? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? = 100\n",
"? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? = 93\n",
"? + ? + ? + ? - ? + ? + ? + ? + ? + ? + ? + ? - ? + ? - ? + ? + ? + ? + ? + ? + ? + ? - ? - ? + ? + ? + ? + ? + ? - ? - ? + ? + ? - ? + ? - ? - ? + ? + ? + ? + ? + ? + ? + ? + ? - ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? - ? + ? + ? + ? + ? - ? + ? + ? + ? + ? + ? + ? + ? - ? + ? + ? + ? + ? - ? - ? + ? + ? + ? + ? - ? + ? + ? + ? - ? + ? - ? + ? + ? + ? + ? + ? + ? - ? + ? + ? + ? + ? + ? = 3\n",
"? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? = 43386\n",
"? - ? + ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? = 57\n",
"? + ? + ? + ? + ? + ? + ? + ? + ? + ? - ? = 5\n",
"? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? + ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? + ? - ? - ? - ? - ? + ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? = 32\n",
"? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? = 9\n",
"? + ? - ? - ? - ? + ? + ? - ? + ? + ? - ? - ? - ? - ? - ? - ? + ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? + ? - ? - ? - ? - ? + ? - ? - ? - ? + ? - ? - ? - ? + ? - ? - ? - ? - ? - ? + ? - ? - ? - ? + ? - ? - ? - ? - ? - ? - ? - ? - ? - ? + ? - ? - ? - ? + ? - ? - ? - ? + ? - ? - ? + ? - ? + ? - ? - ? - ? - ? + ? - ? - ? - ? - ? - ? - ? + ? - ? - ? - ? - ? - ? - ? - ? - ? = 5\n",
"? - ? + ? + ? - ? + ? - ? + ? + ? + ? + ? + ? + ? + ? - ? + ? + ? - ? + ? + ? - ? + ? + ? - ? + ? + ? + ? + ? + ? + ? + ? + ? - ? + ? - ? + ? + ? - ? + ? - ? + ? + ? + ? + ? + ? + ? - ? + ? - ? + ? - ? + ? + ? + ? + ? + ? + ? - ? + ? - ? + ? + ? + ? + ? - ? + ? + ? + ? + ? + ? + ? + ? - ? - ? - ? + ? - ? + ? + ? + ? + ? - ? - ? + ? + ? - ? - ? + ? = 1000000\n",
"? + ? - ? + ? + ? = 42\n",
"? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? - ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? - ? + ? + ? + ? + ? + ? + ? + ? - ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? - ? + ? + ? - ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? - ? + ? - ? + ? + ? + ? + ? + ? + ? + ? - ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? = 15\n",
"? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? + ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? + ? - ? - ? - ? + ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? + ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? = 37\n",
"? + ? + ? - ? + ? - ? - ? - ? - ? - ? + ? - ? + ? + ? - ? + ? - ? + ? + ? - ? + ? - ? + ? + ? + ? - ? - ? - ? + ? - ? - ? + ? - ? - ? + ? - ? + ? + ? - ? + ? - ? - ? + ? + ? - ? - ? - ? + ? - ? - ? - ? + ? - ? - ? - ? + ? - ? - ? - ? - ? - ? - ? - ? + ? - ? - ? - ? - ? - ? - ? - ? - ? + ? - ? + ? - ? - ? + ? - ? - ? - ? - ? + ? + ? - ? + ? + ? - ? + ? - ? + ? - ? + ? - ? - ? - ? - ? - ? + ? - ? = 837454\n",
"? + ? + ? + ? + ? - ? = 3\n",
"? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? + ? + ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? + ? - ? + ? + ? - ? - ? - ? + ? - ? + ? - ? - ? - ? - ? - ? + ? - ? + ? - ? - ? - ? - ? - ? - ? + ? - ? + ? - ? + ? - ? - ? + ? - ? + ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? + ? - ? - ? - ? - ? - ? + ? - ? - ? - ? - ? - ? + ? - ? - ? - ? + ? - ? + ? - ? - ? = 4\n",
"? + ? - ? + ? + ? - ? + ? + ? + ? - ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? - ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? - ? + ? + ? - ? + ? + ? - ? + ? + ? + ? + ? + ? + ? + ? + ? - ? + ? + ? + ? + ? - ? + ? - ? + ? - ? + ? + ? + ? + ? + ? + ? - ? + ? - ? - ? - ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? - ? + ? - ? + ? + ? + ? + ? + ? + ? - ? + ? + ? - ? - ? + ? + ? = 4\n",
"? + ? + ? + ? - ? = 2\n",
"? + ? + ? + ? + ? - ? - ? = 2\n",
"? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? + ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? + ? - ? - ? - ? + ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? = 31\n",
"? + ? + ? + ? + ? + ? + ? + ? - ? - ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? - ? + ? + ? - ? - ? + ? + ? - ? - ? + ? + ? + ? - ? - ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? - ? + ? + ? + ? - ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? - ? + ? + ? + ? + ? + ? + ? - ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? - ? - ? + ? + ? + ? - ? + ? + ? - ? - ? + ? - ? + ? + ? + ? = 4\n",
"? - ? + ? - ? + ? + ? - ? + ? - ? + ? + ? - ? + ? - ? - ? + ? - ? - ? + ? - ? + ? - ? - ? - ? - ? - ? + ? - ? + ? + ? + ? + ? + ? + ? + ? + ? - ? - ? + ? - ? + ? + ? - ? + ? - ? + ? - ? - ? + ? - ? - ? + ? - ? - ? - ? + ? - ? - ? + ? - ? + ? + ? - ? - ? + ? - ? - ? + ? + ? - ? + ? - ? + ? + ? + ? + ? + ? - ? - ? + ? - ? - ? - ? + ? = 254253\n",
"? + ? - ? = 1\n",
"? + ? - ? + ? + ? = 2\n",
"? + ? + ? + ? + ? + ? + ? + ? + ? + ? - ? = 9\n",
"? - ? = 2\n",
"? = 1000001\n",
"? - ? + ? - ? + ? + ? + ? + ? = 4\n",
"? + ? - ? + ? + ? = 82\n",
"? = 1001000\n",
"? = 1001010\n",
"? + ? - ? + ? + ? = 25\n",
"? + ? + ? + ? + ? - ? = 6\n",
"? + ? - ? + ? + ? = 35\n",
"? = 1001100\n",
"? = 0001100\n",
"? = 0001000\n",
"? - ? + ? - ? + ? + ? + ? + ? = 3\n",
"? = 1001001\n",
"? + ? + ? + ? + ? - ? = 4\n",
"? - ? + ? + ? + ? + ? - ? - ? - ? - ? + ? - ? - ? - ? + ? - ? + ? + ? + ? - ? + ? + ? + ? - ? + ? + ? - ? + ? - ? + ? - ? - ? + ? + ? + ? + ? + ? + ? + ? - ? + ? + ? + ? + ? - ? - ? - ? + ? - ? - ? - ? - ? - ? - ? + ? - ? + ? + ? - ? - ? - ? - ? + ? - ? - ? + ? + ? - ? + ? + ? - ? - ? - ? + ? + ? - ? - ? + ? - ? - ? + ? - ? + ? - ? - ? - ? - ? + ? - ? + ? - ? + ? + ? + ? - ? + ? + ? - ? - ? + ? = 124503\n",
"? + ? - ? + ? + ? = 65\n",
"? = 1100001\n",
"? = 1101001\n",
"? + ? - ? + ? + ? = 112\n",
"? = 1011000\n",
"? = 1111000\n",
"? + ? - ? + ? + ? = 6\n",
"? = 1100000\n",
"? = 1000010\n",
"? = 1101100\n",
"? = 0101000\n",
"? + ? - ? + ? + ? = 104\n",
"? = 1101101\n",
"? = 0011000\n",
"? = 0100000\n",
"? = 0101010\n",
"? = 1101000\n",
"? + ? - ? + ? + ? = 66\n",
"? = 1011010\n",
"? = 0001101\n",
"? = 0011010\n",
"? = 0001010\n",
"? = 0001110\n",
"? + ? + ? + ? + ? - ? = 5\n",
"? + ? - ? = 2\n",
"? = 1000101\n",
"? = 1011001\n",
"? = 1001011\n",
"? = 1111001\n",
"? - ? + ? + ? + ? + ? - ? - ? - ? - ? + ? - ? - ? - ? + ? - ? + ? + ? + ? - ? + ? + ? + ? - ? + ? + ? - ? + ? - ? + ? - ? - ? + ? + ? + ? + ? + ? + ? + ? - ? + ? + ? + ? + ? - ? - ? - ? + ? - ? - ? - ? - ? - ? - ? + ? - ? + ? + ? - ? - ? - ? - ? + ? - ? - ? + ? + ? - ? + ? + ? - ? - ? - ? + ? + ? - ? - ? + ? - ? - ? + ? - ? + ? - ? - ? - ? - ? + ? - ? + ? - ? + ? + ? + ? - ? + ? + ? - ? - ? + ? = 104333\n",
"? + ? - ? + ? + ? = 117\n",
"? = 1101011\n",
"? = 0011100\n",
"? = 1100100\n",
"? = 0101100\n",
"? = 0100100\n",
"? = 0010010\n",
"? = 1010101\n",
"? = 1000011\n",
"? = 1100011\n",
"? = 0101110\n",
"? + ? - ? + ? + ? = 54\n",
"? = 0000010\n",
"? = 1100111\n",
"? = 0101001\n",
"? = 1111100\n",
"? = 0010000\n",
"? = 0100010\n",
"? + ? - ? + ? + ? = 125\n",
"? + ? - ? + ? + ? = 0\n",
"? - ? = 3\n",
"? + ? + ? + ? + ? - ? = 1\n",
"? - ? = 4\n",
"? - ? + ? - ? + ? + ? + ? + ? = 0\n",
"? - ? + ? - ? + ? + ? + ? + ? = 1\n",
"? - ? = -1\n",
"? + ? - ? - ? - ? + ? + ? - ? + ? + ? - ? - ? - ? - ? - ? - ? + ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? + ? - ? - ? - ? - ? + ? - ? - ? - ? + ? - ? - ? - ? + ? - ? - ? - ? - ? - ? + ? - ? - ? - ? + ? - ? - ? - ? - ? - ? - ? - ? - ? - ? + ? - ? - ? - ? + ? - ? - ? - ? + ? - ? - ? + ? - ? + ? - ? - ? - ? - ? + ? - ? - ? - ? - ? - ? - ? + ? - ? - ? - ? - ? - ? - ? - ? - ? = 1\n",
"? + ? - ? + ? + ? = 1\n",
"? + ? + ? + ? + ? - ? = 0\n",
"? + ? - ? = 0\n",
"? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? = 94\n"
],
"output": [
"Impossible\n",
"Possible\n40 + 1 - 1 + 1 + 1 = 42\n",
"Possible\n1000000 = 1000000\n",
"Possible\n1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 - 33 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 = 33\n",
"Possible\n999999 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 + 98 - 1 - 1 = 999999\n",
"Possible\n1 - 2 + 1 - 2 + 1 + 1 + 1 + 1 = 2\n",
"Possible\n123456 - 1 + 2 + 1 + 1 + 1 - 1 - 1 - 1 - 1 + 1 - 1 - 1 - 1 + 1 - 1 + 1 + 1 + 1 - 1 + 1 + 1 + 1 - 1 + 1 + 1 - 1 + 1 - 1 + 1 - 1 - 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 - 1 + 1 + 1 + 1 + 1 - 1 - 1 - 1 + 1 - 1 - 1 - 1 - 1 - 1 - 1 + 1 - 1 + 1 + 1 - 1 - 1 - 1 - 1 + 1 - 1 - 1 + 1 + 1 - 1 + 1 + 1 - 1 - 1 - 1 + 1 + 1 - 1 - 1 + 1 - 1 - 1 + 1 - 1 + 1 - 1 - 1 - 1 - 1 + 1 - 1 + 1 - 1 + 1 + 1 + 1 - 1 + 1 + 1 - 1 - 1 + 1 = 123456\n",
"Possible\n19 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 + 19 - 1 - 1 - 1 - 1 - 1 - 1 + 19 - 1 - 1 - 1 - 1 - 1 - 1 + 19 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 + 19 - 1 - 1 - 1 - 1 + 11 - 1 - 1 - 1 - 1 - 1 + 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 = 19\n",
"Possible\n1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 = 100\n",
"Impossible\n",
"Impossible\n",
"Impossible\n",
"Possible\n57 - 1 + 18 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 = 57\n",
"Possible\n1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 - 5 = 5\n",
"Possible\n32 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 + 32 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 + 32 - 1 - 1 - 1 - 1 + 32 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 = 32\n",
"Impossible\n",
"Possible\n5 + 5 - 1 - 1 - 1 + 5 + 5 - 1 + 5 + 5 - 1 - 1 - 1 - 1 - 1 - 1 + 5 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 + 5 - 1 - 1 - 1 - 1 + 5 - 1 - 1 - 1 + 5 - 1 - 1 - 1 + 5 - 1 - 1 - 1 - 1 - 1 + 5 - 1 - 1 - 1 + 5 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 + 5 - 1 - 1 - 1 + 5 - 1 - 1 - 1 + 5 - 1 - 1 + 2 - 1 + 1 - 1 - 1 - 1 - 1 + 1 - 1 - 1 - 1 - 1 - 1 - 1 + 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 = 5\n",
"Possible\n999963 - 1 + 1 + 1 - 1 + 1 - 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 - 1 + 1 + 1 - 1 + 1 + 1 - 1 + 1 + 1 - 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 - 1 + 1 - 1 + 1 + 1 - 1 + 1 - 1 + 1 + 1 + 1 + 1 + 1 + 1 - 1 + 1 - 1 + 1 - 1 + 1 + 1 + 1 + 1 + 1 + 1 - 1 + 1 - 1 + 1 + 1 + 1 + 1 - 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 - 1 - 1 - 1 + 1 - 1 + 1 + 1 + 1 + 1 - 1 - 1 + 1 + 1 - 1 - 1 + 1 = 1000000\n",
"Possible\n40 + 1 - 1 + 1 + 1 = 42\n",
"Possible\n1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 - 15 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 - 15 + 1 + 1 + 1 + 1 + 1 + 1 + 1 - 15 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 - 15 + 1 + 1 - 14 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 - 1 + 1 - 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 - 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 = 15\n",
"Possible\n37 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 + 37 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 + 37 - 1 - 1 - 1 + 20 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 + 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 = 37\n",
"Possible\n837454 + 28 + 1 - 1 + 1 - 1 - 1 - 1 - 1 - 1 + 1 - 1 + 1 + 1 - 1 + 1 - 1 + 1 + 1 - 1 + 1 - 1 + 1 + 1 + 1 - 1 - 1 - 1 + 1 - 1 - 1 + 1 - 1 - 1 + 1 - 1 + 1 + 1 - 1 + 1 - 1 - 1 + 1 + 1 - 1 - 1 - 1 + 1 - 1 - 1 - 1 + 1 - 1 - 1 - 1 + 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 + 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 + 1 - 1 + 1 - 1 - 1 + 1 - 1 - 1 - 1 - 1 + 1 + 1 - 1 + 1 + 1 - 1 + 1 - 1 + 1 - 1 + 1 - 1 - 1 - 1 - 1 - 1 + 1 - 1 = 837454\n",
"Possible\n1 + 1 + 1 + 1 + 1 - 2 = 3\n",
"Impossible\n",
"Possible\n1 + 1 - 4 + 1 + 1 - 4 + 1 + 1 + 1 - 4 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 - 4 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 - 4 + 1 + 1 - 4 + 1 + 1 - 4 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 - 4 + 1 + 1 + 1 + 1 - 4 + 1 - 4 + 1 - 4 + 1 + 1 + 1 + 1 + 1 + 1 - 4 + 1 - 4 - 4 - 4 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 - 4 + 1 - 4 + 1 + 1 + 1 + 1 + 1 + 1 - 4 + 1 + 1 - 3 - 1 + 1 + 1 = 4\n",
"Possible\n1 + 1 + 1 + 1 - 2 = 2\n",
"Possible\n1 + 1 + 1 + 1 + 1 - 2 - 1 = 2\n",
"Impossible\n",
"Possible\n1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 - 4 - 4 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 - 4 + 1 + 1 - 4 - 4 + 1 + 1 - 4 - 4 + 1 + 1 + 1 - 4 - 4 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 - 4 + 1 + 1 + 1 - 4 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 - 4 + 1 + 1 + 1 + 1 + 1 + 1 - 4 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 - 4 - 4 + 1 + 1 + 1 - 4 + 1 + 1 - 4 - 4 + 1 - 4 + 1 + 1 + 1 = 4\n",
"Possible\n254253 - 1 + 2 - 1 + 1 + 1 - 1 + 1 - 1 + 1 + 1 - 1 + 1 - 1 - 1 + 1 - 1 - 1 + 1 - 1 + 1 - 1 - 1 - 1 - 1 - 1 + 1 - 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 - 1 - 1 + 1 - 1 + 1 + 1 - 1 + 1 - 1 + 1 - 1 - 1 + 1 - 1 - 1 + 1 - 1 - 1 - 1 + 1 - 1 - 1 + 1 - 1 + 1 + 1 - 1 - 1 + 1 - 1 - 1 + 1 + 1 - 1 + 1 - 1 + 1 + 1 + 1 + 1 + 1 - 1 - 1 + 1 - 1 - 1 - 1 + 1 = 254253\n",
"Possible\n1 + 1 - 1 = 1\n",
"Possible\n1 + 1 - 2 + 1 + 1 = 2\n",
"Possible \n1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 - 1 = 9 \n",
"Impossible \n",
"Possible \n1000001 = 1000001 \n",
"Possible \n1 - 1 + 1 - 1 + 1 + 1 + 1 + 1 = 4 \n",
"Possible \n80 + 1 - 1 + 1 + 1 = 82 \n",
"Possible \n1001000 = 1001000 \n",
"Possible \n1001010 = 1001010 \n",
"Possible \n23 + 1 - 1 + 1 + 1 = 25 \n",
"Possible \n3 + 1 + 1 + 1 + 1 - 1 = 6 \n",
"Possible \n33 + 1 - 1 + 1 + 1 = 35 \n",
"Possible \n1001100 = 1001100 \n",
"Possible \n1100 = 1100 \n",
"Possible \n1000 = 1000 \n",
"Possible \n1 - 2 + 1 - 1 + 1 + 1 + 1 + 1 = 3 \n",
"Possible \n1001001 = 1001001 \n",
"Possible \n1 + 1 + 1 + 1 + 1 - 1 = 4 \n",
"Possible \n124503 - 1 + 2 + 1 + 1 + 1 - 1 - 1 - 1 - 1 + 1 - 1 - 1 - 1 + 1 - 1 + 1 + 1 + 1 - 1 + 1 + 1 + 1 - 1 + 1 + 1 - 1 + 1 - 1 + 1 - 1 - 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 - 1 + 1 + 1 + 1 + 1 - 1 - 1 - 1 + 1 - 1 - 1 - 1 - 1 - 1 - 1 + 1 - 1 + 1 + 1 - 1 - 1 - 1 - 1 + 1 - 1 - 1 + 1 + 1 - 1 + 1 + 1 - 1 - 1 - 1 + 1 + 1 - 1 - 1 + 1 - 1 - 1 + 1 - 1 + 1 - 1 - 1 - 1 - 1 + 1 - 1 + 1 - 1 + 1 + 1 + 1 - 1 + 1 + 1 - 1 - 1 + 1 = 124503 \n",
"Possible \n63 + 1 - 1 + 1 + 1 = 65 \n",
"Possible \n1100001 = 1100001 \n",
"Possible \n1101001 = 1101001 \n",
"Possible \n110 + 1 - 1 + 1 + 1 = 112 \n",
"Possible \n1011000 = 1011000 \n",
"Possible \n1111000 = 1111000 \n",
"Possible \n4 + 1 - 1 + 1 + 1 = 6 \n",
"Possible \n1100000 = 1100000 \n",
"Possible \n1000010 = 1000010 \n",
"Possible \n1101100 = 1101100 \n",
"Possible \n101000 = 101000 \n",
"Possible \n102 + 1 - 1 + 1 + 1 = 104 \n",
"Possible \n1101101 = 1101101 \n",
"Possible \n11000 = 11000 \n",
"Possible \n100000 = 100000 \n",
"Possible \n101010 = 101010 \n",
"Possible \n1101000 = 1101000 \n",
"Possible \n64 + 1 - 1 + 1 + 1 = 66 \n",
"Possible \n1011010 = 1011010 \n",
"Possible \n1101 = 1101 \n",
"Possible \n11010 = 11010 \n",
"Possible \n1010 = 1010 \n",
"Possible \n1110 = 1110 \n",
"Possible \n2 + 1 + 1 + 1 + 1 - 1 = 5 \n",
"Possible \n2 + 1 - 1 = 2 \n",
"Possible \n1000101 = 1000101 \n",
"Possible \n1011001 = 1011001 \n",
"Possible \n1001011 = 1001011 \n",
"Possible \n1111001 = 1111001 \n",
"Possible \n104333 - 1 + 2 + 1 + 1 + 1 - 1 - 1 - 1 - 1 + 1 - 1 - 1 - 1 + 1 - 1 + 1 + 1 + 1 - 1 + 1 + 1 + 1 - 1 + 1 + 1 - 1 + 1 - 1 + 1 - 1 - 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 - 1 + 1 + 1 + 1 + 1 - 1 - 1 - 1 + 1 - 1 - 1 - 1 - 1 - 1 - 1 + 1 - 1 + 1 + 1 - 1 - 1 - 1 - 1 + 1 - 1 - 1 + 1 + 1 - 1 + 1 + 1 - 1 - 1 - 1 + 1 + 1 - 1 - 1 + 1 - 1 - 1 + 1 - 1 + 1 - 1 - 1 - 1 - 1 + 1 - 1 + 1 - 1 + 1 + 1 + 1 - 1 + 1 + 1 - 1 - 1 + 1 = 104333 \n",
"Possible \n115 + 1 - 1 + 1 + 1 = 117 \n",
"Possible \n1101011 = 1101011 \n",
"Possible \n11100 = 11100 \n",
"Possible \n1100100 = 1100100 \n",
"Possible \n101100 = 101100 \n",
"Possible \n100100 = 100100 \n",
"Possible \n10010 = 10010 \n",
"Possible \n1010101 = 1010101 \n",
"Possible \n1000011 = 1000011 \n",
"Possible \n1100011 = 1100011 \n",
"Possible \n101110 = 101110 \n",
"Possible \n52 + 1 - 1 + 1 + 1 = 54 \n",
"Possible \n10 = 10 \n",
"Possible \n1100111 = 1100111 \n",
"Possible \n101001 = 101001 \n",
"Possible \n1111100 = 1111100 \n",
"Possible \n10000 = 10000 \n",
"Possible \n100010 = 100010 \n",
"Possible \n123 + 1 - 1 + 1 + 1 = 125 \n",
"Impossible \n",
"Impossible \n",
"Impossible \n",
"Impossible \n",
"Impossible \n",
"Impossible \n",
"Impossible \n",
"Impossible \n",
"Impossible \n",
"Impossible \n",
"Impossible \n",
"Impossible \n"
]
} | 2CODEFORCES
|
663_A. Rebus_149 | You are given a rebus of form ? + ? - ? + ? = n, consisting of only question marks, separated by arithmetic operation '+' and '-', equality and positive integer n. The goal is to replace each question mark with some positive integer from 1 to n, such that equality holds.
Input
The only line of the input contains a rebus. It's guaranteed that it contains no more than 100 question marks, integer n is positive and doesn't exceed 1 000 000, all letters and integers are separated by spaces, arithmetic operations are located only between question marks.
Output
The first line of the output should contain "Possible" (without quotes) if rebus has a solution and "Impossible" (without quotes) otherwise.
If the answer exists, the second line should contain any valid rebus with question marks replaced by integers from 1 to n. Follow the format given in the samples.
Examples
Input
? + ? - ? + ? + ? = 42
Output
Possible
9 + 13 - 39 + 28 + 31 = 42
Input
? - ? = 1
Output
Impossible
Input
? = 1000000
Output
Possible
1000000 = 1000000 | s = input().split()
plus = 1
minus = 0
for ch in s:
if (ch == '+') :
plus += 1
if (ch == '-') :
minus += 1
n = int(s[len(s) - 1])
maxx = plus * n - 1 * minus
minn = plus - n * minus
now = n - (plus - minus)
if (n>maxx or n<minn):
print("Impossible")
else:
pre = '+'
print("Possible")
for ch in s:
if (ch == '?'):
if (pre == '+') :
val = 1
if (now > 0) : val = min(n - 1,now) + 1
now -= (val - 1)
print(val,end = " ")
if (pre == '-'):
val = 1
if (now < 0) : val = min(abs(n) - 1,abs(now)) + 1
now += (val - 1)
print(val,end = " ")
else :
print(ch,end = " ")
pre = ch
| 3Python3
| {
"input": [
"? - ? = 1\n",
"? + ? - ? + ? + ? = 42\n",
"? = 1000000\n",
"? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? - ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? = 33\n",
"? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? + ? - ? - ? = 999999\n",
"? - ? + ? - ? + ? + ? + ? + ? = 2\n",
"? - ? + ? + ? + ? + ? - ? - ? - ? - ? + ? - ? - ? - ? + ? - ? + ? + ? + ? - ? + ? + ? + ? - ? + ? + ? - ? + ? - ? + ? - ? - ? + ? + ? + ? + ? + ? + ? + ? - ? + ? + ? + ? + ? - ? - ? - ? + ? - ? - ? - ? - ? - ? - ? + ? - ? + ? + ? - ? - ? - ? - ? + ? - ? - ? + ? + ? - ? + ? + ? - ? - ? - ? + ? + ? - ? - ? + ? - ? - ? + ? - ? + ? - ? - ? - ? - ? + ? - ? + ? - ? + ? + ? + ? - ? + ? + ? - ? - ? + ? = 123456\n",
"? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? + ? - ? - ? - ? - ? - ? - ? + ? - ? - ? - ? - ? - ? - ? + ? - ? - ? - ? - ? - ? - ? - ? - ? + ? - ? - ? - ? - ? + ? - ? - ? - ? - ? - ? + ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? = 19\n",
"? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? = 100\n",
"? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? = 93\n",
"? + ? + ? + ? - ? + ? + ? + ? + ? + ? + ? + ? - ? + ? - ? + ? + ? + ? + ? + ? + ? + ? - ? - ? + ? + ? + ? + ? + ? - ? - ? + ? + ? - ? + ? - ? - ? + ? + ? + ? + ? + ? + ? + ? + ? - ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? - ? + ? + ? + ? + ? - ? + ? + ? + ? + ? + ? + ? + ? - ? + ? + ? + ? + ? - ? - ? + ? + ? + ? + ? - ? + ? + ? + ? - ? + ? - ? + ? + ? + ? + ? + ? + ? - ? + ? + ? + ? + ? + ? = 3\n",
"? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? = 43386\n",
"? - ? + ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? = 57\n",
"? + ? + ? + ? + ? + ? + ? + ? + ? + ? - ? = 5\n",
"? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? + ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? + ? - ? - ? - ? - ? + ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? = 32\n",
"? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? = 9\n",
"? + ? - ? - ? - ? + ? + ? - ? + ? + ? - ? - ? - ? - ? - ? - ? + ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? + ? - ? - ? - ? - ? + ? - ? - ? - ? + ? - ? - ? - ? + ? - ? - ? - ? - ? - ? + ? - ? - ? - ? + ? - ? - ? - ? - ? - ? - ? - ? - ? - ? + ? - ? - ? - ? + ? - ? - ? - ? + ? - ? - ? + ? - ? + ? - ? - ? - ? - ? + ? - ? - ? - ? - ? - ? - ? + ? - ? - ? - ? - ? - ? - ? - ? - ? = 5\n",
"? - ? + ? + ? - ? + ? - ? + ? + ? + ? + ? + ? + ? + ? - ? + ? + ? - ? + ? + ? - ? + ? + ? - ? + ? + ? + ? + ? + ? + ? + ? + ? - ? + ? - ? + ? + ? - ? + ? - ? + ? + ? + ? + ? + ? + ? - ? + ? - ? + ? - ? + ? + ? + ? + ? + ? + ? - ? + ? - ? + ? + ? + ? + ? - ? + ? + ? + ? + ? + ? + ? + ? - ? - ? - ? + ? - ? + ? + ? + ? + ? - ? - ? + ? + ? - ? - ? + ? = 1000000\n",
"? + ? - ? + ? + ? = 42\n",
"? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? - ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? - ? + ? + ? + ? + ? + ? + ? + ? - ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? - ? + ? + ? - ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? - ? + ? - ? + ? + ? + ? + ? + ? + ? + ? - ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? = 15\n",
"? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? + ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? + ? - ? - ? - ? + ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? + ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? = 37\n",
"? + ? + ? - ? + ? - ? - ? - ? - ? - ? + ? - ? + ? + ? - ? + ? - ? + ? + ? - ? + ? - ? + ? + ? + ? - ? - ? - ? + ? - ? - ? + ? - ? - ? + ? - ? + ? + ? - ? + ? - ? - ? + ? + ? - ? - ? - ? + ? - ? - ? - ? + ? - ? - ? - ? + ? - ? - ? - ? - ? - ? - ? - ? + ? - ? - ? - ? - ? - ? - ? - ? - ? + ? - ? + ? - ? - ? + ? - ? - ? - ? - ? + ? + ? - ? + ? + ? - ? + ? - ? + ? - ? + ? - ? - ? - ? - ? - ? + ? - ? = 837454\n",
"? + ? + ? + ? + ? - ? = 3\n",
"? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? + ? + ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? + ? - ? + ? + ? - ? - ? - ? + ? - ? + ? - ? - ? - ? - ? - ? + ? - ? + ? - ? - ? - ? - ? - ? - ? + ? - ? + ? - ? + ? - ? - ? + ? - ? + ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? + ? - ? - ? - ? - ? - ? + ? - ? - ? - ? - ? - ? + ? - ? - ? - ? + ? - ? + ? - ? - ? = 4\n",
"? + ? - ? + ? + ? - ? + ? + ? + ? - ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? - ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? - ? + ? + ? - ? + ? + ? - ? + ? + ? + ? + ? + ? + ? + ? + ? - ? + ? + ? + ? + ? - ? + ? - ? + ? - ? + ? + ? + ? + ? + ? + ? - ? + ? - ? - ? - ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? - ? + ? - ? + ? + ? + ? + ? + ? + ? - ? + ? + ? - ? - ? + ? + ? = 4\n",
"? + ? + ? + ? - ? = 2\n",
"? + ? + ? + ? + ? - ? - ? = 2\n",
"? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? + ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? + ? - ? - ? - ? + ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? = 31\n",
"? + ? + ? + ? + ? + ? + ? + ? - ? - ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? - ? + ? + ? - ? - ? + ? + ? - ? - ? + ? + ? + ? - ? - ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? - ? + ? + ? + ? - ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? - ? + ? + ? + ? + ? + ? + ? - ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? - ? - ? + ? + ? + ? - ? + ? + ? - ? - ? + ? - ? + ? + ? + ? = 4\n",
"? - ? + ? - ? + ? + ? - ? + ? - ? + ? + ? - ? + ? - ? - ? + ? - ? - ? + ? - ? + ? - ? - ? - ? - ? - ? + ? - ? + ? + ? + ? + ? + ? + ? + ? + ? - ? - ? + ? - ? + ? + ? - ? + ? - ? + ? - ? - ? + ? - ? - ? + ? - ? - ? - ? + ? - ? - ? + ? - ? + ? + ? - ? - ? + ? - ? - ? + ? + ? - ? + ? - ? + ? + ? + ? + ? + ? - ? - ? + ? - ? - ? - ? + ? = 254253\n",
"? + ? - ? = 1\n",
"? + ? - ? + ? + ? = 2\n",
"? + ? + ? + ? + ? + ? + ? + ? + ? + ? - ? = 9\n",
"? - ? = 2\n",
"? = 1000001\n",
"? - ? + ? - ? + ? + ? + ? + ? = 4\n",
"? + ? - ? + ? + ? = 82\n",
"? = 1001000\n",
"? = 1001010\n",
"? + ? - ? + ? + ? = 25\n",
"? + ? + ? + ? + ? - ? = 6\n",
"? + ? - ? + ? + ? = 35\n",
"? = 1001100\n",
"? = 0001100\n",
"? = 0001000\n",
"? - ? + ? - ? + ? + ? + ? + ? = 3\n",
"? = 1001001\n",
"? + ? + ? + ? + ? - ? = 4\n",
"? - ? + ? + ? + ? + ? - ? - ? - ? - ? + ? - ? - ? - ? + ? - ? + ? + ? + ? - ? + ? + ? + ? - ? + ? + ? - ? + ? - ? + ? - ? - ? + ? + ? + ? + ? + ? + ? + ? - ? + ? + ? + ? + ? - ? - ? - ? + ? - ? - ? - ? - ? - ? - ? + ? - ? + ? + ? - ? - ? - ? - ? + ? - ? - ? + ? + ? - ? + ? + ? - ? - ? - ? + ? + ? - ? - ? + ? - ? - ? + ? - ? + ? - ? - ? - ? - ? + ? - ? + ? - ? + ? + ? + ? - ? + ? + ? - ? - ? + ? = 124503\n",
"? + ? - ? + ? + ? = 65\n",
"? = 1100001\n",
"? = 1101001\n",
"? + ? - ? + ? + ? = 112\n",
"? = 1011000\n",
"? = 1111000\n",
"? + ? - ? + ? + ? = 6\n",
"? = 1100000\n",
"? = 1000010\n",
"? = 1101100\n",
"? = 0101000\n",
"? + ? - ? + ? + ? = 104\n",
"? = 1101101\n",
"? = 0011000\n",
"? = 0100000\n",
"? = 0101010\n",
"? = 1101000\n",
"? + ? - ? + ? + ? = 66\n",
"? = 1011010\n",
"? = 0001101\n",
"? = 0011010\n",
"? = 0001010\n",
"? = 0001110\n",
"? + ? + ? + ? + ? - ? = 5\n",
"? + ? - ? = 2\n",
"? = 1000101\n",
"? = 1011001\n",
"? = 1001011\n",
"? = 1111001\n",
"? - ? + ? + ? + ? + ? - ? - ? - ? - ? + ? - ? - ? - ? + ? - ? + ? + ? + ? - ? + ? + ? + ? - ? + ? + ? - ? + ? - ? + ? - ? - ? + ? + ? + ? + ? + ? + ? + ? - ? + ? + ? + ? + ? - ? - ? - ? + ? - ? - ? - ? - ? - ? - ? + ? - ? + ? + ? - ? - ? - ? - ? + ? - ? - ? + ? + ? - ? + ? + ? - ? - ? - ? + ? + ? - ? - ? + ? - ? - ? + ? - ? + ? - ? - ? - ? - ? + ? - ? + ? - ? + ? + ? + ? - ? + ? + ? - ? - ? + ? = 104333\n",
"? + ? - ? + ? + ? = 117\n",
"? = 1101011\n",
"? = 0011100\n",
"? = 1100100\n",
"? = 0101100\n",
"? = 0100100\n",
"? = 0010010\n",
"? = 1010101\n",
"? = 1000011\n",
"? = 1100011\n",
"? = 0101110\n",
"? + ? - ? + ? + ? = 54\n",
"? = 0000010\n",
"? = 1100111\n",
"? = 0101001\n",
"? = 1111100\n",
"? = 0010000\n",
"? = 0100010\n",
"? + ? - ? + ? + ? = 125\n",
"? + ? - ? + ? + ? = 0\n",
"? - ? = 3\n",
"? + ? + ? + ? + ? - ? = 1\n",
"? - ? = 4\n",
"? - ? + ? - ? + ? + ? + ? + ? = 0\n",
"? - ? + ? - ? + ? + ? + ? + ? = 1\n",
"? - ? = -1\n",
"? + ? - ? - ? - ? + ? + ? - ? + ? + ? - ? - ? - ? - ? - ? - ? + ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? + ? - ? - ? - ? - ? + ? - ? - ? - ? + ? - ? - ? - ? + ? - ? - ? - ? - ? - ? + ? - ? - ? - ? + ? - ? - ? - ? - ? - ? - ? - ? - ? - ? + ? - ? - ? - ? + ? - ? - ? - ? + ? - ? - ? + ? - ? + ? - ? - ? - ? - ? + ? - ? - ? - ? - ? - ? - ? + ? - ? - ? - ? - ? - ? - ? - ? - ? = 1\n",
"? + ? - ? + ? + ? = 1\n",
"? + ? + ? + ? + ? - ? = 0\n",
"? + ? - ? = 0\n",
"? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? = 94\n"
],
"output": [
"Impossible\n",
"Possible\n40 + 1 - 1 + 1 + 1 = 42\n",
"Possible\n1000000 = 1000000\n",
"Possible\n1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 - 33 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 = 33\n",
"Possible\n999999 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 + 98 - 1 - 1 = 999999\n",
"Possible\n1 - 2 + 1 - 2 + 1 + 1 + 1 + 1 = 2\n",
"Possible\n123456 - 1 + 2 + 1 + 1 + 1 - 1 - 1 - 1 - 1 + 1 - 1 - 1 - 1 + 1 - 1 + 1 + 1 + 1 - 1 + 1 + 1 + 1 - 1 + 1 + 1 - 1 + 1 - 1 + 1 - 1 - 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 - 1 + 1 + 1 + 1 + 1 - 1 - 1 - 1 + 1 - 1 - 1 - 1 - 1 - 1 - 1 + 1 - 1 + 1 + 1 - 1 - 1 - 1 - 1 + 1 - 1 - 1 + 1 + 1 - 1 + 1 + 1 - 1 - 1 - 1 + 1 + 1 - 1 - 1 + 1 - 1 - 1 + 1 - 1 + 1 - 1 - 1 - 1 - 1 + 1 - 1 + 1 - 1 + 1 + 1 + 1 - 1 + 1 + 1 - 1 - 1 + 1 = 123456\n",
"Possible\n19 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 + 19 - 1 - 1 - 1 - 1 - 1 - 1 + 19 - 1 - 1 - 1 - 1 - 1 - 1 + 19 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 + 19 - 1 - 1 - 1 - 1 + 11 - 1 - 1 - 1 - 1 - 1 + 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 = 19\n",
"Possible\n1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 = 100\n",
"Impossible\n",
"Impossible\n",
"Impossible\n",
"Possible\n57 - 1 + 18 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 = 57\n",
"Possible\n1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 - 5 = 5\n",
"Possible\n32 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 + 32 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 + 32 - 1 - 1 - 1 - 1 + 32 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 = 32\n",
"Impossible\n",
"Possible\n5 + 5 - 1 - 1 - 1 + 5 + 5 - 1 + 5 + 5 - 1 - 1 - 1 - 1 - 1 - 1 + 5 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 + 5 - 1 - 1 - 1 - 1 + 5 - 1 - 1 - 1 + 5 - 1 - 1 - 1 + 5 - 1 - 1 - 1 - 1 - 1 + 5 - 1 - 1 - 1 + 5 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 + 5 - 1 - 1 - 1 + 5 - 1 - 1 - 1 + 5 - 1 - 1 + 2 - 1 + 1 - 1 - 1 - 1 - 1 + 1 - 1 - 1 - 1 - 1 - 1 - 1 + 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 = 5\n",
"Possible\n999963 - 1 + 1 + 1 - 1 + 1 - 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 - 1 + 1 + 1 - 1 + 1 + 1 - 1 + 1 + 1 - 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 - 1 + 1 - 1 + 1 + 1 - 1 + 1 - 1 + 1 + 1 + 1 + 1 + 1 + 1 - 1 + 1 - 1 + 1 - 1 + 1 + 1 + 1 + 1 + 1 + 1 - 1 + 1 - 1 + 1 + 1 + 1 + 1 - 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 - 1 - 1 - 1 + 1 - 1 + 1 + 1 + 1 + 1 - 1 - 1 + 1 + 1 - 1 - 1 + 1 = 1000000\n",
"Possible\n40 + 1 - 1 + 1 + 1 = 42\n",
"Possible\n1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 - 15 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 - 15 + 1 + 1 + 1 + 1 + 1 + 1 + 1 - 15 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 - 15 + 1 + 1 - 14 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 - 1 + 1 - 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 - 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 = 15\n",
"Possible\n37 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 + 37 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 + 37 - 1 - 1 - 1 + 20 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 + 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 = 37\n",
"Possible\n837454 + 28 + 1 - 1 + 1 - 1 - 1 - 1 - 1 - 1 + 1 - 1 + 1 + 1 - 1 + 1 - 1 + 1 + 1 - 1 + 1 - 1 + 1 + 1 + 1 - 1 - 1 - 1 + 1 - 1 - 1 + 1 - 1 - 1 + 1 - 1 + 1 + 1 - 1 + 1 - 1 - 1 + 1 + 1 - 1 - 1 - 1 + 1 - 1 - 1 - 1 + 1 - 1 - 1 - 1 + 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 + 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 + 1 - 1 + 1 - 1 - 1 + 1 - 1 - 1 - 1 - 1 + 1 + 1 - 1 + 1 + 1 - 1 + 1 - 1 + 1 - 1 + 1 - 1 - 1 - 1 - 1 - 1 + 1 - 1 = 837454\n",
"Possible\n1 + 1 + 1 + 1 + 1 - 2 = 3\n",
"Impossible\n",
"Possible\n1 + 1 - 4 + 1 + 1 - 4 + 1 + 1 + 1 - 4 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 - 4 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 - 4 + 1 + 1 - 4 + 1 + 1 - 4 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 - 4 + 1 + 1 + 1 + 1 - 4 + 1 - 4 + 1 - 4 + 1 + 1 + 1 + 1 + 1 + 1 - 4 + 1 - 4 - 4 - 4 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 - 4 + 1 - 4 + 1 + 1 + 1 + 1 + 1 + 1 - 4 + 1 + 1 - 3 - 1 + 1 + 1 = 4\n",
"Possible\n1 + 1 + 1 + 1 - 2 = 2\n",
"Possible\n1 + 1 + 1 + 1 + 1 - 2 - 1 = 2\n",
"Impossible\n",
"Possible\n1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 - 4 - 4 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 - 4 + 1 + 1 - 4 - 4 + 1 + 1 - 4 - 4 + 1 + 1 + 1 - 4 - 4 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 - 4 + 1 + 1 + 1 - 4 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 - 4 + 1 + 1 + 1 + 1 + 1 + 1 - 4 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 - 4 - 4 + 1 + 1 + 1 - 4 + 1 + 1 - 4 - 4 + 1 - 4 + 1 + 1 + 1 = 4\n",
"Possible\n254253 - 1 + 2 - 1 + 1 + 1 - 1 + 1 - 1 + 1 + 1 - 1 + 1 - 1 - 1 + 1 - 1 - 1 + 1 - 1 + 1 - 1 - 1 - 1 - 1 - 1 + 1 - 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 - 1 - 1 + 1 - 1 + 1 + 1 - 1 + 1 - 1 + 1 - 1 - 1 + 1 - 1 - 1 + 1 - 1 - 1 - 1 + 1 - 1 - 1 + 1 - 1 + 1 + 1 - 1 - 1 + 1 - 1 - 1 + 1 + 1 - 1 + 1 - 1 + 1 + 1 + 1 + 1 + 1 - 1 - 1 + 1 - 1 - 1 - 1 + 1 = 254253\n",
"Possible\n1 + 1 - 1 = 1\n",
"Possible\n1 + 1 - 2 + 1 + 1 = 2\n",
"Possible \n1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 - 1 = 9 \n",
"Impossible \n",
"Possible \n1000001 = 1000001 \n",
"Possible \n1 - 1 + 1 - 1 + 1 + 1 + 1 + 1 = 4 \n",
"Possible \n80 + 1 - 1 + 1 + 1 = 82 \n",
"Possible \n1001000 = 1001000 \n",
"Possible \n1001010 = 1001010 \n",
"Possible \n23 + 1 - 1 + 1 + 1 = 25 \n",
"Possible \n3 + 1 + 1 + 1 + 1 - 1 = 6 \n",
"Possible \n33 + 1 - 1 + 1 + 1 = 35 \n",
"Possible \n1001100 = 1001100 \n",
"Possible \n1100 = 1100 \n",
"Possible \n1000 = 1000 \n",
"Possible \n1 - 2 + 1 - 1 + 1 + 1 + 1 + 1 = 3 \n",
"Possible \n1001001 = 1001001 \n",
"Possible \n1 + 1 + 1 + 1 + 1 - 1 = 4 \n",
"Possible \n124503 - 1 + 2 + 1 + 1 + 1 - 1 - 1 - 1 - 1 + 1 - 1 - 1 - 1 + 1 - 1 + 1 + 1 + 1 - 1 + 1 + 1 + 1 - 1 + 1 + 1 - 1 + 1 - 1 + 1 - 1 - 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 - 1 + 1 + 1 + 1 + 1 - 1 - 1 - 1 + 1 - 1 - 1 - 1 - 1 - 1 - 1 + 1 - 1 + 1 + 1 - 1 - 1 - 1 - 1 + 1 - 1 - 1 + 1 + 1 - 1 + 1 + 1 - 1 - 1 - 1 + 1 + 1 - 1 - 1 + 1 - 1 - 1 + 1 - 1 + 1 - 1 - 1 - 1 - 1 + 1 - 1 + 1 - 1 + 1 + 1 + 1 - 1 + 1 + 1 - 1 - 1 + 1 = 124503 \n",
"Possible \n63 + 1 - 1 + 1 + 1 = 65 \n",
"Possible \n1100001 = 1100001 \n",
"Possible \n1101001 = 1101001 \n",
"Possible \n110 + 1 - 1 + 1 + 1 = 112 \n",
"Possible \n1011000 = 1011000 \n",
"Possible \n1111000 = 1111000 \n",
"Possible \n4 + 1 - 1 + 1 + 1 = 6 \n",
"Possible \n1100000 = 1100000 \n",
"Possible \n1000010 = 1000010 \n",
"Possible \n1101100 = 1101100 \n",
"Possible \n101000 = 101000 \n",
"Possible \n102 + 1 - 1 + 1 + 1 = 104 \n",
"Possible \n1101101 = 1101101 \n",
"Possible \n11000 = 11000 \n",
"Possible \n100000 = 100000 \n",
"Possible \n101010 = 101010 \n",
"Possible \n1101000 = 1101000 \n",
"Possible \n64 + 1 - 1 + 1 + 1 = 66 \n",
"Possible \n1011010 = 1011010 \n",
"Possible \n1101 = 1101 \n",
"Possible \n11010 = 11010 \n",
"Possible \n1010 = 1010 \n",
"Possible \n1110 = 1110 \n",
"Possible \n2 + 1 + 1 + 1 + 1 - 1 = 5 \n",
"Possible \n2 + 1 - 1 = 2 \n",
"Possible \n1000101 = 1000101 \n",
"Possible \n1011001 = 1011001 \n",
"Possible \n1001011 = 1001011 \n",
"Possible \n1111001 = 1111001 \n",
"Possible \n104333 - 1 + 2 + 1 + 1 + 1 - 1 - 1 - 1 - 1 + 1 - 1 - 1 - 1 + 1 - 1 + 1 + 1 + 1 - 1 + 1 + 1 + 1 - 1 + 1 + 1 - 1 + 1 - 1 + 1 - 1 - 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 - 1 + 1 + 1 + 1 + 1 - 1 - 1 - 1 + 1 - 1 - 1 - 1 - 1 - 1 - 1 + 1 - 1 + 1 + 1 - 1 - 1 - 1 - 1 + 1 - 1 - 1 + 1 + 1 - 1 + 1 + 1 - 1 - 1 - 1 + 1 + 1 - 1 - 1 + 1 - 1 - 1 + 1 - 1 + 1 - 1 - 1 - 1 - 1 + 1 - 1 + 1 - 1 + 1 + 1 + 1 - 1 + 1 + 1 - 1 - 1 + 1 = 104333 \n",
"Possible \n115 + 1 - 1 + 1 + 1 = 117 \n",
"Possible \n1101011 = 1101011 \n",
"Possible \n11100 = 11100 \n",
"Possible \n1100100 = 1100100 \n",
"Possible \n101100 = 101100 \n",
"Possible \n100100 = 100100 \n",
"Possible \n10010 = 10010 \n",
"Possible \n1010101 = 1010101 \n",
"Possible \n1000011 = 1000011 \n",
"Possible \n1100011 = 1100011 \n",
"Possible \n101110 = 101110 \n",
"Possible \n52 + 1 - 1 + 1 + 1 = 54 \n",
"Possible \n10 = 10 \n",
"Possible \n1100111 = 1100111 \n",
"Possible \n101001 = 101001 \n",
"Possible \n1111100 = 1111100 \n",
"Possible \n10000 = 10000 \n",
"Possible \n100010 = 100010 \n",
"Possible \n123 + 1 - 1 + 1 + 1 = 125 \n",
"Impossible \n",
"Impossible \n",
"Impossible \n",
"Impossible \n",
"Impossible \n",
"Impossible \n",
"Impossible \n",
"Impossible \n",
"Impossible \n",
"Impossible \n",
"Impossible \n",
"Impossible \n"
]
} | 2CODEFORCES
|
663_A. Rebus_150 | You are given a rebus of form ? + ? - ? + ? = n, consisting of only question marks, separated by arithmetic operation '+' and '-', equality and positive integer n. The goal is to replace each question mark with some positive integer from 1 to n, such that equality holds.
Input
The only line of the input contains a rebus. It's guaranteed that it contains no more than 100 question marks, integer n is positive and doesn't exceed 1 000 000, all letters and integers are separated by spaces, arithmetic operations are located only between question marks.
Output
The first line of the output should contain "Possible" (without quotes) if rebus has a solution and "Impossible" (without quotes) otherwise.
If the answer exists, the second line should contain any valid rebus with question marks replaced by integers from 1 to n. Follow the format given in the samples.
Examples
Input
? + ? - ? + ? + ? = 42
Output
Possible
9 + 13 - 39 + 28 + 31 = 42
Input
? - ? = 1
Output
Impossible
Input
? = 1000000
Output
Possible
1000000 = 1000000 | import java.io.*;
import java.util.*;
import java.util.Map.Entry;
public class Task_Rnd664_B {
final static String input_file_name = "input/Rnd664_B.txt";
public static void main(String[] args)
{
//!!!!!!!!!!111
reader.init(true); //to server
//reader.init(false);
run();
wr.flush();
}
public static void run()
{
String s = reader.readln();
int xx = 0;
int kk = 0;
int nn = 0;
boolean plus = true;
for (int ii = 0; ii < s.length(); ii++)
{
char cc = s.charAt(ii);
if (cc == '+')
plus = true;
if (cc == '-')
plus = false;
if (cc == '?')
{
if (plus)
xx++;
else
kk++;
}
if (cc == '=')
{
String s2 = s.substring(ii+1, s.length());
s2 = s2.trim();
nn = Integer.valueOf(s2);
break;
}
}
if (xx*nn - kk * 1 < nn || xx * 1 - kk * nn > nn)
{
wr.print("Impossible");
wr2.endl();
return;
}
int vv = xx * nn - kk * 1;
int ll = vv - nn;
int aa1[] = new int[xx];
int aa2[] = new int[kk+1];
for (int ii = 0; ii < xx; ii++)
aa1[ii] = nn;
for (int ii = 0; ii < kk; ii++)
aa2[ii] = 1;
int ii = 0;
while (ll > 0 && ii < xx)
{
int bb = aa1[ii]-1;
if (bb > ll)
bb = ll;
aa1[ii] -= bb;
ll -= bb;
ii++;
}
ii = 0;
while (ll > 0 && ii < kk)
{
int bb = nn-aa2[ii];
if (bb > ll)
bb = ll;
aa2[ii] += bb;
ll -= bb;
ii++;
}
if (ll > 0)
{
wr.print("Impossible");
wr2.endl();
return;
}
wr.print("Possible");
wr2.endl();
int ind1 = 0;
int ind2 = 0;
plus = true;
for (int jj = 0; jj < s.length(); jj++)
{
char cc = s.charAt(jj);
if (cc == '+')
{
plus = true;
wr.print("+ ");
}
if (cc == '-')
{
plus = false;
wr.print("- ");
}
if (cc == '?')
{
if (plus)
{
wr.print(aa1[ind1++]);
wr.print(" ");
}
else
{
wr.print(aa2[ind2++]);
wr.print(" ");
}
}
if (cc == '=')
{
String s2 = s.substring(jj, s.length());
wr.print(s2);
break;
}
}
wr2.endl();
}
static public PrintWriter wr;
static OutputWriter wr2=new OutputWriter(System.out);
static class reader{
static BufferedReader br; static StringTokenizer tkn;
static String readln() { try { return br.readLine(); } catch (Exception e) { return ""; } }
static void init(boolean console) {
if (console) { br=new BufferedReader(new InputStreamReader(System.in)); }
else { try { br=new BufferedReader(new InputStreamReader(new FileInputStream(input_file_name))); }
catch (Exception e) { System.exit(551); } }
tkn=new StringTokenizer("");
}
static String next() { while (!tkn.hasMoreTokens()){ tkn=new StringTokenizer(readln()); } return tkn.nextToken(); }
static int nextInt(){ while (!tkn.hasMoreTokens()){ tkn=new StringTokenizer(readln()); } return Integer.parseInt(tkn.nextToken()); }
static long nextLong(){ while (!tkn.hasMoreTokens()){ tkn=new StringTokenizer(readln()); } return Long.parseLong(tkn.nextToken()); }
static double nextDouble(){ while (!tkn.hasMoreTokens()){ tkn=new StringTokenizer(readln()); } return Double.parseDouble(tkn.nextToken()); }
}
static class OutputWriter {
OutputWriter(OutputStream stream) { wr = new PrintWriter(stream); }
public void printf(String format, Object... args) { wr.print(String.format(Locale.ENGLISH, format, args)); }
public void endl() { wr.print("\n"); }
}
}
| 4JAVA
| {
"input": [
"? - ? = 1\n",
"? + ? - ? + ? + ? = 42\n",
"? = 1000000\n",
"? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? - ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? = 33\n",
"? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? + ? - ? - ? = 999999\n",
"? - ? + ? - ? + ? + ? + ? + ? = 2\n",
"? - ? + ? + ? + ? + ? - ? - ? - ? - ? + ? - ? - ? - ? + ? - ? + ? + ? + ? - ? + ? + ? + ? - ? + ? + ? - ? + ? - ? + ? - ? - ? + ? + ? + ? + ? + ? + ? + ? - ? + ? + ? + ? + ? - ? - ? - ? + ? - ? - ? - ? - ? - ? - ? + ? - ? + ? + ? - ? - ? - ? - ? + ? - ? - ? + ? + ? - ? + ? + ? - ? - ? - ? + ? + ? - ? - ? + ? - ? - ? + ? - ? + ? - ? - ? - ? - ? + ? - ? + ? - ? + ? + ? + ? - ? + ? + ? - ? - ? + ? = 123456\n",
"? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? + ? - ? - ? - ? - ? - ? - ? + ? - ? - ? - ? - ? - ? - ? + ? - ? - ? - ? - ? - ? - ? - ? - ? + ? - ? - ? - ? - ? + ? - ? - ? - ? - ? - ? + ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? = 19\n",
"? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? = 100\n",
"? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? = 93\n",
"? + ? + ? + ? - ? + ? + ? + ? + ? + ? + ? + ? - ? + ? - ? + ? + ? + ? + ? + ? + ? + ? - ? - ? + ? + ? + ? + ? + ? - ? - ? + ? + ? - ? + ? - ? - ? + ? + ? + ? + ? + ? + ? + ? + ? - ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? - ? + ? + ? + ? + ? - ? + ? + ? + ? + ? + ? + ? + ? - ? + ? + ? + ? + ? - ? - ? + ? + ? + ? + ? - ? + ? + ? + ? - ? + ? - ? + ? + ? + ? + ? + ? + ? - ? + ? + ? + ? + ? + ? = 3\n",
"? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? = 43386\n",
"? - ? + ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? = 57\n",
"? + ? + ? + ? + ? + ? + ? + ? + ? + ? - ? = 5\n",
"? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? + ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? + ? - ? - ? - ? - ? + ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? = 32\n",
"? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? = 9\n",
"? + ? - ? - ? - ? + ? + ? - ? + ? + ? - ? - ? - ? - ? - ? - ? + ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? + ? - ? - ? - ? - ? + ? - ? - ? - ? + ? - ? - ? - ? + ? - ? - ? - ? - ? - ? + ? - ? - ? - ? + ? - ? - ? - ? - ? - ? - ? - ? - ? - ? + ? - ? - ? - ? + ? - ? - ? - ? + ? - ? - ? + ? - ? + ? - ? - ? - ? - ? + ? - ? - ? - ? - ? - ? - ? + ? - ? - ? - ? - ? - ? - ? - ? - ? = 5\n",
"? - ? + ? + ? - ? + ? - ? + ? + ? + ? + ? + ? + ? + ? - ? + ? + ? - ? + ? + ? - ? + ? + ? - ? + ? + ? + ? + ? + ? + ? + ? + ? - ? + ? - ? + ? + ? - ? + ? - ? + ? + ? + ? + ? + ? + ? - ? + ? - ? + ? - ? + ? + ? + ? + ? + ? + ? - ? + ? - ? + ? + ? + ? + ? - ? + ? + ? + ? + ? + ? + ? + ? - ? - ? - ? + ? - ? + ? + ? + ? + ? - ? - ? + ? + ? - ? - ? + ? = 1000000\n",
"? + ? - ? + ? + ? = 42\n",
"? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? - ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? - ? + ? + ? + ? + ? + ? + ? + ? - ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? - ? + ? + ? - ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? - ? + ? - ? + ? + ? + ? + ? + ? + ? + ? - ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? = 15\n",
"? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? + ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? + ? - ? - ? - ? + ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? + ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? = 37\n",
"? + ? + ? - ? + ? - ? - ? - ? - ? - ? + ? - ? + ? + ? - ? + ? - ? + ? + ? - ? + ? - ? + ? + ? + ? - ? - ? - ? + ? - ? - ? + ? - ? - ? + ? - ? + ? + ? - ? + ? - ? - ? + ? + ? - ? - ? - ? + ? - ? - ? - ? + ? - ? - ? - ? + ? - ? - ? - ? - ? - ? - ? - ? + ? - ? - ? - ? - ? - ? - ? - ? - ? + ? - ? + ? - ? - ? + ? - ? - ? - ? - ? + ? + ? - ? + ? + ? - ? + ? - ? + ? - ? + ? - ? - ? - ? - ? - ? + ? - ? = 837454\n",
"? + ? + ? + ? + ? - ? = 3\n",
"? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? + ? + ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? + ? - ? + ? + ? - ? - ? - ? + ? - ? + ? - ? - ? - ? - ? - ? + ? - ? + ? - ? - ? - ? - ? - ? - ? + ? - ? + ? - ? + ? - ? - ? + ? - ? + ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? + ? - ? - ? - ? - ? - ? + ? - ? - ? - ? - ? - ? + ? - ? - ? - ? + ? - ? + ? - ? - ? = 4\n",
"? + ? - ? + ? + ? - ? + ? + ? + ? - ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? - ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? - ? + ? + ? - ? + ? + ? - ? + ? + ? + ? + ? + ? + ? + ? + ? - ? + ? + ? + ? + ? - ? + ? - ? + ? - ? + ? + ? + ? + ? + ? + ? - ? + ? - ? - ? - ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? - ? + ? - ? + ? + ? + ? + ? + ? + ? - ? + ? + ? - ? - ? + ? + ? = 4\n",
"? + ? + ? + ? - ? = 2\n",
"? + ? + ? + ? + ? - ? - ? = 2\n",
"? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? + ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? + ? - ? - ? - ? + ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? = 31\n",
"? + ? + ? + ? + ? + ? + ? + ? - ? - ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? - ? + ? + ? - ? - ? + ? + ? - ? - ? + ? + ? + ? - ? - ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? - ? + ? + ? + ? - ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? - ? + ? + ? + ? + ? + ? + ? - ? + ? + ? + ? + ? + ? + ? + ? + ? + ? + ? - ? - ? + ? + ? + ? - ? + ? + ? - ? - ? + ? - ? + ? + ? + ? = 4\n",
"? - ? + ? - ? + ? + ? - ? + ? - ? + ? + ? - ? + ? - ? - ? + ? - ? - ? + ? - ? + ? - ? - ? - ? - ? - ? + ? - ? + ? + ? + ? + ? + ? + ? + ? + ? - ? - ? + ? - ? + ? + ? - ? + ? - ? + ? - ? - ? + ? - ? - ? + ? - ? - ? - ? + ? - ? - ? + ? - ? + ? + ? - ? - ? + ? - ? - ? + ? + ? - ? + ? - ? + ? + ? + ? + ? + ? - ? - ? + ? - ? - ? - ? + ? = 254253\n",
"? + ? - ? = 1\n",
"? + ? - ? + ? + ? = 2\n",
"? + ? + ? + ? + ? + ? + ? + ? + ? + ? - ? = 9\n",
"? - ? = 2\n",
"? = 1000001\n",
"? - ? + ? - ? + ? + ? + ? + ? = 4\n",
"? + ? - ? + ? + ? = 82\n",
"? = 1001000\n",
"? = 1001010\n",
"? + ? - ? + ? + ? = 25\n",
"? + ? + ? + ? + ? - ? = 6\n",
"? + ? - ? + ? + ? = 35\n",
"? = 1001100\n",
"? = 0001100\n",
"? = 0001000\n",
"? - ? + ? - ? + ? + ? + ? + ? = 3\n",
"? = 1001001\n",
"? + ? + ? + ? + ? - ? = 4\n",
"? - ? + ? + ? + ? + ? - ? - ? - ? - ? + ? - ? - ? - ? + ? - ? + ? + ? + ? - ? + ? + ? + ? - ? + ? + ? - ? + ? - ? + ? - ? - ? + ? + ? + ? + ? + ? + ? + ? - ? + ? + ? + ? + ? - ? - ? - ? + ? - ? - ? - ? - ? - ? - ? + ? - ? + ? + ? - ? - ? - ? - ? + ? - ? - ? + ? + ? - ? + ? + ? - ? - ? - ? + ? + ? - ? - ? + ? - ? - ? + ? - ? + ? - ? - ? - ? - ? + ? - ? + ? - ? + ? + ? + ? - ? + ? + ? - ? - ? + ? = 124503\n",
"? + ? - ? + ? + ? = 65\n",
"? = 1100001\n",
"? = 1101001\n",
"? + ? - ? + ? + ? = 112\n",
"? = 1011000\n",
"? = 1111000\n",
"? + ? - ? + ? + ? = 6\n",
"? = 1100000\n",
"? = 1000010\n",
"? = 1101100\n",
"? = 0101000\n",
"? + ? - ? + ? + ? = 104\n",
"? = 1101101\n",
"? = 0011000\n",
"? = 0100000\n",
"? = 0101010\n",
"? = 1101000\n",
"? + ? - ? + ? + ? = 66\n",
"? = 1011010\n",
"? = 0001101\n",
"? = 0011010\n",
"? = 0001010\n",
"? = 0001110\n",
"? + ? + ? + ? + ? - ? = 5\n",
"? + ? - ? = 2\n",
"? = 1000101\n",
"? = 1011001\n",
"? = 1001011\n",
"? = 1111001\n",
"? - ? + ? + ? + ? + ? - ? - ? - ? - ? + ? - ? - ? - ? + ? - ? + ? + ? + ? - ? + ? + ? + ? - ? + ? + ? - ? + ? - ? + ? - ? - ? + ? + ? + ? + ? + ? + ? + ? - ? + ? + ? + ? + ? - ? - ? - ? + ? - ? - ? - ? - ? - ? - ? + ? - ? + ? + ? - ? - ? - ? - ? + ? - ? - ? + ? + ? - ? + ? + ? - ? - ? - ? + ? + ? - ? - ? + ? - ? - ? + ? - ? + ? - ? - ? - ? - ? + ? - ? + ? - ? + ? + ? + ? - ? + ? + ? - ? - ? + ? = 104333\n",
"? + ? - ? + ? + ? = 117\n",
"? = 1101011\n",
"? = 0011100\n",
"? = 1100100\n",
"? = 0101100\n",
"? = 0100100\n",
"? = 0010010\n",
"? = 1010101\n",
"? = 1000011\n",
"? = 1100011\n",
"? = 0101110\n",
"? + ? - ? + ? + ? = 54\n",
"? = 0000010\n",
"? = 1100111\n",
"? = 0101001\n",
"? = 1111100\n",
"? = 0010000\n",
"? = 0100010\n",
"? + ? - ? + ? + ? = 125\n",
"? + ? - ? + ? + ? = 0\n",
"? - ? = 3\n",
"? + ? + ? + ? + ? - ? = 1\n",
"? - ? = 4\n",
"? - ? + ? - ? + ? + ? + ? + ? = 0\n",
"? - ? + ? - ? + ? + ? + ? + ? = 1\n",
"? - ? = -1\n",
"? + ? - ? - ? - ? + ? + ? - ? + ? + ? - ? - ? - ? - ? - ? - ? + ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? + ? - ? - ? - ? - ? + ? - ? - ? - ? + ? - ? - ? - ? + ? - ? - ? - ? - ? - ? + ? - ? - ? - ? + ? - ? - ? - ? - ? - ? - ? - ? - ? - ? + ? - ? - ? - ? + ? - ? - ? - ? + ? - ? - ? + ? - ? + ? - ? - ? - ? - ? + ? - ? - ? - ? - ? - ? - ? + ? - ? - ? - ? - ? - ? - ? - ? - ? = 1\n",
"? + ? - ? + ? + ? = 1\n",
"? + ? + ? + ? + ? - ? = 0\n",
"? + ? - ? = 0\n",
"? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? - ? = 94\n"
],
"output": [
"Impossible\n",
"Possible\n40 + 1 - 1 + 1 + 1 = 42\n",
"Possible\n1000000 = 1000000\n",
"Possible\n1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 - 33 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 = 33\n",
"Possible\n999999 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 + 98 - 1 - 1 = 999999\n",
"Possible\n1 - 2 + 1 - 2 + 1 + 1 + 1 + 1 = 2\n",
"Possible\n123456 - 1 + 2 + 1 + 1 + 1 - 1 - 1 - 1 - 1 + 1 - 1 - 1 - 1 + 1 - 1 + 1 + 1 + 1 - 1 + 1 + 1 + 1 - 1 + 1 + 1 - 1 + 1 - 1 + 1 - 1 - 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 - 1 + 1 + 1 + 1 + 1 - 1 - 1 - 1 + 1 - 1 - 1 - 1 - 1 - 1 - 1 + 1 - 1 + 1 + 1 - 1 - 1 - 1 - 1 + 1 - 1 - 1 + 1 + 1 - 1 + 1 + 1 - 1 - 1 - 1 + 1 + 1 - 1 - 1 + 1 - 1 - 1 + 1 - 1 + 1 - 1 - 1 - 1 - 1 + 1 - 1 + 1 - 1 + 1 + 1 + 1 - 1 + 1 + 1 - 1 - 1 + 1 = 123456\n",
"Possible\n19 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 + 19 - 1 - 1 - 1 - 1 - 1 - 1 + 19 - 1 - 1 - 1 - 1 - 1 - 1 + 19 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 + 19 - 1 - 1 - 1 - 1 + 11 - 1 - 1 - 1 - 1 - 1 + 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 = 19\n",
"Possible\n1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 = 100\n",
"Impossible\n",
"Impossible\n",
"Impossible\n",
"Possible\n57 - 1 + 18 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 = 57\n",
"Possible\n1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 - 5 = 5\n",
"Possible\n32 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 + 32 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 + 32 - 1 - 1 - 1 - 1 + 32 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 = 32\n",
"Impossible\n",
"Possible\n5 + 5 - 1 - 1 - 1 + 5 + 5 - 1 + 5 + 5 - 1 - 1 - 1 - 1 - 1 - 1 + 5 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 + 5 - 1 - 1 - 1 - 1 + 5 - 1 - 1 - 1 + 5 - 1 - 1 - 1 + 5 - 1 - 1 - 1 - 1 - 1 + 5 - 1 - 1 - 1 + 5 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 + 5 - 1 - 1 - 1 + 5 - 1 - 1 - 1 + 5 - 1 - 1 + 2 - 1 + 1 - 1 - 1 - 1 - 1 + 1 - 1 - 1 - 1 - 1 - 1 - 1 + 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 = 5\n",
"Possible\n999963 - 1 + 1 + 1 - 1 + 1 - 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 - 1 + 1 + 1 - 1 + 1 + 1 - 1 + 1 + 1 - 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 - 1 + 1 - 1 + 1 + 1 - 1 + 1 - 1 + 1 + 1 + 1 + 1 + 1 + 1 - 1 + 1 - 1 + 1 - 1 + 1 + 1 + 1 + 1 + 1 + 1 - 1 + 1 - 1 + 1 + 1 + 1 + 1 - 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 - 1 - 1 - 1 + 1 - 1 + 1 + 1 + 1 + 1 - 1 - 1 + 1 + 1 - 1 - 1 + 1 = 1000000\n",
"Possible\n40 + 1 - 1 + 1 + 1 = 42\n",
"Possible\n1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 - 15 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 - 15 + 1 + 1 + 1 + 1 + 1 + 1 + 1 - 15 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 - 15 + 1 + 1 - 14 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 - 1 + 1 - 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 - 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 = 15\n",
"Possible\n37 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 + 37 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 + 37 - 1 - 1 - 1 + 20 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 + 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 = 37\n",
"Possible\n837454 + 28 + 1 - 1 + 1 - 1 - 1 - 1 - 1 - 1 + 1 - 1 + 1 + 1 - 1 + 1 - 1 + 1 + 1 - 1 + 1 - 1 + 1 + 1 + 1 - 1 - 1 - 1 + 1 - 1 - 1 + 1 - 1 - 1 + 1 - 1 + 1 + 1 - 1 + 1 - 1 - 1 + 1 + 1 - 1 - 1 - 1 + 1 - 1 - 1 - 1 + 1 - 1 - 1 - 1 + 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 + 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 + 1 - 1 + 1 - 1 - 1 + 1 - 1 - 1 - 1 - 1 + 1 + 1 - 1 + 1 + 1 - 1 + 1 - 1 + 1 - 1 + 1 - 1 - 1 - 1 - 1 - 1 + 1 - 1 = 837454\n",
"Possible\n1 + 1 + 1 + 1 + 1 - 2 = 3\n",
"Impossible\n",
"Possible\n1 + 1 - 4 + 1 + 1 - 4 + 1 + 1 + 1 - 4 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 - 4 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 - 4 + 1 + 1 - 4 + 1 + 1 - 4 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 - 4 + 1 + 1 + 1 + 1 - 4 + 1 - 4 + 1 - 4 + 1 + 1 + 1 + 1 + 1 + 1 - 4 + 1 - 4 - 4 - 4 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 - 4 + 1 - 4 + 1 + 1 + 1 + 1 + 1 + 1 - 4 + 1 + 1 - 3 - 1 + 1 + 1 = 4\n",
"Possible\n1 + 1 + 1 + 1 - 2 = 2\n",
"Possible\n1 + 1 + 1 + 1 + 1 - 2 - 1 = 2\n",
"Impossible\n",
"Possible\n1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 - 4 - 4 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 - 4 + 1 + 1 - 4 - 4 + 1 + 1 - 4 - 4 + 1 + 1 + 1 - 4 - 4 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 - 4 + 1 + 1 + 1 - 4 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 - 4 + 1 + 1 + 1 + 1 + 1 + 1 - 4 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 - 4 - 4 + 1 + 1 + 1 - 4 + 1 + 1 - 4 - 4 + 1 - 4 + 1 + 1 + 1 = 4\n",
"Possible\n254253 - 1 + 2 - 1 + 1 + 1 - 1 + 1 - 1 + 1 + 1 - 1 + 1 - 1 - 1 + 1 - 1 - 1 + 1 - 1 + 1 - 1 - 1 - 1 - 1 - 1 + 1 - 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 - 1 - 1 + 1 - 1 + 1 + 1 - 1 + 1 - 1 + 1 - 1 - 1 + 1 - 1 - 1 + 1 - 1 - 1 - 1 + 1 - 1 - 1 + 1 - 1 + 1 + 1 - 1 - 1 + 1 - 1 - 1 + 1 + 1 - 1 + 1 - 1 + 1 + 1 + 1 + 1 + 1 - 1 - 1 + 1 - 1 - 1 - 1 + 1 = 254253\n",
"Possible\n1 + 1 - 1 = 1\n",
"Possible\n1 + 1 - 2 + 1 + 1 = 2\n",
"Possible \n1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 - 1 = 9 \n",
"Impossible \n",
"Possible \n1000001 = 1000001 \n",
"Possible \n1 - 1 + 1 - 1 + 1 + 1 + 1 + 1 = 4 \n",
"Possible \n80 + 1 - 1 + 1 + 1 = 82 \n",
"Possible \n1001000 = 1001000 \n",
"Possible \n1001010 = 1001010 \n",
"Possible \n23 + 1 - 1 + 1 + 1 = 25 \n",
"Possible \n3 + 1 + 1 + 1 + 1 - 1 = 6 \n",
"Possible \n33 + 1 - 1 + 1 + 1 = 35 \n",
"Possible \n1001100 = 1001100 \n",
"Possible \n1100 = 1100 \n",
"Possible \n1000 = 1000 \n",
"Possible \n1 - 2 + 1 - 1 + 1 + 1 + 1 + 1 = 3 \n",
"Possible \n1001001 = 1001001 \n",
"Possible \n1 + 1 + 1 + 1 + 1 - 1 = 4 \n",
"Possible \n124503 - 1 + 2 + 1 + 1 + 1 - 1 - 1 - 1 - 1 + 1 - 1 - 1 - 1 + 1 - 1 + 1 + 1 + 1 - 1 + 1 + 1 + 1 - 1 + 1 + 1 - 1 + 1 - 1 + 1 - 1 - 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 - 1 + 1 + 1 + 1 + 1 - 1 - 1 - 1 + 1 - 1 - 1 - 1 - 1 - 1 - 1 + 1 - 1 + 1 + 1 - 1 - 1 - 1 - 1 + 1 - 1 - 1 + 1 + 1 - 1 + 1 + 1 - 1 - 1 - 1 + 1 + 1 - 1 - 1 + 1 - 1 - 1 + 1 - 1 + 1 - 1 - 1 - 1 - 1 + 1 - 1 + 1 - 1 + 1 + 1 + 1 - 1 + 1 + 1 - 1 - 1 + 1 = 124503 \n",
"Possible \n63 + 1 - 1 + 1 + 1 = 65 \n",
"Possible \n1100001 = 1100001 \n",
"Possible \n1101001 = 1101001 \n",
"Possible \n110 + 1 - 1 + 1 + 1 = 112 \n",
"Possible \n1011000 = 1011000 \n",
"Possible \n1111000 = 1111000 \n",
"Possible \n4 + 1 - 1 + 1 + 1 = 6 \n",
"Possible \n1100000 = 1100000 \n",
"Possible \n1000010 = 1000010 \n",
"Possible \n1101100 = 1101100 \n",
"Possible \n101000 = 101000 \n",
"Possible \n102 + 1 - 1 + 1 + 1 = 104 \n",
"Possible \n1101101 = 1101101 \n",
"Possible \n11000 = 11000 \n",
"Possible \n100000 = 100000 \n",
"Possible \n101010 = 101010 \n",
"Possible \n1101000 = 1101000 \n",
"Possible \n64 + 1 - 1 + 1 + 1 = 66 \n",
"Possible \n1011010 = 1011010 \n",
"Possible \n1101 = 1101 \n",
"Possible \n11010 = 11010 \n",
"Possible \n1010 = 1010 \n",
"Possible \n1110 = 1110 \n",
"Possible \n2 + 1 + 1 + 1 + 1 - 1 = 5 \n",
"Possible \n2 + 1 - 1 = 2 \n",
"Possible \n1000101 = 1000101 \n",
"Possible \n1011001 = 1011001 \n",
"Possible \n1001011 = 1001011 \n",
"Possible \n1111001 = 1111001 \n",
"Possible \n104333 - 1 + 2 + 1 + 1 + 1 - 1 - 1 - 1 - 1 + 1 - 1 - 1 - 1 + 1 - 1 + 1 + 1 + 1 - 1 + 1 + 1 + 1 - 1 + 1 + 1 - 1 + 1 - 1 + 1 - 1 - 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 - 1 + 1 + 1 + 1 + 1 - 1 - 1 - 1 + 1 - 1 - 1 - 1 - 1 - 1 - 1 + 1 - 1 + 1 + 1 - 1 - 1 - 1 - 1 + 1 - 1 - 1 + 1 + 1 - 1 + 1 + 1 - 1 - 1 - 1 + 1 + 1 - 1 - 1 + 1 - 1 - 1 + 1 - 1 + 1 - 1 - 1 - 1 - 1 + 1 - 1 + 1 - 1 + 1 + 1 + 1 - 1 + 1 + 1 - 1 - 1 + 1 = 104333 \n",
"Possible \n115 + 1 - 1 + 1 + 1 = 117 \n",
"Possible \n1101011 = 1101011 \n",
"Possible \n11100 = 11100 \n",
"Possible \n1100100 = 1100100 \n",
"Possible \n101100 = 101100 \n",
"Possible \n100100 = 100100 \n",
"Possible \n10010 = 10010 \n",
"Possible \n1010101 = 1010101 \n",
"Possible \n1000011 = 1000011 \n",
"Possible \n1100011 = 1100011 \n",
"Possible \n101110 = 101110 \n",
"Possible \n52 + 1 - 1 + 1 + 1 = 54 \n",
"Possible \n10 = 10 \n",
"Possible \n1100111 = 1100111 \n",
"Possible \n101001 = 101001 \n",
"Possible \n1111100 = 1111100 \n",
"Possible \n10000 = 10000 \n",
"Possible \n100010 = 100010 \n",
"Possible \n123 + 1 - 1 + 1 + 1 = 125 \n",
"Impossible \n",
"Impossible \n",
"Impossible \n",
"Impossible \n",
"Impossible \n",
"Impossible \n",
"Impossible \n",
"Impossible \n",
"Impossible \n",
"Impossible \n",
"Impossible \n",
"Impossible \n"
]
} | 2CODEFORCES
|
687_D. Dividing Kingdom II_151 | Long time ago, there was a great kingdom and it was being ruled by The Great Arya and Pari The Great. These two had some problems about the numbers they like, so they decided to divide the great kingdom between themselves.
The great kingdom consisted of n cities numbered from 1 to n and m bidirectional roads between these cities, numbered from 1 to m. The i-th road had length equal to wi. The Great Arya and Pari The Great were discussing about destructing some prefix (all road with numbers less than some x) and suffix (all roads with numbers greater than some x) of the roads so there will remain only the roads with numbers l, l + 1, ..., r - 1 and r.
After that they will divide the great kingdom into two pieces (with each city belonging to exactly one piece) such that the hardness of the division is minimized. The hardness of a division is the maximum length of a road such that its both endpoints are in the same piece of the kingdom. In case there is no such road, the hardness of the division is considered to be equal to - 1.
Historians found the map of the great kingdom, and they have q guesses about the l and r chosen by those great rulers. Given these data, for each guess li and ri print the minimum possible hardness of the division of the kingdom.
Input
The first line of the input contains three integers n, m and q (1 ≤ n, q ≤ 1000, <image>) — the number of cities and roads in the great kingdom, and the number of guesses, respectively.
The i-th line of the following m lines contains three integers ui, vi and wi (1 ≤ ui, vi ≤ n, 0 ≤ wi ≤ 109), denoting the road number i connects cities ui and vi and its length is equal wi. It's guaranteed that no road connects the city to itself and no pair of cities is connected by more than one road.
Each of the next q lines contains a pair of integers li and ri (1 ≤ li ≤ ri ≤ m) — a guess from the historians about the remaining roads in the kingdom.
Output
For each guess print the minimum possible hardness of the division in described scenario.
Example
Input
5 6 5
5 4 86
5 1 0
1 3 38
2 1 33
2 4 28
2 3 40
3 5
2 6
1 3
2 3
1 6
Output
-1
33
-1
-1
33 | #include <bits/stdc++.h>
#pragma GCC optimize("O3")
using namespace std;
const int N = 1000, M = N * (N - 1) / 2;
int dsu[N * 2];
int find(int i) { return dsu[i] < 0 ? i : (dsu[i] = find(dsu[i])); }
bool join(int i, int j) {
i = find(i);
j = find(j);
if (i == j) return false;
if (dsu[i] > dsu[j])
dsu[i] = j;
else {
if (dsu[i] == dsu[j]) dsu[i]--;
dsu[j] = i;
}
return true;
}
int main() {
int n, m, q;
scanf("%d%d%d", &n, &m, &q);
static int ii[M], jj[M], ww[M], hh[M];
for (int h = 0; h < m; h++) {
int i, j, w;
scanf("%d%d%d", &i, &j, &w), i--, j--;
ii[h] = i;
jj[h] = j;
ww[h] = w;
hh[h] = h;
}
sort(hh, hh + m, [](int a, int b) { return ww[a] > ww[b]; });
while (q-- > 0) {
int l, r;
scanf("%d%d", &l, &r), l--, r--;
fill_n(dsu, n * 2, -1);
int w = -1;
for (int h = 0; h < m; h++) {
int h_ = hh[h];
if (l <= h_ && h_ <= r) {
int i = ii[h_];
int j = jj[h_];
int i0 = i << 1, i1 = i0 | 1;
int j0 = j << 1, j1 = j0 | 1;
if (join(i0, j1) && !join(i1, j0)) {
w = ww[h_];
break;
}
}
}
printf("%d\n", w);
}
}
| 2C++
| {
"input": [
"5 6 5\n5 4 86\n5 1 0\n1 3 38\n2 1 33\n2 4 28\n2 3 40\n3 5\n2 6\n1 3\n2 3\n1 6\n",
"5 9 4\n4 1 46\n1 3 29\n3 2 58\n1 5 61\n2 4 88\n1 2 87\n4 5 58\n3 5 69\n3 4 28\n2 7\n5 7\n3 6\n1 7\n",
"5 8 10\n2 3 8\n5 3 22\n5 1 8\n3 4 7\n4 1 83\n5 2 59\n2 1 4\n4 2 53\n4 4\n3 3\n5 6\n3 5\n3 8\n3 5\n1 4\n3 4\n1 4\n3 8\n",
"10 28 10\n10 9 80\n2 4 200\n4 6 938\n4 8 838\n4 5 263\n5 7 401\n2 6 595\n9 1 744\n3 5 759\n2 9 428\n3 6 17\n10 8 851\n8 7 862\n1 3 963\n4 7 94\n4 10 833\n3 8 948\n10 6 274\n3 2 129\n7 2 985\n1 2 289\n8 5 711\n6 1 317\n2 10 111\n7 6 333\n3 7 739\n9 4 576\n5 2 997\n1 5\n18 19\n4 26\n9 12\n8 18\n7 13\n12 28\n2 4\n12 14\n1 1\n",
"10 16 10\n4 6 234\n7 8 973\n2 8 727\n10 1 905\n9 2 327\n1 7 508\n1 9 675\n6 2 787\n7 10 337\n3 4 548\n1 4 374\n7 4 242\n2 10 713\n7 6 859\n9 10 854\n2 3 615\n3 16\n13 13\n4 11\n4 7\n2 11\n1 2\n10 14\n8 12\n1 8\n1 7\n",
"3 3 2\n1 2 82\n1 3 84\n3 2 22\n1 3\n1 3\n",
"5 6 10\n1 2 18\n3 1 56\n5 1 36\n2 4 77\n5 2 79\n4 3 35\n1 4\n5 6\n2 3\n3 5\n1 4\n1 2\n4 5\n1 2\n1 6\n4 4\n",
"10 18 10\n9 8 616\n10 9 302\n2 4 285\n8 1 35\n8 5 521\n6 8 195\n9 4 697\n6 5 137\n10 3 358\n5 1 946\n9 1 810\n5 3 932\n8 10 230\n1 7 635\n6 9 423\n5 2 102\n7 3 991\n6 3 795\n10 11\n1 2\n6 9\n2 13\n11 18\n8 11\n13 14\n2 17\n13 18\n6 13\n",
"5 7 10\n2 3 6\n5 2 65\n5 1 38\n4 2 79\n5 4 70\n2 1 13\n5 3 92\n3 3\n1 6\n1 2\n5 7\n1 1\n3 4\n2 7\n1 2\n6 7\n1 2\n",
"2 1 1\n2 1 63\n1 1\n",
"5 1 10\n4 3 68\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n",
"10 29 10\n9 5 374\n4 3 522\n10 9 17\n2 6 586\n9 6 256\n3 1 511\n10 3 631\n7 10 829\n5 2 977\n4 8 97\n6 7 589\n8 6 433\n1 7 834\n5 1 969\n5 6 398\n6 10 651\n8 2 255\n6 1 295\n2 4 435\n7 8 999\n4 6 339\n1 10 198\n8 9 648\n1 8 668\n2 7 0\n5 4 306\n3 6 879\n10 8 844\n7 3 916\n3 19\n3 11\n18 26\n15 24\n8 9\n10 25\n4 27\n6 10\n17 21\n2 18\n",
"10 20 10\n5 4 858\n4 10 955\n2 8 845\n7 2 589\n4 8 480\n7 10 566\n5 8 438\n3 4 974\n10 8 123\n10 1 234\n4 2 290\n1 3 944\n8 1 113\n6 10 228\n7 1 117\n9 3 378\n1 6 6\n10 3 489\n4 1 296\n8 9 817\n6 8\n1 3\n15 19\n14 19\n2 6\n16 18\n4 14\n7 15\n4 12\n16 17\n",
"10 15 10\n10 7 368\n6 3 754\n9 5 468\n8 2 532\n9 3 754\n7 4 733\n2 5 567\n5 8 558\n1 2 354\n10 5 653\n8 9 924\n2 10 127\n7 3 99\n10 4 218\n7 5 903\n8 9\n5 15\n1 8\n10 13\n3 13\n5 6\n2 14\n3 11\n8 9\n2 3\n",
"5 6 5\n5 4 86\n5 1 0\n1 3 38\n2 1 33\n2 4 28\n2 3 40\n3 5\n2 6\n1 3\n2 3\n1 4\n",
"10 29 10\n4 9 887\n9 1 171\n5 8 725\n8 7 444\n5 1 603\n5 4 24\n10 6 993\n8 1 977\n8 3 340\n2 1 973\n6 4 300\n1 10 899\n9 2 930\n5 3 938\n9 6 468\n9 5 520\n2 10 661\n6 2 77\n4 8 800\n7 2 416\n6 5 801\n1 4 838\n3 4 504\n7 5 976\n4 10 609\n2 3 288\n6 7 695\n6 8 297\n10 9 949\n2 7\n2 12\n13 14\n1 27\n17 18\n8 20\n6 22\n4 21\n1 21\n1 27\n",
"5 5 10\n4 1 59\n2 3 23\n5 3 95\n4 5 10\n1 3 83\n3 5\n2 3\n1 2\n4 5\n2 5\n4 5\n3 4\n3 3\n4 5\n4 4\n",
"5 9 4\n4 1 46\n1 3 29\n3 2 58\n1 5 61\n2 4 175\n1 2 87\n4 5 58\n3 5 69\n3 4 28\n2 7\n5 7\n3 6\n1 7\n",
"5 8 10\n2 3 8\n5 3 22\n5 1 8\n3 4 7\n4 1 83\n5 2 59\n2 1 4\n4 2 53\n4 4\n3 3\n5 6\n3 5\n3 8\n3 3\n1 4\n3 4\n1 4\n3 8\n",
"10 16 10\n4 6 234\n7 8 973\n2 8 727\n10 1 905\n9 2 327\n1 7 508\n1 9 675\n6 2 787\n7 10 337\n3 7 548\n1 4 374\n7 4 242\n2 10 713\n7 6 859\n9 10 854\n2 3 615\n3 16\n13 13\n4 11\n4 7\n2 11\n1 2\n10 14\n8 12\n1 8\n1 7\n",
"5 6 10\n1 2 18\n4 1 56\n5 1 36\n2 4 77\n5 2 79\n4 3 35\n1 4\n5 6\n2 3\n3 5\n1 4\n1 2\n4 5\n1 2\n1 6\n4 4\n",
"10 18 10\n9 8 616\n10 9 302\n2 4 285\n8 1 35\n8 5 521\n6 8 195\n9 4 697\n6 5 137\n10 3 358\n5 1 946\n9 1 810\n5 3 932\n8 10 230\n1 7 635\n6 9 423\n5 2 102\n7 3 991\n6 3 1076\n10 11\n1 2\n6 9\n2 13\n11 18\n8 11\n13 14\n2 17\n13 18\n6 13\n",
"5 7 10\n2 3 6\n5 2 65\n5 1 38\n4 2 79\n5 4 70\n2 1 13\n5 3 92\n3 3\n1 6\n1 2\n5 7\n1 1\n3 4\n2 7\n1 2\n2 7\n1 2\n",
"2 1 1\n2 1 82\n1 1\n",
"10 29 10\n9 5 374\n4 3 522\n10 9 17\n2 6 586\n9 6 256\n3 1 511\n10 3 631\n7 10 829\n5 2 977\n4 8 97\n6 7 589\n8 6 433\n1 7 834\n5 1 969\n5 6 398\n6 10 651\n8 2 255\n6 1 295\n2 4 435\n7 8 999\n4 6 339\n1 10 198\n8 9 648\n1 8 668\n2 7 0\n5 4 306\n3 6 879\n10 8 844\n7 3 916\n2 19\n3 11\n18 26\n15 24\n8 9\n10 25\n4 27\n6 10\n17 21\n2 18\n",
"10 20 10\n5 4 858\n4 10 955\n2 8 845\n7 2 589\n4 8 480\n7 10 566\n5 8 438\n3 4 974\n10 8 123\n10 1 234\n4 2 290\n1 3 944\n8 1 113\n6 10 228\n7 1 117\n9 3 378\n1 6 6\n10 3 489\n4 1 296\n8 9 817\n6 8\n1 3\n15 19\n14 19\n2 6\n16 18\n4 14\n3 15\n4 12\n16 17\n",
"10 29 10\n4 9 887\n9 1 171\n5 8 725\n8 7 444\n5 1 603\n5 4 24\n10 6 993\n8 1 977\n8 3 340\n2 1 973\n6 4 300\n1 10 899\n9 2 930\n5 3 938\n9 6 468\n9 5 520\n2 10 661\n6 2 77\n4 8 800\n7 2 416\n6 5 801\n1 4 838\n3 4 504\n7 5 25\n4 10 609\n2 3 288\n6 7 695\n6 8 297\n10 9 949\n2 7\n2 12\n13 14\n1 27\n17 18\n8 20\n6 22\n4 21\n1 21\n1 27\n",
"5 9 4\n4 1 21\n1 3 29\n3 2 58\n1 5 61\n2 4 175\n1 2 87\n4 5 58\n3 5 69\n3 4 28\n2 7\n5 7\n3 6\n1 7\n",
"10 18 10\n9 8 616\n10 9 302\n2 4 285\n8 1 35\n8 5 521\n6 8 195\n9 4 697\n6 5 137\n10 3 358\n5 1 946\n9 1 810\n5 3 932\n8 10 230\n1 7 635\n6 9 423\n5 2 102\n7 3 137\n6 3 1076\n10 11\n1 2\n6 9\n2 13\n11 18\n8 11\n13 14\n2 17\n13 18\n6 13\n",
"10 18 10\n9 8 616\n10 9 302\n2 4 285\n8 1 35\n8 5 521\n6 8 195\n9 4 697\n6 5 137\n10 3 358\n5 2 946\n9 1 810\n5 3 932\n8 10 230\n1 7 635\n6 9 423\n5 2 102\n7 3 137\n6 3 1076\n10 11\n1 2\n6 9\n2 13\n11 18\n8 11\n13 14\n2 17\n13 18\n6 13\n",
"10 29 10\n9 5 374\n4 3 522\n10 9 17\n2 6 586\n9 6 256\n3 1 511\n10 3 631\n7 10 829\n5 2 977\n4 8 97\n6 7 589\n8 6 433\n1 7 834\n5 1 6\n5 6 398\n6 10 651\n8 2 255\n6 1 295\n2 4 435\n5 8 999\n4 6 339\n2 10 198\n8 9 648\n1 8 668\n2 7 0\n5 4 306\n3 6 879\n10 8 844\n7 6 916\n2 19\n3 11\n18 26\n15 24\n8 9\n10 25\n4 27\n6 10\n17 21\n2 18\n",
"13 18 10\n9 8 616\n10 9 302\n2 4 285\n8 1 35\n8 5 521\n6 8 195\n9 4 697\n6 5 113\n10 3 358\n5 2 946\n9 1 810\n5 3 932\n8 10 393\n1 7 635\n6 9 423\n5 2 102\n7 3 137\n6 3 1076\n10 11\n1 2\n6 9\n4 13\n11 18\n8 11\n13 14\n2 17\n13 18\n6 13\n",
"13 18 10\n9 8 680\n10 9 125\n2 4 285\n8 1 35\n8 2 521\n6 8 195\n9 4 697\n6 5 113\n10 3 358\n5 2 946\n9 1 810\n5 3 932\n8 10 393\n1 7 635\n6 9 423\n5 2 102\n7 3 137\n6 3 1076\n10 11\n1 2\n6 9\n4 13\n11 18\n8 11\n13 14\n2 17\n13 18\n6 13\n",
"13 18 10\n9 8 680\n10 9 125\n2 4 285\n8 1 35\n8 2 521\n6 8 195\n9 4 697\n6 5 113\n10 3 358\n5 2 946\n9 1 810\n5 3 932\n8 10 393\n1 7 635\n6 9 423\n5 2 102\n7 3 137\n6 3 1076\n10 11\n1 2\n6 9\n4 10\n11 18\n8 11\n13 14\n2 17\n13 18\n6 13\n",
"13 18 10\n9 8 680\n10 9 125\n2 4 285\n8 1 35\n8 2 521\n6 8 195\n9 4 697\n6 5 113\n10 3 400\n5 2 1848\n9 1 810\n5 3 932\n8 10 393\n1 7 635\n6 9 423\n5 2 102\n7 3 137\n6 3 1076\n10 11\n1 2\n6 9\n4 10\n11 18\n8 11\n13 14\n1 17\n13 18\n6 13\n",
"13 18 10\n9 8 680\n10 9 125\n2 4 285\n8 1 35\n8 2 521\n6 8 195\n9 4 697\n6 5 113\n10 3 400\n5 2 1848\n9 1 810\n5 3 932\n8 10 393\n1 7 635\n6 9 423\n5 2 102\n7 3 137\n6 3 1076\n10 11\n1 2\n6 9\n4 15\n11 18\n8 11\n13 14\n1 17\n13 18\n6 13\n",
"13 18 10\n9 8 680\n10 9 125\n2 4 285\n8 1 35\n8 2 521\n6 8 195\n9 4 697\n8 5 113\n10 3 400\n5 2 1848\n9 1 810\n5 3 932\n8 10 393\n1 7 635\n6 9 423\n5 2 102\n7 3 137\n6 3 1076\n10 11\n1 2\n6 9\n4 15\n11 18\n8 11\n13 14\n1 17\n13 18\n6 13\n",
"13 18 10\n9 8 680\n10 9 125\n2 4 285\n8 1 35\n8 2 521\n6 8 195\n9 4 697\n8 5 113\n10 6 400\n5 2 1848\n9 1 810\n5 3 932\n8 10 393\n1 7 635\n6 9 423\n5 2 102\n7 3 137\n6 3 1076\n10 11\n1 2\n6 14\n4 15\n11 18\n8 11\n13 14\n1 17\n13 18\n6 13\n",
"5 7 10\n2 3 6\n5 2 65\n5 1 38\n4 2 79\n5 4 70\n2 1 13\n5 4 92\n3 3\n1 6\n1 2\n5 7\n1 1\n3 4\n2 7\n1 2\n2 7\n1 2\n",
"10 29 10\n9 5 374\n4 3 522\n10 9 17\n2 6 586\n9 6 256\n3 1 511\n10 3 631\n7 10 829\n5 2 977\n4 8 97\n6 7 589\n8 6 433\n1 7 834\n5 1 969\n5 6 398\n6 10 651\n8 2 255\n6 1 295\n2 4 435\n7 8 999\n4 6 339\n1 10 198\n8 9 648\n1 8 668\n2 7 0\n5 4 306\n3 6 879\n10 8 844\n7 6 916\n2 19\n3 11\n18 26\n15 24\n8 9\n10 25\n4 27\n6 10\n17 21\n2 18\n",
"10 29 10\n4 9 887\n9 1 171\n5 8 725\n8 7 444\n5 1 603\n5 4 24\n10 6 993\n8 1 977\n8 3 340\n2 1 973\n6 4 300\n1 10 899\n9 2 930\n5 3 938\n9 6 468\n9 5 520\n2 10 661\n6 2 77\n4 8 800\n7 2 416\n6 5 801\n1 4 838\n3 4 504\n7 5 25\n4 5 609\n2 3 288\n6 7 695\n6 8 297\n10 9 949\n2 7\n2 12\n13 14\n1 27\n17 18\n8 20\n6 22\n4 21\n1 21\n1 27\n",
"5 9 4\n4 1 21\n1 3 29\n3 2 111\n1 5 61\n2 4 175\n1 2 87\n4 5 58\n3 5 69\n3 4 28\n2 7\n5 7\n3 6\n1 7\n",
"10 29 10\n9 5 374\n4 3 522\n10 9 17\n2 6 586\n9 6 256\n3 1 511\n10 3 631\n7 10 829\n5 2 977\n4 8 97\n6 7 589\n8 6 433\n1 7 834\n5 1 969\n5 6 398\n6 10 651\n8 2 255\n6 1 295\n2 4 435\n7 8 999\n4 6 339\n2 10 198\n8 9 648\n1 8 668\n2 7 0\n5 4 306\n3 6 879\n10 8 844\n7 6 916\n2 19\n3 11\n18 26\n15 24\n8 9\n10 25\n4 27\n6 10\n17 21\n2 18\n",
"10 29 10\n4 9 887\n9 1 171\n5 8 725\n8 7 444\n5 1 603\n5 4 24\n10 6 993\n8 1 977\n8 3 340\n2 1 973\n6 4 300\n1 10 899\n9 2 930\n5 3 1307\n9 6 468\n9 5 520\n2 10 661\n6 2 77\n4 8 800\n7 2 416\n6 5 801\n1 4 838\n3 4 504\n7 5 25\n4 5 609\n2 3 288\n6 7 695\n6 8 297\n10 9 949\n2 7\n2 12\n13 14\n1 27\n17 18\n8 20\n6 22\n4 21\n1 21\n1 27\n",
"10 18 10\n9 8 616\n10 9 302\n2 4 285\n8 1 35\n8 5 521\n6 8 195\n9 4 697\n6 5 137\n10 3 358\n5 2 946\n9 1 810\n5 3 932\n8 10 230\n1 7 635\n6 9 423\n5 2 102\n7 3 137\n6 3 1076\n10 11\n1 2\n6 9\n4 13\n11 18\n8 11\n13 14\n2 17\n13 18\n6 13\n",
"10 29 10\n9 5 374\n4 3 522\n10 9 17\n2 6 586\n9 6 256\n3 1 511\n10 3 631\n7 10 829\n5 2 977\n4 8 97\n6 7 589\n8 6 433\n1 7 834\n5 1 6\n5 6 398\n6 10 651\n8 2 255\n6 1 295\n2 4 435\n7 8 999\n4 6 339\n2 10 198\n8 9 648\n1 8 668\n2 7 0\n5 4 306\n3 6 879\n10 8 844\n7 6 916\n2 19\n3 11\n18 26\n15 24\n8 9\n10 25\n4 27\n6 10\n17 21\n2 18\n",
"10 29 10\n4 9 887\n9 1 171\n5 8 725\n8 7 444\n5 1 603\n5 4 24\n10 6 993\n8 1 977\n8 3 340\n2 1 973\n6 4 300\n1 10 899\n9 2 930\n5 3 1307\n9 6 468\n9 5 520\n2 10 661\n6 2 77\n4 8 800\n7 2 416\n6 5 801\n1 4 838\n3 4 504\n7 5 25\n4 5 609\n2 3 288\n6 7 695\n6 8 297\n6 9 949\n2 7\n2 12\n13 14\n1 27\n17 18\n8 20\n6 22\n4 21\n1 21\n1 27\n",
"13 18 10\n9 8 616\n10 9 302\n2 4 285\n8 1 35\n8 5 521\n6 8 195\n9 4 697\n6 5 137\n10 3 358\n5 2 946\n9 1 810\n5 3 932\n8 10 230\n1 7 635\n6 9 423\n5 2 102\n7 3 137\n6 3 1076\n10 11\n1 2\n6 9\n4 13\n11 18\n8 11\n13 14\n2 17\n13 18\n6 13\n",
"10 29 10\n4 9 887\n9 1 171\n5 2 725\n8 7 444\n5 1 603\n5 4 24\n10 6 993\n8 1 977\n8 3 340\n2 1 973\n6 4 300\n1 10 899\n9 2 930\n5 3 1307\n9 6 468\n9 5 520\n2 10 661\n6 2 77\n4 8 800\n7 2 416\n6 5 801\n1 4 838\n3 4 504\n7 5 25\n4 5 609\n2 3 288\n6 7 695\n6 8 297\n6 9 949\n2 7\n2 12\n13 14\n1 27\n17 18\n8 20\n6 22\n4 21\n1 21\n1 27\n",
"13 18 10\n9 8 616\n10 9 302\n2 4 285\n8 1 35\n8 5 521\n6 8 195\n9 4 697\n6 5 137\n10 3 358\n5 2 946\n9 1 810\n5 3 932\n8 10 393\n1 7 635\n6 9 423\n5 2 102\n7 3 137\n6 3 1076\n10 11\n1 2\n6 9\n4 13\n11 18\n8 11\n13 14\n2 17\n13 18\n6 13\n",
"10 29 10\n4 9 887\n9 1 171\n5 2 725\n8 7 444\n5 1 603\n1 4 24\n10 6 993\n8 1 977\n8 3 340\n2 1 973\n6 4 300\n1 10 899\n9 2 930\n5 3 1307\n9 6 468\n9 5 520\n2 10 661\n6 2 77\n4 8 800\n7 2 416\n6 5 801\n1 4 838\n3 4 504\n7 5 25\n4 5 609\n2 3 288\n6 7 695\n6 8 297\n6 9 949\n2 7\n2 12\n13 14\n1 27\n17 18\n8 20\n6 22\n4 21\n1 21\n1 27\n",
"10 29 10\n4 9 887\n9 1 171\n5 2 725\n8 7 444\n5 1 603\n1 4 24\n10 6 993\n8 1 977\n8 3 340\n2 1 973\n6 4 300\n1 10 899\n9 2 930\n5 3 1307\n9 6 468\n9 5 520\n2 10 661\n6 2 77\n4 8 800\n7 2 416\n6 5 801\n1 4 838\n3 4 504\n7 5 25\n4 5 609\n2 3 288\n6 7 695\n6 8 297\n4 9 949\n2 7\n2 12\n13 14\n1 27\n17 18\n8 20\n6 22\n4 21\n1 21\n1 27\n",
"13 18 10\n9 8 680\n10 9 302\n2 4 285\n8 1 35\n8 5 521\n6 8 195\n9 4 697\n6 5 113\n10 3 358\n5 2 946\n9 1 810\n5 3 932\n8 10 393\n1 7 635\n6 9 423\n5 2 102\n7 3 137\n6 3 1076\n10 11\n1 2\n6 9\n4 13\n11 18\n8 11\n13 14\n2 17\n13 18\n6 13\n",
"10 29 10\n4 9 887\n9 1 171\n5 2 725\n8 7 444\n5 1 603\n1 4 24\n10 6 993\n8 1 977\n8 3 340\n2 1 973\n6 4 300\n1 10 899\n9 2 930\n5 3 1307\n9 6 468\n9 5 264\n2 10 661\n6 2 77\n4 8 800\n7 2 416\n6 5 801\n1 4 838\n3 4 504\n7 5 25\n4 5 609\n2 3 288\n6 7 695\n6 8 297\n4 9 949\n2 7\n2 12\n13 14\n1 27\n17 18\n8 20\n6 22\n4 21\n1 21\n1 27\n",
"13 18 10\n9 8 680\n10 9 125\n2 4 285\n8 1 35\n8 5 521\n6 8 195\n9 4 697\n6 5 113\n10 3 358\n5 2 946\n9 1 810\n5 3 932\n8 10 393\n1 7 635\n6 9 423\n5 2 102\n7 3 137\n6 3 1076\n10 11\n1 2\n6 9\n4 13\n11 18\n8 11\n13 14\n2 17\n13 18\n6 13\n",
"13 18 10\n9 8 680\n10 9 125\n2 4 285\n8 1 35\n8 2 521\n6 8 195\n9 4 697\n6 5 113\n10 3 358\n5 2 1848\n9 1 810\n5 3 932\n8 10 393\n1 7 635\n6 9 423\n5 2 102\n7 3 137\n6 3 1076\n10 11\n1 2\n6 9\n4 10\n11 18\n8 11\n13 14\n2 17\n13 18\n6 13\n",
"13 18 10\n9 8 680\n10 9 125\n2 4 285\n8 1 35\n8 2 521\n6 8 195\n9 4 697\n6 5 113\n10 3 358\n5 2 1848\n9 1 810\n5 3 932\n8 10 393\n1 7 635\n6 9 423\n5 2 102\n7 3 137\n6 3 1076\n10 11\n1 2\n6 9\n4 10\n11 18\n8 11\n13 14\n1 17\n13 18\n6 13\n",
"13 18 10\n9 8 680\n10 9 125\n2 4 285\n8 1 35\n8 2 521\n6 8 195\n9 4 697\n8 5 113\n10 3 400\n5 2 1848\n9 1 810\n5 3 932\n8 10 393\n1 7 635\n6 9 423\n5 2 102\n7 3 137\n6 3 1076\n10 11\n1 2\n6 14\n4 15\n11 18\n8 11\n13 14\n1 17\n13 18\n6 13\n"
],
"output": [
"-1\n33\n-1\n-1\n33\n",
"29\n-1\n-1\n46\n",
"-1\n-1\n-1\n-1\n4\n-1\n-1\n-1\n-1\n4\n",
"-1\n-1\n833\n-1\n-1\n-1\n739\n-1\n-1\n-1\n",
"675\n-1\n337\n-1\n337\n-1\n-1\n-1\n327\n327\n",
"22\n22\n",
"-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n35\n-1\n",
"-1\n-1\n-1\n302\n423\n-1\n-1\n302\n-1\n137\n",
"-1\n65\n-1\n-1\n-1\n-1\n65\n-1\n-1\n-1\n",
"-1\n",
"-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n",
"589\n-1\n-1\n255\n-1\n668\n668\n-1\n-1\n589\n",
"-1\n-1\n-1\n-1\n480\n-1\n123\n113\n123\n-1\n",
"-1\n127\n532\n-1\n532\n-1\n532\n532\n-1\n-1\n",
"-1\n33\n-1\n-1\n-1\n",
"-1\n603\n-1\n800\n-1\n661\n800\n661\n800\n800\n",
"-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n",
"29\n-1\n-1\n46\n",
"-1\n-1\n-1\n-1\n4\n-1\n-1\n-1\n-1\n4\n",
"675\n-1\n337\n-1\n337\n-1\n-1\n-1\n327\n327\n",
"18\n-1\n-1\n-1\n18\n-1\n-1\n-1\n18\n-1\n",
"-1\n-1\n-1\n302\n423\n-1\n-1\n302\n-1\n137\n",
"-1\n65\n-1\n-1\n-1\n-1\n65\n-1\n65\n-1\n",
"-1\n",
"589\n-1\n-1\n255\n-1\n668\n668\n-1\n-1\n589\n",
"-1\n-1\n-1\n-1\n480\n-1\n123\n290\n123\n-1\n",
"-1\n603\n-1\n800\n-1\n661\n800\n661\n800\n800\n",
"29\n-1\n-1\n29\n",
"-1\n-1\n-1\n302\n137\n-1\n-1\n302\n-1\n137\n",
"-1\n-1\n-1\n137\n137\n-1\n-1\n137\n-1\n137\n",
"589\n-1\n295\n255\n-1\n398\n631\n-1\n-1\n589\n",
"-1\n-1\n-1\n113\n137\n-1\n-1\n137\n-1\n113\n",
"-1\n-1\n-1\n358\n137\n-1\n-1\n358\n-1\n113\n",
"-1\n-1\n-1\n-1\n137\n-1\n-1\n358\n-1\n113\n",
"-1\n-1\n-1\n-1\n137\n-1\n-1\n393\n-1\n113\n",
"-1\n-1\n-1\n393\n137\n-1\n-1\n393\n-1\n113\n",
"-1\n-1\n-1\n393\n137\n-1\n-1\n393\n-1\n-1\n",
"-1\n-1\n195\n195\n137\n-1\n-1\n195\n-1\n195\n",
"-1\n65\n-1\n-1\n-1\n-1\n65\n-1\n65\n-1\n",
"589\n-1\n-1\n255\n-1\n668\n668\n-1\n-1\n589\n",
"-1\n603\n-1\n800\n-1\n661\n800\n661\n800\n800\n",
"29\n-1\n-1\n29\n",
"589\n-1\n-1\n255\n-1\n668\n668\n-1\n-1\n589\n",
"-1\n603\n-1\n800\n-1\n661\n800\n661\n800\n800\n",
"-1\n-1\n-1\n137\n137\n-1\n-1\n137\n-1\n137\n",
"589\n-1\n-1\n255\n-1\n668\n668\n-1\n-1\n589\n",
"-1\n603\n-1\n800\n-1\n661\n800\n661\n800\n800\n",
"-1\n-1\n-1\n137\n137\n-1\n-1\n137\n-1\n137\n",
"-1\n603\n-1\n800\n-1\n661\n800\n661\n800\n800\n",
"-1\n-1\n-1\n137\n137\n-1\n-1\n137\n-1\n137\n",
"-1\n603\n-1\n800\n-1\n661\n800\n661\n800\n800\n",
"-1\n603\n-1\n800\n-1\n661\n800\n661\n800\n800\n",
"-1\n-1\n-1\n113\n137\n-1\n-1\n137\n-1\n113\n",
"-1\n603\n-1\n800\n-1\n661\n800\n661\n800\n800\n",
"-1\n-1\n-1\n113\n137\n-1\n-1\n137\n-1\n113\n",
"-1\n-1\n-1\n-1\n137\n-1\n-1\n358\n-1\n113\n",
"-1\n-1\n-1\n-1\n137\n-1\n-1\n358\n-1\n113\n",
"-1\n-1\n-1\n393\n137\n-1\n-1\n393\n-1\n-1\n"
]
} | 2CODEFORCES
|
687_D. Dividing Kingdom II_152 | Long time ago, there was a great kingdom and it was being ruled by The Great Arya and Pari The Great. These two had some problems about the numbers they like, so they decided to divide the great kingdom between themselves.
The great kingdom consisted of n cities numbered from 1 to n and m bidirectional roads between these cities, numbered from 1 to m. The i-th road had length equal to wi. The Great Arya and Pari The Great were discussing about destructing some prefix (all road with numbers less than some x) and suffix (all roads with numbers greater than some x) of the roads so there will remain only the roads with numbers l, l + 1, ..., r - 1 and r.
After that they will divide the great kingdom into two pieces (with each city belonging to exactly one piece) such that the hardness of the division is minimized. The hardness of a division is the maximum length of a road such that its both endpoints are in the same piece of the kingdom. In case there is no such road, the hardness of the division is considered to be equal to - 1.
Historians found the map of the great kingdom, and they have q guesses about the l and r chosen by those great rulers. Given these data, for each guess li and ri print the minimum possible hardness of the division of the kingdom.
Input
The first line of the input contains three integers n, m and q (1 ≤ n, q ≤ 1000, <image>) — the number of cities and roads in the great kingdom, and the number of guesses, respectively.
The i-th line of the following m lines contains three integers ui, vi and wi (1 ≤ ui, vi ≤ n, 0 ≤ wi ≤ 109), denoting the road number i connects cities ui and vi and its length is equal wi. It's guaranteed that no road connects the city to itself and no pair of cities is connected by more than one road.
Each of the next q lines contains a pair of integers li and ri (1 ≤ li ≤ ri ≤ m) — a guess from the historians about the remaining roads in the kingdom.
Output
For each guess print the minimum possible hardness of the division in described scenario.
Example
Input
5 6 5
5 4 86
5 1 0
1 3 38
2 1 33
2 4 28
2 3 40
3 5
2 6
1 3
2 3
1 6
Output
-1
33
-1
-1
33 | import java.io.*;
import java.math.BigDecimal;
import java.math.BigInteger;
import java.math.MathContext;
import java.math.RoundingMode;
import java.util.*;
public class Template implements Runnable {
BufferedReader in;
PrintWriter out;
StringTokenizer tok = new StringTokenizer("");
void init() throws FileNotFoundException {
try {
in = new BufferedReader(new FileReader("input.txt"));
out = new PrintWriter("output.txt");
} catch (Exception e) {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
}
}
String readString() throws IOException {
while (!tok.hasMoreTokens()) {
try {
tok = new StringTokenizer(in.readLine(), " :");
} catch (Exception e) {
return null;
}
}
return tok.nextToken();
}
int readInt() throws IOException {
return Integer.parseInt(readString());
}
int[] readIntArray(int size) throws IOException {
int[] res = new int[size];
for (int i = 0; i < size; i++) {
res[i] = readInt();
}
return res;
}
long readLong() throws IOException {
return Long.parseLong(readString());
}
double readDouble() throws IOException {
return Double.parseDouble(readString());
}
<T> List<T>[] createGraphList(int size) {
List<T>[] list = new List[size];
for (int i = 0; i < size; i++) {
list[i] = new ArrayList<>();
}
return list;
}
public static void main(String[] args) {
new Thread(null, new Template(), "", 1l * 200 * 1024 * 1024).start();
}
long timeBegin, timeEnd;
void time() {
timeEnd = System.currentTimeMillis();
System.err.println("Time = " + (timeEnd - timeBegin));
}
long memoryTotal, memoryFree;
void memory() {
memoryFree = Runtime.getRuntime().freeMemory();
System.err.println("Memory = " + ((memoryTotal - memoryFree) >> 10)
+ " KB");
}
public void run() {
try {
timeBegin = System.currentTimeMillis();
memoryTotal = Runtime.getRuntime().freeMemory();
init();
solve();
out.close();
if (System.getProperty("ONLINE_JUDGE") == null) {
time();
memory();
}
} catch (Exception e) {
e.printStackTrace();
System.exit(-1);
}
}
int[] dsu;
boolean[] left;
int[][] comp;
int[] cnt;
void add(int i, int val) {
comp[i][cnt[i]++] = val;
}
void clearDSU() {
for (int i = 0; i < dsu.length; i++) {
dsu[i] = i;
left[i] = true;
cnt[i] = 0;
add(i, i);
}
}
int[] f;
int[] to;
int[] w;
int[] index;
int[] indexes;
Random rnd = new Random();
int cmp(int i, int j) {
return -w[indexes[i]] + w[indexes[j]];
}
private void doSort(int start, int end) {
if (start >= end)
return;
int i = start, j = end;
int cur = i + rnd.nextInt(j - i);
while (i < j) {
while (i < cur && (cmp(i, cur) <= 0)) {
i++;
}
while (j > cur && (cmp(cur, j) <= 0)) {
j--;
}
if (i < j) {
int temp = indexes[i];
indexes[i] = indexes[j];
indexes[j] = temp;
if (i == cur)
cur = j;
else if (j == cur)
cur = i;
}
}
doSort(start, cur);
doSort(cur + 1, end);
}
void solve() throws IOException {
int n = readInt();
int m = readInt();
int q = readInt();
comp = new int[n][n];
dsu = new int[n];
left = new boolean[n];
cnt = new int[n];
f = new int[m];
to = new int[m];
w = new int[m];
index = new int[m];
for (int i = 0; i < m; i++) {
f[i] = readInt() - 1;
to[i] = readInt() - 1;
w[i] = readInt();
index[i] = i + 1;
}
indexes = new int[m];
for (int i = 0; i < m; i++) indexes[i] = i;
doSort(0, m - 1);
while (q-- > 0) {
int l = readInt();
int r = readInt();
clearDSU();
int answer = -1;
for (int i = 0; i < m; i++) {
int ind = indexes[i];
if (index[ind] < l || index[ind] > r) continue;
if (dsu[f[ind]] == dsu[to[ind]]) {
if (left[f[ind]] == left[to[ind]]) {
answer = w[ind];
break;
}
} else {
int pa = dsu[f[ind]];
int pb = dsu[to[ind]];
if (cnt[pa] < cnt[pb]) {
int t = pa;
pa = pb;
pb = t;
}
boolean invert = left[f[ind]] == left[to[ind]];
for (int j = 0; j < cnt[pb]; j++) {
int x = comp[pb][j];
dsu[x] = pa;
add(pa, x);
if (invert) left[x] ^= true;
}
}
}
out.println(answer);
}
}
static final class LongIntHashMap {
final static class Entry {
final long key;
int value;
Entry next;
Entry(long key, int value, Entry next) {
this.key = key;
this.value = value;
this.next = next;
}
}
private Entry[] table;
private int capacity;
private int threshold;
private int size;
public LongIntHashMap() {
this(16);
}
@SuppressWarnings("unchecked")
public LongIntHashMap(int capacity) {
this.capacity = capacity;
this.threshold = capacity * 4 / 3;
this.table = new Entry[capacity];
}
public boolean containsKey(long key) {
final int index = ((((int) (key >>> 32)) ^ ((int) (key))) & 0x7fffffff) % capacity;
for (Entry entry = table[index]; entry != null; entry = entry.next) {
if (entry.key == key) {
return true;
}
}
return false;
}
public int get(long key) {
final int index = ((((int) (key >>> 32)) ^ ((int) (key))) & 0x7fffffff) % capacity;
for (Entry entry = table[index]; entry != null; entry = entry.next) {
if (entry.key == key) {
return entry.value;
}
}
return 0;
}
public int put(long key, int value) {
final int index = ((((int) (key >>> 32)) ^ ((int) (key))) & 0x7fffffff) % capacity;
final Entry entryOriginal = table[index];
for (Entry entry = entryOriginal; entry != null; entry = entry.next) {
if (entry.key == key) {
int oldValue = entry.value;
entry.value = value;
return oldValue;
}
}
table[index] = new Entry(key, value, entryOriginal);
size++;
if (size > threshold) {
setCapacity(2 * capacity);
}
return 0;
}
public int remove(long key) {
int index = ((((int) (key >>> 32)) ^ ((int) (key))) & 0x7fffffff) % capacity;
Entry previous = null;
Entry entry = table[index];
while (entry != null) {
Entry next = entry.next;
if (entry.key == key) {
if (previous == null) {
table[index] = next;
} else {
previous.next = next;
}
size--;
return entry.value;
}
previous = entry;
entry = next;
}
return 0;
}
long[] getKeys() {
long[] arr = new long[size()];
int index = 0;
for (int i = 0; i < table.length; i++) {
Entry e = table[i];
while (e != null) {
arr[index++] = e.key;
e = e.next;
}
}
return arr;
}
public void clear() {
size = 0;
Arrays.fill(table, null);
}
public int size() {
return size;
}
public void setCapacity(int newCapacity) {
@SuppressWarnings("unchecked")
Entry[] newTable = new Entry[newCapacity];
int length = table.length;
for (int i = 0; i < length; i++) {
Entry entry = table[i];
while (entry != null) {
long key = entry.key;
int index = ((((int) (key >>> 32)) ^ ((int) (key))) & 0x7fffffff) % newCapacity;
Entry originalNext = entry.next;
entry.next = newTable[index];
newTable[index] = entry;
entry = originalNext;
}
}
table = newTable;
capacity = newCapacity;
threshold = newCapacity * 4 / 3;
}
/**
* Target load: 0,6
*/
public void reserveRoom(int entryCount) {
setCapacity(entryCount * 5 / 3);
}
}
} | 4JAVA
| {
"input": [
"5 6 5\n5 4 86\n5 1 0\n1 3 38\n2 1 33\n2 4 28\n2 3 40\n3 5\n2 6\n1 3\n2 3\n1 6\n",
"5 9 4\n4 1 46\n1 3 29\n3 2 58\n1 5 61\n2 4 88\n1 2 87\n4 5 58\n3 5 69\n3 4 28\n2 7\n5 7\n3 6\n1 7\n",
"5 8 10\n2 3 8\n5 3 22\n5 1 8\n3 4 7\n4 1 83\n5 2 59\n2 1 4\n4 2 53\n4 4\n3 3\n5 6\n3 5\n3 8\n3 5\n1 4\n3 4\n1 4\n3 8\n",
"10 28 10\n10 9 80\n2 4 200\n4 6 938\n4 8 838\n4 5 263\n5 7 401\n2 6 595\n9 1 744\n3 5 759\n2 9 428\n3 6 17\n10 8 851\n8 7 862\n1 3 963\n4 7 94\n4 10 833\n3 8 948\n10 6 274\n3 2 129\n7 2 985\n1 2 289\n8 5 711\n6 1 317\n2 10 111\n7 6 333\n3 7 739\n9 4 576\n5 2 997\n1 5\n18 19\n4 26\n9 12\n8 18\n7 13\n12 28\n2 4\n12 14\n1 1\n",
"10 16 10\n4 6 234\n7 8 973\n2 8 727\n10 1 905\n9 2 327\n1 7 508\n1 9 675\n6 2 787\n7 10 337\n3 4 548\n1 4 374\n7 4 242\n2 10 713\n7 6 859\n9 10 854\n2 3 615\n3 16\n13 13\n4 11\n4 7\n2 11\n1 2\n10 14\n8 12\n1 8\n1 7\n",
"3 3 2\n1 2 82\n1 3 84\n3 2 22\n1 3\n1 3\n",
"5 6 10\n1 2 18\n3 1 56\n5 1 36\n2 4 77\n5 2 79\n4 3 35\n1 4\n5 6\n2 3\n3 5\n1 4\n1 2\n4 5\n1 2\n1 6\n4 4\n",
"10 18 10\n9 8 616\n10 9 302\n2 4 285\n8 1 35\n8 5 521\n6 8 195\n9 4 697\n6 5 137\n10 3 358\n5 1 946\n9 1 810\n5 3 932\n8 10 230\n1 7 635\n6 9 423\n5 2 102\n7 3 991\n6 3 795\n10 11\n1 2\n6 9\n2 13\n11 18\n8 11\n13 14\n2 17\n13 18\n6 13\n",
"5 7 10\n2 3 6\n5 2 65\n5 1 38\n4 2 79\n5 4 70\n2 1 13\n5 3 92\n3 3\n1 6\n1 2\n5 7\n1 1\n3 4\n2 7\n1 2\n6 7\n1 2\n",
"2 1 1\n2 1 63\n1 1\n",
"5 1 10\n4 3 68\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n",
"10 29 10\n9 5 374\n4 3 522\n10 9 17\n2 6 586\n9 6 256\n3 1 511\n10 3 631\n7 10 829\n5 2 977\n4 8 97\n6 7 589\n8 6 433\n1 7 834\n5 1 969\n5 6 398\n6 10 651\n8 2 255\n6 1 295\n2 4 435\n7 8 999\n4 6 339\n1 10 198\n8 9 648\n1 8 668\n2 7 0\n5 4 306\n3 6 879\n10 8 844\n7 3 916\n3 19\n3 11\n18 26\n15 24\n8 9\n10 25\n4 27\n6 10\n17 21\n2 18\n",
"10 20 10\n5 4 858\n4 10 955\n2 8 845\n7 2 589\n4 8 480\n7 10 566\n5 8 438\n3 4 974\n10 8 123\n10 1 234\n4 2 290\n1 3 944\n8 1 113\n6 10 228\n7 1 117\n9 3 378\n1 6 6\n10 3 489\n4 1 296\n8 9 817\n6 8\n1 3\n15 19\n14 19\n2 6\n16 18\n4 14\n7 15\n4 12\n16 17\n",
"10 15 10\n10 7 368\n6 3 754\n9 5 468\n8 2 532\n9 3 754\n7 4 733\n2 5 567\n5 8 558\n1 2 354\n10 5 653\n8 9 924\n2 10 127\n7 3 99\n10 4 218\n7 5 903\n8 9\n5 15\n1 8\n10 13\n3 13\n5 6\n2 14\n3 11\n8 9\n2 3\n",
"5 6 5\n5 4 86\n5 1 0\n1 3 38\n2 1 33\n2 4 28\n2 3 40\n3 5\n2 6\n1 3\n2 3\n1 4\n",
"10 29 10\n4 9 887\n9 1 171\n5 8 725\n8 7 444\n5 1 603\n5 4 24\n10 6 993\n8 1 977\n8 3 340\n2 1 973\n6 4 300\n1 10 899\n9 2 930\n5 3 938\n9 6 468\n9 5 520\n2 10 661\n6 2 77\n4 8 800\n7 2 416\n6 5 801\n1 4 838\n3 4 504\n7 5 976\n4 10 609\n2 3 288\n6 7 695\n6 8 297\n10 9 949\n2 7\n2 12\n13 14\n1 27\n17 18\n8 20\n6 22\n4 21\n1 21\n1 27\n",
"5 5 10\n4 1 59\n2 3 23\n5 3 95\n4 5 10\n1 3 83\n3 5\n2 3\n1 2\n4 5\n2 5\n4 5\n3 4\n3 3\n4 5\n4 4\n",
"5 9 4\n4 1 46\n1 3 29\n3 2 58\n1 5 61\n2 4 175\n1 2 87\n4 5 58\n3 5 69\n3 4 28\n2 7\n5 7\n3 6\n1 7\n",
"5 8 10\n2 3 8\n5 3 22\n5 1 8\n3 4 7\n4 1 83\n5 2 59\n2 1 4\n4 2 53\n4 4\n3 3\n5 6\n3 5\n3 8\n3 3\n1 4\n3 4\n1 4\n3 8\n",
"10 16 10\n4 6 234\n7 8 973\n2 8 727\n10 1 905\n9 2 327\n1 7 508\n1 9 675\n6 2 787\n7 10 337\n3 7 548\n1 4 374\n7 4 242\n2 10 713\n7 6 859\n9 10 854\n2 3 615\n3 16\n13 13\n4 11\n4 7\n2 11\n1 2\n10 14\n8 12\n1 8\n1 7\n",
"5 6 10\n1 2 18\n4 1 56\n5 1 36\n2 4 77\n5 2 79\n4 3 35\n1 4\n5 6\n2 3\n3 5\n1 4\n1 2\n4 5\n1 2\n1 6\n4 4\n",
"10 18 10\n9 8 616\n10 9 302\n2 4 285\n8 1 35\n8 5 521\n6 8 195\n9 4 697\n6 5 137\n10 3 358\n5 1 946\n9 1 810\n5 3 932\n8 10 230\n1 7 635\n6 9 423\n5 2 102\n7 3 991\n6 3 1076\n10 11\n1 2\n6 9\n2 13\n11 18\n8 11\n13 14\n2 17\n13 18\n6 13\n",
"5 7 10\n2 3 6\n5 2 65\n5 1 38\n4 2 79\n5 4 70\n2 1 13\n5 3 92\n3 3\n1 6\n1 2\n5 7\n1 1\n3 4\n2 7\n1 2\n2 7\n1 2\n",
"2 1 1\n2 1 82\n1 1\n",
"10 29 10\n9 5 374\n4 3 522\n10 9 17\n2 6 586\n9 6 256\n3 1 511\n10 3 631\n7 10 829\n5 2 977\n4 8 97\n6 7 589\n8 6 433\n1 7 834\n5 1 969\n5 6 398\n6 10 651\n8 2 255\n6 1 295\n2 4 435\n7 8 999\n4 6 339\n1 10 198\n8 9 648\n1 8 668\n2 7 0\n5 4 306\n3 6 879\n10 8 844\n7 3 916\n2 19\n3 11\n18 26\n15 24\n8 9\n10 25\n4 27\n6 10\n17 21\n2 18\n",
"10 20 10\n5 4 858\n4 10 955\n2 8 845\n7 2 589\n4 8 480\n7 10 566\n5 8 438\n3 4 974\n10 8 123\n10 1 234\n4 2 290\n1 3 944\n8 1 113\n6 10 228\n7 1 117\n9 3 378\n1 6 6\n10 3 489\n4 1 296\n8 9 817\n6 8\n1 3\n15 19\n14 19\n2 6\n16 18\n4 14\n3 15\n4 12\n16 17\n",
"10 29 10\n4 9 887\n9 1 171\n5 8 725\n8 7 444\n5 1 603\n5 4 24\n10 6 993\n8 1 977\n8 3 340\n2 1 973\n6 4 300\n1 10 899\n9 2 930\n5 3 938\n9 6 468\n9 5 520\n2 10 661\n6 2 77\n4 8 800\n7 2 416\n6 5 801\n1 4 838\n3 4 504\n7 5 25\n4 10 609\n2 3 288\n6 7 695\n6 8 297\n10 9 949\n2 7\n2 12\n13 14\n1 27\n17 18\n8 20\n6 22\n4 21\n1 21\n1 27\n",
"5 9 4\n4 1 21\n1 3 29\n3 2 58\n1 5 61\n2 4 175\n1 2 87\n4 5 58\n3 5 69\n3 4 28\n2 7\n5 7\n3 6\n1 7\n",
"10 18 10\n9 8 616\n10 9 302\n2 4 285\n8 1 35\n8 5 521\n6 8 195\n9 4 697\n6 5 137\n10 3 358\n5 1 946\n9 1 810\n5 3 932\n8 10 230\n1 7 635\n6 9 423\n5 2 102\n7 3 137\n6 3 1076\n10 11\n1 2\n6 9\n2 13\n11 18\n8 11\n13 14\n2 17\n13 18\n6 13\n",
"10 18 10\n9 8 616\n10 9 302\n2 4 285\n8 1 35\n8 5 521\n6 8 195\n9 4 697\n6 5 137\n10 3 358\n5 2 946\n9 1 810\n5 3 932\n8 10 230\n1 7 635\n6 9 423\n5 2 102\n7 3 137\n6 3 1076\n10 11\n1 2\n6 9\n2 13\n11 18\n8 11\n13 14\n2 17\n13 18\n6 13\n",
"10 29 10\n9 5 374\n4 3 522\n10 9 17\n2 6 586\n9 6 256\n3 1 511\n10 3 631\n7 10 829\n5 2 977\n4 8 97\n6 7 589\n8 6 433\n1 7 834\n5 1 6\n5 6 398\n6 10 651\n8 2 255\n6 1 295\n2 4 435\n5 8 999\n4 6 339\n2 10 198\n8 9 648\n1 8 668\n2 7 0\n5 4 306\n3 6 879\n10 8 844\n7 6 916\n2 19\n3 11\n18 26\n15 24\n8 9\n10 25\n4 27\n6 10\n17 21\n2 18\n",
"13 18 10\n9 8 616\n10 9 302\n2 4 285\n8 1 35\n8 5 521\n6 8 195\n9 4 697\n6 5 113\n10 3 358\n5 2 946\n9 1 810\n5 3 932\n8 10 393\n1 7 635\n6 9 423\n5 2 102\n7 3 137\n6 3 1076\n10 11\n1 2\n6 9\n4 13\n11 18\n8 11\n13 14\n2 17\n13 18\n6 13\n",
"13 18 10\n9 8 680\n10 9 125\n2 4 285\n8 1 35\n8 2 521\n6 8 195\n9 4 697\n6 5 113\n10 3 358\n5 2 946\n9 1 810\n5 3 932\n8 10 393\n1 7 635\n6 9 423\n5 2 102\n7 3 137\n6 3 1076\n10 11\n1 2\n6 9\n4 13\n11 18\n8 11\n13 14\n2 17\n13 18\n6 13\n",
"13 18 10\n9 8 680\n10 9 125\n2 4 285\n8 1 35\n8 2 521\n6 8 195\n9 4 697\n6 5 113\n10 3 358\n5 2 946\n9 1 810\n5 3 932\n8 10 393\n1 7 635\n6 9 423\n5 2 102\n7 3 137\n6 3 1076\n10 11\n1 2\n6 9\n4 10\n11 18\n8 11\n13 14\n2 17\n13 18\n6 13\n",
"13 18 10\n9 8 680\n10 9 125\n2 4 285\n8 1 35\n8 2 521\n6 8 195\n9 4 697\n6 5 113\n10 3 400\n5 2 1848\n9 1 810\n5 3 932\n8 10 393\n1 7 635\n6 9 423\n5 2 102\n7 3 137\n6 3 1076\n10 11\n1 2\n6 9\n4 10\n11 18\n8 11\n13 14\n1 17\n13 18\n6 13\n",
"13 18 10\n9 8 680\n10 9 125\n2 4 285\n8 1 35\n8 2 521\n6 8 195\n9 4 697\n6 5 113\n10 3 400\n5 2 1848\n9 1 810\n5 3 932\n8 10 393\n1 7 635\n6 9 423\n5 2 102\n7 3 137\n6 3 1076\n10 11\n1 2\n6 9\n4 15\n11 18\n8 11\n13 14\n1 17\n13 18\n6 13\n",
"13 18 10\n9 8 680\n10 9 125\n2 4 285\n8 1 35\n8 2 521\n6 8 195\n9 4 697\n8 5 113\n10 3 400\n5 2 1848\n9 1 810\n5 3 932\n8 10 393\n1 7 635\n6 9 423\n5 2 102\n7 3 137\n6 3 1076\n10 11\n1 2\n6 9\n4 15\n11 18\n8 11\n13 14\n1 17\n13 18\n6 13\n",
"13 18 10\n9 8 680\n10 9 125\n2 4 285\n8 1 35\n8 2 521\n6 8 195\n9 4 697\n8 5 113\n10 6 400\n5 2 1848\n9 1 810\n5 3 932\n8 10 393\n1 7 635\n6 9 423\n5 2 102\n7 3 137\n6 3 1076\n10 11\n1 2\n6 14\n4 15\n11 18\n8 11\n13 14\n1 17\n13 18\n6 13\n",
"5 7 10\n2 3 6\n5 2 65\n5 1 38\n4 2 79\n5 4 70\n2 1 13\n5 4 92\n3 3\n1 6\n1 2\n5 7\n1 1\n3 4\n2 7\n1 2\n2 7\n1 2\n",
"10 29 10\n9 5 374\n4 3 522\n10 9 17\n2 6 586\n9 6 256\n3 1 511\n10 3 631\n7 10 829\n5 2 977\n4 8 97\n6 7 589\n8 6 433\n1 7 834\n5 1 969\n5 6 398\n6 10 651\n8 2 255\n6 1 295\n2 4 435\n7 8 999\n4 6 339\n1 10 198\n8 9 648\n1 8 668\n2 7 0\n5 4 306\n3 6 879\n10 8 844\n7 6 916\n2 19\n3 11\n18 26\n15 24\n8 9\n10 25\n4 27\n6 10\n17 21\n2 18\n",
"10 29 10\n4 9 887\n9 1 171\n5 8 725\n8 7 444\n5 1 603\n5 4 24\n10 6 993\n8 1 977\n8 3 340\n2 1 973\n6 4 300\n1 10 899\n9 2 930\n5 3 938\n9 6 468\n9 5 520\n2 10 661\n6 2 77\n4 8 800\n7 2 416\n6 5 801\n1 4 838\n3 4 504\n7 5 25\n4 5 609\n2 3 288\n6 7 695\n6 8 297\n10 9 949\n2 7\n2 12\n13 14\n1 27\n17 18\n8 20\n6 22\n4 21\n1 21\n1 27\n",
"5 9 4\n4 1 21\n1 3 29\n3 2 111\n1 5 61\n2 4 175\n1 2 87\n4 5 58\n3 5 69\n3 4 28\n2 7\n5 7\n3 6\n1 7\n",
"10 29 10\n9 5 374\n4 3 522\n10 9 17\n2 6 586\n9 6 256\n3 1 511\n10 3 631\n7 10 829\n5 2 977\n4 8 97\n6 7 589\n8 6 433\n1 7 834\n5 1 969\n5 6 398\n6 10 651\n8 2 255\n6 1 295\n2 4 435\n7 8 999\n4 6 339\n2 10 198\n8 9 648\n1 8 668\n2 7 0\n5 4 306\n3 6 879\n10 8 844\n7 6 916\n2 19\n3 11\n18 26\n15 24\n8 9\n10 25\n4 27\n6 10\n17 21\n2 18\n",
"10 29 10\n4 9 887\n9 1 171\n5 8 725\n8 7 444\n5 1 603\n5 4 24\n10 6 993\n8 1 977\n8 3 340\n2 1 973\n6 4 300\n1 10 899\n9 2 930\n5 3 1307\n9 6 468\n9 5 520\n2 10 661\n6 2 77\n4 8 800\n7 2 416\n6 5 801\n1 4 838\n3 4 504\n7 5 25\n4 5 609\n2 3 288\n6 7 695\n6 8 297\n10 9 949\n2 7\n2 12\n13 14\n1 27\n17 18\n8 20\n6 22\n4 21\n1 21\n1 27\n",
"10 18 10\n9 8 616\n10 9 302\n2 4 285\n8 1 35\n8 5 521\n6 8 195\n9 4 697\n6 5 137\n10 3 358\n5 2 946\n9 1 810\n5 3 932\n8 10 230\n1 7 635\n6 9 423\n5 2 102\n7 3 137\n6 3 1076\n10 11\n1 2\n6 9\n4 13\n11 18\n8 11\n13 14\n2 17\n13 18\n6 13\n",
"10 29 10\n9 5 374\n4 3 522\n10 9 17\n2 6 586\n9 6 256\n3 1 511\n10 3 631\n7 10 829\n5 2 977\n4 8 97\n6 7 589\n8 6 433\n1 7 834\n5 1 6\n5 6 398\n6 10 651\n8 2 255\n6 1 295\n2 4 435\n7 8 999\n4 6 339\n2 10 198\n8 9 648\n1 8 668\n2 7 0\n5 4 306\n3 6 879\n10 8 844\n7 6 916\n2 19\n3 11\n18 26\n15 24\n8 9\n10 25\n4 27\n6 10\n17 21\n2 18\n",
"10 29 10\n4 9 887\n9 1 171\n5 8 725\n8 7 444\n5 1 603\n5 4 24\n10 6 993\n8 1 977\n8 3 340\n2 1 973\n6 4 300\n1 10 899\n9 2 930\n5 3 1307\n9 6 468\n9 5 520\n2 10 661\n6 2 77\n4 8 800\n7 2 416\n6 5 801\n1 4 838\n3 4 504\n7 5 25\n4 5 609\n2 3 288\n6 7 695\n6 8 297\n6 9 949\n2 7\n2 12\n13 14\n1 27\n17 18\n8 20\n6 22\n4 21\n1 21\n1 27\n",
"13 18 10\n9 8 616\n10 9 302\n2 4 285\n8 1 35\n8 5 521\n6 8 195\n9 4 697\n6 5 137\n10 3 358\n5 2 946\n9 1 810\n5 3 932\n8 10 230\n1 7 635\n6 9 423\n5 2 102\n7 3 137\n6 3 1076\n10 11\n1 2\n6 9\n4 13\n11 18\n8 11\n13 14\n2 17\n13 18\n6 13\n",
"10 29 10\n4 9 887\n9 1 171\n5 2 725\n8 7 444\n5 1 603\n5 4 24\n10 6 993\n8 1 977\n8 3 340\n2 1 973\n6 4 300\n1 10 899\n9 2 930\n5 3 1307\n9 6 468\n9 5 520\n2 10 661\n6 2 77\n4 8 800\n7 2 416\n6 5 801\n1 4 838\n3 4 504\n7 5 25\n4 5 609\n2 3 288\n6 7 695\n6 8 297\n6 9 949\n2 7\n2 12\n13 14\n1 27\n17 18\n8 20\n6 22\n4 21\n1 21\n1 27\n",
"13 18 10\n9 8 616\n10 9 302\n2 4 285\n8 1 35\n8 5 521\n6 8 195\n9 4 697\n6 5 137\n10 3 358\n5 2 946\n9 1 810\n5 3 932\n8 10 393\n1 7 635\n6 9 423\n5 2 102\n7 3 137\n6 3 1076\n10 11\n1 2\n6 9\n4 13\n11 18\n8 11\n13 14\n2 17\n13 18\n6 13\n",
"10 29 10\n4 9 887\n9 1 171\n5 2 725\n8 7 444\n5 1 603\n1 4 24\n10 6 993\n8 1 977\n8 3 340\n2 1 973\n6 4 300\n1 10 899\n9 2 930\n5 3 1307\n9 6 468\n9 5 520\n2 10 661\n6 2 77\n4 8 800\n7 2 416\n6 5 801\n1 4 838\n3 4 504\n7 5 25\n4 5 609\n2 3 288\n6 7 695\n6 8 297\n6 9 949\n2 7\n2 12\n13 14\n1 27\n17 18\n8 20\n6 22\n4 21\n1 21\n1 27\n",
"10 29 10\n4 9 887\n9 1 171\n5 2 725\n8 7 444\n5 1 603\n1 4 24\n10 6 993\n8 1 977\n8 3 340\n2 1 973\n6 4 300\n1 10 899\n9 2 930\n5 3 1307\n9 6 468\n9 5 520\n2 10 661\n6 2 77\n4 8 800\n7 2 416\n6 5 801\n1 4 838\n3 4 504\n7 5 25\n4 5 609\n2 3 288\n6 7 695\n6 8 297\n4 9 949\n2 7\n2 12\n13 14\n1 27\n17 18\n8 20\n6 22\n4 21\n1 21\n1 27\n",
"13 18 10\n9 8 680\n10 9 302\n2 4 285\n8 1 35\n8 5 521\n6 8 195\n9 4 697\n6 5 113\n10 3 358\n5 2 946\n9 1 810\n5 3 932\n8 10 393\n1 7 635\n6 9 423\n5 2 102\n7 3 137\n6 3 1076\n10 11\n1 2\n6 9\n4 13\n11 18\n8 11\n13 14\n2 17\n13 18\n6 13\n",
"10 29 10\n4 9 887\n9 1 171\n5 2 725\n8 7 444\n5 1 603\n1 4 24\n10 6 993\n8 1 977\n8 3 340\n2 1 973\n6 4 300\n1 10 899\n9 2 930\n5 3 1307\n9 6 468\n9 5 264\n2 10 661\n6 2 77\n4 8 800\n7 2 416\n6 5 801\n1 4 838\n3 4 504\n7 5 25\n4 5 609\n2 3 288\n6 7 695\n6 8 297\n4 9 949\n2 7\n2 12\n13 14\n1 27\n17 18\n8 20\n6 22\n4 21\n1 21\n1 27\n",
"13 18 10\n9 8 680\n10 9 125\n2 4 285\n8 1 35\n8 5 521\n6 8 195\n9 4 697\n6 5 113\n10 3 358\n5 2 946\n9 1 810\n5 3 932\n8 10 393\n1 7 635\n6 9 423\n5 2 102\n7 3 137\n6 3 1076\n10 11\n1 2\n6 9\n4 13\n11 18\n8 11\n13 14\n2 17\n13 18\n6 13\n",
"13 18 10\n9 8 680\n10 9 125\n2 4 285\n8 1 35\n8 2 521\n6 8 195\n9 4 697\n6 5 113\n10 3 358\n5 2 1848\n9 1 810\n5 3 932\n8 10 393\n1 7 635\n6 9 423\n5 2 102\n7 3 137\n6 3 1076\n10 11\n1 2\n6 9\n4 10\n11 18\n8 11\n13 14\n2 17\n13 18\n6 13\n",
"13 18 10\n9 8 680\n10 9 125\n2 4 285\n8 1 35\n8 2 521\n6 8 195\n9 4 697\n6 5 113\n10 3 358\n5 2 1848\n9 1 810\n5 3 932\n8 10 393\n1 7 635\n6 9 423\n5 2 102\n7 3 137\n6 3 1076\n10 11\n1 2\n6 9\n4 10\n11 18\n8 11\n13 14\n1 17\n13 18\n6 13\n",
"13 18 10\n9 8 680\n10 9 125\n2 4 285\n8 1 35\n8 2 521\n6 8 195\n9 4 697\n8 5 113\n10 3 400\n5 2 1848\n9 1 810\n5 3 932\n8 10 393\n1 7 635\n6 9 423\n5 2 102\n7 3 137\n6 3 1076\n10 11\n1 2\n6 14\n4 15\n11 18\n8 11\n13 14\n1 17\n13 18\n6 13\n"
],
"output": [
"-1\n33\n-1\n-1\n33\n",
"29\n-1\n-1\n46\n",
"-1\n-1\n-1\n-1\n4\n-1\n-1\n-1\n-1\n4\n",
"-1\n-1\n833\n-1\n-1\n-1\n739\n-1\n-1\n-1\n",
"675\n-1\n337\n-1\n337\n-1\n-1\n-1\n327\n327\n",
"22\n22\n",
"-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n35\n-1\n",
"-1\n-1\n-1\n302\n423\n-1\n-1\n302\n-1\n137\n",
"-1\n65\n-1\n-1\n-1\n-1\n65\n-1\n-1\n-1\n",
"-1\n",
"-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n",
"589\n-1\n-1\n255\n-1\n668\n668\n-1\n-1\n589\n",
"-1\n-1\n-1\n-1\n480\n-1\n123\n113\n123\n-1\n",
"-1\n127\n532\n-1\n532\n-1\n532\n532\n-1\n-1\n",
"-1\n33\n-1\n-1\n-1\n",
"-1\n603\n-1\n800\n-1\n661\n800\n661\n800\n800\n",
"-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n",
"29\n-1\n-1\n46\n",
"-1\n-1\n-1\n-1\n4\n-1\n-1\n-1\n-1\n4\n",
"675\n-1\n337\n-1\n337\n-1\n-1\n-1\n327\n327\n",
"18\n-1\n-1\n-1\n18\n-1\n-1\n-1\n18\n-1\n",
"-1\n-1\n-1\n302\n423\n-1\n-1\n302\n-1\n137\n",
"-1\n65\n-1\n-1\n-1\n-1\n65\n-1\n65\n-1\n",
"-1\n",
"589\n-1\n-1\n255\n-1\n668\n668\n-1\n-1\n589\n",
"-1\n-1\n-1\n-1\n480\n-1\n123\n290\n123\n-1\n",
"-1\n603\n-1\n800\n-1\n661\n800\n661\n800\n800\n",
"29\n-1\n-1\n29\n",
"-1\n-1\n-1\n302\n137\n-1\n-1\n302\n-1\n137\n",
"-1\n-1\n-1\n137\n137\n-1\n-1\n137\n-1\n137\n",
"589\n-1\n295\n255\n-1\n398\n631\n-1\n-1\n589\n",
"-1\n-1\n-1\n113\n137\n-1\n-1\n137\n-1\n113\n",
"-1\n-1\n-1\n358\n137\n-1\n-1\n358\n-1\n113\n",
"-1\n-1\n-1\n-1\n137\n-1\n-1\n358\n-1\n113\n",
"-1\n-1\n-1\n-1\n137\n-1\n-1\n393\n-1\n113\n",
"-1\n-1\n-1\n393\n137\n-1\n-1\n393\n-1\n113\n",
"-1\n-1\n-1\n393\n137\n-1\n-1\n393\n-1\n-1\n",
"-1\n-1\n195\n195\n137\n-1\n-1\n195\n-1\n195\n",
"-1\n65\n-1\n-1\n-1\n-1\n65\n-1\n65\n-1\n",
"589\n-1\n-1\n255\n-1\n668\n668\n-1\n-1\n589\n",
"-1\n603\n-1\n800\n-1\n661\n800\n661\n800\n800\n",
"29\n-1\n-1\n29\n",
"589\n-1\n-1\n255\n-1\n668\n668\n-1\n-1\n589\n",
"-1\n603\n-1\n800\n-1\n661\n800\n661\n800\n800\n",
"-1\n-1\n-1\n137\n137\n-1\n-1\n137\n-1\n137\n",
"589\n-1\n-1\n255\n-1\n668\n668\n-1\n-1\n589\n",
"-1\n603\n-1\n800\n-1\n661\n800\n661\n800\n800\n",
"-1\n-1\n-1\n137\n137\n-1\n-1\n137\n-1\n137\n",
"-1\n603\n-1\n800\n-1\n661\n800\n661\n800\n800\n",
"-1\n-1\n-1\n137\n137\n-1\n-1\n137\n-1\n137\n",
"-1\n603\n-1\n800\n-1\n661\n800\n661\n800\n800\n",
"-1\n603\n-1\n800\n-1\n661\n800\n661\n800\n800\n",
"-1\n-1\n-1\n113\n137\n-1\n-1\n137\n-1\n113\n",
"-1\n603\n-1\n800\n-1\n661\n800\n661\n800\n800\n",
"-1\n-1\n-1\n113\n137\n-1\n-1\n137\n-1\n113\n",
"-1\n-1\n-1\n-1\n137\n-1\n-1\n358\n-1\n113\n",
"-1\n-1\n-1\n-1\n137\n-1\n-1\n358\n-1\n113\n",
"-1\n-1\n-1\n393\n137\n-1\n-1\n393\n-1\n-1\n"
]
} | 2CODEFORCES
|
70_C. Lucky Tickets_153 | In Walrusland public transport tickets are characterized by two integers: by the number of the series and by the number of the ticket in the series. Let the series number be represented by a and the ticket number — by b, then a ticket is described by the ordered pair of numbers (a, b).
The walruses believe that a ticket is lucky if a * b = rev(a) * rev(b). The function rev(x) reverses a number written in the decimal system, at that the leading zeroes disappear. For example, rev(12343) = 34321, rev(1200) = 21.
The Public Transport Management Committee wants to release x series, each containing y tickets, so that at least w lucky tickets were released and the total number of released tickets (x * y) were minimum. The series are numbered from 1 to x inclusive. The tickets in each series are numbered from 1 to y inclusive. The Transport Committee cannot release more than maxx series and more than maxy tickets in one series.
Input
The first line contains three integers maxx, maxy, w (1 ≤ maxx, maxy ≤ 105, 1 ≤ w ≤ 107).
Output
Print on a single line two space-separated numbers, the x and the y. If there are several possible variants, print any of them. If such x and y do not exist, print a single number - 1.
Examples
Input
2 2 1
Output
1 1
Input
132 10 35
Output
7 5
Input
5 18 1000
Output
-1
Input
48 132 235
Output
22 111 | from collections import defaultdict
from fractions import gcd
(max_x, max_y, w) = map( int, raw_input().split() )
def Pair(x):
inv_x = 0
val = x
while val:
inv_x = inv_x * 10 + val % 10
val /= 10
uc = gcd( x, inv_x )
return ( x/uc, inv_x/uc )
def Reverse(P):
return ( P[1], P[0] )
MapX = defaultdict(int)
MapY = defaultdict(int)
for y in xrange(1, max_y+1):
MapY[ Pair(y) ] += 1
y = max_y
lucky_tickets = 0
res = ( 100007, 100007 )
for x in xrange(1, max_x+1):
lucky_tickets += MapY[ Reverse( Pair(x) ) ]
MapX[ Pair(x) ] += 1
while (y > 0)and( lucky_tickets - MapX[ Reverse( Pair(y) ) ] >= w ):
lucky_tickets -= MapX[ Reverse( Pair(y) ) ]
MapY[ Pair(y) ] -= 1
y -= 1
if (lucky_tickets >= w) and ( x * y < res[0] * res[1] ):
res = (x, y)
if res[0] == 100007:
print -1
else:
print "%d %d" % res | 1Python2
| {
"input": [
"5 18 1000\n",
"132 10 35\n",
"48 132 235\n",
"2 2 1\n",
"85 30 123\n",
"100000 100000 1320777\n",
"94728 36278 300352\n",
"70386 4182 113682\n",
"65182 12701 141871\n",
"48701 4854 14523\n",
"84324 74849 17238\n",
"100000 100000 10000000\n",
"83072 55834 461951\n",
"99999 99999 1320778\n",
"99474 33270 200430\n",
"54558 77753 458973\n",
"49 24 83\n",
"84813 80213 1123474\n",
"98372 55633 650768\n",
"18252 10662 36621\n",
"59510 27419 6719162\n",
"119 69 169\n",
"66343 33744 168654\n",
"84637 33654 2517\n",
"84026 17765 8177582\n",
"30372 66963 1554229\n",
"61886 5897 37739\n",
"4830 97380 69709\n",
"100000 100000 1000000\n",
"40758 44300 202089\n",
"22706 53686 4605009\n",
"131 136 430\n",
"17 49 101\n",
"55361 31906 7353\n",
"64356 76729 351908\n",
"100000 100000 1300000\n",
"87191 27924 129801\n",
"17450 74957 174334\n",
"22 36 60\n",
"76689 39645 140033\n",
"100000 100000 1320000\n",
"55248 15372 1556850\n",
"97341 86067 510670\n",
"99999 99999 1320779\n",
"100000 100000 1320778\n",
"100000 100000 1320700\n",
"81784 92544 37010\n",
"57176 79292 599787\n",
"27346 64876 180351\n",
"81527 17791 107576\n",
"98080 30860 3689530\n",
"85 36 123\n",
"100000 100000 1937540\n",
"70386 8300 113682\n",
"48701 4854 24164\n",
"84324 74849 30362\n",
"83072 89046 461951\n",
"54558 98656 458973\n",
"49 24 12\n",
"12212 10662 36621\n",
"206 69 169\n",
"66343 33744 217594\n",
"84637 33654 818\n",
"61886 4937 37739\n",
"1747 97380 69709\n",
"63912 44300 202089\n",
"131 136 251\n",
"19 49 101\n",
"55361 31906 12986\n",
"64356 73866 351908\n",
"87191 27924 256788\n",
"17450 92787 174334\n",
"14 36 60\n",
"76689 51443 140033\n",
"97341 86067 6959\n",
"81784 16486 37010\n",
"27346 64876 76929\n",
"188 10 35\n",
"48 137 235\n",
"2 2 2\n",
"3752 36278 300352\n",
"11820 12701 141871\n",
"58462 99999 1320778\n",
"31757 80213 1123474\n",
"98372 30462 650768\n",
"59510 27419 7549010\n",
"27230 17765 8177582\n",
"55294 66963 1554229\n",
"55248 6716 1556850\n",
"99999 99999 1961054\n",
"15334 17791 107576\n",
"5 18 1010\n",
"155 36 123\n",
"2690 36278 300352\n"
],
"output": [
"-1",
"5 7\n",
"22 111",
"1 1",
"22 22\n",
"99999 99999",
"94649 16361",
"69996 3333",
"64946 7117",
"2222 1001",
"4444 1001",
"-1",
"82628 35353",
"99999 99999",
"98889 7117",
"37585 77682",
"9 11\n",
"-1",
"98289 44844",
"17771 2013",
"-1",
"101 9",
"65656 10001",
"1001 123",
"-1",
"-1",
"22522 1001",
"1001 51115",
"99799 73237",
"23132 44244",
"-1",
"88 101\n",
"11 22",
"1001 525",
"26884 76667",
"98289 99999\n",
"87178 2777",
"8778 74547",
"7 9\n",
"76167 5005",
"99999 99999",
"-1",
"97179 33533",
"-1",
"99999 99999",
"99999 99999",
"1001 21812\n",
"51315 78887",
"11711 64546",
"81218 1441",
"-1",
"22 22\n",
"-1\n",
"69996 3333\n",
"10301 1001\n",
"1001 15851\n",
"32623 88788\n",
"28782 98489\n",
"2 6\n",
"11711 4022\n",
"101 9\n",
"66166 15751\n",
"9 828\n",
"22522 1001\n",
"1001 51115\n",
"63736 14641\n",
"23 121\n",
"11 22\n",
"999 1001\n",
"28082 73837\n",
"86868 14241\n",
"5885 92629\n",
"7 9\n",
"76167 5005\n",
"494 999\n",
"21812 1001\n",
"1001 57675\n",
"5 7\n",
"22 111\n",
"1 2\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"22 22\n",
"-1\n"
]
} | 2CODEFORCES
|
70_C. Lucky Tickets_154 | In Walrusland public transport tickets are characterized by two integers: by the number of the series and by the number of the ticket in the series. Let the series number be represented by a and the ticket number — by b, then a ticket is described by the ordered pair of numbers (a, b).
The walruses believe that a ticket is lucky if a * b = rev(a) * rev(b). The function rev(x) reverses a number written in the decimal system, at that the leading zeroes disappear. For example, rev(12343) = 34321, rev(1200) = 21.
The Public Transport Management Committee wants to release x series, each containing y tickets, so that at least w lucky tickets were released and the total number of released tickets (x * y) were minimum. The series are numbered from 1 to x inclusive. The tickets in each series are numbered from 1 to y inclusive. The Transport Committee cannot release more than maxx series and more than maxy tickets in one series.
Input
The first line contains three integers maxx, maxy, w (1 ≤ maxx, maxy ≤ 105, 1 ≤ w ≤ 107).
Output
Print on a single line two space-separated numbers, the x and the y. If there are several possible variants, print any of them. If such x and y do not exist, print a single number - 1.
Examples
Input
2 2 1
Output
1 1
Input
132 10 35
Output
7 5
Input
5 18 1000
Output
-1
Input
48 132 235
Output
22 111 | #include <bits/stdc++.h>
using namespace std;
int in() {
int a;
scanf("%d", &a);
return a;
}
int gcm(int a, int b) {
if (b > a) return gcm(b, a);
if (a % b == 0)
return b;
else
return gcm(b, a % b);
}
int calc_rev(int x) {
int ret = 0;
while (x) {
int a = x % 10;
ret = ret * 10 + a;
x /= 10;
}
return ret;
}
int rev[100010];
map<pair<int, int>, vector<int> > lucky;
pair<int, int> a_reva(int a) {
int g = gcm(a, rev[a]);
int b = a / g;
int c = rev[a] / g;
return make_pair(b, c);
}
pair<int, int> invert_pint(pair<int, int> t) {
return make_pair(t.second, t.first);
}
int main() {
for (int i = (1); i <= (100000); i++) {
rev[i] = calc_rev(i);
}
for (int i = (1); i <= (100000); i++) {
lucky[a_reva(i)].push_back(i);
}
pair<int, int> ans = make_pair(-1, -1);
long long ans_fact = ((long long)(1001001001) * (1001001001));
int maxx = in();
int maxy = in();
int w = in();
int bar = maxy;
int ltickets = 0;
for (int x = (1); x <= (maxx); x++) {
vector<int> hoge = lucky[invert_pint(a_reva(x))];
int ind =
distance(hoge.begin(), upper_bound(hoge.begin(), hoge.end(), bar));
ltickets += ind;
while (ltickets >= w) {
if ((long long)x * bar < ans_fact) {
ans = make_pair(x, bar);
ans_fact = (long long)x * bar;
}
vector<int> fuga = lucky[invert_pint(a_reva(bar))];
int ind2 =
distance(fuga.begin(), upper_bound(fuga.begin(), fuga.end(), x));
ltickets -= ind2;
bar--;
}
}
if (ans.first == -1) {
puts("-1");
} else {
printf("%d %d\n", ans.first, ans.second);
}
return 0;
}
| 2C++
| {
"input": [
"5 18 1000\n",
"132 10 35\n",
"48 132 235\n",
"2 2 1\n",
"85 30 123\n",
"100000 100000 1320777\n",
"94728 36278 300352\n",
"70386 4182 113682\n",
"65182 12701 141871\n",
"48701 4854 14523\n",
"84324 74849 17238\n",
"100000 100000 10000000\n",
"83072 55834 461951\n",
"99999 99999 1320778\n",
"99474 33270 200430\n",
"54558 77753 458973\n",
"49 24 83\n",
"84813 80213 1123474\n",
"98372 55633 650768\n",
"18252 10662 36621\n",
"59510 27419 6719162\n",
"119 69 169\n",
"66343 33744 168654\n",
"84637 33654 2517\n",
"84026 17765 8177582\n",
"30372 66963 1554229\n",
"61886 5897 37739\n",
"4830 97380 69709\n",
"100000 100000 1000000\n",
"40758 44300 202089\n",
"22706 53686 4605009\n",
"131 136 430\n",
"17 49 101\n",
"55361 31906 7353\n",
"64356 76729 351908\n",
"100000 100000 1300000\n",
"87191 27924 129801\n",
"17450 74957 174334\n",
"22 36 60\n",
"76689 39645 140033\n",
"100000 100000 1320000\n",
"55248 15372 1556850\n",
"97341 86067 510670\n",
"99999 99999 1320779\n",
"100000 100000 1320778\n",
"100000 100000 1320700\n",
"81784 92544 37010\n",
"57176 79292 599787\n",
"27346 64876 180351\n",
"81527 17791 107576\n",
"98080 30860 3689530\n",
"85 36 123\n",
"100000 100000 1937540\n",
"70386 8300 113682\n",
"48701 4854 24164\n",
"84324 74849 30362\n",
"83072 89046 461951\n",
"54558 98656 458973\n",
"49 24 12\n",
"12212 10662 36621\n",
"206 69 169\n",
"66343 33744 217594\n",
"84637 33654 818\n",
"61886 4937 37739\n",
"1747 97380 69709\n",
"63912 44300 202089\n",
"131 136 251\n",
"19 49 101\n",
"55361 31906 12986\n",
"64356 73866 351908\n",
"87191 27924 256788\n",
"17450 92787 174334\n",
"14 36 60\n",
"76689 51443 140033\n",
"97341 86067 6959\n",
"81784 16486 37010\n",
"27346 64876 76929\n",
"188 10 35\n",
"48 137 235\n",
"2 2 2\n",
"3752 36278 300352\n",
"11820 12701 141871\n",
"58462 99999 1320778\n",
"31757 80213 1123474\n",
"98372 30462 650768\n",
"59510 27419 7549010\n",
"27230 17765 8177582\n",
"55294 66963 1554229\n",
"55248 6716 1556850\n",
"99999 99999 1961054\n",
"15334 17791 107576\n",
"5 18 1010\n",
"155 36 123\n",
"2690 36278 300352\n"
],
"output": [
"-1",
"5 7\n",
"22 111",
"1 1",
"22 22\n",
"99999 99999",
"94649 16361",
"69996 3333",
"64946 7117",
"2222 1001",
"4444 1001",
"-1",
"82628 35353",
"99999 99999",
"98889 7117",
"37585 77682",
"9 11\n",
"-1",
"98289 44844",
"17771 2013",
"-1",
"101 9",
"65656 10001",
"1001 123",
"-1",
"-1",
"22522 1001",
"1001 51115",
"99799 73237",
"23132 44244",
"-1",
"88 101\n",
"11 22",
"1001 525",
"26884 76667",
"98289 99999\n",
"87178 2777",
"8778 74547",
"7 9\n",
"76167 5005",
"99999 99999",
"-1",
"97179 33533",
"-1",
"99999 99999",
"99999 99999",
"1001 21812\n",
"51315 78887",
"11711 64546",
"81218 1441",
"-1",
"22 22\n",
"-1\n",
"69996 3333\n",
"10301 1001\n",
"1001 15851\n",
"32623 88788\n",
"28782 98489\n",
"2 6\n",
"11711 4022\n",
"101 9\n",
"66166 15751\n",
"9 828\n",
"22522 1001\n",
"1001 51115\n",
"63736 14641\n",
"23 121\n",
"11 22\n",
"999 1001\n",
"28082 73837\n",
"86868 14241\n",
"5885 92629\n",
"7 9\n",
"76167 5005\n",
"494 999\n",
"21812 1001\n",
"1001 57675\n",
"5 7\n",
"22 111\n",
"1 2\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"22 22\n",
"-1\n"
]
} | 2CODEFORCES
|
70_C. Lucky Tickets_155 | In Walrusland public transport tickets are characterized by two integers: by the number of the series and by the number of the ticket in the series. Let the series number be represented by a and the ticket number — by b, then a ticket is described by the ordered pair of numbers (a, b).
The walruses believe that a ticket is lucky if a * b = rev(a) * rev(b). The function rev(x) reverses a number written in the decimal system, at that the leading zeroes disappear. For example, rev(12343) = 34321, rev(1200) = 21.
The Public Transport Management Committee wants to release x series, each containing y tickets, so that at least w lucky tickets were released and the total number of released tickets (x * y) were minimum. The series are numbered from 1 to x inclusive. The tickets in each series are numbered from 1 to y inclusive. The Transport Committee cannot release more than maxx series and more than maxy tickets in one series.
Input
The first line contains three integers maxx, maxy, w (1 ≤ maxx, maxy ≤ 105, 1 ≤ w ≤ 107).
Output
Print on a single line two space-separated numbers, the x and the y. If there are several possible variants, print any of them. If such x and y do not exist, print a single number - 1.
Examples
Input
2 2 1
Output
1 1
Input
132 10 35
Output
7 5
Input
5 18 1000
Output
-1
Input
48 132 235
Output
22 111 |
import java.util.HashMap;
import java.util.Scanner;
/*
* To change this template, choose Tools | Templates
* and open the template in the editor.
*/
/**
*
* @author duc
*/
public class CF70_C {
static int reverseNumber(int n) {
int m = 0;
while (n > 0) {
m = m * 10 + n%10;
n/=10;
}
return m;
}
public static void main(String [] args) {
Scanner in = new Scanner(System.in);
int maxX, maxY, w;
maxX = in.nextInt();
maxY = in.nextInt();
w = in.nextInt();
int max = Math.max(maxX, maxY);
int [] reverse = new int[max+1];
for (int i = 1; i <= max; ++i) {
reverse[i] = reverseNumber(i);
}
HashMap<Double, Integer> left = new HashMap<Double, Integer>();
HashMap<Double, Integer> right = new HashMap<Double, Integer>();
left.put(1.0, 1);
long nLucky = 0;
int bestArea = Integer.MAX_VALUE, bestX = -1, bestY = -1;
int y;
for (y = 1; y <= maxY; ++y) {
double ratio = (double) reverse[y] / y;
right.put(ratio, right.containsKey(ratio) ? (right.get(ratio) + 1) : 1);
nLucky += left.containsKey(ratio) ? left.get(ratio) : 0;
if (nLucky >= w) {
if (y < bestArea) {
bestArea = y;
bestX = 1;
bestY = y;
}
break;
}
}
if (y > maxY) {
y = maxY;
}
for (int x = 2; x <= maxX; ++x) {
double ratioLeft = (double) x / reverse[x];
left.put(ratioLeft, left.containsKey(ratioLeft) ? (left.get(ratioLeft) + 1) : 1);
nLucky += right.containsKey(ratioLeft) ? right.get(ratioLeft) : 0;
while (true) {
double ratioRight = (double) reverse[y] / y;
int loss = left.containsKey(ratioRight) ? left.get(ratioRight) : 0;
if (nLucky - loss >= w) {
right.put(ratioRight, right.get(ratioRight) - 1);
nLucky -= loss;
--y;
} else {
break;
}
}
if (nLucky >= w && x * y < bestArea) {
bestArea = x * y;
bestX = x;
bestY = y;
}
}
if (bestArea == Integer.MAX_VALUE) {
System.out.println(-1);
} else {
System.out.println(bestX + " " + bestY);
}
}
}
| 4JAVA
| {
"input": [
"5 18 1000\n",
"132 10 35\n",
"48 132 235\n",
"2 2 1\n",
"85 30 123\n",
"100000 100000 1320777\n",
"94728 36278 300352\n",
"70386 4182 113682\n",
"65182 12701 141871\n",
"48701 4854 14523\n",
"84324 74849 17238\n",
"100000 100000 10000000\n",
"83072 55834 461951\n",
"99999 99999 1320778\n",
"99474 33270 200430\n",
"54558 77753 458973\n",
"49 24 83\n",
"84813 80213 1123474\n",
"98372 55633 650768\n",
"18252 10662 36621\n",
"59510 27419 6719162\n",
"119 69 169\n",
"66343 33744 168654\n",
"84637 33654 2517\n",
"84026 17765 8177582\n",
"30372 66963 1554229\n",
"61886 5897 37739\n",
"4830 97380 69709\n",
"100000 100000 1000000\n",
"40758 44300 202089\n",
"22706 53686 4605009\n",
"131 136 430\n",
"17 49 101\n",
"55361 31906 7353\n",
"64356 76729 351908\n",
"100000 100000 1300000\n",
"87191 27924 129801\n",
"17450 74957 174334\n",
"22 36 60\n",
"76689 39645 140033\n",
"100000 100000 1320000\n",
"55248 15372 1556850\n",
"97341 86067 510670\n",
"99999 99999 1320779\n",
"100000 100000 1320778\n",
"100000 100000 1320700\n",
"81784 92544 37010\n",
"57176 79292 599787\n",
"27346 64876 180351\n",
"81527 17791 107576\n",
"98080 30860 3689530\n",
"85 36 123\n",
"100000 100000 1937540\n",
"70386 8300 113682\n",
"48701 4854 24164\n",
"84324 74849 30362\n",
"83072 89046 461951\n",
"54558 98656 458973\n",
"49 24 12\n",
"12212 10662 36621\n",
"206 69 169\n",
"66343 33744 217594\n",
"84637 33654 818\n",
"61886 4937 37739\n",
"1747 97380 69709\n",
"63912 44300 202089\n",
"131 136 251\n",
"19 49 101\n",
"55361 31906 12986\n",
"64356 73866 351908\n",
"87191 27924 256788\n",
"17450 92787 174334\n",
"14 36 60\n",
"76689 51443 140033\n",
"97341 86067 6959\n",
"81784 16486 37010\n",
"27346 64876 76929\n",
"188 10 35\n",
"48 137 235\n",
"2 2 2\n",
"3752 36278 300352\n",
"11820 12701 141871\n",
"58462 99999 1320778\n",
"31757 80213 1123474\n",
"98372 30462 650768\n",
"59510 27419 7549010\n",
"27230 17765 8177582\n",
"55294 66963 1554229\n",
"55248 6716 1556850\n",
"99999 99999 1961054\n",
"15334 17791 107576\n",
"5 18 1010\n",
"155 36 123\n",
"2690 36278 300352\n"
],
"output": [
"-1",
"5 7\n",
"22 111",
"1 1",
"22 22\n",
"99999 99999",
"94649 16361",
"69996 3333",
"64946 7117",
"2222 1001",
"4444 1001",
"-1",
"82628 35353",
"99999 99999",
"98889 7117",
"37585 77682",
"9 11\n",
"-1",
"98289 44844",
"17771 2013",
"-1",
"101 9",
"65656 10001",
"1001 123",
"-1",
"-1",
"22522 1001",
"1001 51115",
"99799 73237",
"23132 44244",
"-1",
"88 101\n",
"11 22",
"1001 525",
"26884 76667",
"98289 99999\n",
"87178 2777",
"8778 74547",
"7 9\n",
"76167 5005",
"99999 99999",
"-1",
"97179 33533",
"-1",
"99999 99999",
"99999 99999",
"1001 21812\n",
"51315 78887",
"11711 64546",
"81218 1441",
"-1",
"22 22\n",
"-1\n",
"69996 3333\n",
"10301 1001\n",
"1001 15851\n",
"32623 88788\n",
"28782 98489\n",
"2 6\n",
"11711 4022\n",
"101 9\n",
"66166 15751\n",
"9 828\n",
"22522 1001\n",
"1001 51115\n",
"63736 14641\n",
"23 121\n",
"11 22\n",
"999 1001\n",
"28082 73837\n",
"86868 14241\n",
"5885 92629\n",
"7 9\n",
"76167 5005\n",
"494 999\n",
"21812 1001\n",
"1001 57675\n",
"5 7\n",
"22 111\n",
"1 2\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"22 22\n",
"-1\n"
]
} | 2CODEFORCES
|
730_J. Bottles_156 | Nick has n bottles of soda left after his birthday. Each bottle is described by two values: remaining amount of soda ai and bottle volume bi (ai ≤ bi).
Nick has decided to pour all remaining soda into minimal number of bottles, moreover he has to do it as soon as possible. Nick spends x seconds to pour x units of soda from one bottle to another.
Nick asks you to help him to determine k — the minimal number of bottles to store all remaining soda and t — the minimal time to pour soda into k bottles. A bottle can't store more soda than its volume. All remaining soda should be saved.
Input
The first line contains positive integer n (1 ≤ n ≤ 100) — the number of bottles.
The second line contains n positive integers a1, a2, ..., an (1 ≤ ai ≤ 100), where ai is the amount of soda remaining in the i-th bottle.
The third line contains n positive integers b1, b2, ..., bn (1 ≤ bi ≤ 100), where bi is the volume of the i-th bottle.
It is guaranteed that ai ≤ bi for any i.
Output
The only line should contain two integers k and t, where k is the minimal number of bottles that can store all the soda and t is the minimal time to pour the soda into k bottles.
Examples
Input
4
3 3 4 3
4 7 6 5
Output
2 6
Input
2
1 1
100 100
Output
1 1
Input
5
10 30 5 6 24
10 41 7 8 24
Output
3 11
Note
In the first example Nick can pour soda from the first bottle to the second bottle. It will take 3 seconds. After it the second bottle will contain 3 + 3 = 6 units of soda. Then he can pour soda from the fourth bottle to the second bottle and to the third bottle: one unit to the second and two units to the third. It will take 1 + 2 = 3 seconds. So, all the soda will be in two bottles and he will spend 3 + 3 = 6 seconds to do it. | #include <bits/stdc++.h>
using namespace std;
pair<int, int> dp[10005];
int a[105], b[105];
int main() {
int n;
scanf("%d", &n);
int cap = 0, mx = 0;
for (int i = 0; i < n; i++) {
scanf("%d", &a[i]);
cap += a[i];
}
for (int i = 0; i < n; i++) {
scanf("%d", &b[i]);
mx += b[i];
}
for (int i = 1; i <= mx; i++) dp[i] = make_pair(-1, -1);
for (int i = 0; i < n; i++) {
for (int j = mx; j >= 0; j--) {
if (dp[j].first == -1) continue;
int nxt = j + b[i];
if (dp[nxt].first == -1)
dp[nxt] = make_pair(dp[j].first + 1, dp[j].second + a[i]);
else if (dp[nxt].first > dp[j].first + 1)
dp[nxt] = make_pair(dp[j].first + 1, dp[j].second + a[i]);
else if (dp[nxt].first == dp[j].first + 1)
dp[nxt].second = max(dp[nxt].second, dp[j].second + a[i]);
}
}
pair<int, int> mn = make_pair((int)1e9, 0);
for (int i = cap; i <= mx; i++) {
if (dp[i].first == -1) continue;
if (dp[i].first < mn.first)
mn = dp[i];
else if (dp[i].first == mn.first)
mn.second = max(mn.second, dp[i].second);
}
printf("%d %d\n", mn.first, cap - mn.second);
return 0;
}
| 2C++
| {
"input": [
"2\n1 1\n100 100\n",
"5\n10 30 5 6 24\n10 41 7 8 24\n",
"4\n3 3 4 3\n4 7 6 5\n",
"30\n10 1 8 10 2 6 45 7 3 7 1 3 1 1 14 2 5 19 4 1 13 3 5 6 1 5 1 1 23 1\n98 4 43 41 56 58 85 51 47 55 20 85 93 12 49 15 95 72 20 4 68 24 16 97 21 52 18 69 89 15\n",
"20\n8 1 44 1 12 1 9 11 1 1 5 2 9 16 16 2 1 5 4 1\n88 2 80 33 55 3 74 61 17 11 11 16 42 81 88 14 4 81 60 10\n",
"40\n31 72 17 63 89 13 72 42 39 30 23 29 5 61 88 37 7 23 49 32 41 25 17 15 9 25 30 61 29 66 24 40 75 67 69 22 61 22 13 35\n32 73 20 68 98 13 74 79 41 33 27 85 5 68 95 44 9 24 95 36 45 26 20 31 10 53 37 72 51 84 24 59 80 75 74 22 72 27 13 39\n",
"2\n1 1\n100 1\n",
"40\n9 18 41 31 27 24 76 32 4 38 1 35 21 3 26 32 31 13 41 31 39 14 45 15 12 5 7 14 3 14 19 11 1 81 1 4 7 28 4 62\n70 21 95 63 66 30 100 42 4 80 83 39 34 6 27 55 72 38 43 48 81 53 54 30 63 23 9 59 3 83 83 95 1 81 30 40 35 58 8 66\n",
"90\n1 9 3 3 14 3 2 32 17 3 1 1 4 1 18 1 1 21 9 1 2 10 6 9 27 15 5 1 3 37 1 2 1 12 6 1 8 4 1 5 1 3 8 9 1 9 23 1 1 2 1 2 2 19 2 6 5 6 1 7 12 35 1 2 8 1 11 32 7 4 12 9 18 8 9 27 31 15 16 4 16 13 2 2 1 4 12 17 10 1\n8 52 13 56 42 40 8 98 64 47 84 11 12 1 97 8 8 66 35 4 6 62 22 38 68 57 50 28 28 88 7 57 9 81 14 37 71 57 33 24 2 21 54 58 58 27 79 3 55 13 2 95 17 97 61 22 28 85 78 72 68 80 12 41 98 18 35 70 40 22 98 85 51 70 79 100 68 29 73 45 89 64 53 6 16 29 73 53 24 69\n",
"69\n24 32 19 37 36 7 15 10 54 12 15 46 3 25 12 16 3 8 55 21 23 57 17 45 11 4 25 35 39 3 69 24 78 40 12 39 1 44 4 75 53 60 1 6 30 7 6 39 44 13 31 6 4 4 32 11 52 58 81 2 33 7 29 19 21 26 22 60 24\n57 56 50 64 40 58 31 20 81 14 43 64 48 38 56 71 58 26 98 92 52 88 71 93 11 20 79 39 56 7 92 54 88 58 19 85 12 71 4 87 78 90 29 18 89 13 86 71 100 24 65 95 46 8 91 35 62 66 96 36 80 24 81 58 53 86 89 67 73\n",
"38\n2 1 1 1 1 9 5 2 1 3 4 3 1 7 4 4 8 7 1 5 4 9 1 6 3 4 1 4 1 5 5 1 8 3 1 3 6 3\n2 1 6 2 9 10 6 2 1 5 4 6 1 7 4 6 10 8 8 6 4 10 1 6 4 4 6 4 4 8 5 2 10 7 3 5 6 3\n",
"1\n1\n1\n",
"32\n4 1 1 6 2 5 8 6 5 6 3 2 1 3 1 9 1 2 1 5 2 1 6 5 3 7 3 3 2 5 1 1\n8 1 3 6 4 7 9 8 6 8 10 2 5 3 2 10 1 10 9 5 4 1 8 7 8 7 4 10 4 6 9 2\n",
"86\n5 1 3 1 1 1 1 9 4 1 3 1 4 6 3 2 2 7 1 1 3 1 2 1 1 5 4 3 6 3 3 4 8 2 1 3 1 2 7 2 5 4 2 1 1 2 1 3 2 9 1 4 2 1 1 9 6 1 8 1 7 9 4 3 4 1 3 1 1 3 1 1 3 1 1 10 7 7 4 1 1 3 1 6 1 3\n10 2 5 7 1 4 7 9 4 7 3 1 5 6 3 8 4 10 5 1 9 3 4 2 1 5 7 4 7 7 7 5 9 5 3 3 6 4 7 2 9 7 3 4 2 3 1 5 6 9 10 4 8 10 10 9 7 8 10 1 7 10 10 7 8 5 8 2 1 4 1 2 3 8 1 10 9 7 4 2 1 3 4 9 2 3\n",
"60\n3 3 22 46 23 19 2 27 3 26 34 18 8 50 13 18 23 26 9 14 7 2 17 12 63 25 4 71 14 47 70 13 6 38 28 22 94 10 51 7 29 1 54 12 8 5 4 34 11 24 2 14 54 65 11 30 3 23 12 11\n4 54 69 97 45 53 2 41 4 74 78 66 85 59 19 38 82 28 11 41 15 43 41 43 77 77 50 75 46 66 97 93 50 44 69 22 94 23 61 27 44 1 56 25 31 63 8 37 23 57 6 17 54 68 14 40 43 31 31 60\n",
"1\n100\n100\n",
"73\n69 67 34 35 10 27 30 27 31 48 25 18 81 54 32 54 5 62 20 4 94 2 60 4 6 11 62 68 14 18 42 18 33 71 72 2 29 7 36 60 10 25 17 2 38 77 34 36 74 76 63 32 42 29 22 14 5 1 6 2 14 19 20 19 41 31 16 17 50 49 2 22 51\n73 70 58 54 10 71 59 35 91 61 52 65 90 70 37 80 12 94 78 34 97 4 62 95 10 11 93 100 14 38 56 42 96 96 84 71 69 43 50 79 11 83 95 76 39 79 61 42 89 90 71 62 43 38 39 21 5 40 27 13 21 73 30 46 47 34 23 22 57 59 6 25 72\n",
"70\n13 42 8 56 21 58 39 2 49 39 15 26 62 45 26 8 47 40 9 36 41 2 4 38 6 55 2 41 72 18 10 2 6 11 4 39 19 39 14 59 5 42 19 79 12 3 1 1 21 6 5 9 36 6 38 2 7 26 8 15 66 7 1 30 93 34 45 24 12 20\n26 56 25 60 26 79 99 7 68 92 99 32 81 48 39 97 49 95 18 82 59 4 99 41 10 63 43 54 76 97 73 7 17 43 4 84 35 86 20 63 8 59 87 80 34 3 8 13 49 55 14 11 68 8 41 33 14 39 43 31 89 13 7 88 93 51 84 73 26 30\n",
"81\n21 13 1 25 14 33 33 41 53 89 2 18 61 8 3 35 15 59 2 2 3 5 75 37 1 34 7 12 33 66 6 4 14 78 3 16 12 45 3 2 1 17 17 45 4 30 68 40 44 3 1 21 64 63 14 19 75 63 7 9 12 75 20 28 16 20 53 26 13 46 18 8 28 32 9 29 1 11 75 4 21\n45 90 21 31 36 68 71 47 59 89 61 32 98 67 7 53 90 86 6 28 4 83 93 62 8 56 18 35 33 92 36 37 23 98 44 21 23 79 10 4 2 18 48 87 29 86 79 74 45 3 6 23 79 71 17 39 88 73 50 15 13 92 33 47 83 48 73 33 15 63 43 14 90 72 9 95 1 22 83 20 29\n",
"90\n4 2 21 69 53 39 2 2 8 58 7 5 2 82 7 9 13 10 2 44 1 7 2 1 50 42 36 17 14 46 19 1 50 20 51 46 9 59 73 61 76 4 19 22 1 43 53 2 5 5 32 7 5 42 30 14 32 6 6 15 20 24 13 8 5 19 9 9 7 20 7 2 55 36 5 33 64 20 22 22 9 30 67 38 68 2 13 19 2 9\n48 4 39 85 69 70 11 42 65 77 61 6 60 84 67 15 99 12 2 84 51 17 10 3 50 45 57 53 20 52 64 72 74 44 80 83 70 61 82 81 88 17 22 53 1 44 66 21 10 84 39 11 5 77 93 74 90 17 83 85 70 36 28 87 6 48 22 23 100 22 97 64 96 89 52 49 95 93 34 37 18 69 69 43 83 70 14 54 2 30\n",
"60\n70 19 46 34 43 19 75 42 47 14 66 64 63 58 55 79 38 45 49 80 72 54 96 26 63 41 12 55 14 56 79 51 12 9 14 77 70 75 46 27 45 10 76 59 40 67 55 24 26 90 50 75 12 93 27 39 46 58 66 31\n73 23 48 49 53 23 76 62 65 14 67 89 66 71 59 90 40 47 68 82 81 61 96 48 99 53 13 60 21 63 83 75 15 12 16 80 74 87 66 31 45 12 76 61 45 88 55 32 28 90 50 75 12 94 29 51 57 85 84 38\n",
"1\n50\n100\n",
"20\n59 35 29 57 85 70 26 53 56 3 11 56 43 20 81 72 77 72 36 61\n67 53 80 69 100 71 30 63 60 3 20 56 75 23 97 80 81 85 49 80\n",
"1\n1\n2\n",
"10\n5 12 10 18 10 9 2 20 5 20\n70 91 36 94 46 15 10 73 55 43\n",
"63\n8 23 6 19 1 34 23 1 15 58 22 10 5 14 41 1 16 48 68 5 13 19 1 4 35 2 42 8 45 24 52 44 59 78 5 11 14 41 10 26 60 26 9 15 34 1 14 5 2 6 19 7 4 26 49 39 13 40 18 62 66 8 4\n17 25 39 45 2 44 40 1 82 68 80 27 7 58 90 20 100 80 79 21 53 62 2 11 51 98 78 55 48 37 89 74 83 91 64 30 20 50 24 74 81 94 33 64 56 28 57 9 27 50 81 34 18 33 53 61 39 89 44 77 86 40 89\n",
"80\n11 6 9 6 5 18 21 11 6 6 2 9 4 1 10 12 2 9 1 14 6 12 16 14 4 5 1 16 3 4 6 1 11 30 2 4 1 11 1 6 1 3 2 14 6 14 13 1 10 2 4 14 11 8 28 2 2 3 1 6 26 3 11 4 1 1 29 4 5 4 3 5 1 4 2 12 59 3 18 1\n94 43 36 86 12 75 50 80 55 14 5 97 17 25 28 86 51 56 17 88 48 40 31 39 51 58 4 75 70 30 11 8 61 88 10 25 35 46 31 51 20 79 22 54 19 67 31 89 42 70 30 37 35 78 95 31 31 51 31 50 54 90 63 27 6 2 92 80 48 9 27 33 61 63 30 38 95 46 86 45\n",
"10\n96 4 51 40 89 36 35 38 4 82\n99 8 56 42 94 46 35 43 4 84\n",
"70\n20 7 5 7 3 10 1 14 33 1 5 3 4 21 7 7 1 2 2 2 8 15 18 2 7 1 1 1 15 2 27 2 6 21 4 2 7 5 1 6 13 36 13 1 10 5 8 13 24 2 10 16 11 9 4 1 1 8 6 26 9 3 3 2 8 5 17 9 1 13\n85 36 76 36 65 24 37 56 78 42 33 13 29 93 31 38 1 59 71 31 28 55 70 14 33 9 1 5 41 22 86 41 92 89 88 10 39 54 6 32 58 82 49 22 62 44 29 19 54 12 59 54 51 80 66 16 22 74 8 68 35 34 24 8 22 14 55 76 32 75\n",
"33\n33 20 33 40 58 50 5 6 13 12 4 33 11 50 12 19 16 36 68 57 23 17 6 22 39 58 49 21 10 35 35 17 12\n62 22 53 44 66 60 97 7 33 18 10 59 33 77 55 63 91 86 87 86 27 62 65 53 46 69 64 63 10 53 52 23 24\n",
"2\n1 1\n1 1\n",
"50\n2 1 2 2 38 19 1 2 7 1 2 5 5 1 14 53 21 1 17 9 4 1 24 8 1 1 1 5 4 14 37 1 15 1 4 15 1 3 3 16 17 1 10 18 36 14 25 8 8 48\n45 24 8 12 83 37 6 20 88 9 10 11 28 9 60 98 76 20 84 95 15 45 74 48 37 2 46 34 99 57 94 70 31 22 11 88 58 25 20 73 64 64 81 80 59 64 92 31 43 89\n",
"50\n72 9 46 38 43 75 63 73 70 11 9 48 32 93 33 24 46 44 27 78 43 2 26 84 42 78 35 34 76 36 67 79 82 63 17 26 30 43 35 34 54 37 13 65 8 37 8 8 70 79\n96 19 54 54 44 75 66 80 71 12 9 54 38 95 39 25 48 52 39 86 44 2 27 99 54 99 35 44 80 36 86 93 98 73 27 30 39 43 80 34 61 38 13 69 9 37 8 9 75 97\n",
"1\n1\n100\n",
"80\n2 8 36 12 22 41 1 42 6 66 62 94 37 1 5 1 82 8 9 31 14 8 15 5 21 8 5 22 1 17 1 44 1 12 8 45 37 38 13 4 13 4 8 8 3 15 13 53 22 8 19 14 16 7 7 49 1 10 31 33 7 47 61 6 9 48 6 25 16 4 43 1 5 34 8 22 31 38 59 45\n33 90 47 22 28 67 4 44 13 76 65 94 40 8 12 21 88 15 74 37 37 22 19 53 91 26 88 99 1 61 3 75 2 14 8 96 41 76 13 96 41 44 66 48 40 17 41 60 48 9 62 46 56 46 31 63 6 84 68 43 7 88 62 36 52 92 23 27 46 87 52 9 50 44 33 30 33 63 79 72\n",
"20\n24 22 4 34 76 13 78 1 81 51 72 11 25 46 22 33 60 42 25 19\n40 81 10 34 84 16 90 38 99 81 100 19 79 65 26 80 62 47 76 47\n",
"30\n33 4 1 42 86 85 35 51 45 88 23 35 79 92 81 46 47 32 41 17 18 36 28 58 31 15 17 38 49 78\n36 4 1 49 86 86 43 51 64 93 24 42 82 98 92 47 56 41 41 25 20 53 32 61 53 26 20 38 49 98\n",
"2\n1 1\n1 100\n",
"10\n18 42 5 1 26 8 40 34 8 29\n18 71 21 67 38 13 99 37 47 76\n",
"35\n9 7 34 3 2 6 36 3 26 12 17 8 5 32 55 10 24 19 2 3 30 17 14 1 33 36 42 14 51 1 2 22 13 34 28\n9 9 55 17 16 12 37 14 27 58 51 16 10 37 69 15 43 26 14 60 86 34 54 1 37 50 58 18 92 66 7 24 25 92 30\n",
"60\n9 9 11 16 58 6 25 6 3 23 1 14 1 8 4 2 1 18 10 1 13 4 23 1 38 6 1 13 5 1 1 1 2 1 1 17 1 24 18 20 2 1 9 26 1 12 3 6 7 17 18 1 2 9 3 6 3 30 7 12\n47 82 78 52 99 51 90 23 58 49 2 98 100 60 25 60 6 69 79 6 91 47 69 18 99 46 30 51 11 3 42 17 33 61 14 81 16 76 72 94 13 5 51 88 26 43 80 31 26 70 93 76 18 67 25 86 60 81 40 38\n",
"30\n29 3 2 13 3 12 73 22 37 48 59 17 2 13 69 43 32 14 4 2 61 22 40 30 1 4 46 5 65 17\n55 3 3 92 25 27 97 40 55 74 91 31 7 33 72 62 61 40 16 2 70 61 67 72 8 5 48 9 75 84\n",
"77\n44 2 13 14 8 46 65 14 1 39 12 18 15 10 2 40 71 40 17 1 16 72 13 7 41 23 81 12 4 1 19 18 41 35 23 56 21 5 17 47 88 1 24 15 48 15 1 13 50 5 31 16 21 47 4 1 49 2 15 23 46 47 27 22 23 40 29 4 30 50 51 12 20 14 41 25 12\n57 16 72 59 28 80 74 19 4 60 52 52 97 20 5 69 84 66 63 38 50 79 24 84 58 92 99 36 38 97 66 79 41 48 26 95 28 38 28 72 95 71 30 15 63 17 7 69 90 29 89 40 21 83 73 24 51 14 15 74 100 88 74 27 46 61 38 4 32 52 52 51 47 51 81 75 19\n",
"70\n17 70 52 31 15 51 8 38 3 43 2 34 7 16 58 29 73 23 41 88 9 24 24 90 33 84 10 29 67 17 47 72 11 79 22 5 8 65 23 7 29 31 11 42 11 14 9 3 54 22 38 34 2 4 39 13 11 34 3 35 22 18 3 57 23 21 13 23 78 7\n18 72 58 55 87 56 9 39 60 79 74 82 9 39 66 32 89 25 46 95 26 31 28 94 36 96 19 37 77 61 50 82 22 81 37 9 11 96 33 12 90 74 11 42 88 86 24 3 85 31 82 81 3 7 69 47 27 51 49 98 33 40 5 94 83 35 21 24 89 49\n",
"50\n48 29 72 22 99 27 40 23 39 4 46 29 39 16 47 35 79 7 15 23 50 34 35 22 9 2 51 10 2 42 4 3 30 2 72 19 50 20 11 29 1 2 1 7 7 6 7 75 40 69\n81 36 76 26 100 41 99 39 52 73 83 51 54 86 73 49 79 27 83 90 100 40 49 81 22 54 85 21 26 79 36 96 73 10 98 31 65 39 89 39 1 32 5 20 71 39 87 80 60 86\n",
"40\n10 32 10 7 10 6 25 3 18 4 24 4 8 14 6 15 11 8 2 8 2 5 19 9 5 5 3 34 5 1 6 6 1 4 5 26 34 2 21 1\n35 66 54 11 58 68 75 12 69 94 80 33 23 48 45 66 94 53 25 53 83 30 64 49 69 84 73 85 26 41 10 65 23 56 58 93 58 7 100 7\n",
"35\n21 2 68 56 41 25 42 17 21 20 29 26 38 37 29 77 43 13 32 48 38 31 15 8 52 6 63 45 70 2 21 13 3 14 47\n46 83 100 87 59 95 47 33 56 60 38 76 63 75 60 92 65 43 56 94 70 80 46 40 64 6 83 50 75 19 52 66 13 88 62\n",
"77\n19 34 39 56 1 2 47 8 17 28 23 45 18 7 5 3 11 20 30 24 13 34 11 1 4 14 68 23 13 33 3 8 1 5 8 23 12 1 19 14 22 67 26 55 10 1 63 82 82 6 38 5 6 11 1 62 1 12 5 40 19 20 37 9 5 3 2 44 13 20 44 32 11 29 12 19 35\n28 41 43 68 1 36 57 13 84 89 26 92 47 19 7 94 79 75 74 42 32 44 46 23 96 46 82 86 91 33 25 11 12 68 22 31 89 14 81 32 50 94 27 66 50 39 98 90 91 11 69 6 45 19 15 74 22 31 7 92 23 98 88 32 8 4 2 51 79 69 70 43 16 60 29 20 98\n",
"90\n9 2 2 3 4 1 9 8 3 3 1 1 1 1 2 2 1 3 4 8 8 1 2 7 3 4 5 6 1 2 9 4 2 5 6 1 1 2 6 5 1 4 3 2 4 1 1 3 1 1 3 1 8 3 1 4 1 2 2 3 5 2 8 6 2 5 2 1 4 2 1 5 4 2 1 1 2 1 1 6 4 4 3 4 1 4 4 6 2 3\n10 6 2 3 10 1 10 10 6 4 1 3 6 1 2 5 3 7 7 9 9 2 3 8 3 4 9 7 8 4 10 7 8 10 9 5 1 4 6 5 1 9 10 4 6 4 1 3 3 1 6 1 9 4 1 6 4 5 5 10 7 9 9 10 4 5 2 1 4 2 1 7 6 5 3 9 2 5 1 8 6 4 6 10 1 7 5 9 6 4\n",
"90\n1 43 87 1 6 12 49 6 3 9 38 1 64 49 11 18 5 1 46 25 30 82 17 4 8 9 5 5 4 1 10 4 13 42 44 90 1 11 27 23 25 4 12 19 48 3 59 48 39 14 1 5 64 46 39 24 28 77 25 20 3 14 28 2 20 63 2 1 13 11 44 49 61 76 20 1 3 42 38 8 69 17 27 18 29 54 2 1 2 7\n8 96 91 1 11 20 83 34 41 88 54 4 65 82 48 60 62 18 76 74 75 89 87 8 11 32 67 7 5 1 92 88 57 92 76 95 35 58 68 23 30 25 12 31 85 5 89 84 71 23 1 5 76 56 57 57 76 94 33 34 66 20 54 5 22 69 2 19 28 62 74 88 91 86 30 6 3 48 80 10 84 20 44 37 81 100 12 3 6 8\n",
"80\n36 80 23 45 68 72 2 69 84 33 3 43 6 64 82 54 15 15 17 4 3 29 74 14 53 50 52 27 32 18 60 62 50 29 28 48 77 11 24 17 3 55 58 20 4 32 55 16 27 60 5 77 23 31 11 60 21 65 38 39 82 58 51 78 24 30 75 79 5 41 94 10 14 7 1 26 21 41 6 52\n37 93 24 46 99 74 2 93 86 33 3 44 6 71 88 65 15 19 24 4 3 40 82 14 62 81 56 30 33 30 62 62 70 29 31 53 78 13 27 31 3 65 61 20 5 41 58 25 27 61 6 87 26 31 13 62 25 71 44 45 82 75 62 95 24 44 82 94 6 50 94 10 15 15 1 29 35 60 8 68\n",
"83\n13 20 5 29 48 53 88 17 11 5 44 15 85 13 2 55 6 16 57 29 12 15 12 92 21 25 1 2 4 5 2 22 8 18 22 2 3 10 43 71 3 41 1 73 6 18 32 63 26 13 6 75 19 10 41 30 15 12 14 8 15 77 73 7 5 39 83 19 2 2 3 61 53 43 3 15 76 29 8 46 19 3 8\n54 34 15 58 50 67 100 43 30 15 46 26 94 75 2 58 85 38 68 98 83 51 82 100 61 27 5 5 41 89 17 34 10 48 48 4 15 13 71 75 4 44 2 82 18 82 59 96 26 13 66 95 81 33 85 45 16 92 41 37 85 78 83 17 7 72 83 38 69 24 18 76 71 66 3 66 78 31 73 72 43 89 49\n",
"70\n67 38 59 72 9 64 12 3 51 58 50 4 16 46 62 77 58 73 7 92 48 9 90 50 35 9 61 57 50 20 48 61 27 77 47 6 83 28 78 14 68 32 2 2 22 57 34 71 26 74 3 76 41 66 30 69 34 16 29 7 14 19 11 5 13 66 19 19 17 55\n69 41 84 91 10 77 12 7 70 74 55 7 30 63 66 79 89 88 10 93 89 15 91 81 41 26 65 67 55 37 73 94 34 94 47 6 90 31 100 25 69 33 2 3 43 97 37 95 35 85 3 78 50 86 30 73 34 21 32 13 21 32 11 5 13 80 23 20 17 58\n",
"85\n20 47 52 6 5 15 35 42 5 84 4 8 61 47 7 50 20 24 15 27 86 28 1 39 1 2 63 2 31 33 47 4 33 68 20 4 4 42 20 67 7 10 46 4 22 36 30 40 4 15 51 2 39 50 65 48 34 6 50 19 32 48 8 23 42 70 69 8 29 81 5 1 7 21 3 30 78 6 2 1 3 69 34 34 18\n74 64 89 61 5 17 75 43 13 87 30 51 93 54 7 76 44 44 98 77 86 97 1 41 1 3 69 3 80 87 67 6 90 100 31 5 7 46 99 67 9 44 56 7 39 39 55 80 80 33 77 9 89 79 86 53 49 49 72 87 43 84 24 23 43 94 74 17 54 96 28 64 14 42 91 60 87 69 20 1 30 95 44 50 20\n",
"30\n10 1 8 10 2 6 37 7 3 7 1 3 1 1 14 2 5 19 4 1 13 3 5 6 1 5 1 1 23 1\n98 4 43 41 56 58 85 51 47 55 20 85 93 12 49 15 95 72 20 4 68 24 16 97 21 52 18 69 89 15\n",
"20\n8 1 44 1 12 1 9 11 1 1 5 2 9 13 16 2 1 5 4 1\n88 2 80 33 55 3 74 61 17 11 11 16 42 81 88 14 4 81 60 10\n",
"2\n2 1\n100 1\n",
"40\n9 18 41 31 27 24 76 32 4 38 1 35 21 3 26 32 31 13 41 31 39 14 45 15 12 5 7 14 3 14 19 11 1 81 1 4 7 28 4 62\n70 21 95 63 66 30 100 42 4 80 83 39 34 6 27 55 72 38 43 48 81 53 54 30 63 23 9 59 3 83 83 95 1 81 30 40 35 45 8 66\n",
"90\n1 9 3 3 14 3 2 32 17 3 1 1 4 1 18 1 1 21 9 1 2 10 6 9 27 15 5 2 3 37 1 2 1 12 6 1 8 4 1 5 1 3 8 9 1 9 23 1 1 2 1 2 2 19 2 6 5 6 1 7 12 35 1 2 8 1 11 32 7 4 12 9 18 8 9 27 31 15 16 4 16 13 2 2 1 4 12 17 10 1\n8 52 13 56 42 40 8 98 64 47 84 11 12 1 97 8 8 66 35 4 6 62 22 38 68 57 50 28 28 88 7 57 9 81 14 37 71 57 33 24 2 21 54 58 58 27 79 3 55 13 2 95 17 97 61 22 28 85 78 72 68 80 12 41 98 18 35 70 40 22 98 85 51 70 79 100 68 29 73 45 89 64 53 6 16 29 73 53 24 69\n",
"69\n24 32 19 37 36 7 15 10 54 12 15 46 3 25 12 16 3 8 55 21 23 57 17 45 11 4 25 35 39 3 69 24 78 40 12 39 1 44 4 75 53 60 1 6 30 7 6 39 44 13 31 6 4 4 32 11 52 58 81 2 33 7 29 19 21 26 22 60 24\n57 56 50 64 40 58 31 20 81 14 43 64 48 38 56 71 58 26 98 92 52 88 71 93 11 20 79 39 56 7 92 54 88 106 19 85 12 71 4 87 78 90 29 18 89 13 86 71 100 24 65 95 46 8 91 35 62 66 96 36 80 24 81 58 53 86 89 67 73\n",
"38\n2 1 1 1 1 9 5 2 1 3 4 3 1 7 4 4 8 7 1 5 4 9 1 6 3 0 1 4 1 5 5 1 8 3 1 3 6 3\n2 1 6 2 9 10 6 2 1 5 4 6 1 7 4 6 10 8 8 6 4 10 1 6 4 4 6 4 4 8 5 2 10 7 3 5 6 3\n",
"32\n4 1 1 6 2 5 8 6 5 6 3 2 1 3 1 9 1 2 1 5 2 1 6 5 3 7 0 3 2 5 1 1\n8 1 3 6 4 7 9 8 6 8 10 2 5 3 2 10 1 10 9 5 4 1 8 7 8 7 4 10 4 6 9 2\n",
"86\n5 1 3 1 1 1 1 9 4 1 3 1 4 6 3 2 2 7 1 1 3 1 2 1 1 5 4 3 6 3 3 4 8 2 1 3 1 2 7 2 5 4 2 1 1 2 1 3 2 9 1 4 2 1 1 9 4 1 8 1 7 9 4 3 4 1 3 1 1 3 1 1 3 1 1 10 7 7 4 1 1 3 1 6 1 3\n10 2 5 7 1 4 7 9 4 7 3 1 5 6 3 8 4 10 5 1 9 3 4 2 1 5 7 4 7 7 7 5 9 5 3 3 6 4 7 2 9 7 3 4 2 3 1 5 6 9 10 4 8 10 10 9 7 8 10 1 7 10 10 7 8 5 8 2 1 4 1 2 3 8 1 10 9 7 4 2 1 3 4 9 2 3\n",
"60\n3 3 22 46 23 19 2 27 3 26 34 18 8 50 5 18 23 26 9 14 7 2 17 12 63 25 4 71 14 47 70 13 6 38 28 22 94 10 51 7 29 1 54 12 8 5 4 34 11 24 2 14 54 65 11 30 3 23 12 11\n4 54 69 97 45 53 2 41 4 74 78 66 85 59 19 38 82 28 11 41 15 43 41 43 77 77 50 75 46 66 97 93 50 44 69 22 94 23 61 27 44 1 56 25 31 63 8 37 23 57 6 17 54 68 14 40 43 31 31 60\n",
"73\n69 67 34 35 10 27 30 27 31 48 25 18 81 54 32 54 5 62 20 4 94 2 60 4 6 11 62 68 14 18 42 18 33 71 72 2 29 7 36 60 10 25 17 2 38 77 34 36 74 76 63 32 42 29 22 14 5 1 6 2 14 19 20 19 41 31 16 17 50 49 2 22 51\n73 70 58 54 10 108 59 35 91 61 52 65 90 70 37 80 12 94 78 34 97 4 62 95 10 11 93 100 14 38 56 42 96 96 84 71 69 43 50 79 11 83 95 76 39 79 61 42 89 90 71 62 43 38 39 21 5 40 27 13 21 73 30 46 47 34 23 22 57 59 6 25 72\n",
"70\n13 42 8 56 21 58 39 2 49 39 15 26 62 45 26 8 47 40 9 36 41 2 4 38 6 55 2 41 72 18 10 2 6 11 4 39 19 39 14 59 5 42 19 79 12 3 1 1 21 6 5 9 36 6 38 2 7 26 8 15 66 7 1 30 93 34 45 24 12 20\n26 56 25 60 26 79 99 7 68 92 99 32 81 48 39 97 49 95 18 82 59 4 99 41 10 63 43 54 76 97 73 7 17 62 4 84 35 86 20 63 8 59 87 80 34 3 8 13 49 55 14 11 68 8 41 33 14 39 43 31 89 13 7 88 93 51 84 73 26 30\n",
"81\n21 13 1 25 14 33 33 41 53 89 2 18 61 8 3 35 15 59 2 2 3 5 75 37 1 34 7 12 33 66 6 4 14 78 3 16 12 45 3 2 1 17 17 45 4 30 68 40 44 3 1 21 64 63 14 19 75 63 7 9 12 75 20 28 16 20 53 26 13 46 17 8 28 32 9 29 1 11 75 4 21\n45 90 21 31 36 68 71 47 59 89 61 32 98 67 7 53 90 86 6 28 4 83 93 62 8 56 18 35 33 92 36 37 23 98 44 21 23 79 10 4 2 18 48 87 29 86 79 74 45 3 6 23 79 71 17 39 88 73 50 15 13 92 33 47 83 48 73 33 15 63 43 14 90 72 9 95 1 22 83 20 29\n",
"90\n4 2 21 69 53 39 2 2 8 58 7 5 2 82 7 9 13 10 2 44 1 7 2 1 50 42 36 17 14 46 19 1 50 20 51 46 9 59 73 61 76 4 19 22 1 43 53 2 5 5 32 7 5 42 30 14 32 6 6 15 20 24 13 8 5 19 9 9 7 20 7 2 55 36 5 33 64 20 22 22 9 30 67 38 68 2 13 19 2 9\n48 4 39 85 69 70 11 42 65 77 61 6 60 84 67 15 99 12 2 84 51 17 10 3 50 45 57 53 20 52 64 72 74 44 80 83 70 61 82 81 88 17 22 53 1 44 66 21 10 84 39 11 5 77 93 74 90 17 83 46 70 36 28 87 6 48 22 23 100 22 97 64 96 89 52 49 95 93 34 37 18 69 69 43 83 70 14 54 2 30\n",
"1\n51\n100\n",
"20\n59 35 29 57 85 70 26 53 56 3 11 56 43 20 81 72 77 72 36 61\n67 53 80 69 100 71 30 63 60 3 20 56 75 23 97 80 81 85 49 160\n",
"10\n5 12 10 18 10 9 3 20 5 20\n70 91 36 94 46 15 10 73 55 43\n",
"63\n8 23 6 19 1 34 23 1 15 58 22 10 5 14 41 1 16 48 68 5 13 19 1 4 35 2 42 8 45 24 52 44 59 78 5 11 14 41 10 26 60 26 9 15 34 1 14 5 2 6 19 7 4 26 49 39 13 40 18 62 66 8 4\n17 25 39 45 2 44 40 1 82 68 80 27 7 58 90 20 100 80 79 21 53 62 2 11 51 98 78 55 48 37 89 74 83 91 64 30 20 50 24 74 81 160 33 64 56 28 57 9 27 50 81 34 18 33 53 61 39 89 44 77 86 40 89\n",
"80\n11 6 9 6 5 18 21 11 6 6 2 9 4 1 10 12 2 9 1 14 6 12 16 14 4 5 1 16 3 4 6 1 11 30 2 4 1 11 1 6 1 3 2 14 6 14 13 1 10 2 4 14 11 8 28 2 2 3 1 6 26 3 11 4 1 1 29 4 5 4 3 5 1 4 2 12 59 3 18 1\n94 43 36 86 12 75 50 80 55 14 5 97 17 25 28 86 51 56 17 88 48 40 31 39 51 58 4 75 70 30 11 8 61 88 10 25 35 46 31 51 20 79 22 54 19 67 31 89 42 70 30 37 35 78 95 31 31 51 31 50 54 90 63 27 6 2 92 80 48 9 27 33 61 63 30 38 95 87 86 45\n",
"10\n96 4 51 40 89 36 35 38 4 82\n99 8 56 42 94 46 35 57 4 84\n",
"70\n20 7 5 7 3 10 1 14 33 1 5 3 4 21 7 7 1 2 2 2 8 15 18 2 7 1 1 1 15 2 27 2 0 21 4 2 7 5 1 6 13 36 13 1 10 5 8 13 24 2 10 16 11 9 4 1 1 8 6 26 9 3 3 2 8 5 17 9 1 13\n85 36 76 36 65 24 37 56 78 42 33 13 29 93 31 38 1 59 71 31 28 55 70 14 33 9 1 5 41 22 86 41 92 89 88 10 39 54 6 32 58 82 49 22 62 44 29 19 54 12 59 54 51 80 66 16 22 74 8 68 35 34 24 8 22 14 55 76 32 75\n",
"33\n33 20 33 40 58 50 2 6 13 12 4 33 11 50 12 19 16 36 68 57 23 17 6 22 39 58 49 21 10 35 35 17 12\n62 22 53 44 66 60 97 7 33 18 10 59 33 77 55 63 91 86 87 86 27 62 65 53 46 69 64 63 10 53 52 23 24\n",
"50\n2 1 2 2 38 19 1 2 7 1 2 5 5 1 14 53 21 1 17 9 4 1 24 8 1 1 1 5 4 14 37 1 15 1 4 15 1 3 3 16 17 1 10 18 36 14 25 8 8 48\n45 24 8 12 83 37 6 20 88 9 10 11 28 9 60 98 76 20 84 95 15 45 74 48 37 2 46 34 99 57 94 70 31 22 11 88 58 25 20 73 64 64 81 80 59 64 51 31 43 89\n",
"50\n72 9 46 38 43 75 63 73 70 11 9 48 32 93 33 24 46 44 27 78 43 2 26 84 42 78 35 34 76 36 67 79 82 63 17 26 30 43 35 34 54 37 13 65 8 37 8 8 70 91\n96 19 54 54 44 75 66 80 71 12 9 54 38 95 39 25 48 52 39 86 44 2 27 99 54 99 35 44 80 36 86 93 98 73 27 30 39 43 80 34 61 38 13 69 9 37 8 9 75 97\n",
"80\n2 8 36 12 22 41 1 42 6 66 62 94 37 1 5 1 82 8 9 31 14 8 15 5 21 8 5 22 1 17 1 44 1 12 8 45 37 38 13 4 13 4 8 8 3 15 13 53 22 8 19 14 16 7 7 49 1 10 31 33 7 47 61 6 9 48 6 25 16 4 43 1 5 34 8 22 31 38 59 45\n33 90 47 22 28 67 4 44 13 76 65 94 40 8 12 21 88 15 74 37 37 22 19 53 91 26 88 99 1 61 3 75 2 14 8 96 41 76 13 96 41 44 66 48 40 17 41 60 48 9 62 46 56 46 31 63 6 84 68 43 7 88 62 36 52 92 23 27 46 87 52 9 50 44 33 30 62 63 79 72\n",
"20\n24 22 4 34 76 13 78 1 81 51 72 11 25 46 22 33 60 42 25 19\n40 81 10 34 84 24 90 38 99 81 100 19 79 65 26 80 62 47 76 47\n",
"10\n18 42 5 1 26 8 40 34 8 29\n18 71 21 67 18 13 99 37 47 76\n",
"35\n9 7 34 3 2 6 36 3 26 12 17 8 5 32 55 10 24 19 2 3 30 17 14 1 33 36 42 14 51 1 2 22 13 34 28\n9 9 55 17 16 12 37 14 27 58 51 16 10 37 69 15 43 26 14 60 86 34 54 1 37 50 75 18 92 66 7 24 25 92 30\n",
"60\n9 9 11 16 58 6 25 6 3 23 1 14 1 8 4 2 1 18 10 1 13 4 23 1 38 6 1 13 5 1 1 1 2 1 1 17 1 24 18 39 2 1 9 26 1 12 3 6 7 17 18 1 2 9 3 6 3 30 7 12\n47 82 78 52 99 51 90 23 58 49 2 98 100 60 25 60 6 69 79 6 91 47 69 18 99 46 30 51 11 3 42 17 33 61 14 81 16 76 72 94 13 5 51 88 26 43 80 31 26 70 93 76 18 67 25 86 60 81 40 38\n",
"30\n29 3 2 13 3 12 73 22 37 48 59 17 2 13 69 43 32 14 4 2 61 22 40 30 1 4 46 5 65 17\n55 3 3 92 25 27 97 40 55 74 91 31 7 33 72 62 61 40 16 2 70 61 67 72 8 5 48 12 75 84\n",
"77\n44 2 13 14 8 46 65 14 1 39 12 18 15 10 2 40 71 40 17 1 16 72 13 7 41 23 81 12 4 1 19 18 41 35 23 56 21 5 17 47 88 1 24 15 48 15 1 13 50 5 31 16 21 47 4 1 49 2 15 23 46 47 27 22 23 40 29 4 30 50 51 12 20 14 41 25 12\n57 16 72 59 28 80 74 19 4 60 52 52 97 13 5 69 84 66 63 38 50 79 24 84 58 92 99 36 38 97 66 79 41 48 26 95 28 38 28 72 95 71 30 15 63 17 7 69 90 29 89 40 21 83 73 24 51 14 15 74 100 88 74 27 46 61 38 4 32 52 52 51 47 51 81 75 19\n",
"70\n17 70 52 31 15 51 8 38 3 43 2 34 7 16 58 29 73 23 41 88 9 24 24 90 33 84 10 29 67 17 47 72 11 79 22 5 8 65 23 7 29 31 11 42 11 14 9 3 54 22 38 34 2 4 39 13 11 34 3 35 22 18 3 57 23 21 13 23 78 7\n18 72 58 55 87 56 9 39 60 79 74 82 9 39 66 32 89 25 46 95 26 31 28 94 36 96 19 37 77 61 50 82 22 81 37 9 11 96 33 12 90 74 11 42 88 86 17 3 85 31 82 81 3 7 69 47 27 51 49 98 33 40 5 94 83 35 21 24 89 49\n",
"50\n48 29 72 22 99 27 40 23 39 4 46 29 39 16 47 35 79 7 15 23 50 34 35 22 9 2 51 10 2 42 4 3 30 2 72 19 50 20 11 29 1 2 1 7 7 6 7 75 40 69\n81 36 76 26 100 41 99 39 52 73 83 51 54 86 73 49 79 27 83 90 100 40 49 81 22 54 85 21 26 79 36 96 73 10 98 31 65 39 89 39 2 32 5 20 71 39 87 80 60 86\n",
"40\n10 32 10 7 10 6 25 3 18 4 24 4 8 14 6 15 11 8 2 8 2 5 19 9 5 5 3 34 5 1 6 6 1 4 5 26 34 2 21 1\n35 66 54 11 58 68 75 12 69 94 80 33 23 48 45 66 94 53 25 53 83 30 64 49 69 84 73 35 26 41 10 65 23 56 58 93 58 7 100 7\n",
"35\n21 2 68 56 41 25 42 17 21 20 29 26 38 37 29 77 43 13 32 48 38 31 15 8 52 6 63 45 70 2 21 13 3 14 47\n46 83 100 87 59 95 47 33 56 60 38 76 63 75 60 92 65 43 56 94 70 80 46 40 64 6 83 54 75 19 52 66 13 88 62\n",
"77\n19 34 39 56 1 2 47 8 17 28 23 45 18 7 5 3 11 20 30 24 13 34 11 1 4 14 68 23 13 33 3 8 1 5 8 23 12 1 19 14 22 67 26 55 10 1 63 82 82 6 38 5 6 11 1 62 1 12 5 40 19 20 37 9 5 3 2 44 13 20 44 32 11 29 12 19 35\n28 41 43 68 1 39 57 13 84 89 26 92 47 19 7 94 79 75 74 42 32 44 46 23 96 46 82 86 91 33 25 11 12 68 22 31 89 14 81 32 50 94 27 66 50 39 98 90 91 11 69 6 45 19 15 74 22 31 7 92 23 98 88 32 8 4 2 51 79 69 70 43 16 60 29 20 98\n",
"90\n9 2 2 3 4 1 9 8 3 3 1 1 1 1 2 2 1 3 4 8 8 1 2 7 3 4 5 6 1 2 9 4 2 5 6 1 1 2 6 5 1 4 3 2 4 1 1 3 1 1 3 1 8 3 1 4 1 2 2 3 5 2 8 6 2 5 2 1 4 2 1 5 4 2 1 1 2 1 1 6 4 4 3 4 1 4 4 6 2 3\n10 6 2 3 10 1 10 10 6 4 1 3 6 1 2 5 3 7 7 9 9 2 3 8 3 4 9 7 8 4 10 7 8 10 9 5 1 4 6 5 1 9 10 4 6 4 1 3 3 1 6 1 9 4 1 6 4 5 5 10 7 9 9 10 4 5 2 1 5 2 1 7 6 5 3 9 2 5 1 8 6 4 6 10 1 7 5 9 6 4\n",
"90\n1 43 87 1 6 12 49 6 3 9 38 1 64 49 11 18 5 1 46 25 30 82 17 4 8 9 5 5 4 1 10 4 13 42 44 90 1 11 27 23 25 4 12 19 48 3 59 48 39 14 1 5 64 46 39 24 28 77 25 20 3 14 28 2 20 63 2 1 13 11 44 49 61 76 20 1 3 42 38 8 69 17 27 18 29 54 2 1 2 7\n8 96 91 1 11 20 83 34 41 88 54 4 65 82 48 60 62 18 76 74 75 89 87 8 11 32 67 7 5 1 92 88 57 92 76 95 35 58 68 23 30 25 12 31 85 5 89 84 71 23 1 5 76 56 57 57 83 94 33 34 66 20 54 5 22 69 2 19 28 62 74 88 91 86 30 6 3 48 80 10 84 20 44 37 81 100 12 3 6 8\n",
"80\n36 80 23 45 68 72 2 69 84 33 3 43 6 64 82 54 15 15 17 4 3 29 74 14 53 50 52 27 32 18 60 62 50 29 28 48 77 11 24 17 3 55 58 20 4 32 55 16 27 60 5 77 23 31 11 60 21 65 38 39 82 58 51 78 5 30 75 79 5 41 94 10 14 7 1 26 21 41 6 52\n37 93 24 46 99 74 2 93 86 33 3 44 6 71 88 65 15 19 24 4 3 40 82 14 62 81 56 30 33 30 62 62 70 29 31 53 78 13 27 31 3 65 61 20 5 41 58 25 27 61 6 87 26 31 13 62 25 71 44 45 82 75 62 95 24 44 82 94 6 50 94 10 15 15 1 29 35 60 8 68\n",
"83\n13 20 5 29 48 53 88 17 11 5 44 15 85 13 2 55 6 16 57 29 12 15 12 92 21 25 1 2 4 5 2 22 8 18 22 2 3 10 43 71 3 41 1 73 6 18 32 63 26 13 6 75 19 10 41 30 15 12 14 8 15 77 73 7 5 39 83 19 2 2 3 61 53 43 3 15 76 29 8 46 19 3 8\n54 34 15 58 50 67 100 43 30 15 46 26 94 75 2 58 85 38 68 98 83 51 82 100 120 27 5 5 41 89 17 34 10 48 48 4 15 13 71 75 4 44 2 82 18 82 59 96 26 13 66 95 81 33 85 45 16 92 41 37 85 78 83 17 7 72 83 38 69 24 18 76 71 66 3 66 78 31 73 72 43 89 49\n",
"85\n20 47 52 6 5 15 35 42 5 84 4 8 61 47 7 50 20 24 15 27 86 28 1 39 1 2 63 2 31 33 47 4 33 68 20 4 4 42 20 67 7 10 46 4 22 36 30 40 4 15 51 2 39 50 65 48 34 6 50 19 32 48 8 23 42 70 69 8 29 81 5 1 7 21 3 30 78 6 2 1 3 69 34 34 18\n74 64 89 61 5 17 75 43 13 87 30 51 93 54 7 76 44 44 98 77 86 97 1 41 1 3 69 3 80 87 67 6 90 100 31 5 7 46 99 67 9 44 56 7 39 39 55 80 80 33 77 9 89 79 86 53 49 49 72 87 43 84 24 23 43 94 74 17 54 96 28 64 14 42 91 8 87 69 20 1 30 95 44 50 20\n",
"1\n2\n2\n",
"2\n1 1\n110 100\n"
],
"output": [
"1 1\n",
"3 11\n",
"2 6\n",
"3 122\n",
"2 90\n",
"24 290\n",
"1 1\n",
"11 560\n",
"8 562\n",
"22 801\n",
"19 40\n",
"1 0\n",
"13 46\n",
"32 101\n",
"19 535\n",
"1 0\n",
"30 808\n",
"21 867\n",
"26 754\n",
"25 955\n",
"42 368\n",
"1 0\n",
"13 187\n",
"1 0\n",
"2 71\n",
"18 638\n",
"8 434\n",
"8 8\n",
"7 426\n",
"13 356\n",
"2 0\n",
"6 337\n",
"34 283\n",
"1 0\n",
"21 909\n",
"9 217\n",
"22 123\n",
"1 1\n",
"3 100\n",
"10 307\n",
"7 368\n",
"10 310\n",
"24 932\n",
"26 756\n",
"17 563\n",
"5 281\n",
"14 432\n",
"19 937\n",
"35 109\n",
"26 899",
"50 363",
"26 944",
"38 484",
"29 987",
"3 122",
"2 87",
"1 1",
"11 560",
"8 563",
"21 916",
"18 41",
"13 38",
"32 99",
"18 633",
"29 896",
"21 867",
"26 752",
"25 955",
"1 0",
"12 216",
"2 72",
"17 670",
"8 434",
"7 43",
"7 416",
"13 353",
"6 347",
"34 287",
"21 909",
"9 217",
"3 100",
"9 389",
"7 371",
"10 310",
"24 932",
"26 756",
"17 563",
"5 302",
"14 432",
"19 937",
"35 109",
"26 884",
"49 370",
"26 840",
"29 987",
"1 0",
"1 1"
]
} | 2CODEFORCES
|
730_J. Bottles_157 | Nick has n bottles of soda left after his birthday. Each bottle is described by two values: remaining amount of soda ai and bottle volume bi (ai ≤ bi).
Nick has decided to pour all remaining soda into minimal number of bottles, moreover he has to do it as soon as possible. Nick spends x seconds to pour x units of soda from one bottle to another.
Nick asks you to help him to determine k — the minimal number of bottles to store all remaining soda and t — the minimal time to pour soda into k bottles. A bottle can't store more soda than its volume. All remaining soda should be saved.
Input
The first line contains positive integer n (1 ≤ n ≤ 100) — the number of bottles.
The second line contains n positive integers a1, a2, ..., an (1 ≤ ai ≤ 100), where ai is the amount of soda remaining in the i-th bottle.
The third line contains n positive integers b1, b2, ..., bn (1 ≤ bi ≤ 100), where bi is the volume of the i-th bottle.
It is guaranteed that ai ≤ bi for any i.
Output
The only line should contain two integers k and t, where k is the minimal number of bottles that can store all the soda and t is the minimal time to pour the soda into k bottles.
Examples
Input
4
3 3 4 3
4 7 6 5
Output
2 6
Input
2
1 1
100 100
Output
1 1
Input
5
10 30 5 6 24
10 41 7 8 24
Output
3 11
Note
In the first example Nick can pour soda from the first bottle to the second bottle. It will take 3 seconds. After it the second bottle will contain 3 + 3 = 6 units of soda. Then he can pour soda from the fourth bottle to the second bottle and to the third bottle: one unit to the second and two units to the third. It will take 1 + 2 = 3 seconds. So, all the soda will be in two bottles and he will spend 3 + 3 = 6 seconds to do it. | f = lambda: list(map(int, input().split()))
n = int(input())
a, b = f(), f()
d = [[None] * 10001 for i in range(n)]
def g(i, s):
if s <= 0: return (0, s)
if i == n: return (1e7, 0)
if not d[i][s]:
x, y = g(i + 1, s - b[i])
d[i][s] = min(g(i + 1, s), (x + 1, y + b[i] - a[i]))
return d[i][s]
x, y = g(0, sum(a))
print(x, y) | 3Python3
| {
"input": [
"2\n1 1\n100 100\n",
"5\n10 30 5 6 24\n10 41 7 8 24\n",
"4\n3 3 4 3\n4 7 6 5\n",
"30\n10 1 8 10 2 6 45 7 3 7 1 3 1 1 14 2 5 19 4 1 13 3 5 6 1 5 1 1 23 1\n98 4 43 41 56 58 85 51 47 55 20 85 93 12 49 15 95 72 20 4 68 24 16 97 21 52 18 69 89 15\n",
"20\n8 1 44 1 12 1 9 11 1 1 5 2 9 16 16 2 1 5 4 1\n88 2 80 33 55 3 74 61 17 11 11 16 42 81 88 14 4 81 60 10\n",
"40\n31 72 17 63 89 13 72 42 39 30 23 29 5 61 88 37 7 23 49 32 41 25 17 15 9 25 30 61 29 66 24 40 75 67 69 22 61 22 13 35\n32 73 20 68 98 13 74 79 41 33 27 85 5 68 95 44 9 24 95 36 45 26 20 31 10 53 37 72 51 84 24 59 80 75 74 22 72 27 13 39\n",
"2\n1 1\n100 1\n",
"40\n9 18 41 31 27 24 76 32 4 38 1 35 21 3 26 32 31 13 41 31 39 14 45 15 12 5 7 14 3 14 19 11 1 81 1 4 7 28 4 62\n70 21 95 63 66 30 100 42 4 80 83 39 34 6 27 55 72 38 43 48 81 53 54 30 63 23 9 59 3 83 83 95 1 81 30 40 35 58 8 66\n",
"90\n1 9 3 3 14 3 2 32 17 3 1 1 4 1 18 1 1 21 9 1 2 10 6 9 27 15 5 1 3 37 1 2 1 12 6 1 8 4 1 5 1 3 8 9 1 9 23 1 1 2 1 2 2 19 2 6 5 6 1 7 12 35 1 2 8 1 11 32 7 4 12 9 18 8 9 27 31 15 16 4 16 13 2 2 1 4 12 17 10 1\n8 52 13 56 42 40 8 98 64 47 84 11 12 1 97 8 8 66 35 4 6 62 22 38 68 57 50 28 28 88 7 57 9 81 14 37 71 57 33 24 2 21 54 58 58 27 79 3 55 13 2 95 17 97 61 22 28 85 78 72 68 80 12 41 98 18 35 70 40 22 98 85 51 70 79 100 68 29 73 45 89 64 53 6 16 29 73 53 24 69\n",
"69\n24 32 19 37 36 7 15 10 54 12 15 46 3 25 12 16 3 8 55 21 23 57 17 45 11 4 25 35 39 3 69 24 78 40 12 39 1 44 4 75 53 60 1 6 30 7 6 39 44 13 31 6 4 4 32 11 52 58 81 2 33 7 29 19 21 26 22 60 24\n57 56 50 64 40 58 31 20 81 14 43 64 48 38 56 71 58 26 98 92 52 88 71 93 11 20 79 39 56 7 92 54 88 58 19 85 12 71 4 87 78 90 29 18 89 13 86 71 100 24 65 95 46 8 91 35 62 66 96 36 80 24 81 58 53 86 89 67 73\n",
"38\n2 1 1 1 1 9 5 2 1 3 4 3 1 7 4 4 8 7 1 5 4 9 1 6 3 4 1 4 1 5 5 1 8 3 1 3 6 3\n2 1 6 2 9 10 6 2 1 5 4 6 1 7 4 6 10 8 8 6 4 10 1 6 4 4 6 4 4 8 5 2 10 7 3 5 6 3\n",
"1\n1\n1\n",
"32\n4 1 1 6 2 5 8 6 5 6 3 2 1 3 1 9 1 2 1 5 2 1 6 5 3 7 3 3 2 5 1 1\n8 1 3 6 4 7 9 8 6 8 10 2 5 3 2 10 1 10 9 5 4 1 8 7 8 7 4 10 4 6 9 2\n",
"86\n5 1 3 1 1 1 1 9 4 1 3 1 4 6 3 2 2 7 1 1 3 1 2 1 1 5 4 3 6 3 3 4 8 2 1 3 1 2 7 2 5 4 2 1 1 2 1 3 2 9 1 4 2 1 1 9 6 1 8 1 7 9 4 3 4 1 3 1 1 3 1 1 3 1 1 10 7 7 4 1 1 3 1 6 1 3\n10 2 5 7 1 4 7 9 4 7 3 1 5 6 3 8 4 10 5 1 9 3 4 2 1 5 7 4 7 7 7 5 9 5 3 3 6 4 7 2 9 7 3 4 2 3 1 5 6 9 10 4 8 10 10 9 7 8 10 1 7 10 10 7 8 5 8 2 1 4 1 2 3 8 1 10 9 7 4 2 1 3 4 9 2 3\n",
"60\n3 3 22 46 23 19 2 27 3 26 34 18 8 50 13 18 23 26 9 14 7 2 17 12 63 25 4 71 14 47 70 13 6 38 28 22 94 10 51 7 29 1 54 12 8 5 4 34 11 24 2 14 54 65 11 30 3 23 12 11\n4 54 69 97 45 53 2 41 4 74 78 66 85 59 19 38 82 28 11 41 15 43 41 43 77 77 50 75 46 66 97 93 50 44 69 22 94 23 61 27 44 1 56 25 31 63 8 37 23 57 6 17 54 68 14 40 43 31 31 60\n",
"1\n100\n100\n",
"73\n69 67 34 35 10 27 30 27 31 48 25 18 81 54 32 54 5 62 20 4 94 2 60 4 6 11 62 68 14 18 42 18 33 71 72 2 29 7 36 60 10 25 17 2 38 77 34 36 74 76 63 32 42 29 22 14 5 1 6 2 14 19 20 19 41 31 16 17 50 49 2 22 51\n73 70 58 54 10 71 59 35 91 61 52 65 90 70 37 80 12 94 78 34 97 4 62 95 10 11 93 100 14 38 56 42 96 96 84 71 69 43 50 79 11 83 95 76 39 79 61 42 89 90 71 62 43 38 39 21 5 40 27 13 21 73 30 46 47 34 23 22 57 59 6 25 72\n",
"70\n13 42 8 56 21 58 39 2 49 39 15 26 62 45 26 8 47 40 9 36 41 2 4 38 6 55 2 41 72 18 10 2 6 11 4 39 19 39 14 59 5 42 19 79 12 3 1 1 21 6 5 9 36 6 38 2 7 26 8 15 66 7 1 30 93 34 45 24 12 20\n26 56 25 60 26 79 99 7 68 92 99 32 81 48 39 97 49 95 18 82 59 4 99 41 10 63 43 54 76 97 73 7 17 43 4 84 35 86 20 63 8 59 87 80 34 3 8 13 49 55 14 11 68 8 41 33 14 39 43 31 89 13 7 88 93 51 84 73 26 30\n",
"81\n21 13 1 25 14 33 33 41 53 89 2 18 61 8 3 35 15 59 2 2 3 5 75 37 1 34 7 12 33 66 6 4 14 78 3 16 12 45 3 2 1 17 17 45 4 30 68 40 44 3 1 21 64 63 14 19 75 63 7 9 12 75 20 28 16 20 53 26 13 46 18 8 28 32 9 29 1 11 75 4 21\n45 90 21 31 36 68 71 47 59 89 61 32 98 67 7 53 90 86 6 28 4 83 93 62 8 56 18 35 33 92 36 37 23 98 44 21 23 79 10 4 2 18 48 87 29 86 79 74 45 3 6 23 79 71 17 39 88 73 50 15 13 92 33 47 83 48 73 33 15 63 43 14 90 72 9 95 1 22 83 20 29\n",
"90\n4 2 21 69 53 39 2 2 8 58 7 5 2 82 7 9 13 10 2 44 1 7 2 1 50 42 36 17 14 46 19 1 50 20 51 46 9 59 73 61 76 4 19 22 1 43 53 2 5 5 32 7 5 42 30 14 32 6 6 15 20 24 13 8 5 19 9 9 7 20 7 2 55 36 5 33 64 20 22 22 9 30 67 38 68 2 13 19 2 9\n48 4 39 85 69 70 11 42 65 77 61 6 60 84 67 15 99 12 2 84 51 17 10 3 50 45 57 53 20 52 64 72 74 44 80 83 70 61 82 81 88 17 22 53 1 44 66 21 10 84 39 11 5 77 93 74 90 17 83 85 70 36 28 87 6 48 22 23 100 22 97 64 96 89 52 49 95 93 34 37 18 69 69 43 83 70 14 54 2 30\n",
"60\n70 19 46 34 43 19 75 42 47 14 66 64 63 58 55 79 38 45 49 80 72 54 96 26 63 41 12 55 14 56 79 51 12 9 14 77 70 75 46 27 45 10 76 59 40 67 55 24 26 90 50 75 12 93 27 39 46 58 66 31\n73 23 48 49 53 23 76 62 65 14 67 89 66 71 59 90 40 47 68 82 81 61 96 48 99 53 13 60 21 63 83 75 15 12 16 80 74 87 66 31 45 12 76 61 45 88 55 32 28 90 50 75 12 94 29 51 57 85 84 38\n",
"1\n50\n100\n",
"20\n59 35 29 57 85 70 26 53 56 3 11 56 43 20 81 72 77 72 36 61\n67 53 80 69 100 71 30 63 60 3 20 56 75 23 97 80 81 85 49 80\n",
"1\n1\n2\n",
"10\n5 12 10 18 10 9 2 20 5 20\n70 91 36 94 46 15 10 73 55 43\n",
"63\n8 23 6 19 1 34 23 1 15 58 22 10 5 14 41 1 16 48 68 5 13 19 1 4 35 2 42 8 45 24 52 44 59 78 5 11 14 41 10 26 60 26 9 15 34 1 14 5 2 6 19 7 4 26 49 39 13 40 18 62 66 8 4\n17 25 39 45 2 44 40 1 82 68 80 27 7 58 90 20 100 80 79 21 53 62 2 11 51 98 78 55 48 37 89 74 83 91 64 30 20 50 24 74 81 94 33 64 56 28 57 9 27 50 81 34 18 33 53 61 39 89 44 77 86 40 89\n",
"80\n11 6 9 6 5 18 21 11 6 6 2 9 4 1 10 12 2 9 1 14 6 12 16 14 4 5 1 16 3 4 6 1 11 30 2 4 1 11 1 6 1 3 2 14 6 14 13 1 10 2 4 14 11 8 28 2 2 3 1 6 26 3 11 4 1 1 29 4 5 4 3 5 1 4 2 12 59 3 18 1\n94 43 36 86 12 75 50 80 55 14 5 97 17 25 28 86 51 56 17 88 48 40 31 39 51 58 4 75 70 30 11 8 61 88 10 25 35 46 31 51 20 79 22 54 19 67 31 89 42 70 30 37 35 78 95 31 31 51 31 50 54 90 63 27 6 2 92 80 48 9 27 33 61 63 30 38 95 46 86 45\n",
"10\n96 4 51 40 89 36 35 38 4 82\n99 8 56 42 94 46 35 43 4 84\n",
"70\n20 7 5 7 3 10 1 14 33 1 5 3 4 21 7 7 1 2 2 2 8 15 18 2 7 1 1 1 15 2 27 2 6 21 4 2 7 5 1 6 13 36 13 1 10 5 8 13 24 2 10 16 11 9 4 1 1 8 6 26 9 3 3 2 8 5 17 9 1 13\n85 36 76 36 65 24 37 56 78 42 33 13 29 93 31 38 1 59 71 31 28 55 70 14 33 9 1 5 41 22 86 41 92 89 88 10 39 54 6 32 58 82 49 22 62 44 29 19 54 12 59 54 51 80 66 16 22 74 8 68 35 34 24 8 22 14 55 76 32 75\n",
"33\n33 20 33 40 58 50 5 6 13 12 4 33 11 50 12 19 16 36 68 57 23 17 6 22 39 58 49 21 10 35 35 17 12\n62 22 53 44 66 60 97 7 33 18 10 59 33 77 55 63 91 86 87 86 27 62 65 53 46 69 64 63 10 53 52 23 24\n",
"2\n1 1\n1 1\n",
"50\n2 1 2 2 38 19 1 2 7 1 2 5 5 1 14 53 21 1 17 9 4 1 24 8 1 1 1 5 4 14 37 1 15 1 4 15 1 3 3 16 17 1 10 18 36 14 25 8 8 48\n45 24 8 12 83 37 6 20 88 9 10 11 28 9 60 98 76 20 84 95 15 45 74 48 37 2 46 34 99 57 94 70 31 22 11 88 58 25 20 73 64 64 81 80 59 64 92 31 43 89\n",
"50\n72 9 46 38 43 75 63 73 70 11 9 48 32 93 33 24 46 44 27 78 43 2 26 84 42 78 35 34 76 36 67 79 82 63 17 26 30 43 35 34 54 37 13 65 8 37 8 8 70 79\n96 19 54 54 44 75 66 80 71 12 9 54 38 95 39 25 48 52 39 86 44 2 27 99 54 99 35 44 80 36 86 93 98 73 27 30 39 43 80 34 61 38 13 69 9 37 8 9 75 97\n",
"1\n1\n100\n",
"80\n2 8 36 12 22 41 1 42 6 66 62 94 37 1 5 1 82 8 9 31 14 8 15 5 21 8 5 22 1 17 1 44 1 12 8 45 37 38 13 4 13 4 8 8 3 15 13 53 22 8 19 14 16 7 7 49 1 10 31 33 7 47 61 6 9 48 6 25 16 4 43 1 5 34 8 22 31 38 59 45\n33 90 47 22 28 67 4 44 13 76 65 94 40 8 12 21 88 15 74 37 37 22 19 53 91 26 88 99 1 61 3 75 2 14 8 96 41 76 13 96 41 44 66 48 40 17 41 60 48 9 62 46 56 46 31 63 6 84 68 43 7 88 62 36 52 92 23 27 46 87 52 9 50 44 33 30 33 63 79 72\n",
"20\n24 22 4 34 76 13 78 1 81 51 72 11 25 46 22 33 60 42 25 19\n40 81 10 34 84 16 90 38 99 81 100 19 79 65 26 80 62 47 76 47\n",
"30\n33 4 1 42 86 85 35 51 45 88 23 35 79 92 81 46 47 32 41 17 18 36 28 58 31 15 17 38 49 78\n36 4 1 49 86 86 43 51 64 93 24 42 82 98 92 47 56 41 41 25 20 53 32 61 53 26 20 38 49 98\n",
"2\n1 1\n1 100\n",
"10\n18 42 5 1 26 8 40 34 8 29\n18 71 21 67 38 13 99 37 47 76\n",
"35\n9 7 34 3 2 6 36 3 26 12 17 8 5 32 55 10 24 19 2 3 30 17 14 1 33 36 42 14 51 1 2 22 13 34 28\n9 9 55 17 16 12 37 14 27 58 51 16 10 37 69 15 43 26 14 60 86 34 54 1 37 50 58 18 92 66 7 24 25 92 30\n",
"60\n9 9 11 16 58 6 25 6 3 23 1 14 1 8 4 2 1 18 10 1 13 4 23 1 38 6 1 13 5 1 1 1 2 1 1 17 1 24 18 20 2 1 9 26 1 12 3 6 7 17 18 1 2 9 3 6 3 30 7 12\n47 82 78 52 99 51 90 23 58 49 2 98 100 60 25 60 6 69 79 6 91 47 69 18 99 46 30 51 11 3 42 17 33 61 14 81 16 76 72 94 13 5 51 88 26 43 80 31 26 70 93 76 18 67 25 86 60 81 40 38\n",
"30\n29 3 2 13 3 12 73 22 37 48 59 17 2 13 69 43 32 14 4 2 61 22 40 30 1 4 46 5 65 17\n55 3 3 92 25 27 97 40 55 74 91 31 7 33 72 62 61 40 16 2 70 61 67 72 8 5 48 9 75 84\n",
"77\n44 2 13 14 8 46 65 14 1 39 12 18 15 10 2 40 71 40 17 1 16 72 13 7 41 23 81 12 4 1 19 18 41 35 23 56 21 5 17 47 88 1 24 15 48 15 1 13 50 5 31 16 21 47 4 1 49 2 15 23 46 47 27 22 23 40 29 4 30 50 51 12 20 14 41 25 12\n57 16 72 59 28 80 74 19 4 60 52 52 97 20 5 69 84 66 63 38 50 79 24 84 58 92 99 36 38 97 66 79 41 48 26 95 28 38 28 72 95 71 30 15 63 17 7 69 90 29 89 40 21 83 73 24 51 14 15 74 100 88 74 27 46 61 38 4 32 52 52 51 47 51 81 75 19\n",
"70\n17 70 52 31 15 51 8 38 3 43 2 34 7 16 58 29 73 23 41 88 9 24 24 90 33 84 10 29 67 17 47 72 11 79 22 5 8 65 23 7 29 31 11 42 11 14 9 3 54 22 38 34 2 4 39 13 11 34 3 35 22 18 3 57 23 21 13 23 78 7\n18 72 58 55 87 56 9 39 60 79 74 82 9 39 66 32 89 25 46 95 26 31 28 94 36 96 19 37 77 61 50 82 22 81 37 9 11 96 33 12 90 74 11 42 88 86 24 3 85 31 82 81 3 7 69 47 27 51 49 98 33 40 5 94 83 35 21 24 89 49\n",
"50\n48 29 72 22 99 27 40 23 39 4 46 29 39 16 47 35 79 7 15 23 50 34 35 22 9 2 51 10 2 42 4 3 30 2 72 19 50 20 11 29 1 2 1 7 7 6 7 75 40 69\n81 36 76 26 100 41 99 39 52 73 83 51 54 86 73 49 79 27 83 90 100 40 49 81 22 54 85 21 26 79 36 96 73 10 98 31 65 39 89 39 1 32 5 20 71 39 87 80 60 86\n",
"40\n10 32 10 7 10 6 25 3 18 4 24 4 8 14 6 15 11 8 2 8 2 5 19 9 5 5 3 34 5 1 6 6 1 4 5 26 34 2 21 1\n35 66 54 11 58 68 75 12 69 94 80 33 23 48 45 66 94 53 25 53 83 30 64 49 69 84 73 85 26 41 10 65 23 56 58 93 58 7 100 7\n",
"35\n21 2 68 56 41 25 42 17 21 20 29 26 38 37 29 77 43 13 32 48 38 31 15 8 52 6 63 45 70 2 21 13 3 14 47\n46 83 100 87 59 95 47 33 56 60 38 76 63 75 60 92 65 43 56 94 70 80 46 40 64 6 83 50 75 19 52 66 13 88 62\n",
"77\n19 34 39 56 1 2 47 8 17 28 23 45 18 7 5 3 11 20 30 24 13 34 11 1 4 14 68 23 13 33 3 8 1 5 8 23 12 1 19 14 22 67 26 55 10 1 63 82 82 6 38 5 6 11 1 62 1 12 5 40 19 20 37 9 5 3 2 44 13 20 44 32 11 29 12 19 35\n28 41 43 68 1 36 57 13 84 89 26 92 47 19 7 94 79 75 74 42 32 44 46 23 96 46 82 86 91 33 25 11 12 68 22 31 89 14 81 32 50 94 27 66 50 39 98 90 91 11 69 6 45 19 15 74 22 31 7 92 23 98 88 32 8 4 2 51 79 69 70 43 16 60 29 20 98\n",
"90\n9 2 2 3 4 1 9 8 3 3 1 1 1 1 2 2 1 3 4 8 8 1 2 7 3 4 5 6 1 2 9 4 2 5 6 1 1 2 6 5 1 4 3 2 4 1 1 3 1 1 3 1 8 3 1 4 1 2 2 3 5 2 8 6 2 5 2 1 4 2 1 5 4 2 1 1 2 1 1 6 4 4 3 4 1 4 4 6 2 3\n10 6 2 3 10 1 10 10 6 4 1 3 6 1 2 5 3 7 7 9 9 2 3 8 3 4 9 7 8 4 10 7 8 10 9 5 1 4 6 5 1 9 10 4 6 4 1 3 3 1 6 1 9 4 1 6 4 5 5 10 7 9 9 10 4 5 2 1 4 2 1 7 6 5 3 9 2 5 1 8 6 4 6 10 1 7 5 9 6 4\n",
"90\n1 43 87 1 6 12 49 6 3 9 38 1 64 49 11 18 5 1 46 25 30 82 17 4 8 9 5 5 4 1 10 4 13 42 44 90 1 11 27 23 25 4 12 19 48 3 59 48 39 14 1 5 64 46 39 24 28 77 25 20 3 14 28 2 20 63 2 1 13 11 44 49 61 76 20 1 3 42 38 8 69 17 27 18 29 54 2 1 2 7\n8 96 91 1 11 20 83 34 41 88 54 4 65 82 48 60 62 18 76 74 75 89 87 8 11 32 67 7 5 1 92 88 57 92 76 95 35 58 68 23 30 25 12 31 85 5 89 84 71 23 1 5 76 56 57 57 76 94 33 34 66 20 54 5 22 69 2 19 28 62 74 88 91 86 30 6 3 48 80 10 84 20 44 37 81 100 12 3 6 8\n",
"80\n36 80 23 45 68 72 2 69 84 33 3 43 6 64 82 54 15 15 17 4 3 29 74 14 53 50 52 27 32 18 60 62 50 29 28 48 77 11 24 17 3 55 58 20 4 32 55 16 27 60 5 77 23 31 11 60 21 65 38 39 82 58 51 78 24 30 75 79 5 41 94 10 14 7 1 26 21 41 6 52\n37 93 24 46 99 74 2 93 86 33 3 44 6 71 88 65 15 19 24 4 3 40 82 14 62 81 56 30 33 30 62 62 70 29 31 53 78 13 27 31 3 65 61 20 5 41 58 25 27 61 6 87 26 31 13 62 25 71 44 45 82 75 62 95 24 44 82 94 6 50 94 10 15 15 1 29 35 60 8 68\n",
"83\n13 20 5 29 48 53 88 17 11 5 44 15 85 13 2 55 6 16 57 29 12 15 12 92 21 25 1 2 4 5 2 22 8 18 22 2 3 10 43 71 3 41 1 73 6 18 32 63 26 13 6 75 19 10 41 30 15 12 14 8 15 77 73 7 5 39 83 19 2 2 3 61 53 43 3 15 76 29 8 46 19 3 8\n54 34 15 58 50 67 100 43 30 15 46 26 94 75 2 58 85 38 68 98 83 51 82 100 61 27 5 5 41 89 17 34 10 48 48 4 15 13 71 75 4 44 2 82 18 82 59 96 26 13 66 95 81 33 85 45 16 92 41 37 85 78 83 17 7 72 83 38 69 24 18 76 71 66 3 66 78 31 73 72 43 89 49\n",
"70\n67 38 59 72 9 64 12 3 51 58 50 4 16 46 62 77 58 73 7 92 48 9 90 50 35 9 61 57 50 20 48 61 27 77 47 6 83 28 78 14 68 32 2 2 22 57 34 71 26 74 3 76 41 66 30 69 34 16 29 7 14 19 11 5 13 66 19 19 17 55\n69 41 84 91 10 77 12 7 70 74 55 7 30 63 66 79 89 88 10 93 89 15 91 81 41 26 65 67 55 37 73 94 34 94 47 6 90 31 100 25 69 33 2 3 43 97 37 95 35 85 3 78 50 86 30 73 34 21 32 13 21 32 11 5 13 80 23 20 17 58\n",
"85\n20 47 52 6 5 15 35 42 5 84 4 8 61 47 7 50 20 24 15 27 86 28 1 39 1 2 63 2 31 33 47 4 33 68 20 4 4 42 20 67 7 10 46 4 22 36 30 40 4 15 51 2 39 50 65 48 34 6 50 19 32 48 8 23 42 70 69 8 29 81 5 1 7 21 3 30 78 6 2 1 3 69 34 34 18\n74 64 89 61 5 17 75 43 13 87 30 51 93 54 7 76 44 44 98 77 86 97 1 41 1 3 69 3 80 87 67 6 90 100 31 5 7 46 99 67 9 44 56 7 39 39 55 80 80 33 77 9 89 79 86 53 49 49 72 87 43 84 24 23 43 94 74 17 54 96 28 64 14 42 91 60 87 69 20 1 30 95 44 50 20\n",
"30\n10 1 8 10 2 6 37 7 3 7 1 3 1 1 14 2 5 19 4 1 13 3 5 6 1 5 1 1 23 1\n98 4 43 41 56 58 85 51 47 55 20 85 93 12 49 15 95 72 20 4 68 24 16 97 21 52 18 69 89 15\n",
"20\n8 1 44 1 12 1 9 11 1 1 5 2 9 13 16 2 1 5 4 1\n88 2 80 33 55 3 74 61 17 11 11 16 42 81 88 14 4 81 60 10\n",
"2\n2 1\n100 1\n",
"40\n9 18 41 31 27 24 76 32 4 38 1 35 21 3 26 32 31 13 41 31 39 14 45 15 12 5 7 14 3 14 19 11 1 81 1 4 7 28 4 62\n70 21 95 63 66 30 100 42 4 80 83 39 34 6 27 55 72 38 43 48 81 53 54 30 63 23 9 59 3 83 83 95 1 81 30 40 35 45 8 66\n",
"90\n1 9 3 3 14 3 2 32 17 3 1 1 4 1 18 1 1 21 9 1 2 10 6 9 27 15 5 2 3 37 1 2 1 12 6 1 8 4 1 5 1 3 8 9 1 9 23 1 1 2 1 2 2 19 2 6 5 6 1 7 12 35 1 2 8 1 11 32 7 4 12 9 18 8 9 27 31 15 16 4 16 13 2 2 1 4 12 17 10 1\n8 52 13 56 42 40 8 98 64 47 84 11 12 1 97 8 8 66 35 4 6 62 22 38 68 57 50 28 28 88 7 57 9 81 14 37 71 57 33 24 2 21 54 58 58 27 79 3 55 13 2 95 17 97 61 22 28 85 78 72 68 80 12 41 98 18 35 70 40 22 98 85 51 70 79 100 68 29 73 45 89 64 53 6 16 29 73 53 24 69\n",
"69\n24 32 19 37 36 7 15 10 54 12 15 46 3 25 12 16 3 8 55 21 23 57 17 45 11 4 25 35 39 3 69 24 78 40 12 39 1 44 4 75 53 60 1 6 30 7 6 39 44 13 31 6 4 4 32 11 52 58 81 2 33 7 29 19 21 26 22 60 24\n57 56 50 64 40 58 31 20 81 14 43 64 48 38 56 71 58 26 98 92 52 88 71 93 11 20 79 39 56 7 92 54 88 106 19 85 12 71 4 87 78 90 29 18 89 13 86 71 100 24 65 95 46 8 91 35 62 66 96 36 80 24 81 58 53 86 89 67 73\n",
"38\n2 1 1 1 1 9 5 2 1 3 4 3 1 7 4 4 8 7 1 5 4 9 1 6 3 0 1 4 1 5 5 1 8 3 1 3 6 3\n2 1 6 2 9 10 6 2 1 5 4 6 1 7 4 6 10 8 8 6 4 10 1 6 4 4 6 4 4 8 5 2 10 7 3 5 6 3\n",
"32\n4 1 1 6 2 5 8 6 5 6 3 2 1 3 1 9 1 2 1 5 2 1 6 5 3 7 0 3 2 5 1 1\n8 1 3 6 4 7 9 8 6 8 10 2 5 3 2 10 1 10 9 5 4 1 8 7 8 7 4 10 4 6 9 2\n",
"86\n5 1 3 1 1 1 1 9 4 1 3 1 4 6 3 2 2 7 1 1 3 1 2 1 1 5 4 3 6 3 3 4 8 2 1 3 1 2 7 2 5 4 2 1 1 2 1 3 2 9 1 4 2 1 1 9 4 1 8 1 7 9 4 3 4 1 3 1 1 3 1 1 3 1 1 10 7 7 4 1 1 3 1 6 1 3\n10 2 5 7 1 4 7 9 4 7 3 1 5 6 3 8 4 10 5 1 9 3 4 2 1 5 7 4 7 7 7 5 9 5 3 3 6 4 7 2 9 7 3 4 2 3 1 5 6 9 10 4 8 10 10 9 7 8 10 1 7 10 10 7 8 5 8 2 1 4 1 2 3 8 1 10 9 7 4 2 1 3 4 9 2 3\n",
"60\n3 3 22 46 23 19 2 27 3 26 34 18 8 50 5 18 23 26 9 14 7 2 17 12 63 25 4 71 14 47 70 13 6 38 28 22 94 10 51 7 29 1 54 12 8 5 4 34 11 24 2 14 54 65 11 30 3 23 12 11\n4 54 69 97 45 53 2 41 4 74 78 66 85 59 19 38 82 28 11 41 15 43 41 43 77 77 50 75 46 66 97 93 50 44 69 22 94 23 61 27 44 1 56 25 31 63 8 37 23 57 6 17 54 68 14 40 43 31 31 60\n",
"73\n69 67 34 35 10 27 30 27 31 48 25 18 81 54 32 54 5 62 20 4 94 2 60 4 6 11 62 68 14 18 42 18 33 71 72 2 29 7 36 60 10 25 17 2 38 77 34 36 74 76 63 32 42 29 22 14 5 1 6 2 14 19 20 19 41 31 16 17 50 49 2 22 51\n73 70 58 54 10 108 59 35 91 61 52 65 90 70 37 80 12 94 78 34 97 4 62 95 10 11 93 100 14 38 56 42 96 96 84 71 69 43 50 79 11 83 95 76 39 79 61 42 89 90 71 62 43 38 39 21 5 40 27 13 21 73 30 46 47 34 23 22 57 59 6 25 72\n",
"70\n13 42 8 56 21 58 39 2 49 39 15 26 62 45 26 8 47 40 9 36 41 2 4 38 6 55 2 41 72 18 10 2 6 11 4 39 19 39 14 59 5 42 19 79 12 3 1 1 21 6 5 9 36 6 38 2 7 26 8 15 66 7 1 30 93 34 45 24 12 20\n26 56 25 60 26 79 99 7 68 92 99 32 81 48 39 97 49 95 18 82 59 4 99 41 10 63 43 54 76 97 73 7 17 62 4 84 35 86 20 63 8 59 87 80 34 3 8 13 49 55 14 11 68 8 41 33 14 39 43 31 89 13 7 88 93 51 84 73 26 30\n",
"81\n21 13 1 25 14 33 33 41 53 89 2 18 61 8 3 35 15 59 2 2 3 5 75 37 1 34 7 12 33 66 6 4 14 78 3 16 12 45 3 2 1 17 17 45 4 30 68 40 44 3 1 21 64 63 14 19 75 63 7 9 12 75 20 28 16 20 53 26 13 46 17 8 28 32 9 29 1 11 75 4 21\n45 90 21 31 36 68 71 47 59 89 61 32 98 67 7 53 90 86 6 28 4 83 93 62 8 56 18 35 33 92 36 37 23 98 44 21 23 79 10 4 2 18 48 87 29 86 79 74 45 3 6 23 79 71 17 39 88 73 50 15 13 92 33 47 83 48 73 33 15 63 43 14 90 72 9 95 1 22 83 20 29\n",
"90\n4 2 21 69 53 39 2 2 8 58 7 5 2 82 7 9 13 10 2 44 1 7 2 1 50 42 36 17 14 46 19 1 50 20 51 46 9 59 73 61 76 4 19 22 1 43 53 2 5 5 32 7 5 42 30 14 32 6 6 15 20 24 13 8 5 19 9 9 7 20 7 2 55 36 5 33 64 20 22 22 9 30 67 38 68 2 13 19 2 9\n48 4 39 85 69 70 11 42 65 77 61 6 60 84 67 15 99 12 2 84 51 17 10 3 50 45 57 53 20 52 64 72 74 44 80 83 70 61 82 81 88 17 22 53 1 44 66 21 10 84 39 11 5 77 93 74 90 17 83 46 70 36 28 87 6 48 22 23 100 22 97 64 96 89 52 49 95 93 34 37 18 69 69 43 83 70 14 54 2 30\n",
"1\n51\n100\n",
"20\n59 35 29 57 85 70 26 53 56 3 11 56 43 20 81 72 77 72 36 61\n67 53 80 69 100 71 30 63 60 3 20 56 75 23 97 80 81 85 49 160\n",
"10\n5 12 10 18 10 9 3 20 5 20\n70 91 36 94 46 15 10 73 55 43\n",
"63\n8 23 6 19 1 34 23 1 15 58 22 10 5 14 41 1 16 48 68 5 13 19 1 4 35 2 42 8 45 24 52 44 59 78 5 11 14 41 10 26 60 26 9 15 34 1 14 5 2 6 19 7 4 26 49 39 13 40 18 62 66 8 4\n17 25 39 45 2 44 40 1 82 68 80 27 7 58 90 20 100 80 79 21 53 62 2 11 51 98 78 55 48 37 89 74 83 91 64 30 20 50 24 74 81 160 33 64 56 28 57 9 27 50 81 34 18 33 53 61 39 89 44 77 86 40 89\n",
"80\n11 6 9 6 5 18 21 11 6 6 2 9 4 1 10 12 2 9 1 14 6 12 16 14 4 5 1 16 3 4 6 1 11 30 2 4 1 11 1 6 1 3 2 14 6 14 13 1 10 2 4 14 11 8 28 2 2 3 1 6 26 3 11 4 1 1 29 4 5 4 3 5 1 4 2 12 59 3 18 1\n94 43 36 86 12 75 50 80 55 14 5 97 17 25 28 86 51 56 17 88 48 40 31 39 51 58 4 75 70 30 11 8 61 88 10 25 35 46 31 51 20 79 22 54 19 67 31 89 42 70 30 37 35 78 95 31 31 51 31 50 54 90 63 27 6 2 92 80 48 9 27 33 61 63 30 38 95 87 86 45\n",
"10\n96 4 51 40 89 36 35 38 4 82\n99 8 56 42 94 46 35 57 4 84\n",
"70\n20 7 5 7 3 10 1 14 33 1 5 3 4 21 7 7 1 2 2 2 8 15 18 2 7 1 1 1 15 2 27 2 0 21 4 2 7 5 1 6 13 36 13 1 10 5 8 13 24 2 10 16 11 9 4 1 1 8 6 26 9 3 3 2 8 5 17 9 1 13\n85 36 76 36 65 24 37 56 78 42 33 13 29 93 31 38 1 59 71 31 28 55 70 14 33 9 1 5 41 22 86 41 92 89 88 10 39 54 6 32 58 82 49 22 62 44 29 19 54 12 59 54 51 80 66 16 22 74 8 68 35 34 24 8 22 14 55 76 32 75\n",
"33\n33 20 33 40 58 50 2 6 13 12 4 33 11 50 12 19 16 36 68 57 23 17 6 22 39 58 49 21 10 35 35 17 12\n62 22 53 44 66 60 97 7 33 18 10 59 33 77 55 63 91 86 87 86 27 62 65 53 46 69 64 63 10 53 52 23 24\n",
"50\n2 1 2 2 38 19 1 2 7 1 2 5 5 1 14 53 21 1 17 9 4 1 24 8 1 1 1 5 4 14 37 1 15 1 4 15 1 3 3 16 17 1 10 18 36 14 25 8 8 48\n45 24 8 12 83 37 6 20 88 9 10 11 28 9 60 98 76 20 84 95 15 45 74 48 37 2 46 34 99 57 94 70 31 22 11 88 58 25 20 73 64 64 81 80 59 64 51 31 43 89\n",
"50\n72 9 46 38 43 75 63 73 70 11 9 48 32 93 33 24 46 44 27 78 43 2 26 84 42 78 35 34 76 36 67 79 82 63 17 26 30 43 35 34 54 37 13 65 8 37 8 8 70 91\n96 19 54 54 44 75 66 80 71 12 9 54 38 95 39 25 48 52 39 86 44 2 27 99 54 99 35 44 80 36 86 93 98 73 27 30 39 43 80 34 61 38 13 69 9 37 8 9 75 97\n",
"80\n2 8 36 12 22 41 1 42 6 66 62 94 37 1 5 1 82 8 9 31 14 8 15 5 21 8 5 22 1 17 1 44 1 12 8 45 37 38 13 4 13 4 8 8 3 15 13 53 22 8 19 14 16 7 7 49 1 10 31 33 7 47 61 6 9 48 6 25 16 4 43 1 5 34 8 22 31 38 59 45\n33 90 47 22 28 67 4 44 13 76 65 94 40 8 12 21 88 15 74 37 37 22 19 53 91 26 88 99 1 61 3 75 2 14 8 96 41 76 13 96 41 44 66 48 40 17 41 60 48 9 62 46 56 46 31 63 6 84 68 43 7 88 62 36 52 92 23 27 46 87 52 9 50 44 33 30 62 63 79 72\n",
"20\n24 22 4 34 76 13 78 1 81 51 72 11 25 46 22 33 60 42 25 19\n40 81 10 34 84 24 90 38 99 81 100 19 79 65 26 80 62 47 76 47\n",
"10\n18 42 5 1 26 8 40 34 8 29\n18 71 21 67 18 13 99 37 47 76\n",
"35\n9 7 34 3 2 6 36 3 26 12 17 8 5 32 55 10 24 19 2 3 30 17 14 1 33 36 42 14 51 1 2 22 13 34 28\n9 9 55 17 16 12 37 14 27 58 51 16 10 37 69 15 43 26 14 60 86 34 54 1 37 50 75 18 92 66 7 24 25 92 30\n",
"60\n9 9 11 16 58 6 25 6 3 23 1 14 1 8 4 2 1 18 10 1 13 4 23 1 38 6 1 13 5 1 1 1 2 1 1 17 1 24 18 39 2 1 9 26 1 12 3 6 7 17 18 1 2 9 3 6 3 30 7 12\n47 82 78 52 99 51 90 23 58 49 2 98 100 60 25 60 6 69 79 6 91 47 69 18 99 46 30 51 11 3 42 17 33 61 14 81 16 76 72 94 13 5 51 88 26 43 80 31 26 70 93 76 18 67 25 86 60 81 40 38\n",
"30\n29 3 2 13 3 12 73 22 37 48 59 17 2 13 69 43 32 14 4 2 61 22 40 30 1 4 46 5 65 17\n55 3 3 92 25 27 97 40 55 74 91 31 7 33 72 62 61 40 16 2 70 61 67 72 8 5 48 12 75 84\n",
"77\n44 2 13 14 8 46 65 14 1 39 12 18 15 10 2 40 71 40 17 1 16 72 13 7 41 23 81 12 4 1 19 18 41 35 23 56 21 5 17 47 88 1 24 15 48 15 1 13 50 5 31 16 21 47 4 1 49 2 15 23 46 47 27 22 23 40 29 4 30 50 51 12 20 14 41 25 12\n57 16 72 59 28 80 74 19 4 60 52 52 97 13 5 69 84 66 63 38 50 79 24 84 58 92 99 36 38 97 66 79 41 48 26 95 28 38 28 72 95 71 30 15 63 17 7 69 90 29 89 40 21 83 73 24 51 14 15 74 100 88 74 27 46 61 38 4 32 52 52 51 47 51 81 75 19\n",
"70\n17 70 52 31 15 51 8 38 3 43 2 34 7 16 58 29 73 23 41 88 9 24 24 90 33 84 10 29 67 17 47 72 11 79 22 5 8 65 23 7 29 31 11 42 11 14 9 3 54 22 38 34 2 4 39 13 11 34 3 35 22 18 3 57 23 21 13 23 78 7\n18 72 58 55 87 56 9 39 60 79 74 82 9 39 66 32 89 25 46 95 26 31 28 94 36 96 19 37 77 61 50 82 22 81 37 9 11 96 33 12 90 74 11 42 88 86 17 3 85 31 82 81 3 7 69 47 27 51 49 98 33 40 5 94 83 35 21 24 89 49\n",
"50\n48 29 72 22 99 27 40 23 39 4 46 29 39 16 47 35 79 7 15 23 50 34 35 22 9 2 51 10 2 42 4 3 30 2 72 19 50 20 11 29 1 2 1 7 7 6 7 75 40 69\n81 36 76 26 100 41 99 39 52 73 83 51 54 86 73 49 79 27 83 90 100 40 49 81 22 54 85 21 26 79 36 96 73 10 98 31 65 39 89 39 2 32 5 20 71 39 87 80 60 86\n",
"40\n10 32 10 7 10 6 25 3 18 4 24 4 8 14 6 15 11 8 2 8 2 5 19 9 5 5 3 34 5 1 6 6 1 4 5 26 34 2 21 1\n35 66 54 11 58 68 75 12 69 94 80 33 23 48 45 66 94 53 25 53 83 30 64 49 69 84 73 35 26 41 10 65 23 56 58 93 58 7 100 7\n",
"35\n21 2 68 56 41 25 42 17 21 20 29 26 38 37 29 77 43 13 32 48 38 31 15 8 52 6 63 45 70 2 21 13 3 14 47\n46 83 100 87 59 95 47 33 56 60 38 76 63 75 60 92 65 43 56 94 70 80 46 40 64 6 83 54 75 19 52 66 13 88 62\n",
"77\n19 34 39 56 1 2 47 8 17 28 23 45 18 7 5 3 11 20 30 24 13 34 11 1 4 14 68 23 13 33 3 8 1 5 8 23 12 1 19 14 22 67 26 55 10 1 63 82 82 6 38 5 6 11 1 62 1 12 5 40 19 20 37 9 5 3 2 44 13 20 44 32 11 29 12 19 35\n28 41 43 68 1 39 57 13 84 89 26 92 47 19 7 94 79 75 74 42 32 44 46 23 96 46 82 86 91 33 25 11 12 68 22 31 89 14 81 32 50 94 27 66 50 39 98 90 91 11 69 6 45 19 15 74 22 31 7 92 23 98 88 32 8 4 2 51 79 69 70 43 16 60 29 20 98\n",
"90\n9 2 2 3 4 1 9 8 3 3 1 1 1 1 2 2 1 3 4 8 8 1 2 7 3 4 5 6 1 2 9 4 2 5 6 1 1 2 6 5 1 4 3 2 4 1 1 3 1 1 3 1 8 3 1 4 1 2 2 3 5 2 8 6 2 5 2 1 4 2 1 5 4 2 1 1 2 1 1 6 4 4 3 4 1 4 4 6 2 3\n10 6 2 3 10 1 10 10 6 4 1 3 6 1 2 5 3 7 7 9 9 2 3 8 3 4 9 7 8 4 10 7 8 10 9 5 1 4 6 5 1 9 10 4 6 4 1 3 3 1 6 1 9 4 1 6 4 5 5 10 7 9 9 10 4 5 2 1 5 2 1 7 6 5 3 9 2 5 1 8 6 4 6 10 1 7 5 9 6 4\n",
"90\n1 43 87 1 6 12 49 6 3 9 38 1 64 49 11 18 5 1 46 25 30 82 17 4 8 9 5 5 4 1 10 4 13 42 44 90 1 11 27 23 25 4 12 19 48 3 59 48 39 14 1 5 64 46 39 24 28 77 25 20 3 14 28 2 20 63 2 1 13 11 44 49 61 76 20 1 3 42 38 8 69 17 27 18 29 54 2 1 2 7\n8 96 91 1 11 20 83 34 41 88 54 4 65 82 48 60 62 18 76 74 75 89 87 8 11 32 67 7 5 1 92 88 57 92 76 95 35 58 68 23 30 25 12 31 85 5 89 84 71 23 1 5 76 56 57 57 83 94 33 34 66 20 54 5 22 69 2 19 28 62 74 88 91 86 30 6 3 48 80 10 84 20 44 37 81 100 12 3 6 8\n",
"80\n36 80 23 45 68 72 2 69 84 33 3 43 6 64 82 54 15 15 17 4 3 29 74 14 53 50 52 27 32 18 60 62 50 29 28 48 77 11 24 17 3 55 58 20 4 32 55 16 27 60 5 77 23 31 11 60 21 65 38 39 82 58 51 78 5 30 75 79 5 41 94 10 14 7 1 26 21 41 6 52\n37 93 24 46 99 74 2 93 86 33 3 44 6 71 88 65 15 19 24 4 3 40 82 14 62 81 56 30 33 30 62 62 70 29 31 53 78 13 27 31 3 65 61 20 5 41 58 25 27 61 6 87 26 31 13 62 25 71 44 45 82 75 62 95 24 44 82 94 6 50 94 10 15 15 1 29 35 60 8 68\n",
"83\n13 20 5 29 48 53 88 17 11 5 44 15 85 13 2 55 6 16 57 29 12 15 12 92 21 25 1 2 4 5 2 22 8 18 22 2 3 10 43 71 3 41 1 73 6 18 32 63 26 13 6 75 19 10 41 30 15 12 14 8 15 77 73 7 5 39 83 19 2 2 3 61 53 43 3 15 76 29 8 46 19 3 8\n54 34 15 58 50 67 100 43 30 15 46 26 94 75 2 58 85 38 68 98 83 51 82 100 120 27 5 5 41 89 17 34 10 48 48 4 15 13 71 75 4 44 2 82 18 82 59 96 26 13 66 95 81 33 85 45 16 92 41 37 85 78 83 17 7 72 83 38 69 24 18 76 71 66 3 66 78 31 73 72 43 89 49\n",
"85\n20 47 52 6 5 15 35 42 5 84 4 8 61 47 7 50 20 24 15 27 86 28 1 39 1 2 63 2 31 33 47 4 33 68 20 4 4 42 20 67 7 10 46 4 22 36 30 40 4 15 51 2 39 50 65 48 34 6 50 19 32 48 8 23 42 70 69 8 29 81 5 1 7 21 3 30 78 6 2 1 3 69 34 34 18\n74 64 89 61 5 17 75 43 13 87 30 51 93 54 7 76 44 44 98 77 86 97 1 41 1 3 69 3 80 87 67 6 90 100 31 5 7 46 99 67 9 44 56 7 39 39 55 80 80 33 77 9 89 79 86 53 49 49 72 87 43 84 24 23 43 94 74 17 54 96 28 64 14 42 91 8 87 69 20 1 30 95 44 50 20\n",
"1\n2\n2\n",
"2\n1 1\n110 100\n"
],
"output": [
"1 1\n",
"3 11\n",
"2 6\n",
"3 122\n",
"2 90\n",
"24 290\n",
"1 1\n",
"11 560\n",
"8 562\n",
"22 801\n",
"19 40\n",
"1 0\n",
"13 46\n",
"32 101\n",
"19 535\n",
"1 0\n",
"30 808\n",
"21 867\n",
"26 754\n",
"25 955\n",
"42 368\n",
"1 0\n",
"13 187\n",
"1 0\n",
"2 71\n",
"18 638\n",
"8 434\n",
"8 8\n",
"7 426\n",
"13 356\n",
"2 0\n",
"6 337\n",
"34 283\n",
"1 0\n",
"21 909\n",
"9 217\n",
"22 123\n",
"1 1\n",
"3 100\n",
"10 307\n",
"7 368\n",
"10 310\n",
"24 932\n",
"26 756\n",
"17 563\n",
"5 281\n",
"14 432\n",
"19 937\n",
"35 109\n",
"26 899",
"50 363",
"26 944",
"38 484",
"29 987",
"3 122",
"2 87",
"1 1",
"11 560",
"8 563",
"21 916",
"18 41",
"13 38",
"32 99",
"18 633",
"29 896",
"21 867",
"26 752",
"25 955",
"1 0",
"12 216",
"2 72",
"17 670",
"8 434",
"7 43",
"7 416",
"13 353",
"6 347",
"34 287",
"21 909",
"9 217",
"3 100",
"9 389",
"7 371",
"10 310",
"24 932",
"26 756",
"17 563",
"5 302",
"14 432",
"19 937",
"35 109",
"26 884",
"49 370",
"26 840",
"29 987",
"1 0",
"1 1"
]
} | 2CODEFORCES
|
730_J. Bottles_158 | Nick has n bottles of soda left after his birthday. Each bottle is described by two values: remaining amount of soda ai and bottle volume bi (ai ≤ bi).
Nick has decided to pour all remaining soda into minimal number of bottles, moreover he has to do it as soon as possible. Nick spends x seconds to pour x units of soda from one bottle to another.
Nick asks you to help him to determine k — the minimal number of bottles to store all remaining soda and t — the minimal time to pour soda into k bottles. A bottle can't store more soda than its volume. All remaining soda should be saved.
Input
The first line contains positive integer n (1 ≤ n ≤ 100) — the number of bottles.
The second line contains n positive integers a1, a2, ..., an (1 ≤ ai ≤ 100), where ai is the amount of soda remaining in the i-th bottle.
The third line contains n positive integers b1, b2, ..., bn (1 ≤ bi ≤ 100), where bi is the volume of the i-th bottle.
It is guaranteed that ai ≤ bi for any i.
Output
The only line should contain two integers k and t, where k is the minimal number of bottles that can store all the soda and t is the minimal time to pour the soda into k bottles.
Examples
Input
4
3 3 4 3
4 7 6 5
Output
2 6
Input
2
1 1
100 100
Output
1 1
Input
5
10 30 5 6 24
10 41 7 8 24
Output
3 11
Note
In the first example Nick can pour soda from the first bottle to the second bottle. It will take 3 seconds. After it the second bottle will contain 3 + 3 = 6 units of soda. Then he can pour soda from the fourth bottle to the second bottle and to the third bottle: one unit to the second and two units to the third. It will take 1 + 2 = 3 seconds. So, all the soda will be in two bottles and he will spend 3 + 3 = 6 seconds to do it. |
import java.io.*;
import java.util.*;
public class G {
static class Pair<U extends Comparable<U>, V extends Comparable<V>>
implements Comparable<Pair<U,V>>{
final public U a;
final public V b;
private Pair(U a, V b) {
this.a = a;
this.b = b;
}
@Override
public boolean equals(Object o) {
if (this == o)
return true;
if (o == null || getClass() != o.getClass())
return false;
Pair<?, ?> pair = (Pair<?, ?>) o;
if (!a.equals(pair.a))
return false;
return b.equals(pair.b);
}
@Override
public int hashCode() {
return 31 * a.hashCode() + b.hashCode();
}
@Override
public String toString() {
return "(" + a + ", " + b + ")";
}
@Override
public int compareTo(Pair<U, V> o) {
if(this.a.equals(o.a)){
return getV().compareTo(o.getV());
}
return getU().compareTo(o.getU());
}
private U getU() {
return a;
}
private V getV() {
return b;
}
static void print(Pair[] pairs){
for(int i=0;i<pairs.length;i++){
System.out.print(pairs[i]+" ");
}
System.out.println();
}
static void print(Pair[][] pairs){
for(int i=0;i<pairs.length;i++){
for(int j=0;j<pairs[0].length;j++) {
System.out.print(pairs[i][j] + " ");
}
System.out.println();
}
}
}
static BufferedReader inp = new BufferedReader(new InputStreamReader(System.in));
static BufferedWriter out = new BufferedWriter(new OutputStreamWriter(System.out));
public static void main(String[] args) throws IOException {
int size = Integer.parseInt(inp.readLine());
int[] given = new int[size];
int[] capacity = new int[size];
String[] s1 = inp.readLine().split(" ");
String[] s2 = inp.readLine().split(" ");
int sum = 0;
for(int i=0;i<size;i++){
given[i] = Integer.parseInt(s1[i]);
capacity[i] = Integer.parseInt(s2[i]);
sum+= given[i];
}
Pair<Integer,Integer>[][] dp = new Pair[size+1][sum+1];
for(int i=0;i<=size;i++) {
Arrays.fill(dp[i], new Pair<>(100000,-1));
}
//Pair.print(dp);
for(int i=1;i<=size;i++){
int a = capacity[i-1];
for(int j=1;j<=sum;j++){
if(j<=a){
if(dp[i-1][j].a>1){
dp[i][j] = new Pair<>(1, given[i-1]);
}
else{
dp[i][j]= new Pair<>(1, Math.max(given[i-1],dp[i-1][j].b));
}
}
else {
if(dp[i-1][j-a].a+1>dp[i-1][j].a){
dp[i][j] = dp[i-1][j];
}
else if(dp[i-1][j-a].a+1==dp[i-1][j].a){
dp[i][j] = new Pair<>(dp[i-1][j-a].a+1,Math.max(given[i-1]+dp[i-1][j-a].b,dp[i-1][j].b));
}
else{
dp[i][j] = new Pair<>(dp[i-1][j-a].a+1,given[i-1]+dp[i-1][j-a].b);
}
}
}
}
//Pair.print(dp);
int a = dp[size][sum].a;
int b = sum-dp[size][sum].b;
out.write(a+" "+b);
out.flush();
}
static void print(int[] array){
for(int j=0;j<array.length;j++){
System.out.print(array[j]+" ");
}
System.out.println();
}
static void print(int[][] array){
for(int i=0;i< array.length;i++) {
for (int j = 0; j < array[0].length; j++) {
System.out.print(array[i][j] + " ");
}
System.out.println();
}
}
static void print(boolean[] array){
for(int j=0;j<array.length;j++){
System.out.print(array[j]+" ");
}
System.out.println();
}
static void print(boolean[][] array){
for(int i=0;i< array.length;i++) {
for (int j = 0; j < array[0].length; j++) {
System.out.print(array[i][j] + " ");
}
System.out.println();
}
}
static void print(long[] array){
for(int j=0;j<array.length;j++){
System.out.print(array[j]+" ");
}
System.out.println();
}
static void print(long[][] array){
for(int i=0;i< array.length;i++) {
for (int j = 0; j < array[0].length; j++) {
System.out.print(array[i][j] + " ");
}
System.out.println();
}
}
static void print(String[] array){
for(int j=0;j<array.length;j++){
System.out.print(array[j]+" ");
}
System.out.println();
}
static void print(String[][] array){
for(int i=0;i< array.length;i++) {
for (int j = 0; j < array[0].length; j++) {
System.out.print(array[i][j] + " ");
}
System.out.println();
}
}
}
| 4JAVA
| {
"input": [
"2\n1 1\n100 100\n",
"5\n10 30 5 6 24\n10 41 7 8 24\n",
"4\n3 3 4 3\n4 7 6 5\n",
"30\n10 1 8 10 2 6 45 7 3 7 1 3 1 1 14 2 5 19 4 1 13 3 5 6 1 5 1 1 23 1\n98 4 43 41 56 58 85 51 47 55 20 85 93 12 49 15 95 72 20 4 68 24 16 97 21 52 18 69 89 15\n",
"20\n8 1 44 1 12 1 9 11 1 1 5 2 9 16 16 2 1 5 4 1\n88 2 80 33 55 3 74 61 17 11 11 16 42 81 88 14 4 81 60 10\n",
"40\n31 72 17 63 89 13 72 42 39 30 23 29 5 61 88 37 7 23 49 32 41 25 17 15 9 25 30 61 29 66 24 40 75 67 69 22 61 22 13 35\n32 73 20 68 98 13 74 79 41 33 27 85 5 68 95 44 9 24 95 36 45 26 20 31 10 53 37 72 51 84 24 59 80 75 74 22 72 27 13 39\n",
"2\n1 1\n100 1\n",
"40\n9 18 41 31 27 24 76 32 4 38 1 35 21 3 26 32 31 13 41 31 39 14 45 15 12 5 7 14 3 14 19 11 1 81 1 4 7 28 4 62\n70 21 95 63 66 30 100 42 4 80 83 39 34 6 27 55 72 38 43 48 81 53 54 30 63 23 9 59 3 83 83 95 1 81 30 40 35 58 8 66\n",
"90\n1 9 3 3 14 3 2 32 17 3 1 1 4 1 18 1 1 21 9 1 2 10 6 9 27 15 5 1 3 37 1 2 1 12 6 1 8 4 1 5 1 3 8 9 1 9 23 1 1 2 1 2 2 19 2 6 5 6 1 7 12 35 1 2 8 1 11 32 7 4 12 9 18 8 9 27 31 15 16 4 16 13 2 2 1 4 12 17 10 1\n8 52 13 56 42 40 8 98 64 47 84 11 12 1 97 8 8 66 35 4 6 62 22 38 68 57 50 28 28 88 7 57 9 81 14 37 71 57 33 24 2 21 54 58 58 27 79 3 55 13 2 95 17 97 61 22 28 85 78 72 68 80 12 41 98 18 35 70 40 22 98 85 51 70 79 100 68 29 73 45 89 64 53 6 16 29 73 53 24 69\n",
"69\n24 32 19 37 36 7 15 10 54 12 15 46 3 25 12 16 3 8 55 21 23 57 17 45 11 4 25 35 39 3 69 24 78 40 12 39 1 44 4 75 53 60 1 6 30 7 6 39 44 13 31 6 4 4 32 11 52 58 81 2 33 7 29 19 21 26 22 60 24\n57 56 50 64 40 58 31 20 81 14 43 64 48 38 56 71 58 26 98 92 52 88 71 93 11 20 79 39 56 7 92 54 88 58 19 85 12 71 4 87 78 90 29 18 89 13 86 71 100 24 65 95 46 8 91 35 62 66 96 36 80 24 81 58 53 86 89 67 73\n",
"38\n2 1 1 1 1 9 5 2 1 3 4 3 1 7 4 4 8 7 1 5 4 9 1 6 3 4 1 4 1 5 5 1 8 3 1 3 6 3\n2 1 6 2 9 10 6 2 1 5 4 6 1 7 4 6 10 8 8 6 4 10 1 6 4 4 6 4 4 8 5 2 10 7 3 5 6 3\n",
"1\n1\n1\n",
"32\n4 1 1 6 2 5 8 6 5 6 3 2 1 3 1 9 1 2 1 5 2 1 6 5 3 7 3 3 2 5 1 1\n8 1 3 6 4 7 9 8 6 8 10 2 5 3 2 10 1 10 9 5 4 1 8 7 8 7 4 10 4 6 9 2\n",
"86\n5 1 3 1 1 1 1 9 4 1 3 1 4 6 3 2 2 7 1 1 3 1 2 1 1 5 4 3 6 3 3 4 8 2 1 3 1 2 7 2 5 4 2 1 1 2 1 3 2 9 1 4 2 1 1 9 6 1 8 1 7 9 4 3 4 1 3 1 1 3 1 1 3 1 1 10 7 7 4 1 1 3 1 6 1 3\n10 2 5 7 1 4 7 9 4 7 3 1 5 6 3 8 4 10 5 1 9 3 4 2 1 5 7 4 7 7 7 5 9 5 3 3 6 4 7 2 9 7 3 4 2 3 1 5 6 9 10 4 8 10 10 9 7 8 10 1 7 10 10 7 8 5 8 2 1 4 1 2 3 8 1 10 9 7 4 2 1 3 4 9 2 3\n",
"60\n3 3 22 46 23 19 2 27 3 26 34 18 8 50 13 18 23 26 9 14 7 2 17 12 63 25 4 71 14 47 70 13 6 38 28 22 94 10 51 7 29 1 54 12 8 5 4 34 11 24 2 14 54 65 11 30 3 23 12 11\n4 54 69 97 45 53 2 41 4 74 78 66 85 59 19 38 82 28 11 41 15 43 41 43 77 77 50 75 46 66 97 93 50 44 69 22 94 23 61 27 44 1 56 25 31 63 8 37 23 57 6 17 54 68 14 40 43 31 31 60\n",
"1\n100\n100\n",
"73\n69 67 34 35 10 27 30 27 31 48 25 18 81 54 32 54 5 62 20 4 94 2 60 4 6 11 62 68 14 18 42 18 33 71 72 2 29 7 36 60 10 25 17 2 38 77 34 36 74 76 63 32 42 29 22 14 5 1 6 2 14 19 20 19 41 31 16 17 50 49 2 22 51\n73 70 58 54 10 71 59 35 91 61 52 65 90 70 37 80 12 94 78 34 97 4 62 95 10 11 93 100 14 38 56 42 96 96 84 71 69 43 50 79 11 83 95 76 39 79 61 42 89 90 71 62 43 38 39 21 5 40 27 13 21 73 30 46 47 34 23 22 57 59 6 25 72\n",
"70\n13 42 8 56 21 58 39 2 49 39 15 26 62 45 26 8 47 40 9 36 41 2 4 38 6 55 2 41 72 18 10 2 6 11 4 39 19 39 14 59 5 42 19 79 12 3 1 1 21 6 5 9 36 6 38 2 7 26 8 15 66 7 1 30 93 34 45 24 12 20\n26 56 25 60 26 79 99 7 68 92 99 32 81 48 39 97 49 95 18 82 59 4 99 41 10 63 43 54 76 97 73 7 17 43 4 84 35 86 20 63 8 59 87 80 34 3 8 13 49 55 14 11 68 8 41 33 14 39 43 31 89 13 7 88 93 51 84 73 26 30\n",
"81\n21 13 1 25 14 33 33 41 53 89 2 18 61 8 3 35 15 59 2 2 3 5 75 37 1 34 7 12 33 66 6 4 14 78 3 16 12 45 3 2 1 17 17 45 4 30 68 40 44 3 1 21 64 63 14 19 75 63 7 9 12 75 20 28 16 20 53 26 13 46 18 8 28 32 9 29 1 11 75 4 21\n45 90 21 31 36 68 71 47 59 89 61 32 98 67 7 53 90 86 6 28 4 83 93 62 8 56 18 35 33 92 36 37 23 98 44 21 23 79 10 4 2 18 48 87 29 86 79 74 45 3 6 23 79 71 17 39 88 73 50 15 13 92 33 47 83 48 73 33 15 63 43 14 90 72 9 95 1 22 83 20 29\n",
"90\n4 2 21 69 53 39 2 2 8 58 7 5 2 82 7 9 13 10 2 44 1 7 2 1 50 42 36 17 14 46 19 1 50 20 51 46 9 59 73 61 76 4 19 22 1 43 53 2 5 5 32 7 5 42 30 14 32 6 6 15 20 24 13 8 5 19 9 9 7 20 7 2 55 36 5 33 64 20 22 22 9 30 67 38 68 2 13 19 2 9\n48 4 39 85 69 70 11 42 65 77 61 6 60 84 67 15 99 12 2 84 51 17 10 3 50 45 57 53 20 52 64 72 74 44 80 83 70 61 82 81 88 17 22 53 1 44 66 21 10 84 39 11 5 77 93 74 90 17 83 85 70 36 28 87 6 48 22 23 100 22 97 64 96 89 52 49 95 93 34 37 18 69 69 43 83 70 14 54 2 30\n",
"60\n70 19 46 34 43 19 75 42 47 14 66 64 63 58 55 79 38 45 49 80 72 54 96 26 63 41 12 55 14 56 79 51 12 9 14 77 70 75 46 27 45 10 76 59 40 67 55 24 26 90 50 75 12 93 27 39 46 58 66 31\n73 23 48 49 53 23 76 62 65 14 67 89 66 71 59 90 40 47 68 82 81 61 96 48 99 53 13 60 21 63 83 75 15 12 16 80 74 87 66 31 45 12 76 61 45 88 55 32 28 90 50 75 12 94 29 51 57 85 84 38\n",
"1\n50\n100\n",
"20\n59 35 29 57 85 70 26 53 56 3 11 56 43 20 81 72 77 72 36 61\n67 53 80 69 100 71 30 63 60 3 20 56 75 23 97 80 81 85 49 80\n",
"1\n1\n2\n",
"10\n5 12 10 18 10 9 2 20 5 20\n70 91 36 94 46 15 10 73 55 43\n",
"63\n8 23 6 19 1 34 23 1 15 58 22 10 5 14 41 1 16 48 68 5 13 19 1 4 35 2 42 8 45 24 52 44 59 78 5 11 14 41 10 26 60 26 9 15 34 1 14 5 2 6 19 7 4 26 49 39 13 40 18 62 66 8 4\n17 25 39 45 2 44 40 1 82 68 80 27 7 58 90 20 100 80 79 21 53 62 2 11 51 98 78 55 48 37 89 74 83 91 64 30 20 50 24 74 81 94 33 64 56 28 57 9 27 50 81 34 18 33 53 61 39 89 44 77 86 40 89\n",
"80\n11 6 9 6 5 18 21 11 6 6 2 9 4 1 10 12 2 9 1 14 6 12 16 14 4 5 1 16 3 4 6 1 11 30 2 4 1 11 1 6 1 3 2 14 6 14 13 1 10 2 4 14 11 8 28 2 2 3 1 6 26 3 11 4 1 1 29 4 5 4 3 5 1 4 2 12 59 3 18 1\n94 43 36 86 12 75 50 80 55 14 5 97 17 25 28 86 51 56 17 88 48 40 31 39 51 58 4 75 70 30 11 8 61 88 10 25 35 46 31 51 20 79 22 54 19 67 31 89 42 70 30 37 35 78 95 31 31 51 31 50 54 90 63 27 6 2 92 80 48 9 27 33 61 63 30 38 95 46 86 45\n",
"10\n96 4 51 40 89 36 35 38 4 82\n99 8 56 42 94 46 35 43 4 84\n",
"70\n20 7 5 7 3 10 1 14 33 1 5 3 4 21 7 7 1 2 2 2 8 15 18 2 7 1 1 1 15 2 27 2 6 21 4 2 7 5 1 6 13 36 13 1 10 5 8 13 24 2 10 16 11 9 4 1 1 8 6 26 9 3 3 2 8 5 17 9 1 13\n85 36 76 36 65 24 37 56 78 42 33 13 29 93 31 38 1 59 71 31 28 55 70 14 33 9 1 5 41 22 86 41 92 89 88 10 39 54 6 32 58 82 49 22 62 44 29 19 54 12 59 54 51 80 66 16 22 74 8 68 35 34 24 8 22 14 55 76 32 75\n",
"33\n33 20 33 40 58 50 5 6 13 12 4 33 11 50 12 19 16 36 68 57 23 17 6 22 39 58 49 21 10 35 35 17 12\n62 22 53 44 66 60 97 7 33 18 10 59 33 77 55 63 91 86 87 86 27 62 65 53 46 69 64 63 10 53 52 23 24\n",
"2\n1 1\n1 1\n",
"50\n2 1 2 2 38 19 1 2 7 1 2 5 5 1 14 53 21 1 17 9 4 1 24 8 1 1 1 5 4 14 37 1 15 1 4 15 1 3 3 16 17 1 10 18 36 14 25 8 8 48\n45 24 8 12 83 37 6 20 88 9 10 11 28 9 60 98 76 20 84 95 15 45 74 48 37 2 46 34 99 57 94 70 31 22 11 88 58 25 20 73 64 64 81 80 59 64 92 31 43 89\n",
"50\n72 9 46 38 43 75 63 73 70 11 9 48 32 93 33 24 46 44 27 78 43 2 26 84 42 78 35 34 76 36 67 79 82 63 17 26 30 43 35 34 54 37 13 65 8 37 8 8 70 79\n96 19 54 54 44 75 66 80 71 12 9 54 38 95 39 25 48 52 39 86 44 2 27 99 54 99 35 44 80 36 86 93 98 73 27 30 39 43 80 34 61 38 13 69 9 37 8 9 75 97\n",
"1\n1\n100\n",
"80\n2 8 36 12 22 41 1 42 6 66 62 94 37 1 5 1 82 8 9 31 14 8 15 5 21 8 5 22 1 17 1 44 1 12 8 45 37 38 13 4 13 4 8 8 3 15 13 53 22 8 19 14 16 7 7 49 1 10 31 33 7 47 61 6 9 48 6 25 16 4 43 1 5 34 8 22 31 38 59 45\n33 90 47 22 28 67 4 44 13 76 65 94 40 8 12 21 88 15 74 37 37 22 19 53 91 26 88 99 1 61 3 75 2 14 8 96 41 76 13 96 41 44 66 48 40 17 41 60 48 9 62 46 56 46 31 63 6 84 68 43 7 88 62 36 52 92 23 27 46 87 52 9 50 44 33 30 33 63 79 72\n",
"20\n24 22 4 34 76 13 78 1 81 51 72 11 25 46 22 33 60 42 25 19\n40 81 10 34 84 16 90 38 99 81 100 19 79 65 26 80 62 47 76 47\n",
"30\n33 4 1 42 86 85 35 51 45 88 23 35 79 92 81 46 47 32 41 17 18 36 28 58 31 15 17 38 49 78\n36 4 1 49 86 86 43 51 64 93 24 42 82 98 92 47 56 41 41 25 20 53 32 61 53 26 20 38 49 98\n",
"2\n1 1\n1 100\n",
"10\n18 42 5 1 26 8 40 34 8 29\n18 71 21 67 38 13 99 37 47 76\n",
"35\n9 7 34 3 2 6 36 3 26 12 17 8 5 32 55 10 24 19 2 3 30 17 14 1 33 36 42 14 51 1 2 22 13 34 28\n9 9 55 17 16 12 37 14 27 58 51 16 10 37 69 15 43 26 14 60 86 34 54 1 37 50 58 18 92 66 7 24 25 92 30\n",
"60\n9 9 11 16 58 6 25 6 3 23 1 14 1 8 4 2 1 18 10 1 13 4 23 1 38 6 1 13 5 1 1 1 2 1 1 17 1 24 18 20 2 1 9 26 1 12 3 6 7 17 18 1 2 9 3 6 3 30 7 12\n47 82 78 52 99 51 90 23 58 49 2 98 100 60 25 60 6 69 79 6 91 47 69 18 99 46 30 51 11 3 42 17 33 61 14 81 16 76 72 94 13 5 51 88 26 43 80 31 26 70 93 76 18 67 25 86 60 81 40 38\n",
"30\n29 3 2 13 3 12 73 22 37 48 59 17 2 13 69 43 32 14 4 2 61 22 40 30 1 4 46 5 65 17\n55 3 3 92 25 27 97 40 55 74 91 31 7 33 72 62 61 40 16 2 70 61 67 72 8 5 48 9 75 84\n",
"77\n44 2 13 14 8 46 65 14 1 39 12 18 15 10 2 40 71 40 17 1 16 72 13 7 41 23 81 12 4 1 19 18 41 35 23 56 21 5 17 47 88 1 24 15 48 15 1 13 50 5 31 16 21 47 4 1 49 2 15 23 46 47 27 22 23 40 29 4 30 50 51 12 20 14 41 25 12\n57 16 72 59 28 80 74 19 4 60 52 52 97 20 5 69 84 66 63 38 50 79 24 84 58 92 99 36 38 97 66 79 41 48 26 95 28 38 28 72 95 71 30 15 63 17 7 69 90 29 89 40 21 83 73 24 51 14 15 74 100 88 74 27 46 61 38 4 32 52 52 51 47 51 81 75 19\n",
"70\n17 70 52 31 15 51 8 38 3 43 2 34 7 16 58 29 73 23 41 88 9 24 24 90 33 84 10 29 67 17 47 72 11 79 22 5 8 65 23 7 29 31 11 42 11 14 9 3 54 22 38 34 2 4 39 13 11 34 3 35 22 18 3 57 23 21 13 23 78 7\n18 72 58 55 87 56 9 39 60 79 74 82 9 39 66 32 89 25 46 95 26 31 28 94 36 96 19 37 77 61 50 82 22 81 37 9 11 96 33 12 90 74 11 42 88 86 24 3 85 31 82 81 3 7 69 47 27 51 49 98 33 40 5 94 83 35 21 24 89 49\n",
"50\n48 29 72 22 99 27 40 23 39 4 46 29 39 16 47 35 79 7 15 23 50 34 35 22 9 2 51 10 2 42 4 3 30 2 72 19 50 20 11 29 1 2 1 7 7 6 7 75 40 69\n81 36 76 26 100 41 99 39 52 73 83 51 54 86 73 49 79 27 83 90 100 40 49 81 22 54 85 21 26 79 36 96 73 10 98 31 65 39 89 39 1 32 5 20 71 39 87 80 60 86\n",
"40\n10 32 10 7 10 6 25 3 18 4 24 4 8 14 6 15 11 8 2 8 2 5 19 9 5 5 3 34 5 1 6 6 1 4 5 26 34 2 21 1\n35 66 54 11 58 68 75 12 69 94 80 33 23 48 45 66 94 53 25 53 83 30 64 49 69 84 73 85 26 41 10 65 23 56 58 93 58 7 100 7\n",
"35\n21 2 68 56 41 25 42 17 21 20 29 26 38 37 29 77 43 13 32 48 38 31 15 8 52 6 63 45 70 2 21 13 3 14 47\n46 83 100 87 59 95 47 33 56 60 38 76 63 75 60 92 65 43 56 94 70 80 46 40 64 6 83 50 75 19 52 66 13 88 62\n",
"77\n19 34 39 56 1 2 47 8 17 28 23 45 18 7 5 3 11 20 30 24 13 34 11 1 4 14 68 23 13 33 3 8 1 5 8 23 12 1 19 14 22 67 26 55 10 1 63 82 82 6 38 5 6 11 1 62 1 12 5 40 19 20 37 9 5 3 2 44 13 20 44 32 11 29 12 19 35\n28 41 43 68 1 36 57 13 84 89 26 92 47 19 7 94 79 75 74 42 32 44 46 23 96 46 82 86 91 33 25 11 12 68 22 31 89 14 81 32 50 94 27 66 50 39 98 90 91 11 69 6 45 19 15 74 22 31 7 92 23 98 88 32 8 4 2 51 79 69 70 43 16 60 29 20 98\n",
"90\n9 2 2 3 4 1 9 8 3 3 1 1 1 1 2 2 1 3 4 8 8 1 2 7 3 4 5 6 1 2 9 4 2 5 6 1 1 2 6 5 1 4 3 2 4 1 1 3 1 1 3 1 8 3 1 4 1 2 2 3 5 2 8 6 2 5 2 1 4 2 1 5 4 2 1 1 2 1 1 6 4 4 3 4 1 4 4 6 2 3\n10 6 2 3 10 1 10 10 6 4 1 3 6 1 2 5 3 7 7 9 9 2 3 8 3 4 9 7 8 4 10 7 8 10 9 5 1 4 6 5 1 9 10 4 6 4 1 3 3 1 6 1 9 4 1 6 4 5 5 10 7 9 9 10 4 5 2 1 4 2 1 7 6 5 3 9 2 5 1 8 6 4 6 10 1 7 5 9 6 4\n",
"90\n1 43 87 1 6 12 49 6 3 9 38 1 64 49 11 18 5 1 46 25 30 82 17 4 8 9 5 5 4 1 10 4 13 42 44 90 1 11 27 23 25 4 12 19 48 3 59 48 39 14 1 5 64 46 39 24 28 77 25 20 3 14 28 2 20 63 2 1 13 11 44 49 61 76 20 1 3 42 38 8 69 17 27 18 29 54 2 1 2 7\n8 96 91 1 11 20 83 34 41 88 54 4 65 82 48 60 62 18 76 74 75 89 87 8 11 32 67 7 5 1 92 88 57 92 76 95 35 58 68 23 30 25 12 31 85 5 89 84 71 23 1 5 76 56 57 57 76 94 33 34 66 20 54 5 22 69 2 19 28 62 74 88 91 86 30 6 3 48 80 10 84 20 44 37 81 100 12 3 6 8\n",
"80\n36 80 23 45 68 72 2 69 84 33 3 43 6 64 82 54 15 15 17 4 3 29 74 14 53 50 52 27 32 18 60 62 50 29 28 48 77 11 24 17 3 55 58 20 4 32 55 16 27 60 5 77 23 31 11 60 21 65 38 39 82 58 51 78 24 30 75 79 5 41 94 10 14 7 1 26 21 41 6 52\n37 93 24 46 99 74 2 93 86 33 3 44 6 71 88 65 15 19 24 4 3 40 82 14 62 81 56 30 33 30 62 62 70 29 31 53 78 13 27 31 3 65 61 20 5 41 58 25 27 61 6 87 26 31 13 62 25 71 44 45 82 75 62 95 24 44 82 94 6 50 94 10 15 15 1 29 35 60 8 68\n",
"83\n13 20 5 29 48 53 88 17 11 5 44 15 85 13 2 55 6 16 57 29 12 15 12 92 21 25 1 2 4 5 2 22 8 18 22 2 3 10 43 71 3 41 1 73 6 18 32 63 26 13 6 75 19 10 41 30 15 12 14 8 15 77 73 7 5 39 83 19 2 2 3 61 53 43 3 15 76 29 8 46 19 3 8\n54 34 15 58 50 67 100 43 30 15 46 26 94 75 2 58 85 38 68 98 83 51 82 100 61 27 5 5 41 89 17 34 10 48 48 4 15 13 71 75 4 44 2 82 18 82 59 96 26 13 66 95 81 33 85 45 16 92 41 37 85 78 83 17 7 72 83 38 69 24 18 76 71 66 3 66 78 31 73 72 43 89 49\n",
"70\n67 38 59 72 9 64 12 3 51 58 50 4 16 46 62 77 58 73 7 92 48 9 90 50 35 9 61 57 50 20 48 61 27 77 47 6 83 28 78 14 68 32 2 2 22 57 34 71 26 74 3 76 41 66 30 69 34 16 29 7 14 19 11 5 13 66 19 19 17 55\n69 41 84 91 10 77 12 7 70 74 55 7 30 63 66 79 89 88 10 93 89 15 91 81 41 26 65 67 55 37 73 94 34 94 47 6 90 31 100 25 69 33 2 3 43 97 37 95 35 85 3 78 50 86 30 73 34 21 32 13 21 32 11 5 13 80 23 20 17 58\n",
"85\n20 47 52 6 5 15 35 42 5 84 4 8 61 47 7 50 20 24 15 27 86 28 1 39 1 2 63 2 31 33 47 4 33 68 20 4 4 42 20 67 7 10 46 4 22 36 30 40 4 15 51 2 39 50 65 48 34 6 50 19 32 48 8 23 42 70 69 8 29 81 5 1 7 21 3 30 78 6 2 1 3 69 34 34 18\n74 64 89 61 5 17 75 43 13 87 30 51 93 54 7 76 44 44 98 77 86 97 1 41 1 3 69 3 80 87 67 6 90 100 31 5 7 46 99 67 9 44 56 7 39 39 55 80 80 33 77 9 89 79 86 53 49 49 72 87 43 84 24 23 43 94 74 17 54 96 28 64 14 42 91 60 87 69 20 1 30 95 44 50 20\n",
"30\n10 1 8 10 2 6 37 7 3 7 1 3 1 1 14 2 5 19 4 1 13 3 5 6 1 5 1 1 23 1\n98 4 43 41 56 58 85 51 47 55 20 85 93 12 49 15 95 72 20 4 68 24 16 97 21 52 18 69 89 15\n",
"20\n8 1 44 1 12 1 9 11 1 1 5 2 9 13 16 2 1 5 4 1\n88 2 80 33 55 3 74 61 17 11 11 16 42 81 88 14 4 81 60 10\n",
"2\n2 1\n100 1\n",
"40\n9 18 41 31 27 24 76 32 4 38 1 35 21 3 26 32 31 13 41 31 39 14 45 15 12 5 7 14 3 14 19 11 1 81 1 4 7 28 4 62\n70 21 95 63 66 30 100 42 4 80 83 39 34 6 27 55 72 38 43 48 81 53 54 30 63 23 9 59 3 83 83 95 1 81 30 40 35 45 8 66\n",
"90\n1 9 3 3 14 3 2 32 17 3 1 1 4 1 18 1 1 21 9 1 2 10 6 9 27 15 5 2 3 37 1 2 1 12 6 1 8 4 1 5 1 3 8 9 1 9 23 1 1 2 1 2 2 19 2 6 5 6 1 7 12 35 1 2 8 1 11 32 7 4 12 9 18 8 9 27 31 15 16 4 16 13 2 2 1 4 12 17 10 1\n8 52 13 56 42 40 8 98 64 47 84 11 12 1 97 8 8 66 35 4 6 62 22 38 68 57 50 28 28 88 7 57 9 81 14 37 71 57 33 24 2 21 54 58 58 27 79 3 55 13 2 95 17 97 61 22 28 85 78 72 68 80 12 41 98 18 35 70 40 22 98 85 51 70 79 100 68 29 73 45 89 64 53 6 16 29 73 53 24 69\n",
"69\n24 32 19 37 36 7 15 10 54 12 15 46 3 25 12 16 3 8 55 21 23 57 17 45 11 4 25 35 39 3 69 24 78 40 12 39 1 44 4 75 53 60 1 6 30 7 6 39 44 13 31 6 4 4 32 11 52 58 81 2 33 7 29 19 21 26 22 60 24\n57 56 50 64 40 58 31 20 81 14 43 64 48 38 56 71 58 26 98 92 52 88 71 93 11 20 79 39 56 7 92 54 88 106 19 85 12 71 4 87 78 90 29 18 89 13 86 71 100 24 65 95 46 8 91 35 62 66 96 36 80 24 81 58 53 86 89 67 73\n",
"38\n2 1 1 1 1 9 5 2 1 3 4 3 1 7 4 4 8 7 1 5 4 9 1 6 3 0 1 4 1 5 5 1 8 3 1 3 6 3\n2 1 6 2 9 10 6 2 1 5 4 6 1 7 4 6 10 8 8 6 4 10 1 6 4 4 6 4 4 8 5 2 10 7 3 5 6 3\n",
"32\n4 1 1 6 2 5 8 6 5 6 3 2 1 3 1 9 1 2 1 5 2 1 6 5 3 7 0 3 2 5 1 1\n8 1 3 6 4 7 9 8 6 8 10 2 5 3 2 10 1 10 9 5 4 1 8 7 8 7 4 10 4 6 9 2\n",
"86\n5 1 3 1 1 1 1 9 4 1 3 1 4 6 3 2 2 7 1 1 3 1 2 1 1 5 4 3 6 3 3 4 8 2 1 3 1 2 7 2 5 4 2 1 1 2 1 3 2 9 1 4 2 1 1 9 4 1 8 1 7 9 4 3 4 1 3 1 1 3 1 1 3 1 1 10 7 7 4 1 1 3 1 6 1 3\n10 2 5 7 1 4 7 9 4 7 3 1 5 6 3 8 4 10 5 1 9 3 4 2 1 5 7 4 7 7 7 5 9 5 3 3 6 4 7 2 9 7 3 4 2 3 1 5 6 9 10 4 8 10 10 9 7 8 10 1 7 10 10 7 8 5 8 2 1 4 1 2 3 8 1 10 9 7 4 2 1 3 4 9 2 3\n",
"60\n3 3 22 46 23 19 2 27 3 26 34 18 8 50 5 18 23 26 9 14 7 2 17 12 63 25 4 71 14 47 70 13 6 38 28 22 94 10 51 7 29 1 54 12 8 5 4 34 11 24 2 14 54 65 11 30 3 23 12 11\n4 54 69 97 45 53 2 41 4 74 78 66 85 59 19 38 82 28 11 41 15 43 41 43 77 77 50 75 46 66 97 93 50 44 69 22 94 23 61 27 44 1 56 25 31 63 8 37 23 57 6 17 54 68 14 40 43 31 31 60\n",
"73\n69 67 34 35 10 27 30 27 31 48 25 18 81 54 32 54 5 62 20 4 94 2 60 4 6 11 62 68 14 18 42 18 33 71 72 2 29 7 36 60 10 25 17 2 38 77 34 36 74 76 63 32 42 29 22 14 5 1 6 2 14 19 20 19 41 31 16 17 50 49 2 22 51\n73 70 58 54 10 108 59 35 91 61 52 65 90 70 37 80 12 94 78 34 97 4 62 95 10 11 93 100 14 38 56 42 96 96 84 71 69 43 50 79 11 83 95 76 39 79 61 42 89 90 71 62 43 38 39 21 5 40 27 13 21 73 30 46 47 34 23 22 57 59 6 25 72\n",
"70\n13 42 8 56 21 58 39 2 49 39 15 26 62 45 26 8 47 40 9 36 41 2 4 38 6 55 2 41 72 18 10 2 6 11 4 39 19 39 14 59 5 42 19 79 12 3 1 1 21 6 5 9 36 6 38 2 7 26 8 15 66 7 1 30 93 34 45 24 12 20\n26 56 25 60 26 79 99 7 68 92 99 32 81 48 39 97 49 95 18 82 59 4 99 41 10 63 43 54 76 97 73 7 17 62 4 84 35 86 20 63 8 59 87 80 34 3 8 13 49 55 14 11 68 8 41 33 14 39 43 31 89 13 7 88 93 51 84 73 26 30\n",
"81\n21 13 1 25 14 33 33 41 53 89 2 18 61 8 3 35 15 59 2 2 3 5 75 37 1 34 7 12 33 66 6 4 14 78 3 16 12 45 3 2 1 17 17 45 4 30 68 40 44 3 1 21 64 63 14 19 75 63 7 9 12 75 20 28 16 20 53 26 13 46 17 8 28 32 9 29 1 11 75 4 21\n45 90 21 31 36 68 71 47 59 89 61 32 98 67 7 53 90 86 6 28 4 83 93 62 8 56 18 35 33 92 36 37 23 98 44 21 23 79 10 4 2 18 48 87 29 86 79 74 45 3 6 23 79 71 17 39 88 73 50 15 13 92 33 47 83 48 73 33 15 63 43 14 90 72 9 95 1 22 83 20 29\n",
"90\n4 2 21 69 53 39 2 2 8 58 7 5 2 82 7 9 13 10 2 44 1 7 2 1 50 42 36 17 14 46 19 1 50 20 51 46 9 59 73 61 76 4 19 22 1 43 53 2 5 5 32 7 5 42 30 14 32 6 6 15 20 24 13 8 5 19 9 9 7 20 7 2 55 36 5 33 64 20 22 22 9 30 67 38 68 2 13 19 2 9\n48 4 39 85 69 70 11 42 65 77 61 6 60 84 67 15 99 12 2 84 51 17 10 3 50 45 57 53 20 52 64 72 74 44 80 83 70 61 82 81 88 17 22 53 1 44 66 21 10 84 39 11 5 77 93 74 90 17 83 46 70 36 28 87 6 48 22 23 100 22 97 64 96 89 52 49 95 93 34 37 18 69 69 43 83 70 14 54 2 30\n",
"1\n51\n100\n",
"20\n59 35 29 57 85 70 26 53 56 3 11 56 43 20 81 72 77 72 36 61\n67 53 80 69 100 71 30 63 60 3 20 56 75 23 97 80 81 85 49 160\n",
"10\n5 12 10 18 10 9 3 20 5 20\n70 91 36 94 46 15 10 73 55 43\n",
"63\n8 23 6 19 1 34 23 1 15 58 22 10 5 14 41 1 16 48 68 5 13 19 1 4 35 2 42 8 45 24 52 44 59 78 5 11 14 41 10 26 60 26 9 15 34 1 14 5 2 6 19 7 4 26 49 39 13 40 18 62 66 8 4\n17 25 39 45 2 44 40 1 82 68 80 27 7 58 90 20 100 80 79 21 53 62 2 11 51 98 78 55 48 37 89 74 83 91 64 30 20 50 24 74 81 160 33 64 56 28 57 9 27 50 81 34 18 33 53 61 39 89 44 77 86 40 89\n",
"80\n11 6 9 6 5 18 21 11 6 6 2 9 4 1 10 12 2 9 1 14 6 12 16 14 4 5 1 16 3 4 6 1 11 30 2 4 1 11 1 6 1 3 2 14 6 14 13 1 10 2 4 14 11 8 28 2 2 3 1 6 26 3 11 4 1 1 29 4 5 4 3 5 1 4 2 12 59 3 18 1\n94 43 36 86 12 75 50 80 55 14 5 97 17 25 28 86 51 56 17 88 48 40 31 39 51 58 4 75 70 30 11 8 61 88 10 25 35 46 31 51 20 79 22 54 19 67 31 89 42 70 30 37 35 78 95 31 31 51 31 50 54 90 63 27 6 2 92 80 48 9 27 33 61 63 30 38 95 87 86 45\n",
"10\n96 4 51 40 89 36 35 38 4 82\n99 8 56 42 94 46 35 57 4 84\n",
"70\n20 7 5 7 3 10 1 14 33 1 5 3 4 21 7 7 1 2 2 2 8 15 18 2 7 1 1 1 15 2 27 2 0 21 4 2 7 5 1 6 13 36 13 1 10 5 8 13 24 2 10 16 11 9 4 1 1 8 6 26 9 3 3 2 8 5 17 9 1 13\n85 36 76 36 65 24 37 56 78 42 33 13 29 93 31 38 1 59 71 31 28 55 70 14 33 9 1 5 41 22 86 41 92 89 88 10 39 54 6 32 58 82 49 22 62 44 29 19 54 12 59 54 51 80 66 16 22 74 8 68 35 34 24 8 22 14 55 76 32 75\n",
"33\n33 20 33 40 58 50 2 6 13 12 4 33 11 50 12 19 16 36 68 57 23 17 6 22 39 58 49 21 10 35 35 17 12\n62 22 53 44 66 60 97 7 33 18 10 59 33 77 55 63 91 86 87 86 27 62 65 53 46 69 64 63 10 53 52 23 24\n",
"50\n2 1 2 2 38 19 1 2 7 1 2 5 5 1 14 53 21 1 17 9 4 1 24 8 1 1 1 5 4 14 37 1 15 1 4 15 1 3 3 16 17 1 10 18 36 14 25 8 8 48\n45 24 8 12 83 37 6 20 88 9 10 11 28 9 60 98 76 20 84 95 15 45 74 48 37 2 46 34 99 57 94 70 31 22 11 88 58 25 20 73 64 64 81 80 59 64 51 31 43 89\n",
"50\n72 9 46 38 43 75 63 73 70 11 9 48 32 93 33 24 46 44 27 78 43 2 26 84 42 78 35 34 76 36 67 79 82 63 17 26 30 43 35 34 54 37 13 65 8 37 8 8 70 91\n96 19 54 54 44 75 66 80 71 12 9 54 38 95 39 25 48 52 39 86 44 2 27 99 54 99 35 44 80 36 86 93 98 73 27 30 39 43 80 34 61 38 13 69 9 37 8 9 75 97\n",
"80\n2 8 36 12 22 41 1 42 6 66 62 94 37 1 5 1 82 8 9 31 14 8 15 5 21 8 5 22 1 17 1 44 1 12 8 45 37 38 13 4 13 4 8 8 3 15 13 53 22 8 19 14 16 7 7 49 1 10 31 33 7 47 61 6 9 48 6 25 16 4 43 1 5 34 8 22 31 38 59 45\n33 90 47 22 28 67 4 44 13 76 65 94 40 8 12 21 88 15 74 37 37 22 19 53 91 26 88 99 1 61 3 75 2 14 8 96 41 76 13 96 41 44 66 48 40 17 41 60 48 9 62 46 56 46 31 63 6 84 68 43 7 88 62 36 52 92 23 27 46 87 52 9 50 44 33 30 62 63 79 72\n",
"20\n24 22 4 34 76 13 78 1 81 51 72 11 25 46 22 33 60 42 25 19\n40 81 10 34 84 24 90 38 99 81 100 19 79 65 26 80 62 47 76 47\n",
"10\n18 42 5 1 26 8 40 34 8 29\n18 71 21 67 18 13 99 37 47 76\n",
"35\n9 7 34 3 2 6 36 3 26 12 17 8 5 32 55 10 24 19 2 3 30 17 14 1 33 36 42 14 51 1 2 22 13 34 28\n9 9 55 17 16 12 37 14 27 58 51 16 10 37 69 15 43 26 14 60 86 34 54 1 37 50 75 18 92 66 7 24 25 92 30\n",
"60\n9 9 11 16 58 6 25 6 3 23 1 14 1 8 4 2 1 18 10 1 13 4 23 1 38 6 1 13 5 1 1 1 2 1 1 17 1 24 18 39 2 1 9 26 1 12 3 6 7 17 18 1 2 9 3 6 3 30 7 12\n47 82 78 52 99 51 90 23 58 49 2 98 100 60 25 60 6 69 79 6 91 47 69 18 99 46 30 51 11 3 42 17 33 61 14 81 16 76 72 94 13 5 51 88 26 43 80 31 26 70 93 76 18 67 25 86 60 81 40 38\n",
"30\n29 3 2 13 3 12 73 22 37 48 59 17 2 13 69 43 32 14 4 2 61 22 40 30 1 4 46 5 65 17\n55 3 3 92 25 27 97 40 55 74 91 31 7 33 72 62 61 40 16 2 70 61 67 72 8 5 48 12 75 84\n",
"77\n44 2 13 14 8 46 65 14 1 39 12 18 15 10 2 40 71 40 17 1 16 72 13 7 41 23 81 12 4 1 19 18 41 35 23 56 21 5 17 47 88 1 24 15 48 15 1 13 50 5 31 16 21 47 4 1 49 2 15 23 46 47 27 22 23 40 29 4 30 50 51 12 20 14 41 25 12\n57 16 72 59 28 80 74 19 4 60 52 52 97 13 5 69 84 66 63 38 50 79 24 84 58 92 99 36 38 97 66 79 41 48 26 95 28 38 28 72 95 71 30 15 63 17 7 69 90 29 89 40 21 83 73 24 51 14 15 74 100 88 74 27 46 61 38 4 32 52 52 51 47 51 81 75 19\n",
"70\n17 70 52 31 15 51 8 38 3 43 2 34 7 16 58 29 73 23 41 88 9 24 24 90 33 84 10 29 67 17 47 72 11 79 22 5 8 65 23 7 29 31 11 42 11 14 9 3 54 22 38 34 2 4 39 13 11 34 3 35 22 18 3 57 23 21 13 23 78 7\n18 72 58 55 87 56 9 39 60 79 74 82 9 39 66 32 89 25 46 95 26 31 28 94 36 96 19 37 77 61 50 82 22 81 37 9 11 96 33 12 90 74 11 42 88 86 17 3 85 31 82 81 3 7 69 47 27 51 49 98 33 40 5 94 83 35 21 24 89 49\n",
"50\n48 29 72 22 99 27 40 23 39 4 46 29 39 16 47 35 79 7 15 23 50 34 35 22 9 2 51 10 2 42 4 3 30 2 72 19 50 20 11 29 1 2 1 7 7 6 7 75 40 69\n81 36 76 26 100 41 99 39 52 73 83 51 54 86 73 49 79 27 83 90 100 40 49 81 22 54 85 21 26 79 36 96 73 10 98 31 65 39 89 39 2 32 5 20 71 39 87 80 60 86\n",
"40\n10 32 10 7 10 6 25 3 18 4 24 4 8 14 6 15 11 8 2 8 2 5 19 9 5 5 3 34 5 1 6 6 1 4 5 26 34 2 21 1\n35 66 54 11 58 68 75 12 69 94 80 33 23 48 45 66 94 53 25 53 83 30 64 49 69 84 73 35 26 41 10 65 23 56 58 93 58 7 100 7\n",
"35\n21 2 68 56 41 25 42 17 21 20 29 26 38 37 29 77 43 13 32 48 38 31 15 8 52 6 63 45 70 2 21 13 3 14 47\n46 83 100 87 59 95 47 33 56 60 38 76 63 75 60 92 65 43 56 94 70 80 46 40 64 6 83 54 75 19 52 66 13 88 62\n",
"77\n19 34 39 56 1 2 47 8 17 28 23 45 18 7 5 3 11 20 30 24 13 34 11 1 4 14 68 23 13 33 3 8 1 5 8 23 12 1 19 14 22 67 26 55 10 1 63 82 82 6 38 5 6 11 1 62 1 12 5 40 19 20 37 9 5 3 2 44 13 20 44 32 11 29 12 19 35\n28 41 43 68 1 39 57 13 84 89 26 92 47 19 7 94 79 75 74 42 32 44 46 23 96 46 82 86 91 33 25 11 12 68 22 31 89 14 81 32 50 94 27 66 50 39 98 90 91 11 69 6 45 19 15 74 22 31 7 92 23 98 88 32 8 4 2 51 79 69 70 43 16 60 29 20 98\n",
"90\n9 2 2 3 4 1 9 8 3 3 1 1 1 1 2 2 1 3 4 8 8 1 2 7 3 4 5 6 1 2 9 4 2 5 6 1 1 2 6 5 1 4 3 2 4 1 1 3 1 1 3 1 8 3 1 4 1 2 2 3 5 2 8 6 2 5 2 1 4 2 1 5 4 2 1 1 2 1 1 6 4 4 3 4 1 4 4 6 2 3\n10 6 2 3 10 1 10 10 6 4 1 3 6 1 2 5 3 7 7 9 9 2 3 8 3 4 9 7 8 4 10 7 8 10 9 5 1 4 6 5 1 9 10 4 6 4 1 3 3 1 6 1 9 4 1 6 4 5 5 10 7 9 9 10 4 5 2 1 5 2 1 7 6 5 3 9 2 5 1 8 6 4 6 10 1 7 5 9 6 4\n",
"90\n1 43 87 1 6 12 49 6 3 9 38 1 64 49 11 18 5 1 46 25 30 82 17 4 8 9 5 5 4 1 10 4 13 42 44 90 1 11 27 23 25 4 12 19 48 3 59 48 39 14 1 5 64 46 39 24 28 77 25 20 3 14 28 2 20 63 2 1 13 11 44 49 61 76 20 1 3 42 38 8 69 17 27 18 29 54 2 1 2 7\n8 96 91 1 11 20 83 34 41 88 54 4 65 82 48 60 62 18 76 74 75 89 87 8 11 32 67 7 5 1 92 88 57 92 76 95 35 58 68 23 30 25 12 31 85 5 89 84 71 23 1 5 76 56 57 57 83 94 33 34 66 20 54 5 22 69 2 19 28 62 74 88 91 86 30 6 3 48 80 10 84 20 44 37 81 100 12 3 6 8\n",
"80\n36 80 23 45 68 72 2 69 84 33 3 43 6 64 82 54 15 15 17 4 3 29 74 14 53 50 52 27 32 18 60 62 50 29 28 48 77 11 24 17 3 55 58 20 4 32 55 16 27 60 5 77 23 31 11 60 21 65 38 39 82 58 51 78 5 30 75 79 5 41 94 10 14 7 1 26 21 41 6 52\n37 93 24 46 99 74 2 93 86 33 3 44 6 71 88 65 15 19 24 4 3 40 82 14 62 81 56 30 33 30 62 62 70 29 31 53 78 13 27 31 3 65 61 20 5 41 58 25 27 61 6 87 26 31 13 62 25 71 44 45 82 75 62 95 24 44 82 94 6 50 94 10 15 15 1 29 35 60 8 68\n",
"83\n13 20 5 29 48 53 88 17 11 5 44 15 85 13 2 55 6 16 57 29 12 15 12 92 21 25 1 2 4 5 2 22 8 18 22 2 3 10 43 71 3 41 1 73 6 18 32 63 26 13 6 75 19 10 41 30 15 12 14 8 15 77 73 7 5 39 83 19 2 2 3 61 53 43 3 15 76 29 8 46 19 3 8\n54 34 15 58 50 67 100 43 30 15 46 26 94 75 2 58 85 38 68 98 83 51 82 100 120 27 5 5 41 89 17 34 10 48 48 4 15 13 71 75 4 44 2 82 18 82 59 96 26 13 66 95 81 33 85 45 16 92 41 37 85 78 83 17 7 72 83 38 69 24 18 76 71 66 3 66 78 31 73 72 43 89 49\n",
"85\n20 47 52 6 5 15 35 42 5 84 4 8 61 47 7 50 20 24 15 27 86 28 1 39 1 2 63 2 31 33 47 4 33 68 20 4 4 42 20 67 7 10 46 4 22 36 30 40 4 15 51 2 39 50 65 48 34 6 50 19 32 48 8 23 42 70 69 8 29 81 5 1 7 21 3 30 78 6 2 1 3 69 34 34 18\n74 64 89 61 5 17 75 43 13 87 30 51 93 54 7 76 44 44 98 77 86 97 1 41 1 3 69 3 80 87 67 6 90 100 31 5 7 46 99 67 9 44 56 7 39 39 55 80 80 33 77 9 89 79 86 53 49 49 72 87 43 84 24 23 43 94 74 17 54 96 28 64 14 42 91 8 87 69 20 1 30 95 44 50 20\n",
"1\n2\n2\n",
"2\n1 1\n110 100\n"
],
"output": [
"1 1\n",
"3 11\n",
"2 6\n",
"3 122\n",
"2 90\n",
"24 290\n",
"1 1\n",
"11 560\n",
"8 562\n",
"22 801\n",
"19 40\n",
"1 0\n",
"13 46\n",
"32 101\n",
"19 535\n",
"1 0\n",
"30 808\n",
"21 867\n",
"26 754\n",
"25 955\n",
"42 368\n",
"1 0\n",
"13 187\n",
"1 0\n",
"2 71\n",
"18 638\n",
"8 434\n",
"8 8\n",
"7 426\n",
"13 356\n",
"2 0\n",
"6 337\n",
"34 283\n",
"1 0\n",
"21 909\n",
"9 217\n",
"22 123\n",
"1 1\n",
"3 100\n",
"10 307\n",
"7 368\n",
"10 310\n",
"24 932\n",
"26 756\n",
"17 563\n",
"5 281\n",
"14 432\n",
"19 937\n",
"35 109\n",
"26 899",
"50 363",
"26 944",
"38 484",
"29 987",
"3 122",
"2 87",
"1 1",
"11 560",
"8 563",
"21 916",
"18 41",
"13 38",
"32 99",
"18 633",
"29 896",
"21 867",
"26 752",
"25 955",
"1 0",
"12 216",
"2 72",
"17 670",
"8 434",
"7 43",
"7 416",
"13 353",
"6 347",
"34 287",
"21 909",
"9 217",
"3 100",
"9 389",
"7 371",
"10 310",
"24 932",
"26 756",
"17 563",
"5 302",
"14 432",
"19 937",
"35 109",
"26 884",
"49 370",
"26 840",
"29 987",
"1 0",
"1 1"
]
} | 2CODEFORCES
|
754_E. Dasha and cyclic table_159 | Dasha is fond of challenging puzzles: Rubik's Cube 3 × 3 × 3, 4 × 4 × 4, 5 × 5 × 5 and so on. This time she has a cyclic table of size n × m, and each cell of the table contains a lowercase English letter. Each cell has coordinates (i, j) (0 ≤ i < n, 0 ≤ j < m). The table is cyclic means that to the right of cell (i, j) there is the cell <image>, and to the down there is the cell <image>.
Dasha has a pattern as well. A pattern is a non-cyclic table of size r × c. Each cell is either a lowercase English letter or a question mark. Each cell has coordinates (i, j) (0 ≤ i < r, 0 ≤ j < c).
The goal of the puzzle is to find all the appearance positions of the pattern in the cyclic table.
We say that the cell (i, j) of cyclic table is an appearance position, if for every pair (x, y) such that 0 ≤ x < r and 0 ≤ y < c one of the following conditions holds:
* There is a question mark in the cell (x, y) of the pattern, or
* The cell <image> of the cyclic table equals to the cell (x, y) of the pattern.
Dasha solved this puzzle in no time, as well as all the others she ever tried. Can you solve it?.
Input
The first line contains two integers n and m (1 ≤ n, m ≤ 400) — the cyclic table sizes.
Each of the next n lines contains a string of m lowercase English characters — the description of the cyclic table.
The next line contains two integers r and c (1 ≤ r, c ≤ 400) — the sizes of the pattern.
Each of the next r lines contains a string of c lowercase English letter and/or characters '?' — the description of the pattern.
Output
Print n lines. Each of the n lines should contain m characters. Each of the characters should equal '0' or '1'.
The j-th character of the i-th (0-indexed) line should be equal to '1', in case the cell (i, j) is an appearance position, otherwise it should be equal to '0'.
Examples
Input
5 7
qcezchs
hhedywq
wikywqy
qckrqzt
bqexcxz
3 2
??
yw
?q
Output
0000100
0001001
0000000
0000000
0000000
Input
10 10
fwtoayylhw
yyaryyjawr
ywrdzwhscy
hnsyyxiphn
bnjwzyyjvo
kkjgseenwn
gvmiflpcsy
lxvkwrobwu
wyybbcocyy
yysijsvqry
2 2
??
yy
Output
1000100000
0000000001
0001000000
0000010000
0000000000
0000000000
0000000000
0100000010
1000000001
0000010000
Input
8 6
ibrgxl
xqdcsg
okbcgi
tvpetc
xgxxig
igghzo
lmlaza
gpswzv
1 4
gx??
Output
000100
000001
000000
000000
010001
000000
000000
000000 | #include <bits/stdc++.h>
using namespace std;
static const int INF = 0x3f3f3f3f;
static const long long INFL = 0x3f3f3f3f3f3f3f3fLL;
template <typename T, typename U>
static void amin(T &x, U y) {
if (y < x) x = y;
}
template <typename T, typename U>
static void amax(T &x, U y) {
if (x < y) x = y;
}
struct FFTCoeffTable {
static const int logn = 10, n = 1 << logn;
complex<double> coeffs[n];
FFTCoeffTable() {
const double PI = 3.141592653589793238462643383279L;
for (int i = 0; i < n; ++i) {
double theta = 2 * PI * i / n;
coeffs[i] = complex<double>(cos(theta), sin(theta));
}
}
} fftCoeffTable;
void fft_core(complex<double> *x, int logn, int sign) {
int n = 1 << logn;
for (int i = 1, j = 0; i < n; ++i) {
int h = n >> 1;
while (((j ^= h) & h) == 0) h >>= 1;
if (i < j) swap(x[i], x[j]);
}
for (int logm = 1; logm <= logn; ++logm) {
int winc = (1 << (fftCoeffTable.logn - logm)) * sign;
if (winc < 0) winc += fftCoeffTable.n;
int h = 1 << (logm - 1);
for (int i = 0; i < n; i += 1 << logm) {
int wk = 0;
for (int j = i; j < i + h; ++j) {
const complex<double> &w = fftCoeffTable.coeffs[wk];
int k = j + h;
double lr = x[k].real() * w.real() - x[k].imag() * w.imag();
double li = x[k].real() * w.imag() + x[k].imag() * w.real();
x[k] = complex<double>(x[j].real() - lr, x[j].imag() - li);
x[j] = complex<double>(x[j].real() + lr, x[j].imag() + li);
if ((wk += winc) >= fftCoeffTable.n) wk -= fftCoeffTable.n;
}
}
}
}
void fft(int logn, complex<double> a[]) { fft_core(a, logn, +1); }
void inverse_fft(int logn, complex<double> a[]) {
fft_core(a, logn, -1);
complex<double> inv = double(1) / (1 << logn);
for (int(i) = 0; (i) < (int)(1 << logn); ++(i)) a[i] *= inv;
}
using Ring = complex<double>;
void FFT2D(int logh, int H, int logw, int W, vector<vector<Ring>> &A) {
assert(A.size() == 1 << logh);
for (int(i) = 0; (i) < (int)(H); ++(i)) {
assert(A[i].size() == 1 << logw);
fft(logw, A[i].data());
}
vector<Ring> tmp(1 << logh);
for (int(j) = 0; (j) < (int)(1 << logw); ++(j)) {
for (int(i) = 0; (i) < (int)(1 << logh); ++(i)) tmp[i] = A[i][j];
fft(logh, tmp.data());
for (int(i) = 0; (i) < (int)(1 << logh); ++(i)) A[i][j] = tmp[i];
}
}
void FFT2Dinv(int logh, int H, int logw, int W, vector<vector<Ring>> &A) {
vector<Ring> tmp(1 << logh);
for (int(j) = 0; (j) < (int)(1 << logw); ++(j)) {
for (int(i) = 0; (i) < (int)(1 << logh); ++(i)) tmp[i] = A[i][j];
inverse_fft(logh, tmp.data());
for (int(i) = 0; (i) < (int)(1 << logh); ++(i)) A[i][j] = tmp[i];
}
for (int(i) = 0; (i) < (int)(H); ++(i)) inverse_fft(logw, A[i].data());
}
int main() {
int tH;
int tW;
while (~scanf("%d%d", &tH, &tW)) {
vector<string> table(tH);
for (int(i) = 0; (i) < (int)(tH); ++(i)) {
char buf[401];
scanf("%s", buf);
table[i] = buf;
}
int pH;
int pW;
scanf("%d%d", &pH, &pW);
vector<string> pattern(pH);
for (int(i) = 0; (i) < (int)(pH); ++(i)) {
char buf[401];
scanf("%s", buf);
pattern[i] = buf;
}
int H = tH + pH, W = tW + pW;
int logh = 1, logw = 1;
while (1 << logh < H) ++logh;
while (1 << logw < W) ++logw;
vector<vector<int>> matches(tH, vector<int>(tW, 0));
for (int a = 0; a < 26; a += 2) {
vector<vector<Ring>> A(1 << logh, vector<Ring>(1 << logw)), B = A;
for (int(i) = 0; (i) < (int)(tH + pH); ++(i))
for (int(j) = 0; (j) < (int)(tW + pW); ++(j)) {
char c = table[i % tH][j % tW];
int x = c == 'a' + a, y = c == 'a' + (a + 1);
A[tH + pH - 1 - i][tW + pW - 1 - j] = complex<double>(x, y);
}
for (int(i) = 0; (i) < (int)(pH); ++(i))
for (int(j) = 0; (j) < (int)(pW); ++(j)) {
char c = pattern[i][j];
int x = c == 'a' + a, y = c == 'a' + (a + 1);
B[i][j] = complex<double>(x, -y);
}
FFT2D(logh, H, logw, W, A);
FFT2D(logh, H, logw, W, B);
for (int(i) = 0; (i) < (int)(1 << logh); ++(i))
for (int(j) = 0; (j) < (int)(1 << logw); ++(j)) A[i][j] *= B[i][j];
FFT2Dinv(logh, H, logw, W, A);
for (int(i) = 0; (i) < (int)(tH); ++(i))
for (int(j) = 0; (j) < (int)(tW); ++(j)) {
Ring r = A[tH + pH - 1 - i][tW + pW - 1 - j];
matches[i][j] += (int)round(r.real());
}
}
int qs = 0;
for (int(i) = 0; (i) < (int)(pH); ++(i))
for (int(j) = 0; (j) < (int)(pW); ++(j)) qs += pattern[i][j] == '?';
for (int(i) = 0; (i) < (int)(tH); ++(i))
for (int(j) = 0; (j) < (int)(tW); ++(j)) matches[i][j] += qs;
vector<string> ans(tH, string(tW, '?'));
for (int(i) = 0; (i) < (int)(tH); ++(i))
for (int(j) = 0; (j) < (int)(tW); ++(j))
ans[i][j] = matches[i][j] == pH * pW ? '1' : '0';
for (int(i) = 0; (i) < (int)(tH); ++(i)) puts(ans[i].c_str());
}
return 0;
}
| 2C++
| {
"input": [
"5 7\nqcezchs\nhhedywq\nwikywqy\nqckrqzt\nbqexcxz\n3 2\n??\nyw\n?q\n",
"8 6\nibrgxl\nxqdcsg\nokbcgi\ntvpetc\nxgxxig\nigghzo\nlmlaza\ngpswzv\n1 4\ngx??\n",
"10 10\nfwtoayylhw\nyyaryyjawr\nywrdzwhscy\nhnsyyxiphn\nbnjwzyyjvo\nkkjgseenwn\ngvmiflpcsy\nlxvkwrobwu\nwyybbcocyy\nyysijsvqry\n2 2\n??\nyy\n",
"8 10\ncwcwcwcwcw\ncrcrcrcrcr\ncwcwcwcwcw\ncrcrcrcrcr\ncwcwcwcwcw\ncrcrcrcrcr\ncwcwcwcwcw\ncrcrcrcrcr\n12 14\n?????r??c?????\n?????w????cw?w\n??????cr????c?\nc?????c??????w\nc???????????c?\n??c?????cw????\n????c?c?c?????\nc?????????c???\nc?????c?????c?\n??????????c??w\n?r????c??r????\n???w?w??c???c?\n",
"5 7\nqcezchs\nhhedywq\nwikywqy\nqckrpzt\nbqexcxz\n3 2\n??\nyw\n?q\n",
"8 10\ncwcwcwcwcw\ncrcrcrcrcr\ncwcwcwcwcw\ncrcrcrcrcr\ncwcwcwcwcw\ncrcrcrcrcr\ncwcwcwcwcw\ncrcrcrcrcr\n12 14\n?????r??c?????\n?????w????cw?w\n??????cr????c?\nc?????c??????w\nc???????????c?\n??c?????cw????\n?????c?c?c????\nc?????????c???\nc?????c?????c?\n??????????c??w\n?r????c??r????\n???w?w??c???c?\n",
"5 7\nqcezchs\nhhedywq\nwikywqy\nqckrqzt\nbqexcxz\n3 2\n??\nwy\n?q\n",
"8 6\nibrgxl\nxqdcsg\nokbcgi\ntvpetc\nxgxxig\nigghzo\nlmalza\ngpswzv\n1 4\ngx??\n",
"10 10\nfwtoayylhw\nyyaryyjawr\nywrdzwhscy\nhnsyyxiphn\nbnjwzyyjvo\nkkjgseenwn\ngvmiflpcsy\nuwborwkvxl\nwyybbcocyy\nyysijsvqry\n2 2\n??\nyy\n",
"8 6\nibrgxl\nxqdcsg\nokbcgi\ntvpetc\nxgxxig\nigghzo\nlmalza\ngpswzv\n1 4\nxg??\n",
"10 10\nfwtoayylhw\nyyaryyjawr\nywrdzwhscy\nhnyysxiphn\nbnjwzyyjvo\nkkjgseenwn\ngvmiflpcsy\nuwborwkvxl\nwyybbcocyy\nyysijsvqry\n2 2\n??\nyy\n",
"10 10\nfwtoayylhw\nyyaryyjawr\nywrdzwhscy\nhntyyxiphn\nbnjwzyyjvo\nkkjgseenwn\ngvmiflpcsy\nuwborwkvxl\nwyybbcocyx\nyysijsvqry\n2 2\n??\nyy\n",
"10 10\nfwtoayylhw\nyyaryyjawr\nywrdzwhscy\nhnyysxiphn\novjyyzwjnb\nkkjgseenwn\ngvmiflpcsy\nuwborwkvxl\nwyybbcocyy\nyysijsvqry\n2 2\n??\nyy\n",
"8 6\nibrgxl\nxqdcsg\nokbdgi\ntvpetc\nxgxxig\nigghzo\nlmalza\ngpswzv\n1 4\nxf??\n",
"10 10\nfwtoayylhw\nyyarzyjawr\nywrdzwhscy\nhntyyxiphn\nbnjwzyyjvo\nkkjgseenwn\ngvmiflpcsy\nuwborwkvxl\nwyybbcocyx\nyysijsvqry\n2 2\n??\nyy\n",
"5 7\nqcezchs\nghedywq\nwikywqy\nqckrqzt\nbqexcxz\n3 2\n??\nwy\n?q\n",
"10 10\nfwtoayylhw\nyyaryyjawr\nywrdzwhscy\nhntyyxiphn\nbnjwzyyjvo\nkkjgseenwn\ngvmiflpcsy\nuwborwkvxl\nwyybbcocyy\nyysijsvqry\n2 2\n??\nyy\n",
"5 7\nqcezchs\nghedywq\nwikywqy\nqdkrqzt\nbqexcxz\n3 2\n??\nwy\n?q\n",
"8 6\nibrgxl\nxqdcsg\nokbcgi\ntvpetc\nxgxxig\nigghzo\nlmalza\nvzwspg\n1 4\nxg??\n",
"5 7\nqcezchs\nghedywq\nwikywqx\nqdkrqzt\nbqexcxz\n3 2\n??\nwy\n?q\n",
"8 10\ncwcwcwcwcw\ncrcrcrcrcr\ncwcwcwcwcw\ncrcrcrcrcr\ncwcwcwcwcw\ncrcrcrcrcr\ncwcwcwcwcw\ncrcrcrcrcr\n12 14\n?????r??c?????\n?????w????cw?w\n??????cr????c?\nw??????c?????c\nc???????????c?\n??c?????cw????\n????c?c?c?????\nc?????????c???\nc?????c?????c?\n??????????c??w\n?r????c??r????\n???w?w??c???c?\n",
"10 10\nfwtoayylhw\nyyaryyjawq\nywrdzwhscy\nhnsyyxiphn\nbnjwzyyjvo\nkkjgseenwn\ngvmiflpcsy\nlxvkwrobwu\nwyybbcocyy\nyysijsvqry\n2 2\n??\nyy\n",
"5 7\nqcezchs\nhhedywq\nwikywqy\nqckrpzt\nbqexcxz\n3 2\n??\nyw\nq?\n",
"8 10\ncwcwcwcwcw\ncrcrcrcrcr\ncwcwcwcwcw\ncrcrcrcrcr\ncwcwcwcwcw\ncrcrcrcrcr\ncwcwcwcwcw\ncrcrcrcrcq\n12 14\n?????r??c?????\n?????w????cw?w\n??????cr????c?\nc?????c??????w\nc???????????c?\n??c?????cw????\n?????c?c?c????\nc?????????c???\nc?????c?????c?\n??????????c??w\n?r????c??r????\n???w?w??c???c?\n",
"5 7\nqcezchs\nghedywq\nwikywqy\nqckrqzt\nzxcxeqb\n3 2\n??\nwy\n?q\n",
"8 6\nibrgxl\nxqdcsg\nokbdgi\ntvpetc\nxgxxig\nigghzo\nlmalza\ngpswzv\n1 4\nxg??\n",
"10 10\nfwtoayylhw\nyyaryyjawq\nywrdzwhscy\nhnryyxiphn\nbnjwzyyjvo\nkkjgseenwn\ngvmiflpcsy\nlxvkwrobwu\nwyybbcocyy\nyysijsvqry\n2 2\n??\nyy\n",
"5 7\nqcezchs\nhqedywh\nwikywqy\nqckrpzt\nbqexcxz\n3 2\n??\nyw\nq?\n",
"8 10\ncwcwcwcwcw\ncrcrcrcrcr\ncwcwcwcwcw\ncrcrcrcrcr\ncwcwcwcwcw\ncrcrcrcrcr\ncwcwcwcwcw\ncrcrcrcrcq\n12 14\n?????r??c?????\n?????w????cw?w\n??????crc?????\nc?????c??????w\nc???????????c?\n??c?????cw????\n?????c?c?c????\nc?????????c???\nc?????c?????c?\n??????????c??w\n?r????c??r????\n???w?w??c???c?\n",
"5 7\npcezchs\nghedywq\nwikywqy\nqckrqzt\nzxcxeqb\n3 2\n??\nwy\n?q\n"
],
"output": [
"0000100\n0001001\n0000000\n0000000\n0000000\n",
"000100\n000001\n000000\n000000\n010001\n000000\n000000\n000000\n",
"1000100000\n0000000001\n0001000000\n0000010000\n0000000000\n0000000000\n0000000000\n0100000010\n1000000001\n0000010000\n",
"0000000000\n1010101010\n0000000000\n1010101010\n0000000000\n1010101010\n0000000000\n1010101010\n",
"0000100\n0000001\n0000000\n0000000\n0000000\n",
"0000000000\n0000000000\n0000000000\n0000000000\n0000000000\n0000000000\n0000000000\n0000000000\n",
"0000000\n0000000\n0000000\n0000000\n0000000\n",
"000100\n000001\n000000\n000000\n010001\n000000\n000000\n000000\n",
"1000100000\n0000000001\n0001000000\n0000010000\n0000000000\n0000000000\n0000000000\n0100000010\n1000000001\n0000010000\n",
"000000\n000000\n000000\n000000\n100000\n000000\n000000\n000000\n",
"1000100000\n0000000001\n0010000000\n0000010000\n0000000000\n0000000000\n0000000000\n0100000010\n1000000001\n0000010000\n",
"1000100000\n0000000001\n0001000000\n0000010000\n0000000000\n0000000000\n0000000000\n0100000000\n1000000001\n0000010000\n",
"1000100000\n0000000001\n0010000000\n0001000000\n0000000000\n0000000000\n0000000000\n0100000010\n1000000001\n0000010000\n",
"000000\n000000\n000000\n000000\n000000\n000000\n000000\n000000\n",
"1000000000\n0000000001\n0001000000\n0000010000\n0000000000\n0000000000\n0000000000\n0100000000\n1000000001\n0000010000\n",
"0000000\n0000000\n0000000\n0000000\n0000000\n",
"1000100000\n0000000001\n0001000000\n0000010000\n0000000000\n0000000000\n0000000000\n0100000010\n1000000001\n0000010000\n",
"0000000\n0000000\n0000000\n0000000\n0000000\n",
"000000\n000000\n000000\n000000\n100000\n000000\n000000\n000000\n",
"0000000\n0000000\n0000000\n0000000\n0000000\n",
"0000000000\n0000000000\n0000000000\n0000000000\n0000000000\n0000000000\n0000000000\n0000000000\n",
"1000100000\n0000000001\n0001000000\n0000010000\n0000000000\n0000000000\n0000000000\n0100000010\n1000000001\n0000010000\n",
"0000000\n0000000\n0000000\n0000000\n0000000\n",
"0000000000\n0000000000\n0000000000\n0000000000\n0000000000\n0000000000\n0000000000\n0000000000\n",
"0000000\n0000000\n0000000\n0000000\n0000000\n",
"000000\n000000\n000000\n000000\n100000\n000000\n000000\n000000\n",
"1000100000\n0000000001\n0001000000\n0000010000\n0000000000\n0000000000\n0000000000\n0100000010\n1000000001\n0000010000\n",
"0000000\n0000000\n0000000\n0000000\n0000000\n",
"0000000000\n0000000000\n0000000000\n0000000000\n0000000000\n0000000000\n0000000000\n0000000000\n",
"0000000\n0000000\n0000000\n0000000\n0000000\n"
]
} | 2CODEFORCES
|
754_E. Dasha and cyclic table_160 | Dasha is fond of challenging puzzles: Rubik's Cube 3 × 3 × 3, 4 × 4 × 4, 5 × 5 × 5 and so on. This time she has a cyclic table of size n × m, and each cell of the table contains a lowercase English letter. Each cell has coordinates (i, j) (0 ≤ i < n, 0 ≤ j < m). The table is cyclic means that to the right of cell (i, j) there is the cell <image>, and to the down there is the cell <image>.
Dasha has a pattern as well. A pattern is a non-cyclic table of size r × c. Each cell is either a lowercase English letter or a question mark. Each cell has coordinates (i, j) (0 ≤ i < r, 0 ≤ j < c).
The goal of the puzzle is to find all the appearance positions of the pattern in the cyclic table.
We say that the cell (i, j) of cyclic table is an appearance position, if for every pair (x, y) such that 0 ≤ x < r and 0 ≤ y < c one of the following conditions holds:
* There is a question mark in the cell (x, y) of the pattern, or
* The cell <image> of the cyclic table equals to the cell (x, y) of the pattern.
Dasha solved this puzzle in no time, as well as all the others she ever tried. Can you solve it?.
Input
The first line contains two integers n and m (1 ≤ n, m ≤ 400) — the cyclic table sizes.
Each of the next n lines contains a string of m lowercase English characters — the description of the cyclic table.
The next line contains two integers r and c (1 ≤ r, c ≤ 400) — the sizes of the pattern.
Each of the next r lines contains a string of c lowercase English letter and/or characters '?' — the description of the pattern.
Output
Print n lines. Each of the n lines should contain m characters. Each of the characters should equal '0' or '1'.
The j-th character of the i-th (0-indexed) line should be equal to '1', in case the cell (i, j) is an appearance position, otherwise it should be equal to '0'.
Examples
Input
5 7
qcezchs
hhedywq
wikywqy
qckrqzt
bqexcxz
3 2
??
yw
?q
Output
0000100
0001001
0000000
0000000
0000000
Input
10 10
fwtoayylhw
yyaryyjawr
ywrdzwhscy
hnsyyxiphn
bnjwzyyjvo
kkjgseenwn
gvmiflpcsy
lxvkwrobwu
wyybbcocyy
yysijsvqry
2 2
??
yy
Output
1000100000
0000000001
0001000000
0000010000
0000000000
0000000000
0000000000
0100000010
1000000001
0000010000
Input
8 6
ibrgxl
xqdcsg
okbcgi
tvpetc
xgxxig
igghzo
lmlaza
gpswzv
1 4
gx??
Output
000100
000001
000000
000000
010001
000000
000000
000000 | import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.io.BufferedWriter;
import java.io.Writer;
import java.io.OutputStreamWriter;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author Jialin Ouyang ([email protected])
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
QuickScanner in = new QuickScanner(inputStream);
QuickWriter out = new QuickWriter(outputStream);
TaskE solver = new TaskE();
solver.solve(1, in, out);
out.close();
}
static class TaskE {
static double EPS = 1E-6;
int n;
int m;
int r;
int c;
int size;
char[][] table;
char[][] pattern;
Complex[][] a;
Complex[][] b;
public void solve(int testNumber, QuickScanner in, QuickWriter out) {
n = in.nextInt();
m = in.nextInt();
table = new char[n][m];
for (int i = 0; i < n; ++i) {
in.next(table[i]);
}
r = in.nextInt();
c = in.nextInt();
int maxSize = Math.max(n + r - 1, m + c - 1);
size = Integer.highestOneBit(maxSize);
if (size < maxSize) size <<= 1;
initAB();
init(a, table, n + r - 1, m + c - 1, false);
pattern = new char[r][c];
int cnt = 0;
for (int i = 0, j = r - 1; i < r; ++i, --j) {
in.next(pattern[j]);
CharArrayUtils.reverse(pattern[j]);
for (int k = 0; k < c; ++k)
if (pattern[j][k] != '?') {
++cnt;
}
}
init(b, pattern, r, c, true);
new FastFourierTransformer(size).mul(a, b, a);
for (int i = 0, x = r - 1; i < n; ++i, ++x) {
for (int j = 0, y = c - 1; j < m; ++j, ++y) {
out.print(a[x][y].real + EPS > cnt ? '1' : '0');
}
out.println();
}
}
void initAB() {
a = new Complex[size][size];
b = new Complex[size][size];
for (int i = 0; i < size; ++i)
for (int j = 0; j < size; ++j) {
a[i][j] = Complex.zero();
b[i][j] = Complex.zero();
}
}
void init(Complex[][] a, char[][] table, int n, int m, boolean negative) {
for (int i = 0, x = 0; i < n; ++i, x = x + 1 == table.length ? 0 : x + 1) {
for (int j = 0, y = 0; j < m; ++j, y = y + 1 == table[0].length ? 0 : y + 1) {
initComplex(a[i][j], table[x][y], negative);
}
}
}
void initComplex(Complex complex, char x, boolean negative) {
if (x == '?') {
complex.initZero();
} else {
double angle = (negative ? -1 : 1) * Math.PI / 13 * (x - 'a');
complex.initPolar(1, angle);
}
}
}
static class BitUtils {
public static int reverse(int x) {
// swap odd and even bits
x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
// swap consecutive pairs
x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
// swap nibbles ...
x = ((x >> 4) & 0x0F0F0F0F) | ((x & 0x0F0F0F0F) << 4);
// swap bytes
x = ((x >> 8) & 0x00FF00FF) | ((x & 0x00FF00FF) << 8);
// swap 2-byte long pairs
x = (x >> 16) | (x << 16);
return x;
}
}
static class Complex {
public double real;
public double imag;
public Complex(double real, double imag) {
this.real = real;
this.imag = imag;
}
public static Complex zero() {
return new Complex(0, 0);
}
public void init(double real, double imag) {
this.real = real;
this.imag = imag;
}
public void initZero() {
this.real = 0;
this.imag = 0;
}
public void initPolar(double r, double angle) {
real = r * Math.cos(angle);
imag = r * Math.sin(angle);
}
public void initSub(Complex a, Complex b) {
assign(a.real - b.real, a.imag - b.imag);
}
public void initMul(Complex a, Complex b) {
assign(a.real * b.real - a.imag * b.imag, a.real * b.imag + a.imag * b.real);
}
public void add(Complex o) {
assign(real + o.real, imag + o.imag);
}
public void shrink(double scale) {
assign(real / scale, imag / scale);
}
public String toString() {
return String.format(imag < 0 ? "%f%fi" : "%f+%fi", real, imag);
}
private void assign(double real, double imag) {
this.real = real;
this.imag = imag;
}
}
static class FastFourierTransformer {
private int n;
private Complex wBase;
private Complex u;
private Complex v;
private Complex[] w;
private int[] rev;
public FastFourierTransformer(int capacity) {
w = new Complex[capacity + 1];
for (int i = 0; i <= capacity; ++i) {
w[i] = Complex.zero();
}
rev = new int[capacity];
wBase = Complex.zero();
u = Complex.zero();
v = Complex.zero();
init(capacity);
}
public void init(int n) {
if (this.n == n) return;
this.n = n;
wBase.initPolar(1, 2 * Math.PI / n);
w[0].init(1, 0);
int shift = Integer.numberOfLeadingZeros(n) + 1;
//System.out.printf("n:%d\n", n);
for (int i = 0; i < n; ++i) {
w[i + 1].initMul(w[i], wBase);
rev[i] = BitUtils.reverse(i) >>> shift;
//System.out.printf("(%d)%s -> (%d)%s\n", i, BigInteger.valueOf(i).toString(2), rev[i], BigInteger.valueOf(rev[i]).toString(2));
}
}
public void fft(Complex[] a, boolean invert) {
if (Integer.bitCount(n) != 1) {
throw new IllegalArgumentException(n + " should be pow of 2.");
}
for (int i = 0; i < n; ++i)
if (i < rev[i]) {
Complex tmp = a[i];
a[i] = a[rev[i]];
a[rev[i]] = tmp;
}
for (int l = 1; l < n; l <<= 1) {
int l2 = l << 1, step = n / l2;
for (int i = 0; i < n; i += l2) {
for (int j = 0, wIdx = invert ? n : 0; j < l; ++j, wIdx += invert ? -step : step) {
u.initMul(a[i + j + l], w[wIdx]);
a[i + j + l].initSub(a[i + j], u);
a[i + j].add(u);
}
}
}
if (invert) {
for (int i = 0; i < n; ++i) {
a[i].shrink(n);
}
}
}
public void fft(Complex[][] a, boolean invert) {
for (int i = 0; i < n; ++i) {
fft(a[i], invert);
}
for (int i = 0; i < n; ++i)
for (int j = i + 1; j < n; ++j) {
Complex tmp = a[i][j];
a[i][j] = a[j][i];
a[j][i] = tmp;
}
for (int i = 0; i < n; ++i) {
fft(a[i], invert);
}
}
public void mul(Complex[][] a, Complex[][] b, Complex[][] res) {
fft(a, false);
fft(b, false);
for (int i = 0; i < n; ++i)
for (int j = 0; j < n; ++j) {
res[i][j].initMul(a[i][j], b[i][j]);
}
fft(res, true);
}
}
static class QuickWriter {
private final PrintWriter writer;
public QuickWriter(OutputStream outputStream) {
this.writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public QuickWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void print(Object... objects) {
for (int i = 0; i < objects.length; ++i) {
if (i > 0) {
writer.print(' ');
}
writer.print(objects[i]);
}
}
public void println(Object... objects) {
print(objects);
writer.print('\n');
}
public void close() {
writer.close();
}
}
static class QuickScanner {
private static final int BUFFER_SIZE = 1024;
private InputStream stream;
private byte[] buffer;
private int currentPosition;
private int numberOfChars;
public QuickScanner(InputStream stream) {
this.stream = stream;
this.buffer = new byte[BUFFER_SIZE];
this.currentPosition = 0;
this.numberOfChars = 0;
}
public int next(char[] s) {
return next(s, 0);
}
public int next(char[] s, int startIdx) {
int b = nextNonSpaceChar();
int res = 0;
do {
s[startIdx++] = (char) b;
b = nextChar();
++res;
} while (!isSpaceChar(b));
return res;
}
public int nextInt() {
int c = nextNonSpaceChar();
boolean positive = true;
if (c == '-') {
positive = false;
c = nextChar();
}
int res = 0;
do {
if (c < '0' || '9' < c) throw new RuntimeException();
res = res * 10 + c - '0';
c = nextChar();
} while (!isSpaceChar(c));
return positive ? res : -res;
}
public int nextNonSpaceChar() {
int res = nextChar();
for (; isSpaceChar(res) || res < 0; res = nextChar()) ;
return res;
}
public int nextChar() {
if (numberOfChars == -1) {
throw new RuntimeException();
}
if (currentPosition >= numberOfChars) {
currentPosition = 0;
try {
numberOfChars = stream.read(buffer);
} catch (Exception e) {
throw new RuntimeException(e);
}
if (numberOfChars <= 0) {
return -1;
}
}
return buffer[currentPosition++];
}
public boolean isSpaceChar(int c) {
return c == ' ' || c == '\t' || isEndOfLineChar(c);
}
public boolean isEndOfLineChar(int c) {
return c == '\n' || c == '\r' || c < 0;
}
}
static class CharArrayUtils {
public static void reverse(char[] values) {
reverse(values, 0, values.length);
}
public static void reverse(char[] values, int fromIdx, int toIdx) {
for (int i = fromIdx, j = toIdx - 1; i < j; ++i, --j) {
values[i] ^= values[j];
values[j] ^= values[i];
values[i] ^= values[j];
}
}
}
}
| 4JAVA
| {
"input": [
"5 7\nqcezchs\nhhedywq\nwikywqy\nqckrqzt\nbqexcxz\n3 2\n??\nyw\n?q\n",
"8 6\nibrgxl\nxqdcsg\nokbcgi\ntvpetc\nxgxxig\nigghzo\nlmlaza\ngpswzv\n1 4\ngx??\n",
"10 10\nfwtoayylhw\nyyaryyjawr\nywrdzwhscy\nhnsyyxiphn\nbnjwzyyjvo\nkkjgseenwn\ngvmiflpcsy\nlxvkwrobwu\nwyybbcocyy\nyysijsvqry\n2 2\n??\nyy\n",
"8 10\ncwcwcwcwcw\ncrcrcrcrcr\ncwcwcwcwcw\ncrcrcrcrcr\ncwcwcwcwcw\ncrcrcrcrcr\ncwcwcwcwcw\ncrcrcrcrcr\n12 14\n?????r??c?????\n?????w????cw?w\n??????cr????c?\nc?????c??????w\nc???????????c?\n??c?????cw????\n????c?c?c?????\nc?????????c???\nc?????c?????c?\n??????????c??w\n?r????c??r????\n???w?w??c???c?\n",
"5 7\nqcezchs\nhhedywq\nwikywqy\nqckrpzt\nbqexcxz\n3 2\n??\nyw\n?q\n",
"8 10\ncwcwcwcwcw\ncrcrcrcrcr\ncwcwcwcwcw\ncrcrcrcrcr\ncwcwcwcwcw\ncrcrcrcrcr\ncwcwcwcwcw\ncrcrcrcrcr\n12 14\n?????r??c?????\n?????w????cw?w\n??????cr????c?\nc?????c??????w\nc???????????c?\n??c?????cw????\n?????c?c?c????\nc?????????c???\nc?????c?????c?\n??????????c??w\n?r????c??r????\n???w?w??c???c?\n",
"5 7\nqcezchs\nhhedywq\nwikywqy\nqckrqzt\nbqexcxz\n3 2\n??\nwy\n?q\n",
"8 6\nibrgxl\nxqdcsg\nokbcgi\ntvpetc\nxgxxig\nigghzo\nlmalza\ngpswzv\n1 4\ngx??\n",
"10 10\nfwtoayylhw\nyyaryyjawr\nywrdzwhscy\nhnsyyxiphn\nbnjwzyyjvo\nkkjgseenwn\ngvmiflpcsy\nuwborwkvxl\nwyybbcocyy\nyysijsvqry\n2 2\n??\nyy\n",
"8 6\nibrgxl\nxqdcsg\nokbcgi\ntvpetc\nxgxxig\nigghzo\nlmalza\ngpswzv\n1 4\nxg??\n",
"10 10\nfwtoayylhw\nyyaryyjawr\nywrdzwhscy\nhnyysxiphn\nbnjwzyyjvo\nkkjgseenwn\ngvmiflpcsy\nuwborwkvxl\nwyybbcocyy\nyysijsvqry\n2 2\n??\nyy\n",
"10 10\nfwtoayylhw\nyyaryyjawr\nywrdzwhscy\nhntyyxiphn\nbnjwzyyjvo\nkkjgseenwn\ngvmiflpcsy\nuwborwkvxl\nwyybbcocyx\nyysijsvqry\n2 2\n??\nyy\n",
"10 10\nfwtoayylhw\nyyaryyjawr\nywrdzwhscy\nhnyysxiphn\novjyyzwjnb\nkkjgseenwn\ngvmiflpcsy\nuwborwkvxl\nwyybbcocyy\nyysijsvqry\n2 2\n??\nyy\n",
"8 6\nibrgxl\nxqdcsg\nokbdgi\ntvpetc\nxgxxig\nigghzo\nlmalza\ngpswzv\n1 4\nxf??\n",
"10 10\nfwtoayylhw\nyyarzyjawr\nywrdzwhscy\nhntyyxiphn\nbnjwzyyjvo\nkkjgseenwn\ngvmiflpcsy\nuwborwkvxl\nwyybbcocyx\nyysijsvqry\n2 2\n??\nyy\n",
"5 7\nqcezchs\nghedywq\nwikywqy\nqckrqzt\nbqexcxz\n3 2\n??\nwy\n?q\n",
"10 10\nfwtoayylhw\nyyaryyjawr\nywrdzwhscy\nhntyyxiphn\nbnjwzyyjvo\nkkjgseenwn\ngvmiflpcsy\nuwborwkvxl\nwyybbcocyy\nyysijsvqry\n2 2\n??\nyy\n",
"5 7\nqcezchs\nghedywq\nwikywqy\nqdkrqzt\nbqexcxz\n3 2\n??\nwy\n?q\n",
"8 6\nibrgxl\nxqdcsg\nokbcgi\ntvpetc\nxgxxig\nigghzo\nlmalza\nvzwspg\n1 4\nxg??\n",
"5 7\nqcezchs\nghedywq\nwikywqx\nqdkrqzt\nbqexcxz\n3 2\n??\nwy\n?q\n",
"8 10\ncwcwcwcwcw\ncrcrcrcrcr\ncwcwcwcwcw\ncrcrcrcrcr\ncwcwcwcwcw\ncrcrcrcrcr\ncwcwcwcwcw\ncrcrcrcrcr\n12 14\n?????r??c?????\n?????w????cw?w\n??????cr????c?\nw??????c?????c\nc???????????c?\n??c?????cw????\n????c?c?c?????\nc?????????c???\nc?????c?????c?\n??????????c??w\n?r????c??r????\n???w?w??c???c?\n",
"10 10\nfwtoayylhw\nyyaryyjawq\nywrdzwhscy\nhnsyyxiphn\nbnjwzyyjvo\nkkjgseenwn\ngvmiflpcsy\nlxvkwrobwu\nwyybbcocyy\nyysijsvqry\n2 2\n??\nyy\n",
"5 7\nqcezchs\nhhedywq\nwikywqy\nqckrpzt\nbqexcxz\n3 2\n??\nyw\nq?\n",
"8 10\ncwcwcwcwcw\ncrcrcrcrcr\ncwcwcwcwcw\ncrcrcrcrcr\ncwcwcwcwcw\ncrcrcrcrcr\ncwcwcwcwcw\ncrcrcrcrcq\n12 14\n?????r??c?????\n?????w????cw?w\n??????cr????c?\nc?????c??????w\nc???????????c?\n??c?????cw????\n?????c?c?c????\nc?????????c???\nc?????c?????c?\n??????????c??w\n?r????c??r????\n???w?w??c???c?\n",
"5 7\nqcezchs\nghedywq\nwikywqy\nqckrqzt\nzxcxeqb\n3 2\n??\nwy\n?q\n",
"8 6\nibrgxl\nxqdcsg\nokbdgi\ntvpetc\nxgxxig\nigghzo\nlmalza\ngpswzv\n1 4\nxg??\n",
"10 10\nfwtoayylhw\nyyaryyjawq\nywrdzwhscy\nhnryyxiphn\nbnjwzyyjvo\nkkjgseenwn\ngvmiflpcsy\nlxvkwrobwu\nwyybbcocyy\nyysijsvqry\n2 2\n??\nyy\n",
"5 7\nqcezchs\nhqedywh\nwikywqy\nqckrpzt\nbqexcxz\n3 2\n??\nyw\nq?\n",
"8 10\ncwcwcwcwcw\ncrcrcrcrcr\ncwcwcwcwcw\ncrcrcrcrcr\ncwcwcwcwcw\ncrcrcrcrcr\ncwcwcwcwcw\ncrcrcrcrcq\n12 14\n?????r??c?????\n?????w????cw?w\n??????crc?????\nc?????c??????w\nc???????????c?\n??c?????cw????\n?????c?c?c????\nc?????????c???\nc?????c?????c?\n??????????c??w\n?r????c??r????\n???w?w??c???c?\n",
"5 7\npcezchs\nghedywq\nwikywqy\nqckrqzt\nzxcxeqb\n3 2\n??\nwy\n?q\n"
],
"output": [
"0000100\n0001001\n0000000\n0000000\n0000000\n",
"000100\n000001\n000000\n000000\n010001\n000000\n000000\n000000\n",
"1000100000\n0000000001\n0001000000\n0000010000\n0000000000\n0000000000\n0000000000\n0100000010\n1000000001\n0000010000\n",
"0000000000\n1010101010\n0000000000\n1010101010\n0000000000\n1010101010\n0000000000\n1010101010\n",
"0000100\n0000001\n0000000\n0000000\n0000000\n",
"0000000000\n0000000000\n0000000000\n0000000000\n0000000000\n0000000000\n0000000000\n0000000000\n",
"0000000\n0000000\n0000000\n0000000\n0000000\n",
"000100\n000001\n000000\n000000\n010001\n000000\n000000\n000000\n",
"1000100000\n0000000001\n0001000000\n0000010000\n0000000000\n0000000000\n0000000000\n0100000010\n1000000001\n0000010000\n",
"000000\n000000\n000000\n000000\n100000\n000000\n000000\n000000\n",
"1000100000\n0000000001\n0010000000\n0000010000\n0000000000\n0000000000\n0000000000\n0100000010\n1000000001\n0000010000\n",
"1000100000\n0000000001\n0001000000\n0000010000\n0000000000\n0000000000\n0000000000\n0100000000\n1000000001\n0000010000\n",
"1000100000\n0000000001\n0010000000\n0001000000\n0000000000\n0000000000\n0000000000\n0100000010\n1000000001\n0000010000\n",
"000000\n000000\n000000\n000000\n000000\n000000\n000000\n000000\n",
"1000000000\n0000000001\n0001000000\n0000010000\n0000000000\n0000000000\n0000000000\n0100000000\n1000000001\n0000010000\n",
"0000000\n0000000\n0000000\n0000000\n0000000\n",
"1000100000\n0000000001\n0001000000\n0000010000\n0000000000\n0000000000\n0000000000\n0100000010\n1000000001\n0000010000\n",
"0000000\n0000000\n0000000\n0000000\n0000000\n",
"000000\n000000\n000000\n000000\n100000\n000000\n000000\n000000\n",
"0000000\n0000000\n0000000\n0000000\n0000000\n",
"0000000000\n0000000000\n0000000000\n0000000000\n0000000000\n0000000000\n0000000000\n0000000000\n",
"1000100000\n0000000001\n0001000000\n0000010000\n0000000000\n0000000000\n0000000000\n0100000010\n1000000001\n0000010000\n",
"0000000\n0000000\n0000000\n0000000\n0000000\n",
"0000000000\n0000000000\n0000000000\n0000000000\n0000000000\n0000000000\n0000000000\n0000000000\n",
"0000000\n0000000\n0000000\n0000000\n0000000\n",
"000000\n000000\n000000\n000000\n100000\n000000\n000000\n000000\n",
"1000100000\n0000000001\n0001000000\n0000010000\n0000000000\n0000000000\n0000000000\n0100000010\n1000000001\n0000010000\n",
"0000000\n0000000\n0000000\n0000000\n0000000\n",
"0000000000\n0000000000\n0000000000\n0000000000\n0000000000\n0000000000\n0000000000\n0000000000\n",
"0000000\n0000000\n0000000\n0000000\n0000000\n"
]
} | 2CODEFORCES
|
776_A. A Serial Killer_161 | Our beloved detective, Sherlock is currently trying to catch a serial killer who kills a person each day. Using his powers of deduction, he came to know that the killer has a strategy for selecting his next victim.
The killer starts with two potential victims on his first day, selects one of these two, kills selected victim and replaces him with a new person. He repeats this procedure each day. This way, each day he has two potential victims to choose from. Sherlock knows the initial two potential victims. Also, he knows the murder that happened on a particular day and the new person who replaced this victim.
You need to help him get all the pairs of potential victims at each day so that Sherlock can observe some pattern.
Input
First line of input contains two names (length of each of them doesn't exceed 10), the two initials potential victims. Next line contains integer n (1 ≤ n ≤ 1000), the number of days.
Next n lines contains two names (length of each of them doesn't exceed 10), first being the person murdered on this day and the second being the one who replaced that person.
The input format is consistent, that is, a person murdered is guaranteed to be from the two potential victims at that time. Also, all the names are guaranteed to be distinct and consists of lowercase English letters.
Output
Output n + 1 lines, the i-th line should contain the two persons from which the killer selects for the i-th murder. The (n + 1)-th line should contain the two persons from which the next victim is selected. In each line, the two names can be printed in any order.
Examples
Input
ross rachel
4
ross joey
rachel phoebe
phoebe monica
monica chandler
Output
ross rachel
joey rachel
joey phoebe
joey monica
joey chandler
Input
icm codeforces
1
codeforces technex
Output
icm codeforces
icm technex
Note
In first example, the killer starts with ross and rachel.
* After day 1, ross is killed and joey appears.
* After day 2, rachel is killed and phoebe appears.
* After day 3, phoebe is killed and monica appears.
* After day 4, monica is killed and chandler appears. | #!/usr/bin/python
# coding: utf-8
(pv1,pv2)=raw_input().split(' ')
n=int(raw_input())
print pv1, pv2
for i in xrange(n):
(murdered,replaced)=raw_input().split(' ')
if(pv1==murdered):
pv1=replaced
elif(pv2==murdered):
pv2=replaced
print pv1, pv2
'''
Our beloved detective, Sherlock is currently trying to catch a serial killer who kills a person each day. Using his powers of deduction, he came to know that the killer has a
strategy for selecting his next victim.
The killer starts with two potential victims on his first day, selects one of these two, kills selected victim and replaces him with a new person. He repeats this procedure each day.
This way, each day he has two potential victims to choose from. Sherlock knows the initial two potential victims. Also, he knows the murder that happened on a particular day and the
new person who replaced this victim.
You need to help him get all the pairs of potential victims at each day so that Sherlock can observe some pattern.
Input
First line of input contains two names (length of each of them doesn't exceed 10),the two initials potential victims. Next line contains integer n (1 ≤ n ≤ 1000),the number of days.
Next n lines contains two names (length of each of them doesn't exceed 10), first being the person murdered on this day and the second being the one who replaced that person.
The input format is consistent, that is, a person murdered is guaranteed to be from the two potential victims at that time. Also, all the names are guaranteed to be distinct and
consists of lowercase English letters.
Output
Output n + 1 lines, the i-th line should contain the two persons from which the killer selects for the i-th murder. The (n + 1)-th line should contain the two persons from which the
next victim is selected. In each line, the two names can be printed in any order.
Examples
Input
ross rachel
4
ross joey
rachel phoebe
phoebe monica
monica chandler
Output
ross rachel
joey rachel
joey phoebe
joey monica
joey chandler
Input
icm codeforces
1
codeforces technex
Output
icm codeforces
icm technex
Note
In first example, the killer starts with ross and rachel.
After day 1, ross is killed and joey appears.
After day 2, rachel is killed and phoebe appears.
After day 3, phoebe is killed and monica appears.
After day 4, monica is killed and chandler appears.
'''
| 1Python2
| {
"input": [
"icm codeforces\n1\ncodeforces technex\n",
"ross rachel\n4\nross joey\nrachel phoebe\nphoebe monica\nmonica chandler\n",
"wwwww w\n8\nwwwww wwwwwwww\nwwwwwwww wwwwwwwww\nwwwwwwwww wwwwwwwwww\nw www\nwwwwwwwwww wwww\nwwww ww\nwww wwwwww\nwwwwww wwwwwww\n",
"k d\n17\nk l\nd v\nv z\nl r\nz i\nr s\ns p\np w\nw j\nj h\ni c\nh m\nm q\nc o\no g\nq x\nx n\n",
"wxz hbeqwqp\n7\nhbeqwqp cpieghnszh\ncpieghnszh tlqrpd\ntlqrpd ttwrtio\nttwrtio xapvds\nxapvds zk\nwxz yryk\nzk b\n",
"ze udggmyop\n4\nze szhrbmft\nudggmyop mjorab\nszhrbmft ojdtfnzxj\nojdtfnzxj yjlkg\n",
"bwyplnjn zkms\n26\nzkms nzmcsytxh\nnzmcsytxh yujsb\nbwyplnjn gtbzhudpb\ngtbzhudpb hpk\nyujsb xvy\nhpk wrwnfokml\nwrwnfokml ndouuikw\nndouuikw ucgrja\nucgrja tgfmpldz\nxvy nycrfphn\nnycrfphn quvs\nquvs htdy\nhtdy k\ntgfmpldz xtdpkxm\nxtdpkxm suwqxs\nk fv\nsuwqxs qckllwy\nqckllwy diun\nfv lefa\nlefa gdoqjysx\ndiun dhpz\ngdoqjysx bdmqdyt\ndhpz dgz\ndgz v\nbdmqdyt aswy\naswy ydkayhlrnm\n",
"iii iiiiii\n7\niii iiiiiiiiii\niiiiiiiiii iiii\niiii i\niiiiii iiiiiiii\niiiiiiii iiiiiiiii\ni iiiii\niiiii ii\n",
"wced gnsgv\n23\ngnsgv japawpaf\njapawpaf nnvpeu\nnnvpeu a\na ddupputljq\nddupputljq qyhnvbh\nqyhnvbh pqwijl\nwced khuvs\nkhuvs bjkh\npqwijl ysacmboc\nbjkh srf\nsrf jknoz\njknoz hodf\nysacmboc xqtkoyh\nhodf rfp\nxqtkoyh bivgnwqvoe\nbivgnwqvoe nknf\nnknf wuig\nrfp e\ne bqqknq\nwuig sznhhhu\nbqqknq dhrtdld\ndhrtdld n\nsznhhhu bguylf\n",
"a b\n3\na c\nb d\nd e\n",
"q s\n10\nq b\nb j\ns g\nj f\nf m\ng c\nc a\nm d\nd z\nz o\n",
"qqqqqqqqqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq q\n",
"qqqqqqqqqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq p\n",
"wwwww w\n8\nwwwww wwwwwwww\nwwwwwwww wwwwwwwww\nwwwwwwwww wwwwwwwwww\nw www\nwwwwwwwwww wwww\nwwww ww\nwww wwwwww\nwwwwww wwwwvww\n",
"iii iiiiii\n7\niii iiiiiiiiii\niiiiiiiiii iiii\niiii i\niiiiii iiiiiiii\niiiiiiii iiiiiiiii\ni iiiii\niiiii ij\n",
"wwwww w\n8\nwwwww wwwwwwww\nwwwwwwww wwwwwwwww\nwwwwwwwww wwwwwwwwww\nw www\nwwwwwwwwww wwww\nwwww ww\nwww wwwwww\nwwwwww wxwwvww\n",
"iii iiiiii\n7\niii iiiiiiiiii\niiiiiiiiii iiii\niiii i\niiiiii iiiiiiii\niiiiiiii iiiiiiiii\ni iiiii\niiiii ji\n",
"qqqqqqqrqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq q\n",
"iii iiiiii\n7\niii iiiiiiiiii\niiiiiiiiii iiii\niiii i\niiiiii iiiiiiii\niiiiiiii iiiiiiiii\ni iiiii\niiiii ki\n",
"qqrqqqqqqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq q\n",
"wwwww w\n8\nwwwww wwwwwwww\nwwwwwwww wwwwwwwww\nwwwwwwwww wwwwwwwwww\nw www\nwwwwwwwwww wwww\nwwww ww\nwww wwwwww\nwwwwww wwwwvwx\n",
"wwwww w\n8\nwwwww wwwwwwww\nwwwwwwww wwwwwwwww\nwwwwwwwww wwwwwwwwww\nw www\nwwwwwwwwww wwww\nwwww ww\nwww wwwwww\nwwwwww wxwvvww\n",
"iii iiiiii\n7\niii iiiiiiiiii\niiiiiiiiii iiii\niiii i\niiiiii iiiiiiii\niiiiiiii ihiiiiiii\ni iiiii\niiiii ki\n",
"qqrqpqqqqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq q\n",
"qqqqqqqqqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq r\n",
"iii iiiiii\n7\niii iiiiiiiiii\niiiiiiiiii iiii\niiii i\niiiiii iiiiiiii\niiiiiiii iiiiiiiii\ni iiiii\niiiii ik\n",
"wwwww w\n8\nwwwww wwwwwwww\nwwwwwwww wwwwwwwww\nwwwwwwwww wwwwwwwwww\nw www\nwwwwwwwwww wwww\nwwww ww\nwww wwwwww\nwwwwww wwvwvww\n",
"qqqqqqrrqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq q\n",
"iii iiiiii\n7\niii iiiiiiiiii\niiiiiiiiii iiii\niiii i\niiiiii iiiiiiii\niiiiiiii iiiiiiiii\ni iiiii\niiiii li\n",
"wwwww w\n8\nwwwww wwwwwwww\nwwwwwwww wwwwwwwww\nwwwwwwwww wwwwwwwwww\nw www\nwwwwwwwwww wwww\nwwww ww\nwww wwwwww\nwwwwww wxwwvvw\n",
"wwwww w\n8\nwwwww wwwwwwww\nwwwwwwww wwwwwwwww\nwwwwwwwww wwwwwwwwww\nw www\nwwwwwwwwww wwww\nwwww vw\nwww wwwwww\nwwwwww wwvwvww\n",
"wxz hbeqwqp\n7\nhbeqwqp cpieghnszh\ncpieghnszh tlqrpd\ntlqrpd ttwrtio\nttwrtio xapvds\nxapvds zk\nwxz kyry\nzk b\n",
"qqqqqqqqqr qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq p\n",
"qqrqqqqqqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq r\n",
"wwwww w\n8\nwwwww wwwwwwww\nwwwwwwww wwwwwwwww\nwwwwwwwww wwwwwwwwww\nw www\nwwwwwwwwww wwww\nwwww vw\nwww wwwwww\nwwwwww wxwvvww\n",
"iii iiiiii\n7\niii iiiiiiiiii\niiiiiiiiii iiii\niiii i\niiiiii iiiiiiii\niiiiiiii ihiiiiiii\ni iiiii\niiiii ik\n",
"qqrqpqqqqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq p\n",
"qqqqqqqqqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq s\n",
"qqqqqqrrqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq p\n",
"ze udggmyop\n4\nze szhrbmft\nudggmyop barojm\nszhrbmft ojdtfnzxj\nojdtfnzxj yjlkg\n",
"bwyplnjn zkms\n26\nzkms nzmcsytxh\nnzmcsytxh yujsb\nbwyplnjn gtbzhudpb\ngtbzhudpb hpk\nyujsb xvy\nhpk wrwnfokml\nwrwnfokml ndouuikw\nndouuikw ucgrja\nucgrja tgfmpldz\nxvy nycrfphn\nnycrfphn quvs\nquvs htdy\nhtdy k\ntgfmpldz xtdpkxm\nxtdpkxm suwqxs\nk fv\nsuwqxs qckllwy\nqckllwy diun\nfv lefa\nlefa gdoqjysx\ndiun dhpz\ngdoqjysx bdmqdyt\ndhpz dgz\ndgz v\nbdmqdyt aswy\naswy mnrlhyakdy\n",
"qqqpqqqqqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq q\n",
"icm codeforces\n1\ncodeforces techmex\n",
"ross rachel\n4\nross koey\nrachel phoebe\nphoebe monica\nmonica chandler\n",
"qqrpqqqqqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq r\n",
"wwwww w\n8\nwwwww wwwwwwww\nwwwwwwww wwwwwwwww\nwwwwwwwww wwwwwwwwww\nw www\nwwwwwwwwww wwww\nwwww ww\nwww wwwwww\nwwwwww wwxwvww\n",
"pqrqpqqqqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq p\n",
"icm codeforces\n1\ncodeforces xemhcet\n",
"ross rachel\n4\nross joey\nrachel phoebe\nphoebe monica\nmonica chdnaler\n",
"qqqqqqqrqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq p\n",
"wwwww w\n8\nwwwww wwwwwwww\nwwwwwwww wwwwwwwww\nwwwwwwwww wwwwwwwwww\nw www\nwwwwwwwwww wwww\nwwww wx\nwww wwwwww\nwwwwww wxwwvvw\n",
"wwwww w\n8\nwwwww wwwwwwww\nwwwwwwww wwwwwwwww\nwwwwwwwww wwwwwwwwww\nw www\nwwwwwwwwww wwww\nwwww uw\nwww wwwwww\nwwwwww wwvwvww\n",
"wwwww w\n8\nwwwww wwwwwwww\nwwwwwwww wwwwwwwww\nwwwwwwwww wwwwwwwwww\nw www\nwwwwwwwwww wwww\nwwww vw\nwww wwwwww\nwwwwww wxwvvwx\n",
"qqqqqqrqrq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq p\n",
"qqrpqqqqqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq q\n",
"wwwww w\n8\nwwwww wwwwwwww\nwwwwwwww wwwwwwwww\nwwwwwwwww wwwwwwwwww\nw www\nwwwwwwwwww wwww\nwwww vw\nwww wwwwww\nwwwwww xxwvvwx\n",
"qqqqqqprqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq q\n",
"wwwww w\n8\nwwwww wwwwwwww\nwwwwwwww wwwwwwwww\nwwwwwwwww wwwwwwwwww\nw www\nwwwwwwwwww wwww\nwwww uw\nwww wwwwww\nwwwwww xxwvvwx\n",
"wwwww w\n8\nwwwww wwwwwwww\nwwwwwwww wwwwwwwww\nwwwwwwwww wwwwwwwwww\nw www\nwwwwwwwwww wwww\nwwww wu\nwww wwwwww\nwwwwww xxwvvwx\n",
"wwwww w\n8\nwwwww wwwwwwww\nwwwwwwww wwwwwwwww\nwwwwwwwww wwwwwwwwww\nw www\nwwwwwwwwww wwww\nwwww ww\nwww wwwwww\nwwwwww wwwwwwx\n",
"iii iiiiii\n7\niii iiiiiiiiii\niiiiiiiiii iiii\niiii i\niiiiii iiiiiiii\niiiiiiii ihhiiiiii\ni iiiii\niiiii ki\n",
"pqrqqqqqqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq r\n",
"qqqqqprqrq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq p\n",
"wwwww w\n8\nwwwww wwwwwwww\nwwwwwwww wwwwwwwww\nwwwwwwwww wwwwwwwwww\nw www\nwwwwwwwwww wwww\nwwww wx\nwww wwwwww\nwwwwww wwwwwwx\n",
"wxz hbeqwqp\n7\nhbeqwqp cpieghnszh\ncpieghnszh tlqrpd\ntlqrpd ttwrtio\nttwrtio xapvds\nxapvds zk\nwxz yrzk\nzk b\n",
"ze udggmyop\n4\nze szhrbmft\nudggmyop mjorab\nszhrbmft ojdtfnzxj\nojdtfnzxj yjgkl\n",
"ross rachel\n4\nross joey\nrachel phoebe\nphoebe monica\nmonica ciandler\n",
"qqrqqqqqqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq s\n",
"qqqqrqrqqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq q\n",
"wwwww w\n8\nwwwww wwwwwwww\nwwwwwwww wwwwwwwww\nwwwwwwwww wwwwwwwwww\nw www\nwwwwwwwwww wwww\nwwww vw\nwww wwwwww\nwwwwww wxwvvxw\n",
"qqqqpqrrqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq p\n",
"qqroqqqqqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq r\n",
"ibm codeforces\n1\ncodeforces xemhcet\n",
"qqqqqqrqrq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq o\n",
"qqqqqqprrq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq q\n",
"wwwww w\n8\nwwwww wwwwwwww\nwwwwwwww wwwwwwwww\nwwwwwwwww wwwwwwwwww\nw www\nwwwwwwwwww wwww\nwwww xx\nwww wwwwww\nwwwwww wwwwwwx\n",
"wxz hbeqwqp\n7\nhbeqwqp cpieghnszh\ncpieghnszh tlqrpd\ntlqrpd ttwrtio\nttwrtio xapvds\nxapvds zk\nwxz yrzk\nzk c\n",
"qqqrrqrqqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq q\n",
"ibm codeforces\n1\ncodeforces techmex\n",
"qqqqqqrqrq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq n\n",
"qqqqqqprrq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq p\n",
"wwwww w\n8\nwwwww wwwwwwww\nwwwwwwww wwwwwwwww\nwwwwwwwww wwwwwwwwww\nw www\nwwwwwwwwww wwww\nwwww xx\nwww wwwwww\nwwwwww wwvwwwx\n",
"bim codeforces\n1\ncodeforces techmex\n",
"qqqqpqprrq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq p\n",
"wxz hbeqwqp\n7\nhbeqwqp cpieghnszh\ncpieghnszh tlqrpd\ntlqrpd ttwrtio\nttwrtio xapvds\nxapvds zk\nwxz yryk\nzk a\n",
"a b\n3\na c\nb d\nd d\n",
"qqrqqqqqqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq p\n",
"iii iiiiii\n7\niii iiiiiiiiii\niiiiiiiiii iiii\niiii i\niiiiii iiiiiiii\niiiiiiii ihiiiiiii\ni iiiii\niiiii kj\n",
"qqqqqpqrqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq q\n",
"qqqqqqqqpq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq r\n",
"ze udggmyop\n4\nze szhrbmft\nudggmyop barojm\nszhrbmft ojdtfnzxj\nojdtfnzxj ykljg\n",
"qqrpqqrqqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq r\n",
"pqrqprqqqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq p\n",
"qqqqqqqrqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq o\n",
"wwwww w\n8\nwwwww wwwwwwww\nwwwwwwww wwwwwwwww\nwwwwwwwww wwwwwwwwww\nw www\nwwwwwwwwww wwww\nwwww wv\nwww wwwwww\nwwwwww wxwvvwx\n",
"qrqrqqqqqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq p\n",
"qqqqqqqrqp qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq r\n",
"qqqqrqrqqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq p\n",
"qqqqpqrrqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq o\n",
"ibm codeforces\n1\ncodeforces xeehcmt\n",
"qrqrqqqqqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq o\n",
"qqqrqrrqqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq q\n",
"bim codeforces\n1\ncodeforces uechmex\n",
"qqrqqqqqqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq o\n",
"qqqqqqqrqp qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq s\n",
"mbi codeforces\n1\ncodeforces xeehcmt\n",
"bim codeforces\n1\ncodeforces uecimex\n",
"qqrqqqqqqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq n\n",
"ze udggmyop\n4\nze szhrbmft\nudggmyop mjorab\nszhrbmft ojdtfnzxj\nojdtfnzxj gkljy\n",
"a b\n3\na c\nb d\nd f\n"
],
"output": [
"icm codeforces\nicm technex\n",
"ross rachel\njoey rachel\njoey phoebe\njoey monica\njoey chandler\n",
"wwwww w\nwwwwwwww w\nwwwwwwwww w\nwwwwwwwwww w\nwwwwwwwwww www\nwwww www\nww www\nww wwwwww\nww wwwwwww\n",
"k d\nl d\nl v\nl z\nr z\nr i\ns i\np i\nw i\nj i\nh i\nh c\nm c\nq c\nq o\nq g\nx g\nn g\n",
"wxz hbeqwqp\nwxz cpieghnszh\nwxz tlqrpd\nwxz ttwrtio\nwxz xapvds\nwxz zk\nyryk zk\nyryk b\n",
"ze udggmyop\nszhrbmft udggmyop\nszhrbmft mjorab\nojdtfnzxj mjorab\nyjlkg mjorab\n",
"bwyplnjn zkms\nbwyplnjn nzmcsytxh\nbwyplnjn yujsb\ngtbzhudpb yujsb\nhpk yujsb\nhpk xvy\nwrwnfokml xvy\nndouuikw xvy\nucgrja xvy\ntgfmpldz xvy\ntgfmpldz nycrfphn\ntgfmpldz quvs\ntgfmpldz htdy\ntgfmpldz k\nxtdpkxm k\nsuwqxs k\nsuwqxs fv\nqckllwy fv\ndiun fv\ndiun lefa\ndiun gdoqjysx\ndhpz gdoqjysx\ndhpz bdmqdyt\ndgz bdmqdyt\nv bdmqdyt\nv aswy\nv ydkayhlrnm\n",
"iii iiiiii\niiiiiiiiii iiiiii\niiii iiiiii\ni iiiiii\ni iiiiiiii\ni iiiiiiiii\niiiii iiiiiiiii\nii iiiiiiiii\n",
"wced gnsgv\nwced japawpaf\nwced nnvpeu\nwced a\nwced ddupputljq\nwced qyhnvbh\nwced pqwijl\nkhuvs pqwijl\nbjkh pqwijl\nbjkh ysacmboc\nsrf ysacmboc\njknoz ysacmboc\nhodf ysacmboc\nhodf xqtkoyh\nrfp xqtkoyh\nrfp bivgnwqvoe\nrfp nknf\nrfp wuig\ne wuig\nbqqknq wuig\nbqqknq sznhhhu\ndhrtdld sznhhhu\nn sznhhhu\nn bguylf\n",
"a b\nc b\nc d\nc e\n",
"q s\nb s\nj s\nj g\nf g\nm g\nm c\nm a\nd a\nz a\no a\n",
"qqqqqqqqqq qqqqqqqq\nqqqqqqqqqq qqqqqqqqq\nqqqqqqqqqq qqqqq\nqqqqqqqqqq q\n",
"qqqqqqqqqq qqqqqqqq \nqqqqqqqqqq qqqqqqqqq \nqqqqqqqqqq qqqqq \nqqqqqqqqqq p \n",
"wwwww w \nwwwwwwww w \nwwwwwwwww w \nwwwwwwwwww w \nwwwwwwwwww www \nwwww www \nww www \nww wwwwww \nww wwwwvww \n",
"iii iiiiii \niiiiiiiiii iiiiii \niiii iiiiii \ni iiiiii \ni iiiiiiii \ni iiiiiiiii \niiiii iiiiiiiii \nij iiiiiiiii \n",
"wwwww w \nwwwwwwww w \nwwwwwwwww w \nwwwwwwwwww w \nwwwwwwwwww www \nwwww www \nww www \nww wwwwww \nww wxwwvww \n",
"iii iiiiii \niiiiiiiiii iiiiii \niiii iiiiii \ni iiiiii \ni iiiiiiii \ni iiiiiiiii \niiiii iiiiiiiii \nji iiiiiiiii \n",
"qqqqqqqrqq qqqqqqqq \nqqqqqqqrqq qqqqqqqqq \nqqqqqqqrqq qqqqq \nqqqqqqqrqq q \n",
"iii iiiiii \niiiiiiiiii iiiiii \niiii iiiiii \ni iiiiii \ni iiiiiiii \ni iiiiiiiii \niiiii iiiiiiiii \nki iiiiiiiii \n",
"qqrqqqqqqq qqqqqqqq \nqqrqqqqqqq qqqqqqqqq \nqqrqqqqqqq qqqqq \nqqrqqqqqqq q \n",
"wwwww w \nwwwwwwww w \nwwwwwwwww w \nwwwwwwwwww w \nwwwwwwwwww www \nwwww www \nww www \nww wwwwww \nww wwwwvwx \n",
"wwwww w \nwwwwwwww w \nwwwwwwwww w \nwwwwwwwwww w \nwwwwwwwwww www \nwwww www \nww www \nww wwwwww \nww wxwvvww \n",
"iii iiiiii \niiiiiiiiii iiiiii \niiii iiiiii \ni iiiiii \ni iiiiiiii \ni ihiiiiiii \niiiii ihiiiiiii \nki ihiiiiiii \n",
"qqrqpqqqqq qqqqqqqq \nqqrqpqqqqq qqqqqqqqq \nqqrqpqqqqq qqqqq \nqqrqpqqqqq q \n",
"qqqqqqqqqq qqqqqqqq \nqqqqqqqqqq qqqqqqqqq \nqqqqqqqqqq qqqqq \nqqqqqqqqqq r \n",
"iii iiiiii \niiiiiiiiii iiiiii \niiii iiiiii \ni iiiiii \ni iiiiiiii \ni iiiiiiiii \niiiii iiiiiiiii \nik iiiiiiiii \n",
"wwwww w \nwwwwwwww w \nwwwwwwwww w \nwwwwwwwwww w \nwwwwwwwwww www \nwwww www \nww www \nww wwwwww \nww wwvwvww \n",
"qqqqqqrrqq qqqqqqqq \nqqqqqqrrqq qqqqqqqqq \nqqqqqqrrqq qqqqq \nqqqqqqrrqq q \n",
"iii iiiiii \niiiiiiiiii iiiiii \niiii iiiiii \ni iiiiii \ni iiiiiiii \ni iiiiiiiii \niiiii iiiiiiiii \nli iiiiiiiii \n",
"wwwww w \nwwwwwwww w \nwwwwwwwww w \nwwwwwwwwww w \nwwwwwwwwww www \nwwww www \nww www \nww wwwwww \nww wxwwvvw \n",
"wwwww w \nwwwwwwww w \nwwwwwwwww w \nwwwwwwwwww w \nwwwwwwwwww www \nwwww www \nvw www \nvw wwwwww \nvw wwvwvww \n",
"wxz hbeqwqp \nwxz cpieghnszh \nwxz tlqrpd \nwxz ttwrtio \nwxz xapvds \nwxz zk \nkyry zk \nkyry b \n",
"qqqqqqqqqr qqqqqqqq \nqqqqqqqqqr qqqqqqqqq \nqqqqqqqqqr qqqqq \nqqqqqqqqqr p \n",
"qqrqqqqqqq qqqqqqqq \nqqrqqqqqqq qqqqqqqqq \nqqrqqqqqqq qqqqq \nqqrqqqqqqq r \n",
"wwwww w \nwwwwwwww w \nwwwwwwwww w \nwwwwwwwwww w \nwwwwwwwwww www \nwwww www \nvw www \nvw wwwwww \nvw wxwvvww \n",
"iii iiiiii \niiiiiiiiii iiiiii \niiii iiiiii \ni iiiiii \ni iiiiiiii \ni ihiiiiiii \niiiii ihiiiiiii \nik ihiiiiiii \n",
"qqrqpqqqqq qqqqqqqq \nqqrqpqqqqq qqqqqqqqq \nqqrqpqqqqq qqqqq \nqqrqpqqqqq p \n",
"qqqqqqqqqq qqqqqqqq \nqqqqqqqqqq qqqqqqqqq \nqqqqqqqqqq qqqqq \nqqqqqqqqqq s \n",
"qqqqqqrrqq qqqqqqqq \nqqqqqqrrqq qqqqqqqqq \nqqqqqqrrqq qqqqq \nqqqqqqrrqq p \n",
"ze udggmyop \nszhrbmft udggmyop \nszhrbmft barojm \nojdtfnzxj barojm \nyjlkg barojm \n",
"bwyplnjn zkms \nbwyplnjn nzmcsytxh \nbwyplnjn yujsb \ngtbzhudpb yujsb \nhpk yujsb \nhpk xvy \nwrwnfokml xvy \nndouuikw xvy \nucgrja xvy \ntgfmpldz xvy \ntgfmpldz nycrfphn \ntgfmpldz quvs \ntgfmpldz htdy \ntgfmpldz k \nxtdpkxm k \nsuwqxs k \nsuwqxs fv \nqckllwy fv \ndiun fv \ndiun lefa \ndiun gdoqjysx \ndhpz gdoqjysx \ndhpz bdmqdyt \ndgz bdmqdyt \nv bdmqdyt \nv aswy \nv mnrlhyakdy \n",
"qqqpqqqqqq qqqqqqqq \nqqqpqqqqqq qqqqqqqqq \nqqqpqqqqqq qqqqq \nqqqpqqqqqq q \n",
"icm codeforces \nicm techmex \n",
"ross rachel \nkoey rachel \nkoey phoebe \nkoey monica \nkoey chandler \n",
"qqrpqqqqqq qqqqqqqq \nqqrpqqqqqq qqqqqqqqq \nqqrpqqqqqq qqqqq \nqqrpqqqqqq r \n",
"wwwww w \nwwwwwwww w \nwwwwwwwww w \nwwwwwwwwww w \nwwwwwwwwww www \nwwww www \nww www \nww wwwwww \nww wwxwvww \n",
"pqrqpqqqqq qqqqqqqq \npqrqpqqqqq qqqqqqqqq \npqrqpqqqqq qqqqq \npqrqpqqqqq p \n",
"icm codeforces \nicm xemhcet \n",
"ross rachel \njoey rachel \njoey phoebe \njoey monica \njoey chdnaler \n",
"qqqqqqqrqq qqqqqqqq \nqqqqqqqrqq qqqqqqqqq \nqqqqqqqrqq qqqqq \nqqqqqqqrqq p \n",
"wwwww w \nwwwwwwww w \nwwwwwwwww w \nwwwwwwwwww w \nwwwwwwwwww www \nwwww www \nwx www \nwx wwwwww \nwx wxwwvvw \n",
"wwwww w \nwwwwwwww w \nwwwwwwwww w \nwwwwwwwwww w \nwwwwwwwwww www \nwwww www \nuw www \nuw wwwwww \nuw wwvwvww \n",
"wwwww w \nwwwwwwww w \nwwwwwwwww w \nwwwwwwwwww w \nwwwwwwwwww www \nwwww www \nvw www \nvw wwwwww \nvw wxwvvwx \n",
"qqqqqqrqrq qqqqqqqq \nqqqqqqrqrq qqqqqqqqq \nqqqqqqrqrq qqqqq \nqqqqqqrqrq p \n",
"qqrpqqqqqq qqqqqqqq \nqqrpqqqqqq qqqqqqqqq \nqqrpqqqqqq qqqqq \nqqrpqqqqqq q \n",
"wwwww w \nwwwwwwww w \nwwwwwwwww w \nwwwwwwwwww w \nwwwwwwwwww www \nwwww www \nvw www \nvw wwwwww \nvw xxwvvwx \n",
"qqqqqqprqq qqqqqqqq \nqqqqqqprqq qqqqqqqqq \nqqqqqqprqq qqqqq \nqqqqqqprqq q \n",
"wwwww w \nwwwwwwww w \nwwwwwwwww w \nwwwwwwwwww w \nwwwwwwwwww www \nwwww www \nuw www \nuw wwwwww \nuw xxwvvwx \n",
"wwwww w \nwwwwwwww w \nwwwwwwwww w \nwwwwwwwwww w \nwwwwwwwwww www \nwwww www \nwu www \nwu wwwwww \nwu xxwvvwx \n",
"wwwww w \nwwwwwwww w \nwwwwwwwww w \nwwwwwwwwww w \nwwwwwwwwww www \nwwww www \nww www \nww wwwwww \nww wwwwwwx \n",
"iii iiiiii \niiiiiiiiii iiiiii \niiii iiiiii \ni iiiiii \ni iiiiiiii \ni ihhiiiiii \niiiii ihhiiiiii \nki ihhiiiiii \n",
"pqrqqqqqqq qqqqqqqq \npqrqqqqqqq qqqqqqqqq \npqrqqqqqqq qqqqq \npqrqqqqqqq r \n",
"qqqqqprqrq qqqqqqqq \nqqqqqprqrq qqqqqqqqq \nqqqqqprqrq qqqqq \nqqqqqprqrq p \n",
"wwwww w \nwwwwwwww w \nwwwwwwwww w \nwwwwwwwwww w \nwwwwwwwwww www \nwwww www \nwx www \nwx wwwwww \nwx wwwwwwx \n",
"wxz hbeqwqp \nwxz cpieghnszh \nwxz tlqrpd \nwxz ttwrtio \nwxz xapvds \nwxz zk \nyrzk zk \nyrzk b \n",
"ze udggmyop \nszhrbmft udggmyop \nszhrbmft mjorab \nojdtfnzxj mjorab \nyjgkl mjorab \n",
"ross rachel \njoey rachel \njoey phoebe \njoey monica \njoey ciandler \n",
"qqrqqqqqqq qqqqqqqq \nqqrqqqqqqq qqqqqqqqq \nqqrqqqqqqq qqqqq \nqqrqqqqqqq s \n",
"qqqqrqrqqq qqqqqqqq \nqqqqrqrqqq qqqqqqqqq \nqqqqrqrqqq qqqqq \nqqqqrqrqqq q \n",
"wwwww w \nwwwwwwww w \nwwwwwwwww w \nwwwwwwwwww w \nwwwwwwwwww www \nwwww www \nvw www \nvw wwwwww \nvw wxwvvxw \n",
"qqqqpqrrqq qqqqqqqq \nqqqqpqrrqq qqqqqqqqq \nqqqqpqrrqq qqqqq \nqqqqpqrrqq p \n",
"qqroqqqqqq qqqqqqqq \nqqroqqqqqq qqqqqqqqq \nqqroqqqqqq qqqqq \nqqroqqqqqq r \n",
"ibm codeforces \nibm xemhcet \n",
"qqqqqqrqrq qqqqqqqq \nqqqqqqrqrq qqqqqqqqq \nqqqqqqrqrq qqqqq \nqqqqqqrqrq o \n",
"qqqqqqprrq qqqqqqqq \nqqqqqqprrq qqqqqqqqq \nqqqqqqprrq qqqqq \nqqqqqqprrq q \n",
"wwwww w \nwwwwwwww w \nwwwwwwwww w \nwwwwwwwwww w \nwwwwwwwwww www \nwwww www \nxx www \nxx wwwwww \nxx wwwwwwx \n",
"wxz hbeqwqp \nwxz cpieghnszh \nwxz tlqrpd \nwxz ttwrtio \nwxz xapvds \nwxz zk \nyrzk zk \nyrzk c \n",
"qqqrrqrqqq qqqqqqqq \nqqqrrqrqqq qqqqqqqqq \nqqqrrqrqqq qqqqq \nqqqrrqrqqq q \n",
"ibm codeforces \nibm techmex \n",
"qqqqqqrqrq qqqqqqqq \nqqqqqqrqrq qqqqqqqqq \nqqqqqqrqrq qqqqq \nqqqqqqrqrq n \n",
"qqqqqqprrq qqqqqqqq \nqqqqqqprrq qqqqqqqqq \nqqqqqqprrq qqqqq \nqqqqqqprrq p \n",
"wwwww w \nwwwwwwww w \nwwwwwwwww w \nwwwwwwwwww w \nwwwwwwwwww www \nwwww www \nxx www \nxx wwwwww \nxx wwvwwwx \n",
"bim codeforces \nbim techmex \n",
"qqqqpqprrq qqqqqqqq \nqqqqpqprrq qqqqqqqqq \nqqqqpqprrq qqqqq \nqqqqpqprrq p \n",
"wxz hbeqwqp \nwxz cpieghnszh \nwxz tlqrpd \nwxz ttwrtio \nwxz xapvds \nwxz zk \nyryk zk \nyryk a \n",
"a b \nc b \nc d \nc d \n",
"qqrqqqqqqq qqqqqqqq \nqqrqqqqqqq qqqqqqqqq \nqqrqqqqqqq qqqqq \nqqrqqqqqqq p \n",
"iii iiiiii \niiiiiiiiii iiiiii \niiii iiiiii \ni iiiiii \ni iiiiiiii \ni ihiiiiiii \niiiii ihiiiiiii \nkj ihiiiiiii \n",
"qqqqqpqrqq qqqqqqqq \nqqqqqpqrqq qqqqqqqqq \nqqqqqpqrqq qqqqq \nqqqqqpqrqq q \n",
"qqqqqqqqpq qqqqqqqq \nqqqqqqqqpq qqqqqqqqq \nqqqqqqqqpq qqqqq \nqqqqqqqqpq r \n",
"ze udggmyop \nszhrbmft udggmyop \nszhrbmft barojm \nojdtfnzxj barojm \nykljg barojm \n",
"qqrpqqrqqq qqqqqqqq \nqqrpqqrqqq qqqqqqqqq \nqqrpqqrqqq qqqqq \nqqrpqqrqqq r \n",
"pqrqprqqqq qqqqqqqq \npqrqprqqqq qqqqqqqqq \npqrqprqqqq qqqqq \npqrqprqqqq p \n",
"qqqqqqqrqq qqqqqqqq \nqqqqqqqrqq qqqqqqqqq \nqqqqqqqrqq qqqqq \nqqqqqqqrqq o \n",
"wwwww w \nwwwwwwww w \nwwwwwwwww w \nwwwwwwwwww w \nwwwwwwwwww www \nwwww www \nwv www \nwv wwwwww \nwv wxwvvwx \n",
"qrqrqqqqqq qqqqqqqq \nqrqrqqqqqq qqqqqqqqq \nqrqrqqqqqq qqqqq \nqrqrqqqqqq p \n",
"qqqqqqqrqp qqqqqqqq \nqqqqqqqrqp qqqqqqqqq \nqqqqqqqrqp qqqqq \nqqqqqqqrqp r \n",
"qqqqrqrqqq qqqqqqqq \nqqqqrqrqqq qqqqqqqqq \nqqqqrqrqqq qqqqq \nqqqqrqrqqq p \n",
"qqqqpqrrqq qqqqqqqq \nqqqqpqrrqq qqqqqqqqq \nqqqqpqrrqq qqqqq \nqqqqpqrrqq o \n",
"ibm codeforces \nibm xeehcmt \n",
"qrqrqqqqqq qqqqqqqq \nqrqrqqqqqq qqqqqqqqq \nqrqrqqqqqq qqqqq \nqrqrqqqqqq o \n",
"qqqrqrrqqq qqqqqqqq \nqqqrqrrqqq qqqqqqqqq \nqqqrqrrqqq qqqqq \nqqqrqrrqqq q \n",
"bim codeforces \nbim uechmex \n",
"qqrqqqqqqq qqqqqqqq \nqqrqqqqqqq qqqqqqqqq \nqqrqqqqqqq qqqqq \nqqrqqqqqqq o \n",
"qqqqqqqrqp qqqqqqqq \nqqqqqqqrqp qqqqqqqqq \nqqqqqqqrqp qqqqq \nqqqqqqqrqp s \n",
"mbi codeforces \nmbi xeehcmt \n",
"bim codeforces \nbim uecimex \n",
"qqrqqqqqqq qqqqqqqq \nqqrqqqqqqq qqqqqqqqq \nqqrqqqqqqq qqqqq \nqqrqqqqqqq n \n",
"ze udggmyop \nszhrbmft udggmyop \nszhrbmft mjorab \nojdtfnzxj mjorab \ngkljy mjorab \n",
"a b \nc b \nc d \nc f \n"
]
} | 2CODEFORCES
|
776_A. A Serial Killer_162 | Our beloved detective, Sherlock is currently trying to catch a serial killer who kills a person each day. Using his powers of deduction, he came to know that the killer has a strategy for selecting his next victim.
The killer starts with two potential victims on his first day, selects one of these two, kills selected victim and replaces him with a new person. He repeats this procedure each day. This way, each day he has two potential victims to choose from. Sherlock knows the initial two potential victims. Also, he knows the murder that happened on a particular day and the new person who replaced this victim.
You need to help him get all the pairs of potential victims at each day so that Sherlock can observe some pattern.
Input
First line of input contains two names (length of each of them doesn't exceed 10), the two initials potential victims. Next line contains integer n (1 ≤ n ≤ 1000), the number of days.
Next n lines contains two names (length of each of them doesn't exceed 10), first being the person murdered on this day and the second being the one who replaced that person.
The input format is consistent, that is, a person murdered is guaranteed to be from the two potential victims at that time. Also, all the names are guaranteed to be distinct and consists of lowercase English letters.
Output
Output n + 1 lines, the i-th line should contain the two persons from which the killer selects for the i-th murder. The (n + 1)-th line should contain the two persons from which the next victim is selected. In each line, the two names can be printed in any order.
Examples
Input
ross rachel
4
ross joey
rachel phoebe
phoebe monica
monica chandler
Output
ross rachel
joey rachel
joey phoebe
joey monica
joey chandler
Input
icm codeforces
1
codeforces technex
Output
icm codeforces
icm technex
Note
In first example, the killer starts with ross and rachel.
* After day 1, ross is killed and joey appears.
* After day 2, rachel is killed and phoebe appears.
* After day 3, phoebe is killed and monica appears.
* After day 4, monica is killed and chandler appears. | #include <bits/stdc++.h>
using namespace std;
int main() {
string s1, s2;
cin >> s1 >> s2;
int n;
cin >> n;
for (size_t i = 0; i < n; i++) {
i == n ? cout << s1 << " " << s2 : cout << s1 << " " << s2 << endl;
string f, s;
cin >> f >> s;
if (f == s1) {
s1 = s;
} else {
s2 = s;
}
}
cout << s1 << " " << s2 << endl;
return 0;
}
| 2C++
| {
"input": [
"icm codeforces\n1\ncodeforces technex\n",
"ross rachel\n4\nross joey\nrachel phoebe\nphoebe monica\nmonica chandler\n",
"wwwww w\n8\nwwwww wwwwwwww\nwwwwwwww wwwwwwwww\nwwwwwwwww wwwwwwwwww\nw www\nwwwwwwwwww wwww\nwwww ww\nwww wwwwww\nwwwwww wwwwwww\n",
"k d\n17\nk l\nd v\nv z\nl r\nz i\nr s\ns p\np w\nw j\nj h\ni c\nh m\nm q\nc o\no g\nq x\nx n\n",
"wxz hbeqwqp\n7\nhbeqwqp cpieghnszh\ncpieghnszh tlqrpd\ntlqrpd ttwrtio\nttwrtio xapvds\nxapvds zk\nwxz yryk\nzk b\n",
"ze udggmyop\n4\nze szhrbmft\nudggmyop mjorab\nszhrbmft ojdtfnzxj\nojdtfnzxj yjlkg\n",
"bwyplnjn zkms\n26\nzkms nzmcsytxh\nnzmcsytxh yujsb\nbwyplnjn gtbzhudpb\ngtbzhudpb hpk\nyujsb xvy\nhpk wrwnfokml\nwrwnfokml ndouuikw\nndouuikw ucgrja\nucgrja tgfmpldz\nxvy nycrfphn\nnycrfphn quvs\nquvs htdy\nhtdy k\ntgfmpldz xtdpkxm\nxtdpkxm suwqxs\nk fv\nsuwqxs qckllwy\nqckllwy diun\nfv lefa\nlefa gdoqjysx\ndiun dhpz\ngdoqjysx bdmqdyt\ndhpz dgz\ndgz v\nbdmqdyt aswy\naswy ydkayhlrnm\n",
"iii iiiiii\n7\niii iiiiiiiiii\niiiiiiiiii iiii\niiii i\niiiiii iiiiiiii\niiiiiiii iiiiiiiii\ni iiiii\niiiii ii\n",
"wced gnsgv\n23\ngnsgv japawpaf\njapawpaf nnvpeu\nnnvpeu a\na ddupputljq\nddupputljq qyhnvbh\nqyhnvbh pqwijl\nwced khuvs\nkhuvs bjkh\npqwijl ysacmboc\nbjkh srf\nsrf jknoz\njknoz hodf\nysacmboc xqtkoyh\nhodf rfp\nxqtkoyh bivgnwqvoe\nbivgnwqvoe nknf\nnknf wuig\nrfp e\ne bqqknq\nwuig sznhhhu\nbqqknq dhrtdld\ndhrtdld n\nsznhhhu bguylf\n",
"a b\n3\na c\nb d\nd e\n",
"q s\n10\nq b\nb j\ns g\nj f\nf m\ng c\nc a\nm d\nd z\nz o\n",
"qqqqqqqqqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq q\n",
"qqqqqqqqqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq p\n",
"wwwww w\n8\nwwwww wwwwwwww\nwwwwwwww wwwwwwwww\nwwwwwwwww wwwwwwwwww\nw www\nwwwwwwwwww wwww\nwwww ww\nwww wwwwww\nwwwwww wwwwvww\n",
"iii iiiiii\n7\niii iiiiiiiiii\niiiiiiiiii iiii\niiii i\niiiiii iiiiiiii\niiiiiiii iiiiiiiii\ni iiiii\niiiii ij\n",
"wwwww w\n8\nwwwww wwwwwwww\nwwwwwwww wwwwwwwww\nwwwwwwwww wwwwwwwwww\nw www\nwwwwwwwwww wwww\nwwww ww\nwww wwwwww\nwwwwww wxwwvww\n",
"iii iiiiii\n7\niii iiiiiiiiii\niiiiiiiiii iiii\niiii i\niiiiii iiiiiiii\niiiiiiii iiiiiiiii\ni iiiii\niiiii ji\n",
"qqqqqqqrqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq q\n",
"iii iiiiii\n7\niii iiiiiiiiii\niiiiiiiiii iiii\niiii i\niiiiii iiiiiiii\niiiiiiii iiiiiiiii\ni iiiii\niiiii ki\n",
"qqrqqqqqqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq q\n",
"wwwww w\n8\nwwwww wwwwwwww\nwwwwwwww wwwwwwwww\nwwwwwwwww wwwwwwwwww\nw www\nwwwwwwwwww wwww\nwwww ww\nwww wwwwww\nwwwwww wwwwvwx\n",
"wwwww w\n8\nwwwww wwwwwwww\nwwwwwwww wwwwwwwww\nwwwwwwwww wwwwwwwwww\nw www\nwwwwwwwwww wwww\nwwww ww\nwww wwwwww\nwwwwww wxwvvww\n",
"iii iiiiii\n7\niii iiiiiiiiii\niiiiiiiiii iiii\niiii i\niiiiii iiiiiiii\niiiiiiii ihiiiiiii\ni iiiii\niiiii ki\n",
"qqrqpqqqqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq q\n",
"qqqqqqqqqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq r\n",
"iii iiiiii\n7\niii iiiiiiiiii\niiiiiiiiii iiii\niiii i\niiiiii iiiiiiii\niiiiiiii iiiiiiiii\ni iiiii\niiiii ik\n",
"wwwww w\n8\nwwwww wwwwwwww\nwwwwwwww wwwwwwwww\nwwwwwwwww wwwwwwwwww\nw www\nwwwwwwwwww wwww\nwwww ww\nwww wwwwww\nwwwwww wwvwvww\n",
"qqqqqqrrqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq q\n",
"iii iiiiii\n7\niii iiiiiiiiii\niiiiiiiiii iiii\niiii i\niiiiii iiiiiiii\niiiiiiii iiiiiiiii\ni iiiii\niiiii li\n",
"wwwww w\n8\nwwwww wwwwwwww\nwwwwwwww wwwwwwwww\nwwwwwwwww wwwwwwwwww\nw www\nwwwwwwwwww wwww\nwwww ww\nwww wwwwww\nwwwwww wxwwvvw\n",
"wwwww w\n8\nwwwww wwwwwwww\nwwwwwwww wwwwwwwww\nwwwwwwwww wwwwwwwwww\nw www\nwwwwwwwwww wwww\nwwww vw\nwww wwwwww\nwwwwww wwvwvww\n",
"wxz hbeqwqp\n7\nhbeqwqp cpieghnszh\ncpieghnszh tlqrpd\ntlqrpd ttwrtio\nttwrtio xapvds\nxapvds zk\nwxz kyry\nzk b\n",
"qqqqqqqqqr qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq p\n",
"qqrqqqqqqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq r\n",
"wwwww w\n8\nwwwww wwwwwwww\nwwwwwwww wwwwwwwww\nwwwwwwwww wwwwwwwwww\nw www\nwwwwwwwwww wwww\nwwww vw\nwww wwwwww\nwwwwww wxwvvww\n",
"iii iiiiii\n7\niii iiiiiiiiii\niiiiiiiiii iiii\niiii i\niiiiii iiiiiiii\niiiiiiii ihiiiiiii\ni iiiii\niiiii ik\n",
"qqrqpqqqqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq p\n",
"qqqqqqqqqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq s\n",
"qqqqqqrrqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq p\n",
"ze udggmyop\n4\nze szhrbmft\nudggmyop barojm\nszhrbmft ojdtfnzxj\nojdtfnzxj yjlkg\n",
"bwyplnjn zkms\n26\nzkms nzmcsytxh\nnzmcsytxh yujsb\nbwyplnjn gtbzhudpb\ngtbzhudpb hpk\nyujsb xvy\nhpk wrwnfokml\nwrwnfokml ndouuikw\nndouuikw ucgrja\nucgrja tgfmpldz\nxvy nycrfphn\nnycrfphn quvs\nquvs htdy\nhtdy k\ntgfmpldz xtdpkxm\nxtdpkxm suwqxs\nk fv\nsuwqxs qckllwy\nqckllwy diun\nfv lefa\nlefa gdoqjysx\ndiun dhpz\ngdoqjysx bdmqdyt\ndhpz dgz\ndgz v\nbdmqdyt aswy\naswy mnrlhyakdy\n",
"qqqpqqqqqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq q\n",
"icm codeforces\n1\ncodeforces techmex\n",
"ross rachel\n4\nross koey\nrachel phoebe\nphoebe monica\nmonica chandler\n",
"qqrpqqqqqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq r\n",
"wwwww w\n8\nwwwww wwwwwwww\nwwwwwwww wwwwwwwww\nwwwwwwwww wwwwwwwwww\nw www\nwwwwwwwwww wwww\nwwww ww\nwww wwwwww\nwwwwww wwxwvww\n",
"pqrqpqqqqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq p\n",
"icm codeforces\n1\ncodeforces xemhcet\n",
"ross rachel\n4\nross joey\nrachel phoebe\nphoebe monica\nmonica chdnaler\n",
"qqqqqqqrqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq p\n",
"wwwww w\n8\nwwwww wwwwwwww\nwwwwwwww wwwwwwwww\nwwwwwwwww wwwwwwwwww\nw www\nwwwwwwwwww wwww\nwwww wx\nwww wwwwww\nwwwwww wxwwvvw\n",
"wwwww w\n8\nwwwww wwwwwwww\nwwwwwwww wwwwwwwww\nwwwwwwwww wwwwwwwwww\nw www\nwwwwwwwwww wwww\nwwww uw\nwww wwwwww\nwwwwww wwvwvww\n",
"wwwww w\n8\nwwwww wwwwwwww\nwwwwwwww wwwwwwwww\nwwwwwwwww wwwwwwwwww\nw www\nwwwwwwwwww wwww\nwwww vw\nwww wwwwww\nwwwwww wxwvvwx\n",
"qqqqqqrqrq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq p\n",
"qqrpqqqqqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq q\n",
"wwwww w\n8\nwwwww wwwwwwww\nwwwwwwww wwwwwwwww\nwwwwwwwww wwwwwwwwww\nw www\nwwwwwwwwww wwww\nwwww vw\nwww wwwwww\nwwwwww xxwvvwx\n",
"qqqqqqprqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq q\n",
"wwwww w\n8\nwwwww wwwwwwww\nwwwwwwww wwwwwwwww\nwwwwwwwww wwwwwwwwww\nw www\nwwwwwwwwww wwww\nwwww uw\nwww wwwwww\nwwwwww xxwvvwx\n",
"wwwww w\n8\nwwwww wwwwwwww\nwwwwwwww wwwwwwwww\nwwwwwwwww wwwwwwwwww\nw www\nwwwwwwwwww wwww\nwwww wu\nwww wwwwww\nwwwwww xxwvvwx\n",
"wwwww w\n8\nwwwww wwwwwwww\nwwwwwwww wwwwwwwww\nwwwwwwwww wwwwwwwwww\nw www\nwwwwwwwwww wwww\nwwww ww\nwww wwwwww\nwwwwww wwwwwwx\n",
"iii iiiiii\n7\niii iiiiiiiiii\niiiiiiiiii iiii\niiii i\niiiiii iiiiiiii\niiiiiiii ihhiiiiii\ni iiiii\niiiii ki\n",
"pqrqqqqqqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq r\n",
"qqqqqprqrq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq p\n",
"wwwww w\n8\nwwwww wwwwwwww\nwwwwwwww wwwwwwwww\nwwwwwwwww wwwwwwwwww\nw www\nwwwwwwwwww wwww\nwwww wx\nwww wwwwww\nwwwwww wwwwwwx\n",
"wxz hbeqwqp\n7\nhbeqwqp cpieghnszh\ncpieghnszh tlqrpd\ntlqrpd ttwrtio\nttwrtio xapvds\nxapvds zk\nwxz yrzk\nzk b\n",
"ze udggmyop\n4\nze szhrbmft\nudggmyop mjorab\nszhrbmft ojdtfnzxj\nojdtfnzxj yjgkl\n",
"ross rachel\n4\nross joey\nrachel phoebe\nphoebe monica\nmonica ciandler\n",
"qqrqqqqqqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq s\n",
"qqqqrqrqqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq q\n",
"wwwww w\n8\nwwwww wwwwwwww\nwwwwwwww wwwwwwwww\nwwwwwwwww wwwwwwwwww\nw www\nwwwwwwwwww wwww\nwwww vw\nwww wwwwww\nwwwwww wxwvvxw\n",
"qqqqpqrrqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq p\n",
"qqroqqqqqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq r\n",
"ibm codeforces\n1\ncodeforces xemhcet\n",
"qqqqqqrqrq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq o\n",
"qqqqqqprrq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq q\n",
"wwwww w\n8\nwwwww wwwwwwww\nwwwwwwww wwwwwwwww\nwwwwwwwww wwwwwwwwww\nw www\nwwwwwwwwww wwww\nwwww xx\nwww wwwwww\nwwwwww wwwwwwx\n",
"wxz hbeqwqp\n7\nhbeqwqp cpieghnszh\ncpieghnszh tlqrpd\ntlqrpd ttwrtio\nttwrtio xapvds\nxapvds zk\nwxz yrzk\nzk c\n",
"qqqrrqrqqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq q\n",
"ibm codeforces\n1\ncodeforces techmex\n",
"qqqqqqrqrq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq n\n",
"qqqqqqprrq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq p\n",
"wwwww w\n8\nwwwww wwwwwwww\nwwwwwwww wwwwwwwww\nwwwwwwwww wwwwwwwwww\nw www\nwwwwwwwwww wwww\nwwww xx\nwww wwwwww\nwwwwww wwvwwwx\n",
"bim codeforces\n1\ncodeforces techmex\n",
"qqqqpqprrq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq p\n",
"wxz hbeqwqp\n7\nhbeqwqp cpieghnszh\ncpieghnszh tlqrpd\ntlqrpd ttwrtio\nttwrtio xapvds\nxapvds zk\nwxz yryk\nzk a\n",
"a b\n3\na c\nb d\nd d\n",
"qqrqqqqqqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq p\n",
"iii iiiiii\n7\niii iiiiiiiiii\niiiiiiiiii iiii\niiii i\niiiiii iiiiiiii\niiiiiiii ihiiiiiii\ni iiiii\niiiii kj\n",
"qqqqqpqrqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq q\n",
"qqqqqqqqpq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq r\n",
"ze udggmyop\n4\nze szhrbmft\nudggmyop barojm\nszhrbmft ojdtfnzxj\nojdtfnzxj ykljg\n",
"qqrpqqrqqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq r\n",
"pqrqprqqqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq p\n",
"qqqqqqqrqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq o\n",
"wwwww w\n8\nwwwww wwwwwwww\nwwwwwwww wwwwwwwww\nwwwwwwwww wwwwwwwwww\nw www\nwwwwwwwwww wwww\nwwww wv\nwww wwwwww\nwwwwww wxwvvwx\n",
"qrqrqqqqqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq p\n",
"qqqqqqqrqp qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq r\n",
"qqqqrqrqqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq p\n",
"qqqqpqrrqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq o\n",
"ibm codeforces\n1\ncodeforces xeehcmt\n",
"qrqrqqqqqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq o\n",
"qqqrqrrqqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq q\n",
"bim codeforces\n1\ncodeforces uechmex\n",
"qqrqqqqqqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq o\n",
"qqqqqqqrqp qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq s\n",
"mbi codeforces\n1\ncodeforces xeehcmt\n",
"bim codeforces\n1\ncodeforces uecimex\n",
"qqrqqqqqqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq n\n",
"ze udggmyop\n4\nze szhrbmft\nudggmyop mjorab\nszhrbmft ojdtfnzxj\nojdtfnzxj gkljy\n",
"a b\n3\na c\nb d\nd f\n"
],
"output": [
"icm codeforces\nicm technex\n",
"ross rachel\njoey rachel\njoey phoebe\njoey monica\njoey chandler\n",
"wwwww w\nwwwwwwww w\nwwwwwwwww w\nwwwwwwwwww w\nwwwwwwwwww www\nwwww www\nww www\nww wwwwww\nww wwwwwww\n",
"k d\nl d\nl v\nl z\nr z\nr i\ns i\np i\nw i\nj i\nh i\nh c\nm c\nq c\nq o\nq g\nx g\nn g\n",
"wxz hbeqwqp\nwxz cpieghnszh\nwxz tlqrpd\nwxz ttwrtio\nwxz xapvds\nwxz zk\nyryk zk\nyryk b\n",
"ze udggmyop\nszhrbmft udggmyop\nszhrbmft mjorab\nojdtfnzxj mjorab\nyjlkg mjorab\n",
"bwyplnjn zkms\nbwyplnjn nzmcsytxh\nbwyplnjn yujsb\ngtbzhudpb yujsb\nhpk yujsb\nhpk xvy\nwrwnfokml xvy\nndouuikw xvy\nucgrja xvy\ntgfmpldz xvy\ntgfmpldz nycrfphn\ntgfmpldz quvs\ntgfmpldz htdy\ntgfmpldz k\nxtdpkxm k\nsuwqxs k\nsuwqxs fv\nqckllwy fv\ndiun fv\ndiun lefa\ndiun gdoqjysx\ndhpz gdoqjysx\ndhpz bdmqdyt\ndgz bdmqdyt\nv bdmqdyt\nv aswy\nv ydkayhlrnm\n",
"iii iiiiii\niiiiiiiiii iiiiii\niiii iiiiii\ni iiiiii\ni iiiiiiii\ni iiiiiiiii\niiiii iiiiiiiii\nii iiiiiiiii\n",
"wced gnsgv\nwced japawpaf\nwced nnvpeu\nwced a\nwced ddupputljq\nwced qyhnvbh\nwced pqwijl\nkhuvs pqwijl\nbjkh pqwijl\nbjkh ysacmboc\nsrf ysacmboc\njknoz ysacmboc\nhodf ysacmboc\nhodf xqtkoyh\nrfp xqtkoyh\nrfp bivgnwqvoe\nrfp nknf\nrfp wuig\ne wuig\nbqqknq wuig\nbqqknq sznhhhu\ndhrtdld sznhhhu\nn sznhhhu\nn bguylf\n",
"a b\nc b\nc d\nc e\n",
"q s\nb s\nj s\nj g\nf g\nm g\nm c\nm a\nd a\nz a\no a\n",
"qqqqqqqqqq qqqqqqqq\nqqqqqqqqqq qqqqqqqqq\nqqqqqqqqqq qqqqq\nqqqqqqqqqq q\n",
"qqqqqqqqqq qqqqqqqq \nqqqqqqqqqq qqqqqqqqq \nqqqqqqqqqq qqqqq \nqqqqqqqqqq p \n",
"wwwww w \nwwwwwwww w \nwwwwwwwww w \nwwwwwwwwww w \nwwwwwwwwww www \nwwww www \nww www \nww wwwwww \nww wwwwvww \n",
"iii iiiiii \niiiiiiiiii iiiiii \niiii iiiiii \ni iiiiii \ni iiiiiiii \ni iiiiiiiii \niiiii iiiiiiiii \nij iiiiiiiii \n",
"wwwww w \nwwwwwwww w \nwwwwwwwww w \nwwwwwwwwww w \nwwwwwwwwww www \nwwww www \nww www \nww wwwwww \nww wxwwvww \n",
"iii iiiiii \niiiiiiiiii iiiiii \niiii iiiiii \ni iiiiii \ni iiiiiiii \ni iiiiiiiii \niiiii iiiiiiiii \nji iiiiiiiii \n",
"qqqqqqqrqq qqqqqqqq \nqqqqqqqrqq qqqqqqqqq \nqqqqqqqrqq qqqqq \nqqqqqqqrqq q \n",
"iii iiiiii \niiiiiiiiii iiiiii \niiii iiiiii \ni iiiiii \ni iiiiiiii \ni iiiiiiiii \niiiii iiiiiiiii \nki iiiiiiiii \n",
"qqrqqqqqqq qqqqqqqq \nqqrqqqqqqq qqqqqqqqq \nqqrqqqqqqq qqqqq \nqqrqqqqqqq q \n",
"wwwww w \nwwwwwwww w \nwwwwwwwww w \nwwwwwwwwww w \nwwwwwwwwww www \nwwww www \nww www \nww wwwwww \nww wwwwvwx \n",
"wwwww w \nwwwwwwww w \nwwwwwwwww w \nwwwwwwwwww w \nwwwwwwwwww www \nwwww www \nww www \nww wwwwww \nww wxwvvww \n",
"iii iiiiii \niiiiiiiiii iiiiii \niiii iiiiii \ni iiiiii \ni iiiiiiii \ni ihiiiiiii \niiiii ihiiiiiii \nki ihiiiiiii \n",
"qqrqpqqqqq qqqqqqqq \nqqrqpqqqqq qqqqqqqqq \nqqrqpqqqqq qqqqq \nqqrqpqqqqq q \n",
"qqqqqqqqqq qqqqqqqq \nqqqqqqqqqq qqqqqqqqq \nqqqqqqqqqq qqqqq \nqqqqqqqqqq r \n",
"iii iiiiii \niiiiiiiiii iiiiii \niiii iiiiii \ni iiiiii \ni iiiiiiii \ni iiiiiiiii \niiiii iiiiiiiii \nik iiiiiiiii \n",
"wwwww w \nwwwwwwww w \nwwwwwwwww w \nwwwwwwwwww w \nwwwwwwwwww www \nwwww www \nww www \nww wwwwww \nww wwvwvww \n",
"qqqqqqrrqq qqqqqqqq \nqqqqqqrrqq qqqqqqqqq \nqqqqqqrrqq qqqqq \nqqqqqqrrqq q \n",
"iii iiiiii \niiiiiiiiii iiiiii \niiii iiiiii \ni iiiiii \ni iiiiiiii \ni iiiiiiiii \niiiii iiiiiiiii \nli iiiiiiiii \n",
"wwwww w \nwwwwwwww w \nwwwwwwwww w \nwwwwwwwwww w \nwwwwwwwwww www \nwwww www \nww www \nww wwwwww \nww wxwwvvw \n",
"wwwww w \nwwwwwwww w \nwwwwwwwww w \nwwwwwwwwww w \nwwwwwwwwww www \nwwww www \nvw www \nvw wwwwww \nvw wwvwvww \n",
"wxz hbeqwqp \nwxz cpieghnszh \nwxz tlqrpd \nwxz ttwrtio \nwxz xapvds \nwxz zk \nkyry zk \nkyry b \n",
"qqqqqqqqqr qqqqqqqq \nqqqqqqqqqr qqqqqqqqq \nqqqqqqqqqr qqqqq \nqqqqqqqqqr p \n",
"qqrqqqqqqq qqqqqqqq \nqqrqqqqqqq qqqqqqqqq \nqqrqqqqqqq qqqqq \nqqrqqqqqqq r \n",
"wwwww w \nwwwwwwww w \nwwwwwwwww w \nwwwwwwwwww w \nwwwwwwwwww www \nwwww www \nvw www \nvw wwwwww \nvw wxwvvww \n",
"iii iiiiii \niiiiiiiiii iiiiii \niiii iiiiii \ni iiiiii \ni iiiiiiii \ni ihiiiiiii \niiiii ihiiiiiii \nik ihiiiiiii \n",
"qqrqpqqqqq qqqqqqqq \nqqrqpqqqqq qqqqqqqqq \nqqrqpqqqqq qqqqq \nqqrqpqqqqq p \n",
"qqqqqqqqqq qqqqqqqq \nqqqqqqqqqq qqqqqqqqq \nqqqqqqqqqq qqqqq \nqqqqqqqqqq s \n",
"qqqqqqrrqq qqqqqqqq \nqqqqqqrrqq qqqqqqqqq \nqqqqqqrrqq qqqqq \nqqqqqqrrqq p \n",
"ze udggmyop \nszhrbmft udggmyop \nszhrbmft barojm \nojdtfnzxj barojm \nyjlkg barojm \n",
"bwyplnjn zkms \nbwyplnjn nzmcsytxh \nbwyplnjn yujsb \ngtbzhudpb yujsb \nhpk yujsb \nhpk xvy \nwrwnfokml xvy \nndouuikw xvy \nucgrja xvy \ntgfmpldz xvy \ntgfmpldz nycrfphn \ntgfmpldz quvs \ntgfmpldz htdy \ntgfmpldz k \nxtdpkxm k \nsuwqxs k \nsuwqxs fv \nqckllwy fv \ndiun fv \ndiun lefa \ndiun gdoqjysx \ndhpz gdoqjysx \ndhpz bdmqdyt \ndgz bdmqdyt \nv bdmqdyt \nv aswy \nv mnrlhyakdy \n",
"qqqpqqqqqq qqqqqqqq \nqqqpqqqqqq qqqqqqqqq \nqqqpqqqqqq qqqqq \nqqqpqqqqqq q \n",
"icm codeforces \nicm techmex \n",
"ross rachel \nkoey rachel \nkoey phoebe \nkoey monica \nkoey chandler \n",
"qqrpqqqqqq qqqqqqqq \nqqrpqqqqqq qqqqqqqqq \nqqrpqqqqqq qqqqq \nqqrpqqqqqq r \n",
"wwwww w \nwwwwwwww w \nwwwwwwwww w \nwwwwwwwwww w \nwwwwwwwwww www \nwwww www \nww www \nww wwwwww \nww wwxwvww \n",
"pqrqpqqqqq qqqqqqqq \npqrqpqqqqq qqqqqqqqq \npqrqpqqqqq qqqqq \npqrqpqqqqq p \n",
"icm codeforces \nicm xemhcet \n",
"ross rachel \njoey rachel \njoey phoebe \njoey monica \njoey chdnaler \n",
"qqqqqqqrqq qqqqqqqq \nqqqqqqqrqq qqqqqqqqq \nqqqqqqqrqq qqqqq \nqqqqqqqrqq p \n",
"wwwww w \nwwwwwwww w \nwwwwwwwww w \nwwwwwwwwww w \nwwwwwwwwww www \nwwww www \nwx www \nwx wwwwww \nwx wxwwvvw \n",
"wwwww w \nwwwwwwww w \nwwwwwwwww w \nwwwwwwwwww w \nwwwwwwwwww www \nwwww www \nuw www \nuw wwwwww \nuw wwvwvww \n",
"wwwww w \nwwwwwwww w \nwwwwwwwww w \nwwwwwwwwww w \nwwwwwwwwww www \nwwww www \nvw www \nvw wwwwww \nvw wxwvvwx \n",
"qqqqqqrqrq qqqqqqqq \nqqqqqqrqrq qqqqqqqqq \nqqqqqqrqrq qqqqq \nqqqqqqrqrq p \n",
"qqrpqqqqqq qqqqqqqq \nqqrpqqqqqq qqqqqqqqq \nqqrpqqqqqq qqqqq \nqqrpqqqqqq q \n",
"wwwww w \nwwwwwwww w \nwwwwwwwww w \nwwwwwwwwww w \nwwwwwwwwww www \nwwww www \nvw www \nvw wwwwww \nvw xxwvvwx \n",
"qqqqqqprqq qqqqqqqq \nqqqqqqprqq qqqqqqqqq \nqqqqqqprqq qqqqq \nqqqqqqprqq q \n",
"wwwww w \nwwwwwwww w \nwwwwwwwww w \nwwwwwwwwww w \nwwwwwwwwww www \nwwww www \nuw www \nuw wwwwww \nuw xxwvvwx \n",
"wwwww w \nwwwwwwww w \nwwwwwwwww w \nwwwwwwwwww w \nwwwwwwwwww www \nwwww www \nwu www \nwu wwwwww \nwu xxwvvwx \n",
"wwwww w \nwwwwwwww w \nwwwwwwwww w \nwwwwwwwwww w \nwwwwwwwwww www \nwwww www \nww www \nww wwwwww \nww wwwwwwx \n",
"iii iiiiii \niiiiiiiiii iiiiii \niiii iiiiii \ni iiiiii \ni iiiiiiii \ni ihhiiiiii \niiiii ihhiiiiii \nki ihhiiiiii \n",
"pqrqqqqqqq qqqqqqqq \npqrqqqqqqq qqqqqqqqq \npqrqqqqqqq qqqqq \npqrqqqqqqq r \n",
"qqqqqprqrq qqqqqqqq \nqqqqqprqrq qqqqqqqqq \nqqqqqprqrq qqqqq \nqqqqqprqrq p \n",
"wwwww w \nwwwwwwww w \nwwwwwwwww w \nwwwwwwwwww w \nwwwwwwwwww www \nwwww www \nwx www \nwx wwwwww \nwx wwwwwwx \n",
"wxz hbeqwqp \nwxz cpieghnszh \nwxz tlqrpd \nwxz ttwrtio \nwxz xapvds \nwxz zk \nyrzk zk \nyrzk b \n",
"ze udggmyop \nszhrbmft udggmyop \nszhrbmft mjorab \nojdtfnzxj mjorab \nyjgkl mjorab \n",
"ross rachel \njoey rachel \njoey phoebe \njoey monica \njoey ciandler \n",
"qqrqqqqqqq qqqqqqqq \nqqrqqqqqqq qqqqqqqqq \nqqrqqqqqqq qqqqq \nqqrqqqqqqq s \n",
"qqqqrqrqqq qqqqqqqq \nqqqqrqrqqq qqqqqqqqq \nqqqqrqrqqq qqqqq \nqqqqrqrqqq q \n",
"wwwww w \nwwwwwwww w \nwwwwwwwww w \nwwwwwwwwww w \nwwwwwwwwww www \nwwww www \nvw www \nvw wwwwww \nvw wxwvvxw \n",
"qqqqpqrrqq qqqqqqqq \nqqqqpqrrqq qqqqqqqqq \nqqqqpqrrqq qqqqq \nqqqqpqrrqq p \n",
"qqroqqqqqq qqqqqqqq \nqqroqqqqqq qqqqqqqqq \nqqroqqqqqq qqqqq \nqqroqqqqqq r \n",
"ibm codeforces \nibm xemhcet \n",
"qqqqqqrqrq qqqqqqqq \nqqqqqqrqrq qqqqqqqqq \nqqqqqqrqrq qqqqq \nqqqqqqrqrq o \n",
"qqqqqqprrq qqqqqqqq \nqqqqqqprrq qqqqqqqqq \nqqqqqqprrq qqqqq \nqqqqqqprrq q \n",
"wwwww w \nwwwwwwww w \nwwwwwwwww w \nwwwwwwwwww w \nwwwwwwwwww www \nwwww www \nxx www \nxx wwwwww \nxx wwwwwwx \n",
"wxz hbeqwqp \nwxz cpieghnszh \nwxz tlqrpd \nwxz ttwrtio \nwxz xapvds \nwxz zk \nyrzk zk \nyrzk c \n",
"qqqrrqrqqq qqqqqqqq \nqqqrrqrqqq qqqqqqqqq \nqqqrrqrqqq qqqqq \nqqqrrqrqqq q \n",
"ibm codeforces \nibm techmex \n",
"qqqqqqrqrq qqqqqqqq \nqqqqqqrqrq qqqqqqqqq \nqqqqqqrqrq qqqqq \nqqqqqqrqrq n \n",
"qqqqqqprrq qqqqqqqq \nqqqqqqprrq qqqqqqqqq \nqqqqqqprrq qqqqq \nqqqqqqprrq p \n",
"wwwww w \nwwwwwwww w \nwwwwwwwww w \nwwwwwwwwww w \nwwwwwwwwww www \nwwww www \nxx www \nxx wwwwww \nxx wwvwwwx \n",
"bim codeforces \nbim techmex \n",
"qqqqpqprrq qqqqqqqq \nqqqqpqprrq qqqqqqqqq \nqqqqpqprrq qqqqq \nqqqqpqprrq p \n",
"wxz hbeqwqp \nwxz cpieghnszh \nwxz tlqrpd \nwxz ttwrtio \nwxz xapvds \nwxz zk \nyryk zk \nyryk a \n",
"a b \nc b \nc d \nc d \n",
"qqrqqqqqqq qqqqqqqq \nqqrqqqqqqq qqqqqqqqq \nqqrqqqqqqq qqqqq \nqqrqqqqqqq p \n",
"iii iiiiii \niiiiiiiiii iiiiii \niiii iiiiii \ni iiiiii \ni iiiiiiii \ni ihiiiiiii \niiiii ihiiiiiii \nkj ihiiiiiii \n",
"qqqqqpqrqq qqqqqqqq \nqqqqqpqrqq qqqqqqqqq \nqqqqqpqrqq qqqqq \nqqqqqpqrqq q \n",
"qqqqqqqqpq qqqqqqqq \nqqqqqqqqpq qqqqqqqqq \nqqqqqqqqpq qqqqq \nqqqqqqqqpq r \n",
"ze udggmyop \nszhrbmft udggmyop \nszhrbmft barojm \nojdtfnzxj barojm \nykljg barojm \n",
"qqrpqqrqqq qqqqqqqq \nqqrpqqrqqq qqqqqqqqq \nqqrpqqrqqq qqqqq \nqqrpqqrqqq r \n",
"pqrqprqqqq qqqqqqqq \npqrqprqqqq qqqqqqqqq \npqrqprqqqq qqqqq \npqrqprqqqq p \n",
"qqqqqqqrqq qqqqqqqq \nqqqqqqqrqq qqqqqqqqq \nqqqqqqqrqq qqqqq \nqqqqqqqrqq o \n",
"wwwww w \nwwwwwwww w \nwwwwwwwww w \nwwwwwwwwww w \nwwwwwwwwww www \nwwww www \nwv www \nwv wwwwww \nwv wxwvvwx \n",
"qrqrqqqqqq qqqqqqqq \nqrqrqqqqqq qqqqqqqqq \nqrqrqqqqqq qqqqq \nqrqrqqqqqq p \n",
"qqqqqqqrqp qqqqqqqq \nqqqqqqqrqp qqqqqqqqq \nqqqqqqqrqp qqqqq \nqqqqqqqrqp r \n",
"qqqqrqrqqq qqqqqqqq \nqqqqrqrqqq qqqqqqqqq \nqqqqrqrqqq qqqqq \nqqqqrqrqqq p \n",
"qqqqpqrrqq qqqqqqqq \nqqqqpqrrqq qqqqqqqqq \nqqqqpqrrqq qqqqq \nqqqqpqrrqq o \n",
"ibm codeforces \nibm xeehcmt \n",
"qrqrqqqqqq qqqqqqqq \nqrqrqqqqqq qqqqqqqqq \nqrqrqqqqqq qqqqq \nqrqrqqqqqq o \n",
"qqqrqrrqqq qqqqqqqq \nqqqrqrrqqq qqqqqqqqq \nqqqrqrrqqq qqqqq \nqqqrqrrqqq q \n",
"bim codeforces \nbim uechmex \n",
"qqrqqqqqqq qqqqqqqq \nqqrqqqqqqq qqqqqqqqq \nqqrqqqqqqq qqqqq \nqqrqqqqqqq o \n",
"qqqqqqqrqp qqqqqqqq \nqqqqqqqrqp qqqqqqqqq \nqqqqqqqrqp qqqqq \nqqqqqqqrqp s \n",
"mbi codeforces \nmbi xeehcmt \n",
"bim codeforces \nbim uecimex \n",
"qqrqqqqqqq qqqqqqqq \nqqrqqqqqqq qqqqqqqqq \nqqrqqqqqqq qqqqq \nqqrqqqqqqq n \n",
"ze udggmyop \nszhrbmft udggmyop \nszhrbmft mjorab \nojdtfnzxj mjorab \ngkljy mjorab \n",
"a b \nc b \nc d \nc f \n"
]
} | 2CODEFORCES
|
776_A. A Serial Killer_163 | Our beloved detective, Sherlock is currently trying to catch a serial killer who kills a person each day. Using his powers of deduction, he came to know that the killer has a strategy for selecting his next victim.
The killer starts with two potential victims on his first day, selects one of these two, kills selected victim and replaces him with a new person. He repeats this procedure each day. This way, each day he has two potential victims to choose from. Sherlock knows the initial two potential victims. Also, he knows the murder that happened on a particular day and the new person who replaced this victim.
You need to help him get all the pairs of potential victims at each day so that Sherlock can observe some pattern.
Input
First line of input contains two names (length of each of them doesn't exceed 10), the two initials potential victims. Next line contains integer n (1 ≤ n ≤ 1000), the number of days.
Next n lines contains two names (length of each of them doesn't exceed 10), first being the person murdered on this day and the second being the one who replaced that person.
The input format is consistent, that is, a person murdered is guaranteed to be from the two potential victims at that time. Also, all the names are guaranteed to be distinct and consists of lowercase English letters.
Output
Output n + 1 lines, the i-th line should contain the two persons from which the killer selects for the i-th murder. The (n + 1)-th line should contain the two persons from which the next victim is selected. In each line, the two names can be printed in any order.
Examples
Input
ross rachel
4
ross joey
rachel phoebe
phoebe monica
monica chandler
Output
ross rachel
joey rachel
joey phoebe
joey monica
joey chandler
Input
icm codeforces
1
codeforces technex
Output
icm codeforces
icm technex
Note
In first example, the killer starts with ross and rachel.
* After day 1, ross is killed and joey appears.
* After day 2, rachel is killed and phoebe appears.
* After day 3, phoebe is killed and monica appears.
* After day 4, monica is killed and chandler appears. | def main():
l = input().split()
print(*l)
for _ in range(int(input())):
a, b = input().split()
l[a == l[1]] = b
print(*l)
if __name__ == '__main__':
main()
| 3Python3
| {
"input": [
"icm codeforces\n1\ncodeforces technex\n",
"ross rachel\n4\nross joey\nrachel phoebe\nphoebe monica\nmonica chandler\n",
"wwwww w\n8\nwwwww wwwwwwww\nwwwwwwww wwwwwwwww\nwwwwwwwww wwwwwwwwww\nw www\nwwwwwwwwww wwww\nwwww ww\nwww wwwwww\nwwwwww wwwwwww\n",
"k d\n17\nk l\nd v\nv z\nl r\nz i\nr s\ns p\np w\nw j\nj h\ni c\nh m\nm q\nc o\no g\nq x\nx n\n",
"wxz hbeqwqp\n7\nhbeqwqp cpieghnszh\ncpieghnszh tlqrpd\ntlqrpd ttwrtio\nttwrtio xapvds\nxapvds zk\nwxz yryk\nzk b\n",
"ze udggmyop\n4\nze szhrbmft\nudggmyop mjorab\nszhrbmft ojdtfnzxj\nojdtfnzxj yjlkg\n",
"bwyplnjn zkms\n26\nzkms nzmcsytxh\nnzmcsytxh yujsb\nbwyplnjn gtbzhudpb\ngtbzhudpb hpk\nyujsb xvy\nhpk wrwnfokml\nwrwnfokml ndouuikw\nndouuikw ucgrja\nucgrja tgfmpldz\nxvy nycrfphn\nnycrfphn quvs\nquvs htdy\nhtdy k\ntgfmpldz xtdpkxm\nxtdpkxm suwqxs\nk fv\nsuwqxs qckllwy\nqckllwy diun\nfv lefa\nlefa gdoqjysx\ndiun dhpz\ngdoqjysx bdmqdyt\ndhpz dgz\ndgz v\nbdmqdyt aswy\naswy ydkayhlrnm\n",
"iii iiiiii\n7\niii iiiiiiiiii\niiiiiiiiii iiii\niiii i\niiiiii iiiiiiii\niiiiiiii iiiiiiiii\ni iiiii\niiiii ii\n",
"wced gnsgv\n23\ngnsgv japawpaf\njapawpaf nnvpeu\nnnvpeu a\na ddupputljq\nddupputljq qyhnvbh\nqyhnvbh pqwijl\nwced khuvs\nkhuvs bjkh\npqwijl ysacmboc\nbjkh srf\nsrf jknoz\njknoz hodf\nysacmboc xqtkoyh\nhodf rfp\nxqtkoyh bivgnwqvoe\nbivgnwqvoe nknf\nnknf wuig\nrfp e\ne bqqknq\nwuig sznhhhu\nbqqknq dhrtdld\ndhrtdld n\nsznhhhu bguylf\n",
"a b\n3\na c\nb d\nd e\n",
"q s\n10\nq b\nb j\ns g\nj f\nf m\ng c\nc a\nm d\nd z\nz o\n",
"qqqqqqqqqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq q\n",
"qqqqqqqqqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq p\n",
"wwwww w\n8\nwwwww wwwwwwww\nwwwwwwww wwwwwwwww\nwwwwwwwww wwwwwwwwww\nw www\nwwwwwwwwww wwww\nwwww ww\nwww wwwwww\nwwwwww wwwwvww\n",
"iii iiiiii\n7\niii iiiiiiiiii\niiiiiiiiii iiii\niiii i\niiiiii iiiiiiii\niiiiiiii iiiiiiiii\ni iiiii\niiiii ij\n",
"wwwww w\n8\nwwwww wwwwwwww\nwwwwwwww wwwwwwwww\nwwwwwwwww wwwwwwwwww\nw www\nwwwwwwwwww wwww\nwwww ww\nwww wwwwww\nwwwwww wxwwvww\n",
"iii iiiiii\n7\niii iiiiiiiiii\niiiiiiiiii iiii\niiii i\niiiiii iiiiiiii\niiiiiiii iiiiiiiii\ni iiiii\niiiii ji\n",
"qqqqqqqrqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq q\n",
"iii iiiiii\n7\niii iiiiiiiiii\niiiiiiiiii iiii\niiii i\niiiiii iiiiiiii\niiiiiiii iiiiiiiii\ni iiiii\niiiii ki\n",
"qqrqqqqqqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq q\n",
"wwwww w\n8\nwwwww wwwwwwww\nwwwwwwww wwwwwwwww\nwwwwwwwww wwwwwwwwww\nw www\nwwwwwwwwww wwww\nwwww ww\nwww wwwwww\nwwwwww wwwwvwx\n",
"wwwww w\n8\nwwwww wwwwwwww\nwwwwwwww wwwwwwwww\nwwwwwwwww wwwwwwwwww\nw www\nwwwwwwwwww wwww\nwwww ww\nwww wwwwww\nwwwwww wxwvvww\n",
"iii iiiiii\n7\niii iiiiiiiiii\niiiiiiiiii iiii\niiii i\niiiiii iiiiiiii\niiiiiiii ihiiiiiii\ni iiiii\niiiii ki\n",
"qqrqpqqqqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq q\n",
"qqqqqqqqqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq r\n",
"iii iiiiii\n7\niii iiiiiiiiii\niiiiiiiiii iiii\niiii i\niiiiii iiiiiiii\niiiiiiii iiiiiiiii\ni iiiii\niiiii ik\n",
"wwwww w\n8\nwwwww wwwwwwww\nwwwwwwww wwwwwwwww\nwwwwwwwww wwwwwwwwww\nw www\nwwwwwwwwww wwww\nwwww ww\nwww wwwwww\nwwwwww wwvwvww\n",
"qqqqqqrrqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq q\n",
"iii iiiiii\n7\niii iiiiiiiiii\niiiiiiiiii iiii\niiii i\niiiiii iiiiiiii\niiiiiiii iiiiiiiii\ni iiiii\niiiii li\n",
"wwwww w\n8\nwwwww wwwwwwww\nwwwwwwww wwwwwwwww\nwwwwwwwww wwwwwwwwww\nw www\nwwwwwwwwww wwww\nwwww ww\nwww wwwwww\nwwwwww wxwwvvw\n",
"wwwww w\n8\nwwwww wwwwwwww\nwwwwwwww wwwwwwwww\nwwwwwwwww wwwwwwwwww\nw www\nwwwwwwwwww wwww\nwwww vw\nwww wwwwww\nwwwwww wwvwvww\n",
"wxz hbeqwqp\n7\nhbeqwqp cpieghnszh\ncpieghnszh tlqrpd\ntlqrpd ttwrtio\nttwrtio xapvds\nxapvds zk\nwxz kyry\nzk b\n",
"qqqqqqqqqr qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq p\n",
"qqrqqqqqqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq r\n",
"wwwww w\n8\nwwwww wwwwwwww\nwwwwwwww wwwwwwwww\nwwwwwwwww wwwwwwwwww\nw www\nwwwwwwwwww wwww\nwwww vw\nwww wwwwww\nwwwwww wxwvvww\n",
"iii iiiiii\n7\niii iiiiiiiiii\niiiiiiiiii iiii\niiii i\niiiiii iiiiiiii\niiiiiiii ihiiiiiii\ni iiiii\niiiii ik\n",
"qqrqpqqqqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq p\n",
"qqqqqqqqqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq s\n",
"qqqqqqrrqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq p\n",
"ze udggmyop\n4\nze szhrbmft\nudggmyop barojm\nszhrbmft ojdtfnzxj\nojdtfnzxj yjlkg\n",
"bwyplnjn zkms\n26\nzkms nzmcsytxh\nnzmcsytxh yujsb\nbwyplnjn gtbzhudpb\ngtbzhudpb hpk\nyujsb xvy\nhpk wrwnfokml\nwrwnfokml ndouuikw\nndouuikw ucgrja\nucgrja tgfmpldz\nxvy nycrfphn\nnycrfphn quvs\nquvs htdy\nhtdy k\ntgfmpldz xtdpkxm\nxtdpkxm suwqxs\nk fv\nsuwqxs qckllwy\nqckllwy diun\nfv lefa\nlefa gdoqjysx\ndiun dhpz\ngdoqjysx bdmqdyt\ndhpz dgz\ndgz v\nbdmqdyt aswy\naswy mnrlhyakdy\n",
"qqqpqqqqqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq q\n",
"icm codeforces\n1\ncodeforces techmex\n",
"ross rachel\n4\nross koey\nrachel phoebe\nphoebe monica\nmonica chandler\n",
"qqrpqqqqqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq r\n",
"wwwww w\n8\nwwwww wwwwwwww\nwwwwwwww wwwwwwwww\nwwwwwwwww wwwwwwwwww\nw www\nwwwwwwwwww wwww\nwwww ww\nwww wwwwww\nwwwwww wwxwvww\n",
"pqrqpqqqqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq p\n",
"icm codeforces\n1\ncodeforces xemhcet\n",
"ross rachel\n4\nross joey\nrachel phoebe\nphoebe monica\nmonica chdnaler\n",
"qqqqqqqrqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq p\n",
"wwwww w\n8\nwwwww wwwwwwww\nwwwwwwww wwwwwwwww\nwwwwwwwww wwwwwwwwww\nw www\nwwwwwwwwww wwww\nwwww wx\nwww wwwwww\nwwwwww wxwwvvw\n",
"wwwww w\n8\nwwwww wwwwwwww\nwwwwwwww wwwwwwwww\nwwwwwwwww wwwwwwwwww\nw www\nwwwwwwwwww wwww\nwwww uw\nwww wwwwww\nwwwwww wwvwvww\n",
"wwwww w\n8\nwwwww wwwwwwww\nwwwwwwww wwwwwwwww\nwwwwwwwww wwwwwwwwww\nw www\nwwwwwwwwww wwww\nwwww vw\nwww wwwwww\nwwwwww wxwvvwx\n",
"qqqqqqrqrq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq p\n",
"qqrpqqqqqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq q\n",
"wwwww w\n8\nwwwww wwwwwwww\nwwwwwwww wwwwwwwww\nwwwwwwwww wwwwwwwwww\nw www\nwwwwwwwwww wwww\nwwww vw\nwww wwwwww\nwwwwww xxwvvwx\n",
"qqqqqqprqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq q\n",
"wwwww w\n8\nwwwww wwwwwwww\nwwwwwwww wwwwwwwww\nwwwwwwwww wwwwwwwwww\nw www\nwwwwwwwwww wwww\nwwww uw\nwww wwwwww\nwwwwww xxwvvwx\n",
"wwwww w\n8\nwwwww wwwwwwww\nwwwwwwww wwwwwwwww\nwwwwwwwww wwwwwwwwww\nw www\nwwwwwwwwww wwww\nwwww wu\nwww wwwwww\nwwwwww xxwvvwx\n",
"wwwww w\n8\nwwwww wwwwwwww\nwwwwwwww wwwwwwwww\nwwwwwwwww wwwwwwwwww\nw www\nwwwwwwwwww wwww\nwwww ww\nwww wwwwww\nwwwwww wwwwwwx\n",
"iii iiiiii\n7\niii iiiiiiiiii\niiiiiiiiii iiii\niiii i\niiiiii iiiiiiii\niiiiiiii ihhiiiiii\ni iiiii\niiiii ki\n",
"pqrqqqqqqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq r\n",
"qqqqqprqrq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq p\n",
"wwwww w\n8\nwwwww wwwwwwww\nwwwwwwww wwwwwwwww\nwwwwwwwww wwwwwwwwww\nw www\nwwwwwwwwww wwww\nwwww wx\nwww wwwwww\nwwwwww wwwwwwx\n",
"wxz hbeqwqp\n7\nhbeqwqp cpieghnszh\ncpieghnszh tlqrpd\ntlqrpd ttwrtio\nttwrtio xapvds\nxapvds zk\nwxz yrzk\nzk b\n",
"ze udggmyop\n4\nze szhrbmft\nudggmyop mjorab\nszhrbmft ojdtfnzxj\nojdtfnzxj yjgkl\n",
"ross rachel\n4\nross joey\nrachel phoebe\nphoebe monica\nmonica ciandler\n",
"qqrqqqqqqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq s\n",
"qqqqrqrqqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq q\n",
"wwwww w\n8\nwwwww wwwwwwww\nwwwwwwww wwwwwwwww\nwwwwwwwww wwwwwwwwww\nw www\nwwwwwwwwww wwww\nwwww vw\nwww wwwwww\nwwwwww wxwvvxw\n",
"qqqqpqrrqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq p\n",
"qqroqqqqqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq r\n",
"ibm codeforces\n1\ncodeforces xemhcet\n",
"qqqqqqrqrq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq o\n",
"qqqqqqprrq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq q\n",
"wwwww w\n8\nwwwww wwwwwwww\nwwwwwwww wwwwwwwww\nwwwwwwwww wwwwwwwwww\nw www\nwwwwwwwwww wwww\nwwww xx\nwww wwwwww\nwwwwww wwwwwwx\n",
"wxz hbeqwqp\n7\nhbeqwqp cpieghnszh\ncpieghnszh tlqrpd\ntlqrpd ttwrtio\nttwrtio xapvds\nxapvds zk\nwxz yrzk\nzk c\n",
"qqqrrqrqqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq q\n",
"ibm codeforces\n1\ncodeforces techmex\n",
"qqqqqqrqrq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq n\n",
"qqqqqqprrq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq p\n",
"wwwww w\n8\nwwwww wwwwwwww\nwwwwwwww wwwwwwwww\nwwwwwwwww wwwwwwwwww\nw www\nwwwwwwwwww wwww\nwwww xx\nwww wwwwww\nwwwwww wwvwwwx\n",
"bim codeforces\n1\ncodeforces techmex\n",
"qqqqpqprrq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq p\n",
"wxz hbeqwqp\n7\nhbeqwqp cpieghnszh\ncpieghnszh tlqrpd\ntlqrpd ttwrtio\nttwrtio xapvds\nxapvds zk\nwxz yryk\nzk a\n",
"a b\n3\na c\nb d\nd d\n",
"qqrqqqqqqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq p\n",
"iii iiiiii\n7\niii iiiiiiiiii\niiiiiiiiii iiii\niiii i\niiiiii iiiiiiii\niiiiiiii ihiiiiiii\ni iiiii\niiiii kj\n",
"qqqqqpqrqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq q\n",
"qqqqqqqqpq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq r\n",
"ze udggmyop\n4\nze szhrbmft\nudggmyop barojm\nszhrbmft ojdtfnzxj\nojdtfnzxj ykljg\n",
"qqrpqqrqqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq r\n",
"pqrqprqqqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq p\n",
"qqqqqqqrqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq o\n",
"wwwww w\n8\nwwwww wwwwwwww\nwwwwwwww wwwwwwwww\nwwwwwwwww wwwwwwwwww\nw www\nwwwwwwwwww wwww\nwwww wv\nwww wwwwww\nwwwwww wxwvvwx\n",
"qrqrqqqqqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq p\n",
"qqqqqqqrqp qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq r\n",
"qqqqrqrqqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq p\n",
"qqqqpqrrqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq o\n",
"ibm codeforces\n1\ncodeforces xeehcmt\n",
"qrqrqqqqqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq o\n",
"qqqrqrrqqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq q\n",
"bim codeforces\n1\ncodeforces uechmex\n",
"qqrqqqqqqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq o\n",
"qqqqqqqrqp qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq s\n",
"mbi codeforces\n1\ncodeforces xeehcmt\n",
"bim codeforces\n1\ncodeforces uecimex\n",
"qqrqqqqqqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq n\n",
"ze udggmyop\n4\nze szhrbmft\nudggmyop mjorab\nszhrbmft ojdtfnzxj\nojdtfnzxj gkljy\n",
"a b\n3\na c\nb d\nd f\n"
],
"output": [
"icm codeforces\nicm technex\n",
"ross rachel\njoey rachel\njoey phoebe\njoey monica\njoey chandler\n",
"wwwww w\nwwwwwwww w\nwwwwwwwww w\nwwwwwwwwww w\nwwwwwwwwww www\nwwww www\nww www\nww wwwwww\nww wwwwwww\n",
"k d\nl d\nl v\nl z\nr z\nr i\ns i\np i\nw i\nj i\nh i\nh c\nm c\nq c\nq o\nq g\nx g\nn g\n",
"wxz hbeqwqp\nwxz cpieghnszh\nwxz tlqrpd\nwxz ttwrtio\nwxz xapvds\nwxz zk\nyryk zk\nyryk b\n",
"ze udggmyop\nszhrbmft udggmyop\nszhrbmft mjorab\nojdtfnzxj mjorab\nyjlkg mjorab\n",
"bwyplnjn zkms\nbwyplnjn nzmcsytxh\nbwyplnjn yujsb\ngtbzhudpb yujsb\nhpk yujsb\nhpk xvy\nwrwnfokml xvy\nndouuikw xvy\nucgrja xvy\ntgfmpldz xvy\ntgfmpldz nycrfphn\ntgfmpldz quvs\ntgfmpldz htdy\ntgfmpldz k\nxtdpkxm k\nsuwqxs k\nsuwqxs fv\nqckllwy fv\ndiun fv\ndiun lefa\ndiun gdoqjysx\ndhpz gdoqjysx\ndhpz bdmqdyt\ndgz bdmqdyt\nv bdmqdyt\nv aswy\nv ydkayhlrnm\n",
"iii iiiiii\niiiiiiiiii iiiiii\niiii iiiiii\ni iiiiii\ni iiiiiiii\ni iiiiiiiii\niiiii iiiiiiiii\nii iiiiiiiii\n",
"wced gnsgv\nwced japawpaf\nwced nnvpeu\nwced a\nwced ddupputljq\nwced qyhnvbh\nwced pqwijl\nkhuvs pqwijl\nbjkh pqwijl\nbjkh ysacmboc\nsrf ysacmboc\njknoz ysacmboc\nhodf ysacmboc\nhodf xqtkoyh\nrfp xqtkoyh\nrfp bivgnwqvoe\nrfp nknf\nrfp wuig\ne wuig\nbqqknq wuig\nbqqknq sznhhhu\ndhrtdld sznhhhu\nn sznhhhu\nn bguylf\n",
"a b\nc b\nc d\nc e\n",
"q s\nb s\nj s\nj g\nf g\nm g\nm c\nm a\nd a\nz a\no a\n",
"qqqqqqqqqq qqqqqqqq\nqqqqqqqqqq qqqqqqqqq\nqqqqqqqqqq qqqqq\nqqqqqqqqqq q\n",
"qqqqqqqqqq qqqqqqqq \nqqqqqqqqqq qqqqqqqqq \nqqqqqqqqqq qqqqq \nqqqqqqqqqq p \n",
"wwwww w \nwwwwwwww w \nwwwwwwwww w \nwwwwwwwwww w \nwwwwwwwwww www \nwwww www \nww www \nww wwwwww \nww wwwwvww \n",
"iii iiiiii \niiiiiiiiii iiiiii \niiii iiiiii \ni iiiiii \ni iiiiiiii \ni iiiiiiiii \niiiii iiiiiiiii \nij iiiiiiiii \n",
"wwwww w \nwwwwwwww w \nwwwwwwwww w \nwwwwwwwwww w \nwwwwwwwwww www \nwwww www \nww www \nww wwwwww \nww wxwwvww \n",
"iii iiiiii \niiiiiiiiii iiiiii \niiii iiiiii \ni iiiiii \ni iiiiiiii \ni iiiiiiiii \niiiii iiiiiiiii \nji iiiiiiiii \n",
"qqqqqqqrqq qqqqqqqq \nqqqqqqqrqq qqqqqqqqq \nqqqqqqqrqq qqqqq \nqqqqqqqrqq q \n",
"iii iiiiii \niiiiiiiiii iiiiii \niiii iiiiii \ni iiiiii \ni iiiiiiii \ni iiiiiiiii \niiiii iiiiiiiii \nki iiiiiiiii \n",
"qqrqqqqqqq qqqqqqqq \nqqrqqqqqqq qqqqqqqqq \nqqrqqqqqqq qqqqq \nqqrqqqqqqq q \n",
"wwwww w \nwwwwwwww w \nwwwwwwwww w \nwwwwwwwwww w \nwwwwwwwwww www \nwwww www \nww www \nww wwwwww \nww wwwwvwx \n",
"wwwww w \nwwwwwwww w \nwwwwwwwww w \nwwwwwwwwww w \nwwwwwwwwww www \nwwww www \nww www \nww wwwwww \nww wxwvvww \n",
"iii iiiiii \niiiiiiiiii iiiiii \niiii iiiiii \ni iiiiii \ni iiiiiiii \ni ihiiiiiii \niiiii ihiiiiiii \nki ihiiiiiii \n",
"qqrqpqqqqq qqqqqqqq \nqqrqpqqqqq qqqqqqqqq \nqqrqpqqqqq qqqqq \nqqrqpqqqqq q \n",
"qqqqqqqqqq qqqqqqqq \nqqqqqqqqqq qqqqqqqqq \nqqqqqqqqqq qqqqq \nqqqqqqqqqq r \n",
"iii iiiiii \niiiiiiiiii iiiiii \niiii iiiiii \ni iiiiii \ni iiiiiiii \ni iiiiiiiii \niiiii iiiiiiiii \nik iiiiiiiii \n",
"wwwww w \nwwwwwwww w \nwwwwwwwww w \nwwwwwwwwww w \nwwwwwwwwww www \nwwww www \nww www \nww wwwwww \nww wwvwvww \n",
"qqqqqqrrqq qqqqqqqq \nqqqqqqrrqq qqqqqqqqq \nqqqqqqrrqq qqqqq \nqqqqqqrrqq q \n",
"iii iiiiii \niiiiiiiiii iiiiii \niiii iiiiii \ni iiiiii \ni iiiiiiii \ni iiiiiiiii \niiiii iiiiiiiii \nli iiiiiiiii \n",
"wwwww w \nwwwwwwww w \nwwwwwwwww w \nwwwwwwwwww w \nwwwwwwwwww www \nwwww www \nww www \nww wwwwww \nww wxwwvvw \n",
"wwwww w \nwwwwwwww w \nwwwwwwwww w \nwwwwwwwwww w \nwwwwwwwwww www \nwwww www \nvw www \nvw wwwwww \nvw wwvwvww \n",
"wxz hbeqwqp \nwxz cpieghnszh \nwxz tlqrpd \nwxz ttwrtio \nwxz xapvds \nwxz zk \nkyry zk \nkyry b \n",
"qqqqqqqqqr qqqqqqqq \nqqqqqqqqqr qqqqqqqqq \nqqqqqqqqqr qqqqq \nqqqqqqqqqr p \n",
"qqrqqqqqqq qqqqqqqq \nqqrqqqqqqq qqqqqqqqq \nqqrqqqqqqq qqqqq \nqqrqqqqqqq r \n",
"wwwww w \nwwwwwwww w \nwwwwwwwww w \nwwwwwwwwww w \nwwwwwwwwww www \nwwww www \nvw www \nvw wwwwww \nvw wxwvvww \n",
"iii iiiiii \niiiiiiiiii iiiiii \niiii iiiiii \ni iiiiii \ni iiiiiiii \ni ihiiiiiii \niiiii ihiiiiiii \nik ihiiiiiii \n",
"qqrqpqqqqq qqqqqqqq \nqqrqpqqqqq qqqqqqqqq \nqqrqpqqqqq qqqqq \nqqrqpqqqqq p \n",
"qqqqqqqqqq qqqqqqqq \nqqqqqqqqqq qqqqqqqqq \nqqqqqqqqqq qqqqq \nqqqqqqqqqq s \n",
"qqqqqqrrqq qqqqqqqq \nqqqqqqrrqq qqqqqqqqq \nqqqqqqrrqq qqqqq \nqqqqqqrrqq p \n",
"ze udggmyop \nszhrbmft udggmyop \nszhrbmft barojm \nojdtfnzxj barojm \nyjlkg barojm \n",
"bwyplnjn zkms \nbwyplnjn nzmcsytxh \nbwyplnjn yujsb \ngtbzhudpb yujsb \nhpk yujsb \nhpk xvy \nwrwnfokml xvy \nndouuikw xvy \nucgrja xvy \ntgfmpldz xvy \ntgfmpldz nycrfphn \ntgfmpldz quvs \ntgfmpldz htdy \ntgfmpldz k \nxtdpkxm k \nsuwqxs k \nsuwqxs fv \nqckllwy fv \ndiun fv \ndiun lefa \ndiun gdoqjysx \ndhpz gdoqjysx \ndhpz bdmqdyt \ndgz bdmqdyt \nv bdmqdyt \nv aswy \nv mnrlhyakdy \n",
"qqqpqqqqqq qqqqqqqq \nqqqpqqqqqq qqqqqqqqq \nqqqpqqqqqq qqqqq \nqqqpqqqqqq q \n",
"icm codeforces \nicm techmex \n",
"ross rachel \nkoey rachel \nkoey phoebe \nkoey monica \nkoey chandler \n",
"qqrpqqqqqq qqqqqqqq \nqqrpqqqqqq qqqqqqqqq \nqqrpqqqqqq qqqqq \nqqrpqqqqqq r \n",
"wwwww w \nwwwwwwww w \nwwwwwwwww w \nwwwwwwwwww w \nwwwwwwwwww www \nwwww www \nww www \nww wwwwww \nww wwxwvww \n",
"pqrqpqqqqq qqqqqqqq \npqrqpqqqqq qqqqqqqqq \npqrqpqqqqq qqqqq \npqrqpqqqqq p \n",
"icm codeforces \nicm xemhcet \n",
"ross rachel \njoey rachel \njoey phoebe \njoey monica \njoey chdnaler \n",
"qqqqqqqrqq qqqqqqqq \nqqqqqqqrqq qqqqqqqqq \nqqqqqqqrqq qqqqq \nqqqqqqqrqq p \n",
"wwwww w \nwwwwwwww w \nwwwwwwwww w \nwwwwwwwwww w \nwwwwwwwwww www \nwwww www \nwx www \nwx wwwwww \nwx wxwwvvw \n",
"wwwww w \nwwwwwwww w \nwwwwwwwww w \nwwwwwwwwww w \nwwwwwwwwww www \nwwww www \nuw www \nuw wwwwww \nuw wwvwvww \n",
"wwwww w \nwwwwwwww w \nwwwwwwwww w \nwwwwwwwwww w \nwwwwwwwwww www \nwwww www \nvw www \nvw wwwwww \nvw wxwvvwx \n",
"qqqqqqrqrq qqqqqqqq \nqqqqqqrqrq qqqqqqqqq \nqqqqqqrqrq qqqqq \nqqqqqqrqrq p \n",
"qqrpqqqqqq qqqqqqqq \nqqrpqqqqqq qqqqqqqqq \nqqrpqqqqqq qqqqq \nqqrpqqqqqq q \n",
"wwwww w \nwwwwwwww w \nwwwwwwwww w \nwwwwwwwwww w \nwwwwwwwwww www \nwwww www \nvw www \nvw wwwwww \nvw xxwvvwx \n",
"qqqqqqprqq qqqqqqqq \nqqqqqqprqq qqqqqqqqq \nqqqqqqprqq qqqqq \nqqqqqqprqq q \n",
"wwwww w \nwwwwwwww w \nwwwwwwwww w \nwwwwwwwwww w \nwwwwwwwwww www \nwwww www \nuw www \nuw wwwwww \nuw xxwvvwx \n",
"wwwww w \nwwwwwwww w \nwwwwwwwww w \nwwwwwwwwww w \nwwwwwwwwww www \nwwww www \nwu www \nwu wwwwww \nwu xxwvvwx \n",
"wwwww w \nwwwwwwww w \nwwwwwwwww w \nwwwwwwwwww w \nwwwwwwwwww www \nwwww www \nww www \nww wwwwww \nww wwwwwwx \n",
"iii iiiiii \niiiiiiiiii iiiiii \niiii iiiiii \ni iiiiii \ni iiiiiiii \ni ihhiiiiii \niiiii ihhiiiiii \nki ihhiiiiii \n",
"pqrqqqqqqq qqqqqqqq \npqrqqqqqqq qqqqqqqqq \npqrqqqqqqq qqqqq \npqrqqqqqqq r \n",
"qqqqqprqrq qqqqqqqq \nqqqqqprqrq qqqqqqqqq \nqqqqqprqrq qqqqq \nqqqqqprqrq p \n",
"wwwww w \nwwwwwwww w \nwwwwwwwww w \nwwwwwwwwww w \nwwwwwwwwww www \nwwww www \nwx www \nwx wwwwww \nwx wwwwwwx \n",
"wxz hbeqwqp \nwxz cpieghnszh \nwxz tlqrpd \nwxz ttwrtio \nwxz xapvds \nwxz zk \nyrzk zk \nyrzk b \n",
"ze udggmyop \nszhrbmft udggmyop \nszhrbmft mjorab \nojdtfnzxj mjorab \nyjgkl mjorab \n",
"ross rachel \njoey rachel \njoey phoebe \njoey monica \njoey ciandler \n",
"qqrqqqqqqq qqqqqqqq \nqqrqqqqqqq qqqqqqqqq \nqqrqqqqqqq qqqqq \nqqrqqqqqqq s \n",
"qqqqrqrqqq qqqqqqqq \nqqqqrqrqqq qqqqqqqqq \nqqqqrqrqqq qqqqq \nqqqqrqrqqq q \n",
"wwwww w \nwwwwwwww w \nwwwwwwwww w \nwwwwwwwwww w \nwwwwwwwwww www \nwwww www \nvw www \nvw wwwwww \nvw wxwvvxw \n",
"qqqqpqrrqq qqqqqqqq \nqqqqpqrrqq qqqqqqqqq \nqqqqpqrrqq qqqqq \nqqqqpqrrqq p \n",
"qqroqqqqqq qqqqqqqq \nqqroqqqqqq qqqqqqqqq \nqqroqqqqqq qqqqq \nqqroqqqqqq r \n",
"ibm codeforces \nibm xemhcet \n",
"qqqqqqrqrq qqqqqqqq \nqqqqqqrqrq qqqqqqqqq \nqqqqqqrqrq qqqqq \nqqqqqqrqrq o \n",
"qqqqqqprrq qqqqqqqq \nqqqqqqprrq qqqqqqqqq \nqqqqqqprrq qqqqq \nqqqqqqprrq q \n",
"wwwww w \nwwwwwwww w \nwwwwwwwww w \nwwwwwwwwww w \nwwwwwwwwww www \nwwww www \nxx www \nxx wwwwww \nxx wwwwwwx \n",
"wxz hbeqwqp \nwxz cpieghnszh \nwxz tlqrpd \nwxz ttwrtio \nwxz xapvds \nwxz zk \nyrzk zk \nyrzk c \n",
"qqqrrqrqqq qqqqqqqq \nqqqrrqrqqq qqqqqqqqq \nqqqrrqrqqq qqqqq \nqqqrrqrqqq q \n",
"ibm codeforces \nibm techmex \n",
"qqqqqqrqrq qqqqqqqq \nqqqqqqrqrq qqqqqqqqq \nqqqqqqrqrq qqqqq \nqqqqqqrqrq n \n",
"qqqqqqprrq qqqqqqqq \nqqqqqqprrq qqqqqqqqq \nqqqqqqprrq qqqqq \nqqqqqqprrq p \n",
"wwwww w \nwwwwwwww w \nwwwwwwwww w \nwwwwwwwwww w \nwwwwwwwwww www \nwwww www \nxx www \nxx wwwwww \nxx wwvwwwx \n",
"bim codeforces \nbim techmex \n",
"qqqqpqprrq qqqqqqqq \nqqqqpqprrq qqqqqqqqq \nqqqqpqprrq qqqqq \nqqqqpqprrq p \n",
"wxz hbeqwqp \nwxz cpieghnszh \nwxz tlqrpd \nwxz ttwrtio \nwxz xapvds \nwxz zk \nyryk zk \nyryk a \n",
"a b \nc b \nc d \nc d \n",
"qqrqqqqqqq qqqqqqqq \nqqrqqqqqqq qqqqqqqqq \nqqrqqqqqqq qqqqq \nqqrqqqqqqq p \n",
"iii iiiiii \niiiiiiiiii iiiiii \niiii iiiiii \ni iiiiii \ni iiiiiiii \ni ihiiiiiii \niiiii ihiiiiiii \nkj ihiiiiiii \n",
"qqqqqpqrqq qqqqqqqq \nqqqqqpqrqq qqqqqqqqq \nqqqqqpqrqq qqqqq \nqqqqqpqrqq q \n",
"qqqqqqqqpq qqqqqqqq \nqqqqqqqqpq qqqqqqqqq \nqqqqqqqqpq qqqqq \nqqqqqqqqpq r \n",
"ze udggmyop \nszhrbmft udggmyop \nszhrbmft barojm \nojdtfnzxj barojm \nykljg barojm \n",
"qqrpqqrqqq qqqqqqqq \nqqrpqqrqqq qqqqqqqqq \nqqrpqqrqqq qqqqq \nqqrpqqrqqq r \n",
"pqrqprqqqq qqqqqqqq \npqrqprqqqq qqqqqqqqq \npqrqprqqqq qqqqq \npqrqprqqqq p \n",
"qqqqqqqrqq qqqqqqqq \nqqqqqqqrqq qqqqqqqqq \nqqqqqqqrqq qqqqq \nqqqqqqqrqq o \n",
"wwwww w \nwwwwwwww w \nwwwwwwwww w \nwwwwwwwwww w \nwwwwwwwwww www \nwwww www \nwv www \nwv wwwwww \nwv wxwvvwx \n",
"qrqrqqqqqq qqqqqqqq \nqrqrqqqqqq qqqqqqqqq \nqrqrqqqqqq qqqqq \nqrqrqqqqqq p \n",
"qqqqqqqrqp qqqqqqqq \nqqqqqqqrqp qqqqqqqqq \nqqqqqqqrqp qqqqq \nqqqqqqqrqp r \n",
"qqqqrqrqqq qqqqqqqq \nqqqqrqrqqq qqqqqqqqq \nqqqqrqrqqq qqqqq \nqqqqrqrqqq p \n",
"qqqqpqrrqq qqqqqqqq \nqqqqpqrrqq qqqqqqqqq \nqqqqpqrrqq qqqqq \nqqqqpqrrqq o \n",
"ibm codeforces \nibm xeehcmt \n",
"qrqrqqqqqq qqqqqqqq \nqrqrqqqqqq qqqqqqqqq \nqrqrqqqqqq qqqqq \nqrqrqqqqqq o \n",
"qqqrqrrqqq qqqqqqqq \nqqqrqrrqqq qqqqqqqqq \nqqqrqrrqqq qqqqq \nqqqrqrrqqq q \n",
"bim codeforces \nbim uechmex \n",
"qqrqqqqqqq qqqqqqqq \nqqrqqqqqqq qqqqqqqqq \nqqrqqqqqqq qqqqq \nqqrqqqqqqq o \n",
"qqqqqqqrqp qqqqqqqq \nqqqqqqqrqp qqqqqqqqq \nqqqqqqqrqp qqqqq \nqqqqqqqrqp s \n",
"mbi codeforces \nmbi xeehcmt \n",
"bim codeforces \nbim uecimex \n",
"qqrqqqqqqq qqqqqqqq \nqqrqqqqqqq qqqqqqqqq \nqqrqqqqqqq qqqqq \nqqrqqqqqqq n \n",
"ze udggmyop \nszhrbmft udggmyop \nszhrbmft mjorab \nojdtfnzxj mjorab \ngkljy mjorab \n",
"a b \nc b \nc d \nc f \n"
]
} | 2CODEFORCES
|
776_A. A Serial Killer_164 | Our beloved detective, Sherlock is currently trying to catch a serial killer who kills a person each day. Using his powers of deduction, he came to know that the killer has a strategy for selecting his next victim.
The killer starts with two potential victims on his first day, selects one of these two, kills selected victim and replaces him with a new person. He repeats this procedure each day. This way, each day he has two potential victims to choose from. Sherlock knows the initial two potential victims. Also, he knows the murder that happened on a particular day and the new person who replaced this victim.
You need to help him get all the pairs of potential victims at each day so that Sherlock can observe some pattern.
Input
First line of input contains two names (length of each of them doesn't exceed 10), the two initials potential victims. Next line contains integer n (1 ≤ n ≤ 1000), the number of days.
Next n lines contains two names (length of each of them doesn't exceed 10), first being the person murdered on this day and the second being the one who replaced that person.
The input format is consistent, that is, a person murdered is guaranteed to be from the two potential victims at that time. Also, all the names are guaranteed to be distinct and consists of lowercase English letters.
Output
Output n + 1 lines, the i-th line should contain the two persons from which the killer selects for the i-th murder. The (n + 1)-th line should contain the two persons from which the next victim is selected. In each line, the two names can be printed in any order.
Examples
Input
ross rachel
4
ross joey
rachel phoebe
phoebe monica
monica chandler
Output
ross rachel
joey rachel
joey phoebe
joey monica
joey chandler
Input
icm codeforces
1
codeforces technex
Output
icm codeforces
icm technex
Note
In first example, the killer starts with ross and rachel.
* After day 1, ross is killed and joey appears.
* After day 2, rachel is killed and phoebe appears.
* After day 3, phoebe is killed and monica appears.
* After day 4, monica is killed and chandler appears. | import java.io.*;
import java.util.*;
import java.text.*;
import java.math.*;
import java.util.regex.*;
import java.lang.*;
public class A {
static long mod = 1000000007;
public static void main(String[] args) throws Exception {
InputReader in = new InputReader(System.in);
PrintWriter pw = new PrintWriter(System.out);
//int t=in.readInt();
//while(t-->0)
//{
String x=in.readString();
String y=in.readString();
pw.println(x+" "+y);
int n=in.readInt();
for(int i=0;i<n;i++)
{
String a=in.readString();
String b=in.readString();
if(a.compareTo(x)==0)
{
pw.println(b+" "+y);
x=b;
}
else if(a.compareTo(y)==0)
{
pw.println(x+" "+b);
y=b;
}
}
//long n=in.readLong();
/*int a[]=new int[n];
for(int i=0;i<n;i++)
{
a[i]=in.readInt();
}*/
//String a=in.readString();
//pw.println("");
//}
pw.close();
}
public static long gcd(long x, long y) {
if (x % y == 0)
return y;
else
return gcd(y, x % y);
}
public static int gcd(int x, int y) {
if (x % y == 0)
return y;
else
return gcd(y, x % y);
}
public static int abs(int a, int b) {
return (int) Math.abs(a - b);
}
public static long abs(long a, long b) {
return (long) Math.abs(a - b);
}
public static int max(int a, int b) {
if (a > b)
return a;
else
return b;
}
public static int min(int a, int b) {
if (a > b)
return b;
else
return a;
}
public static long max(long a, long b) {
if (a > b)
return a;
else
return b;
}
public static long min(long a, long b) {
if (a > b)
return b;
else
return a;
}
public static long pow(long n, long p, long m) {
long result = 1;
if (p == 0)
return 1;
if (p == 1)
return n;
while (p != 0) {
if (p % 2 == 1)
result *= n;
if (result >= m)
result %= m;
p >>= 1;
n *= n;
if (n >= m)
n %= m;
}
return result;
}
public static long pow(long n, long p) {
long result = 1;
if (p == 0)
return 1;
if (p == 1)
return n;
while (p != 0) {
if (p % 2 == 1)
result *= n;
p >>= 1;
n *= n;
}
return result;
}
static class Pair implements Comparable<Pair> {
int a, b;
Pair(int a, int b) {
this.a = a;
this.b = b;
}
public int compareTo(Pair o) {
// TODO Auto-generated method stub
if (this.a != o.a)
return Integer.compare(this.a, o.a);
else
return Integer.compare(this.b, o.b);
//return 0;
}
public boolean equals(Object o) {
if (o instanceof Pair) {
Pair p = (Pair) o;
return p.a == a && p.b == b;
}
return false;
}
public int hashCode() {
return new Integer(a).hashCode() * 31 + new Integer(b).hashCode();
}
public String toString() {
return a + " " + b;
}
}
static long sort(int a[]) {
int n = a.length;
int b[] = new int[n];
return mergeSort(a, b, 0, n - 1);
}
static long mergeSort(int a[], int b[], long left, long right) {
long c = 0;
if (left < right) {
long mid = left + (right - left) / 2;
c = mergeSort(a, b, left, mid);
c += mergeSort(a, b, mid + 1, right);
c += merge(a, b, left, mid + 1, right);
}
return c;
}
static long merge(int a[], int b[], long left, long mid, long right) {
long c = 0;
int i = (int) left;
int j = (int) mid;
int k = (int) left;
while (i <= (int) mid - 1 && j <= (int) right) {
if (a[i] <= a[j]) {
b[k++] = a[i++];
} else {
b[k++] = a[j++];
c += mid - i;
}
}
while (i <= (int) mid - 1)
b[k++] = a[i++];
while (j <= (int) right)
b[k++] = a[j++];
for (i = (int) left; i <= (int) right; i++)
a[i] = b[i];
return c;
}
public static int[] radixSort(int[] f) {
int[] to = new int[f.length];
{
int[] b = new int[65537];
for (int i = 0; i < f.length; i++)
b[1 + (f[i] & 0xffff)]++;
for (int i = 1; i <= 65536; i++)
b[i] += b[i - 1];
for (int i = 0; i < f.length; i++)
to[b[f[i] & 0xffff]++] = f[i];
int[] d = f;
f = to;
to = d;
}
{
int[] b = new int[65537];
for (int i = 0; i < f.length; i++)
b[1 + (f[i] >>> 16)]++;
for (int i = 1; i <= 65536; i++)
b[i] += b[i - 1];
for (int i = 0; i < f.length; i++)
to[b[f[i] >>> 16]++] = f[i];
int[] d = f;
f = to;
to = d;
}
return f;
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public int readInt() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public String readString() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
public String readLine() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isEndOfLine(c));
return res.toString();
}
public double readDouble() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
double res = 0;
while (!isSpaceChar(c) && c != '.') {
if (c == 'e' || c == 'E')
return res * Math.pow(10, readInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
if (c == '.') {
c = read();
double m = 1;
while (!isSpaceChar(c)) {
if (c == 'e' || c == 'E')
return res * Math.pow(10, readInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
m /= 10;
res += (c - '0') * m;
c = read();
}
}
return res * sgn;
}
public long readLong() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
long res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public boolean isSpaceChar(int c) {
if (filter != null)
return filter.isSpaceChar(c);
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public String next() {
return readString();
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
public boolean isEndOfLine(int c) {
return c == '\n' || c == '\r' || c == -1;
}
}
//BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
//StringBuilder sb=new StringBuilder("");
//InputReader in = new InputReader(System.in);
//PrintWriter pw=new PrintWriter(System.out);
//String line=br.readLine().trim();
//int t=Integer.parseInt(br.readLine());
// while(t-->0)
//{
//int n=Integer.parseInt(br.readLine());
//long n=Long.parseLong(br.readLine());
//String l[]=br.readLine().split(" ");
//int m=Integer.parseInt(l[0]);
//int k=Integer.parseInt(l[1]);
//String l[]=br.readLine().split(" ");
//l=br.readLine().split(" ");
/*int a[]=new int[n];
for(int i=0;i<n;i++)
{
a[i]=Integer.parseInt(l[i]);
}*/
//System.out.println(" ");
//}
}
| 4JAVA
| {
"input": [
"icm codeforces\n1\ncodeforces technex\n",
"ross rachel\n4\nross joey\nrachel phoebe\nphoebe monica\nmonica chandler\n",
"wwwww w\n8\nwwwww wwwwwwww\nwwwwwwww wwwwwwwww\nwwwwwwwww wwwwwwwwww\nw www\nwwwwwwwwww wwww\nwwww ww\nwww wwwwww\nwwwwww wwwwwww\n",
"k d\n17\nk l\nd v\nv z\nl r\nz i\nr s\ns p\np w\nw j\nj h\ni c\nh m\nm q\nc o\no g\nq x\nx n\n",
"wxz hbeqwqp\n7\nhbeqwqp cpieghnszh\ncpieghnszh tlqrpd\ntlqrpd ttwrtio\nttwrtio xapvds\nxapvds zk\nwxz yryk\nzk b\n",
"ze udggmyop\n4\nze szhrbmft\nudggmyop mjorab\nszhrbmft ojdtfnzxj\nojdtfnzxj yjlkg\n",
"bwyplnjn zkms\n26\nzkms nzmcsytxh\nnzmcsytxh yujsb\nbwyplnjn gtbzhudpb\ngtbzhudpb hpk\nyujsb xvy\nhpk wrwnfokml\nwrwnfokml ndouuikw\nndouuikw ucgrja\nucgrja tgfmpldz\nxvy nycrfphn\nnycrfphn quvs\nquvs htdy\nhtdy k\ntgfmpldz xtdpkxm\nxtdpkxm suwqxs\nk fv\nsuwqxs qckllwy\nqckllwy diun\nfv lefa\nlefa gdoqjysx\ndiun dhpz\ngdoqjysx bdmqdyt\ndhpz dgz\ndgz v\nbdmqdyt aswy\naswy ydkayhlrnm\n",
"iii iiiiii\n7\niii iiiiiiiiii\niiiiiiiiii iiii\niiii i\niiiiii iiiiiiii\niiiiiiii iiiiiiiii\ni iiiii\niiiii ii\n",
"wced gnsgv\n23\ngnsgv japawpaf\njapawpaf nnvpeu\nnnvpeu a\na ddupputljq\nddupputljq qyhnvbh\nqyhnvbh pqwijl\nwced khuvs\nkhuvs bjkh\npqwijl ysacmboc\nbjkh srf\nsrf jknoz\njknoz hodf\nysacmboc xqtkoyh\nhodf rfp\nxqtkoyh bivgnwqvoe\nbivgnwqvoe nknf\nnknf wuig\nrfp e\ne bqqknq\nwuig sznhhhu\nbqqknq dhrtdld\ndhrtdld n\nsznhhhu bguylf\n",
"a b\n3\na c\nb d\nd e\n",
"q s\n10\nq b\nb j\ns g\nj f\nf m\ng c\nc a\nm d\nd z\nz o\n",
"qqqqqqqqqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq q\n",
"qqqqqqqqqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq p\n",
"wwwww w\n8\nwwwww wwwwwwww\nwwwwwwww wwwwwwwww\nwwwwwwwww wwwwwwwwww\nw www\nwwwwwwwwww wwww\nwwww ww\nwww wwwwww\nwwwwww wwwwvww\n",
"iii iiiiii\n7\niii iiiiiiiiii\niiiiiiiiii iiii\niiii i\niiiiii iiiiiiii\niiiiiiii iiiiiiiii\ni iiiii\niiiii ij\n",
"wwwww w\n8\nwwwww wwwwwwww\nwwwwwwww wwwwwwwww\nwwwwwwwww wwwwwwwwww\nw www\nwwwwwwwwww wwww\nwwww ww\nwww wwwwww\nwwwwww wxwwvww\n",
"iii iiiiii\n7\niii iiiiiiiiii\niiiiiiiiii iiii\niiii i\niiiiii iiiiiiii\niiiiiiii iiiiiiiii\ni iiiii\niiiii ji\n",
"qqqqqqqrqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq q\n",
"iii iiiiii\n7\niii iiiiiiiiii\niiiiiiiiii iiii\niiii i\niiiiii iiiiiiii\niiiiiiii iiiiiiiii\ni iiiii\niiiii ki\n",
"qqrqqqqqqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq q\n",
"wwwww w\n8\nwwwww wwwwwwww\nwwwwwwww wwwwwwwww\nwwwwwwwww wwwwwwwwww\nw www\nwwwwwwwwww wwww\nwwww ww\nwww wwwwww\nwwwwww wwwwvwx\n",
"wwwww w\n8\nwwwww wwwwwwww\nwwwwwwww wwwwwwwww\nwwwwwwwww wwwwwwwwww\nw www\nwwwwwwwwww wwww\nwwww ww\nwww wwwwww\nwwwwww wxwvvww\n",
"iii iiiiii\n7\niii iiiiiiiiii\niiiiiiiiii iiii\niiii i\niiiiii iiiiiiii\niiiiiiii ihiiiiiii\ni iiiii\niiiii ki\n",
"qqrqpqqqqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq q\n",
"qqqqqqqqqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq r\n",
"iii iiiiii\n7\niii iiiiiiiiii\niiiiiiiiii iiii\niiii i\niiiiii iiiiiiii\niiiiiiii iiiiiiiii\ni iiiii\niiiii ik\n",
"wwwww w\n8\nwwwww wwwwwwww\nwwwwwwww wwwwwwwww\nwwwwwwwww wwwwwwwwww\nw www\nwwwwwwwwww wwww\nwwww ww\nwww wwwwww\nwwwwww wwvwvww\n",
"qqqqqqrrqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq q\n",
"iii iiiiii\n7\niii iiiiiiiiii\niiiiiiiiii iiii\niiii i\niiiiii iiiiiiii\niiiiiiii iiiiiiiii\ni iiiii\niiiii li\n",
"wwwww w\n8\nwwwww wwwwwwww\nwwwwwwww wwwwwwwww\nwwwwwwwww wwwwwwwwww\nw www\nwwwwwwwwww wwww\nwwww ww\nwww wwwwww\nwwwwww wxwwvvw\n",
"wwwww w\n8\nwwwww wwwwwwww\nwwwwwwww wwwwwwwww\nwwwwwwwww wwwwwwwwww\nw www\nwwwwwwwwww wwww\nwwww vw\nwww wwwwww\nwwwwww wwvwvww\n",
"wxz hbeqwqp\n7\nhbeqwqp cpieghnszh\ncpieghnszh tlqrpd\ntlqrpd ttwrtio\nttwrtio xapvds\nxapvds zk\nwxz kyry\nzk b\n",
"qqqqqqqqqr qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq p\n",
"qqrqqqqqqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq r\n",
"wwwww w\n8\nwwwww wwwwwwww\nwwwwwwww wwwwwwwww\nwwwwwwwww wwwwwwwwww\nw www\nwwwwwwwwww wwww\nwwww vw\nwww wwwwww\nwwwwww wxwvvww\n",
"iii iiiiii\n7\niii iiiiiiiiii\niiiiiiiiii iiii\niiii i\niiiiii iiiiiiii\niiiiiiii ihiiiiiii\ni iiiii\niiiii ik\n",
"qqrqpqqqqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq p\n",
"qqqqqqqqqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq s\n",
"qqqqqqrrqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq p\n",
"ze udggmyop\n4\nze szhrbmft\nudggmyop barojm\nszhrbmft ojdtfnzxj\nojdtfnzxj yjlkg\n",
"bwyplnjn zkms\n26\nzkms nzmcsytxh\nnzmcsytxh yujsb\nbwyplnjn gtbzhudpb\ngtbzhudpb hpk\nyujsb xvy\nhpk wrwnfokml\nwrwnfokml ndouuikw\nndouuikw ucgrja\nucgrja tgfmpldz\nxvy nycrfphn\nnycrfphn quvs\nquvs htdy\nhtdy k\ntgfmpldz xtdpkxm\nxtdpkxm suwqxs\nk fv\nsuwqxs qckllwy\nqckllwy diun\nfv lefa\nlefa gdoqjysx\ndiun dhpz\ngdoqjysx bdmqdyt\ndhpz dgz\ndgz v\nbdmqdyt aswy\naswy mnrlhyakdy\n",
"qqqpqqqqqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq q\n",
"icm codeforces\n1\ncodeforces techmex\n",
"ross rachel\n4\nross koey\nrachel phoebe\nphoebe monica\nmonica chandler\n",
"qqrpqqqqqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq r\n",
"wwwww w\n8\nwwwww wwwwwwww\nwwwwwwww wwwwwwwww\nwwwwwwwww wwwwwwwwww\nw www\nwwwwwwwwww wwww\nwwww ww\nwww wwwwww\nwwwwww wwxwvww\n",
"pqrqpqqqqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq p\n",
"icm codeforces\n1\ncodeforces xemhcet\n",
"ross rachel\n4\nross joey\nrachel phoebe\nphoebe monica\nmonica chdnaler\n",
"qqqqqqqrqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq p\n",
"wwwww w\n8\nwwwww wwwwwwww\nwwwwwwww wwwwwwwww\nwwwwwwwww wwwwwwwwww\nw www\nwwwwwwwwww wwww\nwwww wx\nwww wwwwww\nwwwwww wxwwvvw\n",
"wwwww w\n8\nwwwww wwwwwwww\nwwwwwwww wwwwwwwww\nwwwwwwwww wwwwwwwwww\nw www\nwwwwwwwwww wwww\nwwww uw\nwww wwwwww\nwwwwww wwvwvww\n",
"wwwww w\n8\nwwwww wwwwwwww\nwwwwwwww wwwwwwwww\nwwwwwwwww wwwwwwwwww\nw www\nwwwwwwwwww wwww\nwwww vw\nwww wwwwww\nwwwwww wxwvvwx\n",
"qqqqqqrqrq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq p\n",
"qqrpqqqqqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq q\n",
"wwwww w\n8\nwwwww wwwwwwww\nwwwwwwww wwwwwwwww\nwwwwwwwww wwwwwwwwww\nw www\nwwwwwwwwww wwww\nwwww vw\nwww wwwwww\nwwwwww xxwvvwx\n",
"qqqqqqprqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq q\n",
"wwwww w\n8\nwwwww wwwwwwww\nwwwwwwww wwwwwwwww\nwwwwwwwww wwwwwwwwww\nw www\nwwwwwwwwww wwww\nwwww uw\nwww wwwwww\nwwwwww xxwvvwx\n",
"wwwww w\n8\nwwwww wwwwwwww\nwwwwwwww wwwwwwwww\nwwwwwwwww wwwwwwwwww\nw www\nwwwwwwwwww wwww\nwwww wu\nwww wwwwww\nwwwwww xxwvvwx\n",
"wwwww w\n8\nwwwww wwwwwwww\nwwwwwwww wwwwwwwww\nwwwwwwwww wwwwwwwwww\nw www\nwwwwwwwwww wwww\nwwww ww\nwww wwwwww\nwwwwww wwwwwwx\n",
"iii iiiiii\n7\niii iiiiiiiiii\niiiiiiiiii iiii\niiii i\niiiiii iiiiiiii\niiiiiiii ihhiiiiii\ni iiiii\niiiii ki\n",
"pqrqqqqqqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq r\n",
"qqqqqprqrq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq p\n",
"wwwww w\n8\nwwwww wwwwwwww\nwwwwwwww wwwwwwwww\nwwwwwwwww wwwwwwwwww\nw www\nwwwwwwwwww wwww\nwwww wx\nwww wwwwww\nwwwwww wwwwwwx\n",
"wxz hbeqwqp\n7\nhbeqwqp cpieghnszh\ncpieghnszh tlqrpd\ntlqrpd ttwrtio\nttwrtio xapvds\nxapvds zk\nwxz yrzk\nzk b\n",
"ze udggmyop\n4\nze szhrbmft\nudggmyop mjorab\nszhrbmft ojdtfnzxj\nojdtfnzxj yjgkl\n",
"ross rachel\n4\nross joey\nrachel phoebe\nphoebe monica\nmonica ciandler\n",
"qqrqqqqqqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq s\n",
"qqqqrqrqqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq q\n",
"wwwww w\n8\nwwwww wwwwwwww\nwwwwwwww wwwwwwwww\nwwwwwwwww wwwwwwwwww\nw www\nwwwwwwwwww wwww\nwwww vw\nwww wwwwww\nwwwwww wxwvvxw\n",
"qqqqpqrrqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq p\n",
"qqroqqqqqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq r\n",
"ibm codeforces\n1\ncodeforces xemhcet\n",
"qqqqqqrqrq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq o\n",
"qqqqqqprrq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq q\n",
"wwwww w\n8\nwwwww wwwwwwww\nwwwwwwww wwwwwwwww\nwwwwwwwww wwwwwwwwww\nw www\nwwwwwwwwww wwww\nwwww xx\nwww wwwwww\nwwwwww wwwwwwx\n",
"wxz hbeqwqp\n7\nhbeqwqp cpieghnszh\ncpieghnszh tlqrpd\ntlqrpd ttwrtio\nttwrtio xapvds\nxapvds zk\nwxz yrzk\nzk c\n",
"qqqrrqrqqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq q\n",
"ibm codeforces\n1\ncodeforces techmex\n",
"qqqqqqrqrq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq n\n",
"qqqqqqprrq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq p\n",
"wwwww w\n8\nwwwww wwwwwwww\nwwwwwwww wwwwwwwww\nwwwwwwwww wwwwwwwwww\nw www\nwwwwwwwwww wwww\nwwww xx\nwww wwwwww\nwwwwww wwvwwwx\n",
"bim codeforces\n1\ncodeforces techmex\n",
"qqqqpqprrq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq p\n",
"wxz hbeqwqp\n7\nhbeqwqp cpieghnszh\ncpieghnszh tlqrpd\ntlqrpd ttwrtio\nttwrtio xapvds\nxapvds zk\nwxz yryk\nzk a\n",
"a b\n3\na c\nb d\nd d\n",
"qqrqqqqqqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq p\n",
"iii iiiiii\n7\niii iiiiiiiiii\niiiiiiiiii iiii\niiii i\niiiiii iiiiiiii\niiiiiiii ihiiiiiii\ni iiiii\niiiii kj\n",
"qqqqqpqrqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq q\n",
"qqqqqqqqpq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq r\n",
"ze udggmyop\n4\nze szhrbmft\nudggmyop barojm\nszhrbmft ojdtfnzxj\nojdtfnzxj ykljg\n",
"qqrpqqrqqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq r\n",
"pqrqprqqqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq p\n",
"qqqqqqqrqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq o\n",
"wwwww w\n8\nwwwww wwwwwwww\nwwwwwwww wwwwwwwww\nwwwwwwwww wwwwwwwwww\nw www\nwwwwwwwwww wwww\nwwww wv\nwww wwwwww\nwwwwww wxwvvwx\n",
"qrqrqqqqqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq p\n",
"qqqqqqqrqp qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq r\n",
"qqqqrqrqqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq p\n",
"qqqqpqrrqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq o\n",
"ibm codeforces\n1\ncodeforces xeehcmt\n",
"qrqrqqqqqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq o\n",
"qqqrqrrqqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq q\n",
"bim codeforces\n1\ncodeforces uechmex\n",
"qqrqqqqqqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq o\n",
"qqqqqqqrqp qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq s\n",
"mbi codeforces\n1\ncodeforces xeehcmt\n",
"bim codeforces\n1\ncodeforces uecimex\n",
"qqrqqqqqqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq n\n",
"ze udggmyop\n4\nze szhrbmft\nudggmyop mjorab\nszhrbmft ojdtfnzxj\nojdtfnzxj gkljy\n",
"a b\n3\na c\nb d\nd f\n"
],
"output": [
"icm codeforces\nicm technex\n",
"ross rachel\njoey rachel\njoey phoebe\njoey monica\njoey chandler\n",
"wwwww w\nwwwwwwww w\nwwwwwwwww w\nwwwwwwwwww w\nwwwwwwwwww www\nwwww www\nww www\nww wwwwww\nww wwwwwww\n",
"k d\nl d\nl v\nl z\nr z\nr i\ns i\np i\nw i\nj i\nh i\nh c\nm c\nq c\nq o\nq g\nx g\nn g\n",
"wxz hbeqwqp\nwxz cpieghnszh\nwxz tlqrpd\nwxz ttwrtio\nwxz xapvds\nwxz zk\nyryk zk\nyryk b\n",
"ze udggmyop\nszhrbmft udggmyop\nszhrbmft mjorab\nojdtfnzxj mjorab\nyjlkg mjorab\n",
"bwyplnjn zkms\nbwyplnjn nzmcsytxh\nbwyplnjn yujsb\ngtbzhudpb yujsb\nhpk yujsb\nhpk xvy\nwrwnfokml xvy\nndouuikw xvy\nucgrja xvy\ntgfmpldz xvy\ntgfmpldz nycrfphn\ntgfmpldz quvs\ntgfmpldz htdy\ntgfmpldz k\nxtdpkxm k\nsuwqxs k\nsuwqxs fv\nqckllwy fv\ndiun fv\ndiun lefa\ndiun gdoqjysx\ndhpz gdoqjysx\ndhpz bdmqdyt\ndgz bdmqdyt\nv bdmqdyt\nv aswy\nv ydkayhlrnm\n",
"iii iiiiii\niiiiiiiiii iiiiii\niiii iiiiii\ni iiiiii\ni iiiiiiii\ni iiiiiiiii\niiiii iiiiiiiii\nii iiiiiiiii\n",
"wced gnsgv\nwced japawpaf\nwced nnvpeu\nwced a\nwced ddupputljq\nwced qyhnvbh\nwced pqwijl\nkhuvs pqwijl\nbjkh pqwijl\nbjkh ysacmboc\nsrf ysacmboc\njknoz ysacmboc\nhodf ysacmboc\nhodf xqtkoyh\nrfp xqtkoyh\nrfp bivgnwqvoe\nrfp nknf\nrfp wuig\ne wuig\nbqqknq wuig\nbqqknq sznhhhu\ndhrtdld sznhhhu\nn sznhhhu\nn bguylf\n",
"a b\nc b\nc d\nc e\n",
"q s\nb s\nj s\nj g\nf g\nm g\nm c\nm a\nd a\nz a\no a\n",
"qqqqqqqqqq qqqqqqqq\nqqqqqqqqqq qqqqqqqqq\nqqqqqqqqqq qqqqq\nqqqqqqqqqq q\n",
"qqqqqqqqqq qqqqqqqq \nqqqqqqqqqq qqqqqqqqq \nqqqqqqqqqq qqqqq \nqqqqqqqqqq p \n",
"wwwww w \nwwwwwwww w \nwwwwwwwww w \nwwwwwwwwww w \nwwwwwwwwww www \nwwww www \nww www \nww wwwwww \nww wwwwvww \n",
"iii iiiiii \niiiiiiiiii iiiiii \niiii iiiiii \ni iiiiii \ni iiiiiiii \ni iiiiiiiii \niiiii iiiiiiiii \nij iiiiiiiii \n",
"wwwww w \nwwwwwwww w \nwwwwwwwww w \nwwwwwwwwww w \nwwwwwwwwww www \nwwww www \nww www \nww wwwwww \nww wxwwvww \n",
"iii iiiiii \niiiiiiiiii iiiiii \niiii iiiiii \ni iiiiii \ni iiiiiiii \ni iiiiiiiii \niiiii iiiiiiiii \nji iiiiiiiii \n",
"qqqqqqqrqq qqqqqqqq \nqqqqqqqrqq qqqqqqqqq \nqqqqqqqrqq qqqqq \nqqqqqqqrqq q \n",
"iii iiiiii \niiiiiiiiii iiiiii \niiii iiiiii \ni iiiiii \ni iiiiiiii \ni iiiiiiiii \niiiii iiiiiiiii \nki iiiiiiiii \n",
"qqrqqqqqqq qqqqqqqq \nqqrqqqqqqq qqqqqqqqq \nqqrqqqqqqq qqqqq \nqqrqqqqqqq q \n",
"wwwww w \nwwwwwwww w \nwwwwwwwww w \nwwwwwwwwww w \nwwwwwwwwww www \nwwww www \nww www \nww wwwwww \nww wwwwvwx \n",
"wwwww w \nwwwwwwww w \nwwwwwwwww w \nwwwwwwwwww w \nwwwwwwwwww www \nwwww www \nww www \nww wwwwww \nww wxwvvww \n",
"iii iiiiii \niiiiiiiiii iiiiii \niiii iiiiii \ni iiiiii \ni iiiiiiii \ni ihiiiiiii \niiiii ihiiiiiii \nki ihiiiiiii \n",
"qqrqpqqqqq qqqqqqqq \nqqrqpqqqqq qqqqqqqqq \nqqrqpqqqqq qqqqq \nqqrqpqqqqq q \n",
"qqqqqqqqqq qqqqqqqq \nqqqqqqqqqq qqqqqqqqq \nqqqqqqqqqq qqqqq \nqqqqqqqqqq r \n",
"iii iiiiii \niiiiiiiiii iiiiii \niiii iiiiii \ni iiiiii \ni iiiiiiii \ni iiiiiiiii \niiiii iiiiiiiii \nik iiiiiiiii \n",
"wwwww w \nwwwwwwww w \nwwwwwwwww w \nwwwwwwwwww w \nwwwwwwwwww www \nwwww www \nww www \nww wwwwww \nww wwvwvww \n",
"qqqqqqrrqq qqqqqqqq \nqqqqqqrrqq qqqqqqqqq \nqqqqqqrrqq qqqqq \nqqqqqqrrqq q \n",
"iii iiiiii \niiiiiiiiii iiiiii \niiii iiiiii \ni iiiiii \ni iiiiiiii \ni iiiiiiiii \niiiii iiiiiiiii \nli iiiiiiiii \n",
"wwwww w \nwwwwwwww w \nwwwwwwwww w \nwwwwwwwwww w \nwwwwwwwwww www \nwwww www \nww www \nww wwwwww \nww wxwwvvw \n",
"wwwww w \nwwwwwwww w \nwwwwwwwww w \nwwwwwwwwww w \nwwwwwwwwww www \nwwww www \nvw www \nvw wwwwww \nvw wwvwvww \n",
"wxz hbeqwqp \nwxz cpieghnszh \nwxz tlqrpd \nwxz ttwrtio \nwxz xapvds \nwxz zk \nkyry zk \nkyry b \n",
"qqqqqqqqqr qqqqqqqq \nqqqqqqqqqr qqqqqqqqq \nqqqqqqqqqr qqqqq \nqqqqqqqqqr p \n",
"qqrqqqqqqq qqqqqqqq \nqqrqqqqqqq qqqqqqqqq \nqqrqqqqqqq qqqqq \nqqrqqqqqqq r \n",
"wwwww w \nwwwwwwww w \nwwwwwwwww w \nwwwwwwwwww w \nwwwwwwwwww www \nwwww www \nvw www \nvw wwwwww \nvw wxwvvww \n",
"iii iiiiii \niiiiiiiiii iiiiii \niiii iiiiii \ni iiiiii \ni iiiiiiii \ni ihiiiiiii \niiiii ihiiiiiii \nik ihiiiiiii \n",
"qqrqpqqqqq qqqqqqqq \nqqrqpqqqqq qqqqqqqqq \nqqrqpqqqqq qqqqq \nqqrqpqqqqq p \n",
"qqqqqqqqqq qqqqqqqq \nqqqqqqqqqq qqqqqqqqq \nqqqqqqqqqq qqqqq \nqqqqqqqqqq s \n",
"qqqqqqrrqq qqqqqqqq \nqqqqqqrrqq qqqqqqqqq \nqqqqqqrrqq qqqqq \nqqqqqqrrqq p \n",
"ze udggmyop \nszhrbmft udggmyop \nszhrbmft barojm \nojdtfnzxj barojm \nyjlkg barojm \n",
"bwyplnjn zkms \nbwyplnjn nzmcsytxh \nbwyplnjn yujsb \ngtbzhudpb yujsb \nhpk yujsb \nhpk xvy \nwrwnfokml xvy \nndouuikw xvy \nucgrja xvy \ntgfmpldz xvy \ntgfmpldz nycrfphn \ntgfmpldz quvs \ntgfmpldz htdy \ntgfmpldz k \nxtdpkxm k \nsuwqxs k \nsuwqxs fv \nqckllwy fv \ndiun fv \ndiun lefa \ndiun gdoqjysx \ndhpz gdoqjysx \ndhpz bdmqdyt \ndgz bdmqdyt \nv bdmqdyt \nv aswy \nv mnrlhyakdy \n",
"qqqpqqqqqq qqqqqqqq \nqqqpqqqqqq qqqqqqqqq \nqqqpqqqqqq qqqqq \nqqqpqqqqqq q \n",
"icm codeforces \nicm techmex \n",
"ross rachel \nkoey rachel \nkoey phoebe \nkoey monica \nkoey chandler \n",
"qqrpqqqqqq qqqqqqqq \nqqrpqqqqqq qqqqqqqqq \nqqrpqqqqqq qqqqq \nqqrpqqqqqq r \n",
"wwwww w \nwwwwwwww w \nwwwwwwwww w \nwwwwwwwwww w \nwwwwwwwwww www \nwwww www \nww www \nww wwwwww \nww wwxwvww \n",
"pqrqpqqqqq qqqqqqqq \npqrqpqqqqq qqqqqqqqq \npqrqpqqqqq qqqqq \npqrqpqqqqq p \n",
"icm codeforces \nicm xemhcet \n",
"ross rachel \njoey rachel \njoey phoebe \njoey monica \njoey chdnaler \n",
"qqqqqqqrqq qqqqqqqq \nqqqqqqqrqq qqqqqqqqq \nqqqqqqqrqq qqqqq \nqqqqqqqrqq p \n",
"wwwww w \nwwwwwwww w \nwwwwwwwww w \nwwwwwwwwww w \nwwwwwwwwww www \nwwww www \nwx www \nwx wwwwww \nwx wxwwvvw \n",
"wwwww w \nwwwwwwww w \nwwwwwwwww w \nwwwwwwwwww w \nwwwwwwwwww www \nwwww www \nuw www \nuw wwwwww \nuw wwvwvww \n",
"wwwww w \nwwwwwwww w \nwwwwwwwww w \nwwwwwwwwww w \nwwwwwwwwww www \nwwww www \nvw www \nvw wwwwww \nvw wxwvvwx \n",
"qqqqqqrqrq qqqqqqqq \nqqqqqqrqrq qqqqqqqqq \nqqqqqqrqrq qqqqq \nqqqqqqrqrq p \n",
"qqrpqqqqqq qqqqqqqq \nqqrpqqqqqq qqqqqqqqq \nqqrpqqqqqq qqqqq \nqqrpqqqqqq q \n",
"wwwww w \nwwwwwwww w \nwwwwwwwww w \nwwwwwwwwww w \nwwwwwwwwww www \nwwww www \nvw www \nvw wwwwww \nvw xxwvvwx \n",
"qqqqqqprqq qqqqqqqq \nqqqqqqprqq qqqqqqqqq \nqqqqqqprqq qqqqq \nqqqqqqprqq q \n",
"wwwww w \nwwwwwwww w \nwwwwwwwww w \nwwwwwwwwww w \nwwwwwwwwww www \nwwww www \nuw www \nuw wwwwww \nuw xxwvvwx \n",
"wwwww w \nwwwwwwww w \nwwwwwwwww w \nwwwwwwwwww w \nwwwwwwwwww www \nwwww www \nwu www \nwu wwwwww \nwu xxwvvwx \n",
"wwwww w \nwwwwwwww w \nwwwwwwwww w \nwwwwwwwwww w \nwwwwwwwwww www \nwwww www \nww www \nww wwwwww \nww wwwwwwx \n",
"iii iiiiii \niiiiiiiiii iiiiii \niiii iiiiii \ni iiiiii \ni iiiiiiii \ni ihhiiiiii \niiiii ihhiiiiii \nki ihhiiiiii \n",
"pqrqqqqqqq qqqqqqqq \npqrqqqqqqq qqqqqqqqq \npqrqqqqqqq qqqqq \npqrqqqqqqq r \n",
"qqqqqprqrq qqqqqqqq \nqqqqqprqrq qqqqqqqqq \nqqqqqprqrq qqqqq \nqqqqqprqrq p \n",
"wwwww w \nwwwwwwww w \nwwwwwwwww w \nwwwwwwwwww w \nwwwwwwwwww www \nwwww www \nwx www \nwx wwwwww \nwx wwwwwwx \n",
"wxz hbeqwqp \nwxz cpieghnszh \nwxz tlqrpd \nwxz ttwrtio \nwxz xapvds \nwxz zk \nyrzk zk \nyrzk b \n",
"ze udggmyop \nszhrbmft udggmyop \nszhrbmft mjorab \nojdtfnzxj mjorab \nyjgkl mjorab \n",
"ross rachel \njoey rachel \njoey phoebe \njoey monica \njoey ciandler \n",
"qqrqqqqqqq qqqqqqqq \nqqrqqqqqqq qqqqqqqqq \nqqrqqqqqqq qqqqq \nqqrqqqqqqq s \n",
"qqqqrqrqqq qqqqqqqq \nqqqqrqrqqq qqqqqqqqq \nqqqqrqrqqq qqqqq \nqqqqrqrqqq q \n",
"wwwww w \nwwwwwwww w \nwwwwwwwww w \nwwwwwwwwww w \nwwwwwwwwww www \nwwww www \nvw www \nvw wwwwww \nvw wxwvvxw \n",
"qqqqpqrrqq qqqqqqqq \nqqqqpqrrqq qqqqqqqqq \nqqqqpqrrqq qqqqq \nqqqqpqrrqq p \n",
"qqroqqqqqq qqqqqqqq \nqqroqqqqqq qqqqqqqqq \nqqroqqqqqq qqqqq \nqqroqqqqqq r \n",
"ibm codeforces \nibm xemhcet \n",
"qqqqqqrqrq qqqqqqqq \nqqqqqqrqrq qqqqqqqqq \nqqqqqqrqrq qqqqq \nqqqqqqrqrq o \n",
"qqqqqqprrq qqqqqqqq \nqqqqqqprrq qqqqqqqqq \nqqqqqqprrq qqqqq \nqqqqqqprrq q \n",
"wwwww w \nwwwwwwww w \nwwwwwwwww w \nwwwwwwwwww w \nwwwwwwwwww www \nwwww www \nxx www \nxx wwwwww \nxx wwwwwwx \n",
"wxz hbeqwqp \nwxz cpieghnszh \nwxz tlqrpd \nwxz ttwrtio \nwxz xapvds \nwxz zk \nyrzk zk \nyrzk c \n",
"qqqrrqrqqq qqqqqqqq \nqqqrrqrqqq qqqqqqqqq \nqqqrrqrqqq qqqqq \nqqqrrqrqqq q \n",
"ibm codeforces \nibm techmex \n",
"qqqqqqrqrq qqqqqqqq \nqqqqqqrqrq qqqqqqqqq \nqqqqqqrqrq qqqqq \nqqqqqqrqrq n \n",
"qqqqqqprrq qqqqqqqq \nqqqqqqprrq qqqqqqqqq \nqqqqqqprrq qqqqq \nqqqqqqprrq p \n",
"wwwww w \nwwwwwwww w \nwwwwwwwww w \nwwwwwwwwww w \nwwwwwwwwww www \nwwww www \nxx www \nxx wwwwww \nxx wwvwwwx \n",
"bim codeforces \nbim techmex \n",
"qqqqpqprrq qqqqqqqq \nqqqqpqprrq qqqqqqqqq \nqqqqpqprrq qqqqq \nqqqqpqprrq p \n",
"wxz hbeqwqp \nwxz cpieghnszh \nwxz tlqrpd \nwxz ttwrtio \nwxz xapvds \nwxz zk \nyryk zk \nyryk a \n",
"a b \nc b \nc d \nc d \n",
"qqrqqqqqqq qqqqqqqq \nqqrqqqqqqq qqqqqqqqq \nqqrqqqqqqq qqqqq \nqqrqqqqqqq p \n",
"iii iiiiii \niiiiiiiiii iiiiii \niiii iiiiii \ni iiiiii \ni iiiiiiii \ni ihiiiiiii \niiiii ihiiiiiii \nkj ihiiiiiii \n",
"qqqqqpqrqq qqqqqqqq \nqqqqqpqrqq qqqqqqqqq \nqqqqqpqrqq qqqqq \nqqqqqpqrqq q \n",
"qqqqqqqqpq qqqqqqqq \nqqqqqqqqpq qqqqqqqqq \nqqqqqqqqpq qqqqq \nqqqqqqqqpq r \n",
"ze udggmyop \nszhrbmft udggmyop \nszhrbmft barojm \nojdtfnzxj barojm \nykljg barojm \n",
"qqrpqqrqqq qqqqqqqq \nqqrpqqrqqq qqqqqqqqq \nqqrpqqrqqq qqqqq \nqqrpqqrqqq r \n",
"pqrqprqqqq qqqqqqqq \npqrqprqqqq qqqqqqqqq \npqrqprqqqq qqqqq \npqrqprqqqq p \n",
"qqqqqqqrqq qqqqqqqq \nqqqqqqqrqq qqqqqqqqq \nqqqqqqqrqq qqqqq \nqqqqqqqrqq o \n",
"wwwww w \nwwwwwwww w \nwwwwwwwww w \nwwwwwwwwww w \nwwwwwwwwww www \nwwww www \nwv www \nwv wwwwww \nwv wxwvvwx \n",
"qrqrqqqqqq qqqqqqqq \nqrqrqqqqqq qqqqqqqqq \nqrqrqqqqqq qqqqq \nqrqrqqqqqq p \n",
"qqqqqqqrqp qqqqqqqq \nqqqqqqqrqp qqqqqqqqq \nqqqqqqqrqp qqqqq \nqqqqqqqrqp r \n",
"qqqqrqrqqq qqqqqqqq \nqqqqrqrqqq qqqqqqqqq \nqqqqrqrqqq qqqqq \nqqqqrqrqqq p \n",
"qqqqpqrrqq qqqqqqqq \nqqqqpqrrqq qqqqqqqqq \nqqqqpqrrqq qqqqq \nqqqqpqrrqq o \n",
"ibm codeforces \nibm xeehcmt \n",
"qrqrqqqqqq qqqqqqqq \nqrqrqqqqqq qqqqqqqqq \nqrqrqqqqqq qqqqq \nqrqrqqqqqq o \n",
"qqqrqrrqqq qqqqqqqq \nqqqrqrrqqq qqqqqqqqq \nqqqrqrrqqq qqqqq \nqqqrqrrqqq q \n",
"bim codeforces \nbim uechmex \n",
"qqrqqqqqqq qqqqqqqq \nqqrqqqqqqq qqqqqqqqq \nqqrqqqqqqq qqqqq \nqqrqqqqqqq o \n",
"qqqqqqqrqp qqqqqqqq \nqqqqqqqrqp qqqqqqqqq \nqqqqqqqrqp qqqqq \nqqqqqqqrqp s \n",
"mbi codeforces \nmbi xeehcmt \n",
"bim codeforces \nbim uecimex \n",
"qqrqqqqqqq qqqqqqqq \nqqrqqqqqqq qqqqqqqqq \nqqrqqqqqqq qqqqq \nqqrqqqqqqq n \n",
"ze udggmyop \nszhrbmft udggmyop \nszhrbmft mjorab \nojdtfnzxj mjorab \ngkljy mjorab \n",
"a b \nc b \nc d \nc f \n"
]
} | 2CODEFORCES
|
7_B. Memory Manager_165 | There is little time left before the release of the first national operating system BerlOS. Some of its components are not finished yet — the memory manager is among them. According to the developers' plan, in the first release the memory manager will be very simple and rectilinear. It will support three operations:
* alloc n — to allocate n bytes of the memory and return the allocated block's identifier x;
* erase x — to erase the block with the identifier x;
* defragment — to defragment the free memory, bringing all the blocks as close to the beginning of the memory as possible and preserving their respective order;
The memory model in this case is very simple. It is a sequence of m bytes, numbered for convenience from the first to the m-th.
The first operation alloc n takes as the only parameter the size of the memory block that is to be allocated. While processing this operation, a free block of n successive bytes is being allocated in the memory. If the amount of such blocks is more than one, the block closest to the beginning of the memory (i.e. to the first byte) is prefered. All these bytes are marked as not free, and the memory manager returns a 32-bit integer numerical token that is the identifier of this block. If it is impossible to allocate a free block of this size, the function returns NULL.
The second operation erase x takes as its parameter the identifier of some block. This operation frees the system memory, marking the bytes of this block as free for further use. In the case when this identifier does not point to the previously allocated block, which has not been erased yet, the function returns ILLEGAL_ERASE_ARGUMENT.
The last operation defragment does not have any arguments and simply brings the occupied memory sections closer to the beginning of the memory without changing their respective order.
In the current implementation you are to use successive integers, starting with 1, as identifiers. Each successful alloc operation procession should return following number. Unsuccessful alloc operations do not affect numeration.
You are to write the implementation of the memory manager. You should output the returned value for each alloc command. You should also output ILLEGAL_ERASE_ARGUMENT for all the failed erase commands.
Input
The first line of the input data contains two positive integers t and m (1 ≤ t ≤ 100;1 ≤ m ≤ 100), where t — the amount of operations given to the memory manager for processing, and m — the available memory size in bytes. Then there follow t lines where the operations themselves are given. The first operation is alloc n (1 ≤ n ≤ 100), where n is an integer. The second one is erase x, where x is an arbitrary 32-bit integer numerical token. The third operation is defragment.
Output
Output the sequence of lines. Each line should contain either the result of alloc operation procession , or ILLEGAL_ERASE_ARGUMENT as a result of failed erase operation procession. Output lines should go in the same order in which the operations are processed. Successful procession of alloc operation should return integers, starting with 1, as the identifiers of the allocated blocks.
Examples
Input
6 10
alloc 5
alloc 3
erase 1
alloc 6
defragment
alloc 6
Output
1
2
NULL
3 | I=raw_input
t,m=map(int,I().split())
a=[0]*m
k=1
for _ in '0'*t:
p=I();b=int((p+' 0').split()[1]);s=''
if p[0]=='d':a=filter(lambda x:x!=0,a);a+=[0]*(m-len(a))
elif p[0]=='a':
s='NULL'
for i in range(b,m+1):
if sum(a[i-b:i])==0:a=a[:i-b]+[k]*b+a[i:];s=str(k);k+=1;break
else:s='ILLEGAL_ERASE_ARGUMENT'*(a.count(b)*b==0);a=map(lambda x:x*(x!=b),a)
if s:print s | 1Python2
| {
"input": [
"6 10\nalloc 5\nalloc 3\nerase 1\nalloc 6\ndefragment\nalloc 6\n",
"3 1\nerase -1\nerase 0\nerase -2147483648\n",
"26 25\ndefragment\nerase 1\nerase -1560200883\nalloc 44\ndefragment\nalloc 75\nalloc 22\ndefragment\nerase 4\ndefragment\nalloc 57\nalloc 53\nerase 4\nerase -1639632026\nerase -2121605039\nerase 3\nalloc 51\nalloc 65\ndefragment\nerase 2\nerase 4\nalloc 52\nerase 3\ndefragment\nerase -1842529282\nerase 3\n",
"12 40\nerase 1\nalloc 21\nalloc 5\nalloc 7\ndefragment\ndefragment\nerase 2\nalloc 83\nerase 4\ndefragment\nalloc 59\ndefragment\n",
"44 46\nalloc 28\nalloc 36\ndefragment\nerase -937404236\nalloc 71\ndefragment\nalloc 81\nalloc 51\nerase 3\ndefragment\nalloc 48\nerase 1\ndefragment\nalloc 36\ndefragment\ndefragment\nerase 1\ndefragment\ndefragment\nerase -1173350787\nalloc 94\nerase 5\ndefragment\nerase 9\nalloc 98\nerase 7\ndefragment\nerase 5\nerase 1\ndefragment\nerase 2\ndefragment\nerase 4\ndefragment\nerase 9\nalloc 8\ndefragment\nerase 9\ndefragment\ndefragment\ndefragment\nerase 1\nalloc 70\nerase 9\n",
"7 6\nalloc 1\nalloc 2\nalloc 3\nerase 1\ndefragment\nerase 3\nalloc 4\n",
"47 43\nerase 1\nalloc 95\nalloc 53\nerase 2\ndefragment\nalloc 100\nerase 4\nerase 2\nerase -849472053\ndefragment\nerase -638355221\nalloc 90\nerase 3\nerase 2\ndefragment\nalloc 17\nerase 5\ndefragment\nerase 6\ndefragment\nerase 3\ndefragment\ndefragment\nalloc 99\nalloc 69\nalloc 80\nerase 9\nerase 5\ndefragment\nerase 7\ndefragment\nalloc 93\ndefragment\ndefragment\nalloc 25\ndefragment\nalloc 14\nerase 8\nerase 4\ndefragment\ndefragment\nalloc 96\nerase 9\nalloc 63\nerase 8\ndefragment\nerase 10\n",
"8 50\nalloc 51\ndefragment\nalloc 100\ndefragment\nerase 1\nalloc 50\ndefragment\nalloc 50\n",
"6 1\ndefragment\nalloc 10\nalloc 1\nerase -1\nerase 1\nerase 1\n",
"26 25\nalloc 25\nerase 1\nalloc 24\nerase 2\nalloc 23\nerase 3\nalloc 24\nerase 4\nalloc 24\nerase 5\nalloc 21\nerase 6\nalloc 24\nerase 7\nalloc 25\nerase 8\nalloc 25\nerase 9\nalloc 24\nerase 10\nalloc 25\nerase 11\nalloc 25\nerase 12\nalloc 25\nerase 13\n",
"10 10\nalloc 10\nerase -1\nerase 1\nalloc 5\nerase -1\nalloc 5\nerase 0\nalloc 5\nerase 0\nalloc 5\n",
"37 74\nalloc 11\ndefragment\nerase 1\ndefragment\nerase 2\ndefragment\nalloc 90\nerase 3\nerase 2\nerase 3\nerase 1\nerase 1\nalloc 38\nalloc 19\nerase 1\nerase 3\ndefragment\nalloc 93\nerase 5\nerase 4\nalloc 66\nalloc 71\nerase 5\ndefragment\ndefragment\ndefragment\ndefragment\nerase 7\nalloc 47\nerase -95616683\nerase 2\nalloc 28\nalloc 32\nerase 11\nalloc 50\ndefragment\ndefragment\n",
"19 46\nalloc 21\nerase 2\nerase 1\ndefragment\nalloc 4\ndefragment\ndefragment\nalloc 40\nerase 1\ndefragment\ndefragment\nalloc 68\nerase -388966015\nalloc 85\nalloc 53\nerase 4\ndefragment\nalloc 49\nalloc 88\n",
"12 10\nalloc 6\nalloc 2\nerase 1\nalloc 4\nalloc 2\nerase 3\nalloc 2\nalloc 3\nalloc 1\nalloc 1\nalloc 1\nalloc 1\n",
"16 10\nalloc 10\ndefragment\ndefragment\ndefragment\nalloc 10\nerase 1\nerase 2\nalloc 6\ndefragment\ndefragment\nalloc 4\ndefragment\ndefragment\nerase 2\ndefragment\nalloc 6\n",
"14 100\nalloc 99\nalloc 1\nalloc 1\nerase 2\nalloc 1\nerase 4\nerase 1\nalloc 100\nalloc 1\nalloc 99\ndefragment\nerase 4\nalloc 100\nalloc 99\n",
"22 9\nalloc 9\nerase 1\nalloc 9\nerase 2\nalloc 9\nerase 3\nalloc 9\nerase 4\nalloc 9\nerase 5\nalloc 9\nerase 6\nalloc 9\nerase 7\nalloc 9\nerase 8\nalloc 9\nerase 9\nalloc 9\nerase 10\nalloc 9\nerase 11\n",
"42 98\ndefragment\ndefragment\ndefragment\ndefragment\ndefragment\nalloc 5\nalloc 66\ndefragment\nerase 3\nalloc 53\ndefragment\nerase 4\nerase 2\nalloc 70\nerase 3\ndefragment\ndefragment\nerase 2\nerase 3\nerase -1327931832\nalloc 93\nalloc 64\nerase 7\nerase 6\nerase 3\nalloc 61\nalloc 12\nalloc 65\nerase 2\nalloc 46\nerase 11\nerase 9\nerase 9\nerase 6\nalloc 2\nalloc 78\ndefragment\nerase 13\nerase 6\nerase 10\nalloc 53\nalloc 46\n",
"16 10\nalloc 10\ndefragment\ndefragment\ndefragment\nalloc 10\nerase 1\nerase 2\nalloc 6\ndefragment\ndefragment\nalloc 4\ndefragment\ndefragment\nerase 3\ndefragment\nalloc 6\n",
"38 18\nalloc 72\nerase 2\nalloc 50\ndefragment\nerase 3\ndefragment\nalloc 43\nalloc 41\ndefragment\ndefragment\nalloc 26\nalloc 46\nalloc 16\nalloc 15\ndefragment\ndefragment\nalloc 95\nerase 7\nerase 7\nerase 5\nerase 2\nerase 9\nerase 7\nalloc 43\ndefragment\nerase 7\ndefragment\nalloc 48\nalloc 77\nerase 10\nerase 11\nalloc 16\nalloc 84\nerase 1\ndefragment\nalloc 86\ndefragment\nerase 13\n",
"16 49\nerase -751005193\ndefragment\nalloc 37\nalloc 82\nerase 3\nerase 1\nalloc 80\nalloc 51\ndefragment\nalloc 74\nerase 1\nalloc 91\ndefragment\ndefragment\nalloc 98\ndefragment\n",
"22 9\nerase 1\nalloc 6\nalloc 65\nerase 1\nalloc 87\nerase -1638927047\nalloc 5\nerase 2\nalloc 70\ndefragment\nalloc 20\nalloc 48\nerase -69401977\nalloc 20\ndefragment\nerase 7\ndefragment\nerase 9\nerase 7\nerase 4\ndefragment\nalloc 66\n",
"7 100\nalloc 100\nerase 2147483647\nerase 1\nalloc 50\nalloc 50\nerase 3\nerase -2147483648\n",
"7 6\nalloc 2\nalloc 2\nalloc 3\nerase 1\ndefragment\nerase 3\nalloc 4\n",
"8 50\nalloc 51\ndefragment\nalloc 101\ndefragment\nerase 1\nalloc 50\ndefragment\nalloc 50\n",
"26 25\nalloc 25\nerase 1\nalloc 24\nerase 2\nalloc 23\nerase 3\nalloc 24\nerase 4\nalloc 24\nerase 1\nalloc 21\nerase 6\nalloc 24\nerase 7\nalloc 25\nerase 8\nalloc 25\nerase 9\nalloc 24\nerase 10\nalloc 25\nerase 11\nalloc 25\nerase 12\nalloc 25\nerase 13\n",
"37 74\nalloc 11\ndefragment\nerase 1\ndefragment\nerase 2\ndefragment\nalloc 90\nerase 3\nerase 2\nerase 3\nerase 1\nerase 1\nalloc 38\nalloc 19\nerase 1\nerase 3\ndefragment\nalloc 93\nerase 5\nerase 4\nalloc 66\nalloc 71\nerase 7\ndefragment\ndefragment\ndefragment\ndefragment\nerase 7\nalloc 47\nerase -95616683\nerase 2\nalloc 28\nalloc 32\nerase 11\nalloc 50\ndefragment\ndefragment\n",
"19 46\nalloc 21\nerase 2\nerase 1\ndefragment\nalloc 4\ndefragment\ndefragment\nalloc 40\nerase 1\ndefragment\ndefragment\nalloc 68\nerase -388966015\nalloc 85\nalloc 53\nerase 5\ndefragment\nalloc 49\nalloc 88\n",
"12 10\nalloc 6\nalloc 2\nerase 1\nalloc 7\nalloc 2\nerase 3\nalloc 2\nalloc 3\nalloc 1\nalloc 1\nalloc 1\nalloc 1\n",
"22 9\nalloc 9\nerase 1\nalloc 9\nerase 2\nalloc 9\nerase 2\nalloc 9\nerase 4\nalloc 9\nerase 5\nalloc 9\nerase 6\nalloc 9\nerase 7\nalloc 9\nerase 8\nalloc 9\nerase 9\nalloc 9\nerase 10\nalloc 9\nerase 11\n",
"38 18\nalloc 72\nerase 2\nalloc 50\ndefragment\nerase 3\ndefragment\nalloc 43\nalloc 41\ndefragment\ndefragment\nalloc 26\nalloc 46\nalloc 16\nalloc 15\ndefragment\ndefragment\nalloc 95\nerase 7\nerase 7\nerase 1\nerase 2\nerase 9\nerase 7\nalloc 43\ndefragment\nerase 7\ndefragment\nalloc 48\nalloc 77\nerase 10\nerase 11\nalloc 16\nalloc 84\nerase 1\ndefragment\nalloc 86\ndefragment\nerase 13\n",
"16 49\nerase -751005193\ndefragment\nalloc 37\nalloc 82\nerase 3\nerase 1\nalloc 80\nalloc 51\ndefragment\nalloc 74\nerase 1\nalloc 91\ndefragment\ndefragment\nalloc 121\ndefragment\n",
"22 0\nerase 1\nalloc 6\nalloc 65\nerase 1\nalloc 87\nerase -1638927047\nalloc 5\nerase 2\nalloc 70\ndefragment\nalloc 20\nalloc 48\nerase -69401977\nalloc 20\ndefragment\nerase 7\ndefragment\nerase 9\nerase 7\nerase 4\ndefragment\nalloc 66\n",
"7 100\nalloc 100\nerase 2147483647\nerase 1\nalloc 50\nalloc 50\nerase 3\nerase -2217570413\n",
"6 10\nalloc 5\nalloc 3\nerase 1\nalloc 10\ndefragment\nalloc 6\n",
"7 6\nalloc 2\nalloc 3\nalloc 3\nerase 1\ndefragment\nerase 3\nalloc 4\n",
"6 10\nalloc 5\nalloc 3\nerase 2\nalloc 10\ndefragment\nalloc 6\n",
"7 9\nalloc 2\nalloc 3\nalloc 3\nerase 1\ndefragment\nerase 3\nalloc 4\n",
"3 1\nerase -1\nerase 0\nerase -2666718247\n",
"12 40\nerase 1\nalloc 21\nalloc 5\nalloc 7\ndefragment\ndefragment\nerase 2\nalloc 83\nerase 3\ndefragment\nalloc 59\ndefragment\n",
"47 43\nerase 1\nalloc 95\nalloc 53\nerase 2\ndefragment\nalloc 100\nerase 4\nerase 2\nerase -849472053\ndefragment\nerase -638355221\nalloc 90\nerase 3\nerase 2\ndefragment\nalloc 17\nerase 5\ndefragment\nerase 6\ndefragment\nerase 6\ndefragment\ndefragment\nalloc 99\nalloc 69\nalloc 80\nerase 9\nerase 5\ndefragment\nerase 7\ndefragment\nalloc 93\ndefragment\ndefragment\nalloc 25\ndefragment\nalloc 14\nerase 8\nerase 4\ndefragment\ndefragment\nalloc 96\nerase 9\nalloc 63\nerase 8\ndefragment\nerase 10\n",
"19 46\nalloc 21\nerase 2\nerase 2\ndefragment\nalloc 4\ndefragment\ndefragment\nalloc 40\nerase 1\ndefragment\ndefragment\nalloc 68\nerase -388966015\nalloc 85\nalloc 53\nerase 4\ndefragment\nalloc 49\nalloc 88\n",
"12 10\nalloc 6\nalloc 2\nerase 0\nalloc 4\nalloc 2\nerase 3\nalloc 2\nalloc 3\nalloc 1\nalloc 1\nalloc 1\nalloc 1\n",
"14 100\nalloc 99\nalloc 1\nalloc 1\nerase 2\nalloc 1\nerase 4\nerase 2\nalloc 100\nalloc 1\nalloc 99\ndefragment\nerase 4\nalloc 100\nalloc 99\n",
"42 98\ndefragment\ndefragment\ndefragment\ndefragment\ndefragment\nalloc 5\nalloc 66\ndefragment\nerase 3\nalloc 53\ndefragment\nerase 4\nerase 2\nalloc 70\nerase 3\ndefragment\ndefragment\nerase 2\nerase 3\nerase -1327931832\nalloc 93\nalloc 64\nerase 7\nerase 6\nerase 3\nalloc 61\nalloc 12\nalloc 112\nerase 2\nalloc 46\nerase 11\nerase 9\nerase 9\nerase 6\nalloc 2\nalloc 78\ndefragment\nerase 13\nerase 6\nerase 10\nalloc 53\nalloc 46\n",
"16 10\nalloc 10\ndefragment\ndefragment\ndefragment\nalloc 10\nerase 1\nerase 2\nalloc 6\ndefragment\ndefragment\nalloc 3\ndefragment\ndefragment\nerase 3\ndefragment\nalloc 6\n",
"38 18\nalloc 72\nerase 2\nalloc 50\ndefragment\nerase 3\ndefragment\nalloc 43\nalloc 41\ndefragment\ndefragment\nalloc 26\nalloc 46\nalloc 16\nalloc 15\ndefragment\ndefragment\nalloc 95\nerase 9\nerase 7\nerase 5\nerase 2\nerase 9\nerase 7\nalloc 43\ndefragment\nerase 7\ndefragment\nalloc 48\nalloc 77\nerase 10\nerase 11\nalloc 16\nalloc 84\nerase 1\ndefragment\nalloc 86\ndefragment\nerase 13\n",
"6 10\nalloc 6\nalloc 3\nerase 1\nalloc 6\ndefragment\nalloc 6\n",
"6 4\nalloc 5\nalloc 3\nerase 2\nalloc 18\ndefragment\nalloc 6\n",
"16 78\nerase -751005193\ndefragment\nalloc 37\nalloc 82\nerase 3\nerase 1\nalloc 80\nalloc 51\ndefragment\nalloc 74\nerase 1\nalloc 91\ndefragment\ndefragment\nalloc 73\ndefragment\n",
"7 6\nalloc 4\nalloc 3\nalloc 3\nerase 1\ndefragment\nerase 4\nalloc 4\n",
"7 6\nalloc 4\nalloc 3\nalloc 2\nerase 1\ndefragment\nerase 4\nalloc 4\n",
"26 25\ndefragment\nerase 1\nerase -1560200883\nalloc 44\ndefragment\nalloc 75\nalloc 22\ndefragment\nerase 4\ndefragment\nalloc 57\nalloc 53\nerase 4\nerase -1639632026\nerase -2121605039\nerase 5\nalloc 51\nalloc 65\ndefragment\nerase 2\nerase 4\nalloc 52\nerase 3\ndefragment\nerase -1842529282\nerase 3\n",
"14 100\nalloc 99\nalloc 1\nalloc 1\nerase 2\nalloc 1\nerase 4\nerase 1\nalloc 100\nalloc 1\nalloc 29\ndefragment\nerase 4\nalloc 100\nalloc 99\n",
"22 7\nalloc 9\nerase 1\nalloc 9\nerase 2\nalloc 9\nerase 3\nalloc 9\nerase 4\nalloc 9\nerase 5\nalloc 9\nerase 6\nalloc 9\nerase 7\nalloc 9\nerase 8\nalloc 9\nerase 9\nalloc 9\nerase 10\nalloc 9\nerase 11\n",
"22 9\nerase 1\nalloc 6\nalloc 65\nerase 1\nalloc 87\nerase -1638927047\nalloc 5\nerase 2\nalloc 70\ndefragment\nalloc 20\nalloc 48\nerase -69401977\nalloc 20\ndefragment\nerase 7\ndefragment\nerase 9\nerase 7\nerase 8\ndefragment\nalloc 66\n",
"26 25\nalloc 25\nerase 1\nalloc 24\nerase 2\nalloc 23\nerase 3\nalloc 24\nerase 4\nalloc 4\nerase 1\nalloc 21\nerase 6\nalloc 24\nerase 7\nalloc 25\nerase 8\nalloc 25\nerase 9\nalloc 24\nerase 10\nalloc 25\nerase 11\nalloc 25\nerase 12\nalloc 25\nerase 13\n",
"16 49\nerase -751005193\ndefragment\nalloc 37\nalloc 10\nerase 3\nerase 1\nalloc 80\nalloc 51\ndefragment\nalloc 74\nerase 1\nalloc 91\ndefragment\ndefragment\nalloc 121\ndefragment\n",
"6 6\nalloc 5\nalloc 3\nerase 1\nalloc 10\ndefragment\nalloc 6\n",
"6 10\nalloc 5\nalloc 3\nerase 4\nalloc 10\ndefragment\nalloc 6\n",
"47 80\nerase 1\nalloc 95\nalloc 53\nerase 2\ndefragment\nalloc 100\nerase 4\nerase 2\nerase -849472053\ndefragment\nerase -638355221\nalloc 90\nerase 3\nerase 2\ndefragment\nalloc 17\nerase 5\ndefragment\nerase 6\ndefragment\nerase 6\ndefragment\ndefragment\nalloc 99\nalloc 69\nalloc 80\nerase 9\nerase 5\ndefragment\nerase 7\ndefragment\nalloc 93\ndefragment\ndefragment\nalloc 25\ndefragment\nalloc 14\nerase 8\nerase 4\ndefragment\ndefragment\nalloc 96\nerase 9\nalloc 63\nerase 8\ndefragment\nerase 10\n",
"16 78\nerase -751005193\ndefragment\nalloc 37\nalloc 82\nerase 3\nerase 1\nalloc 25\nalloc 51\ndefragment\nalloc 74\nerase 1\nalloc 91\ndefragment\ndefragment\nalloc 73\ndefragment\n",
"22 9\nerase 1\nalloc 6\nalloc 65\nerase 0\nalloc 87\nerase -1638927047\nalloc 5\nerase 2\nalloc 70\ndefragment\nalloc 20\nalloc 48\nerase -69401977\nalloc 20\ndefragment\nerase 7\ndefragment\nerase 9\nerase 7\nerase 8\ndefragment\nalloc 66\n",
"8 50\nalloc 96\ndefragment\nalloc 101\ndefragment\nerase 1\nalloc 50\ndefragment\nalloc 50\n",
"37 74\nalloc 11\ndefragment\nerase 1\ndefragment\nerase 2\ndefragment\nalloc 90\nerase 3\nerase 2\nerase 3\nerase 1\nerase 1\nalloc 38\nalloc 19\nerase 1\nerase 3\ndefragment\nalloc 93\nerase 5\nerase 4\nalloc 66\nalloc 71\nerase 7\ndefragment\ndefragment\ndefragment\ndefragment\nerase 13\nalloc 47\nerase -95616683\nerase 2\nalloc 28\nalloc 32\nerase 11\nalloc 50\ndefragment\ndefragment\n",
"22 0\nerase 1\nalloc 6\nalloc 65\nerase 1\nalloc 87\nerase -1638927047\nalloc 5\nerase 2\nalloc 70\ndefragment\nalloc 20\nalloc 48\nerase -69401977\nalloc 20\ndefragment\nerase 4\ndefragment\nerase 9\nerase 7\nerase 4\ndefragment\nalloc 66\n",
"22 0\nerase 1\nalloc 6\nalloc 75\nerase 1\nalloc 87\nerase -1638927047\nalloc 5\nerase 2\nalloc 70\ndefragment\nalloc 20\nalloc 48\nerase -69401977\nalloc 20\ndefragment\nerase 4\ndefragment\nerase 9\nerase 7\nerase 4\ndefragment\nalloc 66\n",
"6 10\nalloc 5\nalloc 3\nerase 2\nalloc 18\ndefragment\nalloc 6\n",
"16 49\nerase -178317666\ndefragment\nalloc 37\nalloc 82\nerase 3\nerase 1\nalloc 80\nalloc 51\ndefragment\nalloc 74\nerase 1\nalloc 91\ndefragment\ndefragment\nalloc 98\ndefragment\n",
"7 100\nalloc 100\nerase 2147483647\nerase 1\nalloc 50\nalloc 50\nerase 3\nerase -2940481691\n",
"8 50\nalloc 64\ndefragment\nalloc 101\ndefragment\nerase 1\nalloc 50\ndefragment\nalloc 50\n",
"26 25\nalloc 25\nerase 1\nalloc 24\nerase 2\nalloc 23\nerase 3\nalloc 24\nerase 4\nalloc 24\nerase 1\nalloc 18\nerase 6\nalloc 24\nerase 7\nalloc 25\nerase 8\nalloc 25\nerase 9\nalloc 24\nerase 10\nalloc 25\nerase 11\nalloc 25\nerase 12\nalloc 25\nerase 13\n",
"22 9\nalloc 9\nerase 1\nalloc 9\nerase 2\nalloc 9\nerase 2\nalloc 9\nerase 4\nalloc 9\nerase 5\nalloc 9\nerase 6\nalloc 9\nerase 7\nalloc 9\nerase 10\nalloc 9\nerase 9\nalloc 9\nerase 10\nalloc 9\nerase 11\n",
"38 18\nalloc 72\nerase 2\nalloc 50\ndefragment\nerase 3\ndefragment\nalloc 43\nalloc 41\ndefragment\ndefragment\nalloc 26\nalloc 46\nalloc 16\nalloc 15\ndefragment\ndefragment\nalloc 95\nerase 7\nerase 7\nerase 1\nerase 2\nerase 9\nerase 7\nalloc 43\ndefragment\nerase 4\ndefragment\nalloc 48\nalloc 77\nerase 10\nerase 11\nalloc 16\nalloc 84\nerase 1\ndefragment\nalloc 86\ndefragment\nerase 13\n",
"16 49\nerase -751005193\ndefragment\nalloc 37\nalloc 82\nerase 3\nerase 1\nalloc 80\nalloc 51\ndefragment\nalloc 74\nerase 1\nalloc 91\ndefragment\ndefragment\nalloc 73\ndefragment\n",
"6 10\nalloc 5\nalloc 3\nerase 1\nalloc 13\ndefragment\nalloc 6\n",
"7 6\nalloc 2\nalloc 3\nalloc 3\nerase 1\ndefragment\nerase 4\nalloc 4\n",
"37 74\nalloc 11\ndefragment\nerase 1\ndefragment\nerase 2\ndefragment\nalloc 90\nerase 3\nerase 2\nerase 3\nerase 2\nerase 1\nalloc 38\nalloc 19\nerase 1\nerase 3\ndefragment\nalloc 93\nerase 5\nerase 4\nalloc 66\nalloc 71\nerase 7\ndefragment\ndefragment\ndefragment\ndefragment\nerase 13\nalloc 47\nerase -95616683\nerase 2\nalloc 28\nalloc 32\nerase 11\nalloc 50\ndefragment\ndefragment\n",
"38 18\nalloc 72\nerase 2\nalloc 50\ndefragment\nerase 3\ndefragment\nalloc 43\nalloc 41\ndefragment\ndefragment\nalloc 26\nalloc 46\nalloc 16\nalloc 15\ndefragment\ndefragment\nalloc 95\nerase 9\nerase 7\nerase 5\nerase 2\nerase 9\nerase 7\nalloc 43\ndefragment\nerase 7\ndefragment\nalloc 48\nalloc 77\nerase 10\nerase 9\nalloc 16\nalloc 84\nerase 1\ndefragment\nalloc 86\ndefragment\nerase 13\n",
"6 10\nalloc 6\nalloc 3\nerase 2\nalloc 6\ndefragment\nalloc 6\n",
"37 74\nalloc 11\ndefragment\nerase 1\ndefragment\nerase 1\ndefragment\nalloc 90\nerase 3\nerase 2\nerase 3\nerase 2\nerase 1\nalloc 38\nalloc 19\nerase 1\nerase 3\ndefragment\nalloc 93\nerase 5\nerase 4\nalloc 66\nalloc 71\nerase 7\ndefragment\ndefragment\ndefragment\ndefragment\nerase 13\nalloc 47\nerase -95616683\nerase 2\nalloc 28\nalloc 32\nerase 11\nalloc 50\ndefragment\ndefragment\n",
"3 1\nerase 0\nerase 0\nerase -2147483648\n",
"8 50\nalloc 51\ndefragment\nalloc 100\ndefragment\nerase 1\nalloc 50\ndefragment\nalloc 76\n",
"37 74\nalloc 17\ndefragment\nerase 1\ndefragment\nerase 2\ndefragment\nalloc 90\nerase 3\nerase 2\nerase 3\nerase 1\nerase 1\nalloc 38\nalloc 19\nerase 1\nerase 3\ndefragment\nalloc 93\nerase 5\nerase 4\nalloc 66\nalloc 71\nerase 7\ndefragment\ndefragment\ndefragment\ndefragment\nerase 7\nalloc 47\nerase -95616683\nerase 2\nalloc 28\nalloc 32\nerase 11\nalloc 50\ndefragment\ndefragment\n",
"19 46\nalloc 21\nerase 2\nerase 1\ndefragment\nalloc 4\ndefragment\ndefragment\nalloc 40\nerase 1\ndefragment\ndefragment\nalloc 68\nerase -388966015\nalloc 85\nalloc 53\nerase 5\ndefragment\nalloc 83\nalloc 88\n",
"38 18\nalloc 72\nerase 2\nalloc 50\ndefragment\nerase 3\ndefragment\nalloc 43\nalloc 41\ndefragment\ndefragment\nalloc 26\nalloc 46\nalloc 16\nalloc 15\ndefragment\ndefragment\nalloc 95\nerase 7\nerase 7\nerase 1\nerase 2\nerase 16\nerase 7\nalloc 43\ndefragment\nerase 7\ndefragment\nalloc 48\nalloc 77\nerase 10\nerase 11\nalloc 16\nalloc 84\nerase 1\ndefragment\nalloc 86\ndefragment\nerase 13\n",
"22 0\nerase 1\nalloc 6\nalloc 65\nerase 1\nalloc 87\nerase -1638927047\nalloc 5\nerase 2\nalloc 70\ndefragment\nalloc 20\nalloc 48\nerase -69401977\nalloc 20\ndefragment\nerase 7\ndefragment\nerase 6\nerase 7\nerase 4\ndefragment\nalloc 66\n",
"7 101\nalloc 100\nerase 2147483647\nerase 1\nalloc 50\nalloc 50\nerase 3\nerase -2217570413\n",
"7 9\nalloc 2\nalloc 3\nalloc 3\nerase 1\ndefragment\nerase 3\nalloc 3\n",
"19 46\nalloc 21\nerase 2\nerase 2\ndefragment\nalloc 4\ndefragment\ndefragment\nalloc 68\nerase 1\ndefragment\ndefragment\nalloc 68\nerase -388966015\nalloc 85\nalloc 53\nerase 4\ndefragment\nalloc 49\nalloc 88\n",
"12 10\nalloc 6\nalloc 2\nerase 0\nalloc 4\nalloc 2\nerase 3\nalloc 2\nalloc 2\nalloc 1\nalloc 1\nalloc 1\nalloc 1\n",
"16 49\nerase -178317666\ndefragment\nalloc 37\nalloc 116\nerase 3\nerase 1\nalloc 80\nalloc 51\ndefragment\nalloc 74\nerase 1\nalloc 91\ndefragment\ndefragment\nalloc 98\ndefragment\n",
"26 25\nalloc 25\nerase 1\nalloc 24\nerase 2\nalloc 23\nerase 3\nalloc 24\nerase 4\nalloc 24\nerase 1\nalloc 18\nerase 6\nalloc 24\nerase 7\nalloc 25\nerase 6\nalloc 25\nerase 9\nalloc 24\nerase 10\nalloc 25\nerase 11\nalloc 25\nerase 12\nalloc 25\nerase 13\n",
"38 18\nalloc 72\nerase 2\nalloc 50\ndefragment\nerase 3\ndefragment\nalloc 43\nalloc 41\ndefragment\ndefragment\nalloc 26\nalloc 46\nalloc 16\nalloc 15\ndefragment\ndefragment\nalloc 95\nerase 7\nerase 7\nerase 1\nerase 2\nerase 9\nerase 7\nalloc 43\ndefragment\nerase 4\ndefragment\nalloc 48\nalloc 77\nerase 10\nerase 11\nalloc 16\nalloc 84\nerase 1\ndefragment\nalloc 86\ndefragment\nerase 3\n",
"6 4\nalloc 5\nalloc 3\nerase 2\nalloc 28\ndefragment\nalloc 6\n",
"6 10\nalloc 6\nalloc 2\nerase 2\nalloc 6\ndefragment\nalloc 6\n",
"7 6\nalloc 3\nalloc 3\nalloc 2\nerase 1\ndefragment\nerase 4\nalloc 4\n",
"26 25\ndefragment\nerase 1\nerase -1560200883\nalloc 78\ndefragment\nalloc 75\nalloc 22\ndefragment\nerase 4\ndefragment\nalloc 57\nalloc 53\nerase 4\nerase -1639632026\nerase -2121605039\nerase 5\nalloc 51\nalloc 65\ndefragment\nerase 2\nerase 4\nalloc 52\nerase 3\ndefragment\nerase -1842529282\nerase 3\n",
"26 25\nalloc 25\nerase 1\nalloc 24\nerase 2\nalloc 23\nerase 3\nalloc 24\nerase 4\nalloc 4\nerase 1\nalloc 21\nerase 6\nalloc 24\nerase 7\nalloc 25\nerase 8\nalloc 25\nerase 9\nalloc 24\nerase 10\nalloc 25\nerase 11\nalloc 25\nerase 0\nalloc 25\nerase 13\n"
],
"output": [
"1\n2\nNULL\n3\n",
"ILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\n",
"ILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\n1\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\n",
"ILLEGAL_ERASE_ARGUMENT\n1\n2\n3\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\n",
"1\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\n2\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\n3\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\n",
"1\n2\n3\n4\n",
"ILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\n1\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\n2\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\n",
"NULL\nNULL\nILLEGAL_ERASE_ARGUMENT\n1\nNULL\n",
"NULL\n1\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\n",
"1\n2\n3\n4\n5\n6\n7\n8\n9\n10\n11\n12\n13\n",
"1\nILLEGAL_ERASE_ARGUMENT\n2\nILLEGAL_ERASE_ARGUMENT\n3\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\n",
"1\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\n2\n3\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\n4\n5\nILLEGAL_ERASE_ARGUMENT\nNULL\n",
"1\nILLEGAL_ERASE_ARGUMENT\n2\n3\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\n",
"1\n2\n3\n4\n5\nNULL\n6\n7\n8\n9\n",
"1\nNULL\nILLEGAL_ERASE_ARGUMENT\n2\n3\n4\n",
"1\n2\nNULL\n3\nILLEGAL_ERASE_ARGUMENT\nNULL\n4\nNULL\nNULL\nNULL\n",
"1\n2\n3\n4\n5\n6\n7\n8\n9\n10\n11\n",
"1\n2\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\n3\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\n4\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\n",
"1\nNULL\nILLEGAL_ERASE_ARGUMENT\n2\n3\nNULL\n",
"NULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nNULL\nNULL\n1\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\n",
"ILLEGAL_ERASE_ARGUMENT\n1\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\n",
"ILLEGAL_ERASE_ARGUMENT\n1\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\n2\nNULL\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\n",
"1\nILLEGAL_ERASE_ARGUMENT\n2\n3\nILLEGAL_ERASE_ARGUMENT\n",
"1\n2\nNULL\nILLEGAL_ERASE_ARGUMENT\n3\n",
"NULL\nNULL\nILLEGAL_ERASE_ARGUMENT\n1\nNULL\n",
"1\n2\n3\n4\n5\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\n",
"1\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\n2\n3\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\n4\n5\nILLEGAL_ERASE_ARGUMENT\nNULL\n",
"1\nILLEGAL_ERASE_ARGUMENT\n2\n3\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\n",
"1\n2\nNULL\n3\n4\n5\n6\n7\n8\nNULL\n",
"1\n2\n3\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\n",
"NULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nNULL\nNULL\n1\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\n2\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\n",
"ILLEGAL_ERASE_ARGUMENT\n1\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\n",
"ILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\n",
"1\nILLEGAL_ERASE_ARGUMENT\n2\n3\nILLEGAL_ERASE_ARGUMENT\n",
"1\n2\nNULL\n3\n",
"1\n2\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\n",
"1\n2\nNULL\nNULL\n",
"1\n2\n3\n4\n",
"ILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\n",
"ILLEGAL_ERASE_ARGUMENT\n1\n2\n3\nNULL\nNULL\n",
"ILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\n1\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\n2\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\n",
"1\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\n2\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\n",
"1\n2\nILLEGAL_ERASE_ARGUMENT\nNULL\n3\n4\nNULL\nNULL\nNULL\nNULL\nNULL\n",
"1\n2\nNULL\n3\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\n",
"1\n2\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\n3\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\n4\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\n",
"1\nNULL\nILLEGAL_ERASE_ARGUMENT\n2\n3\nNULL\n",
"NULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nNULL\nNULL\n1\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\n",
"1\n2\n3\nNULL\n",
"NULL\n1\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\n",
"ILLEGAL_ERASE_ARGUMENT\n1\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\n2\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\n",
"1\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\n2\n",
"1\nNULL\n2\nILLEGAL_ERASE_ARGUMENT\n3\n",
"ILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\n1\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\n",
"1\n2\nNULL\n3\nILLEGAL_ERASE_ARGUMENT\nNULL\n4\n5\nNULL\nNULL\n",
"NULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\n",
"ILLEGAL_ERASE_ARGUMENT\n1\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\n2\nNULL\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\n",
"1\n2\n3\n4\n5\nILLEGAL_ERASE_ARGUMENT\n6\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\n",
"ILLEGAL_ERASE_ARGUMENT\n1\n2\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\n",
"1\nNULL\nNULL\n2\n",
"1\n2\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\n",
"ILLEGAL_ERASE_ARGUMENT\nNULL\n1\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\n2\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\n",
"ILLEGAL_ERASE_ARGUMENT\n1\nNULL\nILLEGAL_ERASE_ARGUMENT\n2\n3\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\n",
"ILLEGAL_ERASE_ARGUMENT\n1\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\n",
"NULL\nNULL\nILLEGAL_ERASE_ARGUMENT\n1\nNULL\n",
"1\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\n2\n3\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\n4\n5\nILLEGAL_ERASE_ARGUMENT\nNULL\n",
"ILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\n",
"ILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\n",
"1\n2\nNULL\nNULL\n",
"ILLEGAL_ERASE_ARGUMENT\n1\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\n",
"1\nILLEGAL_ERASE_ARGUMENT\n2\n3\nILLEGAL_ERASE_ARGUMENT\n",
"NULL\nNULL\nILLEGAL_ERASE_ARGUMENT\n1\nNULL\n",
"1\n2\n3\n4\n5\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\n",
"1\n2\n3\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\n",
"NULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nNULL\nNULL\n1\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\n2\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\n",
"ILLEGAL_ERASE_ARGUMENT\n1\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\n",
"1\n2\nNULL\n3\n",
"1\n2\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\n",
"1\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\n2\n3\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\n4\n5\nILLEGAL_ERASE_ARGUMENT\nNULL\n",
"NULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nNULL\nNULL\n1\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\n",
"1\n2\nNULL\nNULL\n",
"1\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\n2\n3\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\n4\n5\nILLEGAL_ERASE_ARGUMENT\nNULL\n",
"ILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\n",
"NULL\nNULL\nILLEGAL_ERASE_ARGUMENT\n1\nNULL\n",
"1\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\n2\n3\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\n4\n5\nILLEGAL_ERASE_ARGUMENT\nNULL\n",
"1\nILLEGAL_ERASE_ARGUMENT\n2\n3\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\n",
"NULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nNULL\nNULL\n1\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\n2\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\n",
"ILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\n",
"1\nILLEGAL_ERASE_ARGUMENT\n2\n3\nILLEGAL_ERASE_ARGUMENT\n",
"1\n2\n3\n4\n",
"1\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\n2\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\n",
"1\n2\nILLEGAL_ERASE_ARGUMENT\nNULL\n3\n4\nNULL\nNULL\nNULL\nNULL\nNULL\n",
"ILLEGAL_ERASE_ARGUMENT\n1\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\n",
"1\n2\n3\n4\n5\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\n",
"NULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nNULL\nNULL\n1\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\n2\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\n",
"NULL\n1\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\n",
"1\n2\nNULL\nNULL\n",
"1\n2\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\n",
"ILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\n1\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\n",
"1\n2\n3\n4\n5\nILLEGAL_ERASE_ARGUMENT\n6\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\n"
]
} | 2CODEFORCES
|
7_B. Memory Manager_166 | There is little time left before the release of the first national operating system BerlOS. Some of its components are not finished yet — the memory manager is among them. According to the developers' plan, in the first release the memory manager will be very simple and rectilinear. It will support three operations:
* alloc n — to allocate n bytes of the memory and return the allocated block's identifier x;
* erase x — to erase the block with the identifier x;
* defragment — to defragment the free memory, bringing all the blocks as close to the beginning of the memory as possible and preserving their respective order;
The memory model in this case is very simple. It is a sequence of m bytes, numbered for convenience from the first to the m-th.
The first operation alloc n takes as the only parameter the size of the memory block that is to be allocated. While processing this operation, a free block of n successive bytes is being allocated in the memory. If the amount of such blocks is more than one, the block closest to the beginning of the memory (i.e. to the first byte) is prefered. All these bytes are marked as not free, and the memory manager returns a 32-bit integer numerical token that is the identifier of this block. If it is impossible to allocate a free block of this size, the function returns NULL.
The second operation erase x takes as its parameter the identifier of some block. This operation frees the system memory, marking the bytes of this block as free for further use. In the case when this identifier does not point to the previously allocated block, which has not been erased yet, the function returns ILLEGAL_ERASE_ARGUMENT.
The last operation defragment does not have any arguments and simply brings the occupied memory sections closer to the beginning of the memory without changing their respective order.
In the current implementation you are to use successive integers, starting with 1, as identifiers. Each successful alloc operation procession should return following number. Unsuccessful alloc operations do not affect numeration.
You are to write the implementation of the memory manager. You should output the returned value for each alloc command. You should also output ILLEGAL_ERASE_ARGUMENT for all the failed erase commands.
Input
The first line of the input data contains two positive integers t and m (1 ≤ t ≤ 100;1 ≤ m ≤ 100), where t — the amount of operations given to the memory manager for processing, and m — the available memory size in bytes. Then there follow t lines where the operations themselves are given. The first operation is alloc n (1 ≤ n ≤ 100), where n is an integer. The second one is erase x, where x is an arbitrary 32-bit integer numerical token. The third operation is defragment.
Output
Output the sequence of lines. Each line should contain either the result of alloc operation procession , or ILLEGAL_ERASE_ARGUMENT as a result of failed erase operation procession. Output lines should go in the same order in which the operations are processed. Successful procession of alloc operation should return integers, starting with 1, as the identifiers of the allocated blocks.
Examples
Input
6 10
alloc 5
alloc 3
erase 1
alloc 6
defragment
alloc 6
Output
1
2
NULL
3 | #include <bits/stdc++.h>
using namespace std;
int main() {
int t, m, num = 1;
string com;
int arg;
vector<pair<pair<int, int>, int> > d;
cin >> t >> m;
for (int _n((t)-1), q(0); q <= _n; q++) {
sort((d).begin(), (d).end());
cin >> com;
if (com == "defragment") {
if (d.size() > 0) {
d[0].first.second -= d[0].first.first;
d[0].first.first = 0;
for (int _n((d.size() - 1)), i(1); i <= _n; i++) {
int delta = d[i].first.first - d[i - 1].first.second;
d[i].first.first -= delta;
d[i].first.second -= delta;
}
}
continue;
}
cin >> arg;
if (com == "alloc") {
int res = -1;
if (d.size() > 0)
if (d[0].first.first >= arg) {
d.push_back(make_pair(make_pair(0, arg), num++));
res = 1;
}
if (res == -1)
for (int _n((d.size() - 1)), i(1); i <= _n; i++)
if (d[i].first.first - d[i - 1].first.second >= arg) {
d.push_back(make_pair(
make_pair(d[i - 1].first.second, d[i - 1].first.second + arg),
num++));
res = 1;
break;
}
if (res == -1)
if (d.size() > 0)
if (m - d[d.size() - 1].first.second >= arg) {
d.push_back(make_pair(make_pair(d[d.size() - 1].first.second,
d[d.size() - 1].first.second + arg),
num++));
res = 1;
}
if (res == -1)
if (d.size() == 0)
if (m >= arg) {
d.push_back(make_pair(make_pair(0, arg), num++));
res = 1;
}
if (res == -1)
cout << "NULL" << endl;
else
cout << num - 1 << endl;
continue;
}
if (com == "erase") {
bool res = false;
for (int i = 0; i < d.size(); i++)
if (d[i].second == arg) {
swap(d[i], d[d.size() - 1]);
d.pop_back();
res = true;
break;
}
if (!res) cout << "ILLEGAL_ERASE_ARGUMENT" << endl;
continue;
}
}
return 0;
}
| 2C++
| {
"input": [
"6 10\nalloc 5\nalloc 3\nerase 1\nalloc 6\ndefragment\nalloc 6\n",
"3 1\nerase -1\nerase 0\nerase -2147483648\n",
"26 25\ndefragment\nerase 1\nerase -1560200883\nalloc 44\ndefragment\nalloc 75\nalloc 22\ndefragment\nerase 4\ndefragment\nalloc 57\nalloc 53\nerase 4\nerase -1639632026\nerase -2121605039\nerase 3\nalloc 51\nalloc 65\ndefragment\nerase 2\nerase 4\nalloc 52\nerase 3\ndefragment\nerase -1842529282\nerase 3\n",
"12 40\nerase 1\nalloc 21\nalloc 5\nalloc 7\ndefragment\ndefragment\nerase 2\nalloc 83\nerase 4\ndefragment\nalloc 59\ndefragment\n",
"44 46\nalloc 28\nalloc 36\ndefragment\nerase -937404236\nalloc 71\ndefragment\nalloc 81\nalloc 51\nerase 3\ndefragment\nalloc 48\nerase 1\ndefragment\nalloc 36\ndefragment\ndefragment\nerase 1\ndefragment\ndefragment\nerase -1173350787\nalloc 94\nerase 5\ndefragment\nerase 9\nalloc 98\nerase 7\ndefragment\nerase 5\nerase 1\ndefragment\nerase 2\ndefragment\nerase 4\ndefragment\nerase 9\nalloc 8\ndefragment\nerase 9\ndefragment\ndefragment\ndefragment\nerase 1\nalloc 70\nerase 9\n",
"7 6\nalloc 1\nalloc 2\nalloc 3\nerase 1\ndefragment\nerase 3\nalloc 4\n",
"47 43\nerase 1\nalloc 95\nalloc 53\nerase 2\ndefragment\nalloc 100\nerase 4\nerase 2\nerase -849472053\ndefragment\nerase -638355221\nalloc 90\nerase 3\nerase 2\ndefragment\nalloc 17\nerase 5\ndefragment\nerase 6\ndefragment\nerase 3\ndefragment\ndefragment\nalloc 99\nalloc 69\nalloc 80\nerase 9\nerase 5\ndefragment\nerase 7\ndefragment\nalloc 93\ndefragment\ndefragment\nalloc 25\ndefragment\nalloc 14\nerase 8\nerase 4\ndefragment\ndefragment\nalloc 96\nerase 9\nalloc 63\nerase 8\ndefragment\nerase 10\n",
"8 50\nalloc 51\ndefragment\nalloc 100\ndefragment\nerase 1\nalloc 50\ndefragment\nalloc 50\n",
"6 1\ndefragment\nalloc 10\nalloc 1\nerase -1\nerase 1\nerase 1\n",
"26 25\nalloc 25\nerase 1\nalloc 24\nerase 2\nalloc 23\nerase 3\nalloc 24\nerase 4\nalloc 24\nerase 5\nalloc 21\nerase 6\nalloc 24\nerase 7\nalloc 25\nerase 8\nalloc 25\nerase 9\nalloc 24\nerase 10\nalloc 25\nerase 11\nalloc 25\nerase 12\nalloc 25\nerase 13\n",
"10 10\nalloc 10\nerase -1\nerase 1\nalloc 5\nerase -1\nalloc 5\nerase 0\nalloc 5\nerase 0\nalloc 5\n",
"37 74\nalloc 11\ndefragment\nerase 1\ndefragment\nerase 2\ndefragment\nalloc 90\nerase 3\nerase 2\nerase 3\nerase 1\nerase 1\nalloc 38\nalloc 19\nerase 1\nerase 3\ndefragment\nalloc 93\nerase 5\nerase 4\nalloc 66\nalloc 71\nerase 5\ndefragment\ndefragment\ndefragment\ndefragment\nerase 7\nalloc 47\nerase -95616683\nerase 2\nalloc 28\nalloc 32\nerase 11\nalloc 50\ndefragment\ndefragment\n",
"19 46\nalloc 21\nerase 2\nerase 1\ndefragment\nalloc 4\ndefragment\ndefragment\nalloc 40\nerase 1\ndefragment\ndefragment\nalloc 68\nerase -388966015\nalloc 85\nalloc 53\nerase 4\ndefragment\nalloc 49\nalloc 88\n",
"12 10\nalloc 6\nalloc 2\nerase 1\nalloc 4\nalloc 2\nerase 3\nalloc 2\nalloc 3\nalloc 1\nalloc 1\nalloc 1\nalloc 1\n",
"16 10\nalloc 10\ndefragment\ndefragment\ndefragment\nalloc 10\nerase 1\nerase 2\nalloc 6\ndefragment\ndefragment\nalloc 4\ndefragment\ndefragment\nerase 2\ndefragment\nalloc 6\n",
"14 100\nalloc 99\nalloc 1\nalloc 1\nerase 2\nalloc 1\nerase 4\nerase 1\nalloc 100\nalloc 1\nalloc 99\ndefragment\nerase 4\nalloc 100\nalloc 99\n",
"22 9\nalloc 9\nerase 1\nalloc 9\nerase 2\nalloc 9\nerase 3\nalloc 9\nerase 4\nalloc 9\nerase 5\nalloc 9\nerase 6\nalloc 9\nerase 7\nalloc 9\nerase 8\nalloc 9\nerase 9\nalloc 9\nerase 10\nalloc 9\nerase 11\n",
"42 98\ndefragment\ndefragment\ndefragment\ndefragment\ndefragment\nalloc 5\nalloc 66\ndefragment\nerase 3\nalloc 53\ndefragment\nerase 4\nerase 2\nalloc 70\nerase 3\ndefragment\ndefragment\nerase 2\nerase 3\nerase -1327931832\nalloc 93\nalloc 64\nerase 7\nerase 6\nerase 3\nalloc 61\nalloc 12\nalloc 65\nerase 2\nalloc 46\nerase 11\nerase 9\nerase 9\nerase 6\nalloc 2\nalloc 78\ndefragment\nerase 13\nerase 6\nerase 10\nalloc 53\nalloc 46\n",
"16 10\nalloc 10\ndefragment\ndefragment\ndefragment\nalloc 10\nerase 1\nerase 2\nalloc 6\ndefragment\ndefragment\nalloc 4\ndefragment\ndefragment\nerase 3\ndefragment\nalloc 6\n",
"38 18\nalloc 72\nerase 2\nalloc 50\ndefragment\nerase 3\ndefragment\nalloc 43\nalloc 41\ndefragment\ndefragment\nalloc 26\nalloc 46\nalloc 16\nalloc 15\ndefragment\ndefragment\nalloc 95\nerase 7\nerase 7\nerase 5\nerase 2\nerase 9\nerase 7\nalloc 43\ndefragment\nerase 7\ndefragment\nalloc 48\nalloc 77\nerase 10\nerase 11\nalloc 16\nalloc 84\nerase 1\ndefragment\nalloc 86\ndefragment\nerase 13\n",
"16 49\nerase -751005193\ndefragment\nalloc 37\nalloc 82\nerase 3\nerase 1\nalloc 80\nalloc 51\ndefragment\nalloc 74\nerase 1\nalloc 91\ndefragment\ndefragment\nalloc 98\ndefragment\n",
"22 9\nerase 1\nalloc 6\nalloc 65\nerase 1\nalloc 87\nerase -1638927047\nalloc 5\nerase 2\nalloc 70\ndefragment\nalloc 20\nalloc 48\nerase -69401977\nalloc 20\ndefragment\nerase 7\ndefragment\nerase 9\nerase 7\nerase 4\ndefragment\nalloc 66\n",
"7 100\nalloc 100\nerase 2147483647\nerase 1\nalloc 50\nalloc 50\nerase 3\nerase -2147483648\n",
"7 6\nalloc 2\nalloc 2\nalloc 3\nerase 1\ndefragment\nerase 3\nalloc 4\n",
"8 50\nalloc 51\ndefragment\nalloc 101\ndefragment\nerase 1\nalloc 50\ndefragment\nalloc 50\n",
"26 25\nalloc 25\nerase 1\nalloc 24\nerase 2\nalloc 23\nerase 3\nalloc 24\nerase 4\nalloc 24\nerase 1\nalloc 21\nerase 6\nalloc 24\nerase 7\nalloc 25\nerase 8\nalloc 25\nerase 9\nalloc 24\nerase 10\nalloc 25\nerase 11\nalloc 25\nerase 12\nalloc 25\nerase 13\n",
"37 74\nalloc 11\ndefragment\nerase 1\ndefragment\nerase 2\ndefragment\nalloc 90\nerase 3\nerase 2\nerase 3\nerase 1\nerase 1\nalloc 38\nalloc 19\nerase 1\nerase 3\ndefragment\nalloc 93\nerase 5\nerase 4\nalloc 66\nalloc 71\nerase 7\ndefragment\ndefragment\ndefragment\ndefragment\nerase 7\nalloc 47\nerase -95616683\nerase 2\nalloc 28\nalloc 32\nerase 11\nalloc 50\ndefragment\ndefragment\n",
"19 46\nalloc 21\nerase 2\nerase 1\ndefragment\nalloc 4\ndefragment\ndefragment\nalloc 40\nerase 1\ndefragment\ndefragment\nalloc 68\nerase -388966015\nalloc 85\nalloc 53\nerase 5\ndefragment\nalloc 49\nalloc 88\n",
"12 10\nalloc 6\nalloc 2\nerase 1\nalloc 7\nalloc 2\nerase 3\nalloc 2\nalloc 3\nalloc 1\nalloc 1\nalloc 1\nalloc 1\n",
"22 9\nalloc 9\nerase 1\nalloc 9\nerase 2\nalloc 9\nerase 2\nalloc 9\nerase 4\nalloc 9\nerase 5\nalloc 9\nerase 6\nalloc 9\nerase 7\nalloc 9\nerase 8\nalloc 9\nerase 9\nalloc 9\nerase 10\nalloc 9\nerase 11\n",
"38 18\nalloc 72\nerase 2\nalloc 50\ndefragment\nerase 3\ndefragment\nalloc 43\nalloc 41\ndefragment\ndefragment\nalloc 26\nalloc 46\nalloc 16\nalloc 15\ndefragment\ndefragment\nalloc 95\nerase 7\nerase 7\nerase 1\nerase 2\nerase 9\nerase 7\nalloc 43\ndefragment\nerase 7\ndefragment\nalloc 48\nalloc 77\nerase 10\nerase 11\nalloc 16\nalloc 84\nerase 1\ndefragment\nalloc 86\ndefragment\nerase 13\n",
"16 49\nerase -751005193\ndefragment\nalloc 37\nalloc 82\nerase 3\nerase 1\nalloc 80\nalloc 51\ndefragment\nalloc 74\nerase 1\nalloc 91\ndefragment\ndefragment\nalloc 121\ndefragment\n",
"22 0\nerase 1\nalloc 6\nalloc 65\nerase 1\nalloc 87\nerase -1638927047\nalloc 5\nerase 2\nalloc 70\ndefragment\nalloc 20\nalloc 48\nerase -69401977\nalloc 20\ndefragment\nerase 7\ndefragment\nerase 9\nerase 7\nerase 4\ndefragment\nalloc 66\n",
"7 100\nalloc 100\nerase 2147483647\nerase 1\nalloc 50\nalloc 50\nerase 3\nerase -2217570413\n",
"6 10\nalloc 5\nalloc 3\nerase 1\nalloc 10\ndefragment\nalloc 6\n",
"7 6\nalloc 2\nalloc 3\nalloc 3\nerase 1\ndefragment\nerase 3\nalloc 4\n",
"6 10\nalloc 5\nalloc 3\nerase 2\nalloc 10\ndefragment\nalloc 6\n",
"7 9\nalloc 2\nalloc 3\nalloc 3\nerase 1\ndefragment\nerase 3\nalloc 4\n",
"3 1\nerase -1\nerase 0\nerase -2666718247\n",
"12 40\nerase 1\nalloc 21\nalloc 5\nalloc 7\ndefragment\ndefragment\nerase 2\nalloc 83\nerase 3\ndefragment\nalloc 59\ndefragment\n",
"47 43\nerase 1\nalloc 95\nalloc 53\nerase 2\ndefragment\nalloc 100\nerase 4\nerase 2\nerase -849472053\ndefragment\nerase -638355221\nalloc 90\nerase 3\nerase 2\ndefragment\nalloc 17\nerase 5\ndefragment\nerase 6\ndefragment\nerase 6\ndefragment\ndefragment\nalloc 99\nalloc 69\nalloc 80\nerase 9\nerase 5\ndefragment\nerase 7\ndefragment\nalloc 93\ndefragment\ndefragment\nalloc 25\ndefragment\nalloc 14\nerase 8\nerase 4\ndefragment\ndefragment\nalloc 96\nerase 9\nalloc 63\nerase 8\ndefragment\nerase 10\n",
"19 46\nalloc 21\nerase 2\nerase 2\ndefragment\nalloc 4\ndefragment\ndefragment\nalloc 40\nerase 1\ndefragment\ndefragment\nalloc 68\nerase -388966015\nalloc 85\nalloc 53\nerase 4\ndefragment\nalloc 49\nalloc 88\n",
"12 10\nalloc 6\nalloc 2\nerase 0\nalloc 4\nalloc 2\nerase 3\nalloc 2\nalloc 3\nalloc 1\nalloc 1\nalloc 1\nalloc 1\n",
"14 100\nalloc 99\nalloc 1\nalloc 1\nerase 2\nalloc 1\nerase 4\nerase 2\nalloc 100\nalloc 1\nalloc 99\ndefragment\nerase 4\nalloc 100\nalloc 99\n",
"42 98\ndefragment\ndefragment\ndefragment\ndefragment\ndefragment\nalloc 5\nalloc 66\ndefragment\nerase 3\nalloc 53\ndefragment\nerase 4\nerase 2\nalloc 70\nerase 3\ndefragment\ndefragment\nerase 2\nerase 3\nerase -1327931832\nalloc 93\nalloc 64\nerase 7\nerase 6\nerase 3\nalloc 61\nalloc 12\nalloc 112\nerase 2\nalloc 46\nerase 11\nerase 9\nerase 9\nerase 6\nalloc 2\nalloc 78\ndefragment\nerase 13\nerase 6\nerase 10\nalloc 53\nalloc 46\n",
"16 10\nalloc 10\ndefragment\ndefragment\ndefragment\nalloc 10\nerase 1\nerase 2\nalloc 6\ndefragment\ndefragment\nalloc 3\ndefragment\ndefragment\nerase 3\ndefragment\nalloc 6\n",
"38 18\nalloc 72\nerase 2\nalloc 50\ndefragment\nerase 3\ndefragment\nalloc 43\nalloc 41\ndefragment\ndefragment\nalloc 26\nalloc 46\nalloc 16\nalloc 15\ndefragment\ndefragment\nalloc 95\nerase 9\nerase 7\nerase 5\nerase 2\nerase 9\nerase 7\nalloc 43\ndefragment\nerase 7\ndefragment\nalloc 48\nalloc 77\nerase 10\nerase 11\nalloc 16\nalloc 84\nerase 1\ndefragment\nalloc 86\ndefragment\nerase 13\n",
"6 10\nalloc 6\nalloc 3\nerase 1\nalloc 6\ndefragment\nalloc 6\n",
"6 4\nalloc 5\nalloc 3\nerase 2\nalloc 18\ndefragment\nalloc 6\n",
"16 78\nerase -751005193\ndefragment\nalloc 37\nalloc 82\nerase 3\nerase 1\nalloc 80\nalloc 51\ndefragment\nalloc 74\nerase 1\nalloc 91\ndefragment\ndefragment\nalloc 73\ndefragment\n",
"7 6\nalloc 4\nalloc 3\nalloc 3\nerase 1\ndefragment\nerase 4\nalloc 4\n",
"7 6\nalloc 4\nalloc 3\nalloc 2\nerase 1\ndefragment\nerase 4\nalloc 4\n",
"26 25\ndefragment\nerase 1\nerase -1560200883\nalloc 44\ndefragment\nalloc 75\nalloc 22\ndefragment\nerase 4\ndefragment\nalloc 57\nalloc 53\nerase 4\nerase -1639632026\nerase -2121605039\nerase 5\nalloc 51\nalloc 65\ndefragment\nerase 2\nerase 4\nalloc 52\nerase 3\ndefragment\nerase -1842529282\nerase 3\n",
"14 100\nalloc 99\nalloc 1\nalloc 1\nerase 2\nalloc 1\nerase 4\nerase 1\nalloc 100\nalloc 1\nalloc 29\ndefragment\nerase 4\nalloc 100\nalloc 99\n",
"22 7\nalloc 9\nerase 1\nalloc 9\nerase 2\nalloc 9\nerase 3\nalloc 9\nerase 4\nalloc 9\nerase 5\nalloc 9\nerase 6\nalloc 9\nerase 7\nalloc 9\nerase 8\nalloc 9\nerase 9\nalloc 9\nerase 10\nalloc 9\nerase 11\n",
"22 9\nerase 1\nalloc 6\nalloc 65\nerase 1\nalloc 87\nerase -1638927047\nalloc 5\nerase 2\nalloc 70\ndefragment\nalloc 20\nalloc 48\nerase -69401977\nalloc 20\ndefragment\nerase 7\ndefragment\nerase 9\nerase 7\nerase 8\ndefragment\nalloc 66\n",
"26 25\nalloc 25\nerase 1\nalloc 24\nerase 2\nalloc 23\nerase 3\nalloc 24\nerase 4\nalloc 4\nerase 1\nalloc 21\nerase 6\nalloc 24\nerase 7\nalloc 25\nerase 8\nalloc 25\nerase 9\nalloc 24\nerase 10\nalloc 25\nerase 11\nalloc 25\nerase 12\nalloc 25\nerase 13\n",
"16 49\nerase -751005193\ndefragment\nalloc 37\nalloc 10\nerase 3\nerase 1\nalloc 80\nalloc 51\ndefragment\nalloc 74\nerase 1\nalloc 91\ndefragment\ndefragment\nalloc 121\ndefragment\n",
"6 6\nalloc 5\nalloc 3\nerase 1\nalloc 10\ndefragment\nalloc 6\n",
"6 10\nalloc 5\nalloc 3\nerase 4\nalloc 10\ndefragment\nalloc 6\n",
"47 80\nerase 1\nalloc 95\nalloc 53\nerase 2\ndefragment\nalloc 100\nerase 4\nerase 2\nerase -849472053\ndefragment\nerase -638355221\nalloc 90\nerase 3\nerase 2\ndefragment\nalloc 17\nerase 5\ndefragment\nerase 6\ndefragment\nerase 6\ndefragment\ndefragment\nalloc 99\nalloc 69\nalloc 80\nerase 9\nerase 5\ndefragment\nerase 7\ndefragment\nalloc 93\ndefragment\ndefragment\nalloc 25\ndefragment\nalloc 14\nerase 8\nerase 4\ndefragment\ndefragment\nalloc 96\nerase 9\nalloc 63\nerase 8\ndefragment\nerase 10\n",
"16 78\nerase -751005193\ndefragment\nalloc 37\nalloc 82\nerase 3\nerase 1\nalloc 25\nalloc 51\ndefragment\nalloc 74\nerase 1\nalloc 91\ndefragment\ndefragment\nalloc 73\ndefragment\n",
"22 9\nerase 1\nalloc 6\nalloc 65\nerase 0\nalloc 87\nerase -1638927047\nalloc 5\nerase 2\nalloc 70\ndefragment\nalloc 20\nalloc 48\nerase -69401977\nalloc 20\ndefragment\nerase 7\ndefragment\nerase 9\nerase 7\nerase 8\ndefragment\nalloc 66\n",
"8 50\nalloc 96\ndefragment\nalloc 101\ndefragment\nerase 1\nalloc 50\ndefragment\nalloc 50\n",
"37 74\nalloc 11\ndefragment\nerase 1\ndefragment\nerase 2\ndefragment\nalloc 90\nerase 3\nerase 2\nerase 3\nerase 1\nerase 1\nalloc 38\nalloc 19\nerase 1\nerase 3\ndefragment\nalloc 93\nerase 5\nerase 4\nalloc 66\nalloc 71\nerase 7\ndefragment\ndefragment\ndefragment\ndefragment\nerase 13\nalloc 47\nerase -95616683\nerase 2\nalloc 28\nalloc 32\nerase 11\nalloc 50\ndefragment\ndefragment\n",
"22 0\nerase 1\nalloc 6\nalloc 65\nerase 1\nalloc 87\nerase -1638927047\nalloc 5\nerase 2\nalloc 70\ndefragment\nalloc 20\nalloc 48\nerase -69401977\nalloc 20\ndefragment\nerase 4\ndefragment\nerase 9\nerase 7\nerase 4\ndefragment\nalloc 66\n",
"22 0\nerase 1\nalloc 6\nalloc 75\nerase 1\nalloc 87\nerase -1638927047\nalloc 5\nerase 2\nalloc 70\ndefragment\nalloc 20\nalloc 48\nerase -69401977\nalloc 20\ndefragment\nerase 4\ndefragment\nerase 9\nerase 7\nerase 4\ndefragment\nalloc 66\n",
"6 10\nalloc 5\nalloc 3\nerase 2\nalloc 18\ndefragment\nalloc 6\n",
"16 49\nerase -178317666\ndefragment\nalloc 37\nalloc 82\nerase 3\nerase 1\nalloc 80\nalloc 51\ndefragment\nalloc 74\nerase 1\nalloc 91\ndefragment\ndefragment\nalloc 98\ndefragment\n",
"7 100\nalloc 100\nerase 2147483647\nerase 1\nalloc 50\nalloc 50\nerase 3\nerase -2940481691\n",
"8 50\nalloc 64\ndefragment\nalloc 101\ndefragment\nerase 1\nalloc 50\ndefragment\nalloc 50\n",
"26 25\nalloc 25\nerase 1\nalloc 24\nerase 2\nalloc 23\nerase 3\nalloc 24\nerase 4\nalloc 24\nerase 1\nalloc 18\nerase 6\nalloc 24\nerase 7\nalloc 25\nerase 8\nalloc 25\nerase 9\nalloc 24\nerase 10\nalloc 25\nerase 11\nalloc 25\nerase 12\nalloc 25\nerase 13\n",
"22 9\nalloc 9\nerase 1\nalloc 9\nerase 2\nalloc 9\nerase 2\nalloc 9\nerase 4\nalloc 9\nerase 5\nalloc 9\nerase 6\nalloc 9\nerase 7\nalloc 9\nerase 10\nalloc 9\nerase 9\nalloc 9\nerase 10\nalloc 9\nerase 11\n",
"38 18\nalloc 72\nerase 2\nalloc 50\ndefragment\nerase 3\ndefragment\nalloc 43\nalloc 41\ndefragment\ndefragment\nalloc 26\nalloc 46\nalloc 16\nalloc 15\ndefragment\ndefragment\nalloc 95\nerase 7\nerase 7\nerase 1\nerase 2\nerase 9\nerase 7\nalloc 43\ndefragment\nerase 4\ndefragment\nalloc 48\nalloc 77\nerase 10\nerase 11\nalloc 16\nalloc 84\nerase 1\ndefragment\nalloc 86\ndefragment\nerase 13\n",
"16 49\nerase -751005193\ndefragment\nalloc 37\nalloc 82\nerase 3\nerase 1\nalloc 80\nalloc 51\ndefragment\nalloc 74\nerase 1\nalloc 91\ndefragment\ndefragment\nalloc 73\ndefragment\n",
"6 10\nalloc 5\nalloc 3\nerase 1\nalloc 13\ndefragment\nalloc 6\n",
"7 6\nalloc 2\nalloc 3\nalloc 3\nerase 1\ndefragment\nerase 4\nalloc 4\n",
"37 74\nalloc 11\ndefragment\nerase 1\ndefragment\nerase 2\ndefragment\nalloc 90\nerase 3\nerase 2\nerase 3\nerase 2\nerase 1\nalloc 38\nalloc 19\nerase 1\nerase 3\ndefragment\nalloc 93\nerase 5\nerase 4\nalloc 66\nalloc 71\nerase 7\ndefragment\ndefragment\ndefragment\ndefragment\nerase 13\nalloc 47\nerase -95616683\nerase 2\nalloc 28\nalloc 32\nerase 11\nalloc 50\ndefragment\ndefragment\n",
"38 18\nalloc 72\nerase 2\nalloc 50\ndefragment\nerase 3\ndefragment\nalloc 43\nalloc 41\ndefragment\ndefragment\nalloc 26\nalloc 46\nalloc 16\nalloc 15\ndefragment\ndefragment\nalloc 95\nerase 9\nerase 7\nerase 5\nerase 2\nerase 9\nerase 7\nalloc 43\ndefragment\nerase 7\ndefragment\nalloc 48\nalloc 77\nerase 10\nerase 9\nalloc 16\nalloc 84\nerase 1\ndefragment\nalloc 86\ndefragment\nerase 13\n",
"6 10\nalloc 6\nalloc 3\nerase 2\nalloc 6\ndefragment\nalloc 6\n",
"37 74\nalloc 11\ndefragment\nerase 1\ndefragment\nerase 1\ndefragment\nalloc 90\nerase 3\nerase 2\nerase 3\nerase 2\nerase 1\nalloc 38\nalloc 19\nerase 1\nerase 3\ndefragment\nalloc 93\nerase 5\nerase 4\nalloc 66\nalloc 71\nerase 7\ndefragment\ndefragment\ndefragment\ndefragment\nerase 13\nalloc 47\nerase -95616683\nerase 2\nalloc 28\nalloc 32\nerase 11\nalloc 50\ndefragment\ndefragment\n",
"3 1\nerase 0\nerase 0\nerase -2147483648\n",
"8 50\nalloc 51\ndefragment\nalloc 100\ndefragment\nerase 1\nalloc 50\ndefragment\nalloc 76\n",
"37 74\nalloc 17\ndefragment\nerase 1\ndefragment\nerase 2\ndefragment\nalloc 90\nerase 3\nerase 2\nerase 3\nerase 1\nerase 1\nalloc 38\nalloc 19\nerase 1\nerase 3\ndefragment\nalloc 93\nerase 5\nerase 4\nalloc 66\nalloc 71\nerase 7\ndefragment\ndefragment\ndefragment\ndefragment\nerase 7\nalloc 47\nerase -95616683\nerase 2\nalloc 28\nalloc 32\nerase 11\nalloc 50\ndefragment\ndefragment\n",
"19 46\nalloc 21\nerase 2\nerase 1\ndefragment\nalloc 4\ndefragment\ndefragment\nalloc 40\nerase 1\ndefragment\ndefragment\nalloc 68\nerase -388966015\nalloc 85\nalloc 53\nerase 5\ndefragment\nalloc 83\nalloc 88\n",
"38 18\nalloc 72\nerase 2\nalloc 50\ndefragment\nerase 3\ndefragment\nalloc 43\nalloc 41\ndefragment\ndefragment\nalloc 26\nalloc 46\nalloc 16\nalloc 15\ndefragment\ndefragment\nalloc 95\nerase 7\nerase 7\nerase 1\nerase 2\nerase 16\nerase 7\nalloc 43\ndefragment\nerase 7\ndefragment\nalloc 48\nalloc 77\nerase 10\nerase 11\nalloc 16\nalloc 84\nerase 1\ndefragment\nalloc 86\ndefragment\nerase 13\n",
"22 0\nerase 1\nalloc 6\nalloc 65\nerase 1\nalloc 87\nerase -1638927047\nalloc 5\nerase 2\nalloc 70\ndefragment\nalloc 20\nalloc 48\nerase -69401977\nalloc 20\ndefragment\nerase 7\ndefragment\nerase 6\nerase 7\nerase 4\ndefragment\nalloc 66\n",
"7 101\nalloc 100\nerase 2147483647\nerase 1\nalloc 50\nalloc 50\nerase 3\nerase -2217570413\n",
"7 9\nalloc 2\nalloc 3\nalloc 3\nerase 1\ndefragment\nerase 3\nalloc 3\n",
"19 46\nalloc 21\nerase 2\nerase 2\ndefragment\nalloc 4\ndefragment\ndefragment\nalloc 68\nerase 1\ndefragment\ndefragment\nalloc 68\nerase -388966015\nalloc 85\nalloc 53\nerase 4\ndefragment\nalloc 49\nalloc 88\n",
"12 10\nalloc 6\nalloc 2\nerase 0\nalloc 4\nalloc 2\nerase 3\nalloc 2\nalloc 2\nalloc 1\nalloc 1\nalloc 1\nalloc 1\n",
"16 49\nerase -178317666\ndefragment\nalloc 37\nalloc 116\nerase 3\nerase 1\nalloc 80\nalloc 51\ndefragment\nalloc 74\nerase 1\nalloc 91\ndefragment\ndefragment\nalloc 98\ndefragment\n",
"26 25\nalloc 25\nerase 1\nalloc 24\nerase 2\nalloc 23\nerase 3\nalloc 24\nerase 4\nalloc 24\nerase 1\nalloc 18\nerase 6\nalloc 24\nerase 7\nalloc 25\nerase 6\nalloc 25\nerase 9\nalloc 24\nerase 10\nalloc 25\nerase 11\nalloc 25\nerase 12\nalloc 25\nerase 13\n",
"38 18\nalloc 72\nerase 2\nalloc 50\ndefragment\nerase 3\ndefragment\nalloc 43\nalloc 41\ndefragment\ndefragment\nalloc 26\nalloc 46\nalloc 16\nalloc 15\ndefragment\ndefragment\nalloc 95\nerase 7\nerase 7\nerase 1\nerase 2\nerase 9\nerase 7\nalloc 43\ndefragment\nerase 4\ndefragment\nalloc 48\nalloc 77\nerase 10\nerase 11\nalloc 16\nalloc 84\nerase 1\ndefragment\nalloc 86\ndefragment\nerase 3\n",
"6 4\nalloc 5\nalloc 3\nerase 2\nalloc 28\ndefragment\nalloc 6\n",
"6 10\nalloc 6\nalloc 2\nerase 2\nalloc 6\ndefragment\nalloc 6\n",
"7 6\nalloc 3\nalloc 3\nalloc 2\nerase 1\ndefragment\nerase 4\nalloc 4\n",
"26 25\ndefragment\nerase 1\nerase -1560200883\nalloc 78\ndefragment\nalloc 75\nalloc 22\ndefragment\nerase 4\ndefragment\nalloc 57\nalloc 53\nerase 4\nerase -1639632026\nerase -2121605039\nerase 5\nalloc 51\nalloc 65\ndefragment\nerase 2\nerase 4\nalloc 52\nerase 3\ndefragment\nerase -1842529282\nerase 3\n",
"26 25\nalloc 25\nerase 1\nalloc 24\nerase 2\nalloc 23\nerase 3\nalloc 24\nerase 4\nalloc 4\nerase 1\nalloc 21\nerase 6\nalloc 24\nerase 7\nalloc 25\nerase 8\nalloc 25\nerase 9\nalloc 24\nerase 10\nalloc 25\nerase 11\nalloc 25\nerase 0\nalloc 25\nerase 13\n"
],
"output": [
"1\n2\nNULL\n3\n",
"ILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\n",
"ILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\n1\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\n",
"ILLEGAL_ERASE_ARGUMENT\n1\n2\n3\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\n",
"1\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\n2\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\n3\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\n",
"1\n2\n3\n4\n",
"ILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\n1\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\n2\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\n",
"NULL\nNULL\nILLEGAL_ERASE_ARGUMENT\n1\nNULL\n",
"NULL\n1\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\n",
"1\n2\n3\n4\n5\n6\n7\n8\n9\n10\n11\n12\n13\n",
"1\nILLEGAL_ERASE_ARGUMENT\n2\nILLEGAL_ERASE_ARGUMENT\n3\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\n",
"1\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\n2\n3\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\n4\n5\nILLEGAL_ERASE_ARGUMENT\nNULL\n",
"1\nILLEGAL_ERASE_ARGUMENT\n2\n3\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\n",
"1\n2\n3\n4\n5\nNULL\n6\n7\n8\n9\n",
"1\nNULL\nILLEGAL_ERASE_ARGUMENT\n2\n3\n4\n",
"1\n2\nNULL\n3\nILLEGAL_ERASE_ARGUMENT\nNULL\n4\nNULL\nNULL\nNULL\n",
"1\n2\n3\n4\n5\n6\n7\n8\n9\n10\n11\n",
"1\n2\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\n3\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\n4\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\n",
"1\nNULL\nILLEGAL_ERASE_ARGUMENT\n2\n3\nNULL\n",
"NULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nNULL\nNULL\n1\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\n",
"ILLEGAL_ERASE_ARGUMENT\n1\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\n",
"ILLEGAL_ERASE_ARGUMENT\n1\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\n2\nNULL\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\n",
"1\nILLEGAL_ERASE_ARGUMENT\n2\n3\nILLEGAL_ERASE_ARGUMENT\n",
"1\n2\nNULL\nILLEGAL_ERASE_ARGUMENT\n3\n",
"NULL\nNULL\nILLEGAL_ERASE_ARGUMENT\n1\nNULL\n",
"1\n2\n3\n4\n5\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\n",
"1\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\n2\n3\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\n4\n5\nILLEGAL_ERASE_ARGUMENT\nNULL\n",
"1\nILLEGAL_ERASE_ARGUMENT\n2\n3\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\n",
"1\n2\nNULL\n3\n4\n5\n6\n7\n8\nNULL\n",
"1\n2\n3\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\n",
"NULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nNULL\nNULL\n1\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\n2\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\n",
"ILLEGAL_ERASE_ARGUMENT\n1\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\n",
"ILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\n",
"1\nILLEGAL_ERASE_ARGUMENT\n2\n3\nILLEGAL_ERASE_ARGUMENT\n",
"1\n2\nNULL\n3\n",
"1\n2\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\n",
"1\n2\nNULL\nNULL\n",
"1\n2\n3\n4\n",
"ILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\n",
"ILLEGAL_ERASE_ARGUMENT\n1\n2\n3\nNULL\nNULL\n",
"ILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\n1\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\n2\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\n",
"1\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\n2\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\n",
"1\n2\nILLEGAL_ERASE_ARGUMENT\nNULL\n3\n4\nNULL\nNULL\nNULL\nNULL\nNULL\n",
"1\n2\nNULL\n3\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\n",
"1\n2\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\n3\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\n4\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\n",
"1\nNULL\nILLEGAL_ERASE_ARGUMENT\n2\n3\nNULL\n",
"NULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nNULL\nNULL\n1\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\n",
"1\n2\n3\nNULL\n",
"NULL\n1\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\n",
"ILLEGAL_ERASE_ARGUMENT\n1\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\n2\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\n",
"1\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\n2\n",
"1\nNULL\n2\nILLEGAL_ERASE_ARGUMENT\n3\n",
"ILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\n1\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\n",
"1\n2\nNULL\n3\nILLEGAL_ERASE_ARGUMENT\nNULL\n4\n5\nNULL\nNULL\n",
"NULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\n",
"ILLEGAL_ERASE_ARGUMENT\n1\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\n2\nNULL\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\n",
"1\n2\n3\n4\n5\nILLEGAL_ERASE_ARGUMENT\n6\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\n",
"ILLEGAL_ERASE_ARGUMENT\n1\n2\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\n",
"1\nNULL\nNULL\n2\n",
"1\n2\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\n",
"ILLEGAL_ERASE_ARGUMENT\nNULL\n1\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\n2\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\n",
"ILLEGAL_ERASE_ARGUMENT\n1\nNULL\nILLEGAL_ERASE_ARGUMENT\n2\n3\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\n",
"ILLEGAL_ERASE_ARGUMENT\n1\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\n",
"NULL\nNULL\nILLEGAL_ERASE_ARGUMENT\n1\nNULL\n",
"1\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\n2\n3\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\n4\n5\nILLEGAL_ERASE_ARGUMENT\nNULL\n",
"ILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\n",
"ILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\n",
"1\n2\nNULL\nNULL\n",
"ILLEGAL_ERASE_ARGUMENT\n1\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\n",
"1\nILLEGAL_ERASE_ARGUMENT\n2\n3\nILLEGAL_ERASE_ARGUMENT\n",
"NULL\nNULL\nILLEGAL_ERASE_ARGUMENT\n1\nNULL\n",
"1\n2\n3\n4\n5\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\n",
"1\n2\n3\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\n",
"NULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nNULL\nNULL\n1\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\n2\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\n",
"ILLEGAL_ERASE_ARGUMENT\n1\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\n",
"1\n2\nNULL\n3\n",
"1\n2\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\n",
"1\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\n2\n3\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\n4\n5\nILLEGAL_ERASE_ARGUMENT\nNULL\n",
"NULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nNULL\nNULL\n1\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\n",
"1\n2\nNULL\nNULL\n",
"1\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\n2\n3\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\n4\n5\nILLEGAL_ERASE_ARGUMENT\nNULL\n",
"ILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\n",
"NULL\nNULL\nILLEGAL_ERASE_ARGUMENT\n1\nNULL\n",
"1\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\n2\n3\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\n4\n5\nILLEGAL_ERASE_ARGUMENT\nNULL\n",
"1\nILLEGAL_ERASE_ARGUMENT\n2\n3\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\n",
"NULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nNULL\nNULL\n1\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\n2\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\n",
"ILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\n",
"1\nILLEGAL_ERASE_ARGUMENT\n2\n3\nILLEGAL_ERASE_ARGUMENT\n",
"1\n2\n3\n4\n",
"1\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\n2\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\n",
"1\n2\nILLEGAL_ERASE_ARGUMENT\nNULL\n3\n4\nNULL\nNULL\nNULL\nNULL\nNULL\n",
"ILLEGAL_ERASE_ARGUMENT\n1\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\n",
"1\n2\n3\n4\n5\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\n",
"NULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nNULL\nNULL\n1\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\n2\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\n",
"NULL\n1\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\n",
"1\n2\nNULL\nNULL\n",
"1\n2\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\n",
"ILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\n1\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\n",
"1\n2\n3\n4\n5\nILLEGAL_ERASE_ARGUMENT\n6\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\n"
]
} | 2CODEFORCES
|
7_B. Memory Manager_167 | There is little time left before the release of the first national operating system BerlOS. Some of its components are not finished yet — the memory manager is among them. According to the developers' plan, in the first release the memory manager will be very simple and rectilinear. It will support three operations:
* alloc n — to allocate n bytes of the memory and return the allocated block's identifier x;
* erase x — to erase the block with the identifier x;
* defragment — to defragment the free memory, bringing all the blocks as close to the beginning of the memory as possible and preserving their respective order;
The memory model in this case is very simple. It is a sequence of m bytes, numbered for convenience from the first to the m-th.
The first operation alloc n takes as the only parameter the size of the memory block that is to be allocated. While processing this operation, a free block of n successive bytes is being allocated in the memory. If the amount of such blocks is more than one, the block closest to the beginning of the memory (i.e. to the first byte) is prefered. All these bytes are marked as not free, and the memory manager returns a 32-bit integer numerical token that is the identifier of this block. If it is impossible to allocate a free block of this size, the function returns NULL.
The second operation erase x takes as its parameter the identifier of some block. This operation frees the system memory, marking the bytes of this block as free for further use. In the case when this identifier does not point to the previously allocated block, which has not been erased yet, the function returns ILLEGAL_ERASE_ARGUMENT.
The last operation defragment does not have any arguments and simply brings the occupied memory sections closer to the beginning of the memory without changing their respective order.
In the current implementation you are to use successive integers, starting with 1, as identifiers. Each successful alloc operation procession should return following number. Unsuccessful alloc operations do not affect numeration.
You are to write the implementation of the memory manager. You should output the returned value for each alloc command. You should also output ILLEGAL_ERASE_ARGUMENT for all the failed erase commands.
Input
The first line of the input data contains two positive integers t and m (1 ≤ t ≤ 100;1 ≤ m ≤ 100), where t — the amount of operations given to the memory manager for processing, and m — the available memory size in bytes. Then there follow t lines where the operations themselves are given. The first operation is alloc n (1 ≤ n ≤ 100), where n is an integer. The second one is erase x, where x is an arbitrary 32-bit integer numerical token. The third operation is defragment.
Output
Output the sequence of lines. Each line should contain either the result of alloc operation procession , or ILLEGAL_ERASE_ARGUMENT as a result of failed erase operation procession. Output lines should go in the same order in which the operations are processed. Successful procession of alloc operation should return integers, starting with 1, as the identifiers of the allocated blocks.
Examples
Input
6 10
alloc 5
alloc 3
erase 1
alloc 6
defragment
alloc 6
Output
1
2
NULL
3 | t, m = map(int, input().split())
disk = [False] * m
req = 0
for i in range(t):
inp = input().split()
if inp[0][0] == "a":
c = 0
inp[1] = int(inp[1])
for j in range(m):
if disk[j]:
c = 0
else:
c += 1
if c == inp[1]:
req += 1
print(req)
for j in range(j - inp[1] + 1, j + 1):
disk[j] = req
break
if c < inp[1]:
print("NULL")
elif inp[0][0] == "e":
inp[1] = int(inp[1])
if inp[1] > req:
print("ILLEGAL_ERASE_ARGUMENT")
continue
if not inp[1] in disk:
print("ILLEGAL_ERASE_ARGUMENT")
continue
if inp[1] < 1:
print("ILLEGAL_ERASE_ARGUMENT")
continue
for j in range(m):
if disk[j] == inp[1]:
disk[j] = False
elif inp[0][0] == "d":
for j in range(m):
if disk[j]:
_j = j
while _j > 0 and not disk[_j - 1]:
disk[_j - 1] = disk[_j]
disk[_j] = False
_j -= 1
| 3Python3
| {
"input": [
"6 10\nalloc 5\nalloc 3\nerase 1\nalloc 6\ndefragment\nalloc 6\n",
"3 1\nerase -1\nerase 0\nerase -2147483648\n",
"26 25\ndefragment\nerase 1\nerase -1560200883\nalloc 44\ndefragment\nalloc 75\nalloc 22\ndefragment\nerase 4\ndefragment\nalloc 57\nalloc 53\nerase 4\nerase -1639632026\nerase -2121605039\nerase 3\nalloc 51\nalloc 65\ndefragment\nerase 2\nerase 4\nalloc 52\nerase 3\ndefragment\nerase -1842529282\nerase 3\n",
"12 40\nerase 1\nalloc 21\nalloc 5\nalloc 7\ndefragment\ndefragment\nerase 2\nalloc 83\nerase 4\ndefragment\nalloc 59\ndefragment\n",
"44 46\nalloc 28\nalloc 36\ndefragment\nerase -937404236\nalloc 71\ndefragment\nalloc 81\nalloc 51\nerase 3\ndefragment\nalloc 48\nerase 1\ndefragment\nalloc 36\ndefragment\ndefragment\nerase 1\ndefragment\ndefragment\nerase -1173350787\nalloc 94\nerase 5\ndefragment\nerase 9\nalloc 98\nerase 7\ndefragment\nerase 5\nerase 1\ndefragment\nerase 2\ndefragment\nerase 4\ndefragment\nerase 9\nalloc 8\ndefragment\nerase 9\ndefragment\ndefragment\ndefragment\nerase 1\nalloc 70\nerase 9\n",
"7 6\nalloc 1\nalloc 2\nalloc 3\nerase 1\ndefragment\nerase 3\nalloc 4\n",
"47 43\nerase 1\nalloc 95\nalloc 53\nerase 2\ndefragment\nalloc 100\nerase 4\nerase 2\nerase -849472053\ndefragment\nerase -638355221\nalloc 90\nerase 3\nerase 2\ndefragment\nalloc 17\nerase 5\ndefragment\nerase 6\ndefragment\nerase 3\ndefragment\ndefragment\nalloc 99\nalloc 69\nalloc 80\nerase 9\nerase 5\ndefragment\nerase 7\ndefragment\nalloc 93\ndefragment\ndefragment\nalloc 25\ndefragment\nalloc 14\nerase 8\nerase 4\ndefragment\ndefragment\nalloc 96\nerase 9\nalloc 63\nerase 8\ndefragment\nerase 10\n",
"8 50\nalloc 51\ndefragment\nalloc 100\ndefragment\nerase 1\nalloc 50\ndefragment\nalloc 50\n",
"6 1\ndefragment\nalloc 10\nalloc 1\nerase -1\nerase 1\nerase 1\n",
"26 25\nalloc 25\nerase 1\nalloc 24\nerase 2\nalloc 23\nerase 3\nalloc 24\nerase 4\nalloc 24\nerase 5\nalloc 21\nerase 6\nalloc 24\nerase 7\nalloc 25\nerase 8\nalloc 25\nerase 9\nalloc 24\nerase 10\nalloc 25\nerase 11\nalloc 25\nerase 12\nalloc 25\nerase 13\n",
"10 10\nalloc 10\nerase -1\nerase 1\nalloc 5\nerase -1\nalloc 5\nerase 0\nalloc 5\nerase 0\nalloc 5\n",
"37 74\nalloc 11\ndefragment\nerase 1\ndefragment\nerase 2\ndefragment\nalloc 90\nerase 3\nerase 2\nerase 3\nerase 1\nerase 1\nalloc 38\nalloc 19\nerase 1\nerase 3\ndefragment\nalloc 93\nerase 5\nerase 4\nalloc 66\nalloc 71\nerase 5\ndefragment\ndefragment\ndefragment\ndefragment\nerase 7\nalloc 47\nerase -95616683\nerase 2\nalloc 28\nalloc 32\nerase 11\nalloc 50\ndefragment\ndefragment\n",
"19 46\nalloc 21\nerase 2\nerase 1\ndefragment\nalloc 4\ndefragment\ndefragment\nalloc 40\nerase 1\ndefragment\ndefragment\nalloc 68\nerase -388966015\nalloc 85\nalloc 53\nerase 4\ndefragment\nalloc 49\nalloc 88\n",
"12 10\nalloc 6\nalloc 2\nerase 1\nalloc 4\nalloc 2\nerase 3\nalloc 2\nalloc 3\nalloc 1\nalloc 1\nalloc 1\nalloc 1\n",
"16 10\nalloc 10\ndefragment\ndefragment\ndefragment\nalloc 10\nerase 1\nerase 2\nalloc 6\ndefragment\ndefragment\nalloc 4\ndefragment\ndefragment\nerase 2\ndefragment\nalloc 6\n",
"14 100\nalloc 99\nalloc 1\nalloc 1\nerase 2\nalloc 1\nerase 4\nerase 1\nalloc 100\nalloc 1\nalloc 99\ndefragment\nerase 4\nalloc 100\nalloc 99\n",
"22 9\nalloc 9\nerase 1\nalloc 9\nerase 2\nalloc 9\nerase 3\nalloc 9\nerase 4\nalloc 9\nerase 5\nalloc 9\nerase 6\nalloc 9\nerase 7\nalloc 9\nerase 8\nalloc 9\nerase 9\nalloc 9\nerase 10\nalloc 9\nerase 11\n",
"42 98\ndefragment\ndefragment\ndefragment\ndefragment\ndefragment\nalloc 5\nalloc 66\ndefragment\nerase 3\nalloc 53\ndefragment\nerase 4\nerase 2\nalloc 70\nerase 3\ndefragment\ndefragment\nerase 2\nerase 3\nerase -1327931832\nalloc 93\nalloc 64\nerase 7\nerase 6\nerase 3\nalloc 61\nalloc 12\nalloc 65\nerase 2\nalloc 46\nerase 11\nerase 9\nerase 9\nerase 6\nalloc 2\nalloc 78\ndefragment\nerase 13\nerase 6\nerase 10\nalloc 53\nalloc 46\n",
"16 10\nalloc 10\ndefragment\ndefragment\ndefragment\nalloc 10\nerase 1\nerase 2\nalloc 6\ndefragment\ndefragment\nalloc 4\ndefragment\ndefragment\nerase 3\ndefragment\nalloc 6\n",
"38 18\nalloc 72\nerase 2\nalloc 50\ndefragment\nerase 3\ndefragment\nalloc 43\nalloc 41\ndefragment\ndefragment\nalloc 26\nalloc 46\nalloc 16\nalloc 15\ndefragment\ndefragment\nalloc 95\nerase 7\nerase 7\nerase 5\nerase 2\nerase 9\nerase 7\nalloc 43\ndefragment\nerase 7\ndefragment\nalloc 48\nalloc 77\nerase 10\nerase 11\nalloc 16\nalloc 84\nerase 1\ndefragment\nalloc 86\ndefragment\nerase 13\n",
"16 49\nerase -751005193\ndefragment\nalloc 37\nalloc 82\nerase 3\nerase 1\nalloc 80\nalloc 51\ndefragment\nalloc 74\nerase 1\nalloc 91\ndefragment\ndefragment\nalloc 98\ndefragment\n",
"22 9\nerase 1\nalloc 6\nalloc 65\nerase 1\nalloc 87\nerase -1638927047\nalloc 5\nerase 2\nalloc 70\ndefragment\nalloc 20\nalloc 48\nerase -69401977\nalloc 20\ndefragment\nerase 7\ndefragment\nerase 9\nerase 7\nerase 4\ndefragment\nalloc 66\n",
"7 100\nalloc 100\nerase 2147483647\nerase 1\nalloc 50\nalloc 50\nerase 3\nerase -2147483648\n",
"7 6\nalloc 2\nalloc 2\nalloc 3\nerase 1\ndefragment\nerase 3\nalloc 4\n",
"8 50\nalloc 51\ndefragment\nalloc 101\ndefragment\nerase 1\nalloc 50\ndefragment\nalloc 50\n",
"26 25\nalloc 25\nerase 1\nalloc 24\nerase 2\nalloc 23\nerase 3\nalloc 24\nerase 4\nalloc 24\nerase 1\nalloc 21\nerase 6\nalloc 24\nerase 7\nalloc 25\nerase 8\nalloc 25\nerase 9\nalloc 24\nerase 10\nalloc 25\nerase 11\nalloc 25\nerase 12\nalloc 25\nerase 13\n",
"37 74\nalloc 11\ndefragment\nerase 1\ndefragment\nerase 2\ndefragment\nalloc 90\nerase 3\nerase 2\nerase 3\nerase 1\nerase 1\nalloc 38\nalloc 19\nerase 1\nerase 3\ndefragment\nalloc 93\nerase 5\nerase 4\nalloc 66\nalloc 71\nerase 7\ndefragment\ndefragment\ndefragment\ndefragment\nerase 7\nalloc 47\nerase -95616683\nerase 2\nalloc 28\nalloc 32\nerase 11\nalloc 50\ndefragment\ndefragment\n",
"19 46\nalloc 21\nerase 2\nerase 1\ndefragment\nalloc 4\ndefragment\ndefragment\nalloc 40\nerase 1\ndefragment\ndefragment\nalloc 68\nerase -388966015\nalloc 85\nalloc 53\nerase 5\ndefragment\nalloc 49\nalloc 88\n",
"12 10\nalloc 6\nalloc 2\nerase 1\nalloc 7\nalloc 2\nerase 3\nalloc 2\nalloc 3\nalloc 1\nalloc 1\nalloc 1\nalloc 1\n",
"22 9\nalloc 9\nerase 1\nalloc 9\nerase 2\nalloc 9\nerase 2\nalloc 9\nerase 4\nalloc 9\nerase 5\nalloc 9\nerase 6\nalloc 9\nerase 7\nalloc 9\nerase 8\nalloc 9\nerase 9\nalloc 9\nerase 10\nalloc 9\nerase 11\n",
"38 18\nalloc 72\nerase 2\nalloc 50\ndefragment\nerase 3\ndefragment\nalloc 43\nalloc 41\ndefragment\ndefragment\nalloc 26\nalloc 46\nalloc 16\nalloc 15\ndefragment\ndefragment\nalloc 95\nerase 7\nerase 7\nerase 1\nerase 2\nerase 9\nerase 7\nalloc 43\ndefragment\nerase 7\ndefragment\nalloc 48\nalloc 77\nerase 10\nerase 11\nalloc 16\nalloc 84\nerase 1\ndefragment\nalloc 86\ndefragment\nerase 13\n",
"16 49\nerase -751005193\ndefragment\nalloc 37\nalloc 82\nerase 3\nerase 1\nalloc 80\nalloc 51\ndefragment\nalloc 74\nerase 1\nalloc 91\ndefragment\ndefragment\nalloc 121\ndefragment\n",
"22 0\nerase 1\nalloc 6\nalloc 65\nerase 1\nalloc 87\nerase -1638927047\nalloc 5\nerase 2\nalloc 70\ndefragment\nalloc 20\nalloc 48\nerase -69401977\nalloc 20\ndefragment\nerase 7\ndefragment\nerase 9\nerase 7\nerase 4\ndefragment\nalloc 66\n",
"7 100\nalloc 100\nerase 2147483647\nerase 1\nalloc 50\nalloc 50\nerase 3\nerase -2217570413\n",
"6 10\nalloc 5\nalloc 3\nerase 1\nalloc 10\ndefragment\nalloc 6\n",
"7 6\nalloc 2\nalloc 3\nalloc 3\nerase 1\ndefragment\nerase 3\nalloc 4\n",
"6 10\nalloc 5\nalloc 3\nerase 2\nalloc 10\ndefragment\nalloc 6\n",
"7 9\nalloc 2\nalloc 3\nalloc 3\nerase 1\ndefragment\nerase 3\nalloc 4\n",
"3 1\nerase -1\nerase 0\nerase -2666718247\n",
"12 40\nerase 1\nalloc 21\nalloc 5\nalloc 7\ndefragment\ndefragment\nerase 2\nalloc 83\nerase 3\ndefragment\nalloc 59\ndefragment\n",
"47 43\nerase 1\nalloc 95\nalloc 53\nerase 2\ndefragment\nalloc 100\nerase 4\nerase 2\nerase -849472053\ndefragment\nerase -638355221\nalloc 90\nerase 3\nerase 2\ndefragment\nalloc 17\nerase 5\ndefragment\nerase 6\ndefragment\nerase 6\ndefragment\ndefragment\nalloc 99\nalloc 69\nalloc 80\nerase 9\nerase 5\ndefragment\nerase 7\ndefragment\nalloc 93\ndefragment\ndefragment\nalloc 25\ndefragment\nalloc 14\nerase 8\nerase 4\ndefragment\ndefragment\nalloc 96\nerase 9\nalloc 63\nerase 8\ndefragment\nerase 10\n",
"19 46\nalloc 21\nerase 2\nerase 2\ndefragment\nalloc 4\ndefragment\ndefragment\nalloc 40\nerase 1\ndefragment\ndefragment\nalloc 68\nerase -388966015\nalloc 85\nalloc 53\nerase 4\ndefragment\nalloc 49\nalloc 88\n",
"12 10\nalloc 6\nalloc 2\nerase 0\nalloc 4\nalloc 2\nerase 3\nalloc 2\nalloc 3\nalloc 1\nalloc 1\nalloc 1\nalloc 1\n",
"14 100\nalloc 99\nalloc 1\nalloc 1\nerase 2\nalloc 1\nerase 4\nerase 2\nalloc 100\nalloc 1\nalloc 99\ndefragment\nerase 4\nalloc 100\nalloc 99\n",
"42 98\ndefragment\ndefragment\ndefragment\ndefragment\ndefragment\nalloc 5\nalloc 66\ndefragment\nerase 3\nalloc 53\ndefragment\nerase 4\nerase 2\nalloc 70\nerase 3\ndefragment\ndefragment\nerase 2\nerase 3\nerase -1327931832\nalloc 93\nalloc 64\nerase 7\nerase 6\nerase 3\nalloc 61\nalloc 12\nalloc 112\nerase 2\nalloc 46\nerase 11\nerase 9\nerase 9\nerase 6\nalloc 2\nalloc 78\ndefragment\nerase 13\nerase 6\nerase 10\nalloc 53\nalloc 46\n",
"16 10\nalloc 10\ndefragment\ndefragment\ndefragment\nalloc 10\nerase 1\nerase 2\nalloc 6\ndefragment\ndefragment\nalloc 3\ndefragment\ndefragment\nerase 3\ndefragment\nalloc 6\n",
"38 18\nalloc 72\nerase 2\nalloc 50\ndefragment\nerase 3\ndefragment\nalloc 43\nalloc 41\ndefragment\ndefragment\nalloc 26\nalloc 46\nalloc 16\nalloc 15\ndefragment\ndefragment\nalloc 95\nerase 9\nerase 7\nerase 5\nerase 2\nerase 9\nerase 7\nalloc 43\ndefragment\nerase 7\ndefragment\nalloc 48\nalloc 77\nerase 10\nerase 11\nalloc 16\nalloc 84\nerase 1\ndefragment\nalloc 86\ndefragment\nerase 13\n",
"6 10\nalloc 6\nalloc 3\nerase 1\nalloc 6\ndefragment\nalloc 6\n",
"6 4\nalloc 5\nalloc 3\nerase 2\nalloc 18\ndefragment\nalloc 6\n",
"16 78\nerase -751005193\ndefragment\nalloc 37\nalloc 82\nerase 3\nerase 1\nalloc 80\nalloc 51\ndefragment\nalloc 74\nerase 1\nalloc 91\ndefragment\ndefragment\nalloc 73\ndefragment\n",
"7 6\nalloc 4\nalloc 3\nalloc 3\nerase 1\ndefragment\nerase 4\nalloc 4\n",
"7 6\nalloc 4\nalloc 3\nalloc 2\nerase 1\ndefragment\nerase 4\nalloc 4\n",
"26 25\ndefragment\nerase 1\nerase -1560200883\nalloc 44\ndefragment\nalloc 75\nalloc 22\ndefragment\nerase 4\ndefragment\nalloc 57\nalloc 53\nerase 4\nerase -1639632026\nerase -2121605039\nerase 5\nalloc 51\nalloc 65\ndefragment\nerase 2\nerase 4\nalloc 52\nerase 3\ndefragment\nerase -1842529282\nerase 3\n",
"14 100\nalloc 99\nalloc 1\nalloc 1\nerase 2\nalloc 1\nerase 4\nerase 1\nalloc 100\nalloc 1\nalloc 29\ndefragment\nerase 4\nalloc 100\nalloc 99\n",
"22 7\nalloc 9\nerase 1\nalloc 9\nerase 2\nalloc 9\nerase 3\nalloc 9\nerase 4\nalloc 9\nerase 5\nalloc 9\nerase 6\nalloc 9\nerase 7\nalloc 9\nerase 8\nalloc 9\nerase 9\nalloc 9\nerase 10\nalloc 9\nerase 11\n",
"22 9\nerase 1\nalloc 6\nalloc 65\nerase 1\nalloc 87\nerase -1638927047\nalloc 5\nerase 2\nalloc 70\ndefragment\nalloc 20\nalloc 48\nerase -69401977\nalloc 20\ndefragment\nerase 7\ndefragment\nerase 9\nerase 7\nerase 8\ndefragment\nalloc 66\n",
"26 25\nalloc 25\nerase 1\nalloc 24\nerase 2\nalloc 23\nerase 3\nalloc 24\nerase 4\nalloc 4\nerase 1\nalloc 21\nerase 6\nalloc 24\nerase 7\nalloc 25\nerase 8\nalloc 25\nerase 9\nalloc 24\nerase 10\nalloc 25\nerase 11\nalloc 25\nerase 12\nalloc 25\nerase 13\n",
"16 49\nerase -751005193\ndefragment\nalloc 37\nalloc 10\nerase 3\nerase 1\nalloc 80\nalloc 51\ndefragment\nalloc 74\nerase 1\nalloc 91\ndefragment\ndefragment\nalloc 121\ndefragment\n",
"6 6\nalloc 5\nalloc 3\nerase 1\nalloc 10\ndefragment\nalloc 6\n",
"6 10\nalloc 5\nalloc 3\nerase 4\nalloc 10\ndefragment\nalloc 6\n",
"47 80\nerase 1\nalloc 95\nalloc 53\nerase 2\ndefragment\nalloc 100\nerase 4\nerase 2\nerase -849472053\ndefragment\nerase -638355221\nalloc 90\nerase 3\nerase 2\ndefragment\nalloc 17\nerase 5\ndefragment\nerase 6\ndefragment\nerase 6\ndefragment\ndefragment\nalloc 99\nalloc 69\nalloc 80\nerase 9\nerase 5\ndefragment\nerase 7\ndefragment\nalloc 93\ndefragment\ndefragment\nalloc 25\ndefragment\nalloc 14\nerase 8\nerase 4\ndefragment\ndefragment\nalloc 96\nerase 9\nalloc 63\nerase 8\ndefragment\nerase 10\n",
"16 78\nerase -751005193\ndefragment\nalloc 37\nalloc 82\nerase 3\nerase 1\nalloc 25\nalloc 51\ndefragment\nalloc 74\nerase 1\nalloc 91\ndefragment\ndefragment\nalloc 73\ndefragment\n",
"22 9\nerase 1\nalloc 6\nalloc 65\nerase 0\nalloc 87\nerase -1638927047\nalloc 5\nerase 2\nalloc 70\ndefragment\nalloc 20\nalloc 48\nerase -69401977\nalloc 20\ndefragment\nerase 7\ndefragment\nerase 9\nerase 7\nerase 8\ndefragment\nalloc 66\n",
"8 50\nalloc 96\ndefragment\nalloc 101\ndefragment\nerase 1\nalloc 50\ndefragment\nalloc 50\n",
"37 74\nalloc 11\ndefragment\nerase 1\ndefragment\nerase 2\ndefragment\nalloc 90\nerase 3\nerase 2\nerase 3\nerase 1\nerase 1\nalloc 38\nalloc 19\nerase 1\nerase 3\ndefragment\nalloc 93\nerase 5\nerase 4\nalloc 66\nalloc 71\nerase 7\ndefragment\ndefragment\ndefragment\ndefragment\nerase 13\nalloc 47\nerase -95616683\nerase 2\nalloc 28\nalloc 32\nerase 11\nalloc 50\ndefragment\ndefragment\n",
"22 0\nerase 1\nalloc 6\nalloc 65\nerase 1\nalloc 87\nerase -1638927047\nalloc 5\nerase 2\nalloc 70\ndefragment\nalloc 20\nalloc 48\nerase -69401977\nalloc 20\ndefragment\nerase 4\ndefragment\nerase 9\nerase 7\nerase 4\ndefragment\nalloc 66\n",
"22 0\nerase 1\nalloc 6\nalloc 75\nerase 1\nalloc 87\nerase -1638927047\nalloc 5\nerase 2\nalloc 70\ndefragment\nalloc 20\nalloc 48\nerase -69401977\nalloc 20\ndefragment\nerase 4\ndefragment\nerase 9\nerase 7\nerase 4\ndefragment\nalloc 66\n",
"6 10\nalloc 5\nalloc 3\nerase 2\nalloc 18\ndefragment\nalloc 6\n",
"16 49\nerase -178317666\ndefragment\nalloc 37\nalloc 82\nerase 3\nerase 1\nalloc 80\nalloc 51\ndefragment\nalloc 74\nerase 1\nalloc 91\ndefragment\ndefragment\nalloc 98\ndefragment\n",
"7 100\nalloc 100\nerase 2147483647\nerase 1\nalloc 50\nalloc 50\nerase 3\nerase -2940481691\n",
"8 50\nalloc 64\ndefragment\nalloc 101\ndefragment\nerase 1\nalloc 50\ndefragment\nalloc 50\n",
"26 25\nalloc 25\nerase 1\nalloc 24\nerase 2\nalloc 23\nerase 3\nalloc 24\nerase 4\nalloc 24\nerase 1\nalloc 18\nerase 6\nalloc 24\nerase 7\nalloc 25\nerase 8\nalloc 25\nerase 9\nalloc 24\nerase 10\nalloc 25\nerase 11\nalloc 25\nerase 12\nalloc 25\nerase 13\n",
"22 9\nalloc 9\nerase 1\nalloc 9\nerase 2\nalloc 9\nerase 2\nalloc 9\nerase 4\nalloc 9\nerase 5\nalloc 9\nerase 6\nalloc 9\nerase 7\nalloc 9\nerase 10\nalloc 9\nerase 9\nalloc 9\nerase 10\nalloc 9\nerase 11\n",
"38 18\nalloc 72\nerase 2\nalloc 50\ndefragment\nerase 3\ndefragment\nalloc 43\nalloc 41\ndefragment\ndefragment\nalloc 26\nalloc 46\nalloc 16\nalloc 15\ndefragment\ndefragment\nalloc 95\nerase 7\nerase 7\nerase 1\nerase 2\nerase 9\nerase 7\nalloc 43\ndefragment\nerase 4\ndefragment\nalloc 48\nalloc 77\nerase 10\nerase 11\nalloc 16\nalloc 84\nerase 1\ndefragment\nalloc 86\ndefragment\nerase 13\n",
"16 49\nerase -751005193\ndefragment\nalloc 37\nalloc 82\nerase 3\nerase 1\nalloc 80\nalloc 51\ndefragment\nalloc 74\nerase 1\nalloc 91\ndefragment\ndefragment\nalloc 73\ndefragment\n",
"6 10\nalloc 5\nalloc 3\nerase 1\nalloc 13\ndefragment\nalloc 6\n",
"7 6\nalloc 2\nalloc 3\nalloc 3\nerase 1\ndefragment\nerase 4\nalloc 4\n",
"37 74\nalloc 11\ndefragment\nerase 1\ndefragment\nerase 2\ndefragment\nalloc 90\nerase 3\nerase 2\nerase 3\nerase 2\nerase 1\nalloc 38\nalloc 19\nerase 1\nerase 3\ndefragment\nalloc 93\nerase 5\nerase 4\nalloc 66\nalloc 71\nerase 7\ndefragment\ndefragment\ndefragment\ndefragment\nerase 13\nalloc 47\nerase -95616683\nerase 2\nalloc 28\nalloc 32\nerase 11\nalloc 50\ndefragment\ndefragment\n",
"38 18\nalloc 72\nerase 2\nalloc 50\ndefragment\nerase 3\ndefragment\nalloc 43\nalloc 41\ndefragment\ndefragment\nalloc 26\nalloc 46\nalloc 16\nalloc 15\ndefragment\ndefragment\nalloc 95\nerase 9\nerase 7\nerase 5\nerase 2\nerase 9\nerase 7\nalloc 43\ndefragment\nerase 7\ndefragment\nalloc 48\nalloc 77\nerase 10\nerase 9\nalloc 16\nalloc 84\nerase 1\ndefragment\nalloc 86\ndefragment\nerase 13\n",
"6 10\nalloc 6\nalloc 3\nerase 2\nalloc 6\ndefragment\nalloc 6\n",
"37 74\nalloc 11\ndefragment\nerase 1\ndefragment\nerase 1\ndefragment\nalloc 90\nerase 3\nerase 2\nerase 3\nerase 2\nerase 1\nalloc 38\nalloc 19\nerase 1\nerase 3\ndefragment\nalloc 93\nerase 5\nerase 4\nalloc 66\nalloc 71\nerase 7\ndefragment\ndefragment\ndefragment\ndefragment\nerase 13\nalloc 47\nerase -95616683\nerase 2\nalloc 28\nalloc 32\nerase 11\nalloc 50\ndefragment\ndefragment\n",
"3 1\nerase 0\nerase 0\nerase -2147483648\n",
"8 50\nalloc 51\ndefragment\nalloc 100\ndefragment\nerase 1\nalloc 50\ndefragment\nalloc 76\n",
"37 74\nalloc 17\ndefragment\nerase 1\ndefragment\nerase 2\ndefragment\nalloc 90\nerase 3\nerase 2\nerase 3\nerase 1\nerase 1\nalloc 38\nalloc 19\nerase 1\nerase 3\ndefragment\nalloc 93\nerase 5\nerase 4\nalloc 66\nalloc 71\nerase 7\ndefragment\ndefragment\ndefragment\ndefragment\nerase 7\nalloc 47\nerase -95616683\nerase 2\nalloc 28\nalloc 32\nerase 11\nalloc 50\ndefragment\ndefragment\n",
"19 46\nalloc 21\nerase 2\nerase 1\ndefragment\nalloc 4\ndefragment\ndefragment\nalloc 40\nerase 1\ndefragment\ndefragment\nalloc 68\nerase -388966015\nalloc 85\nalloc 53\nerase 5\ndefragment\nalloc 83\nalloc 88\n",
"38 18\nalloc 72\nerase 2\nalloc 50\ndefragment\nerase 3\ndefragment\nalloc 43\nalloc 41\ndefragment\ndefragment\nalloc 26\nalloc 46\nalloc 16\nalloc 15\ndefragment\ndefragment\nalloc 95\nerase 7\nerase 7\nerase 1\nerase 2\nerase 16\nerase 7\nalloc 43\ndefragment\nerase 7\ndefragment\nalloc 48\nalloc 77\nerase 10\nerase 11\nalloc 16\nalloc 84\nerase 1\ndefragment\nalloc 86\ndefragment\nerase 13\n",
"22 0\nerase 1\nalloc 6\nalloc 65\nerase 1\nalloc 87\nerase -1638927047\nalloc 5\nerase 2\nalloc 70\ndefragment\nalloc 20\nalloc 48\nerase -69401977\nalloc 20\ndefragment\nerase 7\ndefragment\nerase 6\nerase 7\nerase 4\ndefragment\nalloc 66\n",
"7 101\nalloc 100\nerase 2147483647\nerase 1\nalloc 50\nalloc 50\nerase 3\nerase -2217570413\n",
"7 9\nalloc 2\nalloc 3\nalloc 3\nerase 1\ndefragment\nerase 3\nalloc 3\n",
"19 46\nalloc 21\nerase 2\nerase 2\ndefragment\nalloc 4\ndefragment\ndefragment\nalloc 68\nerase 1\ndefragment\ndefragment\nalloc 68\nerase -388966015\nalloc 85\nalloc 53\nerase 4\ndefragment\nalloc 49\nalloc 88\n",
"12 10\nalloc 6\nalloc 2\nerase 0\nalloc 4\nalloc 2\nerase 3\nalloc 2\nalloc 2\nalloc 1\nalloc 1\nalloc 1\nalloc 1\n",
"16 49\nerase -178317666\ndefragment\nalloc 37\nalloc 116\nerase 3\nerase 1\nalloc 80\nalloc 51\ndefragment\nalloc 74\nerase 1\nalloc 91\ndefragment\ndefragment\nalloc 98\ndefragment\n",
"26 25\nalloc 25\nerase 1\nalloc 24\nerase 2\nalloc 23\nerase 3\nalloc 24\nerase 4\nalloc 24\nerase 1\nalloc 18\nerase 6\nalloc 24\nerase 7\nalloc 25\nerase 6\nalloc 25\nerase 9\nalloc 24\nerase 10\nalloc 25\nerase 11\nalloc 25\nerase 12\nalloc 25\nerase 13\n",
"38 18\nalloc 72\nerase 2\nalloc 50\ndefragment\nerase 3\ndefragment\nalloc 43\nalloc 41\ndefragment\ndefragment\nalloc 26\nalloc 46\nalloc 16\nalloc 15\ndefragment\ndefragment\nalloc 95\nerase 7\nerase 7\nerase 1\nerase 2\nerase 9\nerase 7\nalloc 43\ndefragment\nerase 4\ndefragment\nalloc 48\nalloc 77\nerase 10\nerase 11\nalloc 16\nalloc 84\nerase 1\ndefragment\nalloc 86\ndefragment\nerase 3\n",
"6 4\nalloc 5\nalloc 3\nerase 2\nalloc 28\ndefragment\nalloc 6\n",
"6 10\nalloc 6\nalloc 2\nerase 2\nalloc 6\ndefragment\nalloc 6\n",
"7 6\nalloc 3\nalloc 3\nalloc 2\nerase 1\ndefragment\nerase 4\nalloc 4\n",
"26 25\ndefragment\nerase 1\nerase -1560200883\nalloc 78\ndefragment\nalloc 75\nalloc 22\ndefragment\nerase 4\ndefragment\nalloc 57\nalloc 53\nerase 4\nerase -1639632026\nerase -2121605039\nerase 5\nalloc 51\nalloc 65\ndefragment\nerase 2\nerase 4\nalloc 52\nerase 3\ndefragment\nerase -1842529282\nerase 3\n",
"26 25\nalloc 25\nerase 1\nalloc 24\nerase 2\nalloc 23\nerase 3\nalloc 24\nerase 4\nalloc 4\nerase 1\nalloc 21\nerase 6\nalloc 24\nerase 7\nalloc 25\nerase 8\nalloc 25\nerase 9\nalloc 24\nerase 10\nalloc 25\nerase 11\nalloc 25\nerase 0\nalloc 25\nerase 13\n"
],
"output": [
"1\n2\nNULL\n3\n",
"ILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\n",
"ILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\n1\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\n",
"ILLEGAL_ERASE_ARGUMENT\n1\n2\n3\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\n",
"1\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\n2\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\n3\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\n",
"1\n2\n3\n4\n",
"ILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\n1\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\n2\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\n",
"NULL\nNULL\nILLEGAL_ERASE_ARGUMENT\n1\nNULL\n",
"NULL\n1\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\n",
"1\n2\n3\n4\n5\n6\n7\n8\n9\n10\n11\n12\n13\n",
"1\nILLEGAL_ERASE_ARGUMENT\n2\nILLEGAL_ERASE_ARGUMENT\n3\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\n",
"1\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\n2\n3\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\n4\n5\nILLEGAL_ERASE_ARGUMENT\nNULL\n",
"1\nILLEGAL_ERASE_ARGUMENT\n2\n3\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\n",
"1\n2\n3\n4\n5\nNULL\n6\n7\n8\n9\n",
"1\nNULL\nILLEGAL_ERASE_ARGUMENT\n2\n3\n4\n",
"1\n2\nNULL\n3\nILLEGAL_ERASE_ARGUMENT\nNULL\n4\nNULL\nNULL\nNULL\n",
"1\n2\n3\n4\n5\n6\n7\n8\n9\n10\n11\n",
"1\n2\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\n3\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\n4\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\n",
"1\nNULL\nILLEGAL_ERASE_ARGUMENT\n2\n3\nNULL\n",
"NULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nNULL\nNULL\n1\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\n",
"ILLEGAL_ERASE_ARGUMENT\n1\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\n",
"ILLEGAL_ERASE_ARGUMENT\n1\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\n2\nNULL\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\n",
"1\nILLEGAL_ERASE_ARGUMENT\n2\n3\nILLEGAL_ERASE_ARGUMENT\n",
"1\n2\nNULL\nILLEGAL_ERASE_ARGUMENT\n3\n",
"NULL\nNULL\nILLEGAL_ERASE_ARGUMENT\n1\nNULL\n",
"1\n2\n3\n4\n5\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\n",
"1\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\n2\n3\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\n4\n5\nILLEGAL_ERASE_ARGUMENT\nNULL\n",
"1\nILLEGAL_ERASE_ARGUMENT\n2\n3\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\n",
"1\n2\nNULL\n3\n4\n5\n6\n7\n8\nNULL\n",
"1\n2\n3\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\n",
"NULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nNULL\nNULL\n1\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\n2\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\n",
"ILLEGAL_ERASE_ARGUMENT\n1\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\n",
"ILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\n",
"1\nILLEGAL_ERASE_ARGUMENT\n2\n3\nILLEGAL_ERASE_ARGUMENT\n",
"1\n2\nNULL\n3\n",
"1\n2\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\n",
"1\n2\nNULL\nNULL\n",
"1\n2\n3\n4\n",
"ILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\n",
"ILLEGAL_ERASE_ARGUMENT\n1\n2\n3\nNULL\nNULL\n",
"ILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\n1\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\n2\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\n",
"1\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\n2\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\n",
"1\n2\nILLEGAL_ERASE_ARGUMENT\nNULL\n3\n4\nNULL\nNULL\nNULL\nNULL\nNULL\n",
"1\n2\nNULL\n3\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\n",
"1\n2\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\n3\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\n4\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\n",
"1\nNULL\nILLEGAL_ERASE_ARGUMENT\n2\n3\nNULL\n",
"NULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nNULL\nNULL\n1\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\n",
"1\n2\n3\nNULL\n",
"NULL\n1\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\n",
"ILLEGAL_ERASE_ARGUMENT\n1\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\n2\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\n",
"1\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\n2\n",
"1\nNULL\n2\nILLEGAL_ERASE_ARGUMENT\n3\n",
"ILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\n1\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\n",
"1\n2\nNULL\n3\nILLEGAL_ERASE_ARGUMENT\nNULL\n4\n5\nNULL\nNULL\n",
"NULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\n",
"ILLEGAL_ERASE_ARGUMENT\n1\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\n2\nNULL\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\n",
"1\n2\n3\n4\n5\nILLEGAL_ERASE_ARGUMENT\n6\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\n",
"ILLEGAL_ERASE_ARGUMENT\n1\n2\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\n",
"1\nNULL\nNULL\n2\n",
"1\n2\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\n",
"ILLEGAL_ERASE_ARGUMENT\nNULL\n1\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\n2\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\n",
"ILLEGAL_ERASE_ARGUMENT\n1\nNULL\nILLEGAL_ERASE_ARGUMENT\n2\n3\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\n",
"ILLEGAL_ERASE_ARGUMENT\n1\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\n",
"NULL\nNULL\nILLEGAL_ERASE_ARGUMENT\n1\nNULL\n",
"1\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\n2\n3\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\n4\n5\nILLEGAL_ERASE_ARGUMENT\nNULL\n",
"ILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\n",
"ILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\n",
"1\n2\nNULL\nNULL\n",
"ILLEGAL_ERASE_ARGUMENT\n1\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\n",
"1\nILLEGAL_ERASE_ARGUMENT\n2\n3\nILLEGAL_ERASE_ARGUMENT\n",
"NULL\nNULL\nILLEGAL_ERASE_ARGUMENT\n1\nNULL\n",
"1\n2\n3\n4\n5\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\n",
"1\n2\n3\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\n",
"NULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nNULL\nNULL\n1\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\n2\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\n",
"ILLEGAL_ERASE_ARGUMENT\n1\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\n",
"1\n2\nNULL\n3\n",
"1\n2\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\n",
"1\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\n2\n3\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\n4\n5\nILLEGAL_ERASE_ARGUMENT\nNULL\n",
"NULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nNULL\nNULL\n1\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\n",
"1\n2\nNULL\nNULL\n",
"1\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\n2\n3\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\n4\n5\nILLEGAL_ERASE_ARGUMENT\nNULL\n",
"ILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\n",
"NULL\nNULL\nILLEGAL_ERASE_ARGUMENT\n1\nNULL\n",
"1\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\n2\n3\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\n4\n5\nILLEGAL_ERASE_ARGUMENT\nNULL\n",
"1\nILLEGAL_ERASE_ARGUMENT\n2\n3\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\n",
"NULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nNULL\nNULL\n1\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\n2\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\n",
"ILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\n",
"1\nILLEGAL_ERASE_ARGUMENT\n2\n3\nILLEGAL_ERASE_ARGUMENT\n",
"1\n2\n3\n4\n",
"1\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\n2\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\n",
"1\n2\nILLEGAL_ERASE_ARGUMENT\nNULL\n3\n4\nNULL\nNULL\nNULL\nNULL\nNULL\n",
"ILLEGAL_ERASE_ARGUMENT\n1\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\n",
"1\n2\n3\n4\n5\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\n",
"NULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nNULL\nNULL\n1\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\n2\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\n",
"NULL\n1\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\n",
"1\n2\nNULL\nNULL\n",
"1\n2\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\n",
"ILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\n1\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\n",
"1\n2\n3\n4\n5\nILLEGAL_ERASE_ARGUMENT\n6\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\n"
]
} | 2CODEFORCES
|
7_B. Memory Manager_168 | There is little time left before the release of the first national operating system BerlOS. Some of its components are not finished yet — the memory manager is among them. According to the developers' plan, in the first release the memory manager will be very simple and rectilinear. It will support three operations:
* alloc n — to allocate n bytes of the memory and return the allocated block's identifier x;
* erase x — to erase the block with the identifier x;
* defragment — to defragment the free memory, bringing all the blocks as close to the beginning of the memory as possible and preserving their respective order;
The memory model in this case is very simple. It is a sequence of m bytes, numbered for convenience from the first to the m-th.
The first operation alloc n takes as the only parameter the size of the memory block that is to be allocated. While processing this operation, a free block of n successive bytes is being allocated in the memory. If the amount of such blocks is more than one, the block closest to the beginning of the memory (i.e. to the first byte) is prefered. All these bytes are marked as not free, and the memory manager returns a 32-bit integer numerical token that is the identifier of this block. If it is impossible to allocate a free block of this size, the function returns NULL.
The second operation erase x takes as its parameter the identifier of some block. This operation frees the system memory, marking the bytes of this block as free for further use. In the case when this identifier does not point to the previously allocated block, which has not been erased yet, the function returns ILLEGAL_ERASE_ARGUMENT.
The last operation defragment does not have any arguments and simply brings the occupied memory sections closer to the beginning of the memory without changing their respective order.
In the current implementation you are to use successive integers, starting with 1, as identifiers. Each successful alloc operation procession should return following number. Unsuccessful alloc operations do not affect numeration.
You are to write the implementation of the memory manager. You should output the returned value for each alloc command. You should also output ILLEGAL_ERASE_ARGUMENT for all the failed erase commands.
Input
The first line of the input data contains two positive integers t and m (1 ≤ t ≤ 100;1 ≤ m ≤ 100), where t — the amount of operations given to the memory manager for processing, and m — the available memory size in bytes. Then there follow t lines where the operations themselves are given. The first operation is alloc n (1 ≤ n ≤ 100), where n is an integer. The second one is erase x, where x is an arbitrary 32-bit integer numerical token. The third operation is defragment.
Output
Output the sequence of lines. Each line should contain either the result of alloc operation procession , or ILLEGAL_ERASE_ARGUMENT as a result of failed erase operation procession. Output lines should go in the same order in which the operations are processed. Successful procession of alloc operation should return integers, starting with 1, as the identifiers of the allocated blocks.
Examples
Input
6 10
alloc 5
alloc 3
erase 1
alloc 6
defragment
alloc 6
Output
1
2
NULL
3 |
/**
* Date: 21 Apr, 2018
* Link:
*
* @author Prasad-Chaudhari
* @email [email protected]
*/
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
public class newProgram {
public static void main(String[] args) throws IOException {
// TODO code application logic here
FastIO2 in = new FastIO2();
int t = in.ni();
int m = in.ni();
int a[] = new int[m];
int segname = 1;
outer:
while (t-- > 0) {
String s = in.next();
if (s.equals("alloc")) {
int n = in.ni();
boolean q = true;
for (int i = 0; i < m; i++) {
if (a[i] == 0) {
boolean p = true;
for (int j = i; j < i + n; j++) {
if (j == m || a[j] != 0) {
p = false;
break;
}
}
if (p) {
for (int j = i; j < n + i; j++) {
a[j] = segname;
}
System.out.println(segname++);
q = false;
break;
}
}
}
// System.out.println("Allocate");
// for (int i = 0; i < m; i++) {
// System.out.print(a[i] + " ");
// }
// System.out.println("");
if (q) {
System.out.println("NULL");
}
} else if (s.equals("erase")) {
int n = in.ni();
boolean q = true;
for (int i = 0; i < m; i++) {
if (a[i] == n) {
int j = i;
while (j < m && a[j] == n) {
a[j] = 0;
j++;
}
q = false;
}
}
// System.out.println("Erase");
// for (int i = 0; i < m; i++) {
// System.out.print(a[i] + " ");
// }
// System.out.println("");
if (q||n<=0) {
System.out.println("ILLEGAL_ERASE_ARGUMENT");
}
} else {
int put = 0;
for (int i = 0; i < m; i++) {
if (a[i] != 0) {
// System.out.println(a[i]);
a[put++] = a[i];
if(put-1!=i)
a[i] = 0;
// System.out.println(i+"->"+(put-1));
}
}
// System.out.println("Defragment");
// for (int i = 0; i < m; i++) {
// System.out.print(a[i] + " ");
// }
// System.out.println("");
}
}
}
static class FastIO2 {
private final BufferedReader br;
private String s[];
private int index;
public FastIO2() throws IOException {
br = new BufferedReader(new InputStreamReader(System.in));
// br = new BufferedReader(new FileReader(new File("input")));
s = br.readLine().split(" ");
index = 0;
}
public int ni() throws IOException {
return Integer.parseInt(nextToken());
}
public double nd() throws IOException {
return Double.parseDouble(nextToken());
}
public long nl() throws IOException {
return Long.parseLong(nextToken());
}
public String next() throws IOException {
return nextToken();
}
public String nli() throws IOException {
try {
return br.readLine();
} catch (IOException ex) {
}
return null;
}
public int[] gia(int n) throws IOException {
int a[] = new int[n];
for (int i = 0; i < n; i++) {
a[i] = ni();
}
return a;
}
public int[] gia(int n, int start, int end) throws IOException {
validate(n, start, end);
int a[] = new int[n];
for (int i = start; i < end; i++) {
a[i] = ni();
}
return a;
}
public double[] gda(int n) throws IOException {
double a[] = new double[n];
for (int i = 0; i < n; i++) {
a[i] = nd();
}
return a;
}
public double[] gda(int n, int start, int end) throws IOException {
validate(n, start, end);
double a[] = new double[n];
for (int i = start; i < end; i++) {
a[i] = nd();
}
return a;
}
public long[] gla(int n) throws IOException {
long a[] = new long[n];
for (int i = 0; i < n; i++) {
a[i] = ni();
}
return a;
}
public long[] gla(int n, int start, int end) throws IOException {
validate(n, start, end);
long a[] = new long[n];
for (int i = start; i < end; i++) {
a[i] = ni();
}
return a;
}
private String nextToken() throws IndexOutOfBoundsException, IOException {
if (index == s.length) {
s = br.readLine().split(" ");
index = 0;
}
return s[index++];
}
private void validate(int n, int start, int end) {
if (start < 0 || end >= n) {
throw new IllegalArgumentException();
}
}
}
}
| 4JAVA
| {
"input": [
"6 10\nalloc 5\nalloc 3\nerase 1\nalloc 6\ndefragment\nalloc 6\n",
"3 1\nerase -1\nerase 0\nerase -2147483648\n",
"26 25\ndefragment\nerase 1\nerase -1560200883\nalloc 44\ndefragment\nalloc 75\nalloc 22\ndefragment\nerase 4\ndefragment\nalloc 57\nalloc 53\nerase 4\nerase -1639632026\nerase -2121605039\nerase 3\nalloc 51\nalloc 65\ndefragment\nerase 2\nerase 4\nalloc 52\nerase 3\ndefragment\nerase -1842529282\nerase 3\n",
"12 40\nerase 1\nalloc 21\nalloc 5\nalloc 7\ndefragment\ndefragment\nerase 2\nalloc 83\nerase 4\ndefragment\nalloc 59\ndefragment\n",
"44 46\nalloc 28\nalloc 36\ndefragment\nerase -937404236\nalloc 71\ndefragment\nalloc 81\nalloc 51\nerase 3\ndefragment\nalloc 48\nerase 1\ndefragment\nalloc 36\ndefragment\ndefragment\nerase 1\ndefragment\ndefragment\nerase -1173350787\nalloc 94\nerase 5\ndefragment\nerase 9\nalloc 98\nerase 7\ndefragment\nerase 5\nerase 1\ndefragment\nerase 2\ndefragment\nerase 4\ndefragment\nerase 9\nalloc 8\ndefragment\nerase 9\ndefragment\ndefragment\ndefragment\nerase 1\nalloc 70\nerase 9\n",
"7 6\nalloc 1\nalloc 2\nalloc 3\nerase 1\ndefragment\nerase 3\nalloc 4\n",
"47 43\nerase 1\nalloc 95\nalloc 53\nerase 2\ndefragment\nalloc 100\nerase 4\nerase 2\nerase -849472053\ndefragment\nerase -638355221\nalloc 90\nerase 3\nerase 2\ndefragment\nalloc 17\nerase 5\ndefragment\nerase 6\ndefragment\nerase 3\ndefragment\ndefragment\nalloc 99\nalloc 69\nalloc 80\nerase 9\nerase 5\ndefragment\nerase 7\ndefragment\nalloc 93\ndefragment\ndefragment\nalloc 25\ndefragment\nalloc 14\nerase 8\nerase 4\ndefragment\ndefragment\nalloc 96\nerase 9\nalloc 63\nerase 8\ndefragment\nerase 10\n",
"8 50\nalloc 51\ndefragment\nalloc 100\ndefragment\nerase 1\nalloc 50\ndefragment\nalloc 50\n",
"6 1\ndefragment\nalloc 10\nalloc 1\nerase -1\nerase 1\nerase 1\n",
"26 25\nalloc 25\nerase 1\nalloc 24\nerase 2\nalloc 23\nerase 3\nalloc 24\nerase 4\nalloc 24\nerase 5\nalloc 21\nerase 6\nalloc 24\nerase 7\nalloc 25\nerase 8\nalloc 25\nerase 9\nalloc 24\nerase 10\nalloc 25\nerase 11\nalloc 25\nerase 12\nalloc 25\nerase 13\n",
"10 10\nalloc 10\nerase -1\nerase 1\nalloc 5\nerase -1\nalloc 5\nerase 0\nalloc 5\nerase 0\nalloc 5\n",
"37 74\nalloc 11\ndefragment\nerase 1\ndefragment\nerase 2\ndefragment\nalloc 90\nerase 3\nerase 2\nerase 3\nerase 1\nerase 1\nalloc 38\nalloc 19\nerase 1\nerase 3\ndefragment\nalloc 93\nerase 5\nerase 4\nalloc 66\nalloc 71\nerase 5\ndefragment\ndefragment\ndefragment\ndefragment\nerase 7\nalloc 47\nerase -95616683\nerase 2\nalloc 28\nalloc 32\nerase 11\nalloc 50\ndefragment\ndefragment\n",
"19 46\nalloc 21\nerase 2\nerase 1\ndefragment\nalloc 4\ndefragment\ndefragment\nalloc 40\nerase 1\ndefragment\ndefragment\nalloc 68\nerase -388966015\nalloc 85\nalloc 53\nerase 4\ndefragment\nalloc 49\nalloc 88\n",
"12 10\nalloc 6\nalloc 2\nerase 1\nalloc 4\nalloc 2\nerase 3\nalloc 2\nalloc 3\nalloc 1\nalloc 1\nalloc 1\nalloc 1\n",
"16 10\nalloc 10\ndefragment\ndefragment\ndefragment\nalloc 10\nerase 1\nerase 2\nalloc 6\ndefragment\ndefragment\nalloc 4\ndefragment\ndefragment\nerase 2\ndefragment\nalloc 6\n",
"14 100\nalloc 99\nalloc 1\nalloc 1\nerase 2\nalloc 1\nerase 4\nerase 1\nalloc 100\nalloc 1\nalloc 99\ndefragment\nerase 4\nalloc 100\nalloc 99\n",
"22 9\nalloc 9\nerase 1\nalloc 9\nerase 2\nalloc 9\nerase 3\nalloc 9\nerase 4\nalloc 9\nerase 5\nalloc 9\nerase 6\nalloc 9\nerase 7\nalloc 9\nerase 8\nalloc 9\nerase 9\nalloc 9\nerase 10\nalloc 9\nerase 11\n",
"42 98\ndefragment\ndefragment\ndefragment\ndefragment\ndefragment\nalloc 5\nalloc 66\ndefragment\nerase 3\nalloc 53\ndefragment\nerase 4\nerase 2\nalloc 70\nerase 3\ndefragment\ndefragment\nerase 2\nerase 3\nerase -1327931832\nalloc 93\nalloc 64\nerase 7\nerase 6\nerase 3\nalloc 61\nalloc 12\nalloc 65\nerase 2\nalloc 46\nerase 11\nerase 9\nerase 9\nerase 6\nalloc 2\nalloc 78\ndefragment\nerase 13\nerase 6\nerase 10\nalloc 53\nalloc 46\n",
"16 10\nalloc 10\ndefragment\ndefragment\ndefragment\nalloc 10\nerase 1\nerase 2\nalloc 6\ndefragment\ndefragment\nalloc 4\ndefragment\ndefragment\nerase 3\ndefragment\nalloc 6\n",
"38 18\nalloc 72\nerase 2\nalloc 50\ndefragment\nerase 3\ndefragment\nalloc 43\nalloc 41\ndefragment\ndefragment\nalloc 26\nalloc 46\nalloc 16\nalloc 15\ndefragment\ndefragment\nalloc 95\nerase 7\nerase 7\nerase 5\nerase 2\nerase 9\nerase 7\nalloc 43\ndefragment\nerase 7\ndefragment\nalloc 48\nalloc 77\nerase 10\nerase 11\nalloc 16\nalloc 84\nerase 1\ndefragment\nalloc 86\ndefragment\nerase 13\n",
"16 49\nerase -751005193\ndefragment\nalloc 37\nalloc 82\nerase 3\nerase 1\nalloc 80\nalloc 51\ndefragment\nalloc 74\nerase 1\nalloc 91\ndefragment\ndefragment\nalloc 98\ndefragment\n",
"22 9\nerase 1\nalloc 6\nalloc 65\nerase 1\nalloc 87\nerase -1638927047\nalloc 5\nerase 2\nalloc 70\ndefragment\nalloc 20\nalloc 48\nerase -69401977\nalloc 20\ndefragment\nerase 7\ndefragment\nerase 9\nerase 7\nerase 4\ndefragment\nalloc 66\n",
"7 100\nalloc 100\nerase 2147483647\nerase 1\nalloc 50\nalloc 50\nerase 3\nerase -2147483648\n",
"7 6\nalloc 2\nalloc 2\nalloc 3\nerase 1\ndefragment\nerase 3\nalloc 4\n",
"8 50\nalloc 51\ndefragment\nalloc 101\ndefragment\nerase 1\nalloc 50\ndefragment\nalloc 50\n",
"26 25\nalloc 25\nerase 1\nalloc 24\nerase 2\nalloc 23\nerase 3\nalloc 24\nerase 4\nalloc 24\nerase 1\nalloc 21\nerase 6\nalloc 24\nerase 7\nalloc 25\nerase 8\nalloc 25\nerase 9\nalloc 24\nerase 10\nalloc 25\nerase 11\nalloc 25\nerase 12\nalloc 25\nerase 13\n",
"37 74\nalloc 11\ndefragment\nerase 1\ndefragment\nerase 2\ndefragment\nalloc 90\nerase 3\nerase 2\nerase 3\nerase 1\nerase 1\nalloc 38\nalloc 19\nerase 1\nerase 3\ndefragment\nalloc 93\nerase 5\nerase 4\nalloc 66\nalloc 71\nerase 7\ndefragment\ndefragment\ndefragment\ndefragment\nerase 7\nalloc 47\nerase -95616683\nerase 2\nalloc 28\nalloc 32\nerase 11\nalloc 50\ndefragment\ndefragment\n",
"19 46\nalloc 21\nerase 2\nerase 1\ndefragment\nalloc 4\ndefragment\ndefragment\nalloc 40\nerase 1\ndefragment\ndefragment\nalloc 68\nerase -388966015\nalloc 85\nalloc 53\nerase 5\ndefragment\nalloc 49\nalloc 88\n",
"12 10\nalloc 6\nalloc 2\nerase 1\nalloc 7\nalloc 2\nerase 3\nalloc 2\nalloc 3\nalloc 1\nalloc 1\nalloc 1\nalloc 1\n",
"22 9\nalloc 9\nerase 1\nalloc 9\nerase 2\nalloc 9\nerase 2\nalloc 9\nerase 4\nalloc 9\nerase 5\nalloc 9\nerase 6\nalloc 9\nerase 7\nalloc 9\nerase 8\nalloc 9\nerase 9\nalloc 9\nerase 10\nalloc 9\nerase 11\n",
"38 18\nalloc 72\nerase 2\nalloc 50\ndefragment\nerase 3\ndefragment\nalloc 43\nalloc 41\ndefragment\ndefragment\nalloc 26\nalloc 46\nalloc 16\nalloc 15\ndefragment\ndefragment\nalloc 95\nerase 7\nerase 7\nerase 1\nerase 2\nerase 9\nerase 7\nalloc 43\ndefragment\nerase 7\ndefragment\nalloc 48\nalloc 77\nerase 10\nerase 11\nalloc 16\nalloc 84\nerase 1\ndefragment\nalloc 86\ndefragment\nerase 13\n",
"16 49\nerase -751005193\ndefragment\nalloc 37\nalloc 82\nerase 3\nerase 1\nalloc 80\nalloc 51\ndefragment\nalloc 74\nerase 1\nalloc 91\ndefragment\ndefragment\nalloc 121\ndefragment\n",
"22 0\nerase 1\nalloc 6\nalloc 65\nerase 1\nalloc 87\nerase -1638927047\nalloc 5\nerase 2\nalloc 70\ndefragment\nalloc 20\nalloc 48\nerase -69401977\nalloc 20\ndefragment\nerase 7\ndefragment\nerase 9\nerase 7\nerase 4\ndefragment\nalloc 66\n",
"7 100\nalloc 100\nerase 2147483647\nerase 1\nalloc 50\nalloc 50\nerase 3\nerase -2217570413\n",
"6 10\nalloc 5\nalloc 3\nerase 1\nalloc 10\ndefragment\nalloc 6\n",
"7 6\nalloc 2\nalloc 3\nalloc 3\nerase 1\ndefragment\nerase 3\nalloc 4\n",
"6 10\nalloc 5\nalloc 3\nerase 2\nalloc 10\ndefragment\nalloc 6\n",
"7 9\nalloc 2\nalloc 3\nalloc 3\nerase 1\ndefragment\nerase 3\nalloc 4\n",
"3 1\nerase -1\nerase 0\nerase -2666718247\n",
"12 40\nerase 1\nalloc 21\nalloc 5\nalloc 7\ndefragment\ndefragment\nerase 2\nalloc 83\nerase 3\ndefragment\nalloc 59\ndefragment\n",
"47 43\nerase 1\nalloc 95\nalloc 53\nerase 2\ndefragment\nalloc 100\nerase 4\nerase 2\nerase -849472053\ndefragment\nerase -638355221\nalloc 90\nerase 3\nerase 2\ndefragment\nalloc 17\nerase 5\ndefragment\nerase 6\ndefragment\nerase 6\ndefragment\ndefragment\nalloc 99\nalloc 69\nalloc 80\nerase 9\nerase 5\ndefragment\nerase 7\ndefragment\nalloc 93\ndefragment\ndefragment\nalloc 25\ndefragment\nalloc 14\nerase 8\nerase 4\ndefragment\ndefragment\nalloc 96\nerase 9\nalloc 63\nerase 8\ndefragment\nerase 10\n",
"19 46\nalloc 21\nerase 2\nerase 2\ndefragment\nalloc 4\ndefragment\ndefragment\nalloc 40\nerase 1\ndefragment\ndefragment\nalloc 68\nerase -388966015\nalloc 85\nalloc 53\nerase 4\ndefragment\nalloc 49\nalloc 88\n",
"12 10\nalloc 6\nalloc 2\nerase 0\nalloc 4\nalloc 2\nerase 3\nalloc 2\nalloc 3\nalloc 1\nalloc 1\nalloc 1\nalloc 1\n",
"14 100\nalloc 99\nalloc 1\nalloc 1\nerase 2\nalloc 1\nerase 4\nerase 2\nalloc 100\nalloc 1\nalloc 99\ndefragment\nerase 4\nalloc 100\nalloc 99\n",
"42 98\ndefragment\ndefragment\ndefragment\ndefragment\ndefragment\nalloc 5\nalloc 66\ndefragment\nerase 3\nalloc 53\ndefragment\nerase 4\nerase 2\nalloc 70\nerase 3\ndefragment\ndefragment\nerase 2\nerase 3\nerase -1327931832\nalloc 93\nalloc 64\nerase 7\nerase 6\nerase 3\nalloc 61\nalloc 12\nalloc 112\nerase 2\nalloc 46\nerase 11\nerase 9\nerase 9\nerase 6\nalloc 2\nalloc 78\ndefragment\nerase 13\nerase 6\nerase 10\nalloc 53\nalloc 46\n",
"16 10\nalloc 10\ndefragment\ndefragment\ndefragment\nalloc 10\nerase 1\nerase 2\nalloc 6\ndefragment\ndefragment\nalloc 3\ndefragment\ndefragment\nerase 3\ndefragment\nalloc 6\n",
"38 18\nalloc 72\nerase 2\nalloc 50\ndefragment\nerase 3\ndefragment\nalloc 43\nalloc 41\ndefragment\ndefragment\nalloc 26\nalloc 46\nalloc 16\nalloc 15\ndefragment\ndefragment\nalloc 95\nerase 9\nerase 7\nerase 5\nerase 2\nerase 9\nerase 7\nalloc 43\ndefragment\nerase 7\ndefragment\nalloc 48\nalloc 77\nerase 10\nerase 11\nalloc 16\nalloc 84\nerase 1\ndefragment\nalloc 86\ndefragment\nerase 13\n",
"6 10\nalloc 6\nalloc 3\nerase 1\nalloc 6\ndefragment\nalloc 6\n",
"6 4\nalloc 5\nalloc 3\nerase 2\nalloc 18\ndefragment\nalloc 6\n",
"16 78\nerase -751005193\ndefragment\nalloc 37\nalloc 82\nerase 3\nerase 1\nalloc 80\nalloc 51\ndefragment\nalloc 74\nerase 1\nalloc 91\ndefragment\ndefragment\nalloc 73\ndefragment\n",
"7 6\nalloc 4\nalloc 3\nalloc 3\nerase 1\ndefragment\nerase 4\nalloc 4\n",
"7 6\nalloc 4\nalloc 3\nalloc 2\nerase 1\ndefragment\nerase 4\nalloc 4\n",
"26 25\ndefragment\nerase 1\nerase -1560200883\nalloc 44\ndefragment\nalloc 75\nalloc 22\ndefragment\nerase 4\ndefragment\nalloc 57\nalloc 53\nerase 4\nerase -1639632026\nerase -2121605039\nerase 5\nalloc 51\nalloc 65\ndefragment\nerase 2\nerase 4\nalloc 52\nerase 3\ndefragment\nerase -1842529282\nerase 3\n",
"14 100\nalloc 99\nalloc 1\nalloc 1\nerase 2\nalloc 1\nerase 4\nerase 1\nalloc 100\nalloc 1\nalloc 29\ndefragment\nerase 4\nalloc 100\nalloc 99\n",
"22 7\nalloc 9\nerase 1\nalloc 9\nerase 2\nalloc 9\nerase 3\nalloc 9\nerase 4\nalloc 9\nerase 5\nalloc 9\nerase 6\nalloc 9\nerase 7\nalloc 9\nerase 8\nalloc 9\nerase 9\nalloc 9\nerase 10\nalloc 9\nerase 11\n",
"22 9\nerase 1\nalloc 6\nalloc 65\nerase 1\nalloc 87\nerase -1638927047\nalloc 5\nerase 2\nalloc 70\ndefragment\nalloc 20\nalloc 48\nerase -69401977\nalloc 20\ndefragment\nerase 7\ndefragment\nerase 9\nerase 7\nerase 8\ndefragment\nalloc 66\n",
"26 25\nalloc 25\nerase 1\nalloc 24\nerase 2\nalloc 23\nerase 3\nalloc 24\nerase 4\nalloc 4\nerase 1\nalloc 21\nerase 6\nalloc 24\nerase 7\nalloc 25\nerase 8\nalloc 25\nerase 9\nalloc 24\nerase 10\nalloc 25\nerase 11\nalloc 25\nerase 12\nalloc 25\nerase 13\n",
"16 49\nerase -751005193\ndefragment\nalloc 37\nalloc 10\nerase 3\nerase 1\nalloc 80\nalloc 51\ndefragment\nalloc 74\nerase 1\nalloc 91\ndefragment\ndefragment\nalloc 121\ndefragment\n",
"6 6\nalloc 5\nalloc 3\nerase 1\nalloc 10\ndefragment\nalloc 6\n",
"6 10\nalloc 5\nalloc 3\nerase 4\nalloc 10\ndefragment\nalloc 6\n",
"47 80\nerase 1\nalloc 95\nalloc 53\nerase 2\ndefragment\nalloc 100\nerase 4\nerase 2\nerase -849472053\ndefragment\nerase -638355221\nalloc 90\nerase 3\nerase 2\ndefragment\nalloc 17\nerase 5\ndefragment\nerase 6\ndefragment\nerase 6\ndefragment\ndefragment\nalloc 99\nalloc 69\nalloc 80\nerase 9\nerase 5\ndefragment\nerase 7\ndefragment\nalloc 93\ndefragment\ndefragment\nalloc 25\ndefragment\nalloc 14\nerase 8\nerase 4\ndefragment\ndefragment\nalloc 96\nerase 9\nalloc 63\nerase 8\ndefragment\nerase 10\n",
"16 78\nerase -751005193\ndefragment\nalloc 37\nalloc 82\nerase 3\nerase 1\nalloc 25\nalloc 51\ndefragment\nalloc 74\nerase 1\nalloc 91\ndefragment\ndefragment\nalloc 73\ndefragment\n",
"22 9\nerase 1\nalloc 6\nalloc 65\nerase 0\nalloc 87\nerase -1638927047\nalloc 5\nerase 2\nalloc 70\ndefragment\nalloc 20\nalloc 48\nerase -69401977\nalloc 20\ndefragment\nerase 7\ndefragment\nerase 9\nerase 7\nerase 8\ndefragment\nalloc 66\n",
"8 50\nalloc 96\ndefragment\nalloc 101\ndefragment\nerase 1\nalloc 50\ndefragment\nalloc 50\n",
"37 74\nalloc 11\ndefragment\nerase 1\ndefragment\nerase 2\ndefragment\nalloc 90\nerase 3\nerase 2\nerase 3\nerase 1\nerase 1\nalloc 38\nalloc 19\nerase 1\nerase 3\ndefragment\nalloc 93\nerase 5\nerase 4\nalloc 66\nalloc 71\nerase 7\ndefragment\ndefragment\ndefragment\ndefragment\nerase 13\nalloc 47\nerase -95616683\nerase 2\nalloc 28\nalloc 32\nerase 11\nalloc 50\ndefragment\ndefragment\n",
"22 0\nerase 1\nalloc 6\nalloc 65\nerase 1\nalloc 87\nerase -1638927047\nalloc 5\nerase 2\nalloc 70\ndefragment\nalloc 20\nalloc 48\nerase -69401977\nalloc 20\ndefragment\nerase 4\ndefragment\nerase 9\nerase 7\nerase 4\ndefragment\nalloc 66\n",
"22 0\nerase 1\nalloc 6\nalloc 75\nerase 1\nalloc 87\nerase -1638927047\nalloc 5\nerase 2\nalloc 70\ndefragment\nalloc 20\nalloc 48\nerase -69401977\nalloc 20\ndefragment\nerase 4\ndefragment\nerase 9\nerase 7\nerase 4\ndefragment\nalloc 66\n",
"6 10\nalloc 5\nalloc 3\nerase 2\nalloc 18\ndefragment\nalloc 6\n",
"16 49\nerase -178317666\ndefragment\nalloc 37\nalloc 82\nerase 3\nerase 1\nalloc 80\nalloc 51\ndefragment\nalloc 74\nerase 1\nalloc 91\ndefragment\ndefragment\nalloc 98\ndefragment\n",
"7 100\nalloc 100\nerase 2147483647\nerase 1\nalloc 50\nalloc 50\nerase 3\nerase -2940481691\n",
"8 50\nalloc 64\ndefragment\nalloc 101\ndefragment\nerase 1\nalloc 50\ndefragment\nalloc 50\n",
"26 25\nalloc 25\nerase 1\nalloc 24\nerase 2\nalloc 23\nerase 3\nalloc 24\nerase 4\nalloc 24\nerase 1\nalloc 18\nerase 6\nalloc 24\nerase 7\nalloc 25\nerase 8\nalloc 25\nerase 9\nalloc 24\nerase 10\nalloc 25\nerase 11\nalloc 25\nerase 12\nalloc 25\nerase 13\n",
"22 9\nalloc 9\nerase 1\nalloc 9\nerase 2\nalloc 9\nerase 2\nalloc 9\nerase 4\nalloc 9\nerase 5\nalloc 9\nerase 6\nalloc 9\nerase 7\nalloc 9\nerase 10\nalloc 9\nerase 9\nalloc 9\nerase 10\nalloc 9\nerase 11\n",
"38 18\nalloc 72\nerase 2\nalloc 50\ndefragment\nerase 3\ndefragment\nalloc 43\nalloc 41\ndefragment\ndefragment\nalloc 26\nalloc 46\nalloc 16\nalloc 15\ndefragment\ndefragment\nalloc 95\nerase 7\nerase 7\nerase 1\nerase 2\nerase 9\nerase 7\nalloc 43\ndefragment\nerase 4\ndefragment\nalloc 48\nalloc 77\nerase 10\nerase 11\nalloc 16\nalloc 84\nerase 1\ndefragment\nalloc 86\ndefragment\nerase 13\n",
"16 49\nerase -751005193\ndefragment\nalloc 37\nalloc 82\nerase 3\nerase 1\nalloc 80\nalloc 51\ndefragment\nalloc 74\nerase 1\nalloc 91\ndefragment\ndefragment\nalloc 73\ndefragment\n",
"6 10\nalloc 5\nalloc 3\nerase 1\nalloc 13\ndefragment\nalloc 6\n",
"7 6\nalloc 2\nalloc 3\nalloc 3\nerase 1\ndefragment\nerase 4\nalloc 4\n",
"37 74\nalloc 11\ndefragment\nerase 1\ndefragment\nerase 2\ndefragment\nalloc 90\nerase 3\nerase 2\nerase 3\nerase 2\nerase 1\nalloc 38\nalloc 19\nerase 1\nerase 3\ndefragment\nalloc 93\nerase 5\nerase 4\nalloc 66\nalloc 71\nerase 7\ndefragment\ndefragment\ndefragment\ndefragment\nerase 13\nalloc 47\nerase -95616683\nerase 2\nalloc 28\nalloc 32\nerase 11\nalloc 50\ndefragment\ndefragment\n",
"38 18\nalloc 72\nerase 2\nalloc 50\ndefragment\nerase 3\ndefragment\nalloc 43\nalloc 41\ndefragment\ndefragment\nalloc 26\nalloc 46\nalloc 16\nalloc 15\ndefragment\ndefragment\nalloc 95\nerase 9\nerase 7\nerase 5\nerase 2\nerase 9\nerase 7\nalloc 43\ndefragment\nerase 7\ndefragment\nalloc 48\nalloc 77\nerase 10\nerase 9\nalloc 16\nalloc 84\nerase 1\ndefragment\nalloc 86\ndefragment\nerase 13\n",
"6 10\nalloc 6\nalloc 3\nerase 2\nalloc 6\ndefragment\nalloc 6\n",
"37 74\nalloc 11\ndefragment\nerase 1\ndefragment\nerase 1\ndefragment\nalloc 90\nerase 3\nerase 2\nerase 3\nerase 2\nerase 1\nalloc 38\nalloc 19\nerase 1\nerase 3\ndefragment\nalloc 93\nerase 5\nerase 4\nalloc 66\nalloc 71\nerase 7\ndefragment\ndefragment\ndefragment\ndefragment\nerase 13\nalloc 47\nerase -95616683\nerase 2\nalloc 28\nalloc 32\nerase 11\nalloc 50\ndefragment\ndefragment\n",
"3 1\nerase 0\nerase 0\nerase -2147483648\n",
"8 50\nalloc 51\ndefragment\nalloc 100\ndefragment\nerase 1\nalloc 50\ndefragment\nalloc 76\n",
"37 74\nalloc 17\ndefragment\nerase 1\ndefragment\nerase 2\ndefragment\nalloc 90\nerase 3\nerase 2\nerase 3\nerase 1\nerase 1\nalloc 38\nalloc 19\nerase 1\nerase 3\ndefragment\nalloc 93\nerase 5\nerase 4\nalloc 66\nalloc 71\nerase 7\ndefragment\ndefragment\ndefragment\ndefragment\nerase 7\nalloc 47\nerase -95616683\nerase 2\nalloc 28\nalloc 32\nerase 11\nalloc 50\ndefragment\ndefragment\n",
"19 46\nalloc 21\nerase 2\nerase 1\ndefragment\nalloc 4\ndefragment\ndefragment\nalloc 40\nerase 1\ndefragment\ndefragment\nalloc 68\nerase -388966015\nalloc 85\nalloc 53\nerase 5\ndefragment\nalloc 83\nalloc 88\n",
"38 18\nalloc 72\nerase 2\nalloc 50\ndefragment\nerase 3\ndefragment\nalloc 43\nalloc 41\ndefragment\ndefragment\nalloc 26\nalloc 46\nalloc 16\nalloc 15\ndefragment\ndefragment\nalloc 95\nerase 7\nerase 7\nerase 1\nerase 2\nerase 16\nerase 7\nalloc 43\ndefragment\nerase 7\ndefragment\nalloc 48\nalloc 77\nerase 10\nerase 11\nalloc 16\nalloc 84\nerase 1\ndefragment\nalloc 86\ndefragment\nerase 13\n",
"22 0\nerase 1\nalloc 6\nalloc 65\nerase 1\nalloc 87\nerase -1638927047\nalloc 5\nerase 2\nalloc 70\ndefragment\nalloc 20\nalloc 48\nerase -69401977\nalloc 20\ndefragment\nerase 7\ndefragment\nerase 6\nerase 7\nerase 4\ndefragment\nalloc 66\n",
"7 101\nalloc 100\nerase 2147483647\nerase 1\nalloc 50\nalloc 50\nerase 3\nerase -2217570413\n",
"7 9\nalloc 2\nalloc 3\nalloc 3\nerase 1\ndefragment\nerase 3\nalloc 3\n",
"19 46\nalloc 21\nerase 2\nerase 2\ndefragment\nalloc 4\ndefragment\ndefragment\nalloc 68\nerase 1\ndefragment\ndefragment\nalloc 68\nerase -388966015\nalloc 85\nalloc 53\nerase 4\ndefragment\nalloc 49\nalloc 88\n",
"12 10\nalloc 6\nalloc 2\nerase 0\nalloc 4\nalloc 2\nerase 3\nalloc 2\nalloc 2\nalloc 1\nalloc 1\nalloc 1\nalloc 1\n",
"16 49\nerase -178317666\ndefragment\nalloc 37\nalloc 116\nerase 3\nerase 1\nalloc 80\nalloc 51\ndefragment\nalloc 74\nerase 1\nalloc 91\ndefragment\ndefragment\nalloc 98\ndefragment\n",
"26 25\nalloc 25\nerase 1\nalloc 24\nerase 2\nalloc 23\nerase 3\nalloc 24\nerase 4\nalloc 24\nerase 1\nalloc 18\nerase 6\nalloc 24\nerase 7\nalloc 25\nerase 6\nalloc 25\nerase 9\nalloc 24\nerase 10\nalloc 25\nerase 11\nalloc 25\nerase 12\nalloc 25\nerase 13\n",
"38 18\nalloc 72\nerase 2\nalloc 50\ndefragment\nerase 3\ndefragment\nalloc 43\nalloc 41\ndefragment\ndefragment\nalloc 26\nalloc 46\nalloc 16\nalloc 15\ndefragment\ndefragment\nalloc 95\nerase 7\nerase 7\nerase 1\nerase 2\nerase 9\nerase 7\nalloc 43\ndefragment\nerase 4\ndefragment\nalloc 48\nalloc 77\nerase 10\nerase 11\nalloc 16\nalloc 84\nerase 1\ndefragment\nalloc 86\ndefragment\nerase 3\n",
"6 4\nalloc 5\nalloc 3\nerase 2\nalloc 28\ndefragment\nalloc 6\n",
"6 10\nalloc 6\nalloc 2\nerase 2\nalloc 6\ndefragment\nalloc 6\n",
"7 6\nalloc 3\nalloc 3\nalloc 2\nerase 1\ndefragment\nerase 4\nalloc 4\n",
"26 25\ndefragment\nerase 1\nerase -1560200883\nalloc 78\ndefragment\nalloc 75\nalloc 22\ndefragment\nerase 4\ndefragment\nalloc 57\nalloc 53\nerase 4\nerase -1639632026\nerase -2121605039\nerase 5\nalloc 51\nalloc 65\ndefragment\nerase 2\nerase 4\nalloc 52\nerase 3\ndefragment\nerase -1842529282\nerase 3\n",
"26 25\nalloc 25\nerase 1\nalloc 24\nerase 2\nalloc 23\nerase 3\nalloc 24\nerase 4\nalloc 4\nerase 1\nalloc 21\nerase 6\nalloc 24\nerase 7\nalloc 25\nerase 8\nalloc 25\nerase 9\nalloc 24\nerase 10\nalloc 25\nerase 11\nalloc 25\nerase 0\nalloc 25\nerase 13\n"
],
"output": [
"1\n2\nNULL\n3\n",
"ILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\n",
"ILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\n1\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\n",
"ILLEGAL_ERASE_ARGUMENT\n1\n2\n3\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\n",
"1\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\n2\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\n3\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\n",
"1\n2\n3\n4\n",
"ILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\n1\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\n2\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\n",
"NULL\nNULL\nILLEGAL_ERASE_ARGUMENT\n1\nNULL\n",
"NULL\n1\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\n",
"1\n2\n3\n4\n5\n6\n7\n8\n9\n10\n11\n12\n13\n",
"1\nILLEGAL_ERASE_ARGUMENT\n2\nILLEGAL_ERASE_ARGUMENT\n3\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\n",
"1\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\n2\n3\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\n4\n5\nILLEGAL_ERASE_ARGUMENT\nNULL\n",
"1\nILLEGAL_ERASE_ARGUMENT\n2\n3\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\n",
"1\n2\n3\n4\n5\nNULL\n6\n7\n8\n9\n",
"1\nNULL\nILLEGAL_ERASE_ARGUMENT\n2\n3\n4\n",
"1\n2\nNULL\n3\nILLEGAL_ERASE_ARGUMENT\nNULL\n4\nNULL\nNULL\nNULL\n",
"1\n2\n3\n4\n5\n6\n7\n8\n9\n10\n11\n",
"1\n2\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\n3\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\n4\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\n",
"1\nNULL\nILLEGAL_ERASE_ARGUMENT\n2\n3\nNULL\n",
"NULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nNULL\nNULL\n1\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\n",
"ILLEGAL_ERASE_ARGUMENT\n1\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\n",
"ILLEGAL_ERASE_ARGUMENT\n1\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\n2\nNULL\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\n",
"1\nILLEGAL_ERASE_ARGUMENT\n2\n3\nILLEGAL_ERASE_ARGUMENT\n",
"1\n2\nNULL\nILLEGAL_ERASE_ARGUMENT\n3\n",
"NULL\nNULL\nILLEGAL_ERASE_ARGUMENT\n1\nNULL\n",
"1\n2\n3\n4\n5\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\n",
"1\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\n2\n3\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\n4\n5\nILLEGAL_ERASE_ARGUMENT\nNULL\n",
"1\nILLEGAL_ERASE_ARGUMENT\n2\n3\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\n",
"1\n2\nNULL\n3\n4\n5\n6\n7\n8\nNULL\n",
"1\n2\n3\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\n",
"NULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nNULL\nNULL\n1\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\n2\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\n",
"ILLEGAL_ERASE_ARGUMENT\n1\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\n",
"ILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\n",
"1\nILLEGAL_ERASE_ARGUMENT\n2\n3\nILLEGAL_ERASE_ARGUMENT\n",
"1\n2\nNULL\n3\n",
"1\n2\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\n",
"1\n2\nNULL\nNULL\n",
"1\n2\n3\n4\n",
"ILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\n",
"ILLEGAL_ERASE_ARGUMENT\n1\n2\n3\nNULL\nNULL\n",
"ILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\n1\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\n2\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\n",
"1\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\n2\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\n",
"1\n2\nILLEGAL_ERASE_ARGUMENT\nNULL\n3\n4\nNULL\nNULL\nNULL\nNULL\nNULL\n",
"1\n2\nNULL\n3\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\n",
"1\n2\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\n3\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\n4\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\n",
"1\nNULL\nILLEGAL_ERASE_ARGUMENT\n2\n3\nNULL\n",
"NULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nNULL\nNULL\n1\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\n",
"1\n2\n3\nNULL\n",
"NULL\n1\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\n",
"ILLEGAL_ERASE_ARGUMENT\n1\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\n2\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\n",
"1\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\n2\n",
"1\nNULL\n2\nILLEGAL_ERASE_ARGUMENT\n3\n",
"ILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\n1\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\n",
"1\n2\nNULL\n3\nILLEGAL_ERASE_ARGUMENT\nNULL\n4\n5\nNULL\nNULL\n",
"NULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\n",
"ILLEGAL_ERASE_ARGUMENT\n1\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\n2\nNULL\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\n",
"1\n2\n3\n4\n5\nILLEGAL_ERASE_ARGUMENT\n6\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\n",
"ILLEGAL_ERASE_ARGUMENT\n1\n2\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\n",
"1\nNULL\nNULL\n2\n",
"1\n2\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\n",
"ILLEGAL_ERASE_ARGUMENT\nNULL\n1\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\n2\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\n",
"ILLEGAL_ERASE_ARGUMENT\n1\nNULL\nILLEGAL_ERASE_ARGUMENT\n2\n3\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\n",
"ILLEGAL_ERASE_ARGUMENT\n1\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\n",
"NULL\nNULL\nILLEGAL_ERASE_ARGUMENT\n1\nNULL\n",
"1\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\n2\n3\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\n4\n5\nILLEGAL_ERASE_ARGUMENT\nNULL\n",
"ILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\n",
"ILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\n",
"1\n2\nNULL\nNULL\n",
"ILLEGAL_ERASE_ARGUMENT\n1\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\n",
"1\nILLEGAL_ERASE_ARGUMENT\n2\n3\nILLEGAL_ERASE_ARGUMENT\n",
"NULL\nNULL\nILLEGAL_ERASE_ARGUMENT\n1\nNULL\n",
"1\n2\n3\n4\n5\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\n",
"1\n2\n3\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\n",
"NULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nNULL\nNULL\n1\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\n2\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\n",
"ILLEGAL_ERASE_ARGUMENT\n1\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\n",
"1\n2\nNULL\n3\n",
"1\n2\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\n",
"1\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\n2\n3\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\n4\n5\nILLEGAL_ERASE_ARGUMENT\nNULL\n",
"NULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nNULL\nNULL\n1\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\n",
"1\n2\nNULL\nNULL\n",
"1\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\n2\n3\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\n4\n5\nILLEGAL_ERASE_ARGUMENT\nNULL\n",
"ILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\n",
"NULL\nNULL\nILLEGAL_ERASE_ARGUMENT\n1\nNULL\n",
"1\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\n2\n3\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\n4\n5\nILLEGAL_ERASE_ARGUMENT\nNULL\n",
"1\nILLEGAL_ERASE_ARGUMENT\n2\n3\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\n",
"NULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nNULL\nNULL\n1\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\n2\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\n",
"ILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\n",
"1\nILLEGAL_ERASE_ARGUMENT\n2\n3\nILLEGAL_ERASE_ARGUMENT\n",
"1\n2\n3\n4\n",
"1\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\n2\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\n",
"1\n2\nILLEGAL_ERASE_ARGUMENT\nNULL\n3\n4\nNULL\nNULL\nNULL\nNULL\nNULL\n",
"ILLEGAL_ERASE_ARGUMENT\n1\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\n",
"1\n2\n3\n4\n5\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\n",
"NULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nNULL\nNULL\n1\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\n2\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\n",
"NULL\n1\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\n",
"1\n2\nNULL\nNULL\n",
"1\n2\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\n",
"ILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\n1\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\nILLEGAL_ERASE_ARGUMENT\n",
"1\n2\n3\n4\n5\nILLEGAL_ERASE_ARGUMENT\n6\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\nNULL\nILLEGAL_ERASE_ARGUMENT\n"
]
} | 2CODEFORCES
|
820_D. Mister B and PR Shifts_169 | Some time ago Mister B detected a strange signal from the space, which he started to study.
After some transformation the signal turned out to be a permutation p of length n or its cyclic shift. For the further investigation Mister B need some basis, that's why he decided to choose cyclic shift of this permutation which has the minimum possible deviation.
Let's define the deviation of a permutation p as <image>.
Find a cyclic shift of permutation p with minimum possible deviation. If there are multiple solutions, print any of them.
Let's denote id k (0 ≤ k < n) of a cyclic shift of permutation p as the number of right shifts needed to reach this shift, for example:
* k = 0: shift p1, p2, ... pn,
* k = 1: shift pn, p1, ... pn - 1,
* ...,
* k = n - 1: shift p2, p3, ... pn, p1.
Input
First line contains single integer n (2 ≤ n ≤ 106) — the length of the permutation.
The second line contains n space-separated integers p1, p2, ..., pn (1 ≤ pi ≤ n) — the elements of the permutation. It is guaranteed that all elements are distinct.
Output
Print two integers: the minimum deviation of cyclic shifts of permutation p and the id of such shift. If there are multiple solutions, print any of them.
Examples
Input
3
1 2 3
Output
0 0
Input
3
2 3 1
Output
0 1
Input
3
3 2 1
Output
2 1
Note
In the first sample test the given permutation p is the identity permutation, that's why its deviation equals to 0, the shift id equals to 0 as well.
In the second sample test the deviation of p equals to 4, the deviation of the 1-st cyclic shift (1, 2, 3) equals to 0, the deviation of the 2-nd cyclic shift (3, 1, 2) equals to 4, the optimal is the 1-st cyclic shift.
In the third sample test the deviation of p equals to 4, the deviation of the 1-st cyclic shift (1, 3, 2) equals to 2, the deviation of the 2-nd cyclic shift (2, 1, 3) also equals to 2, so the optimal are both 1-st and 2-nd cyclic shifts. | #include <bits/stdc++.h>
using namespace std;
void gi(int& x) {
static char r[(1 << 17) + 16], *s = r, *l = r + (1 << 17);
x = 0;
if (!*s) memset(r, 0, (1 << 17)), cin.read(r, (1 << 17)), s = r;
while (*s && (*s < 48 || *s > 57)) ++s;
while (*s >= 48 && *s <= 57) {
x = x * 10 + *s - 48, ++s;
if (s == l) memset(r, 0, (1 << 17)), cin.read(r, (1 << 17)), s = r;
}
++s;
}
char QQ[(1 << 17) + 16], *OP = QQ, *LP = QQ + (1 << 17);
void pn(int x) {
char *B = OP, c, *E;
int t;
if (!x) t = x / 10, c = x - 10 * t + 48, *OP++ = c, x = t;
while (x) t = x / 10, c = x - 10 * t + 48, *OP++ = c, x = t;
E = OP - 1;
while (B < E) swap(*B, *E), ++B, --E;
if (OP > LP) cout.write(QQ, OP - QQ), OP = QQ;
}
void pc(char c) { *OP++ = c; }
int N, A[(1000006)], g, l, G[(1000006)], L[(1000006)], P[(1000006)], a, W;
long long S, X;
int main(void) {
ios_base::sync_with_stdio(0);
gi(N);
for (int i(0); i < N; i++) gi(A[i + 1]);
for (int k(1); k < N + 1; k++)
if (A[k] > k)
++g, S += a = A[k] - k, --G[a], ++L[a], P[N - k] += 2 * A[k] - 1 - N,
++G[N - k], --L[N - k];
else
++l, S += k - A[k], a = N - k + A[k], --G[a], ++L[a],
P[N - k] += 2 * A[k] - 1 - N, ++G[N - k], --L[N - k];
X = S;
for (int k(0); k < N; k++) {
l += L[k], g += G[k], S += P[k] + l - g + 1;
if (S < X) X = S, W = k + 1;
}
printf("%lld %d\n", X, W);
return 0;
}
| 2C++
| {
"input": [
"3\n3 2 1\n",
"3\n1 2 3\n",
"3\n2 3 1\n",
"4\n1 2 4 3\n",
"4\n2 1 4 3\n",
"10\n1 2 10 9 7 4 8 3 6 5\n",
"10\n1 7 10 6 5 2 3 8 9 4\n",
"4\n4 3 2 1\n",
"4\n2 1 3 4\n",
"10\n1 10 9 5 3 2 4 7 8 6\n",
"4\n2 3 1 4\n",
"4\n2 4 3 1\n",
"10\n1 5 10 8 4 3 9 2 7 6\n",
"4\n1 4 3 2\n",
"10\n1 8 10 6 2 4 9 3 7 5\n",
"4\n2 3 4 1\n",
"10\n2 6 10 1 9 7 4 8 5 3\n",
"4\n4 1 2 3\n",
"10\n1 9 10 5 6 7 3 8 4 2\n",
"4\n4 2 1 3\n",
"4\n3 1 4 2\n",
"10\n1 2 3 4 6 5 7 9 10 8\n",
"4\n4 3 1 2\n",
"4\n1 3 4 2\n",
"10\n2 5 10 3 6 4 9 1 8 7\n",
"10\n2 1 10 5 8 4 9 3 7 6\n",
"4\n3 1 2 4\n",
"10\n1 6 10 7 9 5 3 8 4 2\n",
"2\n1 2\n",
"10\n1 3 10 9 4 7 5 8 6 2\n",
"4\n1 3 2 4\n",
"4\n4 2 3 1\n",
"4\n3 2 1 4\n",
"4\n3 2 4 1\n",
"4\n1 2 3 4\n",
"10\n2 7 10 1 6 3 4 8 9 5\n",
"2\n2 1\n",
"4\n3 4 2 1\n",
"4\n3 4 1 2\n",
"10\n10 1 9 2 8 3 7 4 6 5\n",
"10\n1 4 10 8 9 2 3 6 7 5\n",
"10\n2 3 10 5 4 8 6 9 7 1\n",
"108\n1 102 33 99 6 83 4 20 61 100 76 71 44 9 24 87 57 2 81 82 90 85 12 30 66 53 47 36 43 29 31 64 96 84 77 23 93 78 58 68 42 55 13 70 62 19 92 14 10 65 63 75 91 48 11 105 37 50 32 94 18 26 52 89 104 106 86 97 80 95 17 72 40 22 79 103 25 101 35 51 15 98 67 5 34 69 54 27 45 88 56 16 46 60 74 108 21 41 73 39 107 59 3 8 28 49 7 38\n",
"4\n4 1 3 2\n",
"4\n2 4 1 3\n",
"10\n2 4 10 3 9 1 5 7 8 6\n",
"4\n1 4 2 3\n"
],
"output": [
"2 1\n",
"0 0\n",
"0 1\n",
"2 0\n",
"4 0\n",
"26 5\n",
"26 6\n",
"4 1\n",
"2 0\n",
"20 7\n",
"4 0\n",
"2 1\n",
"26 6\n",
"4 0\n",
"24 6\n",
"0 1\n",
"28 1\n",
"0 3\n",
"26 1\n",
"2 3\n",
"4 1\n",
"6 0\n",
"2 2\n",
"2 1\n",
"28 0\n",
"28 0\n",
"2 3\n",
"24 4\n",
"0 0\n",
"22 1\n",
"2 0\n",
"4 1\n",
"4 0\n",
"2 1\n",
"0 0\n",
"20 7\n",
"0 1\n",
"2 2\n",
"0 2\n",
"24 7\n",
"20 5\n",
"14 1\n",
"3428 30\n",
"2 3\n",
"2 2\n",
"28 0\n",
"4 0\n"
]
} | 2CODEFORCES
|
820_D. Mister B and PR Shifts_170 | Some time ago Mister B detected a strange signal from the space, which he started to study.
After some transformation the signal turned out to be a permutation p of length n or its cyclic shift. For the further investigation Mister B need some basis, that's why he decided to choose cyclic shift of this permutation which has the minimum possible deviation.
Let's define the deviation of a permutation p as <image>.
Find a cyclic shift of permutation p with minimum possible deviation. If there are multiple solutions, print any of them.
Let's denote id k (0 ≤ k < n) of a cyclic shift of permutation p as the number of right shifts needed to reach this shift, for example:
* k = 0: shift p1, p2, ... pn,
* k = 1: shift pn, p1, ... pn - 1,
* ...,
* k = n - 1: shift p2, p3, ... pn, p1.
Input
First line contains single integer n (2 ≤ n ≤ 106) — the length of the permutation.
The second line contains n space-separated integers p1, p2, ..., pn (1 ≤ pi ≤ n) — the elements of the permutation. It is guaranteed that all elements are distinct.
Output
Print two integers: the minimum deviation of cyclic shifts of permutation p and the id of such shift. If there are multiple solutions, print any of them.
Examples
Input
3
1 2 3
Output
0 0
Input
3
2 3 1
Output
0 1
Input
3
3 2 1
Output
2 1
Note
In the first sample test the given permutation p is the identity permutation, that's why its deviation equals to 0, the shift id equals to 0 as well.
In the second sample test the deviation of p equals to 4, the deviation of the 1-st cyclic shift (1, 2, 3) equals to 0, the deviation of the 2-nd cyclic shift (3, 1, 2) equals to 4, the optimal is the 1-st cyclic shift.
In the third sample test the deviation of p equals to 4, the deviation of the 1-st cyclic shift (1, 3, 2) equals to 2, the deviation of the 2-nd cyclic shift (2, 1, 3) also equals to 2, so the optimal are both 1-st and 2-nd cyclic shifts. | from sys import stdin
def main():
n = int(stdin.readline())
a = list(map(int, stdin.readline().split()))
inf = [0] * (n + 1)
curr = 0
d = 0
for i in range(n):
curr += abs(i + 1 - a[i])
if a[i] > i + 1:
d += 1
inf[a[i] - i - 1] += 1
elif a[i] <= i + 1:
d -= 1
if a[i] == i + 1:
inf[0] += 1
else:
inf[a[i] + n - i - 1] += 1
best = curr
num = 0
for i in range(n):
curr -= d
curr -= 1
curr = curr - abs(a[n - i - 1] - n) + abs(a[n - i - 1] - 1)
d += 2
d -= inf[i + 1] * 2
if curr < best:
best = curr
num = i + 1
print(best, num)
main() | 3Python3
| {
"input": [
"3\n3 2 1\n",
"3\n1 2 3\n",
"3\n2 3 1\n",
"4\n1 2 4 3\n",
"4\n2 1 4 3\n",
"10\n1 2 10 9 7 4 8 3 6 5\n",
"10\n1 7 10 6 5 2 3 8 9 4\n",
"4\n4 3 2 1\n",
"4\n2 1 3 4\n",
"10\n1 10 9 5 3 2 4 7 8 6\n",
"4\n2 3 1 4\n",
"4\n2 4 3 1\n",
"10\n1 5 10 8 4 3 9 2 7 6\n",
"4\n1 4 3 2\n",
"10\n1 8 10 6 2 4 9 3 7 5\n",
"4\n2 3 4 1\n",
"10\n2 6 10 1 9 7 4 8 5 3\n",
"4\n4 1 2 3\n",
"10\n1 9 10 5 6 7 3 8 4 2\n",
"4\n4 2 1 3\n",
"4\n3 1 4 2\n",
"10\n1 2 3 4 6 5 7 9 10 8\n",
"4\n4 3 1 2\n",
"4\n1 3 4 2\n",
"10\n2 5 10 3 6 4 9 1 8 7\n",
"10\n2 1 10 5 8 4 9 3 7 6\n",
"4\n3 1 2 4\n",
"10\n1 6 10 7 9 5 3 8 4 2\n",
"2\n1 2\n",
"10\n1 3 10 9 4 7 5 8 6 2\n",
"4\n1 3 2 4\n",
"4\n4 2 3 1\n",
"4\n3 2 1 4\n",
"4\n3 2 4 1\n",
"4\n1 2 3 4\n",
"10\n2 7 10 1 6 3 4 8 9 5\n",
"2\n2 1\n",
"4\n3 4 2 1\n",
"4\n3 4 1 2\n",
"10\n10 1 9 2 8 3 7 4 6 5\n",
"10\n1 4 10 8 9 2 3 6 7 5\n",
"10\n2 3 10 5 4 8 6 9 7 1\n",
"108\n1 102 33 99 6 83 4 20 61 100 76 71 44 9 24 87 57 2 81 82 90 85 12 30 66 53 47 36 43 29 31 64 96 84 77 23 93 78 58 68 42 55 13 70 62 19 92 14 10 65 63 75 91 48 11 105 37 50 32 94 18 26 52 89 104 106 86 97 80 95 17 72 40 22 79 103 25 101 35 51 15 98 67 5 34 69 54 27 45 88 56 16 46 60 74 108 21 41 73 39 107 59 3 8 28 49 7 38\n",
"4\n4 1 3 2\n",
"4\n2 4 1 3\n",
"10\n2 4 10 3 9 1 5 7 8 6\n",
"4\n1 4 2 3\n"
],
"output": [
"2 1\n",
"0 0\n",
"0 1\n",
"2 0\n",
"4 0\n",
"26 5\n",
"26 6\n",
"4 1\n",
"2 0\n",
"20 7\n",
"4 0\n",
"2 1\n",
"26 6\n",
"4 0\n",
"24 6\n",
"0 1\n",
"28 1\n",
"0 3\n",
"26 1\n",
"2 3\n",
"4 1\n",
"6 0\n",
"2 2\n",
"2 1\n",
"28 0\n",
"28 0\n",
"2 3\n",
"24 4\n",
"0 0\n",
"22 1\n",
"2 0\n",
"4 1\n",
"4 0\n",
"2 1\n",
"0 0\n",
"20 7\n",
"0 1\n",
"2 2\n",
"0 2\n",
"24 7\n",
"20 5\n",
"14 1\n",
"3428 30\n",
"2 3\n",
"2 2\n",
"28 0\n",
"4 0\n"
]
} | 2CODEFORCES
|
820_D. Mister B and PR Shifts_171 | Some time ago Mister B detected a strange signal from the space, which he started to study.
After some transformation the signal turned out to be a permutation p of length n or its cyclic shift. For the further investigation Mister B need some basis, that's why he decided to choose cyclic shift of this permutation which has the minimum possible deviation.
Let's define the deviation of a permutation p as <image>.
Find a cyclic shift of permutation p with minimum possible deviation. If there are multiple solutions, print any of them.
Let's denote id k (0 ≤ k < n) of a cyclic shift of permutation p as the number of right shifts needed to reach this shift, for example:
* k = 0: shift p1, p2, ... pn,
* k = 1: shift pn, p1, ... pn - 1,
* ...,
* k = n - 1: shift p2, p3, ... pn, p1.
Input
First line contains single integer n (2 ≤ n ≤ 106) — the length of the permutation.
The second line contains n space-separated integers p1, p2, ..., pn (1 ≤ pi ≤ n) — the elements of the permutation. It is guaranteed that all elements are distinct.
Output
Print two integers: the minimum deviation of cyclic shifts of permutation p and the id of such shift. If there are multiple solutions, print any of them.
Examples
Input
3
1 2 3
Output
0 0
Input
3
2 3 1
Output
0 1
Input
3
3 2 1
Output
2 1
Note
In the first sample test the given permutation p is the identity permutation, that's why its deviation equals to 0, the shift id equals to 0 as well.
In the second sample test the deviation of p equals to 4, the deviation of the 1-st cyclic shift (1, 2, 3) equals to 0, the deviation of the 2-nd cyclic shift (3, 1, 2) equals to 4, the optimal is the 1-st cyclic shift.
In the third sample test the deviation of p equals to 4, the deviation of the 1-st cyclic shift (1, 3, 2) equals to 2, the deviation of the 2-nd cyclic shift (2, 1, 3) also equals to 2, so the optimal are both 1-st and 2-nd cyclic shifts. | import java.io.FileInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.InputMismatchException;
public class D421 {
InputStream is;
PrintWriter out;
int n;
long a[];
private boolean oj = System.getProperty("ONLINE_JUDGE") != null;
void solve() {
int n = ni();
int p[] = new int[n + 1];
for (int i = 1; i <= n; i++) {
p[i] = ni();
}
int a[] = new int[n + 1];
long s1 = 0;
long s2 = 0;
int count = 0;
for (int i = 1; i <= n; i++) {
if (p[i] > i) {
a[p[i] - i]++;
s1 += p[i] - i;
count++;
} else {
s2 += i - p[i];
}
}
int shift = 1;
int ind = 0;
long min = s1 + s2;
for (int i = n; i > 1; i--) {
s1 -= count;
s2 += n - count - 1;
s2 -= n - p[i];
s1 += p[i] - 1;
if (shift + p[i] - 1 <= n) {
a[shift + p[i] - 1]++;
}
count = count - a[shift];
count++;
if (s1 + s2 < min) {
min = s1 + s2;
ind = shift;
}
shift++;
}
out.println(min + " " + ind);
}
void run() throws Exception {
String INPUT = "C:\\Users\\Admin\\Desktop\\input.txt";
is = oj ? System.in : new FileInputStream(INPUT);
out = new PrintWriter(System.out);
long s = System.currentTimeMillis();
solve();
out.flush();
tr(System.currentTimeMillis() - s + "ms");
}
public static void main(String[] args) throws Exception {
new Thread(null, new Runnable() {
public void run() {
try {
new D421().run();
} catch (Exception e) {
e.printStackTrace();
}
}
}, "1", 1 << 26).start();
}
private byte[] inbuf = new byte[1024];
public int lenbuf = 0, ptrbuf = 0;
private int readByte() {
if (lenbuf == -1)
throw new InputMismatchException();
if (ptrbuf >= lenbuf) {
ptrbuf = 0;
try {
lenbuf = is.read(inbuf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (lenbuf <= 0)
return -1;
}
return inbuf[ptrbuf++];
}
private boolean isSpaceChar(int c) {
return !(c >= 33 && c <= 126);
}
private int skip() {
int b;
while ((b = readByte()) != -1 && isSpaceChar(b))
;
return b;
}
private double nd() {
return Double.parseDouble(ns());
}
private char nc() {
return (char) skip();
}
private String ns() {
int b = skip();
StringBuilder sb = new StringBuilder();
while (!(isSpaceChar(b))) { // when nextLine, (isSpaceChar(b) && b != '
// ')
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
private char[] ns(int n) {
char[] buf = new char[n];
int b = skip(), p = 0;
while (p < n && !(isSpaceChar(b))) {
buf[p++] = (char) b;
b = readByte();
}
return n == p ? buf : Arrays.copyOf(buf, p);
}
private char[][] nm(int n, int m) {
char[][] map = new char[n][];
for (int i = 0; i < n; i++)
map[i] = ns(m);
return map;
}
private int[] na(int n) {
int[] a = new int[n];
for (int i = 0; i < n; i++)
a[i] = ni();
return a;
}
private int ni() {
int num = 0, b;
boolean minus = false;
while ((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'))
;
if (b == '-') {
minus = true;
b = readByte();
}
while (true) {
if (b >= '0' && b <= '9') {
num = num * 10 + (b - '0');
} else {
return minus ? -num : num;
}
b = readByte();
}
}
private long nl() {
long num = 0;
int b;
boolean minus = false;
while ((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'))
;
if (b == '-') {
minus = true;
b = readByte();
}
while (true) {
if (b >= '0' && b <= '9') {
num = num * 10 + (b - '0');
} else {
return minus ? -num : num;
}
b = readByte();
}
}
private void tr(Object... o) {
if (!oj)
System.out.println(Arrays.deepToString(o));
}
}
| 4JAVA
| {
"input": [
"3\n3 2 1\n",
"3\n1 2 3\n",
"3\n2 3 1\n",
"4\n1 2 4 3\n",
"4\n2 1 4 3\n",
"10\n1 2 10 9 7 4 8 3 6 5\n",
"10\n1 7 10 6 5 2 3 8 9 4\n",
"4\n4 3 2 1\n",
"4\n2 1 3 4\n",
"10\n1 10 9 5 3 2 4 7 8 6\n",
"4\n2 3 1 4\n",
"4\n2 4 3 1\n",
"10\n1 5 10 8 4 3 9 2 7 6\n",
"4\n1 4 3 2\n",
"10\n1 8 10 6 2 4 9 3 7 5\n",
"4\n2 3 4 1\n",
"10\n2 6 10 1 9 7 4 8 5 3\n",
"4\n4 1 2 3\n",
"10\n1 9 10 5 6 7 3 8 4 2\n",
"4\n4 2 1 3\n",
"4\n3 1 4 2\n",
"10\n1 2 3 4 6 5 7 9 10 8\n",
"4\n4 3 1 2\n",
"4\n1 3 4 2\n",
"10\n2 5 10 3 6 4 9 1 8 7\n",
"10\n2 1 10 5 8 4 9 3 7 6\n",
"4\n3 1 2 4\n",
"10\n1 6 10 7 9 5 3 8 4 2\n",
"2\n1 2\n",
"10\n1 3 10 9 4 7 5 8 6 2\n",
"4\n1 3 2 4\n",
"4\n4 2 3 1\n",
"4\n3 2 1 4\n",
"4\n3 2 4 1\n",
"4\n1 2 3 4\n",
"10\n2 7 10 1 6 3 4 8 9 5\n",
"2\n2 1\n",
"4\n3 4 2 1\n",
"4\n3 4 1 2\n",
"10\n10 1 9 2 8 3 7 4 6 5\n",
"10\n1 4 10 8 9 2 3 6 7 5\n",
"10\n2 3 10 5 4 8 6 9 7 1\n",
"108\n1 102 33 99 6 83 4 20 61 100 76 71 44 9 24 87 57 2 81 82 90 85 12 30 66 53 47 36 43 29 31 64 96 84 77 23 93 78 58 68 42 55 13 70 62 19 92 14 10 65 63 75 91 48 11 105 37 50 32 94 18 26 52 89 104 106 86 97 80 95 17 72 40 22 79 103 25 101 35 51 15 98 67 5 34 69 54 27 45 88 56 16 46 60 74 108 21 41 73 39 107 59 3 8 28 49 7 38\n",
"4\n4 1 3 2\n",
"4\n2 4 1 3\n",
"10\n2 4 10 3 9 1 5 7 8 6\n",
"4\n1 4 2 3\n"
],
"output": [
"2 1\n",
"0 0\n",
"0 1\n",
"2 0\n",
"4 0\n",
"26 5\n",
"26 6\n",
"4 1\n",
"2 0\n",
"20 7\n",
"4 0\n",
"2 1\n",
"26 6\n",
"4 0\n",
"24 6\n",
"0 1\n",
"28 1\n",
"0 3\n",
"26 1\n",
"2 3\n",
"4 1\n",
"6 0\n",
"2 2\n",
"2 1\n",
"28 0\n",
"28 0\n",
"2 3\n",
"24 4\n",
"0 0\n",
"22 1\n",
"2 0\n",
"4 1\n",
"4 0\n",
"2 1\n",
"0 0\n",
"20 7\n",
"0 1\n",
"2 2\n",
"0 2\n",
"24 7\n",
"20 5\n",
"14 1\n",
"3428 30\n",
"2 3\n",
"2 2\n",
"28 0\n",
"4 0\n"
]
} | 2CODEFORCES
|
846_E. Chemistry in Berland_172 | Igor is a post-graduate student of chemistry faculty in Berland State University (BerSU). He needs to conduct a complicated experiment to write his thesis, but laboratory of BerSU doesn't contain all the materials required for this experiment.
Fortunately, chemical laws allow material transformations (yes, chemistry in Berland differs from ours). But the rules of transformation are a bit strange.
Berland chemists are aware of n materials, numbered in the order they were discovered. Each material can be transformed into some other material (or vice versa). Formally, for each i (2 ≤ i ≤ n) there exist two numbers xi and ki that denote a possible transformation: ki kilograms of material xi can be transformed into 1 kilogram of material i, and 1 kilogram of material i can be transformed into 1 kilogram of material xi. Chemical processing equipment in BerSU allows only such transformation that the amount of resulting material is always an integer number of kilograms.
For each i (1 ≤ i ≤ n) Igor knows that the experiment requires ai kilograms of material i, and the laboratory contains bi kilograms of this material. Is it possible to conduct an experiment after transforming some materials (or none)?
Input
The first line contains one integer number n (1 ≤ n ≤ 105) — the number of materials discovered by Berland chemists.
The second line contains n integer numbers b1, b2... bn (1 ≤ bi ≤ 1012) — supplies of BerSU laboratory.
The third line contains n integer numbers a1, a2... an (1 ≤ ai ≤ 1012) — the amounts required for the experiment.
Then n - 1 lines follow. j-th of them contains two numbers xj + 1 and kj + 1 that denote transformation of (j + 1)-th material (1 ≤ xj + 1 ≤ j, 1 ≤ kj + 1 ≤ 109).
Output
Print YES if it is possible to conduct an experiment. Otherwise print NO.
Examples
Input
3
1 2 3
3 2 1
1 1
1 1
Output
YES
Input
3
3 2 1
1 2 3
1 1
1 2
Output
NO | n = int(raw_input());
B = [0] + map(int,raw_input().split())
A = [0] + map(int,raw_input().split())
G = [[] for i in xrange(n+1)];
for i in xrange(2,n+1):
p,k = map(int,raw_input().split());
G[p].append([i,k]);
supply = [0 for i in xrange(n+1)];
for u in xrange(n,0,-1):
supply[u] = B[u] - A[u];
for v,k in G[u]:
tmp = supply[v];
if tmp == 0: continue;
if tmp > 0: supply[u] += tmp;
else: supply[u] += tmp*k;
if supply[u] < -10**18:
print "NO"
exit(0);
print "YES" if supply[1] >= 0 else "NO"; | 1Python2
| {
"input": [
"3\n3 2 1\n1 2 3\n1 1\n1 2\n",
"3\n1 2 3\n3 2 1\n1 1\n1 1\n",
"5\n27468 7465 74275 40573 40155\n112071 76270 244461 264202 132397\n1 777133331\n2 107454154\n3 652330694\n4 792720519\n",
"5\n78188 56310 79021 70050 65217\n115040 5149 128449 98357 36580\n1 451393770\n2 574046602\n3 590130784\n4 112514248\n",
"7\n1 1 1 1 1 1 1\n1 3000000000 3000000000 3000000000 1000000000 1000000000 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n",
"10\n2 8 6 1 2 7 6 9 2 8\n4 9 4 3 5 2 9 3 7 3\n1 8\n2 8\n3 8\n4 10\n5 1\n6 4\n7 3\n8 10\n9 2\n",
"11\n1 1 1 1 1 1 1 1 1 1 1\n1 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n",
"5\n2 1 1 2 3\n1 2 2 2 1\n1 2\n1 3\n2 4\n1 4\n",
"5\n78188 56310 33094 70050 65217\n115040 5149 128449 98357 36580\n1 451393770\n2 574046602\n3 590130784\n4 112514248\n",
"10\n2 8 6 1 2 7 6 9 2 8\n4 9 4 3 5 2 9 3 7 3\n1 8\n2 8\n3 8\n4 10\n5 1\n6 4\n7 3\n8 1\n9 2\n",
"7\n1 1 1 1 1 1 1\n1 3000000000 3000000000 3000000000 1000000000 1000000000 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n2 1000000000\n1 1000000000\n",
"11\n1 1 1 1 1 1 1 1 1 1 1\n1 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n1 1001000000\n1 1000000000\n1 1000000000\n1 1000000000\n",
"5\n2 1 1 2 3\n1 2 3 2 1\n1 2\n1 3\n2 4\n1 4\n",
"3\n3 2 1\n1 2 3\n1 1\n1 4\n",
"3\n1 2 3\n3 2 0\n1 1\n1 1\n",
"5\n78188 56310 33094 70050 65217\n115040 5149 242473 98357 36580\n1 451393770\n2 574046602\n3 590130784\n4 112514248\n",
"7\n1 1 1 1 1 1 1\n1 3000000000 3000000000 3000000000 1000000000 1000000000 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n2 1100000000\n1 1000000000\n",
"10\n2 8 6 1 2 7 5 9 2 8\n4 9 4 3 5 2 9 3 7 3\n1 8\n2 8\n3 8\n4 10\n5 1\n6 4\n7 3\n8 1\n9 2\n",
"11\n1 1 1 1 1 1 1 1 1 1 0\n1 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n1 1001000000\n1 1000000000\n1 1000000000\n1 1000000000\n",
"5\n2 1 1 2 3\n0 2 3 2 1\n1 2\n1 3\n2 4\n1 4\n",
"3\n3 2 1\n1 2 3\n1 1\n2 4\n",
"5\n78188 56310 33094 70050 65217\n794 5149 242473 98357 36580\n1 451393770\n2 574046602\n3 590130784\n4 112514248\n",
"7\n1 1 1 1 1 1 1\n1 3000000000 3000000000 3000000000 1000000000 1000000000 1000000000\n1 1000000000\n1 1000000000\n1 1000001000\n1 1000000000\n2 1100000000\n1 1000000000\n",
"10\n2 8 6 1 2 7 6 9 2 8\n4 9 4 5 5 2 9 3 7 3\n1 8\n2 8\n3 8\n4 10\n5 1\n6 4\n7 3\n8 1\n9 2\n",
"11\n1 1 1 1 1 1 1 1 1 1 0\n1 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n2 1000000000\n1 1000000000\n1 1001000000\n1 1000000000\n1 1000000000\n1 1000000000\n",
"5\n2 1 1 2 0\n0 2 3 2 1\n1 2\n1 3\n2 4\n1 4\n",
"3\n3 0 1\n1 2 3\n1 1\n2 4\n",
"5\n78188 56310 33094 70050 65217\n794 5149 242473 98357 68104\n1 451393770\n2 574046602\n3 590130784\n4 112514248\n",
"7\n1 1 1 1 1 1 1\n1 3000000000 1703548480 3000000000 1000000000 1000000000 1000000000\n1 1000000000\n1 1000000000\n1 1000001000\n1 1000000000\n2 1100000000\n1 1000000000\n",
"10\n2 8 6 1 2 7 6 9 2 8\n4 9 4 5 5 2 9 3 7 3\n1 8\n2 8\n3 8\n4 10\n4 1\n6 4\n7 3\n8 1\n9 2\n",
"11\n1 1 1 1 1 1 1 1 1 1 0\n1 1000000001 1000000001 1000000000 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n2 1000000000\n1 1000000000\n1 1001000000\n1 1000000000\n1 1000000000\n1 1000000000\n",
"5\n2 1 1 2 0\n0 2 3 2 1\n1 2\n1 3\n2 4\n2 4\n",
"7\n1 1 1 1 1 1 1\n1 3000000000 1703548480 3000000000 1000000000 1000000001 1000000000\n1 1000000000\n1 1000000000\n1 1000001000\n1 1000000000\n2 1100000000\n1 1000000000\n",
"10\n2 8 6 1 2 7 6 9 2 8\n4 9 4 9 5 2 9 3 7 3\n1 8\n2 8\n3 8\n4 10\n4 1\n6 4\n7 3\n8 1\n9 2\n",
"11\n1 1 1 1 1 1 1 1 1 1 0\n1 1000000001 1000000001 1000000000 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n2 1010000000\n1 1000000000\n1 1001000000\n1 1000000000\n1 1000000000\n1 1000000000\n",
"10\n2 8 6 1 2 7 6 9 2 8\n4 9 4 9 5 2 9 3 7 3\n1 8\n2 16\n3 8\n4 10\n4 1\n6 4\n7 3\n8 1\n9 2\n",
"11\n1 1 1 1 1 1 1 0 1 1 0\n1 1000000001 1000000001 1000000000 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n2 1010000000\n1 1000000000\n1 1001000000\n1 1000000000\n1 1000000000\n1 1000000000\n",
"10\n2 8 6 1 2 7 6 9 2 8\n4 9 4 9 5 2 9 3 7 3\n1 8\n2 16\n3 6\n4 10\n4 1\n6 4\n7 3\n8 1\n9 2\n",
"11\n1 1 1 1 1 1 1 0 1 1 0\n1 1000000001 1000000001 1000000000 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001\n1 1000000100\n1 1000000000\n1 1000000000\n1 1000000000\n2 1010000000\n1 1000000000\n1 1001000000\n1 1000000000\n1 1000000000\n1 1000000000\n",
"10\n2 8 6 1 2 7 6 9 2 8\n4 9 4 9 5 2 9 3 7 3\n1 8\n2 16\n3 6\n4 10\n4 1\n6 4\n7 3\n8 2\n9 2\n",
"10\n2 16 6 1 2 7 6 9 2 8\n4 9 4 9 5 2 9 3 7 3\n1 8\n2 16\n3 6\n4 10\n4 1\n6 4\n7 3\n8 2\n9 2\n",
"10\n2 16 6 1 2 7 6 17 2 8\n4 9 4 9 5 2 9 3 7 3\n1 8\n2 16\n3 6\n4 10\n4 1\n6 4\n7 3\n8 2\n9 2\n",
"10\n2 16 6 1 2 7 6 17 2 8\n4 9 4 9 5 2 9 3 7 3\n1 8\n2 12\n3 6\n4 10\n4 1\n6 4\n7 3\n8 2\n9 2\n",
"10\n2 16 6 1 2 7 6 17 2 8\n4 9 4 9 5 2 9 3 7 3\n1 8\n2 12\n3 6\n1 10\n4 1\n6 4\n7 3\n8 2\n9 2\n",
"10\n2 16 6 1 2 7 6 17 2 16\n4 9 4 9 5 2 9 3 7 3\n1 8\n2 12\n3 6\n1 10\n4 1\n6 4\n7 3\n8 2\n9 2\n",
"5\n27468 7465 74275 40573 40155\n112071 76270 244461 264202 132397\n1 777133331\n2 107454154\n3 499695208\n4 792720519\n",
"5\n78188 61083 79021 70050 65217\n115040 5149 128449 98357 36580\n1 451393770\n2 574046602\n3 590130784\n4 112514248\n",
"7\n1 1 1 1 1 1 1\n1 3000000000 3000000000 3000000000 1000000000 1000000000 1000000000\n1 1000000000\n1 1000000000\n1 1000010000\n1 1000000000\n1 1000000000\n1 1000000000\n",
"10\n2 8 6 1 2 7 6 9 2 8\n4 9 4 3 5 2 6 3 7 3\n1 8\n2 8\n3 8\n4 10\n5 1\n6 4\n7 3\n8 10\n9 2\n",
"5\n2 1 1 2 3\n1 2 0 2 1\n1 2\n1 3\n2 4\n1 4\n",
"5\n78188 56310 33094 70050 65217\n115040 7476 128449 98357 36580\n1 451393770\n2 574046602\n3 590130784\n4 112514248\n",
"7\n1 1 1 1 1 1 1\n1 1235445348 3000000000 3000000000 1000000000 1000000000 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n2 1000000000\n1 1000000000\n",
"10\n2 8 6 1 2 7 6 9 2 8\n4 9 4 3 5 3 9 3 7 3\n1 8\n2 8\n3 8\n4 10\n5 1\n6 4\n7 3\n8 1\n9 2\n",
"11\n1 1 1 1 1 1 1 1 1 1 1\n1 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n1 1001000000\n2 1000000000\n1 1000000000\n1 1000000000\n",
"5\n2 1 1 2 3\n1 2 3 2 1\n1 3\n1 3\n2 4\n1 4\n",
"5\n78188 56310 33094 70050 65217\n115040 5149 242473 98357 36580\n1 451393770\n2 574046602\n1 590130784\n4 112514248\n",
"7\n1 1 1 1 1 1 1\n1 3000000000 3000000000 3000000000 1000000000 1000000000 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000001\n2 1100000000\n1 1000000000\n",
"10\n2 8 6 1 2 7 5 9 4 8\n4 9 4 3 5 2 9 3 7 3\n1 8\n2 8\n3 8\n4 10\n5 1\n6 4\n7 3\n8 1\n9 2\n"
],
"output": [
"NO\n",
"YES\n",
"NO\n",
"NO\n",
"NO\n",
"YES\n",
"NO\n",
"NO\n",
"NO\n",
"YES\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"YES\n",
"NO\n",
"NO\n",
"YES\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"YES\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"YES\n",
"YES\n",
"NO\n",
"NO\n",
"YES\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"YES\n"
]
} | 2CODEFORCES
|
846_E. Chemistry in Berland_173 | Igor is a post-graduate student of chemistry faculty in Berland State University (BerSU). He needs to conduct a complicated experiment to write his thesis, but laboratory of BerSU doesn't contain all the materials required for this experiment.
Fortunately, chemical laws allow material transformations (yes, chemistry in Berland differs from ours). But the rules of transformation are a bit strange.
Berland chemists are aware of n materials, numbered in the order they were discovered. Each material can be transformed into some other material (or vice versa). Formally, for each i (2 ≤ i ≤ n) there exist two numbers xi and ki that denote a possible transformation: ki kilograms of material xi can be transformed into 1 kilogram of material i, and 1 kilogram of material i can be transformed into 1 kilogram of material xi. Chemical processing equipment in BerSU allows only such transformation that the amount of resulting material is always an integer number of kilograms.
For each i (1 ≤ i ≤ n) Igor knows that the experiment requires ai kilograms of material i, and the laboratory contains bi kilograms of this material. Is it possible to conduct an experiment after transforming some materials (or none)?
Input
The first line contains one integer number n (1 ≤ n ≤ 105) — the number of materials discovered by Berland chemists.
The second line contains n integer numbers b1, b2... bn (1 ≤ bi ≤ 1012) — supplies of BerSU laboratory.
The third line contains n integer numbers a1, a2... an (1 ≤ ai ≤ 1012) — the amounts required for the experiment.
Then n - 1 lines follow. j-th of them contains two numbers xj + 1 and kj + 1 that denote transformation of (j + 1)-th material (1 ≤ xj + 1 ≤ j, 1 ≤ kj + 1 ≤ 109).
Output
Print YES if it is possible to conduct an experiment. Otherwise print NO.
Examples
Input
3
1 2 3
3 2 1
1 1
1 1
Output
YES
Input
3
3 2 1
1 2 3
1 1
1 2
Output
NO | #include <bits/stdc++.h>
const double Pi = acos(-1.0);
using namespace std;
const int maxN = 100005;
const long long inf = (long long)1e15;
int n;
long long b[maxN];
long long k[maxN];
long long req[maxN];
vector<int> G[maxN];
void dfs(int cur) {
for (int i = 0; i < (int)G[cur].size(); i++) {
int nxt = G[cur][i];
dfs(nxt);
if (req[nxt] < 0) {
if (inf / k[nxt] < (-req[nxt])) {
puts("NO");
exit(0);
}
req[cur] += k[nxt] * req[nxt];
} else
req[cur] += req[nxt];
}
}
int main(int argc, char** argv) {
scanf("%d", &n);
for (int i = 1; i <= n; i++) scanf("%lld", &b[i]);
long long a;
for (int i = 1; i <= n; i++) {
scanf("%lld", &a);
req[i] = b[i] - a;
}
int x;
for (int i = 2; i <= n; i++) {
scanf("%d %lld", &x, &k[i]);
G[x].push_back(i);
}
dfs(1);
puts((req[1] < 0) ? "NO" : "YES");
return 0;
}
| 2C++
| {
"input": [
"3\n3 2 1\n1 2 3\n1 1\n1 2\n",
"3\n1 2 3\n3 2 1\n1 1\n1 1\n",
"5\n27468 7465 74275 40573 40155\n112071 76270 244461 264202 132397\n1 777133331\n2 107454154\n3 652330694\n4 792720519\n",
"5\n78188 56310 79021 70050 65217\n115040 5149 128449 98357 36580\n1 451393770\n2 574046602\n3 590130784\n4 112514248\n",
"7\n1 1 1 1 1 1 1\n1 3000000000 3000000000 3000000000 1000000000 1000000000 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n",
"10\n2 8 6 1 2 7 6 9 2 8\n4 9 4 3 5 2 9 3 7 3\n1 8\n2 8\n3 8\n4 10\n5 1\n6 4\n7 3\n8 10\n9 2\n",
"11\n1 1 1 1 1 1 1 1 1 1 1\n1 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n",
"5\n2 1 1 2 3\n1 2 2 2 1\n1 2\n1 3\n2 4\n1 4\n",
"5\n78188 56310 33094 70050 65217\n115040 5149 128449 98357 36580\n1 451393770\n2 574046602\n3 590130784\n4 112514248\n",
"10\n2 8 6 1 2 7 6 9 2 8\n4 9 4 3 5 2 9 3 7 3\n1 8\n2 8\n3 8\n4 10\n5 1\n6 4\n7 3\n8 1\n9 2\n",
"7\n1 1 1 1 1 1 1\n1 3000000000 3000000000 3000000000 1000000000 1000000000 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n2 1000000000\n1 1000000000\n",
"11\n1 1 1 1 1 1 1 1 1 1 1\n1 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n1 1001000000\n1 1000000000\n1 1000000000\n1 1000000000\n",
"5\n2 1 1 2 3\n1 2 3 2 1\n1 2\n1 3\n2 4\n1 4\n",
"3\n3 2 1\n1 2 3\n1 1\n1 4\n",
"3\n1 2 3\n3 2 0\n1 1\n1 1\n",
"5\n78188 56310 33094 70050 65217\n115040 5149 242473 98357 36580\n1 451393770\n2 574046602\n3 590130784\n4 112514248\n",
"7\n1 1 1 1 1 1 1\n1 3000000000 3000000000 3000000000 1000000000 1000000000 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n2 1100000000\n1 1000000000\n",
"10\n2 8 6 1 2 7 5 9 2 8\n4 9 4 3 5 2 9 3 7 3\n1 8\n2 8\n3 8\n4 10\n5 1\n6 4\n7 3\n8 1\n9 2\n",
"11\n1 1 1 1 1 1 1 1 1 1 0\n1 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n1 1001000000\n1 1000000000\n1 1000000000\n1 1000000000\n",
"5\n2 1 1 2 3\n0 2 3 2 1\n1 2\n1 3\n2 4\n1 4\n",
"3\n3 2 1\n1 2 3\n1 1\n2 4\n",
"5\n78188 56310 33094 70050 65217\n794 5149 242473 98357 36580\n1 451393770\n2 574046602\n3 590130784\n4 112514248\n",
"7\n1 1 1 1 1 1 1\n1 3000000000 3000000000 3000000000 1000000000 1000000000 1000000000\n1 1000000000\n1 1000000000\n1 1000001000\n1 1000000000\n2 1100000000\n1 1000000000\n",
"10\n2 8 6 1 2 7 6 9 2 8\n4 9 4 5 5 2 9 3 7 3\n1 8\n2 8\n3 8\n4 10\n5 1\n6 4\n7 3\n8 1\n9 2\n",
"11\n1 1 1 1 1 1 1 1 1 1 0\n1 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n2 1000000000\n1 1000000000\n1 1001000000\n1 1000000000\n1 1000000000\n1 1000000000\n",
"5\n2 1 1 2 0\n0 2 3 2 1\n1 2\n1 3\n2 4\n1 4\n",
"3\n3 0 1\n1 2 3\n1 1\n2 4\n",
"5\n78188 56310 33094 70050 65217\n794 5149 242473 98357 68104\n1 451393770\n2 574046602\n3 590130784\n4 112514248\n",
"7\n1 1 1 1 1 1 1\n1 3000000000 1703548480 3000000000 1000000000 1000000000 1000000000\n1 1000000000\n1 1000000000\n1 1000001000\n1 1000000000\n2 1100000000\n1 1000000000\n",
"10\n2 8 6 1 2 7 6 9 2 8\n4 9 4 5 5 2 9 3 7 3\n1 8\n2 8\n3 8\n4 10\n4 1\n6 4\n7 3\n8 1\n9 2\n",
"11\n1 1 1 1 1 1 1 1 1 1 0\n1 1000000001 1000000001 1000000000 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n2 1000000000\n1 1000000000\n1 1001000000\n1 1000000000\n1 1000000000\n1 1000000000\n",
"5\n2 1 1 2 0\n0 2 3 2 1\n1 2\n1 3\n2 4\n2 4\n",
"7\n1 1 1 1 1 1 1\n1 3000000000 1703548480 3000000000 1000000000 1000000001 1000000000\n1 1000000000\n1 1000000000\n1 1000001000\n1 1000000000\n2 1100000000\n1 1000000000\n",
"10\n2 8 6 1 2 7 6 9 2 8\n4 9 4 9 5 2 9 3 7 3\n1 8\n2 8\n3 8\n4 10\n4 1\n6 4\n7 3\n8 1\n9 2\n",
"11\n1 1 1 1 1 1 1 1 1 1 0\n1 1000000001 1000000001 1000000000 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n2 1010000000\n1 1000000000\n1 1001000000\n1 1000000000\n1 1000000000\n1 1000000000\n",
"10\n2 8 6 1 2 7 6 9 2 8\n4 9 4 9 5 2 9 3 7 3\n1 8\n2 16\n3 8\n4 10\n4 1\n6 4\n7 3\n8 1\n9 2\n",
"11\n1 1 1 1 1 1 1 0 1 1 0\n1 1000000001 1000000001 1000000000 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n2 1010000000\n1 1000000000\n1 1001000000\n1 1000000000\n1 1000000000\n1 1000000000\n",
"10\n2 8 6 1 2 7 6 9 2 8\n4 9 4 9 5 2 9 3 7 3\n1 8\n2 16\n3 6\n4 10\n4 1\n6 4\n7 3\n8 1\n9 2\n",
"11\n1 1 1 1 1 1 1 0 1 1 0\n1 1000000001 1000000001 1000000000 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001\n1 1000000100\n1 1000000000\n1 1000000000\n1 1000000000\n2 1010000000\n1 1000000000\n1 1001000000\n1 1000000000\n1 1000000000\n1 1000000000\n",
"10\n2 8 6 1 2 7 6 9 2 8\n4 9 4 9 5 2 9 3 7 3\n1 8\n2 16\n3 6\n4 10\n4 1\n6 4\n7 3\n8 2\n9 2\n",
"10\n2 16 6 1 2 7 6 9 2 8\n4 9 4 9 5 2 9 3 7 3\n1 8\n2 16\n3 6\n4 10\n4 1\n6 4\n7 3\n8 2\n9 2\n",
"10\n2 16 6 1 2 7 6 17 2 8\n4 9 4 9 5 2 9 3 7 3\n1 8\n2 16\n3 6\n4 10\n4 1\n6 4\n7 3\n8 2\n9 2\n",
"10\n2 16 6 1 2 7 6 17 2 8\n4 9 4 9 5 2 9 3 7 3\n1 8\n2 12\n3 6\n4 10\n4 1\n6 4\n7 3\n8 2\n9 2\n",
"10\n2 16 6 1 2 7 6 17 2 8\n4 9 4 9 5 2 9 3 7 3\n1 8\n2 12\n3 6\n1 10\n4 1\n6 4\n7 3\n8 2\n9 2\n",
"10\n2 16 6 1 2 7 6 17 2 16\n4 9 4 9 5 2 9 3 7 3\n1 8\n2 12\n3 6\n1 10\n4 1\n6 4\n7 3\n8 2\n9 2\n",
"5\n27468 7465 74275 40573 40155\n112071 76270 244461 264202 132397\n1 777133331\n2 107454154\n3 499695208\n4 792720519\n",
"5\n78188 61083 79021 70050 65217\n115040 5149 128449 98357 36580\n1 451393770\n2 574046602\n3 590130784\n4 112514248\n",
"7\n1 1 1 1 1 1 1\n1 3000000000 3000000000 3000000000 1000000000 1000000000 1000000000\n1 1000000000\n1 1000000000\n1 1000010000\n1 1000000000\n1 1000000000\n1 1000000000\n",
"10\n2 8 6 1 2 7 6 9 2 8\n4 9 4 3 5 2 6 3 7 3\n1 8\n2 8\n3 8\n4 10\n5 1\n6 4\n7 3\n8 10\n9 2\n",
"5\n2 1 1 2 3\n1 2 0 2 1\n1 2\n1 3\n2 4\n1 4\n",
"5\n78188 56310 33094 70050 65217\n115040 7476 128449 98357 36580\n1 451393770\n2 574046602\n3 590130784\n4 112514248\n",
"7\n1 1 1 1 1 1 1\n1 1235445348 3000000000 3000000000 1000000000 1000000000 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n2 1000000000\n1 1000000000\n",
"10\n2 8 6 1 2 7 6 9 2 8\n4 9 4 3 5 3 9 3 7 3\n1 8\n2 8\n3 8\n4 10\n5 1\n6 4\n7 3\n8 1\n9 2\n",
"11\n1 1 1 1 1 1 1 1 1 1 1\n1 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n1 1001000000\n2 1000000000\n1 1000000000\n1 1000000000\n",
"5\n2 1 1 2 3\n1 2 3 2 1\n1 3\n1 3\n2 4\n1 4\n",
"5\n78188 56310 33094 70050 65217\n115040 5149 242473 98357 36580\n1 451393770\n2 574046602\n1 590130784\n4 112514248\n",
"7\n1 1 1 1 1 1 1\n1 3000000000 3000000000 3000000000 1000000000 1000000000 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000001\n2 1100000000\n1 1000000000\n",
"10\n2 8 6 1 2 7 5 9 4 8\n4 9 4 3 5 2 9 3 7 3\n1 8\n2 8\n3 8\n4 10\n5 1\n6 4\n7 3\n8 1\n9 2\n"
],
"output": [
"NO\n",
"YES\n",
"NO\n",
"NO\n",
"NO\n",
"YES\n",
"NO\n",
"NO\n",
"NO\n",
"YES\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"YES\n",
"NO\n",
"NO\n",
"YES\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"YES\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"YES\n",
"YES\n",
"NO\n",
"NO\n",
"YES\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"YES\n"
]
} | 2CODEFORCES
|
846_E. Chemistry in Berland_174 | Igor is a post-graduate student of chemistry faculty in Berland State University (BerSU). He needs to conduct a complicated experiment to write his thesis, but laboratory of BerSU doesn't contain all the materials required for this experiment.
Fortunately, chemical laws allow material transformations (yes, chemistry in Berland differs from ours). But the rules of transformation are a bit strange.
Berland chemists are aware of n materials, numbered in the order they were discovered. Each material can be transformed into some other material (or vice versa). Formally, for each i (2 ≤ i ≤ n) there exist two numbers xi and ki that denote a possible transformation: ki kilograms of material xi can be transformed into 1 kilogram of material i, and 1 kilogram of material i can be transformed into 1 kilogram of material xi. Chemical processing equipment in BerSU allows only such transformation that the amount of resulting material is always an integer number of kilograms.
For each i (1 ≤ i ≤ n) Igor knows that the experiment requires ai kilograms of material i, and the laboratory contains bi kilograms of this material. Is it possible to conduct an experiment after transforming some materials (or none)?
Input
The first line contains one integer number n (1 ≤ n ≤ 105) — the number of materials discovered by Berland chemists.
The second line contains n integer numbers b1, b2... bn (1 ≤ bi ≤ 1012) — supplies of BerSU laboratory.
The third line contains n integer numbers a1, a2... an (1 ≤ ai ≤ 1012) — the amounts required for the experiment.
Then n - 1 lines follow. j-th of them contains two numbers xj + 1 and kj + 1 that denote transformation of (j + 1)-th material (1 ≤ xj + 1 ≤ j, 1 ≤ kj + 1 ≤ 109).
Output
Print YES if it is possible to conduct an experiment. Otherwise print NO.
Examples
Input
3
1 2 3
3 2 1
1 1
1 1
Output
YES
Input
3
3 2 1
1 2 3
1 1
1 2
Output
NO | import sys
# @profile
def main():
f = sys.stdin
# f = open('input.txt', 'r')
# fo = open('log.txt', 'w')
n = int(f.readline())
# b = []
# for i in range(n):
# b.append()
b = list(map(int, f.readline().strip().split(' ')))
a = list(map(int, f.readline().strip().split(' ')))
# return
b = [b[i] - a[i] for i in range(n)]
c = [[0, 0]]
for i in range(n - 1):
line = f.readline().strip().split(' ')
c.append([int(line[0]), int(line[1])])
# print(c)
for i in range(n - 1, 0, -1):
# print(i)
fa = c[i][0] - 1
if b[i] >= 0:
b[fa] += b[i]
else:
b[fa] += b[i] * c[i][1]
if b[fa] < -1e17:
print('NO')
return 0
# for x in b:
# fo.write(str(x) + '\n')
if b[0] >= 0:
print('YES')
else:
print('NO')
main()
| 3Python3
| {
"input": [
"3\n3 2 1\n1 2 3\n1 1\n1 2\n",
"3\n1 2 3\n3 2 1\n1 1\n1 1\n",
"5\n27468 7465 74275 40573 40155\n112071 76270 244461 264202 132397\n1 777133331\n2 107454154\n3 652330694\n4 792720519\n",
"5\n78188 56310 79021 70050 65217\n115040 5149 128449 98357 36580\n1 451393770\n2 574046602\n3 590130784\n4 112514248\n",
"7\n1 1 1 1 1 1 1\n1 3000000000 3000000000 3000000000 1000000000 1000000000 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n",
"10\n2 8 6 1 2 7 6 9 2 8\n4 9 4 3 5 2 9 3 7 3\n1 8\n2 8\n3 8\n4 10\n5 1\n6 4\n7 3\n8 10\n9 2\n",
"11\n1 1 1 1 1 1 1 1 1 1 1\n1 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n",
"5\n2 1 1 2 3\n1 2 2 2 1\n1 2\n1 3\n2 4\n1 4\n",
"5\n78188 56310 33094 70050 65217\n115040 5149 128449 98357 36580\n1 451393770\n2 574046602\n3 590130784\n4 112514248\n",
"10\n2 8 6 1 2 7 6 9 2 8\n4 9 4 3 5 2 9 3 7 3\n1 8\n2 8\n3 8\n4 10\n5 1\n6 4\n7 3\n8 1\n9 2\n",
"7\n1 1 1 1 1 1 1\n1 3000000000 3000000000 3000000000 1000000000 1000000000 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n2 1000000000\n1 1000000000\n",
"11\n1 1 1 1 1 1 1 1 1 1 1\n1 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n1 1001000000\n1 1000000000\n1 1000000000\n1 1000000000\n",
"5\n2 1 1 2 3\n1 2 3 2 1\n1 2\n1 3\n2 4\n1 4\n",
"3\n3 2 1\n1 2 3\n1 1\n1 4\n",
"3\n1 2 3\n3 2 0\n1 1\n1 1\n",
"5\n78188 56310 33094 70050 65217\n115040 5149 242473 98357 36580\n1 451393770\n2 574046602\n3 590130784\n4 112514248\n",
"7\n1 1 1 1 1 1 1\n1 3000000000 3000000000 3000000000 1000000000 1000000000 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n2 1100000000\n1 1000000000\n",
"10\n2 8 6 1 2 7 5 9 2 8\n4 9 4 3 5 2 9 3 7 3\n1 8\n2 8\n3 8\n4 10\n5 1\n6 4\n7 3\n8 1\n9 2\n",
"11\n1 1 1 1 1 1 1 1 1 1 0\n1 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n1 1001000000\n1 1000000000\n1 1000000000\n1 1000000000\n",
"5\n2 1 1 2 3\n0 2 3 2 1\n1 2\n1 3\n2 4\n1 4\n",
"3\n3 2 1\n1 2 3\n1 1\n2 4\n",
"5\n78188 56310 33094 70050 65217\n794 5149 242473 98357 36580\n1 451393770\n2 574046602\n3 590130784\n4 112514248\n",
"7\n1 1 1 1 1 1 1\n1 3000000000 3000000000 3000000000 1000000000 1000000000 1000000000\n1 1000000000\n1 1000000000\n1 1000001000\n1 1000000000\n2 1100000000\n1 1000000000\n",
"10\n2 8 6 1 2 7 6 9 2 8\n4 9 4 5 5 2 9 3 7 3\n1 8\n2 8\n3 8\n4 10\n5 1\n6 4\n7 3\n8 1\n9 2\n",
"11\n1 1 1 1 1 1 1 1 1 1 0\n1 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n2 1000000000\n1 1000000000\n1 1001000000\n1 1000000000\n1 1000000000\n1 1000000000\n",
"5\n2 1 1 2 0\n0 2 3 2 1\n1 2\n1 3\n2 4\n1 4\n",
"3\n3 0 1\n1 2 3\n1 1\n2 4\n",
"5\n78188 56310 33094 70050 65217\n794 5149 242473 98357 68104\n1 451393770\n2 574046602\n3 590130784\n4 112514248\n",
"7\n1 1 1 1 1 1 1\n1 3000000000 1703548480 3000000000 1000000000 1000000000 1000000000\n1 1000000000\n1 1000000000\n1 1000001000\n1 1000000000\n2 1100000000\n1 1000000000\n",
"10\n2 8 6 1 2 7 6 9 2 8\n4 9 4 5 5 2 9 3 7 3\n1 8\n2 8\n3 8\n4 10\n4 1\n6 4\n7 3\n8 1\n9 2\n",
"11\n1 1 1 1 1 1 1 1 1 1 0\n1 1000000001 1000000001 1000000000 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n2 1000000000\n1 1000000000\n1 1001000000\n1 1000000000\n1 1000000000\n1 1000000000\n",
"5\n2 1 1 2 0\n0 2 3 2 1\n1 2\n1 3\n2 4\n2 4\n",
"7\n1 1 1 1 1 1 1\n1 3000000000 1703548480 3000000000 1000000000 1000000001 1000000000\n1 1000000000\n1 1000000000\n1 1000001000\n1 1000000000\n2 1100000000\n1 1000000000\n",
"10\n2 8 6 1 2 7 6 9 2 8\n4 9 4 9 5 2 9 3 7 3\n1 8\n2 8\n3 8\n4 10\n4 1\n6 4\n7 3\n8 1\n9 2\n",
"11\n1 1 1 1 1 1 1 1 1 1 0\n1 1000000001 1000000001 1000000000 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n2 1010000000\n1 1000000000\n1 1001000000\n1 1000000000\n1 1000000000\n1 1000000000\n",
"10\n2 8 6 1 2 7 6 9 2 8\n4 9 4 9 5 2 9 3 7 3\n1 8\n2 16\n3 8\n4 10\n4 1\n6 4\n7 3\n8 1\n9 2\n",
"11\n1 1 1 1 1 1 1 0 1 1 0\n1 1000000001 1000000001 1000000000 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n2 1010000000\n1 1000000000\n1 1001000000\n1 1000000000\n1 1000000000\n1 1000000000\n",
"10\n2 8 6 1 2 7 6 9 2 8\n4 9 4 9 5 2 9 3 7 3\n1 8\n2 16\n3 6\n4 10\n4 1\n6 4\n7 3\n8 1\n9 2\n",
"11\n1 1 1 1 1 1 1 0 1 1 0\n1 1000000001 1000000001 1000000000 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001\n1 1000000100\n1 1000000000\n1 1000000000\n1 1000000000\n2 1010000000\n1 1000000000\n1 1001000000\n1 1000000000\n1 1000000000\n1 1000000000\n",
"10\n2 8 6 1 2 7 6 9 2 8\n4 9 4 9 5 2 9 3 7 3\n1 8\n2 16\n3 6\n4 10\n4 1\n6 4\n7 3\n8 2\n9 2\n",
"10\n2 16 6 1 2 7 6 9 2 8\n4 9 4 9 5 2 9 3 7 3\n1 8\n2 16\n3 6\n4 10\n4 1\n6 4\n7 3\n8 2\n9 2\n",
"10\n2 16 6 1 2 7 6 17 2 8\n4 9 4 9 5 2 9 3 7 3\n1 8\n2 16\n3 6\n4 10\n4 1\n6 4\n7 3\n8 2\n9 2\n",
"10\n2 16 6 1 2 7 6 17 2 8\n4 9 4 9 5 2 9 3 7 3\n1 8\n2 12\n3 6\n4 10\n4 1\n6 4\n7 3\n8 2\n9 2\n",
"10\n2 16 6 1 2 7 6 17 2 8\n4 9 4 9 5 2 9 3 7 3\n1 8\n2 12\n3 6\n1 10\n4 1\n6 4\n7 3\n8 2\n9 2\n",
"10\n2 16 6 1 2 7 6 17 2 16\n4 9 4 9 5 2 9 3 7 3\n1 8\n2 12\n3 6\n1 10\n4 1\n6 4\n7 3\n8 2\n9 2\n",
"5\n27468 7465 74275 40573 40155\n112071 76270 244461 264202 132397\n1 777133331\n2 107454154\n3 499695208\n4 792720519\n",
"5\n78188 61083 79021 70050 65217\n115040 5149 128449 98357 36580\n1 451393770\n2 574046602\n3 590130784\n4 112514248\n",
"7\n1 1 1 1 1 1 1\n1 3000000000 3000000000 3000000000 1000000000 1000000000 1000000000\n1 1000000000\n1 1000000000\n1 1000010000\n1 1000000000\n1 1000000000\n1 1000000000\n",
"10\n2 8 6 1 2 7 6 9 2 8\n4 9 4 3 5 2 6 3 7 3\n1 8\n2 8\n3 8\n4 10\n5 1\n6 4\n7 3\n8 10\n9 2\n",
"5\n2 1 1 2 3\n1 2 0 2 1\n1 2\n1 3\n2 4\n1 4\n",
"5\n78188 56310 33094 70050 65217\n115040 7476 128449 98357 36580\n1 451393770\n2 574046602\n3 590130784\n4 112514248\n",
"7\n1 1 1 1 1 1 1\n1 1235445348 3000000000 3000000000 1000000000 1000000000 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n2 1000000000\n1 1000000000\n",
"10\n2 8 6 1 2 7 6 9 2 8\n4 9 4 3 5 3 9 3 7 3\n1 8\n2 8\n3 8\n4 10\n5 1\n6 4\n7 3\n8 1\n9 2\n",
"11\n1 1 1 1 1 1 1 1 1 1 1\n1 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n1 1001000000\n2 1000000000\n1 1000000000\n1 1000000000\n",
"5\n2 1 1 2 3\n1 2 3 2 1\n1 3\n1 3\n2 4\n1 4\n",
"5\n78188 56310 33094 70050 65217\n115040 5149 242473 98357 36580\n1 451393770\n2 574046602\n1 590130784\n4 112514248\n",
"7\n1 1 1 1 1 1 1\n1 3000000000 3000000000 3000000000 1000000000 1000000000 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000001\n2 1100000000\n1 1000000000\n",
"10\n2 8 6 1 2 7 5 9 4 8\n4 9 4 3 5 2 9 3 7 3\n1 8\n2 8\n3 8\n4 10\n5 1\n6 4\n7 3\n8 1\n9 2\n"
],
"output": [
"NO\n",
"YES\n",
"NO\n",
"NO\n",
"NO\n",
"YES\n",
"NO\n",
"NO\n",
"NO\n",
"YES\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"YES\n",
"NO\n",
"NO\n",
"YES\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"YES\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"YES\n",
"YES\n",
"NO\n",
"NO\n",
"YES\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"YES\n"
]
} | 2CODEFORCES
|
846_E. Chemistry in Berland_175 | Igor is a post-graduate student of chemistry faculty in Berland State University (BerSU). He needs to conduct a complicated experiment to write his thesis, but laboratory of BerSU doesn't contain all the materials required for this experiment.
Fortunately, chemical laws allow material transformations (yes, chemistry in Berland differs from ours). But the rules of transformation are a bit strange.
Berland chemists are aware of n materials, numbered in the order they were discovered. Each material can be transformed into some other material (or vice versa). Formally, for each i (2 ≤ i ≤ n) there exist two numbers xi and ki that denote a possible transformation: ki kilograms of material xi can be transformed into 1 kilogram of material i, and 1 kilogram of material i can be transformed into 1 kilogram of material xi. Chemical processing equipment in BerSU allows only such transformation that the amount of resulting material is always an integer number of kilograms.
For each i (1 ≤ i ≤ n) Igor knows that the experiment requires ai kilograms of material i, and the laboratory contains bi kilograms of this material. Is it possible to conduct an experiment after transforming some materials (or none)?
Input
The first line contains one integer number n (1 ≤ n ≤ 105) — the number of materials discovered by Berland chemists.
The second line contains n integer numbers b1, b2... bn (1 ≤ bi ≤ 1012) — supplies of BerSU laboratory.
The third line contains n integer numbers a1, a2... an (1 ≤ ai ≤ 1012) — the amounts required for the experiment.
Then n - 1 lines follow. j-th of them contains two numbers xj + 1 and kj + 1 that denote transformation of (j + 1)-th material (1 ≤ xj + 1 ≤ j, 1 ≤ kj + 1 ≤ 109).
Output
Print YES if it is possible to conduct an experiment. Otherwise print NO.
Examples
Input
3
1 2 3
3 2 1
1 1
1 1
Output
YES
Input
3
3 2 1
1 2 3
1 1
1 2
Output
NO | import java.io.*;
import java.math.BigInteger;
import java.util.*;
import java.util.stream.IntStream;
public class Solution {
static MyScanner sc;
private static PrintWriter out;
public static void main(String[] s) throws Exception {
StringBuilder stringBuilder = new StringBuilder();
//
// stringBuilder.append("3\n" +
// "3 2 1\n" +
// "1 2 3\n" +
// "1 1\n" +
// "1 2");
if (stringBuilder.length() == 0) {
sc = new MyScanner(System.in);
} else {
sc = new MyScanner(new BufferedReader(new StringReader(stringBuilder.toString())));
}
out = new PrintWriter(new OutputStreamWriter(System.out));
long t = System.currentTimeMillis();
solve();
out.flush();
}
private static void solve() {
int n = sc.nextInt();
long[] s = sc.nl(n);
long[] d = sc.nl(n);
int[][] tr = new int[n - 1][2];
for (int l = 0; l < n - 1; l++) {
tr[l][0] = sc.nextInt() - 1;
tr[l][1] = sc.nextInt();
}
BigInteger min = BigInteger.valueOf(Long.MIN_VALUE);
for (int r = n - 1; r > 0; r--) {
long diff = s[r] - d[r];
if (diff > 0) {
s[tr[r - 1][0]] += diff;
} else {
BigInteger l2 = BigInteger.valueOf(tr[r - 1][1]);
l2 = l2.multiply(BigInteger.valueOf(diff));
l2 = l2.add(BigInteger.valueOf(s[tr[r - 1][0]]));
if (min.compareTo(l2) > 0) {
out.println("NO");
return;
}
s[tr[r - 1][0]] = l2.longValue();
}
}
if (s[0] >= d[0]) {
out.println("YES");
} else {
out.println("NO");
}
}
private static void solveT() {
int t = sc.nextInt();
while (t-- > 0) {
solve();
}
}
private static long gcd(long l, long l1) {
if (l > l1) return gcd(l1, l);
if (l == 0) return l1;
return gcd(l1 % l, l);
}
private static long pow(long a, long b, long m) {
if (b == 0) return 1;
if (b == 1) return a;
long pp = pow(a, b / 2, m);
pp *= pp;
pp %= m;
return (pp * (b % 2 == 0 ? 1 : a)) % m;
}
static class MyScanner {
BufferedReader br;
StringTokenizer st;
MyScanner(BufferedReader br) {
this.br = br;
}
public MyScanner(InputStream in) {
this(new BufferedReader(new InputStreamReader(in)));
}
void findToken() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
}
String next() {
findToken();
return st.nextToken();
}
int[] na(int n) {
int[] k = new int[n];
for (int i = 0; i < n; i++) {
k[i] = sc.nextInt();
}
return k;
}
long[] nl(int n) {
long[] k = new long[n];
for (int i = 0; i < n; i++) {
k[i] = sc.nextLong();
}
return k;
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
}
} | 4JAVA
| {
"input": [
"3\n3 2 1\n1 2 3\n1 1\n1 2\n",
"3\n1 2 3\n3 2 1\n1 1\n1 1\n",
"5\n27468 7465 74275 40573 40155\n112071 76270 244461 264202 132397\n1 777133331\n2 107454154\n3 652330694\n4 792720519\n",
"5\n78188 56310 79021 70050 65217\n115040 5149 128449 98357 36580\n1 451393770\n2 574046602\n3 590130784\n4 112514248\n",
"7\n1 1 1 1 1 1 1\n1 3000000000 3000000000 3000000000 1000000000 1000000000 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n",
"10\n2 8 6 1 2 7 6 9 2 8\n4 9 4 3 5 2 9 3 7 3\n1 8\n2 8\n3 8\n4 10\n5 1\n6 4\n7 3\n8 10\n9 2\n",
"11\n1 1 1 1 1 1 1 1 1 1 1\n1 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n",
"5\n2 1 1 2 3\n1 2 2 2 1\n1 2\n1 3\n2 4\n1 4\n",
"5\n78188 56310 33094 70050 65217\n115040 5149 128449 98357 36580\n1 451393770\n2 574046602\n3 590130784\n4 112514248\n",
"10\n2 8 6 1 2 7 6 9 2 8\n4 9 4 3 5 2 9 3 7 3\n1 8\n2 8\n3 8\n4 10\n5 1\n6 4\n7 3\n8 1\n9 2\n",
"7\n1 1 1 1 1 1 1\n1 3000000000 3000000000 3000000000 1000000000 1000000000 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n2 1000000000\n1 1000000000\n",
"11\n1 1 1 1 1 1 1 1 1 1 1\n1 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n1 1001000000\n1 1000000000\n1 1000000000\n1 1000000000\n",
"5\n2 1 1 2 3\n1 2 3 2 1\n1 2\n1 3\n2 4\n1 4\n",
"3\n3 2 1\n1 2 3\n1 1\n1 4\n",
"3\n1 2 3\n3 2 0\n1 1\n1 1\n",
"5\n78188 56310 33094 70050 65217\n115040 5149 242473 98357 36580\n1 451393770\n2 574046602\n3 590130784\n4 112514248\n",
"7\n1 1 1 1 1 1 1\n1 3000000000 3000000000 3000000000 1000000000 1000000000 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n2 1100000000\n1 1000000000\n",
"10\n2 8 6 1 2 7 5 9 2 8\n4 9 4 3 5 2 9 3 7 3\n1 8\n2 8\n3 8\n4 10\n5 1\n6 4\n7 3\n8 1\n9 2\n",
"11\n1 1 1 1 1 1 1 1 1 1 0\n1 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n1 1001000000\n1 1000000000\n1 1000000000\n1 1000000000\n",
"5\n2 1 1 2 3\n0 2 3 2 1\n1 2\n1 3\n2 4\n1 4\n",
"3\n3 2 1\n1 2 3\n1 1\n2 4\n",
"5\n78188 56310 33094 70050 65217\n794 5149 242473 98357 36580\n1 451393770\n2 574046602\n3 590130784\n4 112514248\n",
"7\n1 1 1 1 1 1 1\n1 3000000000 3000000000 3000000000 1000000000 1000000000 1000000000\n1 1000000000\n1 1000000000\n1 1000001000\n1 1000000000\n2 1100000000\n1 1000000000\n",
"10\n2 8 6 1 2 7 6 9 2 8\n4 9 4 5 5 2 9 3 7 3\n1 8\n2 8\n3 8\n4 10\n5 1\n6 4\n7 3\n8 1\n9 2\n",
"11\n1 1 1 1 1 1 1 1 1 1 0\n1 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n2 1000000000\n1 1000000000\n1 1001000000\n1 1000000000\n1 1000000000\n1 1000000000\n",
"5\n2 1 1 2 0\n0 2 3 2 1\n1 2\n1 3\n2 4\n1 4\n",
"3\n3 0 1\n1 2 3\n1 1\n2 4\n",
"5\n78188 56310 33094 70050 65217\n794 5149 242473 98357 68104\n1 451393770\n2 574046602\n3 590130784\n4 112514248\n",
"7\n1 1 1 1 1 1 1\n1 3000000000 1703548480 3000000000 1000000000 1000000000 1000000000\n1 1000000000\n1 1000000000\n1 1000001000\n1 1000000000\n2 1100000000\n1 1000000000\n",
"10\n2 8 6 1 2 7 6 9 2 8\n4 9 4 5 5 2 9 3 7 3\n1 8\n2 8\n3 8\n4 10\n4 1\n6 4\n7 3\n8 1\n9 2\n",
"11\n1 1 1 1 1 1 1 1 1 1 0\n1 1000000001 1000000001 1000000000 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n2 1000000000\n1 1000000000\n1 1001000000\n1 1000000000\n1 1000000000\n1 1000000000\n",
"5\n2 1 1 2 0\n0 2 3 2 1\n1 2\n1 3\n2 4\n2 4\n",
"7\n1 1 1 1 1 1 1\n1 3000000000 1703548480 3000000000 1000000000 1000000001 1000000000\n1 1000000000\n1 1000000000\n1 1000001000\n1 1000000000\n2 1100000000\n1 1000000000\n",
"10\n2 8 6 1 2 7 6 9 2 8\n4 9 4 9 5 2 9 3 7 3\n1 8\n2 8\n3 8\n4 10\n4 1\n6 4\n7 3\n8 1\n9 2\n",
"11\n1 1 1 1 1 1 1 1 1 1 0\n1 1000000001 1000000001 1000000000 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n2 1010000000\n1 1000000000\n1 1001000000\n1 1000000000\n1 1000000000\n1 1000000000\n",
"10\n2 8 6 1 2 7 6 9 2 8\n4 9 4 9 5 2 9 3 7 3\n1 8\n2 16\n3 8\n4 10\n4 1\n6 4\n7 3\n8 1\n9 2\n",
"11\n1 1 1 1 1 1 1 0 1 1 0\n1 1000000001 1000000001 1000000000 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n2 1010000000\n1 1000000000\n1 1001000000\n1 1000000000\n1 1000000000\n1 1000000000\n",
"10\n2 8 6 1 2 7 6 9 2 8\n4 9 4 9 5 2 9 3 7 3\n1 8\n2 16\n3 6\n4 10\n4 1\n6 4\n7 3\n8 1\n9 2\n",
"11\n1 1 1 1 1 1 1 0 1 1 0\n1 1000000001 1000000001 1000000000 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001\n1 1000000100\n1 1000000000\n1 1000000000\n1 1000000000\n2 1010000000\n1 1000000000\n1 1001000000\n1 1000000000\n1 1000000000\n1 1000000000\n",
"10\n2 8 6 1 2 7 6 9 2 8\n4 9 4 9 5 2 9 3 7 3\n1 8\n2 16\n3 6\n4 10\n4 1\n6 4\n7 3\n8 2\n9 2\n",
"10\n2 16 6 1 2 7 6 9 2 8\n4 9 4 9 5 2 9 3 7 3\n1 8\n2 16\n3 6\n4 10\n4 1\n6 4\n7 3\n8 2\n9 2\n",
"10\n2 16 6 1 2 7 6 17 2 8\n4 9 4 9 5 2 9 3 7 3\n1 8\n2 16\n3 6\n4 10\n4 1\n6 4\n7 3\n8 2\n9 2\n",
"10\n2 16 6 1 2 7 6 17 2 8\n4 9 4 9 5 2 9 3 7 3\n1 8\n2 12\n3 6\n4 10\n4 1\n6 4\n7 3\n8 2\n9 2\n",
"10\n2 16 6 1 2 7 6 17 2 8\n4 9 4 9 5 2 9 3 7 3\n1 8\n2 12\n3 6\n1 10\n4 1\n6 4\n7 3\n8 2\n9 2\n",
"10\n2 16 6 1 2 7 6 17 2 16\n4 9 4 9 5 2 9 3 7 3\n1 8\n2 12\n3 6\n1 10\n4 1\n6 4\n7 3\n8 2\n9 2\n",
"5\n27468 7465 74275 40573 40155\n112071 76270 244461 264202 132397\n1 777133331\n2 107454154\n3 499695208\n4 792720519\n",
"5\n78188 61083 79021 70050 65217\n115040 5149 128449 98357 36580\n1 451393770\n2 574046602\n3 590130784\n4 112514248\n",
"7\n1 1 1 1 1 1 1\n1 3000000000 3000000000 3000000000 1000000000 1000000000 1000000000\n1 1000000000\n1 1000000000\n1 1000010000\n1 1000000000\n1 1000000000\n1 1000000000\n",
"10\n2 8 6 1 2 7 6 9 2 8\n4 9 4 3 5 2 6 3 7 3\n1 8\n2 8\n3 8\n4 10\n5 1\n6 4\n7 3\n8 10\n9 2\n",
"5\n2 1 1 2 3\n1 2 0 2 1\n1 2\n1 3\n2 4\n1 4\n",
"5\n78188 56310 33094 70050 65217\n115040 7476 128449 98357 36580\n1 451393770\n2 574046602\n3 590130784\n4 112514248\n",
"7\n1 1 1 1 1 1 1\n1 1235445348 3000000000 3000000000 1000000000 1000000000 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n2 1000000000\n1 1000000000\n",
"10\n2 8 6 1 2 7 6 9 2 8\n4 9 4 3 5 3 9 3 7 3\n1 8\n2 8\n3 8\n4 10\n5 1\n6 4\n7 3\n8 1\n9 2\n",
"11\n1 1 1 1 1 1 1 1 1 1 1\n1 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001 1000000001\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n1 1001000000\n2 1000000000\n1 1000000000\n1 1000000000\n",
"5\n2 1 1 2 3\n1 2 3 2 1\n1 3\n1 3\n2 4\n1 4\n",
"5\n78188 56310 33094 70050 65217\n115040 5149 242473 98357 36580\n1 451393770\n2 574046602\n1 590130784\n4 112514248\n",
"7\n1 1 1 1 1 1 1\n1 3000000000 3000000000 3000000000 1000000000 1000000000 1000000000\n1 1000000000\n1 1000000000\n1 1000000000\n1 1000000001\n2 1100000000\n1 1000000000\n",
"10\n2 8 6 1 2 7 5 9 4 8\n4 9 4 3 5 2 9 3 7 3\n1 8\n2 8\n3 8\n4 10\n5 1\n6 4\n7 3\n8 1\n9 2\n"
],
"output": [
"NO\n",
"YES\n",
"NO\n",
"NO\n",
"NO\n",
"YES\n",
"NO\n",
"NO\n",
"NO\n",
"YES\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"YES\n",
"NO\n",
"NO\n",
"YES\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"YES\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"YES\n",
"YES\n",
"NO\n",
"NO\n",
"YES\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"YES\n"
]
} | 2CODEFORCES
|
868_A. Bark to Unlock_176 | As technologies develop, manufacturers are making the process of unlocking a phone as user-friendly as possible. To unlock its new phone, Arkady's pet dog Mu-mu has to bark the password once. The phone represents a password as a string of two lowercase English letters.
Mu-mu's enemy Kashtanka wants to unlock Mu-mu's phone to steal some sensible information, but it can only bark n distinct words, each of which can be represented as a string of two lowercase English letters. Kashtanka wants to bark several words (not necessarily distinct) one after another to pronounce a string containing the password as a substring. Tell if it's possible to unlock the phone in this way, or not.
Input
The first line contains two lowercase English letters — the password on the phone.
The second line contains single integer n (1 ≤ n ≤ 100) — the number of words Kashtanka knows.
The next n lines contain two lowercase English letters each, representing the words Kashtanka knows. The words are guaranteed to be distinct.
Output
Print "YES" if Kashtanka can bark several words in a line forming a string containing the password, and "NO" otherwise.
You can print each letter in arbitrary case (upper or lower).
Examples
Input
ya
4
ah
oy
to
ha
Output
YES
Input
hp
2
ht
tp
Output
NO
Input
ah
1
ha
Output
YES
Note
In the first example the password is "ya", and Kashtanka can bark "oy" and then "ah", and then "ha" to form the string "oyahha" which contains the password. So, the answer is "YES".
In the second example Kashtanka can't produce a string containing password as a substring. Note that it can bark "ht" and then "tp" producing "http", but it doesn't contain the password "hp" as a substring.
In the third example the string "hahahaha" contains "ah" as a substring. | from sys import stdin
def main():
password=raw_input()
n=input()
flag1=False
flag2=False
for i in xrange(n):
str=raw_input()
if str[0]==password[1]:
flag1=True
if str[1]==password[0]:
flag2=True
if flag1 and flag2 or str==password:
flag1=True
flag2=True
print "YES"
break
if flag1==False or flag2==False:
print "NO"
main()
| 1Python2
| {
"input": [
"ah\n1\nha\n",
"ya\n4\nah\noy\nto\nha\n",
"hp\n2\nht\ntp\n",
"ab\n2\nbb\nbc\n",
"bc\n1\nab\n",
"th\n1\nth\n",
"bn\n100\ndf\nyb\nze\nml\nyr\nof\nnw\nfm\ndw\nlv\nzr\nhu\nzt\nlw\nld\nmo\nxz\ntp\nmr\nou\nme\npx\nvp\nes\nxi\nnr\nbx\nqc\ngm\njs\nkn\ntw\nrq\nkz\nuc\nvc\nqr\nab\nna\nro\nya\nqy\ngu\nvk\nqk\ngs\nyq\nop\nhw\nrj\neo\nlz\nbh\nkr\nkb\nma\nrd\nza\nuf\nhq\nmc\nmn\nti\nwn\nsh\nax\nsi\nnd\ntz\ndu\nfj\nkl\nws\now\nnf\nvr\nye\nzc\niw\nfv\nkv\noo\nsm\nbc\nrs\nau\nuz\nuv\ngh\nsu\njn\ndz\nrl\nwj\nbk\nzl\nas\nms\nit\nwu\n",
"ke\n20\nzk\nra\nbq\nqz\nwt\nzg\nmz\nuk\nge\nuv\nud\nfd\neh\ndm\nsk\nki\nfv\ntp\nat\nfb\n",
"ab\n2\nab\ncd\n",
"bb\n1\naa\n",
"ya\n1\nya\n",
"ha\n1\nha\n",
"hp\n1\nhp\n",
"if\n100\njd\nbc\nje\nhi\nga\nde\nkb\nfc\ncd\ngd\naj\ncb\nei\nbf\ncf\ndk\ndb\ncg\nki\ngg\nkg\nfa\nkj\nii\njf\njg\ngb\nbh\nbg\neh\nhj\nhb\ndg\ndj\njc\njb\nce\ndi\nig\nci\ndf\nji\nhc\nfk\naf\nac\ngk\nhd\nae\nkd\nec\nkc\neb\nfh\nij\nie\nca\nhh\nkf\nha\ndd\nif\nef\nih\nhg\nej\nfe\njk\nea\nib\nck\nhf\nak\ngi\nch\ndc\nba\nke\nad\nka\neg\njh\nja\ngc\nfd\ncc\nab\ngj\nik\nfg\nbj\nhe\nfj\nge\ngh\nhk\nbk\ned\nid\nfi\n",
"ba\n1\ncc\n",
"ab\n5\nca\nda\nea\nfa\nka\n",
"hh\n50\nag\nhg\ndg\nfh\neg\ngh\ngd\nda\nbh\nab\nhf\ndc\nhb\nfe\nad\nec\nac\nfd\nca\naf\ncg\nhd\neb\nce\nhe\nha\ngb\nea\nae\nfb\nff\nbe\nch\nhh\nee\nde\nge\ngf\naa\ngg\neh\ned\nbf\nfc\nah\nga\nbd\ncb\nbg\nbc\n",
"ha\n2\nha\nzz\n",
"ac\n1\nac\n",
"ab\n1\naa\n",
"ta\n1\nta\n",
"ma\n1\nma\n",
"az\n1\nby\n",
"rn\n50\nba\nec\nwg\nao\nlk\nmz\njj\ncf\nfa\njk\ndy\nsz\njs\nzr\nqv\ntx\nwv\nrd\nqw\nls\nrr\nvt\nrx\nkc\neh\nnj\niq\nyi\nkh\nue\nnv\nkz\nrn\nes\nua\nzf\nvu\nll\neg\nmj\ncz\nzj\nxz\net\neb\nci\nih\nig\nam\nvd\n",
"kd\n100\nek\nea\nha\nkf\nkj\ngh\ndl\nfj\nal\nga\nlj\nik\ngd\nid\ncb\nfh\ndk\nif\nbh\nkb\nhc\nej\nhk\ngc\ngb\nef\nkk\nll\nlf\nkh\ncl\nlh\njj\nil\nhh\nci\ndb\ndf\ngk\njg\nch\nbd\ncg\nfg\nda\neb\nlg\ndg\nbk\nje\nbg\nbl\njl\ncj\nhb\nei\naa\ngl\nka\nfa\nfi\naf\nkc\nla\ngi\nij\nib\nle\ndi\nck\nag\nlc\nca\nge\nie\nlb\nke\nii\nae\nig\nic\nhe\ncf\nhd\nak\nfb\nhi\ngf\nad\nba\nhg\nbi\nkl\nac\ngg\ngj\nbe\nlk\nld\naj\n",
"ee\n100\nah\nfb\ncd\nbi\nii\nai\nid\nag\nie\nha\ndi\nec\nae\nce\njb\ndg\njg\ngd\ngf\nda\nih\nbd\nhj\ngg\nhb\ndf\ned\nfh\naf\nja\nci\nfc\nic\nji\nac\nhi\nfj\nch\nbc\njd\naa\nff\nad\ngj\nej\nde\nee\nhe\ncf\nga\nia\ncg\nbb\nhc\nbe\ngi\njf\nbg\naj\njj\nbh\nfe\ndj\nef\ngb\nge\ndb\nig\ncj\ndc\nij\njh\nei\ndd\nib\nhf\neg\nbf\nfg\nab\ngc\nfd\nhd\ngh\neh\njc\neb\nhh\nca\nje\nbj\nif\nea\nhg\nfa\ncc\nba\ndh\ncb\nfi\n",
"la\n1\nla\n",
"yo\n1\nyo\n",
"ok\n1\nok\n",
"ab\n2\nxa\nza\n",
"aa\n2\nca\ncc\n",
"ab\n1\nab\n",
"ah\n2\nap\nhp\n",
"hi\n1\nhi\n",
"ca\n3\nbc\nbd\nca\n",
"ez\n1\njl\n",
"aa\n2\nab\nac\n",
"ag\n1\nag\n",
"mq\n25\nqw\nwe\ner\nrt\nty\nyu\nui\nio\nop\npa\nas\nsd\ndf\nfg\ngh\nhj\njk\nkl\nlz\nzx\nxc\ncv\nvb\nbn\nnm\n",
"sh\n1\nsh\n",
"as\n1\nas\n",
"sb\n1\nsb\n",
"ah\n1\nah\n",
"ha\n3\ndd\ncc\nha\n",
"fc\n20\nca\nbb\nce\nfd\nde\nfa\ncc\nec\nfb\nfc\nff\nbe\ncf\nba\ndb\ned\naf\nae\nda\nef\n",
"ah\n2\nba\nha\n",
"ab\n2\nza\nbz\n",
"ax\n2\nii\nxa\n",
"pg\n4\nzl\nxs\ndi\nxn\n",
"ca\n20\ndc\naf\ndf\neg\naa\nbc\nea\nbd\nab\ndb\ngc\nfb\nba\nbe\nee\ngf\ncf\nag\nga\nca\n",
"fa\n1\nfa\n",
"bb\n1\nbb\n",
"fe\n50\nje\nbi\nbg\ngc\nfb\nig\ndf\nji\ndg\nfe\nfc\ncf\ngf\nai\nhe\nac\nch\nja\ngh\njf\nge\ncb\nij\ngb\ncg\naf\neh\nee\nhd\njd\njb\nii\nca\nci\nga\nab\nhi\nag\nfj\nej\nfi\nie\ndj\nfg\nef\njc\njg\njh\nhf\nha\n",
"ab\n2\nba\ntt\n",
"qc\n2\nyc\nkr\n",
"dd\n2\nac\ndc\n",
"oo\n1\nox\n",
"dd\n3\nmt\nrg\nxl\n",
"ab\n1\nbb\n",
"ah\n2\nbb\nha\n",
"ww\n4\nuw\now\npo\nko\n",
"xy\n2\nxy\naa\n",
"ay\n1\nay\n",
"sa\n2\nxx\nas\n",
"ya\n42\nab\nac\nad\nae\naf\nag\nah\nai\nak\naj\nba\nbc\nbd\nbe\nbf\nbg\nbh\nbi\nbk\nbj\ncb\nca\ncd\nce\ncf\ncg\nch\nci\nck\ncj\ndb\ndc\nda\nde\ndf\ndg\ndh\ndi\ndk\ndj\nef\nek\n",
"ab\n2\nax\nbx\n",
"aa\n2\nab\nba\n",
"bk\n1\nbk\n",
"aa\n3\nba\nbb\nab\n",
"ca\n3\naa\nbb\nab\n",
"ba\n1\nbb\n",
"ay\n1\nyb\n",
"ba\n1\nba\n",
"be\n20\nad\ncd\ncb\ndb\ndd\naa\nab\nca\nae\ned\ndc\nbb\nba\nda\nee\nea\ncc\nac\nec\neb\n",
"bc\n1\nbc\n",
"ba\n4\ncd\nad\ncc\ncb\n",
"qw\n1\nqw\n",
"bb\n4\nba\nab\naa\nbb\n",
"ab\n2\net\nab\n",
"ab\n2\nab\ncc\n",
"az\n1\nzz\n",
"bc\n4\nca\nba\nbb\ncc\n",
"id\n50\nhi\ndc\nfg\nee\ngi\nhc\nac\nih\ndg\nfc\nde\ned\nie\neb\nic\ncf\nib\nfa\ngc\nba\nbe\nga\nha\nhg\nia\ndf\nab\nei\neh\nad\nii\nci\ndh\nec\nif\ndi\nbg\nag\nhe\neg\nca\nae\ndb\naa\nid\nfh\nhh\ncc\nfb\ngb\n",
"ab\n3\nab\nxx\nyy\n",
"ab\n2\nab\nde\n",
"aa\n1\naa\n",
"tb\n1\ntb\n",
"ap\n1\nap\n",
"qm\n25\nqw\nwe\ner\nrt\nty\nyu\nui\nio\nop\npa\nas\nsd\ndf\nfg\ngh\nhj\njk\nkl\nlz\nzx\nxc\ncv\nvb\nbn\nnm\n",
"aa\n2\nbb\nbc\n",
"th\n1\nht\n",
"bb\n1\nab\n",
"bn\n100\ndf\nyb\nze\nml\nyr\nof\nnw\nfm\ndw\nlv\nzr\nhu\nzt\nlw\nld\nmo\nxz\ntp\nmr\nou\nme\npx\nvp\nes\nxi\nnr\nbx\nqc\ngm\njs\nkn\ntw\nrq\nkz\nuc\nvc\nqr\nab\nna\nro\nya\nqy\ngu\nvk\nqk\ngs\nyq\nop\nhw\nrj\neo\nlz\nbh\nkr\nkb\nma\nrd\nz`\nuf\nhq\nmc\nmn\nti\nwn\nsh\nax\nsi\nnd\ntz\ndu\nfj\nkl\nws\now\nnf\nvr\nye\nzc\niw\nfv\nkv\noo\nsm\nbc\nrs\nau\nuz\nuv\ngh\nsu\njn\ndz\nrl\nwj\nbk\nzl\nas\nms\nit\nwu\n",
"ke\n20\nzk\nra\nbq\nqz\nwt\nzg\nmz\nuk\nge\nuv\nud\nfd\neh\ndl\nsk\nki\nfv\ntp\nat\nfb\n",
"cb\n1\naa\n",
"ay\n1\nya\n",
"ia\n1\nha\n",
"hp\n1\nhq\n",
"if\n100\njd\nbc\nje\nhi\nga\nde\nkb\nfc\ncd\nge\naj\ncb\nei\nbf\ncf\ndk\ndb\ncg\nki\ngg\nkg\nfa\nkj\nii\njf\njg\ngb\nbh\nbg\neh\nhj\nhb\ndg\ndj\njc\njb\nce\ndi\nig\nci\ndf\nji\nhc\nfk\naf\nac\ngk\nhd\nae\nkd\nec\nkc\neb\nfh\nij\nie\nca\nhh\nkf\nha\ndd\nif\nef\nih\nhg\nej\nfe\njk\nea\nib\nck\nhf\nak\ngi\nch\ndc\nba\nke\nad\nka\neg\njh\nja\ngc\nfd\ncc\nab\ngj\nik\nfg\nbj\nhe\nfj\nge\ngh\nhk\nbk\ned\nid\nfi\n",
"ba\n1\ncd\n",
"ab\n5\nc`\nda\nea\nfa\nka\n",
"hh\n50\nag\nhg\ndg\nfh\neg\ngh\ngd\nda\nbi\nab\nhf\ndc\nhb\nfe\nad\nec\nac\nfd\nca\naf\ncg\nhd\neb\nce\nhe\nha\ngb\nea\nae\nfb\nff\nbe\nch\nhh\nee\nde\nge\ngf\naa\ngg\neh\ned\nbf\nfc\nah\nga\nbd\ncb\nbg\nbc\n",
"ah\n2\nha\nzz\n",
"ba\n1\naa\n",
"ta\n1\nat\n",
"am\n1\nma\n",
"rn\n50\nba\nec\nwg\nao\nlk\nmz\njj\nce\nfa\njk\ndy\nsz\njs\nzr\nqv\ntx\nwv\nrd\nqw\nls\nrr\nvt\nrx\nkc\neh\nnj\niq\nyi\nkh\nue\nnv\nkz\nrn\nes\nua\nzf\nvu\nll\neg\nmj\ncz\nzj\nxz\net\neb\nci\nih\nig\nam\nvd\n",
"kd\n100\nek\nea\nha\nkf\nkj\ngh\ndl\nfj\nal\nga\nlj\nik\ngd\nid\ncb\nfh\ndk\nif\nbh\nkb\nhc\nej\nhk\ngc\ngb\nef\nkk\nll\nlf\nkh\ncl\nlh\njj\nil\nhh\ndi\ndb\ndf\ngk\njg\nch\nbd\ncg\nfg\nda\neb\nlg\ndg\nbk\nje\nbg\nbl\njl\ncj\nhb\nei\naa\ngl\nka\nfa\nfi\naf\nkc\nla\ngi\nij\nib\nle\ndi\nck\nag\nlc\nca\nge\nie\nlb\nke\nii\nae\nig\nic\nhe\ncf\nhd\nak\nfb\nhi\ngf\nad\nba\nhg\nbi\nkl\nac\ngg\ngj\nbe\nlk\nld\naj\n",
"ee\n100\nah\nfb\ncd\nbi\nii\nai\nid\nag\nie\nha\ndi\nec\nae\nce\njb\ndg\njg\ndg\ngf\nda\nih\nbd\nhj\ngg\nhb\ndf\ned\nfh\naf\nja\nci\nfc\nic\nji\nac\nhi\nfj\nch\nbc\njd\naa\nff\nad\ngj\nej\nde\nee\nhe\ncf\nga\nia\ncg\nbb\nhc\nbe\ngi\njf\nbg\naj\njj\nbh\nfe\ndj\nef\ngb\nge\ndb\nig\ncj\ndc\nij\njh\nei\ndd\nib\nhf\neg\nbf\nfg\nab\ngc\nfd\nhd\ngh\neh\njc\neb\nhh\nca\nje\nbj\nif\nea\nhg\nfa\ncc\nba\ndh\ncb\nfi\n",
"yo\n1\noy\n",
"ko\n1\nok\n",
"ab\n2\nya\nza\n",
"aa\n2\ncb\ncc\n",
"bh\n2\nap\nhp\n",
"ac\n3\nbc\nbd\nca\n",
"aa\n2\nab\n`c\n",
"`g\n1\nag\n",
"mq\n25\nqw\nwe\ner\nrt\nty\nyu\nui\nio\nop\npa\nas\nsd\ndf\nfg\ngh\nhj\njk\nkl\nlz\nzx\nxc\ncv\nvb\nbn\nmn\n",
"sh\n1\nsg\n",
"as\n1\nbs\n",
"sb\n1\nsc\n",
"ha\n1\nah\n",
"h`\n3\ndd\ncc\nha\n",
"fc\n20\nca\nbb\nce\nfd\nde\nfa\ncc\nec\nfb\nfc\nff\nbe\ncf\nba\ndb\nde\naf\nae\nda\nef\n",
"ha\n2\nba\nha\n",
"ab\n2\naz\nbz\n",
"ax\n2\nhi\nxa\n",
"gp\n4\nzl\nxs\ndi\nxn\n",
"ca\n20\ndc\naf\ndf\neg\naa\nbc\nea\nbd\nab\ndb\ngc\nfb\naa\nbe\nee\ngf\ncf\nag\nga\nca\n",
"fe\n50\nje\nbi\nbg\ngc\nfb\nig\ndf\nji\ndg\nfe\nfc\ncf\ngf\nai\nhe\nac\nch\nja\ngh\njf\nge\ncb\nij\ngb\ncg\naf\neh\nee\nhd\njd\njb\nii\nca\nci\nga\nab\nhi\nah\nfj\nej\nfi\nie\ndj\nfg\nef\njc\njg\njh\nhf\nha\n",
"ab\n2\nab\ntt\n",
"dd\n2\nab\ndc\n",
"oo\n1\nxo\n",
"ed\n3\nmt\nrg\nxl\n",
"xy\n2\nxz\naa\n",
"ya\n42\nab\nac\nad\nae\naf\nag\nah\nai\nak\naj\nba\nbc\nbd\nbe\nbf\nbg\nbh\nbi\nbk\nbj\ncb\nca\ncd\nce\ncf\ncg\nch\nci\nck\ncj\ndb\ndc\nda\nde\ndf\ngd\ndh\ndi\ndk\ndj\nef\nek\n",
"ab\n2\nax\nbw\n",
"a`\n2\nab\nba\n",
"aa\n3\nab\nbb\nab\n",
"ca\n3\nab\nbb\nab\n",
"ay\n1\nxb\n",
"ba\n1\nab\n",
"be\n20\nda\ncd\ncb\ndb\ndd\naa\nab\nca\nae\ned\ndc\nbb\nba\nda\nee\nea\ncc\nac\nec\neb\n",
"cc\n1\nbc\n",
"ba\n4\ncd\nad\ncc\nbb\n",
"bb\n4\nba\nab\naa\nbc\n",
"ba\n2\nab\ncc\n",
"ay\n1\nzz\n",
"bc\n4\nc`\nba\nbb\ncc\n",
"id\n50\nhi\ndc\nfg\nee\ngi\nhc\nac\nih\ndg\nfc\nde\ned\nje\neb\nic\ncf\nib\nfa\ngc\nba\nbe\nga\nha\nhg\nia\ndf\nab\nei\neh\nad\nii\nci\ndh\nec\nif\ndi\nbg\nag\nhe\neg\nca\nae\ndb\naa\nid\nfh\nhh\ncc\nfb\ngb\n",
"ab\n3\nba\nxx\nyy\n",
"ab\n2\naa\nde\n",
"tb\n1\nta\n",
"ap\n1\nbp\n",
"qm\n25\nqw\nwe\ner\nrt\nty\nyu\nui\nio\nop\np`\nas\nsd\ndf\nfg\ngh\nhj\njk\nkl\nlz\nzx\nxc\ncv\nvb\nbn\nnm\n",
"`h\n1\nah\n",
"ya\n4\nah\nox\nto\nha\n",
"ph\n2\nht\ntp\n",
"aa\n2\nbb\ncb\n",
"bb\n1\nba\n",
"th\n1\ngt\n",
"bn\n100\ndf\nyb\nze\nml\nyr\nof\nnw\nfm\ndw\nlv\nzr\nhu\nzt\nlw\nld\nmo\nxz\ntp\nms\nou\nme\npx\nvp\nes\nxi\nnr\nbx\nqc\ngm\njs\nkn\ntw\nrq\nkz\nuc\nvc\nqr\nab\nna\nro\nya\nqy\ngu\nvk\nqk\ngs\nyq\nop\nhw\nrj\neo\nlz\nbh\nkr\nkb\nma\nrd\nz`\nuf\nhq\nmc\nmn\nti\nwn\nsh\nax\nsi\nnd\ntz\ndu\nfj\nkl\nws\now\nnf\nvr\nye\nzc\niw\nfv\nkv\noo\nsm\nbc\nrs\nau\nuz\nuv\ngh\nsu\njn\ndz\nrl\nwj\nbk\nzl\nas\nms\nit\nwu\n",
"ke\n20\nzk\nra\nbq\nqz\nwt\nzg\nmz\nuk\nge\nuv\nud\nfd\neh\ndl\nsk\nki\nfv\nsp\nat\nfb\n",
"ca\n1\naa\n",
"ai\n1\nha\n",
"ph\n1\nhq\n",
"if\n100\njd\nbc\nje\nhi\nga\nde\nkb\nfc\ncd\nge\naj\ncb\nei\nbf\ncf\ndk\ndb\ncg\nki\ngg\nkg\nfa\nkj\nii\njf\njg\ngb\nbh\nbg\neh\nhj\nhb\ndg\njd\njc\njb\nce\ndi\nig\nci\ndf\nji\nhc\nfk\naf\nac\ngk\nhd\nae\nkd\nec\nkc\neb\nfh\nij\nie\nca\nhh\nkf\nha\ndd\nif\nef\nih\nhg\nej\nfe\njk\nea\nib\nck\nhf\nak\ngi\nch\ndc\nba\nke\nad\nka\neg\njh\nja\ngc\nfd\ncc\nab\ngj\nik\nfg\nbj\nhe\nfj\nge\ngh\nhk\nbk\ned\nid\nfi\n",
"ba\n1\ndc\n",
"bb\n5\nc`\nda\nea\nfa\nka\n",
"hh\n50\nag\nhg\ndg\nfh\ndg\ngh\ngd\nda\nbi\nab\nhf\ndc\nhb\nfe\nad\nec\nac\nfd\nca\naf\ncg\nhd\neb\nce\nhe\nha\ngb\nea\nae\nfb\nff\nbe\nch\nhh\nee\nde\nge\ngf\naa\ngg\neh\ned\nbf\nfc\nah\nga\nbd\ncb\nbg\nbc\n",
"ag\n2\nha\nzz\n",
"am\n1\nam\n",
"rn\n50\nba\nec\nwg\nao\nlk\nmz\njj\nce\nfa\njk\ndy\nsz\njs\nzr\nqv\ntx\nwv\nrd\nqw\nls\nrr\nvt\nrx\nkc\neh\nnj\niq\nyi\nkh\nue\nnv\nkz\nrn\nes\nua\nzf\nvu\nll\neg\nmj\ncz\nzj\nxz\net\neb\nci\nih\nig\nma\nvd\n",
"kd\n100\nek\nea\nha\nkf\nkj\ngh\ndl\nfj\nal\nga\nlj\nik\ngd\nid\ncb\nfh\ndk\nif\nbg\nkb\nhc\nej\nhk\ngc\ngb\nef\nkk\nll\nlf\nkh\ncl\nlh\njj\nil\nhh\ndi\ndb\ndf\ngk\njg\nch\nbd\ncg\nfg\nda\neb\nlg\ndg\nbk\nje\nbg\nbl\njl\ncj\nhb\nei\naa\ngl\nka\nfa\nfi\naf\nkc\nla\ngi\nij\nib\nle\ndi\nck\nag\nlc\nca\nge\nie\nlb\nke\nii\nae\nig\nic\nhe\ncf\nhd\nak\nfb\nhi\ngf\nad\nba\nhg\nbi\nkl\nac\ngg\ngj\nbe\nlk\nld\naj\n",
"ee\n100\nah\nfb\ncd\nbi\nii\nai\nid\nag\nie\nha\ndi\nec\nae\nce\njb\ndg\njg\ndg\ngf\nda\nih\nbd\nhj\ngg\nhb\ndf\ned\nfh\naf\nja\nci\nfd\nic\nji\nac\nhi\nfj\nch\nbc\njd\naa\nff\nad\ngj\nej\nde\nee\nhe\ncf\nga\nia\ncg\nbb\nhc\nbe\ngi\njf\nbg\naj\njj\nbh\nfe\ndj\nef\ngb\nge\ndb\nig\ncj\ndc\nij\njh\nei\ndd\nib\nhf\neg\nbf\nfg\nab\ngc\nfd\nhd\ngh\neh\njc\neb\nhh\nca\nje\nbj\nif\nea\nhg\nfa\ncc\nba\ndh\ncb\nfi\n",
"oy\n1\noy\n",
"ko\n1\npk\n",
"ba\n2\nya\nza\n",
"aa\n2\nbc\ncc\n",
"bh\n2\nap\ngp\n"
],
"output": [
"YES",
"YES",
"NO",
"NO",
"NO",
"YES",
"YES",
"YES",
"YES",
"NO",
"YES",
"YES",
"YES",
"YES",
"NO",
"NO",
"YES",
"YES",
"YES",
"NO",
"YES",
"YES",
"NO",
"YES",
"YES",
"YES",
"YES",
"YES",
"YES",
"NO",
"NO",
"YES",
"NO",
"YES",
"YES",
"NO",
"NO",
"YES",
"YES",
"YES",
"YES",
"YES",
"YES",
"YES",
"YES",
"YES",
"YES",
"YES",
"NO",
"YES",
"YES",
"YES",
"YES",
"YES",
"NO",
"NO",
"NO",
"NO",
"NO",
"YES",
"NO",
"YES",
"YES",
"YES",
"NO",
"NO",
"YES",
"YES",
"YES",
"NO",
"NO",
"NO",
"YES",
"YES",
"YES",
"YES",
"YES",
"YES",
"YES",
"YES",
"NO",
"YES",
"YES",
"YES",
"YES",
"YES",
"YES",
"YES",
"NO",
"NO\n",
"YES\n",
"NO\n",
"YES\n",
"YES\n",
"NO\n",
"YES\n",
"NO\n",
"NO\n",
"YES\n",
"NO\n",
"NO\n",
"YES\n",
"YES\n",
"NO\n",
"YES\n",
"YES\n",
"YES\n",
"YES\n",
"YES\n",
"YES\n",
"YES\n",
"NO\n",
"NO\n",
"NO\n",
"YES\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"YES\n",
"NO\n",
"YES\n",
"YES\n",
"NO\n",
"YES\n",
"NO\n",
"YES\n",
"YES\n",
"YES\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"YES\n",
"YES\n",
"NO\n",
"YES\n",
"YES\n",
"YES\n",
"NO\n",
"YES\n",
"YES\n",
"YES\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"YES\n",
"NO\n",
"NO\n",
"NO\n",
"YES\n",
"YES\n",
"NO\n",
"NO\n",
"NO\n",
"YES\n",
"NO\n",
"NO\n",
"YES\n",
"NO\n",
"YES\n",
"YES\n",
"YES\n",
"YES\n",
"YES\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n"
]
} | 2CODEFORCES
|
868_A. Bark to Unlock_177 | As technologies develop, manufacturers are making the process of unlocking a phone as user-friendly as possible. To unlock its new phone, Arkady's pet dog Mu-mu has to bark the password once. The phone represents a password as a string of two lowercase English letters.
Mu-mu's enemy Kashtanka wants to unlock Mu-mu's phone to steal some sensible information, but it can only bark n distinct words, each of which can be represented as a string of two lowercase English letters. Kashtanka wants to bark several words (not necessarily distinct) one after another to pronounce a string containing the password as a substring. Tell if it's possible to unlock the phone in this way, or not.
Input
The first line contains two lowercase English letters — the password on the phone.
The second line contains single integer n (1 ≤ n ≤ 100) — the number of words Kashtanka knows.
The next n lines contain two lowercase English letters each, representing the words Kashtanka knows. The words are guaranteed to be distinct.
Output
Print "YES" if Kashtanka can bark several words in a line forming a string containing the password, and "NO" otherwise.
You can print each letter in arbitrary case (upper or lower).
Examples
Input
ya
4
ah
oy
to
ha
Output
YES
Input
hp
2
ht
tp
Output
NO
Input
ah
1
ha
Output
YES
Note
In the first example the password is "ya", and Kashtanka can bark "oy" and then "ah", and then "ha" to form the string "oyahha" which contains the password. So, the answer is "YES".
In the second example Kashtanka can't produce a string containing password as a substring. Note that it can bark "ht" and then "tp" producing "http", but it doesn't contain the password "hp" as a substring.
In the third example the string "hahahaha" contains "ah" as a substring. | #include <bits/stdc++.h>
using namespace std;
char s[101][3];
int main() {
int n, i, k = 0, c1 = 0, c2 = 0;
cin.get(s[0], 3);
cin >> n;
for (i = 1; i <= n; i++) {
cin.get();
cin.get(s[i], 3);
}
for (i = 1; i <= n && k < 2; i++) {
if (s[0][0] == s[i][1] && c1 == 0) {
k++;
c1 = 1;
}
if (s[0][1] == s[i][0] && c2 == 0) {
k++;
c2 = 1;
}
if (strcmp(s[0], s[i]) == NULL) k = 2;
}
if (k == 2)
cout << "YES";
else
cout << "NO";
return 0;
}
| 2C++
| {
"input": [
"ah\n1\nha\n",
"ya\n4\nah\noy\nto\nha\n",
"hp\n2\nht\ntp\n",
"ab\n2\nbb\nbc\n",
"bc\n1\nab\n",
"th\n1\nth\n",
"bn\n100\ndf\nyb\nze\nml\nyr\nof\nnw\nfm\ndw\nlv\nzr\nhu\nzt\nlw\nld\nmo\nxz\ntp\nmr\nou\nme\npx\nvp\nes\nxi\nnr\nbx\nqc\ngm\njs\nkn\ntw\nrq\nkz\nuc\nvc\nqr\nab\nna\nro\nya\nqy\ngu\nvk\nqk\ngs\nyq\nop\nhw\nrj\neo\nlz\nbh\nkr\nkb\nma\nrd\nza\nuf\nhq\nmc\nmn\nti\nwn\nsh\nax\nsi\nnd\ntz\ndu\nfj\nkl\nws\now\nnf\nvr\nye\nzc\niw\nfv\nkv\noo\nsm\nbc\nrs\nau\nuz\nuv\ngh\nsu\njn\ndz\nrl\nwj\nbk\nzl\nas\nms\nit\nwu\n",
"ke\n20\nzk\nra\nbq\nqz\nwt\nzg\nmz\nuk\nge\nuv\nud\nfd\neh\ndm\nsk\nki\nfv\ntp\nat\nfb\n",
"ab\n2\nab\ncd\n",
"bb\n1\naa\n",
"ya\n1\nya\n",
"ha\n1\nha\n",
"hp\n1\nhp\n",
"if\n100\njd\nbc\nje\nhi\nga\nde\nkb\nfc\ncd\ngd\naj\ncb\nei\nbf\ncf\ndk\ndb\ncg\nki\ngg\nkg\nfa\nkj\nii\njf\njg\ngb\nbh\nbg\neh\nhj\nhb\ndg\ndj\njc\njb\nce\ndi\nig\nci\ndf\nji\nhc\nfk\naf\nac\ngk\nhd\nae\nkd\nec\nkc\neb\nfh\nij\nie\nca\nhh\nkf\nha\ndd\nif\nef\nih\nhg\nej\nfe\njk\nea\nib\nck\nhf\nak\ngi\nch\ndc\nba\nke\nad\nka\neg\njh\nja\ngc\nfd\ncc\nab\ngj\nik\nfg\nbj\nhe\nfj\nge\ngh\nhk\nbk\ned\nid\nfi\n",
"ba\n1\ncc\n",
"ab\n5\nca\nda\nea\nfa\nka\n",
"hh\n50\nag\nhg\ndg\nfh\neg\ngh\ngd\nda\nbh\nab\nhf\ndc\nhb\nfe\nad\nec\nac\nfd\nca\naf\ncg\nhd\neb\nce\nhe\nha\ngb\nea\nae\nfb\nff\nbe\nch\nhh\nee\nde\nge\ngf\naa\ngg\neh\ned\nbf\nfc\nah\nga\nbd\ncb\nbg\nbc\n",
"ha\n2\nha\nzz\n",
"ac\n1\nac\n",
"ab\n1\naa\n",
"ta\n1\nta\n",
"ma\n1\nma\n",
"az\n1\nby\n",
"rn\n50\nba\nec\nwg\nao\nlk\nmz\njj\ncf\nfa\njk\ndy\nsz\njs\nzr\nqv\ntx\nwv\nrd\nqw\nls\nrr\nvt\nrx\nkc\neh\nnj\niq\nyi\nkh\nue\nnv\nkz\nrn\nes\nua\nzf\nvu\nll\neg\nmj\ncz\nzj\nxz\net\neb\nci\nih\nig\nam\nvd\n",
"kd\n100\nek\nea\nha\nkf\nkj\ngh\ndl\nfj\nal\nga\nlj\nik\ngd\nid\ncb\nfh\ndk\nif\nbh\nkb\nhc\nej\nhk\ngc\ngb\nef\nkk\nll\nlf\nkh\ncl\nlh\njj\nil\nhh\nci\ndb\ndf\ngk\njg\nch\nbd\ncg\nfg\nda\neb\nlg\ndg\nbk\nje\nbg\nbl\njl\ncj\nhb\nei\naa\ngl\nka\nfa\nfi\naf\nkc\nla\ngi\nij\nib\nle\ndi\nck\nag\nlc\nca\nge\nie\nlb\nke\nii\nae\nig\nic\nhe\ncf\nhd\nak\nfb\nhi\ngf\nad\nba\nhg\nbi\nkl\nac\ngg\ngj\nbe\nlk\nld\naj\n",
"ee\n100\nah\nfb\ncd\nbi\nii\nai\nid\nag\nie\nha\ndi\nec\nae\nce\njb\ndg\njg\ngd\ngf\nda\nih\nbd\nhj\ngg\nhb\ndf\ned\nfh\naf\nja\nci\nfc\nic\nji\nac\nhi\nfj\nch\nbc\njd\naa\nff\nad\ngj\nej\nde\nee\nhe\ncf\nga\nia\ncg\nbb\nhc\nbe\ngi\njf\nbg\naj\njj\nbh\nfe\ndj\nef\ngb\nge\ndb\nig\ncj\ndc\nij\njh\nei\ndd\nib\nhf\neg\nbf\nfg\nab\ngc\nfd\nhd\ngh\neh\njc\neb\nhh\nca\nje\nbj\nif\nea\nhg\nfa\ncc\nba\ndh\ncb\nfi\n",
"la\n1\nla\n",
"yo\n1\nyo\n",
"ok\n1\nok\n",
"ab\n2\nxa\nza\n",
"aa\n2\nca\ncc\n",
"ab\n1\nab\n",
"ah\n2\nap\nhp\n",
"hi\n1\nhi\n",
"ca\n3\nbc\nbd\nca\n",
"ez\n1\njl\n",
"aa\n2\nab\nac\n",
"ag\n1\nag\n",
"mq\n25\nqw\nwe\ner\nrt\nty\nyu\nui\nio\nop\npa\nas\nsd\ndf\nfg\ngh\nhj\njk\nkl\nlz\nzx\nxc\ncv\nvb\nbn\nnm\n",
"sh\n1\nsh\n",
"as\n1\nas\n",
"sb\n1\nsb\n",
"ah\n1\nah\n",
"ha\n3\ndd\ncc\nha\n",
"fc\n20\nca\nbb\nce\nfd\nde\nfa\ncc\nec\nfb\nfc\nff\nbe\ncf\nba\ndb\ned\naf\nae\nda\nef\n",
"ah\n2\nba\nha\n",
"ab\n2\nza\nbz\n",
"ax\n2\nii\nxa\n",
"pg\n4\nzl\nxs\ndi\nxn\n",
"ca\n20\ndc\naf\ndf\neg\naa\nbc\nea\nbd\nab\ndb\ngc\nfb\nba\nbe\nee\ngf\ncf\nag\nga\nca\n",
"fa\n1\nfa\n",
"bb\n1\nbb\n",
"fe\n50\nje\nbi\nbg\ngc\nfb\nig\ndf\nji\ndg\nfe\nfc\ncf\ngf\nai\nhe\nac\nch\nja\ngh\njf\nge\ncb\nij\ngb\ncg\naf\neh\nee\nhd\njd\njb\nii\nca\nci\nga\nab\nhi\nag\nfj\nej\nfi\nie\ndj\nfg\nef\njc\njg\njh\nhf\nha\n",
"ab\n2\nba\ntt\n",
"qc\n2\nyc\nkr\n",
"dd\n2\nac\ndc\n",
"oo\n1\nox\n",
"dd\n3\nmt\nrg\nxl\n",
"ab\n1\nbb\n",
"ah\n2\nbb\nha\n",
"ww\n4\nuw\now\npo\nko\n",
"xy\n2\nxy\naa\n",
"ay\n1\nay\n",
"sa\n2\nxx\nas\n",
"ya\n42\nab\nac\nad\nae\naf\nag\nah\nai\nak\naj\nba\nbc\nbd\nbe\nbf\nbg\nbh\nbi\nbk\nbj\ncb\nca\ncd\nce\ncf\ncg\nch\nci\nck\ncj\ndb\ndc\nda\nde\ndf\ndg\ndh\ndi\ndk\ndj\nef\nek\n",
"ab\n2\nax\nbx\n",
"aa\n2\nab\nba\n",
"bk\n1\nbk\n",
"aa\n3\nba\nbb\nab\n",
"ca\n3\naa\nbb\nab\n",
"ba\n1\nbb\n",
"ay\n1\nyb\n",
"ba\n1\nba\n",
"be\n20\nad\ncd\ncb\ndb\ndd\naa\nab\nca\nae\ned\ndc\nbb\nba\nda\nee\nea\ncc\nac\nec\neb\n",
"bc\n1\nbc\n",
"ba\n4\ncd\nad\ncc\ncb\n",
"qw\n1\nqw\n",
"bb\n4\nba\nab\naa\nbb\n",
"ab\n2\net\nab\n",
"ab\n2\nab\ncc\n",
"az\n1\nzz\n",
"bc\n4\nca\nba\nbb\ncc\n",
"id\n50\nhi\ndc\nfg\nee\ngi\nhc\nac\nih\ndg\nfc\nde\ned\nie\neb\nic\ncf\nib\nfa\ngc\nba\nbe\nga\nha\nhg\nia\ndf\nab\nei\neh\nad\nii\nci\ndh\nec\nif\ndi\nbg\nag\nhe\neg\nca\nae\ndb\naa\nid\nfh\nhh\ncc\nfb\ngb\n",
"ab\n3\nab\nxx\nyy\n",
"ab\n2\nab\nde\n",
"aa\n1\naa\n",
"tb\n1\ntb\n",
"ap\n1\nap\n",
"qm\n25\nqw\nwe\ner\nrt\nty\nyu\nui\nio\nop\npa\nas\nsd\ndf\nfg\ngh\nhj\njk\nkl\nlz\nzx\nxc\ncv\nvb\nbn\nnm\n",
"aa\n2\nbb\nbc\n",
"th\n1\nht\n",
"bb\n1\nab\n",
"bn\n100\ndf\nyb\nze\nml\nyr\nof\nnw\nfm\ndw\nlv\nzr\nhu\nzt\nlw\nld\nmo\nxz\ntp\nmr\nou\nme\npx\nvp\nes\nxi\nnr\nbx\nqc\ngm\njs\nkn\ntw\nrq\nkz\nuc\nvc\nqr\nab\nna\nro\nya\nqy\ngu\nvk\nqk\ngs\nyq\nop\nhw\nrj\neo\nlz\nbh\nkr\nkb\nma\nrd\nz`\nuf\nhq\nmc\nmn\nti\nwn\nsh\nax\nsi\nnd\ntz\ndu\nfj\nkl\nws\now\nnf\nvr\nye\nzc\niw\nfv\nkv\noo\nsm\nbc\nrs\nau\nuz\nuv\ngh\nsu\njn\ndz\nrl\nwj\nbk\nzl\nas\nms\nit\nwu\n",
"ke\n20\nzk\nra\nbq\nqz\nwt\nzg\nmz\nuk\nge\nuv\nud\nfd\neh\ndl\nsk\nki\nfv\ntp\nat\nfb\n",
"cb\n1\naa\n",
"ay\n1\nya\n",
"ia\n1\nha\n",
"hp\n1\nhq\n",
"if\n100\njd\nbc\nje\nhi\nga\nde\nkb\nfc\ncd\nge\naj\ncb\nei\nbf\ncf\ndk\ndb\ncg\nki\ngg\nkg\nfa\nkj\nii\njf\njg\ngb\nbh\nbg\neh\nhj\nhb\ndg\ndj\njc\njb\nce\ndi\nig\nci\ndf\nji\nhc\nfk\naf\nac\ngk\nhd\nae\nkd\nec\nkc\neb\nfh\nij\nie\nca\nhh\nkf\nha\ndd\nif\nef\nih\nhg\nej\nfe\njk\nea\nib\nck\nhf\nak\ngi\nch\ndc\nba\nke\nad\nka\neg\njh\nja\ngc\nfd\ncc\nab\ngj\nik\nfg\nbj\nhe\nfj\nge\ngh\nhk\nbk\ned\nid\nfi\n",
"ba\n1\ncd\n",
"ab\n5\nc`\nda\nea\nfa\nka\n",
"hh\n50\nag\nhg\ndg\nfh\neg\ngh\ngd\nda\nbi\nab\nhf\ndc\nhb\nfe\nad\nec\nac\nfd\nca\naf\ncg\nhd\neb\nce\nhe\nha\ngb\nea\nae\nfb\nff\nbe\nch\nhh\nee\nde\nge\ngf\naa\ngg\neh\ned\nbf\nfc\nah\nga\nbd\ncb\nbg\nbc\n",
"ah\n2\nha\nzz\n",
"ba\n1\naa\n",
"ta\n1\nat\n",
"am\n1\nma\n",
"rn\n50\nba\nec\nwg\nao\nlk\nmz\njj\nce\nfa\njk\ndy\nsz\njs\nzr\nqv\ntx\nwv\nrd\nqw\nls\nrr\nvt\nrx\nkc\neh\nnj\niq\nyi\nkh\nue\nnv\nkz\nrn\nes\nua\nzf\nvu\nll\neg\nmj\ncz\nzj\nxz\net\neb\nci\nih\nig\nam\nvd\n",
"kd\n100\nek\nea\nha\nkf\nkj\ngh\ndl\nfj\nal\nga\nlj\nik\ngd\nid\ncb\nfh\ndk\nif\nbh\nkb\nhc\nej\nhk\ngc\ngb\nef\nkk\nll\nlf\nkh\ncl\nlh\njj\nil\nhh\ndi\ndb\ndf\ngk\njg\nch\nbd\ncg\nfg\nda\neb\nlg\ndg\nbk\nje\nbg\nbl\njl\ncj\nhb\nei\naa\ngl\nka\nfa\nfi\naf\nkc\nla\ngi\nij\nib\nle\ndi\nck\nag\nlc\nca\nge\nie\nlb\nke\nii\nae\nig\nic\nhe\ncf\nhd\nak\nfb\nhi\ngf\nad\nba\nhg\nbi\nkl\nac\ngg\ngj\nbe\nlk\nld\naj\n",
"ee\n100\nah\nfb\ncd\nbi\nii\nai\nid\nag\nie\nha\ndi\nec\nae\nce\njb\ndg\njg\ndg\ngf\nda\nih\nbd\nhj\ngg\nhb\ndf\ned\nfh\naf\nja\nci\nfc\nic\nji\nac\nhi\nfj\nch\nbc\njd\naa\nff\nad\ngj\nej\nde\nee\nhe\ncf\nga\nia\ncg\nbb\nhc\nbe\ngi\njf\nbg\naj\njj\nbh\nfe\ndj\nef\ngb\nge\ndb\nig\ncj\ndc\nij\njh\nei\ndd\nib\nhf\neg\nbf\nfg\nab\ngc\nfd\nhd\ngh\neh\njc\neb\nhh\nca\nje\nbj\nif\nea\nhg\nfa\ncc\nba\ndh\ncb\nfi\n",
"yo\n1\noy\n",
"ko\n1\nok\n",
"ab\n2\nya\nza\n",
"aa\n2\ncb\ncc\n",
"bh\n2\nap\nhp\n",
"ac\n3\nbc\nbd\nca\n",
"aa\n2\nab\n`c\n",
"`g\n1\nag\n",
"mq\n25\nqw\nwe\ner\nrt\nty\nyu\nui\nio\nop\npa\nas\nsd\ndf\nfg\ngh\nhj\njk\nkl\nlz\nzx\nxc\ncv\nvb\nbn\nmn\n",
"sh\n1\nsg\n",
"as\n1\nbs\n",
"sb\n1\nsc\n",
"ha\n1\nah\n",
"h`\n3\ndd\ncc\nha\n",
"fc\n20\nca\nbb\nce\nfd\nde\nfa\ncc\nec\nfb\nfc\nff\nbe\ncf\nba\ndb\nde\naf\nae\nda\nef\n",
"ha\n2\nba\nha\n",
"ab\n2\naz\nbz\n",
"ax\n2\nhi\nxa\n",
"gp\n4\nzl\nxs\ndi\nxn\n",
"ca\n20\ndc\naf\ndf\neg\naa\nbc\nea\nbd\nab\ndb\ngc\nfb\naa\nbe\nee\ngf\ncf\nag\nga\nca\n",
"fe\n50\nje\nbi\nbg\ngc\nfb\nig\ndf\nji\ndg\nfe\nfc\ncf\ngf\nai\nhe\nac\nch\nja\ngh\njf\nge\ncb\nij\ngb\ncg\naf\neh\nee\nhd\njd\njb\nii\nca\nci\nga\nab\nhi\nah\nfj\nej\nfi\nie\ndj\nfg\nef\njc\njg\njh\nhf\nha\n",
"ab\n2\nab\ntt\n",
"dd\n2\nab\ndc\n",
"oo\n1\nxo\n",
"ed\n3\nmt\nrg\nxl\n",
"xy\n2\nxz\naa\n",
"ya\n42\nab\nac\nad\nae\naf\nag\nah\nai\nak\naj\nba\nbc\nbd\nbe\nbf\nbg\nbh\nbi\nbk\nbj\ncb\nca\ncd\nce\ncf\ncg\nch\nci\nck\ncj\ndb\ndc\nda\nde\ndf\ngd\ndh\ndi\ndk\ndj\nef\nek\n",
"ab\n2\nax\nbw\n",
"a`\n2\nab\nba\n",
"aa\n3\nab\nbb\nab\n",
"ca\n3\nab\nbb\nab\n",
"ay\n1\nxb\n",
"ba\n1\nab\n",
"be\n20\nda\ncd\ncb\ndb\ndd\naa\nab\nca\nae\ned\ndc\nbb\nba\nda\nee\nea\ncc\nac\nec\neb\n",
"cc\n1\nbc\n",
"ba\n4\ncd\nad\ncc\nbb\n",
"bb\n4\nba\nab\naa\nbc\n",
"ba\n2\nab\ncc\n",
"ay\n1\nzz\n",
"bc\n4\nc`\nba\nbb\ncc\n",
"id\n50\nhi\ndc\nfg\nee\ngi\nhc\nac\nih\ndg\nfc\nde\ned\nje\neb\nic\ncf\nib\nfa\ngc\nba\nbe\nga\nha\nhg\nia\ndf\nab\nei\neh\nad\nii\nci\ndh\nec\nif\ndi\nbg\nag\nhe\neg\nca\nae\ndb\naa\nid\nfh\nhh\ncc\nfb\ngb\n",
"ab\n3\nba\nxx\nyy\n",
"ab\n2\naa\nde\n",
"tb\n1\nta\n",
"ap\n1\nbp\n",
"qm\n25\nqw\nwe\ner\nrt\nty\nyu\nui\nio\nop\np`\nas\nsd\ndf\nfg\ngh\nhj\njk\nkl\nlz\nzx\nxc\ncv\nvb\nbn\nnm\n",
"`h\n1\nah\n",
"ya\n4\nah\nox\nto\nha\n",
"ph\n2\nht\ntp\n",
"aa\n2\nbb\ncb\n",
"bb\n1\nba\n",
"th\n1\ngt\n",
"bn\n100\ndf\nyb\nze\nml\nyr\nof\nnw\nfm\ndw\nlv\nzr\nhu\nzt\nlw\nld\nmo\nxz\ntp\nms\nou\nme\npx\nvp\nes\nxi\nnr\nbx\nqc\ngm\njs\nkn\ntw\nrq\nkz\nuc\nvc\nqr\nab\nna\nro\nya\nqy\ngu\nvk\nqk\ngs\nyq\nop\nhw\nrj\neo\nlz\nbh\nkr\nkb\nma\nrd\nz`\nuf\nhq\nmc\nmn\nti\nwn\nsh\nax\nsi\nnd\ntz\ndu\nfj\nkl\nws\now\nnf\nvr\nye\nzc\niw\nfv\nkv\noo\nsm\nbc\nrs\nau\nuz\nuv\ngh\nsu\njn\ndz\nrl\nwj\nbk\nzl\nas\nms\nit\nwu\n",
"ke\n20\nzk\nra\nbq\nqz\nwt\nzg\nmz\nuk\nge\nuv\nud\nfd\neh\ndl\nsk\nki\nfv\nsp\nat\nfb\n",
"ca\n1\naa\n",
"ai\n1\nha\n",
"ph\n1\nhq\n",
"if\n100\njd\nbc\nje\nhi\nga\nde\nkb\nfc\ncd\nge\naj\ncb\nei\nbf\ncf\ndk\ndb\ncg\nki\ngg\nkg\nfa\nkj\nii\njf\njg\ngb\nbh\nbg\neh\nhj\nhb\ndg\njd\njc\njb\nce\ndi\nig\nci\ndf\nji\nhc\nfk\naf\nac\ngk\nhd\nae\nkd\nec\nkc\neb\nfh\nij\nie\nca\nhh\nkf\nha\ndd\nif\nef\nih\nhg\nej\nfe\njk\nea\nib\nck\nhf\nak\ngi\nch\ndc\nba\nke\nad\nka\neg\njh\nja\ngc\nfd\ncc\nab\ngj\nik\nfg\nbj\nhe\nfj\nge\ngh\nhk\nbk\ned\nid\nfi\n",
"ba\n1\ndc\n",
"bb\n5\nc`\nda\nea\nfa\nka\n",
"hh\n50\nag\nhg\ndg\nfh\ndg\ngh\ngd\nda\nbi\nab\nhf\ndc\nhb\nfe\nad\nec\nac\nfd\nca\naf\ncg\nhd\neb\nce\nhe\nha\ngb\nea\nae\nfb\nff\nbe\nch\nhh\nee\nde\nge\ngf\naa\ngg\neh\ned\nbf\nfc\nah\nga\nbd\ncb\nbg\nbc\n",
"ag\n2\nha\nzz\n",
"am\n1\nam\n",
"rn\n50\nba\nec\nwg\nao\nlk\nmz\njj\nce\nfa\njk\ndy\nsz\njs\nzr\nqv\ntx\nwv\nrd\nqw\nls\nrr\nvt\nrx\nkc\neh\nnj\niq\nyi\nkh\nue\nnv\nkz\nrn\nes\nua\nzf\nvu\nll\neg\nmj\ncz\nzj\nxz\net\neb\nci\nih\nig\nma\nvd\n",
"kd\n100\nek\nea\nha\nkf\nkj\ngh\ndl\nfj\nal\nga\nlj\nik\ngd\nid\ncb\nfh\ndk\nif\nbg\nkb\nhc\nej\nhk\ngc\ngb\nef\nkk\nll\nlf\nkh\ncl\nlh\njj\nil\nhh\ndi\ndb\ndf\ngk\njg\nch\nbd\ncg\nfg\nda\neb\nlg\ndg\nbk\nje\nbg\nbl\njl\ncj\nhb\nei\naa\ngl\nka\nfa\nfi\naf\nkc\nla\ngi\nij\nib\nle\ndi\nck\nag\nlc\nca\nge\nie\nlb\nke\nii\nae\nig\nic\nhe\ncf\nhd\nak\nfb\nhi\ngf\nad\nba\nhg\nbi\nkl\nac\ngg\ngj\nbe\nlk\nld\naj\n",
"ee\n100\nah\nfb\ncd\nbi\nii\nai\nid\nag\nie\nha\ndi\nec\nae\nce\njb\ndg\njg\ndg\ngf\nda\nih\nbd\nhj\ngg\nhb\ndf\ned\nfh\naf\nja\nci\nfd\nic\nji\nac\nhi\nfj\nch\nbc\njd\naa\nff\nad\ngj\nej\nde\nee\nhe\ncf\nga\nia\ncg\nbb\nhc\nbe\ngi\njf\nbg\naj\njj\nbh\nfe\ndj\nef\ngb\nge\ndb\nig\ncj\ndc\nij\njh\nei\ndd\nib\nhf\neg\nbf\nfg\nab\ngc\nfd\nhd\ngh\neh\njc\neb\nhh\nca\nje\nbj\nif\nea\nhg\nfa\ncc\nba\ndh\ncb\nfi\n",
"oy\n1\noy\n",
"ko\n1\npk\n",
"ba\n2\nya\nza\n",
"aa\n2\nbc\ncc\n",
"bh\n2\nap\ngp\n"
],
"output": [
"YES",
"YES",
"NO",
"NO",
"NO",
"YES",
"YES",
"YES",
"YES",
"NO",
"YES",
"YES",
"YES",
"YES",
"NO",
"NO",
"YES",
"YES",
"YES",
"NO",
"YES",
"YES",
"NO",
"YES",
"YES",
"YES",
"YES",
"YES",
"YES",
"NO",
"NO",
"YES",
"NO",
"YES",
"YES",
"NO",
"NO",
"YES",
"YES",
"YES",
"YES",
"YES",
"YES",
"YES",
"YES",
"YES",
"YES",
"YES",
"NO",
"YES",
"YES",
"YES",
"YES",
"YES",
"NO",
"NO",
"NO",
"NO",
"NO",
"YES",
"NO",
"YES",
"YES",
"YES",
"NO",
"NO",
"YES",
"YES",
"YES",
"NO",
"NO",
"NO",
"YES",
"YES",
"YES",
"YES",
"YES",
"YES",
"YES",
"YES",
"NO",
"YES",
"YES",
"YES",
"YES",
"YES",
"YES",
"YES",
"NO",
"NO\n",
"YES\n",
"NO\n",
"YES\n",
"YES\n",
"NO\n",
"YES\n",
"NO\n",
"NO\n",
"YES\n",
"NO\n",
"NO\n",
"YES\n",
"YES\n",
"NO\n",
"YES\n",
"YES\n",
"YES\n",
"YES\n",
"YES\n",
"YES\n",
"YES\n",
"NO\n",
"NO\n",
"NO\n",
"YES\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"YES\n",
"NO\n",
"YES\n",
"YES\n",
"NO\n",
"YES\n",
"NO\n",
"YES\n",
"YES\n",
"YES\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"YES\n",
"YES\n",
"NO\n",
"YES\n",
"YES\n",
"YES\n",
"NO\n",
"YES\n",
"YES\n",
"YES\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"YES\n",
"NO\n",
"NO\n",
"NO\n",
"YES\n",
"YES\n",
"NO\n",
"NO\n",
"NO\n",
"YES\n",
"NO\n",
"NO\n",
"YES\n",
"NO\n",
"YES\n",
"YES\n",
"YES\n",
"YES\n",
"YES\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n"
]
} | 2CODEFORCES
|
868_A. Bark to Unlock_178 | As technologies develop, manufacturers are making the process of unlocking a phone as user-friendly as possible. To unlock its new phone, Arkady's pet dog Mu-mu has to bark the password once. The phone represents a password as a string of two lowercase English letters.
Mu-mu's enemy Kashtanka wants to unlock Mu-mu's phone to steal some sensible information, but it can only bark n distinct words, each of which can be represented as a string of two lowercase English letters. Kashtanka wants to bark several words (not necessarily distinct) one after another to pronounce a string containing the password as a substring. Tell if it's possible to unlock the phone in this way, or not.
Input
The first line contains two lowercase English letters — the password on the phone.
The second line contains single integer n (1 ≤ n ≤ 100) — the number of words Kashtanka knows.
The next n lines contain two lowercase English letters each, representing the words Kashtanka knows. The words are guaranteed to be distinct.
Output
Print "YES" if Kashtanka can bark several words in a line forming a string containing the password, and "NO" otherwise.
You can print each letter in arbitrary case (upper or lower).
Examples
Input
ya
4
ah
oy
to
ha
Output
YES
Input
hp
2
ht
tp
Output
NO
Input
ah
1
ha
Output
YES
Note
In the first example the password is "ya", and Kashtanka can bark "oy" and then "ah", and then "ha" to form the string "oyahha" which contains the password. So, the answer is "YES".
In the second example Kashtanka can't produce a string containing password as a substring. Note that it can bark "ht" and then "tp" producing "http", but it doesn't contain the password "hp" as a substring.
In the third example the string "hahahaha" contains "ah" as a substring. | one=input()
num=int(input())
twos=[]
for i in range(num):
twos.append(input())
if (one in twos) or (one[::-1] in twos):
print("YES")
else:
flag1,flag2=False,False
for i in range(num):
if twos[i][0]==one[1]:
flag1=True
if twos[i][1]==one[0]:
flag2=True
if(flag1 and flag2):
print("YES")
else:
print("NO") | 3Python3
| {
"input": [
"ah\n1\nha\n",
"ya\n4\nah\noy\nto\nha\n",
"hp\n2\nht\ntp\n",
"ab\n2\nbb\nbc\n",
"bc\n1\nab\n",
"th\n1\nth\n",
"bn\n100\ndf\nyb\nze\nml\nyr\nof\nnw\nfm\ndw\nlv\nzr\nhu\nzt\nlw\nld\nmo\nxz\ntp\nmr\nou\nme\npx\nvp\nes\nxi\nnr\nbx\nqc\ngm\njs\nkn\ntw\nrq\nkz\nuc\nvc\nqr\nab\nna\nro\nya\nqy\ngu\nvk\nqk\ngs\nyq\nop\nhw\nrj\neo\nlz\nbh\nkr\nkb\nma\nrd\nza\nuf\nhq\nmc\nmn\nti\nwn\nsh\nax\nsi\nnd\ntz\ndu\nfj\nkl\nws\now\nnf\nvr\nye\nzc\niw\nfv\nkv\noo\nsm\nbc\nrs\nau\nuz\nuv\ngh\nsu\njn\ndz\nrl\nwj\nbk\nzl\nas\nms\nit\nwu\n",
"ke\n20\nzk\nra\nbq\nqz\nwt\nzg\nmz\nuk\nge\nuv\nud\nfd\neh\ndm\nsk\nki\nfv\ntp\nat\nfb\n",
"ab\n2\nab\ncd\n",
"bb\n1\naa\n",
"ya\n1\nya\n",
"ha\n1\nha\n",
"hp\n1\nhp\n",
"if\n100\njd\nbc\nje\nhi\nga\nde\nkb\nfc\ncd\ngd\naj\ncb\nei\nbf\ncf\ndk\ndb\ncg\nki\ngg\nkg\nfa\nkj\nii\njf\njg\ngb\nbh\nbg\neh\nhj\nhb\ndg\ndj\njc\njb\nce\ndi\nig\nci\ndf\nji\nhc\nfk\naf\nac\ngk\nhd\nae\nkd\nec\nkc\neb\nfh\nij\nie\nca\nhh\nkf\nha\ndd\nif\nef\nih\nhg\nej\nfe\njk\nea\nib\nck\nhf\nak\ngi\nch\ndc\nba\nke\nad\nka\neg\njh\nja\ngc\nfd\ncc\nab\ngj\nik\nfg\nbj\nhe\nfj\nge\ngh\nhk\nbk\ned\nid\nfi\n",
"ba\n1\ncc\n",
"ab\n5\nca\nda\nea\nfa\nka\n",
"hh\n50\nag\nhg\ndg\nfh\neg\ngh\ngd\nda\nbh\nab\nhf\ndc\nhb\nfe\nad\nec\nac\nfd\nca\naf\ncg\nhd\neb\nce\nhe\nha\ngb\nea\nae\nfb\nff\nbe\nch\nhh\nee\nde\nge\ngf\naa\ngg\neh\ned\nbf\nfc\nah\nga\nbd\ncb\nbg\nbc\n",
"ha\n2\nha\nzz\n",
"ac\n1\nac\n",
"ab\n1\naa\n",
"ta\n1\nta\n",
"ma\n1\nma\n",
"az\n1\nby\n",
"rn\n50\nba\nec\nwg\nao\nlk\nmz\njj\ncf\nfa\njk\ndy\nsz\njs\nzr\nqv\ntx\nwv\nrd\nqw\nls\nrr\nvt\nrx\nkc\neh\nnj\niq\nyi\nkh\nue\nnv\nkz\nrn\nes\nua\nzf\nvu\nll\neg\nmj\ncz\nzj\nxz\net\neb\nci\nih\nig\nam\nvd\n",
"kd\n100\nek\nea\nha\nkf\nkj\ngh\ndl\nfj\nal\nga\nlj\nik\ngd\nid\ncb\nfh\ndk\nif\nbh\nkb\nhc\nej\nhk\ngc\ngb\nef\nkk\nll\nlf\nkh\ncl\nlh\njj\nil\nhh\nci\ndb\ndf\ngk\njg\nch\nbd\ncg\nfg\nda\neb\nlg\ndg\nbk\nje\nbg\nbl\njl\ncj\nhb\nei\naa\ngl\nka\nfa\nfi\naf\nkc\nla\ngi\nij\nib\nle\ndi\nck\nag\nlc\nca\nge\nie\nlb\nke\nii\nae\nig\nic\nhe\ncf\nhd\nak\nfb\nhi\ngf\nad\nba\nhg\nbi\nkl\nac\ngg\ngj\nbe\nlk\nld\naj\n",
"ee\n100\nah\nfb\ncd\nbi\nii\nai\nid\nag\nie\nha\ndi\nec\nae\nce\njb\ndg\njg\ngd\ngf\nda\nih\nbd\nhj\ngg\nhb\ndf\ned\nfh\naf\nja\nci\nfc\nic\nji\nac\nhi\nfj\nch\nbc\njd\naa\nff\nad\ngj\nej\nde\nee\nhe\ncf\nga\nia\ncg\nbb\nhc\nbe\ngi\njf\nbg\naj\njj\nbh\nfe\ndj\nef\ngb\nge\ndb\nig\ncj\ndc\nij\njh\nei\ndd\nib\nhf\neg\nbf\nfg\nab\ngc\nfd\nhd\ngh\neh\njc\neb\nhh\nca\nje\nbj\nif\nea\nhg\nfa\ncc\nba\ndh\ncb\nfi\n",
"la\n1\nla\n",
"yo\n1\nyo\n",
"ok\n1\nok\n",
"ab\n2\nxa\nza\n",
"aa\n2\nca\ncc\n",
"ab\n1\nab\n",
"ah\n2\nap\nhp\n",
"hi\n1\nhi\n",
"ca\n3\nbc\nbd\nca\n",
"ez\n1\njl\n",
"aa\n2\nab\nac\n",
"ag\n1\nag\n",
"mq\n25\nqw\nwe\ner\nrt\nty\nyu\nui\nio\nop\npa\nas\nsd\ndf\nfg\ngh\nhj\njk\nkl\nlz\nzx\nxc\ncv\nvb\nbn\nnm\n",
"sh\n1\nsh\n",
"as\n1\nas\n",
"sb\n1\nsb\n",
"ah\n1\nah\n",
"ha\n3\ndd\ncc\nha\n",
"fc\n20\nca\nbb\nce\nfd\nde\nfa\ncc\nec\nfb\nfc\nff\nbe\ncf\nba\ndb\ned\naf\nae\nda\nef\n",
"ah\n2\nba\nha\n",
"ab\n2\nza\nbz\n",
"ax\n2\nii\nxa\n",
"pg\n4\nzl\nxs\ndi\nxn\n",
"ca\n20\ndc\naf\ndf\neg\naa\nbc\nea\nbd\nab\ndb\ngc\nfb\nba\nbe\nee\ngf\ncf\nag\nga\nca\n",
"fa\n1\nfa\n",
"bb\n1\nbb\n",
"fe\n50\nje\nbi\nbg\ngc\nfb\nig\ndf\nji\ndg\nfe\nfc\ncf\ngf\nai\nhe\nac\nch\nja\ngh\njf\nge\ncb\nij\ngb\ncg\naf\neh\nee\nhd\njd\njb\nii\nca\nci\nga\nab\nhi\nag\nfj\nej\nfi\nie\ndj\nfg\nef\njc\njg\njh\nhf\nha\n",
"ab\n2\nba\ntt\n",
"qc\n2\nyc\nkr\n",
"dd\n2\nac\ndc\n",
"oo\n1\nox\n",
"dd\n3\nmt\nrg\nxl\n",
"ab\n1\nbb\n",
"ah\n2\nbb\nha\n",
"ww\n4\nuw\now\npo\nko\n",
"xy\n2\nxy\naa\n",
"ay\n1\nay\n",
"sa\n2\nxx\nas\n",
"ya\n42\nab\nac\nad\nae\naf\nag\nah\nai\nak\naj\nba\nbc\nbd\nbe\nbf\nbg\nbh\nbi\nbk\nbj\ncb\nca\ncd\nce\ncf\ncg\nch\nci\nck\ncj\ndb\ndc\nda\nde\ndf\ndg\ndh\ndi\ndk\ndj\nef\nek\n",
"ab\n2\nax\nbx\n",
"aa\n2\nab\nba\n",
"bk\n1\nbk\n",
"aa\n3\nba\nbb\nab\n",
"ca\n3\naa\nbb\nab\n",
"ba\n1\nbb\n",
"ay\n1\nyb\n",
"ba\n1\nba\n",
"be\n20\nad\ncd\ncb\ndb\ndd\naa\nab\nca\nae\ned\ndc\nbb\nba\nda\nee\nea\ncc\nac\nec\neb\n",
"bc\n1\nbc\n",
"ba\n4\ncd\nad\ncc\ncb\n",
"qw\n1\nqw\n",
"bb\n4\nba\nab\naa\nbb\n",
"ab\n2\net\nab\n",
"ab\n2\nab\ncc\n",
"az\n1\nzz\n",
"bc\n4\nca\nba\nbb\ncc\n",
"id\n50\nhi\ndc\nfg\nee\ngi\nhc\nac\nih\ndg\nfc\nde\ned\nie\neb\nic\ncf\nib\nfa\ngc\nba\nbe\nga\nha\nhg\nia\ndf\nab\nei\neh\nad\nii\nci\ndh\nec\nif\ndi\nbg\nag\nhe\neg\nca\nae\ndb\naa\nid\nfh\nhh\ncc\nfb\ngb\n",
"ab\n3\nab\nxx\nyy\n",
"ab\n2\nab\nde\n",
"aa\n1\naa\n",
"tb\n1\ntb\n",
"ap\n1\nap\n",
"qm\n25\nqw\nwe\ner\nrt\nty\nyu\nui\nio\nop\npa\nas\nsd\ndf\nfg\ngh\nhj\njk\nkl\nlz\nzx\nxc\ncv\nvb\nbn\nnm\n",
"aa\n2\nbb\nbc\n",
"th\n1\nht\n",
"bb\n1\nab\n",
"bn\n100\ndf\nyb\nze\nml\nyr\nof\nnw\nfm\ndw\nlv\nzr\nhu\nzt\nlw\nld\nmo\nxz\ntp\nmr\nou\nme\npx\nvp\nes\nxi\nnr\nbx\nqc\ngm\njs\nkn\ntw\nrq\nkz\nuc\nvc\nqr\nab\nna\nro\nya\nqy\ngu\nvk\nqk\ngs\nyq\nop\nhw\nrj\neo\nlz\nbh\nkr\nkb\nma\nrd\nz`\nuf\nhq\nmc\nmn\nti\nwn\nsh\nax\nsi\nnd\ntz\ndu\nfj\nkl\nws\now\nnf\nvr\nye\nzc\niw\nfv\nkv\noo\nsm\nbc\nrs\nau\nuz\nuv\ngh\nsu\njn\ndz\nrl\nwj\nbk\nzl\nas\nms\nit\nwu\n",
"ke\n20\nzk\nra\nbq\nqz\nwt\nzg\nmz\nuk\nge\nuv\nud\nfd\neh\ndl\nsk\nki\nfv\ntp\nat\nfb\n",
"cb\n1\naa\n",
"ay\n1\nya\n",
"ia\n1\nha\n",
"hp\n1\nhq\n",
"if\n100\njd\nbc\nje\nhi\nga\nde\nkb\nfc\ncd\nge\naj\ncb\nei\nbf\ncf\ndk\ndb\ncg\nki\ngg\nkg\nfa\nkj\nii\njf\njg\ngb\nbh\nbg\neh\nhj\nhb\ndg\ndj\njc\njb\nce\ndi\nig\nci\ndf\nji\nhc\nfk\naf\nac\ngk\nhd\nae\nkd\nec\nkc\neb\nfh\nij\nie\nca\nhh\nkf\nha\ndd\nif\nef\nih\nhg\nej\nfe\njk\nea\nib\nck\nhf\nak\ngi\nch\ndc\nba\nke\nad\nka\neg\njh\nja\ngc\nfd\ncc\nab\ngj\nik\nfg\nbj\nhe\nfj\nge\ngh\nhk\nbk\ned\nid\nfi\n",
"ba\n1\ncd\n",
"ab\n5\nc`\nda\nea\nfa\nka\n",
"hh\n50\nag\nhg\ndg\nfh\neg\ngh\ngd\nda\nbi\nab\nhf\ndc\nhb\nfe\nad\nec\nac\nfd\nca\naf\ncg\nhd\neb\nce\nhe\nha\ngb\nea\nae\nfb\nff\nbe\nch\nhh\nee\nde\nge\ngf\naa\ngg\neh\ned\nbf\nfc\nah\nga\nbd\ncb\nbg\nbc\n",
"ah\n2\nha\nzz\n",
"ba\n1\naa\n",
"ta\n1\nat\n",
"am\n1\nma\n",
"rn\n50\nba\nec\nwg\nao\nlk\nmz\njj\nce\nfa\njk\ndy\nsz\njs\nzr\nqv\ntx\nwv\nrd\nqw\nls\nrr\nvt\nrx\nkc\neh\nnj\niq\nyi\nkh\nue\nnv\nkz\nrn\nes\nua\nzf\nvu\nll\neg\nmj\ncz\nzj\nxz\net\neb\nci\nih\nig\nam\nvd\n",
"kd\n100\nek\nea\nha\nkf\nkj\ngh\ndl\nfj\nal\nga\nlj\nik\ngd\nid\ncb\nfh\ndk\nif\nbh\nkb\nhc\nej\nhk\ngc\ngb\nef\nkk\nll\nlf\nkh\ncl\nlh\njj\nil\nhh\ndi\ndb\ndf\ngk\njg\nch\nbd\ncg\nfg\nda\neb\nlg\ndg\nbk\nje\nbg\nbl\njl\ncj\nhb\nei\naa\ngl\nka\nfa\nfi\naf\nkc\nla\ngi\nij\nib\nle\ndi\nck\nag\nlc\nca\nge\nie\nlb\nke\nii\nae\nig\nic\nhe\ncf\nhd\nak\nfb\nhi\ngf\nad\nba\nhg\nbi\nkl\nac\ngg\ngj\nbe\nlk\nld\naj\n",
"ee\n100\nah\nfb\ncd\nbi\nii\nai\nid\nag\nie\nha\ndi\nec\nae\nce\njb\ndg\njg\ndg\ngf\nda\nih\nbd\nhj\ngg\nhb\ndf\ned\nfh\naf\nja\nci\nfc\nic\nji\nac\nhi\nfj\nch\nbc\njd\naa\nff\nad\ngj\nej\nde\nee\nhe\ncf\nga\nia\ncg\nbb\nhc\nbe\ngi\njf\nbg\naj\njj\nbh\nfe\ndj\nef\ngb\nge\ndb\nig\ncj\ndc\nij\njh\nei\ndd\nib\nhf\neg\nbf\nfg\nab\ngc\nfd\nhd\ngh\neh\njc\neb\nhh\nca\nje\nbj\nif\nea\nhg\nfa\ncc\nba\ndh\ncb\nfi\n",
"yo\n1\noy\n",
"ko\n1\nok\n",
"ab\n2\nya\nza\n",
"aa\n2\ncb\ncc\n",
"bh\n2\nap\nhp\n",
"ac\n3\nbc\nbd\nca\n",
"aa\n2\nab\n`c\n",
"`g\n1\nag\n",
"mq\n25\nqw\nwe\ner\nrt\nty\nyu\nui\nio\nop\npa\nas\nsd\ndf\nfg\ngh\nhj\njk\nkl\nlz\nzx\nxc\ncv\nvb\nbn\nmn\n",
"sh\n1\nsg\n",
"as\n1\nbs\n",
"sb\n1\nsc\n",
"ha\n1\nah\n",
"h`\n3\ndd\ncc\nha\n",
"fc\n20\nca\nbb\nce\nfd\nde\nfa\ncc\nec\nfb\nfc\nff\nbe\ncf\nba\ndb\nde\naf\nae\nda\nef\n",
"ha\n2\nba\nha\n",
"ab\n2\naz\nbz\n",
"ax\n2\nhi\nxa\n",
"gp\n4\nzl\nxs\ndi\nxn\n",
"ca\n20\ndc\naf\ndf\neg\naa\nbc\nea\nbd\nab\ndb\ngc\nfb\naa\nbe\nee\ngf\ncf\nag\nga\nca\n",
"fe\n50\nje\nbi\nbg\ngc\nfb\nig\ndf\nji\ndg\nfe\nfc\ncf\ngf\nai\nhe\nac\nch\nja\ngh\njf\nge\ncb\nij\ngb\ncg\naf\neh\nee\nhd\njd\njb\nii\nca\nci\nga\nab\nhi\nah\nfj\nej\nfi\nie\ndj\nfg\nef\njc\njg\njh\nhf\nha\n",
"ab\n2\nab\ntt\n",
"dd\n2\nab\ndc\n",
"oo\n1\nxo\n",
"ed\n3\nmt\nrg\nxl\n",
"xy\n2\nxz\naa\n",
"ya\n42\nab\nac\nad\nae\naf\nag\nah\nai\nak\naj\nba\nbc\nbd\nbe\nbf\nbg\nbh\nbi\nbk\nbj\ncb\nca\ncd\nce\ncf\ncg\nch\nci\nck\ncj\ndb\ndc\nda\nde\ndf\ngd\ndh\ndi\ndk\ndj\nef\nek\n",
"ab\n2\nax\nbw\n",
"a`\n2\nab\nba\n",
"aa\n3\nab\nbb\nab\n",
"ca\n3\nab\nbb\nab\n",
"ay\n1\nxb\n",
"ba\n1\nab\n",
"be\n20\nda\ncd\ncb\ndb\ndd\naa\nab\nca\nae\ned\ndc\nbb\nba\nda\nee\nea\ncc\nac\nec\neb\n",
"cc\n1\nbc\n",
"ba\n4\ncd\nad\ncc\nbb\n",
"bb\n4\nba\nab\naa\nbc\n",
"ba\n2\nab\ncc\n",
"ay\n1\nzz\n",
"bc\n4\nc`\nba\nbb\ncc\n",
"id\n50\nhi\ndc\nfg\nee\ngi\nhc\nac\nih\ndg\nfc\nde\ned\nje\neb\nic\ncf\nib\nfa\ngc\nba\nbe\nga\nha\nhg\nia\ndf\nab\nei\neh\nad\nii\nci\ndh\nec\nif\ndi\nbg\nag\nhe\neg\nca\nae\ndb\naa\nid\nfh\nhh\ncc\nfb\ngb\n",
"ab\n3\nba\nxx\nyy\n",
"ab\n2\naa\nde\n",
"tb\n1\nta\n",
"ap\n1\nbp\n",
"qm\n25\nqw\nwe\ner\nrt\nty\nyu\nui\nio\nop\np`\nas\nsd\ndf\nfg\ngh\nhj\njk\nkl\nlz\nzx\nxc\ncv\nvb\nbn\nnm\n",
"`h\n1\nah\n",
"ya\n4\nah\nox\nto\nha\n",
"ph\n2\nht\ntp\n",
"aa\n2\nbb\ncb\n",
"bb\n1\nba\n",
"th\n1\ngt\n",
"bn\n100\ndf\nyb\nze\nml\nyr\nof\nnw\nfm\ndw\nlv\nzr\nhu\nzt\nlw\nld\nmo\nxz\ntp\nms\nou\nme\npx\nvp\nes\nxi\nnr\nbx\nqc\ngm\njs\nkn\ntw\nrq\nkz\nuc\nvc\nqr\nab\nna\nro\nya\nqy\ngu\nvk\nqk\ngs\nyq\nop\nhw\nrj\neo\nlz\nbh\nkr\nkb\nma\nrd\nz`\nuf\nhq\nmc\nmn\nti\nwn\nsh\nax\nsi\nnd\ntz\ndu\nfj\nkl\nws\now\nnf\nvr\nye\nzc\niw\nfv\nkv\noo\nsm\nbc\nrs\nau\nuz\nuv\ngh\nsu\njn\ndz\nrl\nwj\nbk\nzl\nas\nms\nit\nwu\n",
"ke\n20\nzk\nra\nbq\nqz\nwt\nzg\nmz\nuk\nge\nuv\nud\nfd\neh\ndl\nsk\nki\nfv\nsp\nat\nfb\n",
"ca\n1\naa\n",
"ai\n1\nha\n",
"ph\n1\nhq\n",
"if\n100\njd\nbc\nje\nhi\nga\nde\nkb\nfc\ncd\nge\naj\ncb\nei\nbf\ncf\ndk\ndb\ncg\nki\ngg\nkg\nfa\nkj\nii\njf\njg\ngb\nbh\nbg\neh\nhj\nhb\ndg\njd\njc\njb\nce\ndi\nig\nci\ndf\nji\nhc\nfk\naf\nac\ngk\nhd\nae\nkd\nec\nkc\neb\nfh\nij\nie\nca\nhh\nkf\nha\ndd\nif\nef\nih\nhg\nej\nfe\njk\nea\nib\nck\nhf\nak\ngi\nch\ndc\nba\nke\nad\nka\neg\njh\nja\ngc\nfd\ncc\nab\ngj\nik\nfg\nbj\nhe\nfj\nge\ngh\nhk\nbk\ned\nid\nfi\n",
"ba\n1\ndc\n",
"bb\n5\nc`\nda\nea\nfa\nka\n",
"hh\n50\nag\nhg\ndg\nfh\ndg\ngh\ngd\nda\nbi\nab\nhf\ndc\nhb\nfe\nad\nec\nac\nfd\nca\naf\ncg\nhd\neb\nce\nhe\nha\ngb\nea\nae\nfb\nff\nbe\nch\nhh\nee\nde\nge\ngf\naa\ngg\neh\ned\nbf\nfc\nah\nga\nbd\ncb\nbg\nbc\n",
"ag\n2\nha\nzz\n",
"am\n1\nam\n",
"rn\n50\nba\nec\nwg\nao\nlk\nmz\njj\nce\nfa\njk\ndy\nsz\njs\nzr\nqv\ntx\nwv\nrd\nqw\nls\nrr\nvt\nrx\nkc\neh\nnj\niq\nyi\nkh\nue\nnv\nkz\nrn\nes\nua\nzf\nvu\nll\neg\nmj\ncz\nzj\nxz\net\neb\nci\nih\nig\nma\nvd\n",
"kd\n100\nek\nea\nha\nkf\nkj\ngh\ndl\nfj\nal\nga\nlj\nik\ngd\nid\ncb\nfh\ndk\nif\nbg\nkb\nhc\nej\nhk\ngc\ngb\nef\nkk\nll\nlf\nkh\ncl\nlh\njj\nil\nhh\ndi\ndb\ndf\ngk\njg\nch\nbd\ncg\nfg\nda\neb\nlg\ndg\nbk\nje\nbg\nbl\njl\ncj\nhb\nei\naa\ngl\nka\nfa\nfi\naf\nkc\nla\ngi\nij\nib\nle\ndi\nck\nag\nlc\nca\nge\nie\nlb\nke\nii\nae\nig\nic\nhe\ncf\nhd\nak\nfb\nhi\ngf\nad\nba\nhg\nbi\nkl\nac\ngg\ngj\nbe\nlk\nld\naj\n",
"ee\n100\nah\nfb\ncd\nbi\nii\nai\nid\nag\nie\nha\ndi\nec\nae\nce\njb\ndg\njg\ndg\ngf\nda\nih\nbd\nhj\ngg\nhb\ndf\ned\nfh\naf\nja\nci\nfd\nic\nji\nac\nhi\nfj\nch\nbc\njd\naa\nff\nad\ngj\nej\nde\nee\nhe\ncf\nga\nia\ncg\nbb\nhc\nbe\ngi\njf\nbg\naj\njj\nbh\nfe\ndj\nef\ngb\nge\ndb\nig\ncj\ndc\nij\njh\nei\ndd\nib\nhf\neg\nbf\nfg\nab\ngc\nfd\nhd\ngh\neh\njc\neb\nhh\nca\nje\nbj\nif\nea\nhg\nfa\ncc\nba\ndh\ncb\nfi\n",
"oy\n1\noy\n",
"ko\n1\npk\n",
"ba\n2\nya\nza\n",
"aa\n2\nbc\ncc\n",
"bh\n2\nap\ngp\n"
],
"output": [
"YES",
"YES",
"NO",
"NO",
"NO",
"YES",
"YES",
"YES",
"YES",
"NO",
"YES",
"YES",
"YES",
"YES",
"NO",
"NO",
"YES",
"YES",
"YES",
"NO",
"YES",
"YES",
"NO",
"YES",
"YES",
"YES",
"YES",
"YES",
"YES",
"NO",
"NO",
"YES",
"NO",
"YES",
"YES",
"NO",
"NO",
"YES",
"YES",
"YES",
"YES",
"YES",
"YES",
"YES",
"YES",
"YES",
"YES",
"YES",
"NO",
"YES",
"YES",
"YES",
"YES",
"YES",
"NO",
"NO",
"NO",
"NO",
"NO",
"YES",
"NO",
"YES",
"YES",
"YES",
"NO",
"NO",
"YES",
"YES",
"YES",
"NO",
"NO",
"NO",
"YES",
"YES",
"YES",
"YES",
"YES",
"YES",
"YES",
"YES",
"NO",
"YES",
"YES",
"YES",
"YES",
"YES",
"YES",
"YES",
"NO",
"NO\n",
"YES\n",
"NO\n",
"YES\n",
"YES\n",
"NO\n",
"YES\n",
"NO\n",
"NO\n",
"YES\n",
"NO\n",
"NO\n",
"YES\n",
"YES\n",
"NO\n",
"YES\n",
"YES\n",
"YES\n",
"YES\n",
"YES\n",
"YES\n",
"YES\n",
"NO\n",
"NO\n",
"NO\n",
"YES\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"YES\n",
"NO\n",
"YES\n",
"YES\n",
"NO\n",
"YES\n",
"NO\n",
"YES\n",
"YES\n",
"YES\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"YES\n",
"YES\n",
"NO\n",
"YES\n",
"YES\n",
"YES\n",
"NO\n",
"YES\n",
"YES\n",
"YES\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"YES\n",
"NO\n",
"NO\n",
"NO\n",
"YES\n",
"YES\n",
"NO\n",
"NO\n",
"NO\n",
"YES\n",
"NO\n",
"NO\n",
"YES\n",
"NO\n",
"YES\n",
"YES\n",
"YES\n",
"YES\n",
"YES\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n"
]
} | 2CODEFORCES
|
868_A. Bark to Unlock_179 | As technologies develop, manufacturers are making the process of unlocking a phone as user-friendly as possible. To unlock its new phone, Arkady's pet dog Mu-mu has to bark the password once. The phone represents a password as a string of two lowercase English letters.
Mu-mu's enemy Kashtanka wants to unlock Mu-mu's phone to steal some sensible information, but it can only bark n distinct words, each of which can be represented as a string of two lowercase English letters. Kashtanka wants to bark several words (not necessarily distinct) one after another to pronounce a string containing the password as a substring. Tell if it's possible to unlock the phone in this way, or not.
Input
The first line contains two lowercase English letters — the password on the phone.
The second line contains single integer n (1 ≤ n ≤ 100) — the number of words Kashtanka knows.
The next n lines contain two lowercase English letters each, representing the words Kashtanka knows. The words are guaranteed to be distinct.
Output
Print "YES" if Kashtanka can bark several words in a line forming a string containing the password, and "NO" otherwise.
You can print each letter in arbitrary case (upper or lower).
Examples
Input
ya
4
ah
oy
to
ha
Output
YES
Input
hp
2
ht
tp
Output
NO
Input
ah
1
ha
Output
YES
Note
In the first example the password is "ya", and Kashtanka can bark "oy" and then "ah", and then "ha" to form the string "oyahha" which contains the password. So, the answer is "YES".
In the second example Kashtanka can't produce a string containing password as a substring. Note that it can bark "ht" and then "tp" producing "http", but it doesn't contain the password "hp" as a substring.
In the third example the string "hahahaha" contains "ah" as a substring. | import java.util.Scanner;
public class Codechef {
public static void main(String[] args) {
Scanner input = new Scanner(System.in);
String x = input.next();
int n = input.nextInt(), c = 0, c1 = 0;
String[] s = new String[n];
for (int i = 0; i < n; i++) {
s[i] = input.next();
}
for (int i = 0; i < n; i++) {
if (x.equals(s[i])) {
System.out.println("Yes");
c++;
break;
}
}
if (c == 0) {
for (int i = 0; i < n; i++) {
if (s[i].charAt(1) == x.charAt(0)) {
for (int j = 0; j < n; j++) {
if (s[j].charAt(0) == x.charAt(1)) {
System.out.println("Yes");
c++;
break;
}
}
if(c==1){
break;
}
}
}
}
if (c == 0) {
System.out.println("No");
}
}
}
| 4JAVA
| {
"input": [
"ah\n1\nha\n",
"ya\n4\nah\noy\nto\nha\n",
"hp\n2\nht\ntp\n",
"ab\n2\nbb\nbc\n",
"bc\n1\nab\n",
"th\n1\nth\n",
"bn\n100\ndf\nyb\nze\nml\nyr\nof\nnw\nfm\ndw\nlv\nzr\nhu\nzt\nlw\nld\nmo\nxz\ntp\nmr\nou\nme\npx\nvp\nes\nxi\nnr\nbx\nqc\ngm\njs\nkn\ntw\nrq\nkz\nuc\nvc\nqr\nab\nna\nro\nya\nqy\ngu\nvk\nqk\ngs\nyq\nop\nhw\nrj\neo\nlz\nbh\nkr\nkb\nma\nrd\nza\nuf\nhq\nmc\nmn\nti\nwn\nsh\nax\nsi\nnd\ntz\ndu\nfj\nkl\nws\now\nnf\nvr\nye\nzc\niw\nfv\nkv\noo\nsm\nbc\nrs\nau\nuz\nuv\ngh\nsu\njn\ndz\nrl\nwj\nbk\nzl\nas\nms\nit\nwu\n",
"ke\n20\nzk\nra\nbq\nqz\nwt\nzg\nmz\nuk\nge\nuv\nud\nfd\neh\ndm\nsk\nki\nfv\ntp\nat\nfb\n",
"ab\n2\nab\ncd\n",
"bb\n1\naa\n",
"ya\n1\nya\n",
"ha\n1\nha\n",
"hp\n1\nhp\n",
"if\n100\njd\nbc\nje\nhi\nga\nde\nkb\nfc\ncd\ngd\naj\ncb\nei\nbf\ncf\ndk\ndb\ncg\nki\ngg\nkg\nfa\nkj\nii\njf\njg\ngb\nbh\nbg\neh\nhj\nhb\ndg\ndj\njc\njb\nce\ndi\nig\nci\ndf\nji\nhc\nfk\naf\nac\ngk\nhd\nae\nkd\nec\nkc\neb\nfh\nij\nie\nca\nhh\nkf\nha\ndd\nif\nef\nih\nhg\nej\nfe\njk\nea\nib\nck\nhf\nak\ngi\nch\ndc\nba\nke\nad\nka\neg\njh\nja\ngc\nfd\ncc\nab\ngj\nik\nfg\nbj\nhe\nfj\nge\ngh\nhk\nbk\ned\nid\nfi\n",
"ba\n1\ncc\n",
"ab\n5\nca\nda\nea\nfa\nka\n",
"hh\n50\nag\nhg\ndg\nfh\neg\ngh\ngd\nda\nbh\nab\nhf\ndc\nhb\nfe\nad\nec\nac\nfd\nca\naf\ncg\nhd\neb\nce\nhe\nha\ngb\nea\nae\nfb\nff\nbe\nch\nhh\nee\nde\nge\ngf\naa\ngg\neh\ned\nbf\nfc\nah\nga\nbd\ncb\nbg\nbc\n",
"ha\n2\nha\nzz\n",
"ac\n1\nac\n",
"ab\n1\naa\n",
"ta\n1\nta\n",
"ma\n1\nma\n",
"az\n1\nby\n",
"rn\n50\nba\nec\nwg\nao\nlk\nmz\njj\ncf\nfa\njk\ndy\nsz\njs\nzr\nqv\ntx\nwv\nrd\nqw\nls\nrr\nvt\nrx\nkc\neh\nnj\niq\nyi\nkh\nue\nnv\nkz\nrn\nes\nua\nzf\nvu\nll\neg\nmj\ncz\nzj\nxz\net\neb\nci\nih\nig\nam\nvd\n",
"kd\n100\nek\nea\nha\nkf\nkj\ngh\ndl\nfj\nal\nga\nlj\nik\ngd\nid\ncb\nfh\ndk\nif\nbh\nkb\nhc\nej\nhk\ngc\ngb\nef\nkk\nll\nlf\nkh\ncl\nlh\njj\nil\nhh\nci\ndb\ndf\ngk\njg\nch\nbd\ncg\nfg\nda\neb\nlg\ndg\nbk\nje\nbg\nbl\njl\ncj\nhb\nei\naa\ngl\nka\nfa\nfi\naf\nkc\nla\ngi\nij\nib\nle\ndi\nck\nag\nlc\nca\nge\nie\nlb\nke\nii\nae\nig\nic\nhe\ncf\nhd\nak\nfb\nhi\ngf\nad\nba\nhg\nbi\nkl\nac\ngg\ngj\nbe\nlk\nld\naj\n",
"ee\n100\nah\nfb\ncd\nbi\nii\nai\nid\nag\nie\nha\ndi\nec\nae\nce\njb\ndg\njg\ngd\ngf\nda\nih\nbd\nhj\ngg\nhb\ndf\ned\nfh\naf\nja\nci\nfc\nic\nji\nac\nhi\nfj\nch\nbc\njd\naa\nff\nad\ngj\nej\nde\nee\nhe\ncf\nga\nia\ncg\nbb\nhc\nbe\ngi\njf\nbg\naj\njj\nbh\nfe\ndj\nef\ngb\nge\ndb\nig\ncj\ndc\nij\njh\nei\ndd\nib\nhf\neg\nbf\nfg\nab\ngc\nfd\nhd\ngh\neh\njc\neb\nhh\nca\nje\nbj\nif\nea\nhg\nfa\ncc\nba\ndh\ncb\nfi\n",
"la\n1\nla\n",
"yo\n1\nyo\n",
"ok\n1\nok\n",
"ab\n2\nxa\nza\n",
"aa\n2\nca\ncc\n",
"ab\n1\nab\n",
"ah\n2\nap\nhp\n",
"hi\n1\nhi\n",
"ca\n3\nbc\nbd\nca\n",
"ez\n1\njl\n",
"aa\n2\nab\nac\n",
"ag\n1\nag\n",
"mq\n25\nqw\nwe\ner\nrt\nty\nyu\nui\nio\nop\npa\nas\nsd\ndf\nfg\ngh\nhj\njk\nkl\nlz\nzx\nxc\ncv\nvb\nbn\nnm\n",
"sh\n1\nsh\n",
"as\n1\nas\n",
"sb\n1\nsb\n",
"ah\n1\nah\n",
"ha\n3\ndd\ncc\nha\n",
"fc\n20\nca\nbb\nce\nfd\nde\nfa\ncc\nec\nfb\nfc\nff\nbe\ncf\nba\ndb\ned\naf\nae\nda\nef\n",
"ah\n2\nba\nha\n",
"ab\n2\nza\nbz\n",
"ax\n2\nii\nxa\n",
"pg\n4\nzl\nxs\ndi\nxn\n",
"ca\n20\ndc\naf\ndf\neg\naa\nbc\nea\nbd\nab\ndb\ngc\nfb\nba\nbe\nee\ngf\ncf\nag\nga\nca\n",
"fa\n1\nfa\n",
"bb\n1\nbb\n",
"fe\n50\nje\nbi\nbg\ngc\nfb\nig\ndf\nji\ndg\nfe\nfc\ncf\ngf\nai\nhe\nac\nch\nja\ngh\njf\nge\ncb\nij\ngb\ncg\naf\neh\nee\nhd\njd\njb\nii\nca\nci\nga\nab\nhi\nag\nfj\nej\nfi\nie\ndj\nfg\nef\njc\njg\njh\nhf\nha\n",
"ab\n2\nba\ntt\n",
"qc\n2\nyc\nkr\n",
"dd\n2\nac\ndc\n",
"oo\n1\nox\n",
"dd\n3\nmt\nrg\nxl\n",
"ab\n1\nbb\n",
"ah\n2\nbb\nha\n",
"ww\n4\nuw\now\npo\nko\n",
"xy\n2\nxy\naa\n",
"ay\n1\nay\n",
"sa\n2\nxx\nas\n",
"ya\n42\nab\nac\nad\nae\naf\nag\nah\nai\nak\naj\nba\nbc\nbd\nbe\nbf\nbg\nbh\nbi\nbk\nbj\ncb\nca\ncd\nce\ncf\ncg\nch\nci\nck\ncj\ndb\ndc\nda\nde\ndf\ndg\ndh\ndi\ndk\ndj\nef\nek\n",
"ab\n2\nax\nbx\n",
"aa\n2\nab\nba\n",
"bk\n1\nbk\n",
"aa\n3\nba\nbb\nab\n",
"ca\n3\naa\nbb\nab\n",
"ba\n1\nbb\n",
"ay\n1\nyb\n",
"ba\n1\nba\n",
"be\n20\nad\ncd\ncb\ndb\ndd\naa\nab\nca\nae\ned\ndc\nbb\nba\nda\nee\nea\ncc\nac\nec\neb\n",
"bc\n1\nbc\n",
"ba\n4\ncd\nad\ncc\ncb\n",
"qw\n1\nqw\n",
"bb\n4\nba\nab\naa\nbb\n",
"ab\n2\net\nab\n",
"ab\n2\nab\ncc\n",
"az\n1\nzz\n",
"bc\n4\nca\nba\nbb\ncc\n",
"id\n50\nhi\ndc\nfg\nee\ngi\nhc\nac\nih\ndg\nfc\nde\ned\nie\neb\nic\ncf\nib\nfa\ngc\nba\nbe\nga\nha\nhg\nia\ndf\nab\nei\neh\nad\nii\nci\ndh\nec\nif\ndi\nbg\nag\nhe\neg\nca\nae\ndb\naa\nid\nfh\nhh\ncc\nfb\ngb\n",
"ab\n3\nab\nxx\nyy\n",
"ab\n2\nab\nde\n",
"aa\n1\naa\n",
"tb\n1\ntb\n",
"ap\n1\nap\n",
"qm\n25\nqw\nwe\ner\nrt\nty\nyu\nui\nio\nop\npa\nas\nsd\ndf\nfg\ngh\nhj\njk\nkl\nlz\nzx\nxc\ncv\nvb\nbn\nnm\n",
"aa\n2\nbb\nbc\n",
"th\n1\nht\n",
"bb\n1\nab\n",
"bn\n100\ndf\nyb\nze\nml\nyr\nof\nnw\nfm\ndw\nlv\nzr\nhu\nzt\nlw\nld\nmo\nxz\ntp\nmr\nou\nme\npx\nvp\nes\nxi\nnr\nbx\nqc\ngm\njs\nkn\ntw\nrq\nkz\nuc\nvc\nqr\nab\nna\nro\nya\nqy\ngu\nvk\nqk\ngs\nyq\nop\nhw\nrj\neo\nlz\nbh\nkr\nkb\nma\nrd\nz`\nuf\nhq\nmc\nmn\nti\nwn\nsh\nax\nsi\nnd\ntz\ndu\nfj\nkl\nws\now\nnf\nvr\nye\nzc\niw\nfv\nkv\noo\nsm\nbc\nrs\nau\nuz\nuv\ngh\nsu\njn\ndz\nrl\nwj\nbk\nzl\nas\nms\nit\nwu\n",
"ke\n20\nzk\nra\nbq\nqz\nwt\nzg\nmz\nuk\nge\nuv\nud\nfd\neh\ndl\nsk\nki\nfv\ntp\nat\nfb\n",
"cb\n1\naa\n",
"ay\n1\nya\n",
"ia\n1\nha\n",
"hp\n1\nhq\n",
"if\n100\njd\nbc\nje\nhi\nga\nde\nkb\nfc\ncd\nge\naj\ncb\nei\nbf\ncf\ndk\ndb\ncg\nki\ngg\nkg\nfa\nkj\nii\njf\njg\ngb\nbh\nbg\neh\nhj\nhb\ndg\ndj\njc\njb\nce\ndi\nig\nci\ndf\nji\nhc\nfk\naf\nac\ngk\nhd\nae\nkd\nec\nkc\neb\nfh\nij\nie\nca\nhh\nkf\nha\ndd\nif\nef\nih\nhg\nej\nfe\njk\nea\nib\nck\nhf\nak\ngi\nch\ndc\nba\nke\nad\nka\neg\njh\nja\ngc\nfd\ncc\nab\ngj\nik\nfg\nbj\nhe\nfj\nge\ngh\nhk\nbk\ned\nid\nfi\n",
"ba\n1\ncd\n",
"ab\n5\nc`\nda\nea\nfa\nka\n",
"hh\n50\nag\nhg\ndg\nfh\neg\ngh\ngd\nda\nbi\nab\nhf\ndc\nhb\nfe\nad\nec\nac\nfd\nca\naf\ncg\nhd\neb\nce\nhe\nha\ngb\nea\nae\nfb\nff\nbe\nch\nhh\nee\nde\nge\ngf\naa\ngg\neh\ned\nbf\nfc\nah\nga\nbd\ncb\nbg\nbc\n",
"ah\n2\nha\nzz\n",
"ba\n1\naa\n",
"ta\n1\nat\n",
"am\n1\nma\n",
"rn\n50\nba\nec\nwg\nao\nlk\nmz\njj\nce\nfa\njk\ndy\nsz\njs\nzr\nqv\ntx\nwv\nrd\nqw\nls\nrr\nvt\nrx\nkc\neh\nnj\niq\nyi\nkh\nue\nnv\nkz\nrn\nes\nua\nzf\nvu\nll\neg\nmj\ncz\nzj\nxz\net\neb\nci\nih\nig\nam\nvd\n",
"kd\n100\nek\nea\nha\nkf\nkj\ngh\ndl\nfj\nal\nga\nlj\nik\ngd\nid\ncb\nfh\ndk\nif\nbh\nkb\nhc\nej\nhk\ngc\ngb\nef\nkk\nll\nlf\nkh\ncl\nlh\njj\nil\nhh\ndi\ndb\ndf\ngk\njg\nch\nbd\ncg\nfg\nda\neb\nlg\ndg\nbk\nje\nbg\nbl\njl\ncj\nhb\nei\naa\ngl\nka\nfa\nfi\naf\nkc\nla\ngi\nij\nib\nle\ndi\nck\nag\nlc\nca\nge\nie\nlb\nke\nii\nae\nig\nic\nhe\ncf\nhd\nak\nfb\nhi\ngf\nad\nba\nhg\nbi\nkl\nac\ngg\ngj\nbe\nlk\nld\naj\n",
"ee\n100\nah\nfb\ncd\nbi\nii\nai\nid\nag\nie\nha\ndi\nec\nae\nce\njb\ndg\njg\ndg\ngf\nda\nih\nbd\nhj\ngg\nhb\ndf\ned\nfh\naf\nja\nci\nfc\nic\nji\nac\nhi\nfj\nch\nbc\njd\naa\nff\nad\ngj\nej\nde\nee\nhe\ncf\nga\nia\ncg\nbb\nhc\nbe\ngi\njf\nbg\naj\njj\nbh\nfe\ndj\nef\ngb\nge\ndb\nig\ncj\ndc\nij\njh\nei\ndd\nib\nhf\neg\nbf\nfg\nab\ngc\nfd\nhd\ngh\neh\njc\neb\nhh\nca\nje\nbj\nif\nea\nhg\nfa\ncc\nba\ndh\ncb\nfi\n",
"yo\n1\noy\n",
"ko\n1\nok\n",
"ab\n2\nya\nza\n",
"aa\n2\ncb\ncc\n",
"bh\n2\nap\nhp\n",
"ac\n3\nbc\nbd\nca\n",
"aa\n2\nab\n`c\n",
"`g\n1\nag\n",
"mq\n25\nqw\nwe\ner\nrt\nty\nyu\nui\nio\nop\npa\nas\nsd\ndf\nfg\ngh\nhj\njk\nkl\nlz\nzx\nxc\ncv\nvb\nbn\nmn\n",
"sh\n1\nsg\n",
"as\n1\nbs\n",
"sb\n1\nsc\n",
"ha\n1\nah\n",
"h`\n3\ndd\ncc\nha\n",
"fc\n20\nca\nbb\nce\nfd\nde\nfa\ncc\nec\nfb\nfc\nff\nbe\ncf\nba\ndb\nde\naf\nae\nda\nef\n",
"ha\n2\nba\nha\n",
"ab\n2\naz\nbz\n",
"ax\n2\nhi\nxa\n",
"gp\n4\nzl\nxs\ndi\nxn\n",
"ca\n20\ndc\naf\ndf\neg\naa\nbc\nea\nbd\nab\ndb\ngc\nfb\naa\nbe\nee\ngf\ncf\nag\nga\nca\n",
"fe\n50\nje\nbi\nbg\ngc\nfb\nig\ndf\nji\ndg\nfe\nfc\ncf\ngf\nai\nhe\nac\nch\nja\ngh\njf\nge\ncb\nij\ngb\ncg\naf\neh\nee\nhd\njd\njb\nii\nca\nci\nga\nab\nhi\nah\nfj\nej\nfi\nie\ndj\nfg\nef\njc\njg\njh\nhf\nha\n",
"ab\n2\nab\ntt\n",
"dd\n2\nab\ndc\n",
"oo\n1\nxo\n",
"ed\n3\nmt\nrg\nxl\n",
"xy\n2\nxz\naa\n",
"ya\n42\nab\nac\nad\nae\naf\nag\nah\nai\nak\naj\nba\nbc\nbd\nbe\nbf\nbg\nbh\nbi\nbk\nbj\ncb\nca\ncd\nce\ncf\ncg\nch\nci\nck\ncj\ndb\ndc\nda\nde\ndf\ngd\ndh\ndi\ndk\ndj\nef\nek\n",
"ab\n2\nax\nbw\n",
"a`\n2\nab\nba\n",
"aa\n3\nab\nbb\nab\n",
"ca\n3\nab\nbb\nab\n",
"ay\n1\nxb\n",
"ba\n1\nab\n",
"be\n20\nda\ncd\ncb\ndb\ndd\naa\nab\nca\nae\ned\ndc\nbb\nba\nda\nee\nea\ncc\nac\nec\neb\n",
"cc\n1\nbc\n",
"ba\n4\ncd\nad\ncc\nbb\n",
"bb\n4\nba\nab\naa\nbc\n",
"ba\n2\nab\ncc\n",
"ay\n1\nzz\n",
"bc\n4\nc`\nba\nbb\ncc\n",
"id\n50\nhi\ndc\nfg\nee\ngi\nhc\nac\nih\ndg\nfc\nde\ned\nje\neb\nic\ncf\nib\nfa\ngc\nba\nbe\nga\nha\nhg\nia\ndf\nab\nei\neh\nad\nii\nci\ndh\nec\nif\ndi\nbg\nag\nhe\neg\nca\nae\ndb\naa\nid\nfh\nhh\ncc\nfb\ngb\n",
"ab\n3\nba\nxx\nyy\n",
"ab\n2\naa\nde\n",
"tb\n1\nta\n",
"ap\n1\nbp\n",
"qm\n25\nqw\nwe\ner\nrt\nty\nyu\nui\nio\nop\np`\nas\nsd\ndf\nfg\ngh\nhj\njk\nkl\nlz\nzx\nxc\ncv\nvb\nbn\nnm\n",
"`h\n1\nah\n",
"ya\n4\nah\nox\nto\nha\n",
"ph\n2\nht\ntp\n",
"aa\n2\nbb\ncb\n",
"bb\n1\nba\n",
"th\n1\ngt\n",
"bn\n100\ndf\nyb\nze\nml\nyr\nof\nnw\nfm\ndw\nlv\nzr\nhu\nzt\nlw\nld\nmo\nxz\ntp\nms\nou\nme\npx\nvp\nes\nxi\nnr\nbx\nqc\ngm\njs\nkn\ntw\nrq\nkz\nuc\nvc\nqr\nab\nna\nro\nya\nqy\ngu\nvk\nqk\ngs\nyq\nop\nhw\nrj\neo\nlz\nbh\nkr\nkb\nma\nrd\nz`\nuf\nhq\nmc\nmn\nti\nwn\nsh\nax\nsi\nnd\ntz\ndu\nfj\nkl\nws\now\nnf\nvr\nye\nzc\niw\nfv\nkv\noo\nsm\nbc\nrs\nau\nuz\nuv\ngh\nsu\njn\ndz\nrl\nwj\nbk\nzl\nas\nms\nit\nwu\n",
"ke\n20\nzk\nra\nbq\nqz\nwt\nzg\nmz\nuk\nge\nuv\nud\nfd\neh\ndl\nsk\nki\nfv\nsp\nat\nfb\n",
"ca\n1\naa\n",
"ai\n1\nha\n",
"ph\n1\nhq\n",
"if\n100\njd\nbc\nje\nhi\nga\nde\nkb\nfc\ncd\nge\naj\ncb\nei\nbf\ncf\ndk\ndb\ncg\nki\ngg\nkg\nfa\nkj\nii\njf\njg\ngb\nbh\nbg\neh\nhj\nhb\ndg\njd\njc\njb\nce\ndi\nig\nci\ndf\nji\nhc\nfk\naf\nac\ngk\nhd\nae\nkd\nec\nkc\neb\nfh\nij\nie\nca\nhh\nkf\nha\ndd\nif\nef\nih\nhg\nej\nfe\njk\nea\nib\nck\nhf\nak\ngi\nch\ndc\nba\nke\nad\nka\neg\njh\nja\ngc\nfd\ncc\nab\ngj\nik\nfg\nbj\nhe\nfj\nge\ngh\nhk\nbk\ned\nid\nfi\n",
"ba\n1\ndc\n",
"bb\n5\nc`\nda\nea\nfa\nka\n",
"hh\n50\nag\nhg\ndg\nfh\ndg\ngh\ngd\nda\nbi\nab\nhf\ndc\nhb\nfe\nad\nec\nac\nfd\nca\naf\ncg\nhd\neb\nce\nhe\nha\ngb\nea\nae\nfb\nff\nbe\nch\nhh\nee\nde\nge\ngf\naa\ngg\neh\ned\nbf\nfc\nah\nga\nbd\ncb\nbg\nbc\n",
"ag\n2\nha\nzz\n",
"am\n1\nam\n",
"rn\n50\nba\nec\nwg\nao\nlk\nmz\njj\nce\nfa\njk\ndy\nsz\njs\nzr\nqv\ntx\nwv\nrd\nqw\nls\nrr\nvt\nrx\nkc\neh\nnj\niq\nyi\nkh\nue\nnv\nkz\nrn\nes\nua\nzf\nvu\nll\neg\nmj\ncz\nzj\nxz\net\neb\nci\nih\nig\nma\nvd\n",
"kd\n100\nek\nea\nha\nkf\nkj\ngh\ndl\nfj\nal\nga\nlj\nik\ngd\nid\ncb\nfh\ndk\nif\nbg\nkb\nhc\nej\nhk\ngc\ngb\nef\nkk\nll\nlf\nkh\ncl\nlh\njj\nil\nhh\ndi\ndb\ndf\ngk\njg\nch\nbd\ncg\nfg\nda\neb\nlg\ndg\nbk\nje\nbg\nbl\njl\ncj\nhb\nei\naa\ngl\nka\nfa\nfi\naf\nkc\nla\ngi\nij\nib\nle\ndi\nck\nag\nlc\nca\nge\nie\nlb\nke\nii\nae\nig\nic\nhe\ncf\nhd\nak\nfb\nhi\ngf\nad\nba\nhg\nbi\nkl\nac\ngg\ngj\nbe\nlk\nld\naj\n",
"ee\n100\nah\nfb\ncd\nbi\nii\nai\nid\nag\nie\nha\ndi\nec\nae\nce\njb\ndg\njg\ndg\ngf\nda\nih\nbd\nhj\ngg\nhb\ndf\ned\nfh\naf\nja\nci\nfd\nic\nji\nac\nhi\nfj\nch\nbc\njd\naa\nff\nad\ngj\nej\nde\nee\nhe\ncf\nga\nia\ncg\nbb\nhc\nbe\ngi\njf\nbg\naj\njj\nbh\nfe\ndj\nef\ngb\nge\ndb\nig\ncj\ndc\nij\njh\nei\ndd\nib\nhf\neg\nbf\nfg\nab\ngc\nfd\nhd\ngh\neh\njc\neb\nhh\nca\nje\nbj\nif\nea\nhg\nfa\ncc\nba\ndh\ncb\nfi\n",
"oy\n1\noy\n",
"ko\n1\npk\n",
"ba\n2\nya\nza\n",
"aa\n2\nbc\ncc\n",
"bh\n2\nap\ngp\n"
],
"output": [
"YES",
"YES",
"NO",
"NO",
"NO",
"YES",
"YES",
"YES",
"YES",
"NO",
"YES",
"YES",
"YES",
"YES",
"NO",
"NO",
"YES",
"YES",
"YES",
"NO",
"YES",
"YES",
"NO",
"YES",
"YES",
"YES",
"YES",
"YES",
"YES",
"NO",
"NO",
"YES",
"NO",
"YES",
"YES",
"NO",
"NO",
"YES",
"YES",
"YES",
"YES",
"YES",
"YES",
"YES",
"YES",
"YES",
"YES",
"YES",
"NO",
"YES",
"YES",
"YES",
"YES",
"YES",
"NO",
"NO",
"NO",
"NO",
"NO",
"YES",
"NO",
"YES",
"YES",
"YES",
"NO",
"NO",
"YES",
"YES",
"YES",
"NO",
"NO",
"NO",
"YES",
"YES",
"YES",
"YES",
"YES",
"YES",
"YES",
"YES",
"NO",
"YES",
"YES",
"YES",
"YES",
"YES",
"YES",
"YES",
"NO",
"NO\n",
"YES\n",
"NO\n",
"YES\n",
"YES\n",
"NO\n",
"YES\n",
"NO\n",
"NO\n",
"YES\n",
"NO\n",
"NO\n",
"YES\n",
"YES\n",
"NO\n",
"YES\n",
"YES\n",
"YES\n",
"YES\n",
"YES\n",
"YES\n",
"YES\n",
"NO\n",
"NO\n",
"NO\n",
"YES\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"YES\n",
"NO\n",
"YES\n",
"YES\n",
"NO\n",
"YES\n",
"NO\n",
"YES\n",
"YES\n",
"YES\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"YES\n",
"YES\n",
"NO\n",
"YES\n",
"YES\n",
"YES\n",
"NO\n",
"YES\n",
"YES\n",
"YES\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"YES\n",
"NO\n",
"NO\n",
"NO\n",
"YES\n",
"YES\n",
"NO\n",
"NO\n",
"NO\n",
"YES\n",
"NO\n",
"NO\n",
"YES\n",
"NO\n",
"YES\n",
"YES\n",
"YES\n",
"YES\n",
"YES\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n"
]
} | 2CODEFORCES
|
893_D. Credit Card_180 | Recenlty Luba got a credit card and started to use it. Let's consider n consecutive days Luba uses the card.
She starts with 0 money on her account.
In the evening of i-th day a transaction ai occurs. If ai > 0, then ai bourles are deposited to Luba's account. If ai < 0, then ai bourles are withdrawn. And if ai = 0, then the amount of money on Luba's account is checked.
In the morning of any of n days Luba can go to the bank and deposit any positive integer amount of burles to her account. But there is a limitation: the amount of money on the account can never exceed d.
It can happen that the amount of money goes greater than d by some transaction in the evening. In this case answer will be «-1».
Luba must not exceed this limit, and also she wants that every day her account is checked (the days when ai = 0) the amount of money on her account is non-negative. It takes a lot of time to go to the bank, so Luba wants to know the minimum number of days she needs to deposit some money to her account (if it is possible to meet all the requirements). Help her!
Input
The first line contains two integers n, d (1 ≤ n ≤ 105, 1 ≤ d ≤ 109) —the number of days and the money limitation.
The second line contains n integer numbers a1, a2, ... an ( - 104 ≤ ai ≤ 104), where ai represents the transaction in i-th day.
Output
Print -1 if Luba cannot deposit the money to her account in such a way that the requirements are met. Otherwise print the minimum number of days Luba has to deposit money.
Examples
Input
5 10
-1 5 0 -5 3
Output
0
Input
3 4
-10 0 20
Output
-1
Input
5 10
-5 0 10 -11 0
Output
2 | from sys import stdin
rr = lambda: stdin.readline().strip()
rri = lambda: int(rr())
rrm = lambda: map(int, rr().split())
debug=0
if debug:
fi = open('t.txt','r')
rr = lambda: fi.readline().replace('\n','')
import itertools
def parse(A):
su = maxi = 0
for x in A:
maxi = max(maxi, su)
su += x
return su, max(maxi, su)
def solve(N, D, A):
NOPE = -1
CHECK = 'check'
groups = []
for k,g in itertools.groupby(A, bool):
if k:
groups.append(parse(list(g)))
else:
groups.append(CHECK)
#while groups and groups[-1] != CHECK:
# groups.pop()
while groups and groups[0] == CHECK:
groups.pop(0)
bal = [0, 0]
ans = 0
for i, grp in enumerate(groups):
if grp != CHECK and i+1<len(groups) and groups[i+1] == CHECK:
su, top = grp
ceiling = D - top
if bal[0] <= ceiling and min(ceiling, bal[1]) + su >= 0:
bal[1] = min(bal[1], ceiling)
bal[0] = max(bal[0], -su)
bal[0] += su
bal[1] += su
continue
elif bal[0] <= ceiling:
bal = [0, D]
ans += 1
else:
return NOPE
elif grp != CHECK:
su, top = grp
ceiling = D - top
if bal[0] > ceiling:
return NOPE
return ans
N, D = rrm()
A = rrm()
print solve(N, D, A)
| 1Python2
| {
"input": [
"5 10\n-5 0 10 -11 0\n",
"5 10\n-1 5 0 -5 3\n",
"3 4\n-10 0 20\n",
"9 13\n6 14 19 5 -5 6 -10 20 8\n",
"8 9\n6 -1 5 -5 -8 -7 -8 -7\n",
"10 7\n-9 3 -4 -22 4 -17 0 -14 3 -2\n",
"6 2\n-2 3 0 -2 0 0\n",
"5 10\n-8 -24 0 -22 12\n",
"5 13756\n-2 -9 -10 0 10\n",
"7 3\n1 -3 0 3 -1 0 2\n",
"9 9\n-3 2 0 -2 -7 -1 0 5 3\n",
"2 3\n2 0\n",
"19 78701\n1 0 -1 0 -1 -1 0 1 0 -1 1 1 -1 1 0 0 -1 0 0\n",
"5 4\n-1 0 0 1 -1\n",
"6 4\n-1 0 2 -4 0 5\n",
"20 23036\n-1 1 -1 -1 -1 -1 1 -1 -1 0 0 1 1 0 0 1 0 0 -1 -1\n",
"5 4\n-1 0 -3 0 3\n",
"12 82016\n1 -2 -1 -1 -2 -1 0 -2 -1 1 -2 2\n",
"7 4\n-6 0 2 -3 0 4 0\n",
"4 4\n2 2 0 1\n",
"6 1\n-3 0 0 0 -2 3\n",
"8 26\n-4 9 -14 -11 0 7 23 -15\n",
"20 23079\n0 1 1 -1 1 0 -1 -1 0 0 1 -1 1 1 1 0 0 1 0 1\n",
"1 1\n1\n",
"7 8555\n-2 -3 -2 3 0 -2 0\n",
"4 100\n-100 0 -50 100\n",
"3 14\n12 12 -8\n",
"1 1\n2\n",
"10 23\n9 7 14 16 -13 -22 24 -3 -12 14\n",
"8 11\n12 -12 -9 3 -22 -21 1 3\n",
"19 49926\n-2 0 2 0 0 -2 2 -1 -1 0 0 0 1 0 1 1 -2 2 2\n",
"16 76798\n-1 11 -7 -4 0 -11 -12 3 0 -7 6 -4 8 6 5 -10\n",
"9 5\n-2 0 3 -4 0 4 -3 -2 0\n",
"8 9\n6 -1 5 -5 -1 -7 -8 -7\n",
"10 7\n-9 3 -4 -22 4 -17 1 -14 3 -2\n",
"5 10\n-8 -24 0 -5 12\n",
"9 9\n-3 1 0 -2 -7 -1 0 5 3\n",
"5 15031\n-2 -9 -10 0 10\n",
"7 3\n1 -3 0 3 -1 0 3\n",
"19 78701\n1 0 -1 0 -1 -1 0 1 0 -1 1 1 -1 1 0 0 0 0 0\n",
"6 2\n-1 0 2 -4 0 5\n",
"20 23036\n-1 1 -1 -1 -1 -1 1 -1 -1 0 0 1 1 0 0 1 0 1 -1 -1\n",
"12 82016\n1 -2 -1 -1 0 -1 0 -2 -1 1 -2 2\n",
"7 4\n-6 0 2 -4 0 4 0\n",
"4 4\n2 1 0 1\n",
"6 1\n-3 -1 0 0 -2 3\n",
"8 26\n-4 9 -14 -11 0 7 11 -15\n",
"7 8555\n-2 -3 -2 3 -1 -2 0\n",
"4 110\n-100 0 -50 100\n",
"3 14\n12 12 -15\n",
"10 23\n9 7 8 16 -13 -22 24 -3 -12 14\n",
"8 11\n12 -12 -9 4 -22 -21 1 3\n",
"19 49926\n-2 0 2 0 0 -2 3 -1 -1 0 0 0 1 0 1 1 -2 2 2\n",
"16 76798\n-1 11 -7 -4 0 -11 -12 3 0 -7 6 -4 8 6 5 -18\n",
"9 5\n-2 0 3 -4 0 4 -2 -2 0\n",
"5 10\n-5 0 10 -19 0\n",
"3 0\n-10 0 20\n",
"8 9\n6 -2 5 -5 -1 -7 -8 -7\n",
"10 7\n-9 3 -4 -22 4 -17 1 -7 3 -2\n",
"5 352\n-2 -9 -10 0 10\n",
"7 3\n1 -3 -1 3 -1 0 3\n",
"9 9\n-3 1 0 -2 -7 -2 0 5 3\n",
"19 78701\n1 0 -1 0 0 -1 0 1 0 -1 1 1 -1 1 0 0 0 0 0\n",
"6 2\n0 0 2 -4 0 5\n",
"20 23036\n-1 1 -1 -1 -1 -1 1 -1 -1 0 0 1 1 0 -1 1 0 1 -1 -1\n",
"12 82016\n1 -2 -1 -1 0 -1 0 -2 -1 1 -1 2\n",
"7 4\n-6 1 2 -4 0 4 0\n",
"4 1\n2 1 0 1\n",
"6 1\n-3 -1 0 0 -2 1\n",
"8 26\n-4 9 -14 -11 0 1 11 -15\n",
"7 9321\n-2 -3 -2 3 -1 -2 0\n",
"4 110\n-100 -1 -50 100\n",
"8 11\n16 -12 -9 4 -22 -21 1 3\n",
"19 49926\n-2 0 2 0 0 -2 3 -1 -1 -1 0 0 1 0 1 1 -2 2 2\n",
"9 7\n-2 0 3 -4 0 4 -2 -2 0\n",
"5 10\n-5 0 10 -9 0\n",
"3 0\n-10 0 10\n",
"8 9\n6 -2 5 -5 -1 -7 -11 -7\n",
"10 7\n-9 3 -4 -22 4 -17 1 -7 3 -4\n",
"5 352\n-2 -9 -4 0 10\n",
"9 9\n-3 1 0 -2 -8 -2 0 5 3\n",
"19 78701\n1 0 -1 0 0 -1 0 1 0 -1 1 1 -1 1 0 0 0 0 1\n",
"6 2\n0 0 2 -4 -1 5\n",
"20 23036\n-1 1 -1 -1 -1 -1 1 -1 -2 0 0 1 1 0 -1 1 0 1 -1 -1\n",
"12 82016\n1 -2 -1 -1 0 -1 0 -2 -1 1 -1 0\n",
"4 1\n2 0 0 1\n",
"6 1\n-3 -1 0 0 -2 0\n",
"8 26\n-4 3 -14 -11 0 1 11 -15\n",
"4 110\n-100 -1 -50 101\n",
"8 11\n16 -12 -9 4 -22 -21 1 2\n",
"19 49926\n-2 0 2 0 0 -2 1 -1 -1 -1 0 0 1 0 1 1 -2 2 2\n",
"9 7\n-2 0 3 -4 0 4 -3 -2 0\n",
"5 10\n-5 0 10 -18 0\n",
"3 0\n-10 0 3\n",
"8 9\n6 -2 5 -5 -1 -7 -13 -7\n",
"10 7\n-9 3 -4 -18 4 -17 1 -7 3 -4\n",
"5 352\n-4 -9 -4 0 10\n",
"9 9\n-3 1 0 -2 -8 -2 1 5 3\n",
"19 78701\n1 0 -1 -1 0 -1 0 1 0 -1 1 1 -1 1 0 0 0 0 1\n",
"20 23036\n-1 1 -1 -1 -1 -1 1 -1 -2 0 0 1 1 0 -1 1 1 1 -1 -1\n",
"12 61876\n1 -2 -1 -1 0 -1 0 -2 -1 1 -1 0\n",
"6 1\n-5 -1 0 0 -2 0\n",
"8 42\n-4 3 -14 -11 0 1 11 -15\n",
"4 111\n-100 -1 -50 101\n",
"8 11\n16 -12 -9 4 -22 -6 1 2\n",
"19 49926\n-4 0 2 0 0 -2 1 -1 -1 -1 0 0 1 0 1 1 -2 2 2\n"
],
"output": [
"2\n",
"0\n",
"-1\n",
"-1\n",
"-1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"-1\n",
"2\n",
"0\n",
"1\n",
"1\n",
"-1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"-1\n",
"1\n",
"-1\n",
"0\n",
"0\n",
"1\n",
"1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"1\n",
"1\n",
"1\n",
"-1\n",
"0\n",
"1\n",
"2\n",
"1\n",
"-1\n",
"1\n",
"-1\n",
"1\n",
"1\n",
"1\n",
"0\n",
"1\n",
"1\n",
"1\n",
"1\n",
"-1\n",
"-1\n",
"-1\n",
"1\n",
"1\n",
"1\n",
"2\n",
"-1\n",
"0\n",
"0\n",
"1\n",
"1\n",
"2\n",
"1\n",
"-1\n",
"1\n",
"1\n",
"1\n",
"-1\n",
"1\n",
"1\n",
"1\n",
"0\n",
"-1\n",
"1\n",
"1\n",
"1\n",
"-1\n",
"0\n",
"0\n",
"1\n",
"2\n",
"1\n",
"0\n",
"1\n",
"1\n",
"-1\n",
"2\n",
"1\n",
"0\n",
"-1\n",
"1\n",
"1\n",
"2\n",
"-1\n",
"0\n",
"0\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"2\n",
"1\n",
"0\n",
"-1\n",
"1\n"
]
} | 2CODEFORCES
|
893_D. Credit Card_181 | Recenlty Luba got a credit card and started to use it. Let's consider n consecutive days Luba uses the card.
She starts with 0 money on her account.
In the evening of i-th day a transaction ai occurs. If ai > 0, then ai bourles are deposited to Luba's account. If ai < 0, then ai bourles are withdrawn. And if ai = 0, then the amount of money on Luba's account is checked.
In the morning of any of n days Luba can go to the bank and deposit any positive integer amount of burles to her account. But there is a limitation: the amount of money on the account can never exceed d.
It can happen that the amount of money goes greater than d by some transaction in the evening. In this case answer will be «-1».
Luba must not exceed this limit, and also she wants that every day her account is checked (the days when ai = 0) the amount of money on her account is non-negative. It takes a lot of time to go to the bank, so Luba wants to know the minimum number of days she needs to deposit some money to her account (if it is possible to meet all the requirements). Help her!
Input
The first line contains two integers n, d (1 ≤ n ≤ 105, 1 ≤ d ≤ 109) —the number of days and the money limitation.
The second line contains n integer numbers a1, a2, ... an ( - 104 ≤ ai ≤ 104), where ai represents the transaction in i-th day.
Output
Print -1 if Luba cannot deposit the money to her account in such a way that the requirements are met. Otherwise print the minimum number of days Luba has to deposit money.
Examples
Input
5 10
-1 5 0 -5 3
Output
0
Input
3 4
-10 0 20
Output
-1
Input
5 10
-5 0 10 -11 0
Output
2 | #include <bits/stdc++.h>
using namespace std;
int main() {
cout << fixed << setprecision(10);
ios_base::sync_with_stdio(false);
cin.tie(NULL);
cout.tie(NULL);
long long int n, d;
cin >> n >> d;
long long int a[n], b[n];
for (long long int i = 0; i < n; i++) {
cin >> a[i];
b[i] = (i ? b[i - 1] + a[i] : a[i]);
if (b[i] > d) {
cout << -1;
return 0;
}
}
long long int maxi[n + 1];
maxi[n] = 0;
maxi[n - 1] = b[n - 1];
for (long long int i = n - 2; i >= 0; i--) maxi[i] = max(b[i], maxi[i + 1]);
long long int added = 0, ans = 0;
if (a[0] == 0 && b[0] < 0) {
added += d - maxi[0];
if (b[0] + added < 0) {
cout << -1;
return 0;
}
++ans;
}
for (long long int i = 1; i < n; i++) {
b[i] += added;
if (a[i] == 0 && b[i] < 0) {
long long int here = d - maxi[i] - added;
added += here;
++ans;
b[i] += here;
if (b[i] < 0) {
cout << -1;
return 0;
}
}
}
cout << ans;
}
| 2C++
| {
"input": [
"5 10\n-5 0 10 -11 0\n",
"5 10\n-1 5 0 -5 3\n",
"3 4\n-10 0 20\n",
"9 13\n6 14 19 5 -5 6 -10 20 8\n",
"8 9\n6 -1 5 -5 -8 -7 -8 -7\n",
"10 7\n-9 3 -4 -22 4 -17 0 -14 3 -2\n",
"6 2\n-2 3 0 -2 0 0\n",
"5 10\n-8 -24 0 -22 12\n",
"5 13756\n-2 -9 -10 0 10\n",
"7 3\n1 -3 0 3 -1 0 2\n",
"9 9\n-3 2 0 -2 -7 -1 0 5 3\n",
"2 3\n2 0\n",
"19 78701\n1 0 -1 0 -1 -1 0 1 0 -1 1 1 -1 1 0 0 -1 0 0\n",
"5 4\n-1 0 0 1 -1\n",
"6 4\n-1 0 2 -4 0 5\n",
"20 23036\n-1 1 -1 -1 -1 -1 1 -1 -1 0 0 1 1 0 0 1 0 0 -1 -1\n",
"5 4\n-1 0 -3 0 3\n",
"12 82016\n1 -2 -1 -1 -2 -1 0 -2 -1 1 -2 2\n",
"7 4\n-6 0 2 -3 0 4 0\n",
"4 4\n2 2 0 1\n",
"6 1\n-3 0 0 0 -2 3\n",
"8 26\n-4 9 -14 -11 0 7 23 -15\n",
"20 23079\n0 1 1 -1 1 0 -1 -1 0 0 1 -1 1 1 1 0 0 1 0 1\n",
"1 1\n1\n",
"7 8555\n-2 -3 -2 3 0 -2 0\n",
"4 100\n-100 0 -50 100\n",
"3 14\n12 12 -8\n",
"1 1\n2\n",
"10 23\n9 7 14 16 -13 -22 24 -3 -12 14\n",
"8 11\n12 -12 -9 3 -22 -21 1 3\n",
"19 49926\n-2 0 2 0 0 -2 2 -1 -1 0 0 0 1 0 1 1 -2 2 2\n",
"16 76798\n-1 11 -7 -4 0 -11 -12 3 0 -7 6 -4 8 6 5 -10\n",
"9 5\n-2 0 3 -4 0 4 -3 -2 0\n",
"8 9\n6 -1 5 -5 -1 -7 -8 -7\n",
"10 7\n-9 3 -4 -22 4 -17 1 -14 3 -2\n",
"5 10\n-8 -24 0 -5 12\n",
"9 9\n-3 1 0 -2 -7 -1 0 5 3\n",
"5 15031\n-2 -9 -10 0 10\n",
"7 3\n1 -3 0 3 -1 0 3\n",
"19 78701\n1 0 -1 0 -1 -1 0 1 0 -1 1 1 -1 1 0 0 0 0 0\n",
"6 2\n-1 0 2 -4 0 5\n",
"20 23036\n-1 1 -1 -1 -1 -1 1 -1 -1 0 0 1 1 0 0 1 0 1 -1 -1\n",
"12 82016\n1 -2 -1 -1 0 -1 0 -2 -1 1 -2 2\n",
"7 4\n-6 0 2 -4 0 4 0\n",
"4 4\n2 1 0 1\n",
"6 1\n-3 -1 0 0 -2 3\n",
"8 26\n-4 9 -14 -11 0 7 11 -15\n",
"7 8555\n-2 -3 -2 3 -1 -2 0\n",
"4 110\n-100 0 -50 100\n",
"3 14\n12 12 -15\n",
"10 23\n9 7 8 16 -13 -22 24 -3 -12 14\n",
"8 11\n12 -12 -9 4 -22 -21 1 3\n",
"19 49926\n-2 0 2 0 0 -2 3 -1 -1 0 0 0 1 0 1 1 -2 2 2\n",
"16 76798\n-1 11 -7 -4 0 -11 -12 3 0 -7 6 -4 8 6 5 -18\n",
"9 5\n-2 0 3 -4 0 4 -2 -2 0\n",
"5 10\n-5 0 10 -19 0\n",
"3 0\n-10 0 20\n",
"8 9\n6 -2 5 -5 -1 -7 -8 -7\n",
"10 7\n-9 3 -4 -22 4 -17 1 -7 3 -2\n",
"5 352\n-2 -9 -10 0 10\n",
"7 3\n1 -3 -1 3 -1 0 3\n",
"9 9\n-3 1 0 -2 -7 -2 0 5 3\n",
"19 78701\n1 0 -1 0 0 -1 0 1 0 -1 1 1 -1 1 0 0 0 0 0\n",
"6 2\n0 0 2 -4 0 5\n",
"20 23036\n-1 1 -1 -1 -1 -1 1 -1 -1 0 0 1 1 0 -1 1 0 1 -1 -1\n",
"12 82016\n1 -2 -1 -1 0 -1 0 -2 -1 1 -1 2\n",
"7 4\n-6 1 2 -4 0 4 0\n",
"4 1\n2 1 0 1\n",
"6 1\n-3 -1 0 0 -2 1\n",
"8 26\n-4 9 -14 -11 0 1 11 -15\n",
"7 9321\n-2 -3 -2 3 -1 -2 0\n",
"4 110\n-100 -1 -50 100\n",
"8 11\n16 -12 -9 4 -22 -21 1 3\n",
"19 49926\n-2 0 2 0 0 -2 3 -1 -1 -1 0 0 1 0 1 1 -2 2 2\n",
"9 7\n-2 0 3 -4 0 4 -2 -2 0\n",
"5 10\n-5 0 10 -9 0\n",
"3 0\n-10 0 10\n",
"8 9\n6 -2 5 -5 -1 -7 -11 -7\n",
"10 7\n-9 3 -4 -22 4 -17 1 -7 3 -4\n",
"5 352\n-2 -9 -4 0 10\n",
"9 9\n-3 1 0 -2 -8 -2 0 5 3\n",
"19 78701\n1 0 -1 0 0 -1 0 1 0 -1 1 1 -1 1 0 0 0 0 1\n",
"6 2\n0 0 2 -4 -1 5\n",
"20 23036\n-1 1 -1 -1 -1 -1 1 -1 -2 0 0 1 1 0 -1 1 0 1 -1 -1\n",
"12 82016\n1 -2 -1 -1 0 -1 0 -2 -1 1 -1 0\n",
"4 1\n2 0 0 1\n",
"6 1\n-3 -1 0 0 -2 0\n",
"8 26\n-4 3 -14 -11 0 1 11 -15\n",
"4 110\n-100 -1 -50 101\n",
"8 11\n16 -12 -9 4 -22 -21 1 2\n",
"19 49926\n-2 0 2 0 0 -2 1 -1 -1 -1 0 0 1 0 1 1 -2 2 2\n",
"9 7\n-2 0 3 -4 0 4 -3 -2 0\n",
"5 10\n-5 0 10 -18 0\n",
"3 0\n-10 0 3\n",
"8 9\n6 -2 5 -5 -1 -7 -13 -7\n",
"10 7\n-9 3 -4 -18 4 -17 1 -7 3 -4\n",
"5 352\n-4 -9 -4 0 10\n",
"9 9\n-3 1 0 -2 -8 -2 1 5 3\n",
"19 78701\n1 0 -1 -1 0 -1 0 1 0 -1 1 1 -1 1 0 0 0 0 1\n",
"20 23036\n-1 1 -1 -1 -1 -1 1 -1 -2 0 0 1 1 0 -1 1 1 1 -1 -1\n",
"12 61876\n1 -2 -1 -1 0 -1 0 -2 -1 1 -1 0\n",
"6 1\n-5 -1 0 0 -2 0\n",
"8 42\n-4 3 -14 -11 0 1 11 -15\n",
"4 111\n-100 -1 -50 101\n",
"8 11\n16 -12 -9 4 -22 -6 1 2\n",
"19 49926\n-4 0 2 0 0 -2 1 -1 -1 -1 0 0 1 0 1 1 -2 2 2\n"
],
"output": [
"2\n",
"0\n",
"-1\n",
"-1\n",
"-1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"-1\n",
"2\n",
"0\n",
"1\n",
"1\n",
"-1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"-1\n",
"1\n",
"-1\n",
"0\n",
"0\n",
"1\n",
"1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"1\n",
"1\n",
"1\n",
"-1\n",
"0\n",
"1\n",
"2\n",
"1\n",
"-1\n",
"1\n",
"-1\n",
"1\n",
"1\n",
"1\n",
"0\n",
"1\n",
"1\n",
"1\n",
"1\n",
"-1\n",
"-1\n",
"-1\n",
"1\n",
"1\n",
"1\n",
"2\n",
"-1\n",
"0\n",
"0\n",
"1\n",
"1\n",
"2\n",
"1\n",
"-1\n",
"1\n",
"1\n",
"1\n",
"-1\n",
"1\n",
"1\n",
"1\n",
"0\n",
"-1\n",
"1\n",
"1\n",
"1\n",
"-1\n",
"0\n",
"0\n",
"1\n",
"2\n",
"1\n",
"0\n",
"1\n",
"1\n",
"-1\n",
"2\n",
"1\n",
"0\n",
"-1\n",
"1\n",
"1\n",
"2\n",
"-1\n",
"0\n",
"0\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"2\n",
"1\n",
"0\n",
"-1\n",
"1\n"
]
} | 2CODEFORCES
|
893_D. Credit Card_182 | Recenlty Luba got a credit card and started to use it. Let's consider n consecutive days Luba uses the card.
She starts with 0 money on her account.
In the evening of i-th day a transaction ai occurs. If ai > 0, then ai bourles are deposited to Luba's account. If ai < 0, then ai bourles are withdrawn. And if ai = 0, then the amount of money on Luba's account is checked.
In the morning of any of n days Luba can go to the bank and deposit any positive integer amount of burles to her account. But there is a limitation: the amount of money on the account can never exceed d.
It can happen that the amount of money goes greater than d by some transaction in the evening. In this case answer will be «-1».
Luba must not exceed this limit, and also she wants that every day her account is checked (the days when ai = 0) the amount of money on her account is non-negative. It takes a lot of time to go to the bank, so Luba wants to know the minimum number of days she needs to deposit some money to her account (if it is possible to meet all the requirements). Help her!
Input
The first line contains two integers n, d (1 ≤ n ≤ 105, 1 ≤ d ≤ 109) —the number of days and the money limitation.
The second line contains n integer numbers a1, a2, ... an ( - 104 ≤ ai ≤ 104), where ai represents the transaction in i-th day.
Output
Print -1 if Luba cannot deposit the money to her account in such a way that the requirements are met. Otherwise print the minimum number of days Luba has to deposit money.
Examples
Input
5 10
-1 5 0 -5 3
Output
0
Input
3 4
-10 0 20
Output
-1
Input
5 10
-5 0 10 -11 0
Output
2 | #Bhargey Mehta (Sophomore)
#DA-IICT, Gandhinagar
import sys, math, queue, bisect
#sys.stdin = open("input.txt", "r")
MOD = 10**9+7
sys.setrecursionlimit(1000000)
n, d = map(int, input().split())
a = list(map(int, input().split()))
p = [0 for i in range(n)]
for i in range(n):
p[i] = p[i-1]+a[i]
mx = [-1 for i in range(n)]
mx[-1] = p[-1]
for i in range(n-2, -1, -1):
mx[i] = max(mx[i+1], p[i])
c = 0
ans = 0
for i in range(n):
p[i] += c
if p[i] > d:
print(-1)
exit()
if a[i] != 0 or p[i] >= 0: continue
av = d-(mx[i]+c)
if -p[i] > av:
print(-1)
exit()
ans += 1
c = d-mx[i]
print(ans) | 3Python3
| {
"input": [
"5 10\n-5 0 10 -11 0\n",
"5 10\n-1 5 0 -5 3\n",
"3 4\n-10 0 20\n",
"9 13\n6 14 19 5 -5 6 -10 20 8\n",
"8 9\n6 -1 5 -5 -8 -7 -8 -7\n",
"10 7\n-9 3 -4 -22 4 -17 0 -14 3 -2\n",
"6 2\n-2 3 0 -2 0 0\n",
"5 10\n-8 -24 0 -22 12\n",
"5 13756\n-2 -9 -10 0 10\n",
"7 3\n1 -3 0 3 -1 0 2\n",
"9 9\n-3 2 0 -2 -7 -1 0 5 3\n",
"2 3\n2 0\n",
"19 78701\n1 0 -1 0 -1 -1 0 1 0 -1 1 1 -1 1 0 0 -1 0 0\n",
"5 4\n-1 0 0 1 -1\n",
"6 4\n-1 0 2 -4 0 5\n",
"20 23036\n-1 1 -1 -1 -1 -1 1 -1 -1 0 0 1 1 0 0 1 0 0 -1 -1\n",
"5 4\n-1 0 -3 0 3\n",
"12 82016\n1 -2 -1 -1 -2 -1 0 -2 -1 1 -2 2\n",
"7 4\n-6 0 2 -3 0 4 0\n",
"4 4\n2 2 0 1\n",
"6 1\n-3 0 0 0 -2 3\n",
"8 26\n-4 9 -14 -11 0 7 23 -15\n",
"20 23079\n0 1 1 -1 1 0 -1 -1 0 0 1 -1 1 1 1 0 0 1 0 1\n",
"1 1\n1\n",
"7 8555\n-2 -3 -2 3 0 -2 0\n",
"4 100\n-100 0 -50 100\n",
"3 14\n12 12 -8\n",
"1 1\n2\n",
"10 23\n9 7 14 16 -13 -22 24 -3 -12 14\n",
"8 11\n12 -12 -9 3 -22 -21 1 3\n",
"19 49926\n-2 0 2 0 0 -2 2 -1 -1 0 0 0 1 0 1 1 -2 2 2\n",
"16 76798\n-1 11 -7 -4 0 -11 -12 3 0 -7 6 -4 8 6 5 -10\n",
"9 5\n-2 0 3 -4 0 4 -3 -2 0\n",
"8 9\n6 -1 5 -5 -1 -7 -8 -7\n",
"10 7\n-9 3 -4 -22 4 -17 1 -14 3 -2\n",
"5 10\n-8 -24 0 -5 12\n",
"9 9\n-3 1 0 -2 -7 -1 0 5 3\n",
"5 15031\n-2 -9 -10 0 10\n",
"7 3\n1 -3 0 3 -1 0 3\n",
"19 78701\n1 0 -1 0 -1 -1 0 1 0 -1 1 1 -1 1 0 0 0 0 0\n",
"6 2\n-1 0 2 -4 0 5\n",
"20 23036\n-1 1 -1 -1 -1 -1 1 -1 -1 0 0 1 1 0 0 1 0 1 -1 -1\n",
"12 82016\n1 -2 -1 -1 0 -1 0 -2 -1 1 -2 2\n",
"7 4\n-6 0 2 -4 0 4 0\n",
"4 4\n2 1 0 1\n",
"6 1\n-3 -1 0 0 -2 3\n",
"8 26\n-4 9 -14 -11 0 7 11 -15\n",
"7 8555\n-2 -3 -2 3 -1 -2 0\n",
"4 110\n-100 0 -50 100\n",
"3 14\n12 12 -15\n",
"10 23\n9 7 8 16 -13 -22 24 -3 -12 14\n",
"8 11\n12 -12 -9 4 -22 -21 1 3\n",
"19 49926\n-2 0 2 0 0 -2 3 -1 -1 0 0 0 1 0 1 1 -2 2 2\n",
"16 76798\n-1 11 -7 -4 0 -11 -12 3 0 -7 6 -4 8 6 5 -18\n",
"9 5\n-2 0 3 -4 0 4 -2 -2 0\n",
"5 10\n-5 0 10 -19 0\n",
"3 0\n-10 0 20\n",
"8 9\n6 -2 5 -5 -1 -7 -8 -7\n",
"10 7\n-9 3 -4 -22 4 -17 1 -7 3 -2\n",
"5 352\n-2 -9 -10 0 10\n",
"7 3\n1 -3 -1 3 -1 0 3\n",
"9 9\n-3 1 0 -2 -7 -2 0 5 3\n",
"19 78701\n1 0 -1 0 0 -1 0 1 0 -1 1 1 -1 1 0 0 0 0 0\n",
"6 2\n0 0 2 -4 0 5\n",
"20 23036\n-1 1 -1 -1 -1 -1 1 -1 -1 0 0 1 1 0 -1 1 0 1 -1 -1\n",
"12 82016\n1 -2 -1 -1 0 -1 0 -2 -1 1 -1 2\n",
"7 4\n-6 1 2 -4 0 4 0\n",
"4 1\n2 1 0 1\n",
"6 1\n-3 -1 0 0 -2 1\n",
"8 26\n-4 9 -14 -11 0 1 11 -15\n",
"7 9321\n-2 -3 -2 3 -1 -2 0\n",
"4 110\n-100 -1 -50 100\n",
"8 11\n16 -12 -9 4 -22 -21 1 3\n",
"19 49926\n-2 0 2 0 0 -2 3 -1 -1 -1 0 0 1 0 1 1 -2 2 2\n",
"9 7\n-2 0 3 -4 0 4 -2 -2 0\n",
"5 10\n-5 0 10 -9 0\n",
"3 0\n-10 0 10\n",
"8 9\n6 -2 5 -5 -1 -7 -11 -7\n",
"10 7\n-9 3 -4 -22 4 -17 1 -7 3 -4\n",
"5 352\n-2 -9 -4 0 10\n",
"9 9\n-3 1 0 -2 -8 -2 0 5 3\n",
"19 78701\n1 0 -1 0 0 -1 0 1 0 -1 1 1 -1 1 0 0 0 0 1\n",
"6 2\n0 0 2 -4 -1 5\n",
"20 23036\n-1 1 -1 -1 -1 -1 1 -1 -2 0 0 1 1 0 -1 1 0 1 -1 -1\n",
"12 82016\n1 -2 -1 -1 0 -1 0 -2 -1 1 -1 0\n",
"4 1\n2 0 0 1\n",
"6 1\n-3 -1 0 0 -2 0\n",
"8 26\n-4 3 -14 -11 0 1 11 -15\n",
"4 110\n-100 -1 -50 101\n",
"8 11\n16 -12 -9 4 -22 -21 1 2\n",
"19 49926\n-2 0 2 0 0 -2 1 -1 -1 -1 0 0 1 0 1 1 -2 2 2\n",
"9 7\n-2 0 3 -4 0 4 -3 -2 0\n",
"5 10\n-5 0 10 -18 0\n",
"3 0\n-10 0 3\n",
"8 9\n6 -2 5 -5 -1 -7 -13 -7\n",
"10 7\n-9 3 -4 -18 4 -17 1 -7 3 -4\n",
"5 352\n-4 -9 -4 0 10\n",
"9 9\n-3 1 0 -2 -8 -2 1 5 3\n",
"19 78701\n1 0 -1 -1 0 -1 0 1 0 -1 1 1 -1 1 0 0 0 0 1\n",
"20 23036\n-1 1 -1 -1 -1 -1 1 -1 -2 0 0 1 1 0 -1 1 1 1 -1 -1\n",
"12 61876\n1 -2 -1 -1 0 -1 0 -2 -1 1 -1 0\n",
"6 1\n-5 -1 0 0 -2 0\n",
"8 42\n-4 3 -14 -11 0 1 11 -15\n",
"4 111\n-100 -1 -50 101\n",
"8 11\n16 -12 -9 4 -22 -6 1 2\n",
"19 49926\n-4 0 2 0 0 -2 1 -1 -1 -1 0 0 1 0 1 1 -2 2 2\n"
],
"output": [
"2\n",
"0\n",
"-1\n",
"-1\n",
"-1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"-1\n",
"2\n",
"0\n",
"1\n",
"1\n",
"-1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"-1\n",
"1\n",
"-1\n",
"0\n",
"0\n",
"1\n",
"1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"1\n",
"1\n",
"1\n",
"-1\n",
"0\n",
"1\n",
"2\n",
"1\n",
"-1\n",
"1\n",
"-1\n",
"1\n",
"1\n",
"1\n",
"0\n",
"1\n",
"1\n",
"1\n",
"1\n",
"-1\n",
"-1\n",
"-1\n",
"1\n",
"1\n",
"1\n",
"2\n",
"-1\n",
"0\n",
"0\n",
"1\n",
"1\n",
"2\n",
"1\n",
"-1\n",
"1\n",
"1\n",
"1\n",
"-1\n",
"1\n",
"1\n",
"1\n",
"0\n",
"-1\n",
"1\n",
"1\n",
"1\n",
"-1\n",
"0\n",
"0\n",
"1\n",
"2\n",
"1\n",
"0\n",
"1\n",
"1\n",
"-1\n",
"2\n",
"1\n",
"0\n",
"-1\n",
"1\n",
"1\n",
"2\n",
"-1\n",
"0\n",
"0\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"2\n",
"1\n",
"0\n",
"-1\n",
"1\n"
]
} | 2CODEFORCES
|
893_D. Credit Card_183 | Recenlty Luba got a credit card and started to use it. Let's consider n consecutive days Luba uses the card.
She starts with 0 money on her account.
In the evening of i-th day a transaction ai occurs. If ai > 0, then ai bourles are deposited to Luba's account. If ai < 0, then ai bourles are withdrawn. And if ai = 0, then the amount of money on Luba's account is checked.
In the morning of any of n days Luba can go to the bank and deposit any positive integer amount of burles to her account. But there is a limitation: the amount of money on the account can never exceed d.
It can happen that the amount of money goes greater than d by some transaction in the evening. In this case answer will be «-1».
Luba must not exceed this limit, and also she wants that every day her account is checked (the days when ai = 0) the amount of money on her account is non-negative. It takes a lot of time to go to the bank, so Luba wants to know the minimum number of days she needs to deposit some money to her account (if it is possible to meet all the requirements). Help her!
Input
The first line contains two integers n, d (1 ≤ n ≤ 105, 1 ≤ d ≤ 109) —the number of days and the money limitation.
The second line contains n integer numbers a1, a2, ... an ( - 104 ≤ ai ≤ 104), where ai represents the transaction in i-th day.
Output
Print -1 if Luba cannot deposit the money to her account in such a way that the requirements are met. Otherwise print the minimum number of days Luba has to deposit money.
Examples
Input
5 10
-1 5 0 -5 3
Output
0
Input
3 4
-10 0 20
Output
-1
Input
5 10
-5 0 10 -11 0
Output
2 | import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.util.StringTokenizer;
public class P893D
{
public static void main(String[] args)
{
FastScanner scan = new FastScanner();
int n = scan.nextInt();
int d = scan.nextInt();
int[] arr = new int[n];
for (int i = 0; i < n; i++)
arr[i] = scan.nextInt();
int dep = 0;
int lo = 0, hi = 0;
for (int i = 0; i < n; i++)
{
int p = arr[i];
if (p < 0)
{
lo += p;
hi += p;
}
else if (p > 0)
{
lo += p;
hi = Math.min(d, hi+p);
if (lo > d)
{
System.out.println(-1);
return;
}
}
else
{
if (hi >= 0) //Don't deposit
{
lo = Math.max(0, lo);
}
else //Deposit
{
dep++;
lo = 0;
hi = d;
}
}
}
System.out.println(dep);
}
static class FastScanner
{
BufferedReader br;
StringTokenizer st;
public FastScanner()
{
try
{
br = new BufferedReader(new InputStreamReader(System.in));
st = new StringTokenizer(br.readLine());
} catch (Exception e)
{
e.printStackTrace();
}
}
public String next()
{
if (st.hasMoreTokens())
return st.nextToken();
try
{
st = new StringTokenizer(br.readLine());
} catch (Exception e)
{
e.printStackTrace();
}
return st.nextToken();
}
public int nextInt()
{
return Integer.parseInt(next());
}
public long nextLong()
{
return Long.parseLong(next());
}
public String nextLine()
{
String line = "";
try
{
line = br.readLine();
} catch (Exception e)
{
e.printStackTrace();
}
return line;
}
}
}
| 4JAVA
| {
"input": [
"5 10\n-5 0 10 -11 0\n",
"5 10\n-1 5 0 -5 3\n",
"3 4\n-10 0 20\n",
"9 13\n6 14 19 5 -5 6 -10 20 8\n",
"8 9\n6 -1 5 -5 -8 -7 -8 -7\n",
"10 7\n-9 3 -4 -22 4 -17 0 -14 3 -2\n",
"6 2\n-2 3 0 -2 0 0\n",
"5 10\n-8 -24 0 -22 12\n",
"5 13756\n-2 -9 -10 0 10\n",
"7 3\n1 -3 0 3 -1 0 2\n",
"9 9\n-3 2 0 -2 -7 -1 0 5 3\n",
"2 3\n2 0\n",
"19 78701\n1 0 -1 0 -1 -1 0 1 0 -1 1 1 -1 1 0 0 -1 0 0\n",
"5 4\n-1 0 0 1 -1\n",
"6 4\n-1 0 2 -4 0 5\n",
"20 23036\n-1 1 -1 -1 -1 -1 1 -1 -1 0 0 1 1 0 0 1 0 0 -1 -1\n",
"5 4\n-1 0 -3 0 3\n",
"12 82016\n1 -2 -1 -1 -2 -1 0 -2 -1 1 -2 2\n",
"7 4\n-6 0 2 -3 0 4 0\n",
"4 4\n2 2 0 1\n",
"6 1\n-3 0 0 0 -2 3\n",
"8 26\n-4 9 -14 -11 0 7 23 -15\n",
"20 23079\n0 1 1 -1 1 0 -1 -1 0 0 1 -1 1 1 1 0 0 1 0 1\n",
"1 1\n1\n",
"7 8555\n-2 -3 -2 3 0 -2 0\n",
"4 100\n-100 0 -50 100\n",
"3 14\n12 12 -8\n",
"1 1\n2\n",
"10 23\n9 7 14 16 -13 -22 24 -3 -12 14\n",
"8 11\n12 -12 -9 3 -22 -21 1 3\n",
"19 49926\n-2 0 2 0 0 -2 2 -1 -1 0 0 0 1 0 1 1 -2 2 2\n",
"16 76798\n-1 11 -7 -4 0 -11 -12 3 0 -7 6 -4 8 6 5 -10\n",
"9 5\n-2 0 3 -4 0 4 -3 -2 0\n",
"8 9\n6 -1 5 -5 -1 -7 -8 -7\n",
"10 7\n-9 3 -4 -22 4 -17 1 -14 3 -2\n",
"5 10\n-8 -24 0 -5 12\n",
"9 9\n-3 1 0 -2 -7 -1 0 5 3\n",
"5 15031\n-2 -9 -10 0 10\n",
"7 3\n1 -3 0 3 -1 0 3\n",
"19 78701\n1 0 -1 0 -1 -1 0 1 0 -1 1 1 -1 1 0 0 0 0 0\n",
"6 2\n-1 0 2 -4 0 5\n",
"20 23036\n-1 1 -1 -1 -1 -1 1 -1 -1 0 0 1 1 0 0 1 0 1 -1 -1\n",
"12 82016\n1 -2 -1 -1 0 -1 0 -2 -1 1 -2 2\n",
"7 4\n-6 0 2 -4 0 4 0\n",
"4 4\n2 1 0 1\n",
"6 1\n-3 -1 0 0 -2 3\n",
"8 26\n-4 9 -14 -11 0 7 11 -15\n",
"7 8555\n-2 -3 -2 3 -1 -2 0\n",
"4 110\n-100 0 -50 100\n",
"3 14\n12 12 -15\n",
"10 23\n9 7 8 16 -13 -22 24 -3 -12 14\n",
"8 11\n12 -12 -9 4 -22 -21 1 3\n",
"19 49926\n-2 0 2 0 0 -2 3 -1 -1 0 0 0 1 0 1 1 -2 2 2\n",
"16 76798\n-1 11 -7 -4 0 -11 -12 3 0 -7 6 -4 8 6 5 -18\n",
"9 5\n-2 0 3 -4 0 4 -2 -2 0\n",
"5 10\n-5 0 10 -19 0\n",
"3 0\n-10 0 20\n",
"8 9\n6 -2 5 -5 -1 -7 -8 -7\n",
"10 7\n-9 3 -4 -22 4 -17 1 -7 3 -2\n",
"5 352\n-2 -9 -10 0 10\n",
"7 3\n1 -3 -1 3 -1 0 3\n",
"9 9\n-3 1 0 -2 -7 -2 0 5 3\n",
"19 78701\n1 0 -1 0 0 -1 0 1 0 -1 1 1 -1 1 0 0 0 0 0\n",
"6 2\n0 0 2 -4 0 5\n",
"20 23036\n-1 1 -1 -1 -1 -1 1 -1 -1 0 0 1 1 0 -1 1 0 1 -1 -1\n",
"12 82016\n1 -2 -1 -1 0 -1 0 -2 -1 1 -1 2\n",
"7 4\n-6 1 2 -4 0 4 0\n",
"4 1\n2 1 0 1\n",
"6 1\n-3 -1 0 0 -2 1\n",
"8 26\n-4 9 -14 -11 0 1 11 -15\n",
"7 9321\n-2 -3 -2 3 -1 -2 0\n",
"4 110\n-100 -1 -50 100\n",
"8 11\n16 -12 -9 4 -22 -21 1 3\n",
"19 49926\n-2 0 2 0 0 -2 3 -1 -1 -1 0 0 1 0 1 1 -2 2 2\n",
"9 7\n-2 0 3 -4 0 4 -2 -2 0\n",
"5 10\n-5 0 10 -9 0\n",
"3 0\n-10 0 10\n",
"8 9\n6 -2 5 -5 -1 -7 -11 -7\n",
"10 7\n-9 3 -4 -22 4 -17 1 -7 3 -4\n",
"5 352\n-2 -9 -4 0 10\n",
"9 9\n-3 1 0 -2 -8 -2 0 5 3\n",
"19 78701\n1 0 -1 0 0 -1 0 1 0 -1 1 1 -1 1 0 0 0 0 1\n",
"6 2\n0 0 2 -4 -1 5\n",
"20 23036\n-1 1 -1 -1 -1 -1 1 -1 -2 0 0 1 1 0 -1 1 0 1 -1 -1\n",
"12 82016\n1 -2 -1 -1 0 -1 0 -2 -1 1 -1 0\n",
"4 1\n2 0 0 1\n",
"6 1\n-3 -1 0 0 -2 0\n",
"8 26\n-4 3 -14 -11 0 1 11 -15\n",
"4 110\n-100 -1 -50 101\n",
"8 11\n16 -12 -9 4 -22 -21 1 2\n",
"19 49926\n-2 0 2 0 0 -2 1 -1 -1 -1 0 0 1 0 1 1 -2 2 2\n",
"9 7\n-2 0 3 -4 0 4 -3 -2 0\n",
"5 10\n-5 0 10 -18 0\n",
"3 0\n-10 0 3\n",
"8 9\n6 -2 5 -5 -1 -7 -13 -7\n",
"10 7\n-9 3 -4 -18 4 -17 1 -7 3 -4\n",
"5 352\n-4 -9 -4 0 10\n",
"9 9\n-3 1 0 -2 -8 -2 1 5 3\n",
"19 78701\n1 0 -1 -1 0 -1 0 1 0 -1 1 1 -1 1 0 0 0 0 1\n",
"20 23036\n-1 1 -1 -1 -1 -1 1 -1 -2 0 0 1 1 0 -1 1 1 1 -1 -1\n",
"12 61876\n1 -2 -1 -1 0 -1 0 -2 -1 1 -1 0\n",
"6 1\n-5 -1 0 0 -2 0\n",
"8 42\n-4 3 -14 -11 0 1 11 -15\n",
"4 111\n-100 -1 -50 101\n",
"8 11\n16 -12 -9 4 -22 -6 1 2\n",
"19 49926\n-4 0 2 0 0 -2 1 -1 -1 -1 0 0 1 0 1 1 -2 2 2\n"
],
"output": [
"2\n",
"0\n",
"-1\n",
"-1\n",
"-1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"-1\n",
"2\n",
"0\n",
"1\n",
"1\n",
"-1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"-1\n",
"1\n",
"-1\n",
"0\n",
"0\n",
"1\n",
"1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"1\n",
"1\n",
"1\n",
"-1\n",
"0\n",
"1\n",
"2\n",
"1\n",
"-1\n",
"1\n",
"-1\n",
"1\n",
"1\n",
"1\n",
"0\n",
"1\n",
"1\n",
"1\n",
"1\n",
"-1\n",
"-1\n",
"-1\n",
"1\n",
"1\n",
"1\n",
"2\n",
"-1\n",
"0\n",
"0\n",
"1\n",
"1\n",
"2\n",
"1\n",
"-1\n",
"1\n",
"1\n",
"1\n",
"-1\n",
"1\n",
"1\n",
"1\n",
"0\n",
"-1\n",
"1\n",
"1\n",
"1\n",
"-1\n",
"0\n",
"0\n",
"1\n",
"2\n",
"1\n",
"0\n",
"1\n",
"1\n",
"-1\n",
"2\n",
"1\n",
"0\n",
"-1\n",
"1\n",
"1\n",
"2\n",
"-1\n",
"0\n",
"0\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"2\n",
"1\n",
"0\n",
"-1\n",
"1\n"
]
} | 2CODEFORCES
|
915_A. Garden_184 | Luba thinks about watering her garden. The garden can be represented as a segment of length k. Luba has got n buckets, the i-th bucket allows her to water some continuous subsegment of garden of length exactly ai each hour. Luba can't water any parts of the garden that were already watered, also she can't water the ground outside the garden.
Luba has to choose one of the buckets in order to water the garden as fast as possible (as mentioned above, each hour she will water some continuous subsegment of length ai if she chooses the i-th bucket). Help her to determine the minimum number of hours she has to spend watering the garden. It is guaranteed that Luba can always choose a bucket so it is possible water the garden.
See the examples for better understanding.
Input
The first line of input contains two integer numbers n and k (1 ≤ n, k ≤ 100) — the number of buckets and the length of the garden, respectively.
The second line of input contains n integer numbers ai (1 ≤ ai ≤ 100) — the length of the segment that can be watered by the i-th bucket in one hour.
It is guaranteed that there is at least one bucket such that it is possible to water the garden in integer number of hours using only this bucket.
Output
Print one integer number — the minimum number of hours required to water the garden.
Examples
Input
3 6
2 3 5
Output
2
Input
6 7
1 2 3 4 5 6
Output
7
Note
In the first test the best option is to choose the bucket that allows to water the segment of length 3. We can't choose the bucket that allows to water the segment of length 5 because then we can't water the whole garden.
In the second test we can choose only the bucket that allows us to water the segment of length 1. | a, n = map(int, raw_input().split())
bs = map(int, raw_input().split())
bs = sorted(bs, reverse=True)
for b in bs:
if(n%b==0):
print(n/b)
exit(0)
| 1Python2
| {
"input": [
"3 6\n2 3 5\n",
"6 7\n1 2 3 4 5 6\n",
"3 7\n3 2 1\n",
"4 97\n97 1 50 10\n",
"5 25\n24 5 15 25 23\n",
"3 3\n3 2 1\n",
"4 18\n3 1 1 2\n",
"5 97\n1 10 50 97 2\n",
"1 88\n1\n",
"3 18\n1 9 3\n",
"8 8\n8 7 6 5 4 3 2 1\n",
"2 1\n2 1\n",
"5 16\n8 4 2 1 7\n",
"2 16\n8 4\n",
"1 25\n25\n",
"2 2\n2 1\n",
"4 21\n21 20 21 2\n",
"3 28\n7 14 1\n",
"2 6\n3 2\n",
"5 12\n12 4 3 4 4\n",
"5 10\n5 4 3 2 1\n",
"4 32\n1 1 1 1\n",
"5 12\n2 3 12 6 4\n",
"2 100\n99 1\n",
"3 6\n1 3 2\n",
"79 12\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79\n",
"3 6\n6 3 2\n",
"3 12\n3 12 2\n",
"5 97\n1 10 50 100 2\n",
"6 8\n6 5 4 3 2 1\n",
"7 24\n1 3 6 4 5 2 7\n",
"4 12\n1 2 12 3\n",
"5 12\n12 4 4 4 3\n",
"3 8\n4 3 2\n",
"2 4\n4 1\n",
"100 100\n2 46 24 18 86 90 31 38 84 49 58 28 15 80 14 24 87 56 62 87 41 87 55 71 87 32 41 56 91 32 24 75 43 42 35 30 72 53 31 26 54 61 87 85 36 75 44 31 7 38 77 57 61 54 70 77 45 96 39 57 11 8 91 42 52 15 42 30 92 41 27 26 34 27 3 80 32 86 26 97 63 91 30 75 14 7 19 23 45 11 8 43 44 73 11 56 3 55 63 16\n",
"3 9\n3 2 1\n",
"2 10\n5 2\n",
"2 4\n8 1\n",
"11 99\n1 2 3 6 5 4 7 8 99 33 66\n",
"4 12\n1 4 3 2\n",
"2 6\n5 3\n",
"4 6\n3 2 5 12\n",
"3 10\n2 10 5\n",
"2 12\n4 3\n",
"6 8\n2 4 1 3 5 7\n",
"6 15\n5 2 3 6 4 3\n",
"3 8\n3 4 2\n",
"99 12\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99\n",
"2 18\n6 3\n",
"4 12\n6 4 3 1\n",
"3 6\n3 2 1\n",
"4 6\n6 1 2 3\n",
"4 4\n1 2 2 4\n",
"3 8\n7 2 4\n",
"6 87\n1 2 8 4 5 7\n",
"3 6\n10 2 3\n",
"4 8\n2 8 4 1\n",
"5 6\n3 2 4 2 2\n",
"4 100\n2 50 4 1\n",
"100 91\n13 13 62 96 74 47 81 46 78 21 20 42 4 73 25 30 76 74 58 28 25 52 42 48 74 40 82 9 25 29 17 22 46 64 57 95 81 39 47 86 40 95 97 35 31 98 45 98 47 78 52 63 58 14 89 97 17 95 28 22 20 36 68 38 95 16 2 26 54 47 42 31 31 81 21 21 65 40 82 53 60 71 75 33 96 98 6 22 95 12 5 48 18 27 58 62 5 96 36 75\n",
"2 100\n7 1\n",
"4 12\n1 3 4 2\n",
"1 89\n1\n",
"3 18\n1 9 6\n",
"3 6\n2 3 1\n",
"3 6\n5 3 2\n",
"3 6\n2 3 2\n",
"5 6\n2 3 5 1 2\n",
"3 19\n7 1 1\n",
"3 12\n1 12 2\n",
"3 8\n4 2 1\n",
"4 12\n1 2 4 3\n",
"2 5\n5 1\n",
"6 7\n6 5 4 3 7 1\n",
"5 3\n2 4 5 3 6\n",
"3 8\n2 4 2\n",
"4 8\n2 4 8 1\n",
"98 12\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98\n",
"3 8\n8 4 2\n",
"3 6\n3 2 5\n",
"1 1\n1\n",
"1 100\n1\n",
"3 4\n3 2 1\n",
"5 97\n1 10 76 97 2\n",
"2 16\n12 4\n",
"2 100\n132 1\n",
"5 76\n1 10 50 100 2\n",
"5 12\n19 4 4 4 3\n",
"100 100\n2 46 24 18 86 90 31 38 84 49 58 28 15 80 14 24 87 56 62 87 41 87 55 71 87 32 41 56 91 32 24 75 43 42 35 30 72 53 31 26 54 61 87 85 36 75 44 31 7 42 77 57 61 54 70 77 45 96 39 57 11 8 91 42 52 15 42 30 92 41 27 26 34 27 3 80 32 86 26 97 63 91 30 75 14 7 19 23 45 11 8 43 44 73 11 56 3 55 63 16\n",
"2 10\n3 2\n",
"6 87\n1 2 8 4 5 4\n",
"100 91\n13 13 62 96 74 47 81 46 78 21 20 42 4 73 25 30 76 74 58 28 25 52 42 48 74 40 82 9 25 29 17 22 46 64 57 95 81 39 47 86 40 95 97 35 31 98 45 98 47 78 52 63 58 17 89 97 17 95 28 22 20 36 68 38 95 16 2 26 54 47 42 31 31 81 21 21 65 40 82 53 60 71 75 33 96 98 6 22 95 12 5 48 18 27 58 62 5 96 36 75\n",
"1 73\n1\n",
"2 9\n5 1\n",
"5 66\n1 10 76 97 2\n",
"5 62\n1 10 50 100 2\n",
"6 87\n1 3 8 4 5 4\n",
"4 8\n1 1 1 3\n",
"6 18\n1 3 8 4 5 4\n",
"3 26\n4 6 1\n",
"3 18\n1 9 4\n",
"8 8\n8 7 6 5 7 3 2 1\n",
"2 1\n4 1\n",
"5 16\n8 1 2 1 7\n",
"4 21\n21 20 36 2\n",
"3 28\n3 14 1\n",
"5 10\n5 1 3 2 1\n",
"3 6\n1 3 3\n",
"79 12\n1 2 3 3 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79\n",
"3 6\n9 3 2\n",
"6 8\n6 5 4 3 4 1\n",
"7 24\n1 1 6 4 5 2 7\n",
"4 12\n1 2 1 3\n",
"3 3\n4 3 2\n",
"11 99\n1 2 6 6 5 4 7 8 99 33 66\n",
"4 12\n1 3 3 2\n",
"4 6\n3 2 7 12\n",
"2 12\n4 1\n",
"6 8\n2 2 1 3 5 7\n",
"6 15\n5 2 3 10 4 3\n",
"3 8\n3 4 3\n",
"99 12\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 48 86 87 88 89 90 91 92 93 94 95 96 97 98 99\n",
"4 5\n6 4 3 1\n",
"3 6\n3 4 1\n",
"4 1\n6 1 2 3\n",
"4 4\n1 2 3 4\n",
"3 8\n11 2 4\n",
"2 100\n14 1\n",
"3 18\n1 18 6\n",
"3 3\n2 3 1\n",
"3 6\n5 3 3\n",
"5 6\n2 3 5 2 2\n",
"3 5\n7 1 1\n",
"3 8\n7 2 1\n",
"3 8\n2 4 3\n",
"4 8\n2 4 6 1\n",
"98 12\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 74 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98\n",
"3 8\n8 3 2\n",
"3 6\n4 2 5\n",
"3 6\n3 3 5\n",
"6 7\n1 2 3 4 5 1\n",
"3 18\n1 9 2\n",
"2 2\n4 1\n",
"5 4\n8 1 2 1 7\n",
"4 21\n21 22 36 2\n",
"3 28\n4 14 1\n",
"5 10\n5 2 3 2 1\n",
"79 12\n1 2 3 3 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 12 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79\n",
"3 6\n18 3 2\n",
"6 8\n6 9 4 3 4 1\n",
"4 8\n1 2 1 3\n",
"5 12\n19 4 4 4 1\n",
"100 100\n2 46 24 18 86 90 31 38 84 49 58 28 15 80 14 24 87 56 62 87 41 87 55 75 87 32 41 56 91 32 24 75 43 42 35 30 72 53 31 26 54 61 87 85 36 75 44 31 7 42 77 57 61 54 70 77 45 96 39 57 11 8 91 42 52 15 42 30 92 41 27 26 34 27 3 80 32 86 26 97 63 91 30 75 14 7 19 23 45 11 8 43 44 73 11 56 3 55 63 16\n",
"11 99\n1 2 6 6 5 4 7 2 99 33 66\n",
"4 12\n2 3 3 2\n",
"4 10\n3 2 7 12\n",
"2 12\n4 2\n",
"6 15\n5 2 3 10 4 1\n",
"99 12\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 46 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 48 86 87 88 89 90 91 92 93 94 95 96 97 98 99\n",
"4 5\n4 4 3 1\n",
"4 2\n1 2 3 4\n",
"3 8\n9 2 4\n",
"100 91\n13 13 62 96 74 47 81 46 78 21 20 42 4 73 25 30 76 74 58 28 25 52 42 48 74 40 82 9 25 29 17 22 46 64 57 95 81 39 47 86 78 95 97 35 31 98 45 98 47 78 52 63 58 17 89 97 17 95 28 22 20 36 68 38 95 16 2 26 54 47 42 31 31 81 21 21 65 40 82 53 60 71 75 33 96 98 6 22 95 12 5 48 18 27 58 62 5 96 36 75\n",
"3 18\n1 28 6\n",
"3 5\n8 1 1\n",
"3 8\n2 1 3\n",
"4 8\n2 4 2 1\n",
"98 12\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 12 44 45 74 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98\n",
"3 8\n7 3 2\n",
"3 10\n3 3 5\n",
"5 66\n2 10 76 97 2\n",
"5 4\n8 1 2 1 4\n",
"4 21\n21 22 27 2\n",
"3 28\n4 6 1\n",
"5 10\n5 2 3 2 2\n",
"79 12\n1 2 3 3 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 12 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 100 74 75 76 77 78 79\n",
"3 6\n18 1 2\n",
"5 62\n1 10 49 100 2\n",
"6 3\n6 9 4 3 4 1\n",
"100 100\n2 46 24 18 86 90 31 38 84 49 58 28 15 80 14 24 87 56 62 87 41 87 55 75 87 32 41 56 91 32 24 75 43 42 35 30 46 53 31 26 54 61 87 85 36 75 44 31 7 42 77 57 61 54 70 77 45 96 39 57 11 8 91 42 52 15 42 30 92 41 27 26 34 27 3 80 32 86 26 97 63 91 30 75 14 7 19 23 45 11 8 43 44 73 11 56 3 55 63 16\n",
"11 99\n1 2 6 6 5 4 7 2 99 33 91\n",
"4 12\n2 2 3 2\n"
],
"output": [
"2\n",
"7\n",
"7\n",
"1\n",
"1\n",
"1\n",
"6\n",
"1\n",
"88\n",
"2\n",
"1\n",
"1\n",
"2\n",
"2\n",
"1\n",
"1\n",
"1\n",
"2\n",
"2\n",
"1\n",
"2\n",
"32\n",
"1\n",
"100\n",
"2\n",
"1\n",
"1\n",
"1\n",
"97\n",
"2\n",
"4\n",
"1\n",
"1\n",
"2\n",
"1\n",
"50\n",
"3\n",
"2\n",
"4\n",
"1\n",
"3\n",
"2\n",
"2\n",
"1\n",
"3\n",
"2\n",
"3\n",
"2\n",
"1\n",
"3\n",
"2\n",
"2\n",
"1\n",
"1\n",
"2\n",
"87\n",
"2\n",
"1\n",
"2\n",
"2\n",
"7\n",
"100\n",
"3\n",
"89\n",
"2\n",
"2\n",
"2\n",
"2\n",
"2\n",
"19\n",
"1\n",
"2\n",
"3\n",
"1\n",
"1\n",
"1\n",
"2\n",
"1\n",
"1\n",
"1\n",
"2\n",
"1\n",
"100\n",
"2\n",
"1\n",
"4\n",
"100\n",
"38\n",
"3\n",
"50\n",
"5\n",
"87\n",
"7\n",
"73\n",
"9\n",
"33\n",
"31\n",
"29\n",
"8\n",
"6\n",
"26\n",
"2\n",
"1\n",
"1\n",
"2\n",
"1\n",
"2\n",
"2\n",
"2\n",
"1\n",
"2\n",
"2\n",
"4\n",
"4\n",
"1\n",
"1\n",
"4\n",
"2\n",
"3\n",
"4\n",
"3\n",
"2\n",
"1\n",
"5\n",
"2\n",
"1\n",
"1\n",
"2\n",
"100\n",
"1\n",
"1\n",
"2\n",
"2\n",
"5\n",
"4\n",
"2\n",
"2\n",
"1\n",
"1\n",
"3\n",
"2\n",
"7\n",
"2\n",
"2\n",
"2\n",
"1\n",
"2\n",
"2\n",
"1\n",
"2\n",
"2\n",
"4\n",
"3\n",
"50\n",
"1\n",
"4\n",
"5\n",
"3\n",
"3\n",
"1\n",
"5\n",
"1\n",
"2\n",
"7\n",
"3\n",
"5\n",
"4\n",
"2\n",
"1\n",
"4\n",
"2\n",
"33\n",
"1\n",
"1\n",
"7\n",
"2\n",
"1\n",
"3\n",
"31\n",
"1\n",
"50\n",
"1\n",
"4\n"
]
} | 2CODEFORCES
|
915_A. Garden_185 | Luba thinks about watering her garden. The garden can be represented as a segment of length k. Luba has got n buckets, the i-th bucket allows her to water some continuous subsegment of garden of length exactly ai each hour. Luba can't water any parts of the garden that were already watered, also she can't water the ground outside the garden.
Luba has to choose one of the buckets in order to water the garden as fast as possible (as mentioned above, each hour she will water some continuous subsegment of length ai if she chooses the i-th bucket). Help her to determine the minimum number of hours she has to spend watering the garden. It is guaranteed that Luba can always choose a bucket so it is possible water the garden.
See the examples for better understanding.
Input
The first line of input contains two integer numbers n and k (1 ≤ n, k ≤ 100) — the number of buckets and the length of the garden, respectively.
The second line of input contains n integer numbers ai (1 ≤ ai ≤ 100) — the length of the segment that can be watered by the i-th bucket in one hour.
It is guaranteed that there is at least one bucket such that it is possible to water the garden in integer number of hours using only this bucket.
Output
Print one integer number — the minimum number of hours required to water the garden.
Examples
Input
3 6
2 3 5
Output
2
Input
6 7
1 2 3 4 5 6
Output
7
Note
In the first test the best option is to choose the bucket that allows to water the segment of length 3. We can't choose the bucket that allows to water the segment of length 5 because then we can't water the whole garden.
In the second test we can choose only the bucket that allows us to water the segment of length 1. | #include <bits/stdc++.h>
using namespace std;
int main() {
int n, k, result;
scanf("%d %d", &n, &k);
for (int i = 0; i < n; i++) {
int a;
scanf("%d", &a);
if (k % a == 0) result = min(result, k / a);
}
printf("%d\n", result);
return 0;
}
| 2C++
| {
"input": [
"3 6\n2 3 5\n",
"6 7\n1 2 3 4 5 6\n",
"3 7\n3 2 1\n",
"4 97\n97 1 50 10\n",
"5 25\n24 5 15 25 23\n",
"3 3\n3 2 1\n",
"4 18\n3 1 1 2\n",
"5 97\n1 10 50 97 2\n",
"1 88\n1\n",
"3 18\n1 9 3\n",
"8 8\n8 7 6 5 4 3 2 1\n",
"2 1\n2 1\n",
"5 16\n8 4 2 1 7\n",
"2 16\n8 4\n",
"1 25\n25\n",
"2 2\n2 1\n",
"4 21\n21 20 21 2\n",
"3 28\n7 14 1\n",
"2 6\n3 2\n",
"5 12\n12 4 3 4 4\n",
"5 10\n5 4 3 2 1\n",
"4 32\n1 1 1 1\n",
"5 12\n2 3 12 6 4\n",
"2 100\n99 1\n",
"3 6\n1 3 2\n",
"79 12\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79\n",
"3 6\n6 3 2\n",
"3 12\n3 12 2\n",
"5 97\n1 10 50 100 2\n",
"6 8\n6 5 4 3 2 1\n",
"7 24\n1 3 6 4 5 2 7\n",
"4 12\n1 2 12 3\n",
"5 12\n12 4 4 4 3\n",
"3 8\n4 3 2\n",
"2 4\n4 1\n",
"100 100\n2 46 24 18 86 90 31 38 84 49 58 28 15 80 14 24 87 56 62 87 41 87 55 71 87 32 41 56 91 32 24 75 43 42 35 30 72 53 31 26 54 61 87 85 36 75 44 31 7 38 77 57 61 54 70 77 45 96 39 57 11 8 91 42 52 15 42 30 92 41 27 26 34 27 3 80 32 86 26 97 63 91 30 75 14 7 19 23 45 11 8 43 44 73 11 56 3 55 63 16\n",
"3 9\n3 2 1\n",
"2 10\n5 2\n",
"2 4\n8 1\n",
"11 99\n1 2 3 6 5 4 7 8 99 33 66\n",
"4 12\n1 4 3 2\n",
"2 6\n5 3\n",
"4 6\n3 2 5 12\n",
"3 10\n2 10 5\n",
"2 12\n4 3\n",
"6 8\n2 4 1 3 5 7\n",
"6 15\n5 2 3 6 4 3\n",
"3 8\n3 4 2\n",
"99 12\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99\n",
"2 18\n6 3\n",
"4 12\n6 4 3 1\n",
"3 6\n3 2 1\n",
"4 6\n6 1 2 3\n",
"4 4\n1 2 2 4\n",
"3 8\n7 2 4\n",
"6 87\n1 2 8 4 5 7\n",
"3 6\n10 2 3\n",
"4 8\n2 8 4 1\n",
"5 6\n3 2 4 2 2\n",
"4 100\n2 50 4 1\n",
"100 91\n13 13 62 96 74 47 81 46 78 21 20 42 4 73 25 30 76 74 58 28 25 52 42 48 74 40 82 9 25 29 17 22 46 64 57 95 81 39 47 86 40 95 97 35 31 98 45 98 47 78 52 63 58 14 89 97 17 95 28 22 20 36 68 38 95 16 2 26 54 47 42 31 31 81 21 21 65 40 82 53 60 71 75 33 96 98 6 22 95 12 5 48 18 27 58 62 5 96 36 75\n",
"2 100\n7 1\n",
"4 12\n1 3 4 2\n",
"1 89\n1\n",
"3 18\n1 9 6\n",
"3 6\n2 3 1\n",
"3 6\n5 3 2\n",
"3 6\n2 3 2\n",
"5 6\n2 3 5 1 2\n",
"3 19\n7 1 1\n",
"3 12\n1 12 2\n",
"3 8\n4 2 1\n",
"4 12\n1 2 4 3\n",
"2 5\n5 1\n",
"6 7\n6 5 4 3 7 1\n",
"5 3\n2 4 5 3 6\n",
"3 8\n2 4 2\n",
"4 8\n2 4 8 1\n",
"98 12\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98\n",
"3 8\n8 4 2\n",
"3 6\n3 2 5\n",
"1 1\n1\n",
"1 100\n1\n",
"3 4\n3 2 1\n",
"5 97\n1 10 76 97 2\n",
"2 16\n12 4\n",
"2 100\n132 1\n",
"5 76\n1 10 50 100 2\n",
"5 12\n19 4 4 4 3\n",
"100 100\n2 46 24 18 86 90 31 38 84 49 58 28 15 80 14 24 87 56 62 87 41 87 55 71 87 32 41 56 91 32 24 75 43 42 35 30 72 53 31 26 54 61 87 85 36 75 44 31 7 42 77 57 61 54 70 77 45 96 39 57 11 8 91 42 52 15 42 30 92 41 27 26 34 27 3 80 32 86 26 97 63 91 30 75 14 7 19 23 45 11 8 43 44 73 11 56 3 55 63 16\n",
"2 10\n3 2\n",
"6 87\n1 2 8 4 5 4\n",
"100 91\n13 13 62 96 74 47 81 46 78 21 20 42 4 73 25 30 76 74 58 28 25 52 42 48 74 40 82 9 25 29 17 22 46 64 57 95 81 39 47 86 40 95 97 35 31 98 45 98 47 78 52 63 58 17 89 97 17 95 28 22 20 36 68 38 95 16 2 26 54 47 42 31 31 81 21 21 65 40 82 53 60 71 75 33 96 98 6 22 95 12 5 48 18 27 58 62 5 96 36 75\n",
"1 73\n1\n",
"2 9\n5 1\n",
"5 66\n1 10 76 97 2\n",
"5 62\n1 10 50 100 2\n",
"6 87\n1 3 8 4 5 4\n",
"4 8\n1 1 1 3\n",
"6 18\n1 3 8 4 5 4\n",
"3 26\n4 6 1\n",
"3 18\n1 9 4\n",
"8 8\n8 7 6 5 7 3 2 1\n",
"2 1\n4 1\n",
"5 16\n8 1 2 1 7\n",
"4 21\n21 20 36 2\n",
"3 28\n3 14 1\n",
"5 10\n5 1 3 2 1\n",
"3 6\n1 3 3\n",
"79 12\n1 2 3 3 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79\n",
"3 6\n9 3 2\n",
"6 8\n6 5 4 3 4 1\n",
"7 24\n1 1 6 4 5 2 7\n",
"4 12\n1 2 1 3\n",
"3 3\n4 3 2\n",
"11 99\n1 2 6 6 5 4 7 8 99 33 66\n",
"4 12\n1 3 3 2\n",
"4 6\n3 2 7 12\n",
"2 12\n4 1\n",
"6 8\n2 2 1 3 5 7\n",
"6 15\n5 2 3 10 4 3\n",
"3 8\n3 4 3\n",
"99 12\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 48 86 87 88 89 90 91 92 93 94 95 96 97 98 99\n",
"4 5\n6 4 3 1\n",
"3 6\n3 4 1\n",
"4 1\n6 1 2 3\n",
"4 4\n1 2 3 4\n",
"3 8\n11 2 4\n",
"2 100\n14 1\n",
"3 18\n1 18 6\n",
"3 3\n2 3 1\n",
"3 6\n5 3 3\n",
"5 6\n2 3 5 2 2\n",
"3 5\n7 1 1\n",
"3 8\n7 2 1\n",
"3 8\n2 4 3\n",
"4 8\n2 4 6 1\n",
"98 12\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 74 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98\n",
"3 8\n8 3 2\n",
"3 6\n4 2 5\n",
"3 6\n3 3 5\n",
"6 7\n1 2 3 4 5 1\n",
"3 18\n1 9 2\n",
"2 2\n4 1\n",
"5 4\n8 1 2 1 7\n",
"4 21\n21 22 36 2\n",
"3 28\n4 14 1\n",
"5 10\n5 2 3 2 1\n",
"79 12\n1 2 3 3 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 12 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79\n",
"3 6\n18 3 2\n",
"6 8\n6 9 4 3 4 1\n",
"4 8\n1 2 1 3\n",
"5 12\n19 4 4 4 1\n",
"100 100\n2 46 24 18 86 90 31 38 84 49 58 28 15 80 14 24 87 56 62 87 41 87 55 75 87 32 41 56 91 32 24 75 43 42 35 30 72 53 31 26 54 61 87 85 36 75 44 31 7 42 77 57 61 54 70 77 45 96 39 57 11 8 91 42 52 15 42 30 92 41 27 26 34 27 3 80 32 86 26 97 63 91 30 75 14 7 19 23 45 11 8 43 44 73 11 56 3 55 63 16\n",
"11 99\n1 2 6 6 5 4 7 2 99 33 66\n",
"4 12\n2 3 3 2\n",
"4 10\n3 2 7 12\n",
"2 12\n4 2\n",
"6 15\n5 2 3 10 4 1\n",
"99 12\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 46 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 48 86 87 88 89 90 91 92 93 94 95 96 97 98 99\n",
"4 5\n4 4 3 1\n",
"4 2\n1 2 3 4\n",
"3 8\n9 2 4\n",
"100 91\n13 13 62 96 74 47 81 46 78 21 20 42 4 73 25 30 76 74 58 28 25 52 42 48 74 40 82 9 25 29 17 22 46 64 57 95 81 39 47 86 78 95 97 35 31 98 45 98 47 78 52 63 58 17 89 97 17 95 28 22 20 36 68 38 95 16 2 26 54 47 42 31 31 81 21 21 65 40 82 53 60 71 75 33 96 98 6 22 95 12 5 48 18 27 58 62 5 96 36 75\n",
"3 18\n1 28 6\n",
"3 5\n8 1 1\n",
"3 8\n2 1 3\n",
"4 8\n2 4 2 1\n",
"98 12\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 12 44 45 74 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98\n",
"3 8\n7 3 2\n",
"3 10\n3 3 5\n",
"5 66\n2 10 76 97 2\n",
"5 4\n8 1 2 1 4\n",
"4 21\n21 22 27 2\n",
"3 28\n4 6 1\n",
"5 10\n5 2 3 2 2\n",
"79 12\n1 2 3 3 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 12 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 100 74 75 76 77 78 79\n",
"3 6\n18 1 2\n",
"5 62\n1 10 49 100 2\n",
"6 3\n6 9 4 3 4 1\n",
"100 100\n2 46 24 18 86 90 31 38 84 49 58 28 15 80 14 24 87 56 62 87 41 87 55 75 87 32 41 56 91 32 24 75 43 42 35 30 46 53 31 26 54 61 87 85 36 75 44 31 7 42 77 57 61 54 70 77 45 96 39 57 11 8 91 42 52 15 42 30 92 41 27 26 34 27 3 80 32 86 26 97 63 91 30 75 14 7 19 23 45 11 8 43 44 73 11 56 3 55 63 16\n",
"11 99\n1 2 6 6 5 4 7 2 99 33 91\n",
"4 12\n2 2 3 2\n"
],
"output": [
"2\n",
"7\n",
"7\n",
"1\n",
"1\n",
"1\n",
"6\n",
"1\n",
"88\n",
"2\n",
"1\n",
"1\n",
"2\n",
"2\n",
"1\n",
"1\n",
"1\n",
"2\n",
"2\n",
"1\n",
"2\n",
"32\n",
"1\n",
"100\n",
"2\n",
"1\n",
"1\n",
"1\n",
"97\n",
"2\n",
"4\n",
"1\n",
"1\n",
"2\n",
"1\n",
"50\n",
"3\n",
"2\n",
"4\n",
"1\n",
"3\n",
"2\n",
"2\n",
"1\n",
"3\n",
"2\n",
"3\n",
"2\n",
"1\n",
"3\n",
"2\n",
"2\n",
"1\n",
"1\n",
"2\n",
"87\n",
"2\n",
"1\n",
"2\n",
"2\n",
"7\n",
"100\n",
"3\n",
"89\n",
"2\n",
"2\n",
"2\n",
"2\n",
"2\n",
"19\n",
"1\n",
"2\n",
"3\n",
"1\n",
"1\n",
"1\n",
"2\n",
"1\n",
"1\n",
"1\n",
"2\n",
"1\n",
"100\n",
"2\n",
"1\n",
"4\n",
"100\n",
"38\n",
"3\n",
"50\n",
"5\n",
"87\n",
"7\n",
"73\n",
"9\n",
"33\n",
"31\n",
"29\n",
"8\n",
"6\n",
"26\n",
"2\n",
"1\n",
"1\n",
"2\n",
"1\n",
"2\n",
"2\n",
"2\n",
"1\n",
"2\n",
"2\n",
"4\n",
"4\n",
"1\n",
"1\n",
"4\n",
"2\n",
"3\n",
"4\n",
"3\n",
"2\n",
"1\n",
"5\n",
"2\n",
"1\n",
"1\n",
"2\n",
"100\n",
"1\n",
"1\n",
"2\n",
"2\n",
"5\n",
"4\n",
"2\n",
"2\n",
"1\n",
"1\n",
"3\n",
"2\n",
"7\n",
"2\n",
"2\n",
"2\n",
"1\n",
"2\n",
"2\n",
"1\n",
"2\n",
"2\n",
"4\n",
"3\n",
"50\n",
"1\n",
"4\n",
"5\n",
"3\n",
"3\n",
"1\n",
"5\n",
"1\n",
"2\n",
"7\n",
"3\n",
"5\n",
"4\n",
"2\n",
"1\n",
"4\n",
"2\n",
"33\n",
"1\n",
"1\n",
"7\n",
"2\n",
"1\n",
"3\n",
"31\n",
"1\n",
"50\n",
"1\n",
"4\n"
]
} | 2CODEFORCES
|
915_A. Garden_186 | Luba thinks about watering her garden. The garden can be represented as a segment of length k. Luba has got n buckets, the i-th bucket allows her to water some continuous subsegment of garden of length exactly ai each hour. Luba can't water any parts of the garden that were already watered, also she can't water the ground outside the garden.
Luba has to choose one of the buckets in order to water the garden as fast as possible (as mentioned above, each hour she will water some continuous subsegment of length ai if she chooses the i-th bucket). Help her to determine the minimum number of hours she has to spend watering the garden. It is guaranteed that Luba can always choose a bucket so it is possible water the garden.
See the examples for better understanding.
Input
The first line of input contains two integer numbers n and k (1 ≤ n, k ≤ 100) — the number of buckets and the length of the garden, respectively.
The second line of input contains n integer numbers ai (1 ≤ ai ≤ 100) — the length of the segment that can be watered by the i-th bucket in one hour.
It is guaranteed that there is at least one bucket such that it is possible to water the garden in integer number of hours using only this bucket.
Output
Print one integer number — the minimum number of hours required to water the garden.
Examples
Input
3 6
2 3 5
Output
2
Input
6 7
1 2 3 4 5 6
Output
7
Note
In the first test the best option is to choose the bucket that allows to water the segment of length 3. We can't choose the bucket that allows to water the segment of length 5 because then we can't water the whole garden.
In the second test we can choose only the bucket that allows us to water the segment of length 1. | def is_prime(a):
return all(a % i for i in range(2, a))
n, k = map(int, input().split())
l = [int(x) for x in input().split()]
if is_prime(k):
if k in l:
print(1)
else:
print(k)
else:
ll = []
for i in range(len(l)):
if k % l[i] == 0:
ll.append(l[i])
print(k // max(ll))
| 3Python3
| {
"input": [
"3 6\n2 3 5\n",
"6 7\n1 2 3 4 5 6\n",
"3 7\n3 2 1\n",
"4 97\n97 1 50 10\n",
"5 25\n24 5 15 25 23\n",
"3 3\n3 2 1\n",
"4 18\n3 1 1 2\n",
"5 97\n1 10 50 97 2\n",
"1 88\n1\n",
"3 18\n1 9 3\n",
"8 8\n8 7 6 5 4 3 2 1\n",
"2 1\n2 1\n",
"5 16\n8 4 2 1 7\n",
"2 16\n8 4\n",
"1 25\n25\n",
"2 2\n2 1\n",
"4 21\n21 20 21 2\n",
"3 28\n7 14 1\n",
"2 6\n3 2\n",
"5 12\n12 4 3 4 4\n",
"5 10\n5 4 3 2 1\n",
"4 32\n1 1 1 1\n",
"5 12\n2 3 12 6 4\n",
"2 100\n99 1\n",
"3 6\n1 3 2\n",
"79 12\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79\n",
"3 6\n6 3 2\n",
"3 12\n3 12 2\n",
"5 97\n1 10 50 100 2\n",
"6 8\n6 5 4 3 2 1\n",
"7 24\n1 3 6 4 5 2 7\n",
"4 12\n1 2 12 3\n",
"5 12\n12 4 4 4 3\n",
"3 8\n4 3 2\n",
"2 4\n4 1\n",
"100 100\n2 46 24 18 86 90 31 38 84 49 58 28 15 80 14 24 87 56 62 87 41 87 55 71 87 32 41 56 91 32 24 75 43 42 35 30 72 53 31 26 54 61 87 85 36 75 44 31 7 38 77 57 61 54 70 77 45 96 39 57 11 8 91 42 52 15 42 30 92 41 27 26 34 27 3 80 32 86 26 97 63 91 30 75 14 7 19 23 45 11 8 43 44 73 11 56 3 55 63 16\n",
"3 9\n3 2 1\n",
"2 10\n5 2\n",
"2 4\n8 1\n",
"11 99\n1 2 3 6 5 4 7 8 99 33 66\n",
"4 12\n1 4 3 2\n",
"2 6\n5 3\n",
"4 6\n3 2 5 12\n",
"3 10\n2 10 5\n",
"2 12\n4 3\n",
"6 8\n2 4 1 3 5 7\n",
"6 15\n5 2 3 6 4 3\n",
"3 8\n3 4 2\n",
"99 12\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99\n",
"2 18\n6 3\n",
"4 12\n6 4 3 1\n",
"3 6\n3 2 1\n",
"4 6\n6 1 2 3\n",
"4 4\n1 2 2 4\n",
"3 8\n7 2 4\n",
"6 87\n1 2 8 4 5 7\n",
"3 6\n10 2 3\n",
"4 8\n2 8 4 1\n",
"5 6\n3 2 4 2 2\n",
"4 100\n2 50 4 1\n",
"100 91\n13 13 62 96 74 47 81 46 78 21 20 42 4 73 25 30 76 74 58 28 25 52 42 48 74 40 82 9 25 29 17 22 46 64 57 95 81 39 47 86 40 95 97 35 31 98 45 98 47 78 52 63 58 14 89 97 17 95 28 22 20 36 68 38 95 16 2 26 54 47 42 31 31 81 21 21 65 40 82 53 60 71 75 33 96 98 6 22 95 12 5 48 18 27 58 62 5 96 36 75\n",
"2 100\n7 1\n",
"4 12\n1 3 4 2\n",
"1 89\n1\n",
"3 18\n1 9 6\n",
"3 6\n2 3 1\n",
"3 6\n5 3 2\n",
"3 6\n2 3 2\n",
"5 6\n2 3 5 1 2\n",
"3 19\n7 1 1\n",
"3 12\n1 12 2\n",
"3 8\n4 2 1\n",
"4 12\n1 2 4 3\n",
"2 5\n5 1\n",
"6 7\n6 5 4 3 7 1\n",
"5 3\n2 4 5 3 6\n",
"3 8\n2 4 2\n",
"4 8\n2 4 8 1\n",
"98 12\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98\n",
"3 8\n8 4 2\n",
"3 6\n3 2 5\n",
"1 1\n1\n",
"1 100\n1\n",
"3 4\n3 2 1\n",
"5 97\n1 10 76 97 2\n",
"2 16\n12 4\n",
"2 100\n132 1\n",
"5 76\n1 10 50 100 2\n",
"5 12\n19 4 4 4 3\n",
"100 100\n2 46 24 18 86 90 31 38 84 49 58 28 15 80 14 24 87 56 62 87 41 87 55 71 87 32 41 56 91 32 24 75 43 42 35 30 72 53 31 26 54 61 87 85 36 75 44 31 7 42 77 57 61 54 70 77 45 96 39 57 11 8 91 42 52 15 42 30 92 41 27 26 34 27 3 80 32 86 26 97 63 91 30 75 14 7 19 23 45 11 8 43 44 73 11 56 3 55 63 16\n",
"2 10\n3 2\n",
"6 87\n1 2 8 4 5 4\n",
"100 91\n13 13 62 96 74 47 81 46 78 21 20 42 4 73 25 30 76 74 58 28 25 52 42 48 74 40 82 9 25 29 17 22 46 64 57 95 81 39 47 86 40 95 97 35 31 98 45 98 47 78 52 63 58 17 89 97 17 95 28 22 20 36 68 38 95 16 2 26 54 47 42 31 31 81 21 21 65 40 82 53 60 71 75 33 96 98 6 22 95 12 5 48 18 27 58 62 5 96 36 75\n",
"1 73\n1\n",
"2 9\n5 1\n",
"5 66\n1 10 76 97 2\n",
"5 62\n1 10 50 100 2\n",
"6 87\n1 3 8 4 5 4\n",
"4 8\n1 1 1 3\n",
"6 18\n1 3 8 4 5 4\n",
"3 26\n4 6 1\n",
"3 18\n1 9 4\n",
"8 8\n8 7 6 5 7 3 2 1\n",
"2 1\n4 1\n",
"5 16\n8 1 2 1 7\n",
"4 21\n21 20 36 2\n",
"3 28\n3 14 1\n",
"5 10\n5 1 3 2 1\n",
"3 6\n1 3 3\n",
"79 12\n1 2 3 3 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79\n",
"3 6\n9 3 2\n",
"6 8\n6 5 4 3 4 1\n",
"7 24\n1 1 6 4 5 2 7\n",
"4 12\n1 2 1 3\n",
"3 3\n4 3 2\n",
"11 99\n1 2 6 6 5 4 7 8 99 33 66\n",
"4 12\n1 3 3 2\n",
"4 6\n3 2 7 12\n",
"2 12\n4 1\n",
"6 8\n2 2 1 3 5 7\n",
"6 15\n5 2 3 10 4 3\n",
"3 8\n3 4 3\n",
"99 12\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 48 86 87 88 89 90 91 92 93 94 95 96 97 98 99\n",
"4 5\n6 4 3 1\n",
"3 6\n3 4 1\n",
"4 1\n6 1 2 3\n",
"4 4\n1 2 3 4\n",
"3 8\n11 2 4\n",
"2 100\n14 1\n",
"3 18\n1 18 6\n",
"3 3\n2 3 1\n",
"3 6\n5 3 3\n",
"5 6\n2 3 5 2 2\n",
"3 5\n7 1 1\n",
"3 8\n7 2 1\n",
"3 8\n2 4 3\n",
"4 8\n2 4 6 1\n",
"98 12\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 74 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98\n",
"3 8\n8 3 2\n",
"3 6\n4 2 5\n",
"3 6\n3 3 5\n",
"6 7\n1 2 3 4 5 1\n",
"3 18\n1 9 2\n",
"2 2\n4 1\n",
"5 4\n8 1 2 1 7\n",
"4 21\n21 22 36 2\n",
"3 28\n4 14 1\n",
"5 10\n5 2 3 2 1\n",
"79 12\n1 2 3 3 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 12 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79\n",
"3 6\n18 3 2\n",
"6 8\n6 9 4 3 4 1\n",
"4 8\n1 2 1 3\n",
"5 12\n19 4 4 4 1\n",
"100 100\n2 46 24 18 86 90 31 38 84 49 58 28 15 80 14 24 87 56 62 87 41 87 55 75 87 32 41 56 91 32 24 75 43 42 35 30 72 53 31 26 54 61 87 85 36 75 44 31 7 42 77 57 61 54 70 77 45 96 39 57 11 8 91 42 52 15 42 30 92 41 27 26 34 27 3 80 32 86 26 97 63 91 30 75 14 7 19 23 45 11 8 43 44 73 11 56 3 55 63 16\n",
"11 99\n1 2 6 6 5 4 7 2 99 33 66\n",
"4 12\n2 3 3 2\n",
"4 10\n3 2 7 12\n",
"2 12\n4 2\n",
"6 15\n5 2 3 10 4 1\n",
"99 12\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 46 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 48 86 87 88 89 90 91 92 93 94 95 96 97 98 99\n",
"4 5\n4 4 3 1\n",
"4 2\n1 2 3 4\n",
"3 8\n9 2 4\n",
"100 91\n13 13 62 96 74 47 81 46 78 21 20 42 4 73 25 30 76 74 58 28 25 52 42 48 74 40 82 9 25 29 17 22 46 64 57 95 81 39 47 86 78 95 97 35 31 98 45 98 47 78 52 63 58 17 89 97 17 95 28 22 20 36 68 38 95 16 2 26 54 47 42 31 31 81 21 21 65 40 82 53 60 71 75 33 96 98 6 22 95 12 5 48 18 27 58 62 5 96 36 75\n",
"3 18\n1 28 6\n",
"3 5\n8 1 1\n",
"3 8\n2 1 3\n",
"4 8\n2 4 2 1\n",
"98 12\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 12 44 45 74 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98\n",
"3 8\n7 3 2\n",
"3 10\n3 3 5\n",
"5 66\n2 10 76 97 2\n",
"5 4\n8 1 2 1 4\n",
"4 21\n21 22 27 2\n",
"3 28\n4 6 1\n",
"5 10\n5 2 3 2 2\n",
"79 12\n1 2 3 3 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 12 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 100 74 75 76 77 78 79\n",
"3 6\n18 1 2\n",
"5 62\n1 10 49 100 2\n",
"6 3\n6 9 4 3 4 1\n",
"100 100\n2 46 24 18 86 90 31 38 84 49 58 28 15 80 14 24 87 56 62 87 41 87 55 75 87 32 41 56 91 32 24 75 43 42 35 30 46 53 31 26 54 61 87 85 36 75 44 31 7 42 77 57 61 54 70 77 45 96 39 57 11 8 91 42 52 15 42 30 92 41 27 26 34 27 3 80 32 86 26 97 63 91 30 75 14 7 19 23 45 11 8 43 44 73 11 56 3 55 63 16\n",
"11 99\n1 2 6 6 5 4 7 2 99 33 91\n",
"4 12\n2 2 3 2\n"
],
"output": [
"2\n",
"7\n",
"7\n",
"1\n",
"1\n",
"1\n",
"6\n",
"1\n",
"88\n",
"2\n",
"1\n",
"1\n",
"2\n",
"2\n",
"1\n",
"1\n",
"1\n",
"2\n",
"2\n",
"1\n",
"2\n",
"32\n",
"1\n",
"100\n",
"2\n",
"1\n",
"1\n",
"1\n",
"97\n",
"2\n",
"4\n",
"1\n",
"1\n",
"2\n",
"1\n",
"50\n",
"3\n",
"2\n",
"4\n",
"1\n",
"3\n",
"2\n",
"2\n",
"1\n",
"3\n",
"2\n",
"3\n",
"2\n",
"1\n",
"3\n",
"2\n",
"2\n",
"1\n",
"1\n",
"2\n",
"87\n",
"2\n",
"1\n",
"2\n",
"2\n",
"7\n",
"100\n",
"3\n",
"89\n",
"2\n",
"2\n",
"2\n",
"2\n",
"2\n",
"19\n",
"1\n",
"2\n",
"3\n",
"1\n",
"1\n",
"1\n",
"2\n",
"1\n",
"1\n",
"1\n",
"2\n",
"1\n",
"100\n",
"2\n",
"1\n",
"4\n",
"100\n",
"38\n",
"3\n",
"50\n",
"5\n",
"87\n",
"7\n",
"73\n",
"9\n",
"33\n",
"31\n",
"29\n",
"8\n",
"6\n",
"26\n",
"2\n",
"1\n",
"1\n",
"2\n",
"1\n",
"2\n",
"2\n",
"2\n",
"1\n",
"2\n",
"2\n",
"4\n",
"4\n",
"1\n",
"1\n",
"4\n",
"2\n",
"3\n",
"4\n",
"3\n",
"2\n",
"1\n",
"5\n",
"2\n",
"1\n",
"1\n",
"2\n",
"100\n",
"1\n",
"1\n",
"2\n",
"2\n",
"5\n",
"4\n",
"2\n",
"2\n",
"1\n",
"1\n",
"3\n",
"2\n",
"7\n",
"2\n",
"2\n",
"2\n",
"1\n",
"2\n",
"2\n",
"1\n",
"2\n",
"2\n",
"4\n",
"3\n",
"50\n",
"1\n",
"4\n",
"5\n",
"3\n",
"3\n",
"1\n",
"5\n",
"1\n",
"2\n",
"7\n",
"3\n",
"5\n",
"4\n",
"2\n",
"1\n",
"4\n",
"2\n",
"33\n",
"1\n",
"1\n",
"7\n",
"2\n",
"1\n",
"3\n",
"31\n",
"1\n",
"50\n",
"1\n",
"4\n"
]
} | 2CODEFORCES
|
915_A. Garden_187 | Luba thinks about watering her garden. The garden can be represented as a segment of length k. Luba has got n buckets, the i-th bucket allows her to water some continuous subsegment of garden of length exactly ai each hour. Luba can't water any parts of the garden that were already watered, also she can't water the ground outside the garden.
Luba has to choose one of the buckets in order to water the garden as fast as possible (as mentioned above, each hour she will water some continuous subsegment of length ai if she chooses the i-th bucket). Help her to determine the minimum number of hours she has to spend watering the garden. It is guaranteed that Luba can always choose a bucket so it is possible water the garden.
See the examples for better understanding.
Input
The first line of input contains two integer numbers n and k (1 ≤ n, k ≤ 100) — the number of buckets and the length of the garden, respectively.
The second line of input contains n integer numbers ai (1 ≤ ai ≤ 100) — the length of the segment that can be watered by the i-th bucket in one hour.
It is guaranteed that there is at least one bucket such that it is possible to water the garden in integer number of hours using only this bucket.
Output
Print one integer number — the minimum number of hours required to water the garden.
Examples
Input
3 6
2 3 5
Output
2
Input
6 7
1 2 3 4 5 6
Output
7
Note
In the first test the best option is to choose the bucket that allows to water the segment of length 3. We can't choose the bucket that allows to water the segment of length 5 because then we can't water the whole garden.
In the second test we can choose only the bucket that allows us to water the segment of length 1. | import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.InputMismatchException;
public class A915{
void solve()
{
int n = ni(), k = ni();
int[] a = ia(n);
int m = -1>>>1;
for(int x : a)
if(k % x == 0)
m = Math.min(m, k / x);
out.println(m);
}
public static void main(String[] args){new A915().run();}
private byte[] bufferArray = new byte[1024];
private int bufLength = 0;
private int bufCurrent = 0;
InputStream inputStream;
PrintWriter out;
public void run()
{
inputStream = System.in;
out = new PrintWriter(System.out);
solve();
out.flush();
}
int nextByte()
{
if(bufLength == -1)
throw new InputMismatchException();
if(bufCurrent >= bufLength)
{
bufCurrent = 0;
try
{bufLength = inputStream.read(bufferArray);}
catch(IOException e)
{ throw new InputMismatchException();}
if(bufLength <= 0)
return -1;
}
return bufferArray[bufCurrent++];
}
boolean isSpaceChar(int x) {return (x < 33 || x > 126);}
boolean isDigit(int x) {return (x >= '0' && x <= '9');}
int nextNonSpace()
{
int x;
while((x=nextByte()) != -1 && isSpaceChar(x));
return x;
}
int ni()
{
long ans = nl();
if (ans >= Integer.MIN_VALUE && ans <= Integer.MAX_VALUE)
return (int)ans;
throw new InputMismatchException();
}
long nl()
{
long ans = 0;
boolean neg = false;
int x = nextNonSpace();
if(x == '-')
{
neg = true;
x = nextByte();
}
while(!isSpaceChar(x))
{
if(isDigit(x))
{
ans = ans * 10 + x -'0';
x = nextByte();
}
else
throw new InputMismatchException();
}
return neg ? -ans : ans;
}
String ns()
{
StringBuilder sb = new StringBuilder();
int x = nextNonSpace();
while(!isSpaceChar(x))
{
sb.append((char)x);
x = nextByte();
}
return sb.toString();
}
char nc() { return (char)nextNonSpace();}
double nd() { return (double)Double.parseDouble(ns()); }
char[] ca() { return ns().toCharArray();}
char[][] ca(int n)
{
char[][] ans = new char[n][];
for(int i=0;i<n;i++)
ans[i] = ca();
return ans;
}
int[] ia(int n)
{
int[] ans = new int[n];
for(int i=0;i<n;i++)
ans[i] = ni();
return ans;
}
void db(Object... o) {System.out.println(Arrays.deepToString(o));}
}
| 4JAVA
| {
"input": [
"3 6\n2 3 5\n",
"6 7\n1 2 3 4 5 6\n",
"3 7\n3 2 1\n",
"4 97\n97 1 50 10\n",
"5 25\n24 5 15 25 23\n",
"3 3\n3 2 1\n",
"4 18\n3 1 1 2\n",
"5 97\n1 10 50 97 2\n",
"1 88\n1\n",
"3 18\n1 9 3\n",
"8 8\n8 7 6 5 4 3 2 1\n",
"2 1\n2 1\n",
"5 16\n8 4 2 1 7\n",
"2 16\n8 4\n",
"1 25\n25\n",
"2 2\n2 1\n",
"4 21\n21 20 21 2\n",
"3 28\n7 14 1\n",
"2 6\n3 2\n",
"5 12\n12 4 3 4 4\n",
"5 10\n5 4 3 2 1\n",
"4 32\n1 1 1 1\n",
"5 12\n2 3 12 6 4\n",
"2 100\n99 1\n",
"3 6\n1 3 2\n",
"79 12\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79\n",
"3 6\n6 3 2\n",
"3 12\n3 12 2\n",
"5 97\n1 10 50 100 2\n",
"6 8\n6 5 4 3 2 1\n",
"7 24\n1 3 6 4 5 2 7\n",
"4 12\n1 2 12 3\n",
"5 12\n12 4 4 4 3\n",
"3 8\n4 3 2\n",
"2 4\n4 1\n",
"100 100\n2 46 24 18 86 90 31 38 84 49 58 28 15 80 14 24 87 56 62 87 41 87 55 71 87 32 41 56 91 32 24 75 43 42 35 30 72 53 31 26 54 61 87 85 36 75 44 31 7 38 77 57 61 54 70 77 45 96 39 57 11 8 91 42 52 15 42 30 92 41 27 26 34 27 3 80 32 86 26 97 63 91 30 75 14 7 19 23 45 11 8 43 44 73 11 56 3 55 63 16\n",
"3 9\n3 2 1\n",
"2 10\n5 2\n",
"2 4\n8 1\n",
"11 99\n1 2 3 6 5 4 7 8 99 33 66\n",
"4 12\n1 4 3 2\n",
"2 6\n5 3\n",
"4 6\n3 2 5 12\n",
"3 10\n2 10 5\n",
"2 12\n4 3\n",
"6 8\n2 4 1 3 5 7\n",
"6 15\n5 2 3 6 4 3\n",
"3 8\n3 4 2\n",
"99 12\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99\n",
"2 18\n6 3\n",
"4 12\n6 4 3 1\n",
"3 6\n3 2 1\n",
"4 6\n6 1 2 3\n",
"4 4\n1 2 2 4\n",
"3 8\n7 2 4\n",
"6 87\n1 2 8 4 5 7\n",
"3 6\n10 2 3\n",
"4 8\n2 8 4 1\n",
"5 6\n3 2 4 2 2\n",
"4 100\n2 50 4 1\n",
"100 91\n13 13 62 96 74 47 81 46 78 21 20 42 4 73 25 30 76 74 58 28 25 52 42 48 74 40 82 9 25 29 17 22 46 64 57 95 81 39 47 86 40 95 97 35 31 98 45 98 47 78 52 63 58 14 89 97 17 95 28 22 20 36 68 38 95 16 2 26 54 47 42 31 31 81 21 21 65 40 82 53 60 71 75 33 96 98 6 22 95 12 5 48 18 27 58 62 5 96 36 75\n",
"2 100\n7 1\n",
"4 12\n1 3 4 2\n",
"1 89\n1\n",
"3 18\n1 9 6\n",
"3 6\n2 3 1\n",
"3 6\n5 3 2\n",
"3 6\n2 3 2\n",
"5 6\n2 3 5 1 2\n",
"3 19\n7 1 1\n",
"3 12\n1 12 2\n",
"3 8\n4 2 1\n",
"4 12\n1 2 4 3\n",
"2 5\n5 1\n",
"6 7\n6 5 4 3 7 1\n",
"5 3\n2 4 5 3 6\n",
"3 8\n2 4 2\n",
"4 8\n2 4 8 1\n",
"98 12\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98\n",
"3 8\n8 4 2\n",
"3 6\n3 2 5\n",
"1 1\n1\n",
"1 100\n1\n",
"3 4\n3 2 1\n",
"5 97\n1 10 76 97 2\n",
"2 16\n12 4\n",
"2 100\n132 1\n",
"5 76\n1 10 50 100 2\n",
"5 12\n19 4 4 4 3\n",
"100 100\n2 46 24 18 86 90 31 38 84 49 58 28 15 80 14 24 87 56 62 87 41 87 55 71 87 32 41 56 91 32 24 75 43 42 35 30 72 53 31 26 54 61 87 85 36 75 44 31 7 42 77 57 61 54 70 77 45 96 39 57 11 8 91 42 52 15 42 30 92 41 27 26 34 27 3 80 32 86 26 97 63 91 30 75 14 7 19 23 45 11 8 43 44 73 11 56 3 55 63 16\n",
"2 10\n3 2\n",
"6 87\n1 2 8 4 5 4\n",
"100 91\n13 13 62 96 74 47 81 46 78 21 20 42 4 73 25 30 76 74 58 28 25 52 42 48 74 40 82 9 25 29 17 22 46 64 57 95 81 39 47 86 40 95 97 35 31 98 45 98 47 78 52 63 58 17 89 97 17 95 28 22 20 36 68 38 95 16 2 26 54 47 42 31 31 81 21 21 65 40 82 53 60 71 75 33 96 98 6 22 95 12 5 48 18 27 58 62 5 96 36 75\n",
"1 73\n1\n",
"2 9\n5 1\n",
"5 66\n1 10 76 97 2\n",
"5 62\n1 10 50 100 2\n",
"6 87\n1 3 8 4 5 4\n",
"4 8\n1 1 1 3\n",
"6 18\n1 3 8 4 5 4\n",
"3 26\n4 6 1\n",
"3 18\n1 9 4\n",
"8 8\n8 7 6 5 7 3 2 1\n",
"2 1\n4 1\n",
"5 16\n8 1 2 1 7\n",
"4 21\n21 20 36 2\n",
"3 28\n3 14 1\n",
"5 10\n5 1 3 2 1\n",
"3 6\n1 3 3\n",
"79 12\n1 2 3 3 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79\n",
"3 6\n9 3 2\n",
"6 8\n6 5 4 3 4 1\n",
"7 24\n1 1 6 4 5 2 7\n",
"4 12\n1 2 1 3\n",
"3 3\n4 3 2\n",
"11 99\n1 2 6 6 5 4 7 8 99 33 66\n",
"4 12\n1 3 3 2\n",
"4 6\n3 2 7 12\n",
"2 12\n4 1\n",
"6 8\n2 2 1 3 5 7\n",
"6 15\n5 2 3 10 4 3\n",
"3 8\n3 4 3\n",
"99 12\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 48 86 87 88 89 90 91 92 93 94 95 96 97 98 99\n",
"4 5\n6 4 3 1\n",
"3 6\n3 4 1\n",
"4 1\n6 1 2 3\n",
"4 4\n1 2 3 4\n",
"3 8\n11 2 4\n",
"2 100\n14 1\n",
"3 18\n1 18 6\n",
"3 3\n2 3 1\n",
"3 6\n5 3 3\n",
"5 6\n2 3 5 2 2\n",
"3 5\n7 1 1\n",
"3 8\n7 2 1\n",
"3 8\n2 4 3\n",
"4 8\n2 4 6 1\n",
"98 12\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 74 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98\n",
"3 8\n8 3 2\n",
"3 6\n4 2 5\n",
"3 6\n3 3 5\n",
"6 7\n1 2 3 4 5 1\n",
"3 18\n1 9 2\n",
"2 2\n4 1\n",
"5 4\n8 1 2 1 7\n",
"4 21\n21 22 36 2\n",
"3 28\n4 14 1\n",
"5 10\n5 2 3 2 1\n",
"79 12\n1 2 3 3 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 12 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79\n",
"3 6\n18 3 2\n",
"6 8\n6 9 4 3 4 1\n",
"4 8\n1 2 1 3\n",
"5 12\n19 4 4 4 1\n",
"100 100\n2 46 24 18 86 90 31 38 84 49 58 28 15 80 14 24 87 56 62 87 41 87 55 75 87 32 41 56 91 32 24 75 43 42 35 30 72 53 31 26 54 61 87 85 36 75 44 31 7 42 77 57 61 54 70 77 45 96 39 57 11 8 91 42 52 15 42 30 92 41 27 26 34 27 3 80 32 86 26 97 63 91 30 75 14 7 19 23 45 11 8 43 44 73 11 56 3 55 63 16\n",
"11 99\n1 2 6 6 5 4 7 2 99 33 66\n",
"4 12\n2 3 3 2\n",
"4 10\n3 2 7 12\n",
"2 12\n4 2\n",
"6 15\n5 2 3 10 4 1\n",
"99 12\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 46 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 48 86 87 88 89 90 91 92 93 94 95 96 97 98 99\n",
"4 5\n4 4 3 1\n",
"4 2\n1 2 3 4\n",
"3 8\n9 2 4\n",
"100 91\n13 13 62 96 74 47 81 46 78 21 20 42 4 73 25 30 76 74 58 28 25 52 42 48 74 40 82 9 25 29 17 22 46 64 57 95 81 39 47 86 78 95 97 35 31 98 45 98 47 78 52 63 58 17 89 97 17 95 28 22 20 36 68 38 95 16 2 26 54 47 42 31 31 81 21 21 65 40 82 53 60 71 75 33 96 98 6 22 95 12 5 48 18 27 58 62 5 96 36 75\n",
"3 18\n1 28 6\n",
"3 5\n8 1 1\n",
"3 8\n2 1 3\n",
"4 8\n2 4 2 1\n",
"98 12\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 12 44 45 74 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98\n",
"3 8\n7 3 2\n",
"3 10\n3 3 5\n",
"5 66\n2 10 76 97 2\n",
"5 4\n8 1 2 1 4\n",
"4 21\n21 22 27 2\n",
"3 28\n4 6 1\n",
"5 10\n5 2 3 2 2\n",
"79 12\n1 2 3 3 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 12 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 100 74 75 76 77 78 79\n",
"3 6\n18 1 2\n",
"5 62\n1 10 49 100 2\n",
"6 3\n6 9 4 3 4 1\n",
"100 100\n2 46 24 18 86 90 31 38 84 49 58 28 15 80 14 24 87 56 62 87 41 87 55 75 87 32 41 56 91 32 24 75 43 42 35 30 46 53 31 26 54 61 87 85 36 75 44 31 7 42 77 57 61 54 70 77 45 96 39 57 11 8 91 42 52 15 42 30 92 41 27 26 34 27 3 80 32 86 26 97 63 91 30 75 14 7 19 23 45 11 8 43 44 73 11 56 3 55 63 16\n",
"11 99\n1 2 6 6 5 4 7 2 99 33 91\n",
"4 12\n2 2 3 2\n"
],
"output": [
"2\n",
"7\n",
"7\n",
"1\n",
"1\n",
"1\n",
"6\n",
"1\n",
"88\n",
"2\n",
"1\n",
"1\n",
"2\n",
"2\n",
"1\n",
"1\n",
"1\n",
"2\n",
"2\n",
"1\n",
"2\n",
"32\n",
"1\n",
"100\n",
"2\n",
"1\n",
"1\n",
"1\n",
"97\n",
"2\n",
"4\n",
"1\n",
"1\n",
"2\n",
"1\n",
"50\n",
"3\n",
"2\n",
"4\n",
"1\n",
"3\n",
"2\n",
"2\n",
"1\n",
"3\n",
"2\n",
"3\n",
"2\n",
"1\n",
"3\n",
"2\n",
"2\n",
"1\n",
"1\n",
"2\n",
"87\n",
"2\n",
"1\n",
"2\n",
"2\n",
"7\n",
"100\n",
"3\n",
"89\n",
"2\n",
"2\n",
"2\n",
"2\n",
"2\n",
"19\n",
"1\n",
"2\n",
"3\n",
"1\n",
"1\n",
"1\n",
"2\n",
"1\n",
"1\n",
"1\n",
"2\n",
"1\n",
"100\n",
"2\n",
"1\n",
"4\n",
"100\n",
"38\n",
"3\n",
"50\n",
"5\n",
"87\n",
"7\n",
"73\n",
"9\n",
"33\n",
"31\n",
"29\n",
"8\n",
"6\n",
"26\n",
"2\n",
"1\n",
"1\n",
"2\n",
"1\n",
"2\n",
"2\n",
"2\n",
"1\n",
"2\n",
"2\n",
"4\n",
"4\n",
"1\n",
"1\n",
"4\n",
"2\n",
"3\n",
"4\n",
"3\n",
"2\n",
"1\n",
"5\n",
"2\n",
"1\n",
"1\n",
"2\n",
"100\n",
"1\n",
"1\n",
"2\n",
"2\n",
"5\n",
"4\n",
"2\n",
"2\n",
"1\n",
"1\n",
"3\n",
"2\n",
"7\n",
"2\n",
"2\n",
"2\n",
"1\n",
"2\n",
"2\n",
"1\n",
"2\n",
"2\n",
"4\n",
"3\n",
"50\n",
"1\n",
"4\n",
"5\n",
"3\n",
"3\n",
"1\n",
"5\n",
"1\n",
"2\n",
"7\n",
"3\n",
"5\n",
"4\n",
"2\n",
"1\n",
"4\n",
"2\n",
"33\n",
"1\n",
"1\n",
"7\n",
"2\n",
"1\n",
"3\n",
"31\n",
"1\n",
"50\n",
"1\n",
"4\n"
]
} | 2CODEFORCES
|
938_B. Run For Your Prize_188 | You and your friend are participating in a TV show "Run For Your Prize".
At the start of the show n prizes are located on a straight line. i-th prize is located at position ai. Positions of all prizes are distinct. You start at position 1, your friend — at position 106 (and there is no prize in any of these two positions). You have to work as a team and collect all prizes in minimum possible time, in any order.
You know that it takes exactly 1 second to move from position x to position x + 1 or x - 1, both for you and your friend. You also have trained enough to instantly pick up any prize, if its position is equal to your current position (and the same is true for your friend). Carrying prizes does not affect your speed (or your friend's speed) at all.
Now you may discuss your strategy with your friend and decide who will pick up each prize. Remember that every prize must be picked up, either by you or by your friend.
What is the minimum number of seconds it will take to pick up all the prizes?
Input
The first line contains one integer n (1 ≤ n ≤ 105) — the number of prizes.
The second line contains n integers a1, a2, ..., an (2 ≤ ai ≤ 106 - 1) — the positions of the prizes. No two prizes are located at the same position. Positions are given in ascending order.
Output
Print one integer — the minimum number of seconds it will take to collect all prizes.
Examples
Input
3
2 3 9
Output
8
Input
2
2 999995
Output
5
Note
In the first example you take all the prizes: take the first at 1, the second at 2 and the third at 8.
In the second example you take the first prize in 1 second and your friend takes the other in 5 seconds, you do this simultaneously, so the total time is 5. |
# Author : raj1307 - Raj Singh
# Date : 22.07.2020
from __future__ import division, print_function
import os,sys
from io import BytesIO, IOBase
if sys.version_info[0] < 3:
from __builtin__ import xrange as range
from future_builtins import ascii, filter, hex, map, oct, zip
def ii(): return int(input())
def si(): return input()
def mi(): return map(int,input().strip().split(" "))
def msi(): return map(str,input().strip().split(" "))
def li(): return list(mi())
def dmain():
sys.setrecursionlimit(1000000)
threading.stack_size(1024000)
thread = threading.Thread(target=main)
thread.start()
#from collections import deque, Counter, OrderedDict,defaultdict
#from heapq import nsmallest, nlargest, heapify,heappop ,heappush, heapreplace
#from math import log,sqrt,factorial,cos,tan,sin,radians
#from bisect import bisect,bisect_left,bisect_right,insort,insort_left,insort_right
#from decimal import *
#import threading
#from itertools import permutations
#Copy 2D list m = [x[:] for x in mark] .. Avoid Using Deepcopy
abc='abcdefghijklmnopqrstuvwxyz'
abd={'a': 0, 'b': 1, 'c': 2, 'd': 3, 'e': 4, 'f': 5, 'g': 6, 'h': 7, 'i': 8, 'j': 9, 'k': 10, 'l': 11, 'm': 12, 'n': 13, 'o': 14, 'p': 15, 'q': 16, 'r': 17, 's': 18, 't': 19, 'u': 20, 'v': 21, 'w': 22, 'x': 23, 'y': 24, 'z': 25}
mod=1000000007
#mod=998244353
inf = float("inf")
vow=['a','e','i','o','u','y']
dx,dy=[-1,1,0,0],[0,0,1,-1]
def getKey(item): return item[1]
def sort2(l):return sorted(l, key=getKey,reverse=True)
def d2(n,m,num):return [[num for x in range(m)] for y in range(n)]
def isPowerOfTwo (x): return (x and (not(x & (x - 1))) )
def decimalToBinary(n): return bin(n).replace("0b","")
def ntl(n):return [int(i) for i in str(n)]
def ncr(n,r): return factorial(n)//(factorial(r)*factorial(max(n-r,1)))
def ceil(x,y):
if x%y==0:
return x//y
else:
return x//y+1
def powerMod(x,y,p):
res = 1
x %= p
while y > 0:
if y&1:
res = (res*x)%p
y = y>>1
x = (x*x)%p
return res
def gcd(x, y):
while y:
x, y = y, x % y
return x
def isPrime(n) : # Check Prime Number or not
if (n <= 1) : return False
if (n <= 3) : return True
if (n % 2 == 0 or n % 3 == 0) : return False
i = 5
while(i * i <= n) :
if (n % i == 0 or n % (i + 2) == 0) :
return False
i = i + 6
return True
def read():
sys.stdin = open('input.txt', 'r')
sys.stdout = open('output.txt', 'w')
def main():
#for _ in range(ii()):
n=ii()
a=li()
ans=min(a[n-1]-1,1000000-a[0])
for i in range(n-1):
ans=min(ans,max(a[i]-1,1000000-a[i+1]))
print(ans)
# region fastio
# template taken from https://github.com/cheran-senthil/PyRival/blob/master/templates/template.py
BUFSIZE = 8192
class FastIO(IOBase):
newlines = 0
def __init__(self, file):
self._fd = file.fileno()
self.buffer = BytesIO()
self.writable = "x" in file.mode or "r" not in file.mode
self.write = self.buffer.write if self.writable else None
def read(self):
while True:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
if not b:
break
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines = 0
return self.buffer.read()
def readline(self):
while self.newlines == 0:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
self.newlines = b.count(b"\n") + (not b)
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines -= 1
return self.buffer.readline()
def flush(self):
if self.writable:
os.write(self._fd, self.buffer.getvalue())
self.buffer.truncate(0), self.buffer.seek(0)
class IOWrapper(IOBase):
def __init__(self, file):
self.buffer = FastIO(file)
self.flush = self.buffer.flush
self.writable = self.buffer.writable
self.write = lambda s: self.buffer.write(s.encode("ascii"))
self.read = lambda: self.buffer.read().decode("ascii")
self.readline = lambda: self.buffer.readline().decode("ascii")
def print(*args, **kwargs):
"""Prints the values to a stream, or to sys.stdout by default."""
sep, file = kwargs.pop("sep", " "), kwargs.pop("file", sys.stdout)
at_start = True
for x in args:
if not at_start:
file.write(sep)
file.write(str(x))
at_start = False
file.write(kwargs.pop("end", "\n"))
if kwargs.pop("flush", False):
file.flush()
if sys.version_info[0] < 3:
sys.stdin, sys.stdout = FastIO(sys.stdin), FastIO(sys.stdout)
else:
sys.stdin, sys.stdout = IOWrapper(sys.stdin), IOWrapper(sys.stdout)
input = lambda: sys.stdin.readline().rstrip("\r\n")
# endregion
if __name__ == "__main__":
#read()
main()
#dmain()
# Comment Read()
| 1Python2
| {
"input": [
"2\n2 999995\n",
"3\n2 3 9\n",
"3\n500000 500001 500002\n",
"1\n505050\n",
"2\n999998 999999\n",
"2\n500000 500001\n",
"1\n999995\n",
"1\n753572\n",
"2\n2 999999\n",
"1\n999998\n",
"4\n2 3 4 5\n",
"1\n500002\n",
"2\n100 999900\n",
"1\n500001\n",
"2\n499999 500001\n",
"2\n2 500000\n",
"1\n900000\n",
"2\n500001 999999\n",
"1\n500000\n",
"1\n700000\n",
"1\n2\n",
"6\n2 3 500000 999997 999998 999999\n",
"2\n576696 760487\n",
"3\n2 5 27\n",
"10\n3 4 5 6 7 8 9 10 11 12\n",
"4\n999996 999997 999998 999999\n",
"1\n499999\n",
"2\n999997 999999\n",
"2\n499999 500000\n",
"1\n20\n",
"1\n510000\n",
"2\n600000 800000\n",
"2\n499999 999999\n",
"1\n800000\n",
"4\n2 3 4 999999\n",
"2\n2 999998\n",
"1\n999999\n",
"2\n100000 500001\n",
"5\n2 5 6 27 29\n",
"3\n999997 999998 999999\n",
"10\n3934 38497 42729 45023 51842 68393 77476 82414 91465 98055\n",
"2\n2 500001\n",
"3\n184427 500001 500002\n",
"1\n413243\n",
"1\n256223\n",
"2\n3 999999\n",
"1\n576559\n",
"2\n100 193230\n",
"1\n986080\n",
"2\n499999 645786\n",
"1\n928283\n",
"1\n976360\n",
"2\n263727 760487\n",
"1\n45182\n",
"1\n40\n",
"1\n327391\n",
"2\n821192 999999\n",
"1\n551139\n",
"5\n2 5 9 27 29\n",
"2\n2 47001\n",
"2\n2 787653\n",
"3\n2 3 15\n",
"1\n96039\n",
"1\n211888\n",
"1\n944186\n",
"2\n100 156816\n",
"1\n951660\n",
"1\n955880\n",
"2\n463620 760487\n",
"1\n88421\n",
"1\n44\n",
"1\n620873\n",
"1\n325386\n",
"2\n2 9466\n",
"2\n2 41094\n",
"1\n52735\n",
"1\n24394\n",
"1\n721389\n",
"1\n612271\n",
"1\n51471\n",
"1\n54\n",
"1\n884560\n",
"1\n634914\n",
"1\n89620\n",
"1\n15289\n",
"1\n810139\n",
"2\n101 171845\n",
"1\n415809\n",
"1\n41863\n",
"1\n93\n",
"1\n459407\n",
"1\n680216\n",
"1\n95128\n",
"1\n5437\n",
"1\n303312\n",
"2\n101 39140\n",
"1\n551289\n",
"1\n27195\n",
"1\n94\n",
"1\n860285\n",
"1\n999064\n",
"1\n15649\n",
"1\n6744\n",
"1\n584792\n",
"2\n101 36958\n",
"1\n229105\n",
"1\n29758\n",
"1\n175\n",
"1\n203306\n",
"1\n21599\n",
"1\n23107\n",
"1\n2948\n",
"1\n773106\n",
"2\n101 53634\n",
"1\n358507\n",
"1\n46436\n",
"1\n214\n",
"1\n174998\n",
"1\n1609\n",
"1\n46144\n",
"1\n2105\n",
"1\n165152\n",
"1\n459811\n",
"1\n38231\n",
"1\n240\n",
"1\n256788\n",
"1\n3084\n",
"1\n26270\n",
"1\n673\n",
"1\n264282\n",
"2\n111 101254\n",
"1\n697101\n",
"1\n64665\n",
"1\n135\n",
"1\n61433\n",
"1\n4679\n",
"1\n10502\n",
"1\n1075\n",
"1\n235328\n",
"1\n38339\n",
"1\n170\n",
"1\n95636\n"
],
"output": [
"5\n",
"8\n",
"499999\n",
"494950\n",
"2\n",
"499999\n",
"5\n",
"246428\n",
"1\n",
"2\n",
"4\n",
"499998\n",
"100\n",
"499999\n",
"499999\n",
"499999\n",
"100000\n",
"499999\n",
"499999\n",
"300000\n",
"1\n",
"499999\n",
"423304\n",
"26\n",
"11\n",
"4\n",
"499998\n",
"3\n",
"499999\n",
"19\n",
"490000\n",
"400000\n",
"499998\n",
"200000\n",
"3\n",
"2\n",
"1\n",
"499999\n",
"28\n",
"3\n",
"98054\n",
"499999\n",
"499999\n",
"413242\n",
"256222\n",
"2\n",
"423441\n",
"193229\n",
"13920\n",
"499998\n",
"71717\n",
"23640\n",
"263726\n",
"45181\n",
"39\n",
"327390\n",
"178808\n",
"448861\n",
"28\n",
"47000\n",
"212347\n",
"14\n",
"96038\n",
"211887\n",
"55814\n",
"156815\n",
"48340\n",
"44120\n",
"463619\n",
"88420\n",
"43\n",
"379127\n",
"325385\n",
"9465\n",
"41093\n",
"52734\n",
"24393\n",
"278611\n",
"387729\n",
"51470\n",
"53\n",
"115440\n",
"365086\n",
"89619\n",
"15288\n",
"189861\n",
"171844\n",
"415808\n",
"41862\n",
"92\n",
"459406\n",
"319784\n",
"95127\n",
"5436\n",
"303311\n",
"39139\n",
"448711\n",
"27194\n",
"93\n",
"139715\n",
"936\n",
"15648\n",
"6743\n",
"415208\n",
"36957\n",
"229104\n",
"29757\n",
"174\n",
"203305\n",
"21598\n",
"23106\n",
"2947\n",
"226894\n",
"53633\n",
"358506\n",
"46435\n",
"213\n",
"174997\n",
"1608\n",
"46143\n",
"2104\n",
"165151\n",
"459810\n",
"38230\n",
"239\n",
"256787\n",
"3083\n",
"26269\n",
"672\n",
"264281\n",
"101253\n",
"302899\n",
"64664\n",
"134\n",
"61432\n",
"4678\n",
"10501\n",
"1074\n",
"235327\n",
"38338\n",
"169\n",
"95635\n"
]
} | 2CODEFORCES
|
938_B. Run For Your Prize_189 | You and your friend are participating in a TV show "Run For Your Prize".
At the start of the show n prizes are located on a straight line. i-th prize is located at position ai. Positions of all prizes are distinct. You start at position 1, your friend — at position 106 (and there is no prize in any of these two positions). You have to work as a team and collect all prizes in minimum possible time, in any order.
You know that it takes exactly 1 second to move from position x to position x + 1 or x - 1, both for you and your friend. You also have trained enough to instantly pick up any prize, if its position is equal to your current position (and the same is true for your friend). Carrying prizes does not affect your speed (or your friend's speed) at all.
Now you may discuss your strategy with your friend and decide who will pick up each prize. Remember that every prize must be picked up, either by you or by your friend.
What is the minimum number of seconds it will take to pick up all the prizes?
Input
The first line contains one integer n (1 ≤ n ≤ 105) — the number of prizes.
The second line contains n integers a1, a2, ..., an (2 ≤ ai ≤ 106 - 1) — the positions of the prizes. No two prizes are located at the same position. Positions are given in ascending order.
Output
Print one integer — the minimum number of seconds it will take to collect all prizes.
Examples
Input
3
2 3 9
Output
8
Input
2
2 999995
Output
5
Note
In the first example you take all the prizes: take the first at 1, the second at 2 and the third at 8.
In the second example you take the first prize in 1 second and your friend takes the other in 5 seconds, you do this simultaneously, so the total time is 5. | #include <bits/stdc++.h>
using namespace std;
int main() {
int k;
scanf("%d", &k);
int maxn = 0;
for (int i = 1; i <= k; i++) {
int x;
scanf("%d", &x);
if (x >= 500001) {
maxn = max(maxn, 1000000 - x);
}
if (x <= 500000) {
maxn = max(maxn, x - 1);
}
}
printf("%d\n", maxn);
}
| 2C++
| {
"input": [
"2\n2 999995\n",
"3\n2 3 9\n",
"3\n500000 500001 500002\n",
"1\n505050\n",
"2\n999998 999999\n",
"2\n500000 500001\n",
"1\n999995\n",
"1\n753572\n",
"2\n2 999999\n",
"1\n999998\n",
"4\n2 3 4 5\n",
"1\n500002\n",
"2\n100 999900\n",
"1\n500001\n",
"2\n499999 500001\n",
"2\n2 500000\n",
"1\n900000\n",
"2\n500001 999999\n",
"1\n500000\n",
"1\n700000\n",
"1\n2\n",
"6\n2 3 500000 999997 999998 999999\n",
"2\n576696 760487\n",
"3\n2 5 27\n",
"10\n3 4 5 6 7 8 9 10 11 12\n",
"4\n999996 999997 999998 999999\n",
"1\n499999\n",
"2\n999997 999999\n",
"2\n499999 500000\n",
"1\n20\n",
"1\n510000\n",
"2\n600000 800000\n",
"2\n499999 999999\n",
"1\n800000\n",
"4\n2 3 4 999999\n",
"2\n2 999998\n",
"1\n999999\n",
"2\n100000 500001\n",
"5\n2 5 6 27 29\n",
"3\n999997 999998 999999\n",
"10\n3934 38497 42729 45023 51842 68393 77476 82414 91465 98055\n",
"2\n2 500001\n",
"3\n184427 500001 500002\n",
"1\n413243\n",
"1\n256223\n",
"2\n3 999999\n",
"1\n576559\n",
"2\n100 193230\n",
"1\n986080\n",
"2\n499999 645786\n",
"1\n928283\n",
"1\n976360\n",
"2\n263727 760487\n",
"1\n45182\n",
"1\n40\n",
"1\n327391\n",
"2\n821192 999999\n",
"1\n551139\n",
"5\n2 5 9 27 29\n",
"2\n2 47001\n",
"2\n2 787653\n",
"3\n2 3 15\n",
"1\n96039\n",
"1\n211888\n",
"1\n944186\n",
"2\n100 156816\n",
"1\n951660\n",
"1\n955880\n",
"2\n463620 760487\n",
"1\n88421\n",
"1\n44\n",
"1\n620873\n",
"1\n325386\n",
"2\n2 9466\n",
"2\n2 41094\n",
"1\n52735\n",
"1\n24394\n",
"1\n721389\n",
"1\n612271\n",
"1\n51471\n",
"1\n54\n",
"1\n884560\n",
"1\n634914\n",
"1\n89620\n",
"1\n15289\n",
"1\n810139\n",
"2\n101 171845\n",
"1\n415809\n",
"1\n41863\n",
"1\n93\n",
"1\n459407\n",
"1\n680216\n",
"1\n95128\n",
"1\n5437\n",
"1\n303312\n",
"2\n101 39140\n",
"1\n551289\n",
"1\n27195\n",
"1\n94\n",
"1\n860285\n",
"1\n999064\n",
"1\n15649\n",
"1\n6744\n",
"1\n584792\n",
"2\n101 36958\n",
"1\n229105\n",
"1\n29758\n",
"1\n175\n",
"1\n203306\n",
"1\n21599\n",
"1\n23107\n",
"1\n2948\n",
"1\n773106\n",
"2\n101 53634\n",
"1\n358507\n",
"1\n46436\n",
"1\n214\n",
"1\n174998\n",
"1\n1609\n",
"1\n46144\n",
"1\n2105\n",
"1\n165152\n",
"1\n459811\n",
"1\n38231\n",
"1\n240\n",
"1\n256788\n",
"1\n3084\n",
"1\n26270\n",
"1\n673\n",
"1\n264282\n",
"2\n111 101254\n",
"1\n697101\n",
"1\n64665\n",
"1\n135\n",
"1\n61433\n",
"1\n4679\n",
"1\n10502\n",
"1\n1075\n",
"1\n235328\n",
"1\n38339\n",
"1\n170\n",
"1\n95636\n"
],
"output": [
"5\n",
"8\n",
"499999\n",
"494950\n",
"2\n",
"499999\n",
"5\n",
"246428\n",
"1\n",
"2\n",
"4\n",
"499998\n",
"100\n",
"499999\n",
"499999\n",
"499999\n",
"100000\n",
"499999\n",
"499999\n",
"300000\n",
"1\n",
"499999\n",
"423304\n",
"26\n",
"11\n",
"4\n",
"499998\n",
"3\n",
"499999\n",
"19\n",
"490000\n",
"400000\n",
"499998\n",
"200000\n",
"3\n",
"2\n",
"1\n",
"499999\n",
"28\n",
"3\n",
"98054\n",
"499999\n",
"499999\n",
"413242\n",
"256222\n",
"2\n",
"423441\n",
"193229\n",
"13920\n",
"499998\n",
"71717\n",
"23640\n",
"263726\n",
"45181\n",
"39\n",
"327390\n",
"178808\n",
"448861\n",
"28\n",
"47000\n",
"212347\n",
"14\n",
"96038\n",
"211887\n",
"55814\n",
"156815\n",
"48340\n",
"44120\n",
"463619\n",
"88420\n",
"43\n",
"379127\n",
"325385\n",
"9465\n",
"41093\n",
"52734\n",
"24393\n",
"278611\n",
"387729\n",
"51470\n",
"53\n",
"115440\n",
"365086\n",
"89619\n",
"15288\n",
"189861\n",
"171844\n",
"415808\n",
"41862\n",
"92\n",
"459406\n",
"319784\n",
"95127\n",
"5436\n",
"303311\n",
"39139\n",
"448711\n",
"27194\n",
"93\n",
"139715\n",
"936\n",
"15648\n",
"6743\n",
"415208\n",
"36957\n",
"229104\n",
"29757\n",
"174\n",
"203305\n",
"21598\n",
"23106\n",
"2947\n",
"226894\n",
"53633\n",
"358506\n",
"46435\n",
"213\n",
"174997\n",
"1608\n",
"46143\n",
"2104\n",
"165151\n",
"459810\n",
"38230\n",
"239\n",
"256787\n",
"3083\n",
"26269\n",
"672\n",
"264281\n",
"101253\n",
"302899\n",
"64664\n",
"134\n",
"61432\n",
"4678\n",
"10501\n",
"1074\n",
"235327\n",
"38338\n",
"169\n",
"95635\n"
]
} | 2CODEFORCES
|
938_B. Run For Your Prize_190 | You and your friend are participating in a TV show "Run For Your Prize".
At the start of the show n prizes are located on a straight line. i-th prize is located at position ai. Positions of all prizes are distinct. You start at position 1, your friend — at position 106 (and there is no prize in any of these two positions). You have to work as a team and collect all prizes in minimum possible time, in any order.
You know that it takes exactly 1 second to move from position x to position x + 1 or x - 1, both for you and your friend. You also have trained enough to instantly pick up any prize, if its position is equal to your current position (and the same is true for your friend). Carrying prizes does not affect your speed (or your friend's speed) at all.
Now you may discuss your strategy with your friend and decide who will pick up each prize. Remember that every prize must be picked up, either by you or by your friend.
What is the minimum number of seconds it will take to pick up all the prizes?
Input
The first line contains one integer n (1 ≤ n ≤ 105) — the number of prizes.
The second line contains n integers a1, a2, ..., an (2 ≤ ai ≤ 106 - 1) — the positions of the prizes. No two prizes are located at the same position. Positions are given in ascending order.
Output
Print one integer — the minimum number of seconds it will take to collect all prizes.
Examples
Input
3
2 3 9
Output
8
Input
2
2 999995
Output
5
Note
In the first example you take all the prizes: take the first at 1, the second at 2 and the third at 8.
In the second example you take the first prize in 1 second and your friend takes the other in 5 seconds, you do this simultaneously, so the total time is 5. | input()
a=list(map(int,input().split()))
ans=0
for x in a:
z=min(x-1,1000000-x)
ans=max(z,ans)
print(ans)
| 3Python3
| {
"input": [
"2\n2 999995\n",
"3\n2 3 9\n",
"3\n500000 500001 500002\n",
"1\n505050\n",
"2\n999998 999999\n",
"2\n500000 500001\n",
"1\n999995\n",
"1\n753572\n",
"2\n2 999999\n",
"1\n999998\n",
"4\n2 3 4 5\n",
"1\n500002\n",
"2\n100 999900\n",
"1\n500001\n",
"2\n499999 500001\n",
"2\n2 500000\n",
"1\n900000\n",
"2\n500001 999999\n",
"1\n500000\n",
"1\n700000\n",
"1\n2\n",
"6\n2 3 500000 999997 999998 999999\n",
"2\n576696 760487\n",
"3\n2 5 27\n",
"10\n3 4 5 6 7 8 9 10 11 12\n",
"4\n999996 999997 999998 999999\n",
"1\n499999\n",
"2\n999997 999999\n",
"2\n499999 500000\n",
"1\n20\n",
"1\n510000\n",
"2\n600000 800000\n",
"2\n499999 999999\n",
"1\n800000\n",
"4\n2 3 4 999999\n",
"2\n2 999998\n",
"1\n999999\n",
"2\n100000 500001\n",
"5\n2 5 6 27 29\n",
"3\n999997 999998 999999\n",
"10\n3934 38497 42729 45023 51842 68393 77476 82414 91465 98055\n",
"2\n2 500001\n",
"3\n184427 500001 500002\n",
"1\n413243\n",
"1\n256223\n",
"2\n3 999999\n",
"1\n576559\n",
"2\n100 193230\n",
"1\n986080\n",
"2\n499999 645786\n",
"1\n928283\n",
"1\n976360\n",
"2\n263727 760487\n",
"1\n45182\n",
"1\n40\n",
"1\n327391\n",
"2\n821192 999999\n",
"1\n551139\n",
"5\n2 5 9 27 29\n",
"2\n2 47001\n",
"2\n2 787653\n",
"3\n2 3 15\n",
"1\n96039\n",
"1\n211888\n",
"1\n944186\n",
"2\n100 156816\n",
"1\n951660\n",
"1\n955880\n",
"2\n463620 760487\n",
"1\n88421\n",
"1\n44\n",
"1\n620873\n",
"1\n325386\n",
"2\n2 9466\n",
"2\n2 41094\n",
"1\n52735\n",
"1\n24394\n",
"1\n721389\n",
"1\n612271\n",
"1\n51471\n",
"1\n54\n",
"1\n884560\n",
"1\n634914\n",
"1\n89620\n",
"1\n15289\n",
"1\n810139\n",
"2\n101 171845\n",
"1\n415809\n",
"1\n41863\n",
"1\n93\n",
"1\n459407\n",
"1\n680216\n",
"1\n95128\n",
"1\n5437\n",
"1\n303312\n",
"2\n101 39140\n",
"1\n551289\n",
"1\n27195\n",
"1\n94\n",
"1\n860285\n",
"1\n999064\n",
"1\n15649\n",
"1\n6744\n",
"1\n584792\n",
"2\n101 36958\n",
"1\n229105\n",
"1\n29758\n",
"1\n175\n",
"1\n203306\n",
"1\n21599\n",
"1\n23107\n",
"1\n2948\n",
"1\n773106\n",
"2\n101 53634\n",
"1\n358507\n",
"1\n46436\n",
"1\n214\n",
"1\n174998\n",
"1\n1609\n",
"1\n46144\n",
"1\n2105\n",
"1\n165152\n",
"1\n459811\n",
"1\n38231\n",
"1\n240\n",
"1\n256788\n",
"1\n3084\n",
"1\n26270\n",
"1\n673\n",
"1\n264282\n",
"2\n111 101254\n",
"1\n697101\n",
"1\n64665\n",
"1\n135\n",
"1\n61433\n",
"1\n4679\n",
"1\n10502\n",
"1\n1075\n",
"1\n235328\n",
"1\n38339\n",
"1\n170\n",
"1\n95636\n"
],
"output": [
"5\n",
"8\n",
"499999\n",
"494950\n",
"2\n",
"499999\n",
"5\n",
"246428\n",
"1\n",
"2\n",
"4\n",
"499998\n",
"100\n",
"499999\n",
"499999\n",
"499999\n",
"100000\n",
"499999\n",
"499999\n",
"300000\n",
"1\n",
"499999\n",
"423304\n",
"26\n",
"11\n",
"4\n",
"499998\n",
"3\n",
"499999\n",
"19\n",
"490000\n",
"400000\n",
"499998\n",
"200000\n",
"3\n",
"2\n",
"1\n",
"499999\n",
"28\n",
"3\n",
"98054\n",
"499999\n",
"499999\n",
"413242\n",
"256222\n",
"2\n",
"423441\n",
"193229\n",
"13920\n",
"499998\n",
"71717\n",
"23640\n",
"263726\n",
"45181\n",
"39\n",
"327390\n",
"178808\n",
"448861\n",
"28\n",
"47000\n",
"212347\n",
"14\n",
"96038\n",
"211887\n",
"55814\n",
"156815\n",
"48340\n",
"44120\n",
"463619\n",
"88420\n",
"43\n",
"379127\n",
"325385\n",
"9465\n",
"41093\n",
"52734\n",
"24393\n",
"278611\n",
"387729\n",
"51470\n",
"53\n",
"115440\n",
"365086\n",
"89619\n",
"15288\n",
"189861\n",
"171844\n",
"415808\n",
"41862\n",
"92\n",
"459406\n",
"319784\n",
"95127\n",
"5436\n",
"303311\n",
"39139\n",
"448711\n",
"27194\n",
"93\n",
"139715\n",
"936\n",
"15648\n",
"6743\n",
"415208\n",
"36957\n",
"229104\n",
"29757\n",
"174\n",
"203305\n",
"21598\n",
"23106\n",
"2947\n",
"226894\n",
"53633\n",
"358506\n",
"46435\n",
"213\n",
"174997\n",
"1608\n",
"46143\n",
"2104\n",
"165151\n",
"459810\n",
"38230\n",
"239\n",
"256787\n",
"3083\n",
"26269\n",
"672\n",
"264281\n",
"101253\n",
"302899\n",
"64664\n",
"134\n",
"61432\n",
"4678\n",
"10501\n",
"1074\n",
"235327\n",
"38338\n",
"169\n",
"95635\n"
]
} | 2CODEFORCES
|
938_B. Run For Your Prize_191 | You and your friend are participating in a TV show "Run For Your Prize".
At the start of the show n prizes are located on a straight line. i-th prize is located at position ai. Positions of all prizes are distinct. You start at position 1, your friend — at position 106 (and there is no prize in any of these two positions). You have to work as a team and collect all prizes in minimum possible time, in any order.
You know that it takes exactly 1 second to move from position x to position x + 1 or x - 1, both for you and your friend. You also have trained enough to instantly pick up any prize, if its position is equal to your current position (and the same is true for your friend). Carrying prizes does not affect your speed (or your friend's speed) at all.
Now you may discuss your strategy with your friend and decide who will pick up each prize. Remember that every prize must be picked up, either by you or by your friend.
What is the minimum number of seconds it will take to pick up all the prizes?
Input
The first line contains one integer n (1 ≤ n ≤ 105) — the number of prizes.
The second line contains n integers a1, a2, ..., an (2 ≤ ai ≤ 106 - 1) — the positions of the prizes. No two prizes are located at the same position. Positions are given in ascending order.
Output
Print one integer — the minimum number of seconds it will take to collect all prizes.
Examples
Input
3
2 3 9
Output
8
Input
2
2 999995
Output
5
Note
In the first example you take all the prizes: take the first at 1, the second at 2 and the third at 8.
In the second example you take the first prize in 1 second and your friend takes the other in 5 seconds, you do this simultaneously, so the total time is 5. | import java.util.*;
import java.io.*;
import java.math.*;
public class mainClass
{
public static void main(String[] args) throws IOException
{
InputReader in = new InputReader(System.in);
PrintWriter out = new PrintWriter(System.out);
int n=in.nextInt();
int max1=1,max2=1000000;
for(int i=0;i<n;i++)
{
int x=in.nextInt();
if(x>max1 && x<=500000)
max1=x;
if(x<max2 && x>500000)
max2=x;
}
if(max1-1>1000000-max2)
{out.println(max1-1);}
else
{out.println(1000000-max2);}
out.flush();
out.close();
}
static boolean isvow(char c)
{
if(c=='a'|| c=='o'|| c=='i'|| c=='e'|| c=='u'|| c=='y')
return true;
return false;
}
}
class InputReader{
private final InputStream stream;
private final byte[] buf=new byte[1024];
private int curChar;
private int numChars;
public InputReader(InputStream stream){this.stream=stream;}
private int read()throws IOException{
if(curChar>=numChars){
curChar=0;
numChars=stream.read(buf);
if(numChars<=0)
return -1;
}
return buf[curChar++];
}
public final int nextInt()throws IOException{return (int)nextLong();}
public final long nextLong()throws IOException{
int c=read();
while(isSpaceChar(c)){
c=read();
if(c==-1) throw new IOException();
}
boolean negative=false;
if(c=='-'){
negative=true;
c=read();
}
long res=0;
do{
if(c<'0'||c>'9')throw new InputMismatchException();
res*=10;
res+=(c-'0');
c=read();
}while(!isSpaceChar(c));
return negative?(-res):(res);
}
public final int[] readIntBrray(int size)throws IOException{
int[] arr=new int[size];
for(int i=0;i<size;i++)arr[i]=nextInt();
return arr;
}
public final String next()throws IOException{
int c=read();
while(isSpaceChar(c))c=read();
StringBuilder res=new StringBuilder();
do{
res.append((char)c);
c=read();
}while(!isSpaceChar(c));
return res.toString();
}
public final String nextLine()throws IOException{
int c=read();
while(isSpaceChar(c))c=read();
StringBuilder res=new StringBuilder();
do{
res.append((char)c);
c=read();
}while(c!='\n'&&c!=-1);
return res.toString();
}
private boolean isSpaceChar(int c){
return c==' '||c=='\n'||c=='\r'||c=='\t'||c==-1;
}
} | 4JAVA
| {
"input": [
"2\n2 999995\n",
"3\n2 3 9\n",
"3\n500000 500001 500002\n",
"1\n505050\n",
"2\n999998 999999\n",
"2\n500000 500001\n",
"1\n999995\n",
"1\n753572\n",
"2\n2 999999\n",
"1\n999998\n",
"4\n2 3 4 5\n",
"1\n500002\n",
"2\n100 999900\n",
"1\n500001\n",
"2\n499999 500001\n",
"2\n2 500000\n",
"1\n900000\n",
"2\n500001 999999\n",
"1\n500000\n",
"1\n700000\n",
"1\n2\n",
"6\n2 3 500000 999997 999998 999999\n",
"2\n576696 760487\n",
"3\n2 5 27\n",
"10\n3 4 5 6 7 8 9 10 11 12\n",
"4\n999996 999997 999998 999999\n",
"1\n499999\n",
"2\n999997 999999\n",
"2\n499999 500000\n",
"1\n20\n",
"1\n510000\n",
"2\n600000 800000\n",
"2\n499999 999999\n",
"1\n800000\n",
"4\n2 3 4 999999\n",
"2\n2 999998\n",
"1\n999999\n",
"2\n100000 500001\n",
"5\n2 5 6 27 29\n",
"3\n999997 999998 999999\n",
"10\n3934 38497 42729 45023 51842 68393 77476 82414 91465 98055\n",
"2\n2 500001\n",
"3\n184427 500001 500002\n",
"1\n413243\n",
"1\n256223\n",
"2\n3 999999\n",
"1\n576559\n",
"2\n100 193230\n",
"1\n986080\n",
"2\n499999 645786\n",
"1\n928283\n",
"1\n976360\n",
"2\n263727 760487\n",
"1\n45182\n",
"1\n40\n",
"1\n327391\n",
"2\n821192 999999\n",
"1\n551139\n",
"5\n2 5 9 27 29\n",
"2\n2 47001\n",
"2\n2 787653\n",
"3\n2 3 15\n",
"1\n96039\n",
"1\n211888\n",
"1\n944186\n",
"2\n100 156816\n",
"1\n951660\n",
"1\n955880\n",
"2\n463620 760487\n",
"1\n88421\n",
"1\n44\n",
"1\n620873\n",
"1\n325386\n",
"2\n2 9466\n",
"2\n2 41094\n",
"1\n52735\n",
"1\n24394\n",
"1\n721389\n",
"1\n612271\n",
"1\n51471\n",
"1\n54\n",
"1\n884560\n",
"1\n634914\n",
"1\n89620\n",
"1\n15289\n",
"1\n810139\n",
"2\n101 171845\n",
"1\n415809\n",
"1\n41863\n",
"1\n93\n",
"1\n459407\n",
"1\n680216\n",
"1\n95128\n",
"1\n5437\n",
"1\n303312\n",
"2\n101 39140\n",
"1\n551289\n",
"1\n27195\n",
"1\n94\n",
"1\n860285\n",
"1\n999064\n",
"1\n15649\n",
"1\n6744\n",
"1\n584792\n",
"2\n101 36958\n",
"1\n229105\n",
"1\n29758\n",
"1\n175\n",
"1\n203306\n",
"1\n21599\n",
"1\n23107\n",
"1\n2948\n",
"1\n773106\n",
"2\n101 53634\n",
"1\n358507\n",
"1\n46436\n",
"1\n214\n",
"1\n174998\n",
"1\n1609\n",
"1\n46144\n",
"1\n2105\n",
"1\n165152\n",
"1\n459811\n",
"1\n38231\n",
"1\n240\n",
"1\n256788\n",
"1\n3084\n",
"1\n26270\n",
"1\n673\n",
"1\n264282\n",
"2\n111 101254\n",
"1\n697101\n",
"1\n64665\n",
"1\n135\n",
"1\n61433\n",
"1\n4679\n",
"1\n10502\n",
"1\n1075\n",
"1\n235328\n",
"1\n38339\n",
"1\n170\n",
"1\n95636\n"
],
"output": [
"5\n",
"8\n",
"499999\n",
"494950\n",
"2\n",
"499999\n",
"5\n",
"246428\n",
"1\n",
"2\n",
"4\n",
"499998\n",
"100\n",
"499999\n",
"499999\n",
"499999\n",
"100000\n",
"499999\n",
"499999\n",
"300000\n",
"1\n",
"499999\n",
"423304\n",
"26\n",
"11\n",
"4\n",
"499998\n",
"3\n",
"499999\n",
"19\n",
"490000\n",
"400000\n",
"499998\n",
"200000\n",
"3\n",
"2\n",
"1\n",
"499999\n",
"28\n",
"3\n",
"98054\n",
"499999\n",
"499999\n",
"413242\n",
"256222\n",
"2\n",
"423441\n",
"193229\n",
"13920\n",
"499998\n",
"71717\n",
"23640\n",
"263726\n",
"45181\n",
"39\n",
"327390\n",
"178808\n",
"448861\n",
"28\n",
"47000\n",
"212347\n",
"14\n",
"96038\n",
"211887\n",
"55814\n",
"156815\n",
"48340\n",
"44120\n",
"463619\n",
"88420\n",
"43\n",
"379127\n",
"325385\n",
"9465\n",
"41093\n",
"52734\n",
"24393\n",
"278611\n",
"387729\n",
"51470\n",
"53\n",
"115440\n",
"365086\n",
"89619\n",
"15288\n",
"189861\n",
"171844\n",
"415808\n",
"41862\n",
"92\n",
"459406\n",
"319784\n",
"95127\n",
"5436\n",
"303311\n",
"39139\n",
"448711\n",
"27194\n",
"93\n",
"139715\n",
"936\n",
"15648\n",
"6743\n",
"415208\n",
"36957\n",
"229104\n",
"29757\n",
"174\n",
"203305\n",
"21598\n",
"23106\n",
"2947\n",
"226894\n",
"53633\n",
"358506\n",
"46435\n",
"213\n",
"174997\n",
"1608\n",
"46143\n",
"2104\n",
"165151\n",
"459810\n",
"38230\n",
"239\n",
"256787\n",
"3083\n",
"26269\n",
"672\n",
"264281\n",
"101253\n",
"302899\n",
"64664\n",
"134\n",
"61432\n",
"4678\n",
"10501\n",
"1074\n",
"235327\n",
"38338\n",
"169\n",
"95635\n"
]
} | 2CODEFORCES
|
963_B. Destruction of a Tree_192 | You are given a tree (a graph with n vertices and n - 1 edges in which it's possible to reach any vertex from any other vertex using only its edges).
A vertex can be destroyed if this vertex has even degree. If you destroy a vertex, all edges connected to it are also deleted.
Destroy all vertices in the given tree or determine that it is impossible.
Input
The first line contains integer n (1 ≤ n ≤ 2·105) — number of vertices in a tree.
The second line contains n integers p1, p2, ..., pn (0 ≤ pi ≤ n). If pi ≠ 0 there is an edge between vertices i and pi. It is guaranteed that the given graph is a tree.
Output
If it's possible to destroy all vertices, print "YES" (without quotes), otherwise print "NO" (without quotes).
If it's possible to destroy all vertices, in the next n lines print the indices of the vertices in order you destroy them. If there are multiple correct answers, print any.
Examples
Input
5
0 1 2 1 2
Output
YES
1
2
3
5
4
Input
4
0 1 2 3
Output
NO
Note
In the first example at first you have to remove the vertex with index 1 (after that, the edges (1, 2) and (1, 4) are removed), then the vertex with index 2 (and edges (2, 3) and (2, 5) are removed). After that there are no edges in the tree, so you can remove remaining vertices in any order.
<image> | #include <bits/stdc++.h>
using namespace std;
const int maxn = ((int)2e5) + 5;
vector<int> adj[maxn];
vector<int> del[maxn];
int INDEX = 0;
bool onStack[maxn];
int index_[maxn], lowLink[maxn];
stack<int> stk;
vector<vector<int> > components;
void getConnectedComponent(int i);
void getConnectedComponent(int i) {
index_[i] = INDEX;
lowLink[i] = INDEX;
INDEX++;
stk.push(i);
onStack[i] = true;
for (int nxt : adj[i]) {
if (index_[nxt] == -1) {
getConnectedComponent(nxt);
lowLink[i] = min(lowLink[i], lowLink[nxt]);
} else if (onStack[nxt]) {
lowLink[i] = min(lowLink[i], index_[nxt]);
}
}
if (lowLink[i] == index_[i]) {
vector<int> comp;
int poped;
do {
poped = stk.top();
stk.pop();
onStack[poped] = false;
comp.push_back(poped);
} while (poped != i);
if (comp.size() > 0) {
components.push_back(comp);
}
}
}
void tarjan(int n) {
memset(onStack, false, sizeof(onStack));
fill(index_, index_ + n, -1);
for (int i = 0; i < n; i++) {
if (index_[i] == -1) {
getConnectedComponent(i);
}
}
}
int dfs(int curr, int par = -1) {
int mustDel = 0;
for (int nxt : del[curr]) {
if (nxt != par) {
mustDel += dfs(nxt, curr);
}
}
if (par == -1) {
if (mustDel & 1)
return 1;
else
return 0;
}
if (mustDel % 2 == 0) {
adj[par].push_back(curr);
return 1;
} else {
adj[curr].push_back(par);
return 0;
}
}
int main() {
ios_base::sync_with_stdio(false);
cin.tie(0);
int n;
cin >> n;
for (int i = 1; i < n + 1; i++) {
int x;
cin >> x;
x--;
if (x == -1) continue;
del[x].push_back(i - 1);
del[i - 1].push_back(x);
}
if (dfs(0) == 1) {
cout << "NO";
} else {
cout << "YES\n";
tarjan(n);
reverse(components.begin(), components.end());
for (vector<int> comp : components) {
cout << comp[0] + 1 << endl;
}
tarjan(n);
}
}
| 2C++
| {
"input": [
"5\n0 1 2 1 2\n",
"4\n0 1 2 3\n",
"21\n11 19 4 19 6 0 13 7 6 2 5 3 16 10 1 9 15 21 9 21 2\n",
"100\n57 85 27 81 41 27 73 10 73 95 91 90 89 41 86 44 6 20 9 13 46 73 56 19 37 32 40 42 79 76 96 5 6 8 76 52 14 86 33 69 100 95 58 87 43 47 17 39 48 28 77 65 100 100 41 39 87 5 61 67 94 64 61 88 32 23 79 44 0 67 44 23 48 96 48 56 86 75 90 2 17 46 4 75 42 90 17 77 5 33 87 91 27 28 58 95 58 47 33 6\n",
"61\n5 61 20 5 50 59 56 29 44 1 48 13 20 35 61 33 38 52 30 8 43 17 35 43 24 59 22 23 11 26 38 37 48 36 13 37 44 23 30 19 26 1 15 19 8 18 42 0 50 33 52 36 17 11 29 18 48 15 24 22 42\n",
"8\n3 1 4 0 4 2 4 5\n",
"61\n58 39 45 57 31 43 11 24 8 18 56 54 47 37 50 40 19 16 29 10 1 23 36 28 21 48 52 55 27 42 2 33 46 25 53 6 15 26 14 17 9 44 56 34 5 61 38 12 30 7 49 32 20 41 51 0 3 4 60 35 13\n",
"21\n11 10 12 3 6 0 8 6 16 14 5 9 7 19 1 13 15 21 4 2 20\n",
"100\n81 96 65 28 4 40 5 49 5 89 48 70 94 70 17 58 58 1 61 19 45 33 46 19 22 83 56 67 62 82 57 16 29 36 84 71 42 66 78 54 73 45 82 80 67 88 79 69 61 66 5 36 24 60 96 21 77 67 68 29 87 37 91 34 78 43 0 69 49 62 16 2 68 79 57 1 60 12 39 99 14 37 30 92 47 18 14 75 73 39 94 12 43 87 90 22 91 59 54 71\n",
"21\n21 6 4 20 14 1 13 10 11 0 10 18 10 12 4 1 2 2 8 2 13\n",
"1\n0\n",
"21\n15 6 13 7 15 21 8 0 7 16 16 21 12 6 12 12 13 6 15 16 7\n",
"61\n47 61 20 5 10 59 46 55 44 1 57 13 3 35 21 48 31 7 9 45 43 53 14 6 42 39 22 23 54 40 45 37 16 36 12 44 34 28 25 19 26 33 25 39 33 36 42 0 50 4 52 46 17 11 29 7 48 15 41 27 58\n",
"61\n10 42 20 50 4 24 18 55 19 5 57 13 3 35 58 48 31 46 40 45 15 53 14 25 43 41 22 23 54 39 38 44 16 37 12 34 32 28 26 30 59 47 21 9 8 52 1 0 33 49 36 51 17 11 29 7 48 61 6 27 2\n",
"21\n5 20 9 19 8 0 13 6 13 19 5 3 8 10 1 9 1 20 3 10 18\n",
"79\n0 56 56 42 56 56 56 56 4 56 56 22 56 56 56 48 56 56 56 56 56 24 56 16 56 56 56 9 56 56 56 56 56 56 56 56 56 55 56 56 12 20 56 28 56 56 56 38 56 56 56 56 56 56 44 1 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56\n",
"21\n18 0 18 2 21 2 9 15 3 5 8 2 8 21 6 10 21 13 9 1 13\n",
"61\n45 48 30 23 15 47 8 3 35 56 54 35 17 47 35 56 32 42 14 37 36 44 6 44 1 44 41 46 43 0 33 3 44 54 43 3 47 57 7 32 29 60 36 36 43 61 36 47 3 48 18 8 17 29 3 54 3 6 43 43 56\n",
"61\n17 19 8 53 10 38 59 60 46 25 49 28 46 15 25 56 53 60 60 54 18 49 10 53 29 19 11 61 24 11 17 52 32 54 29 55 0 1 14 56 25 14 33 53 47 56 8 6 53 55 16 46 47 9 24 37 3 52 25 37 26\n",
"61\n56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 0 56 56 56 56 56 56 56 48 56 56 56 56 56\n",
"21\n18 18 18 18 18 0 18 18 18 18 18 18 18 18 18 18 18 6 18 18 18\n",
"121\n110 31 57 33 45 33 33 33 91 102 79 33 61 72 107 101 117 10 118 33 33 64 24 94 117 76 33 23 33 49 5 52 95 78 33 39 33 92 17 33 25 33 56 33 3 88 33 108 62 15 28 111 67 33 33 11 96 33 36 70 46 98 80 104 33 19 60 33 112 51 33 2 33 33 121 59 33 41 50 81 105 33 115 34 33 18 84 32 33 33 87 13 86 103 16 119 33 63 30 43 83 53 26 100 69 33 14 38 33 75 66 120 33 33 9 99 0 93 1 48 116\n",
"21\n11 19 4 19 6 0 13 7 6 2 5 3 16 16 1 9 15 21 9 21 2\n",
"100\n57 85 27 81 41 27 73 10 73 95 91 90 89 41 86 44 6 20 9 13 46 73 56 19 37 32 40 42 79 76 96 5 6 8 76 52 14 86 33 69 100 95 58 87 43 47 17 39 48 28 77 65 100 100 41 39 87 5 61 67 94 64 61 88 32 23 79 44 0 67 44 23 48 96 48 56 86 75 90 2 17 46 4 75 79 90 17 77 5 33 87 91 27 28 58 95 58 47 33 6\n",
"61\n58 39 45 57 31 43 11 24 8 18 56 54 47 37 50 40 19 16 29 10 1 23 36 28 21 48 52 55 27 42 2 33 46 25 53 6 15 26 14 17 9 44 56 34 5 61 38 12 30 11 49 32 20 41 51 0 3 4 60 35 13\n",
"21\n11 10 12 3 6 0 8 6 16 14 5 8 7 19 1 13 15 21 4 2 20\n",
"21\n21 6 4 20 14 1 13 10 11 0 10 18 11 12 4 1 2 2 8 2 13\n",
"21\n15 6 13 7 15 21 8 0 7 16 16 21 12 6 6 12 13 6 15 16 7\n",
"61\n10 42 20 50 4 24 18 55 19 5 57 13 3 35 58 48 31 46 40 45 15 53 14 25 43 41 22 23 54 16 38 44 16 37 12 34 32 28 26 30 59 47 21 9 8 52 1 0 33 49 36 51 17 11 29 7 48 61 6 27 2\n",
"61\n17 19 8 53 10 38 59 60 46 25 49 28 46 15 25 56 53 60 60 54 18 49 10 53 29 19 11 61 24 11 17 52 17 54 29 55 0 1 14 56 25 14 33 53 47 56 8 6 53 55 16 46 47 9 24 37 3 52 25 37 26\n",
"61\n56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 15 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 0 56 56 56 56 56 56 56 48 56 56 56 56 56\n",
"21\n18 18 18 18 18 0 18 18 14 18 18 18 18 18 18 18 18 6 18 18 18\n",
"121\n110 31 57 33 45 33 33 33 91 102 79 33 61 72 107 101 117 10 118 33 33 64 24 94 117 76 33 23 42 49 5 52 95 78 33 39 33 92 17 33 25 33 56 33 3 88 33 108 62 15 28 111 67 33 33 11 96 33 36 70 46 98 80 104 33 19 60 33 112 51 33 2 33 33 121 59 33 41 50 81 105 33 115 34 33 18 84 32 33 33 87 13 86 103 16 119 33 63 30 43 83 53 26 100 69 33 14 38 33 75 66 120 33 33 9 99 0 93 1 48 116\n",
"5\n0 1 2 2 2\n",
"21\n5 19 4 19 6 0 13 7 6 2 5 3 16 16 1 9 15 21 9 21 2\n",
"21\n21 6 4 20 9 1 13 10 11 0 10 18 11 12 4 1 2 2 8 2 13\n",
"61\n10 42 20 50 4 16 18 55 19 5 57 13 3 35 58 48 31 46 40 45 15 53 14 25 43 41 22 23 54 16 38 44 16 37 12 34 32 28 26 30 59 47 21 9 8 52 1 0 33 49 36 51 17 11 29 7 48 61 6 27 2\n",
"61\n17 19 8 53 10 38 59 60 46 25 49 28 46 15 25 56 53 60 60 54 18 49 10 53 29 19 11 61 24 11 17 52 17 54 47 55 0 1 14 56 25 14 33 53 47 56 8 6 53 55 16 46 47 9 24 37 3 52 25 37 26\n",
"5\n0 1 2 2 1\n",
"21\n5 19 4 19 6 0 13 7 6 2 6 3 16 16 1 9 15 21 9 21 2\n",
"21\n21 6 4 20 9 1 13 10 11 0 10 13 11 12 4 1 2 2 8 2 13\n",
"61\n17 19 8 53 10 38 59 60 46 25 49 28 46 15 25 56 53 60 60 54 18 49 10 53 29 19 11 61 24 11 34 52 17 54 47 55 0 1 14 56 25 14 33 53 47 56 8 6 53 55 16 46 47 9 24 37 3 52 25 37 26\n",
"5\n0 1 1 2 1\n",
"21\n5 19 4 19 6 0 13 7 6 2 6 3 16 16 1 9 15 21 14 21 2\n",
"21\n11 19 4 19 6 0 13 7 6 2 5 3 16 10 1 9 15 21 9 21 4\n",
"61\n5 61 20 5 50 59 56 29 44 1 48 13 20 35 61 33 38 52 30 8 43 17 35 43 24 59 22 23 11 26 38 37 48 36 13 37 44 23 30 19 26 1 15 19 8 18 42 0 55 33 52 36 17 11 29 18 48 15 24 22 42\n",
"61\n58 39 45 11 31 43 11 24 8 18 56 54 47 37 50 40 19 16 29 10 1 23 36 28 21 48 52 55 27 42 2 33 46 25 53 6 15 26 14 17 9 44 56 34 5 61 38 12 30 7 49 32 20 41 51 0 3 4 60 35 13\n",
"21\n10 10 12 3 6 0 8 6 16 14 5 9 7 19 1 13 15 21 4 2 20\n",
"61\n47 61 20 5 10 59 46 55 44 1 57 13 3 35 21 48 31 7 9 45 43 53 14 6 42 39 22 23 54 40 45 37 16 36 9 44 34 28 25 19 26 33 25 39 33 36 42 0 50 4 52 46 17 11 29 7 48 15 41 27 58\n",
"61\n10 42 20 50 4 24 18 55 19 5 57 13 3 35 58 48 31 46 40 45 15 53 14 25 43 41 22 23 54 39 38 44 16 37 12 34 32 28 26 30 59 47 21 9 8 52 1 0 33 49 36 51 17 11 57 7 48 61 6 27 2\n",
"79\n0 56 56 42 56 56 56 56 4 56 56 22 56 56 56 48 56 56 56 56 56 24 56 16 56 56 56 9 56 56 56 56 56 56 56 56 56 55 56 56 12 20 56 28 56 56 56 38 56 56 56 56 56 56 44 1 56 56 56 56 56 56 47 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56\n",
"121\n110 31 57 33 45 33 33 33 91 102 79 33 61 72 107 101 117 10 118 33 33 64 24 94 117 76 33 23 33 49 5 52 95 78 33 39 33 92 17 33 25 33 56 33 3 88 33 108 62 15 28 111 67 33 33 11 96 33 36 70 46 98 80 104 33 18 60 33 112 51 33 2 33 33 121 59 33 41 50 81 105 33 115 34 33 18 84 32 33 33 87 13 86 103 16 119 33 63 30 43 83 53 26 100 69 33 14 38 33 75 66 120 33 33 9 99 0 93 1 48 116\n",
"5\n0 1 1 1 2\n",
"21\n11 10 12 5 6 0 8 6 16 14 5 8 7 19 1 13 15 21 4 2 20\n",
"61\n10 42 20 50 4 24 18 55 19 5 57 13 3 35 58 48 31 46 40 45 15 53 14 25 43 41 22 23 54 16 38 44 16 37 12 34 32 19 26 30 59 47 21 9 8 52 1 0 33 49 36 51 17 11 29 7 48 61 6 27 2\n",
"61\n17 19 8 53 16 38 59 60 46 25 49 28 46 15 25 56 53 60 60 54 18 49 10 53 29 19 11 61 24 11 17 52 17 54 29 55 0 1 14 56 25 14 33 53 47 56 8 6 53 55 16 46 47 9 24 37 3 52 25 37 26\n",
"121\n110 31 57 33 45 33 33 33 91 102 79 33 61 72 107 101 117 10 118 33 33 64 24 94 117 76 33 23 42 49 5 52 95 78 33 39 33 92 17 33 25 33 56 33 3 88 33 108 62 15 28 111 67 33 33 11 96 33 36 70 46 98 80 104 33 19 60 33 112 51 33 2 33 33 121 59 51 41 50 81 105 33 115 34 33 18 84 32 33 33 87 13 86 103 16 119 33 63 30 43 83 53 26 100 69 33 14 38 33 75 66 120 33 33 9 99 0 93 1 48 116\n",
"5\n0 1 4 2 2\n",
"61\n10 42 20 50 4 16 18 55 19 5 57 13 3 35 58 48 31 46 40 19 15 53 14 25 43 41 22 23 54 16 38 44 16 37 12 34 32 28 26 30 59 47 21 9 8 52 1 0 33 49 36 51 17 11 29 7 48 61 6 27 2\n",
"61\n17 19 8 53 10 38 59 60 46 25 49 28 46 15 25 56 53 60 60 54 18 49 10 53 29 19 11 61 24 11 17 52 17 54 47 55 0 1 14 56 25 14 33 7 47 56 8 6 53 55 16 46 47 9 24 37 3 52 25 37 26\n",
"21\n5 19 4 19 6 0 13 7 6 2 6 3 16 16 1 9 15 21 9 15 2\n",
"21\n21 6 4 20 9 1 13 10 10 0 10 13 11 12 4 1 2 2 8 2 13\n",
"61\n17 19 8 53 10 1 59 60 46 25 49 28 46 15 25 56 53 60 60 54 18 49 10 53 29 19 11 61 24 11 34 52 17 54 47 55 0 1 14 56 25 14 33 53 47 56 8 6 53 55 16 46 47 9 24 37 3 52 25 37 26\n",
"61\n5 61 20 5 50 59 56 29 44 1 48 21 20 35 61 33 38 52 30 8 43 17 35 43 24 59 22 23 11 26 38 37 48 36 13 37 44 23 30 19 26 1 15 19 8 18 42 0 55 33 52 36 17 11 29 18 48 15 24 22 42\n",
"61\n58 39 45 11 31 43 11 24 8 18 56 54 47 37 50 40 19 16 29 10 1 23 36 28 36 48 52 55 27 42 2 33 46 25 53 6 15 26 14 17 9 44 56 34 5 61 38 12 30 7 49 32 20 41 51 0 3 4 60 35 13\n",
"21\n10 10 12 3 6 0 8 6 16 14 5 9 7 19 1 6 15 21 4 2 20\n",
"100\n81 96 65 28 4 40 5 49 5 89 48 70 94 70 17 58 58 1 61 19 45 33 46 19 22 83 56 67 62 82 57 16 29 36 84 71 42 66 78 54 73 45 82 80 67 88 79 69 61 66 5 36 24 60 96 21 77 67 68 29 87 37 91 34 78 43 0 69 49 62 16 2 68 79 57 1 60 2 39 99 14 37 30 92 47 18 14 75 73 39 94 12 43 87 90 22 91 59 54 71\n",
"21\n21 6 4 20 14 1 13 10 11 0 8 18 10 12 4 1 2 2 8 2 13\n",
"4\n0 1 1 3\n",
"100\n57 85 27 81 41 27 73 10 73 95 91 90 89 41 86 44 6 20 9 13 46 73 56 19 37 32 40 42 79 76 96 5 6 8 76 52 14 86 33 69 100 95 58 87 43 47 17 39 48 28 77 65 100 100 41 39 87 5 61 67 94 64 61 88 32 23 79 44 0 67 44 23 48 96 48 56 86 75 90 2 17 46 4 75 79 90 17 77 5 33 87 91 27 28 58 95 64 47 33 6\n",
"100\n81 96 65 28 4 40 5 49 5 89 48 70 94 70 17 58 58 1 61 19 45 33 46 19 22 83 56 67 73 82 57 16 29 36 84 71 42 66 78 54 73 45 82 80 67 88 79 69 61 66 5 36 24 60 96 21 77 67 68 29 87 37 91 34 78 43 0 69 49 62 16 2 68 79 57 1 60 2 39 99 14 37 30 92 47 18 14 75 73 39 94 12 43 87 90 22 91 59 54 71\n"
],
"output": [
"YES\n1\n2\n3\n5\n4\n",
"NO\n",
"YES\n11\n6\n16\n7\n8\n13\n10\n14\n2\n21\n18\n20\n19\n3\n12\n4\n9\n5\n15\n17\n1\n",
"NO\n",
"YES\n56\n7\n18\n46\n52\n51\n36\n34\n37\n32\n44\n9\n19\n40\n30\n39\n26\n41\n59\n6\n24\n25\n43\n21\n15\n58\n61\n2\n42\n47\n1\n10\n5\n4\n50\n49\n33\n16\n48\n11\n29\n8\n20\n3\n13\n12\n35\n14\n23\n28\n38\n17\n22\n27\n60\n53\n31\n45\n55\n54\n57\n",
"NO\n",
"YES\n1\n4\n3\n5\n2\n14\n15\n7\n56\n6\n23\n22\n36\n43\n11\n50\n37\n39\n31\n45\n57\n58\n25\n44\n30\n51\n28\n8\n41\n12\n26\n47\n61\n33\n52\n29\n17\n16\n10\n53\n60\n59\n35\n20\n18\n40\n19\n27\n32\n46\n13\n38\n48\n54\n9\n24\n55\n49\n42\n34\n21\n",
"YES\n11\n6\n7\n16\n12\n4\n14\n2\n21\n18\n20\n10\n19\n3\n9\n13\n8\n5\n15\n17\n1\n",
"NO\n",
"YES\n21\n13\n7\n8\n19\n11\n9\n10\n1\n18\n14\n5\n12\n20\n4\n3\n15\n2\n17\n6\n16\n",
"YES\n1\n",
"YES\n15\n5\n16\n10\n11\n20\n12\n6\n2\n14\n18\n7\n4\n8\n9\n21\n13\n3\n17\n19\n1\n",
"YES\n1\n43\n15\n61\n2\n58\n21\n25\n39\n41\n6\n24\n59\n26\n9\n40\n30\n19\n52\n51\n46\n7\n18\n56\n36\n37\n32\n34\n44\n42\n16\n57\n54\n55\n8\n29\n11\n48\n31\n53\n27\n60\n22\n17\n45\n3\n12\n14\n28\n38\n23\n35\n13\n20\n33\n47\n5\n50\n49\n4\n10\n",
"YES\n10\n4\n49\n16\n57\n54\n55\n45\n3\n12\n14\n28\n31\n53\n27\n60\n22\n17\n38\n23\n35\n13\n20\n8\n29\n11\n48\n33\n50\n5\n47\n2\n58\n21\n25\n6\n41\n39\n40\n9\n32\n34\n51\n46\n7\n56\n18\n52\n36\n37\n44\n19\n30\n26\n59\n24\n43\n15\n61\n42\n1\n",
"YES\n18\n21\n20\n2\n10\n14\n19\n4\n3\n12\n9\n16\n13\n7\n8\n5\n1\n15\n17\n11\n6\n",
"YES\n12\n41\n24\n22\n48\n16\n55\n38\n28\n44\n4\n9\n20\n42\n56\n2\n3\n5\n6\n7\n8\n10\n11\n13\n14\n15\n17\n18\n19\n21\n23\n25\n26\n27\n29\n30\n31\n32\n33\n34\n35\n36\n37\n39\n40\n43\n45\n46\n47\n49\n50\n51\n52\n53\n54\n57\n58\n59\n60\n61\n62\n63\n64\n65\n66\n67\n68\n69\n70\n71\n72\n73\n74\n75\n76\n77\n78\n79\n1\n",
"YES\n1\n3\n9\n7\n19\n21\n10\n16\n5\n14\n17\n13\n8\n6\n2\n4\n12\n15\n11\n18\n20\n",
"YES\n1\n41\n27\n29\n56\n10\n16\n46\n28\n61\n54\n11\n34\n60\n18\n51\n42\n43\n15\n5\n35\n9\n12\n33\n31\n44\n22\n24\n26\n23\n4\n6\n58\n14\n19\n37\n20\n47\n48\n2\n50\n36\n21\n7\n39\n8\n52\n57\n38\n3\n30\n32\n17\n13\n53\n40\n49\n55\n59\n45\n25\n",
"YES\n1\n17\n3\n57\n8\n18\n21\n26\n28\n12\n61\n19\n2\n37\n16\n51\n56\n40\n9\n54\n20\n34\n46\n13\n52\n33\n43\n32\n58\n60\n47\n45\n53\n4\n24\n29\n15\n14\n39\n42\n59\n7\n25\n10\n5\n23\n41\n35\n55\n36\n50\n44\n49\n11\n27\n30\n22\n31\n6\n48\n38\n",
"YES\n56\n1\n2\n3\n4\n5\n6\n7\n8\n9\n10\n11\n12\n13\n14\n15\n16\n17\n18\n19\n20\n21\n22\n23\n24\n25\n26\n27\n28\n29\n30\n31\n32\n33\n34\n35\n36\n37\n38\n39\n40\n41\n42\n43\n44\n45\n46\n47\n49\n50\n51\n52\n53\n54\n55\n57\n58\n59\n60\n61\n48\n",
"YES\n18\n1\n2\n3\n4\n5\n7\n8\n9\n10\n11\n12\n13\n14\n15\n16\n17\n19\n20\n21\n6\n",
"YES\n1\n75\n116\n30\n62\n63\n81\n69\n120\n108\n92\n61\n88\n52\n66\n118\n86\n10\n53\n60\n51\n23\n94\n26\n59\n39\n117\n41\n34\n87\n9\n83\n16\n33\n4\n6\n7\n8\n12\n20\n21\n27\n29\n35\n37\n40\n42\n44\n47\n54\n55\n58\n65\n68\n71\n73\n74\n77\n82\n85\n89\n90\n97\n106\n109\n113\n114\n95\n101\n115\n91\n84\n78\n25\n17\n36\n76\n103\n24\n28\n70\n67\n102\n18\n93\n19\n111\n32\n46\n13\n38\n48\n112\n105\n80\n98\n49\n99\n121\n110\n96\n3\n5\n2\n14\n15\n79\n56\n100\n64\n22\n104\n43\n11\n50\n107\n72\n31\n45\n57\n119\n",
"YES\n11\n6\n9\n16\n7\n8\n13\n14\n19\n2\n10\n21\n18\n20\n3\n12\n4\n5\n15\n17\n1\n",
"NO\n",
"YES\n1\n4\n3\n5\n2\n14\n15\n56\n6\n23\n22\n36\n43\n11\n7\n50\n37\n39\n31\n45\n57\n58\n25\n44\n30\n51\n28\n8\n41\n12\n26\n47\n61\n33\n52\n29\n17\n16\n10\n53\n60\n59\n35\n20\n18\n40\n19\n27\n32\n46\n13\n38\n48\n54\n9\n24\n55\n49\n42\n34\n21\n",
"YES\n11\n6\n7\n16\n9\n13\n12\n4\n14\n2\n21\n18\n20\n10\n19\n3\n8\n5\n15\n17\n1\n",
"YES\n21\n13\n7\n11\n9\n8\n19\n10\n1\n18\n14\n5\n12\n20\n4\n3\n15\n2\n17\n6\n16\n",
"YES\n15\n5\n6\n2\n16\n10\n11\n20\n12\n13\n3\n17\n7\n4\n8\n9\n21\n14\n18\n19\n1\n",
"YES\n1\n5\n50\n33\n16\n57\n54\n55\n45\n3\n12\n14\n28\n31\n53\n27\n60\n22\n17\n38\n23\n35\n13\n20\n8\n29\n11\n48\n40\n9\n32\n34\n51\n46\n7\n56\n18\n52\n36\n37\n44\n19\n30\n49\n4\n10\n42\n61\n15\n43\n24\n59\n26\n39\n41\n6\n25\n21\n58\n2\n47\n",
"YES\n1\n33\n43\n17\n3\n57\n8\n18\n21\n26\n28\n12\n61\n19\n2\n37\n16\n51\n56\n40\n9\n54\n20\n34\n46\n13\n52\n32\n58\n60\n47\n45\n53\n4\n24\n29\n15\n14\n39\n42\n59\n7\n25\n10\n5\n23\n41\n35\n55\n36\n50\n44\n49\n11\n27\n30\n22\n31\n6\n48\n38\n",
"YES\n15\n21\n56\n2\n3\n4\n5\n6\n7\n8\n9\n10\n11\n12\n13\n14\n16\n17\n18\n19\n20\n22\n23\n24\n25\n26\n27\n28\n29\n30\n31\n32\n33\n34\n35\n36\n37\n38\n39\n40\n41\n42\n43\n44\n45\n46\n47\n49\n50\n51\n52\n53\n54\n55\n48\n57\n58\n59\n60\n61\n1\n",
"YES\n14\n9\n18\n2\n3\n4\n5\n7\n8\n10\n11\n12\n13\n15\n16\n17\n6\n19\n20\n21\n1\n",
"YES\n1\n75\n116\n30\n62\n63\n81\n69\n120\n108\n92\n61\n88\n52\n66\n118\n86\n10\n53\n60\n51\n23\n94\n26\n59\n39\n117\n41\n34\n87\n9\n83\n16\n42\n29\n33\n4\n6\n7\n8\n12\n20\n21\n27\n35\n37\n40\n44\n47\n54\n55\n58\n65\n68\n71\n73\n74\n77\n82\n85\n89\n90\n97\n106\n109\n113\n114\n95\n101\n115\n91\n84\n78\n25\n17\n36\n76\n103\n24\n28\n70\n67\n102\n18\n93\n19\n111\n32\n46\n13\n38\n48\n112\n105\n80\n98\n49\n99\n121\n110\n96\n3\n5\n2\n14\n15\n79\n56\n100\n64\n22\n104\n43\n11\n50\n107\n72\n31\n45\n57\n119\n",
"YES\n2\n3\n4\n5\n1\n",
"YES\n6\n9\n16\n7\n8\n13\n14\n19\n2\n10\n21\n18\n20\n3\n12\n4\n5\n11\n15\n17\n1\n",
"YES\n6\n20\n4\n3\n15\n2\n17\n12\n14\n18\n1\n9\n5\n11\n8\n19\n10\n13\n7\n21\n16\n",
"YES\n10\n4\n49\n16\n59\n26\n39\n41\n6\n57\n54\n55\n45\n3\n12\n14\n28\n31\n53\n27\n60\n22\n17\n38\n23\n35\n13\n20\n8\n29\n11\n48\n40\n9\n32\n34\n51\n46\n7\n56\n18\n52\n36\n37\n44\n19\n30\n33\n50\n5\n47\n2\n58\n21\n25\n24\n43\n15\n61\n42\n1\n",
"YES\n1\n33\n43\n17\n29\n15\n14\n39\n42\n59\n7\n25\n10\n5\n23\n41\n24\n55\n36\n50\n53\n4\n44\n49\n11\n27\n30\n22\n3\n57\n8\n18\n21\n26\n28\n12\n61\n19\n2\n37\n16\n51\n56\n40\n9\n54\n20\n34\n46\n13\n52\n32\n58\n60\n47\n35\n45\n31\n6\n48\n38\n",
"YES\n1\n2\n3\n4\n5\n",
"YES\n5\n6\n9\n16\n7\n8\n13\n14\n19\n2\n10\n21\n18\n20\n3\n12\n4\n11\n15\n17\n1\n",
"YES\n6\n20\n4\n3\n15\n2\n17\n18\n1\n12\n14\n9\n5\n11\n8\n19\n10\n13\n7\n21\n16\n",
"YES\n1\n29\n15\n14\n39\n42\n59\n7\n25\n10\n5\n23\n41\n24\n55\n36\n50\n47\n35\n45\n3\n57\n18\n21\n26\n28\n12\n61\n19\n2\n60\n16\n51\n46\n34\n31\n54\n20\n9\n13\n52\n32\n58\n56\n40\n37\n8\n53\n4\n44\n49\n11\n27\n30\n22\n33\n43\n17\n6\n48\n38\n",
"YES\n2\n4\n1\n3\n5\n",
"YES\n5\n6\n14\n19\n2\n10\n21\n18\n20\n3\n12\n4\n16\n7\n8\n13\n9\n11\n15\n17\n1\n",
"YES\n11\n6\n16\n7\n8\n13\n3\n12\n4\n21\n18\n20\n19\n10\n14\n2\n9\n5\n15\n17\n1\n",
"YES\n56\n7\n18\n46\n52\n51\n36\n34\n37\n32\n44\n9\n19\n40\n30\n39\n26\n41\n59\n6\n24\n25\n43\n21\n15\n58\n61\n2\n42\n47\n1\n5\n4\n55\n49\n29\n8\n20\n3\n13\n12\n35\n14\n23\n28\n38\n17\n22\n27\n60\n53\n31\n45\n11\n54\n48\n57\n33\n16\n50\n10\n",
"YES\n1\n4\n7\n15\n14\n2\n5\n3\n57\n45\n31\n39\n37\n50\n56\n6\n23\n22\n36\n43\n11\n58\n25\n44\n30\n51\n28\n8\n41\n12\n26\n47\n61\n33\n52\n29\n17\n16\n10\n53\n60\n59\n35\n20\n18\n40\n19\n27\n32\n46\n13\n38\n48\n54\n9\n24\n55\n49\n42\n34\n21\n",
"YES\n2\n21\n18\n20\n10\n19\n3\n9\n13\n8\n5\n11\n6\n7\n16\n12\n4\n14\n15\n17\n1\n",
"YES\n1\n16\n57\n54\n55\n8\n29\n11\n48\n33\n20\n13\n12\n3\n31\n53\n27\n60\n22\n17\n45\n42\n52\n51\n46\n7\n18\n56\n36\n37\n32\n34\n44\n9\n40\n30\n19\n14\n28\n38\n23\n35\n39\n41\n6\n24\n59\n26\n43\n15\n61\n2\n58\n21\n25\n47\n5\n50\n49\n4\n10\n",
"YES\n10\n4\n49\n16\n55\n45\n3\n12\n14\n28\n31\n53\n27\n60\n22\n17\n38\n23\n35\n13\n20\n8\n57\n54\n29\n11\n48\n33\n50\n5\n47\n2\n58\n21\n25\n6\n41\n39\n40\n9\n32\n34\n51\n46\n7\n56\n18\n52\n36\n37\n44\n19\n30\n26\n59\n24\n43\n15\n61\n42\n1\n",
"YES\n20\n4\n28\n55\n48\n24\n12\n41\n22\n16\n38\n44\n9\n42\n47\n63\n56\n2\n3\n5\n6\n7\n8\n10\n11\n13\n14\n15\n17\n18\n19\n21\n23\n25\n26\n27\n29\n30\n31\n32\n33\n34\n35\n36\n37\n39\n40\n43\n45\n46\n49\n50\n51\n52\n53\n54\n57\n58\n59\n60\n61\n62\n64\n65\n66\n67\n68\n69\n70\n71\n72\n73\n74\n75\n76\n77\n78\n79\n1\n",
"YES\n1\n75\n116\n30\n62\n63\n81\n69\n120\n108\n92\n61\n88\n52\n66\n10\n53\n60\n51\n23\n94\n26\n59\n39\n117\n41\n34\n87\n9\n83\n16\n33\n4\n6\n7\n8\n12\n20\n21\n27\n29\n35\n37\n40\n42\n44\n47\n54\n55\n58\n65\n68\n71\n73\n74\n77\n82\n85\n89\n90\n97\n106\n109\n113\n114\n95\n101\n115\n91\n84\n78\n25\n17\n36\n76\n103\n24\n28\n70\n67\n102\n86\n118\n19\n93\n18\n111\n32\n46\n13\n38\n48\n112\n105\n80\n98\n49\n99\n121\n110\n96\n3\n5\n2\n14\n15\n79\n56\n100\n64\n22\n104\n43\n11\n50\n107\n72\n31\n45\n57\n119\n",
"YES\n2\n5\n1\n3\n4\n",
"YES\n11\n4\n14\n2\n21\n18\n20\n10\n19\n6\n7\n16\n9\n13\n12\n3\n8\n5\n15\n17\n1\n",
"YES\n1\n5\n50\n33\n48\n11\n29\n8\n20\n13\n35\n23\n28\n14\n12\n3\n45\n55\n54\n57\n30\n9\n32\n34\n51\n46\n7\n56\n18\n52\n36\n37\n44\n19\n31\n53\n27\n60\n22\n17\n38\n40\n16\n49\n4\n10\n42\n61\n15\n43\n24\n59\n26\n39\n41\n6\n25\n21\n58\n2\n47\n",
"YES\n1\n33\n43\n17\n10\n23\n15\n14\n39\n42\n59\n7\n25\n41\n29\n35\n24\n55\n36\n50\n53\n4\n44\n49\n11\n27\n30\n22\n47\n45\n3\n57\n18\n21\n26\n28\n12\n61\n19\n2\n60\n56\n16\n5\n51\n40\n9\n54\n20\n34\n46\n13\n52\n32\n58\n37\n8\n31\n6\n48\n38\n",
"YES\n1\n75\n116\n30\n62\n63\n81\n69\n120\n108\n92\n61\n88\n52\n66\n118\n86\n10\n53\n60\n28\n24\n103\n76\n36\n17\n25\n78\n84\n91\n115\n101\n95\n42\n29\n33\n4\n6\n7\n8\n12\n20\n21\n27\n35\n37\n40\n44\n47\n54\n55\n58\n65\n68\n71\n73\n74\n82\n85\n89\n90\n97\n106\n109\n113\n114\n16\n83\n9\n87\n34\n41\n117\n39\n59\n26\n94\n23\n51\n77\n70\n67\n102\n18\n93\n19\n111\n32\n46\n13\n38\n48\n112\n105\n80\n98\n49\n99\n121\n110\n96\n3\n5\n2\n14\n15\n79\n56\n100\n64\n22\n104\n43\n11\n50\n107\n72\n31\n45\n57\n119\n",
"YES\n4\n3\n2\n5\n1\n",
"YES\n10\n4\n49\n48\n11\n29\n8\n45\n55\n54\n57\n30\n9\n32\n34\n51\n46\n7\n56\n18\n52\n36\n37\n44\n19\n3\n12\n14\n28\n31\n53\n27\n60\n22\n17\n38\n23\n35\n13\n20\n40\n16\n59\n26\n39\n41\n6\n33\n50\n5\n47\n2\n58\n21\n25\n24\n43\n15\n61\n42\n1\n",
"YES\n1\n33\n43\n17\n53\n4\n24\n15\n14\n39\n42\n25\n10\n5\n23\n41\n7\n44\n59\n29\n55\n36\n50\n49\n11\n27\n30\n22\n3\n57\n8\n18\n21\n26\n28\n12\n61\n19\n2\n37\n16\n51\n56\n40\n9\n54\n20\n34\n46\n13\n52\n32\n58\n60\n47\n35\n45\n31\n6\n48\n38\n",
"YES\n1\n21\n18\n2\n10\n19\n3\n12\n4\n9\n16\n7\n8\n13\n14\n6\n11\n5\n15\n17\n20\n",
"YES\n6\n20\n4\n3\n15\n2\n17\n18\n1\n12\n14\n11\n8\n19\n9\n5\n10\n13\n7\n21\n16\n",
"YES\n6\n48\n1\n29\n15\n14\n39\n42\n59\n7\n25\n10\n5\n23\n41\n24\n55\n36\n50\n47\n35\n45\n3\n57\n18\n21\n26\n28\n12\n61\n19\n2\n60\n16\n51\n46\n34\n31\n54\n20\n9\n13\n52\n32\n58\n56\n40\n37\n8\n53\n4\n44\n49\n11\n27\n30\n22\n33\n43\n17\n38\n",
"YES\n50\n33\n16\n48\n11\n13\n35\n14\n23\n28\n38\n17\n22\n27\n60\n53\n31\n20\n3\n8\n45\n55\n49\n29\n54\n57\n5\n4\n1\n10\n42\n47\n61\n2\n15\n21\n12\n56\n7\n18\n46\n52\n51\n36\n34\n37\n32\n44\n9\n19\n40\n30\n39\n26\n41\n59\n6\n24\n25\n43\n58\n",
"YES\n1\n4\n7\n15\n14\n2\n5\n3\n57\n45\n31\n39\n37\n50\n56\n6\n23\n22\n25\n44\n30\n51\n28\n8\n41\n12\n26\n47\n61\n33\n52\n29\n17\n16\n10\n53\n60\n59\n35\n20\n18\n40\n19\n27\n32\n46\n13\n38\n48\n54\n9\n24\n55\n49\n42\n34\n36\n43\n11\n58\n21\n",
"YES\n2\n21\n18\n20\n10\n19\n3\n9\n5\n11\n6\n7\n13\n8\n16\n12\n4\n14\n15\n17\n1\n",
"NO\n",
"YES\n21\n13\n7\n11\n9\n8\n19\n10\n1\n18\n14\n5\n12\n20\n4\n3\n15\n2\n17\n6\n16\n",
"NO\n",
"NO\n",
"NO\n"
]
} | 2CODEFORCES
|
963_B. Destruction of a Tree_193 | You are given a tree (a graph with n vertices and n - 1 edges in which it's possible to reach any vertex from any other vertex using only its edges).
A vertex can be destroyed if this vertex has even degree. If you destroy a vertex, all edges connected to it are also deleted.
Destroy all vertices in the given tree or determine that it is impossible.
Input
The first line contains integer n (1 ≤ n ≤ 2·105) — number of vertices in a tree.
The second line contains n integers p1, p2, ..., pn (0 ≤ pi ≤ n). If pi ≠ 0 there is an edge between vertices i and pi. It is guaranteed that the given graph is a tree.
Output
If it's possible to destroy all vertices, print "YES" (without quotes), otherwise print "NO" (without quotes).
If it's possible to destroy all vertices, in the next n lines print the indices of the vertices in order you destroy them. If there are multiple correct answers, print any.
Examples
Input
5
0 1 2 1 2
Output
YES
1
2
3
5
4
Input
4
0 1 2 3
Output
NO
Note
In the first example at first you have to remove the vertex with index 1 (after that, the edges (1, 2) and (1, 4) are removed), then the vertex with index 2 (and edges (2, 3) and (2, 5) are removed). After that there are no edges in the tree, so you can remove remaining vertices in any order.
<image> | from collections import defaultdict,deque
import sys
import bisect
import math
input=sys.stdin.readline
mod=1000000007
def bfs(root,count):
q=deque([root])
vis.add(root)
while q:
vertex=q.popleft()
for child in graph[vertex]:
if ans[child]==0:
ans[child]=count+1
count+=1
if child not in vis:
q.append(child)
vis.add(child)
graph=defaultdict(list)
n=int(input())
p=[int(i) for i in input().split() if i!='\n']
if n&1:
for i in range(n):
if p[i]!=0:
graph[p[i]].append(i+1)
graph[i+1].append(p[i])
length=[0]*(n+1)
for i in graph:
length[i]=len(graph[i])
CHECK,OBSERVE=1,0
stack=[(OBSERVE,1,0)]
ans=[0]*(n+1)
count=0
while stack:
state,vertex,parent=stack.pop()
if state==OBSERVE:
stack.append((CHECK,vertex,parent))
for child in graph[vertex]:
if child != parent:
stack.append((OBSERVE,child,vertex))
else:
if length[vertex]%2==0:
count+=1
ans[vertex]=count
length[parent]-=1
vis=set()
bfs(1,count)
out=[0]*(n)
for i in range(1,n+1):
out[ans[i]-1]=i
print('YES')
for i in out:
sys.stdout.write(str(i)+'\n')
else:
print('NO')
| 3Python3
| {
"input": [
"5\n0 1 2 1 2\n",
"4\n0 1 2 3\n",
"21\n11 19 4 19 6 0 13 7 6 2 5 3 16 10 1 9 15 21 9 21 2\n",
"100\n57 85 27 81 41 27 73 10 73 95 91 90 89 41 86 44 6 20 9 13 46 73 56 19 37 32 40 42 79 76 96 5 6 8 76 52 14 86 33 69 100 95 58 87 43 47 17 39 48 28 77 65 100 100 41 39 87 5 61 67 94 64 61 88 32 23 79 44 0 67 44 23 48 96 48 56 86 75 90 2 17 46 4 75 42 90 17 77 5 33 87 91 27 28 58 95 58 47 33 6\n",
"61\n5 61 20 5 50 59 56 29 44 1 48 13 20 35 61 33 38 52 30 8 43 17 35 43 24 59 22 23 11 26 38 37 48 36 13 37 44 23 30 19 26 1 15 19 8 18 42 0 50 33 52 36 17 11 29 18 48 15 24 22 42\n",
"8\n3 1 4 0 4 2 4 5\n",
"61\n58 39 45 57 31 43 11 24 8 18 56 54 47 37 50 40 19 16 29 10 1 23 36 28 21 48 52 55 27 42 2 33 46 25 53 6 15 26 14 17 9 44 56 34 5 61 38 12 30 7 49 32 20 41 51 0 3 4 60 35 13\n",
"21\n11 10 12 3 6 0 8 6 16 14 5 9 7 19 1 13 15 21 4 2 20\n",
"100\n81 96 65 28 4 40 5 49 5 89 48 70 94 70 17 58 58 1 61 19 45 33 46 19 22 83 56 67 62 82 57 16 29 36 84 71 42 66 78 54 73 45 82 80 67 88 79 69 61 66 5 36 24 60 96 21 77 67 68 29 87 37 91 34 78 43 0 69 49 62 16 2 68 79 57 1 60 12 39 99 14 37 30 92 47 18 14 75 73 39 94 12 43 87 90 22 91 59 54 71\n",
"21\n21 6 4 20 14 1 13 10 11 0 10 18 10 12 4 1 2 2 8 2 13\n",
"1\n0\n",
"21\n15 6 13 7 15 21 8 0 7 16 16 21 12 6 12 12 13 6 15 16 7\n",
"61\n47 61 20 5 10 59 46 55 44 1 57 13 3 35 21 48 31 7 9 45 43 53 14 6 42 39 22 23 54 40 45 37 16 36 12 44 34 28 25 19 26 33 25 39 33 36 42 0 50 4 52 46 17 11 29 7 48 15 41 27 58\n",
"61\n10 42 20 50 4 24 18 55 19 5 57 13 3 35 58 48 31 46 40 45 15 53 14 25 43 41 22 23 54 39 38 44 16 37 12 34 32 28 26 30 59 47 21 9 8 52 1 0 33 49 36 51 17 11 29 7 48 61 6 27 2\n",
"21\n5 20 9 19 8 0 13 6 13 19 5 3 8 10 1 9 1 20 3 10 18\n",
"79\n0 56 56 42 56 56 56 56 4 56 56 22 56 56 56 48 56 56 56 56 56 24 56 16 56 56 56 9 56 56 56 56 56 56 56 56 56 55 56 56 12 20 56 28 56 56 56 38 56 56 56 56 56 56 44 1 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56\n",
"21\n18 0 18 2 21 2 9 15 3 5 8 2 8 21 6 10 21 13 9 1 13\n",
"61\n45 48 30 23 15 47 8 3 35 56 54 35 17 47 35 56 32 42 14 37 36 44 6 44 1 44 41 46 43 0 33 3 44 54 43 3 47 57 7 32 29 60 36 36 43 61 36 47 3 48 18 8 17 29 3 54 3 6 43 43 56\n",
"61\n17 19 8 53 10 38 59 60 46 25 49 28 46 15 25 56 53 60 60 54 18 49 10 53 29 19 11 61 24 11 17 52 32 54 29 55 0 1 14 56 25 14 33 53 47 56 8 6 53 55 16 46 47 9 24 37 3 52 25 37 26\n",
"61\n56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 0 56 56 56 56 56 56 56 48 56 56 56 56 56\n",
"21\n18 18 18 18 18 0 18 18 18 18 18 18 18 18 18 18 18 6 18 18 18\n",
"121\n110 31 57 33 45 33 33 33 91 102 79 33 61 72 107 101 117 10 118 33 33 64 24 94 117 76 33 23 33 49 5 52 95 78 33 39 33 92 17 33 25 33 56 33 3 88 33 108 62 15 28 111 67 33 33 11 96 33 36 70 46 98 80 104 33 19 60 33 112 51 33 2 33 33 121 59 33 41 50 81 105 33 115 34 33 18 84 32 33 33 87 13 86 103 16 119 33 63 30 43 83 53 26 100 69 33 14 38 33 75 66 120 33 33 9 99 0 93 1 48 116\n",
"21\n11 19 4 19 6 0 13 7 6 2 5 3 16 16 1 9 15 21 9 21 2\n",
"100\n57 85 27 81 41 27 73 10 73 95 91 90 89 41 86 44 6 20 9 13 46 73 56 19 37 32 40 42 79 76 96 5 6 8 76 52 14 86 33 69 100 95 58 87 43 47 17 39 48 28 77 65 100 100 41 39 87 5 61 67 94 64 61 88 32 23 79 44 0 67 44 23 48 96 48 56 86 75 90 2 17 46 4 75 79 90 17 77 5 33 87 91 27 28 58 95 58 47 33 6\n",
"61\n58 39 45 57 31 43 11 24 8 18 56 54 47 37 50 40 19 16 29 10 1 23 36 28 21 48 52 55 27 42 2 33 46 25 53 6 15 26 14 17 9 44 56 34 5 61 38 12 30 11 49 32 20 41 51 0 3 4 60 35 13\n",
"21\n11 10 12 3 6 0 8 6 16 14 5 8 7 19 1 13 15 21 4 2 20\n",
"21\n21 6 4 20 14 1 13 10 11 0 10 18 11 12 4 1 2 2 8 2 13\n",
"21\n15 6 13 7 15 21 8 0 7 16 16 21 12 6 6 12 13 6 15 16 7\n",
"61\n10 42 20 50 4 24 18 55 19 5 57 13 3 35 58 48 31 46 40 45 15 53 14 25 43 41 22 23 54 16 38 44 16 37 12 34 32 28 26 30 59 47 21 9 8 52 1 0 33 49 36 51 17 11 29 7 48 61 6 27 2\n",
"61\n17 19 8 53 10 38 59 60 46 25 49 28 46 15 25 56 53 60 60 54 18 49 10 53 29 19 11 61 24 11 17 52 17 54 29 55 0 1 14 56 25 14 33 53 47 56 8 6 53 55 16 46 47 9 24 37 3 52 25 37 26\n",
"61\n56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 15 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 0 56 56 56 56 56 56 56 48 56 56 56 56 56\n",
"21\n18 18 18 18 18 0 18 18 14 18 18 18 18 18 18 18 18 6 18 18 18\n",
"121\n110 31 57 33 45 33 33 33 91 102 79 33 61 72 107 101 117 10 118 33 33 64 24 94 117 76 33 23 42 49 5 52 95 78 33 39 33 92 17 33 25 33 56 33 3 88 33 108 62 15 28 111 67 33 33 11 96 33 36 70 46 98 80 104 33 19 60 33 112 51 33 2 33 33 121 59 33 41 50 81 105 33 115 34 33 18 84 32 33 33 87 13 86 103 16 119 33 63 30 43 83 53 26 100 69 33 14 38 33 75 66 120 33 33 9 99 0 93 1 48 116\n",
"5\n0 1 2 2 2\n",
"21\n5 19 4 19 6 0 13 7 6 2 5 3 16 16 1 9 15 21 9 21 2\n",
"21\n21 6 4 20 9 1 13 10 11 0 10 18 11 12 4 1 2 2 8 2 13\n",
"61\n10 42 20 50 4 16 18 55 19 5 57 13 3 35 58 48 31 46 40 45 15 53 14 25 43 41 22 23 54 16 38 44 16 37 12 34 32 28 26 30 59 47 21 9 8 52 1 0 33 49 36 51 17 11 29 7 48 61 6 27 2\n",
"61\n17 19 8 53 10 38 59 60 46 25 49 28 46 15 25 56 53 60 60 54 18 49 10 53 29 19 11 61 24 11 17 52 17 54 47 55 0 1 14 56 25 14 33 53 47 56 8 6 53 55 16 46 47 9 24 37 3 52 25 37 26\n",
"5\n0 1 2 2 1\n",
"21\n5 19 4 19 6 0 13 7 6 2 6 3 16 16 1 9 15 21 9 21 2\n",
"21\n21 6 4 20 9 1 13 10 11 0 10 13 11 12 4 1 2 2 8 2 13\n",
"61\n17 19 8 53 10 38 59 60 46 25 49 28 46 15 25 56 53 60 60 54 18 49 10 53 29 19 11 61 24 11 34 52 17 54 47 55 0 1 14 56 25 14 33 53 47 56 8 6 53 55 16 46 47 9 24 37 3 52 25 37 26\n",
"5\n0 1 1 2 1\n",
"21\n5 19 4 19 6 0 13 7 6 2 6 3 16 16 1 9 15 21 14 21 2\n",
"21\n11 19 4 19 6 0 13 7 6 2 5 3 16 10 1 9 15 21 9 21 4\n",
"61\n5 61 20 5 50 59 56 29 44 1 48 13 20 35 61 33 38 52 30 8 43 17 35 43 24 59 22 23 11 26 38 37 48 36 13 37 44 23 30 19 26 1 15 19 8 18 42 0 55 33 52 36 17 11 29 18 48 15 24 22 42\n",
"61\n58 39 45 11 31 43 11 24 8 18 56 54 47 37 50 40 19 16 29 10 1 23 36 28 21 48 52 55 27 42 2 33 46 25 53 6 15 26 14 17 9 44 56 34 5 61 38 12 30 7 49 32 20 41 51 0 3 4 60 35 13\n",
"21\n10 10 12 3 6 0 8 6 16 14 5 9 7 19 1 13 15 21 4 2 20\n",
"61\n47 61 20 5 10 59 46 55 44 1 57 13 3 35 21 48 31 7 9 45 43 53 14 6 42 39 22 23 54 40 45 37 16 36 9 44 34 28 25 19 26 33 25 39 33 36 42 0 50 4 52 46 17 11 29 7 48 15 41 27 58\n",
"61\n10 42 20 50 4 24 18 55 19 5 57 13 3 35 58 48 31 46 40 45 15 53 14 25 43 41 22 23 54 39 38 44 16 37 12 34 32 28 26 30 59 47 21 9 8 52 1 0 33 49 36 51 17 11 57 7 48 61 6 27 2\n",
"79\n0 56 56 42 56 56 56 56 4 56 56 22 56 56 56 48 56 56 56 56 56 24 56 16 56 56 56 9 56 56 56 56 56 56 56 56 56 55 56 56 12 20 56 28 56 56 56 38 56 56 56 56 56 56 44 1 56 56 56 56 56 56 47 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56\n",
"121\n110 31 57 33 45 33 33 33 91 102 79 33 61 72 107 101 117 10 118 33 33 64 24 94 117 76 33 23 33 49 5 52 95 78 33 39 33 92 17 33 25 33 56 33 3 88 33 108 62 15 28 111 67 33 33 11 96 33 36 70 46 98 80 104 33 18 60 33 112 51 33 2 33 33 121 59 33 41 50 81 105 33 115 34 33 18 84 32 33 33 87 13 86 103 16 119 33 63 30 43 83 53 26 100 69 33 14 38 33 75 66 120 33 33 9 99 0 93 1 48 116\n",
"5\n0 1 1 1 2\n",
"21\n11 10 12 5 6 0 8 6 16 14 5 8 7 19 1 13 15 21 4 2 20\n",
"61\n10 42 20 50 4 24 18 55 19 5 57 13 3 35 58 48 31 46 40 45 15 53 14 25 43 41 22 23 54 16 38 44 16 37 12 34 32 19 26 30 59 47 21 9 8 52 1 0 33 49 36 51 17 11 29 7 48 61 6 27 2\n",
"61\n17 19 8 53 16 38 59 60 46 25 49 28 46 15 25 56 53 60 60 54 18 49 10 53 29 19 11 61 24 11 17 52 17 54 29 55 0 1 14 56 25 14 33 53 47 56 8 6 53 55 16 46 47 9 24 37 3 52 25 37 26\n",
"121\n110 31 57 33 45 33 33 33 91 102 79 33 61 72 107 101 117 10 118 33 33 64 24 94 117 76 33 23 42 49 5 52 95 78 33 39 33 92 17 33 25 33 56 33 3 88 33 108 62 15 28 111 67 33 33 11 96 33 36 70 46 98 80 104 33 19 60 33 112 51 33 2 33 33 121 59 51 41 50 81 105 33 115 34 33 18 84 32 33 33 87 13 86 103 16 119 33 63 30 43 83 53 26 100 69 33 14 38 33 75 66 120 33 33 9 99 0 93 1 48 116\n",
"5\n0 1 4 2 2\n",
"61\n10 42 20 50 4 16 18 55 19 5 57 13 3 35 58 48 31 46 40 19 15 53 14 25 43 41 22 23 54 16 38 44 16 37 12 34 32 28 26 30 59 47 21 9 8 52 1 0 33 49 36 51 17 11 29 7 48 61 6 27 2\n",
"61\n17 19 8 53 10 38 59 60 46 25 49 28 46 15 25 56 53 60 60 54 18 49 10 53 29 19 11 61 24 11 17 52 17 54 47 55 0 1 14 56 25 14 33 7 47 56 8 6 53 55 16 46 47 9 24 37 3 52 25 37 26\n",
"21\n5 19 4 19 6 0 13 7 6 2 6 3 16 16 1 9 15 21 9 15 2\n",
"21\n21 6 4 20 9 1 13 10 10 0 10 13 11 12 4 1 2 2 8 2 13\n",
"61\n17 19 8 53 10 1 59 60 46 25 49 28 46 15 25 56 53 60 60 54 18 49 10 53 29 19 11 61 24 11 34 52 17 54 47 55 0 1 14 56 25 14 33 53 47 56 8 6 53 55 16 46 47 9 24 37 3 52 25 37 26\n",
"61\n5 61 20 5 50 59 56 29 44 1 48 21 20 35 61 33 38 52 30 8 43 17 35 43 24 59 22 23 11 26 38 37 48 36 13 37 44 23 30 19 26 1 15 19 8 18 42 0 55 33 52 36 17 11 29 18 48 15 24 22 42\n",
"61\n58 39 45 11 31 43 11 24 8 18 56 54 47 37 50 40 19 16 29 10 1 23 36 28 36 48 52 55 27 42 2 33 46 25 53 6 15 26 14 17 9 44 56 34 5 61 38 12 30 7 49 32 20 41 51 0 3 4 60 35 13\n",
"21\n10 10 12 3 6 0 8 6 16 14 5 9 7 19 1 6 15 21 4 2 20\n",
"100\n81 96 65 28 4 40 5 49 5 89 48 70 94 70 17 58 58 1 61 19 45 33 46 19 22 83 56 67 62 82 57 16 29 36 84 71 42 66 78 54 73 45 82 80 67 88 79 69 61 66 5 36 24 60 96 21 77 67 68 29 87 37 91 34 78 43 0 69 49 62 16 2 68 79 57 1 60 2 39 99 14 37 30 92 47 18 14 75 73 39 94 12 43 87 90 22 91 59 54 71\n",
"21\n21 6 4 20 14 1 13 10 11 0 8 18 10 12 4 1 2 2 8 2 13\n",
"4\n0 1 1 3\n",
"100\n57 85 27 81 41 27 73 10 73 95 91 90 89 41 86 44 6 20 9 13 46 73 56 19 37 32 40 42 79 76 96 5 6 8 76 52 14 86 33 69 100 95 58 87 43 47 17 39 48 28 77 65 100 100 41 39 87 5 61 67 94 64 61 88 32 23 79 44 0 67 44 23 48 96 48 56 86 75 90 2 17 46 4 75 79 90 17 77 5 33 87 91 27 28 58 95 64 47 33 6\n",
"100\n81 96 65 28 4 40 5 49 5 89 48 70 94 70 17 58 58 1 61 19 45 33 46 19 22 83 56 67 73 82 57 16 29 36 84 71 42 66 78 54 73 45 82 80 67 88 79 69 61 66 5 36 24 60 96 21 77 67 68 29 87 37 91 34 78 43 0 69 49 62 16 2 68 79 57 1 60 2 39 99 14 37 30 92 47 18 14 75 73 39 94 12 43 87 90 22 91 59 54 71\n"
],
"output": [
"YES\n1\n2\n3\n5\n4\n",
"NO\n",
"YES\n11\n6\n16\n7\n8\n13\n10\n14\n2\n21\n18\n20\n19\n3\n12\n4\n9\n5\n15\n17\n1\n",
"NO\n",
"YES\n56\n7\n18\n46\n52\n51\n36\n34\n37\n32\n44\n9\n19\n40\n30\n39\n26\n41\n59\n6\n24\n25\n43\n21\n15\n58\n61\n2\n42\n47\n1\n10\n5\n4\n50\n49\n33\n16\n48\n11\n29\n8\n20\n3\n13\n12\n35\n14\n23\n28\n38\n17\n22\n27\n60\n53\n31\n45\n55\n54\n57\n",
"NO\n",
"YES\n1\n4\n3\n5\n2\n14\n15\n7\n56\n6\n23\n22\n36\n43\n11\n50\n37\n39\n31\n45\n57\n58\n25\n44\n30\n51\n28\n8\n41\n12\n26\n47\n61\n33\n52\n29\n17\n16\n10\n53\n60\n59\n35\n20\n18\n40\n19\n27\n32\n46\n13\n38\n48\n54\n9\n24\n55\n49\n42\n34\n21\n",
"YES\n11\n6\n7\n16\n12\n4\n14\n2\n21\n18\n20\n10\n19\n3\n9\n13\n8\n5\n15\n17\n1\n",
"NO\n",
"YES\n21\n13\n7\n8\n19\n11\n9\n10\n1\n18\n14\n5\n12\n20\n4\n3\n15\n2\n17\n6\n16\n",
"YES\n1\n",
"YES\n15\n5\n16\n10\n11\n20\n12\n6\n2\n14\n18\n7\n4\n8\n9\n21\n13\n3\n17\n19\n1\n",
"YES\n1\n43\n15\n61\n2\n58\n21\n25\n39\n41\n6\n24\n59\n26\n9\n40\n30\n19\n52\n51\n46\n7\n18\n56\n36\n37\n32\n34\n44\n42\n16\n57\n54\n55\n8\n29\n11\n48\n31\n53\n27\n60\n22\n17\n45\n3\n12\n14\n28\n38\n23\n35\n13\n20\n33\n47\n5\n50\n49\n4\n10\n",
"YES\n10\n4\n49\n16\n57\n54\n55\n45\n3\n12\n14\n28\n31\n53\n27\n60\n22\n17\n38\n23\n35\n13\n20\n8\n29\n11\n48\n33\n50\n5\n47\n2\n58\n21\n25\n6\n41\n39\n40\n9\n32\n34\n51\n46\n7\n56\n18\n52\n36\n37\n44\n19\n30\n26\n59\n24\n43\n15\n61\n42\n1\n",
"YES\n18\n21\n20\n2\n10\n14\n19\n4\n3\n12\n9\n16\n13\n7\n8\n5\n1\n15\n17\n11\n6\n",
"YES\n12\n41\n24\n22\n48\n16\n55\n38\n28\n44\n4\n9\n20\n42\n56\n2\n3\n5\n6\n7\n8\n10\n11\n13\n14\n15\n17\n18\n19\n21\n23\n25\n26\n27\n29\n30\n31\n32\n33\n34\n35\n36\n37\n39\n40\n43\n45\n46\n47\n49\n50\n51\n52\n53\n54\n57\n58\n59\n60\n61\n62\n63\n64\n65\n66\n67\n68\n69\n70\n71\n72\n73\n74\n75\n76\n77\n78\n79\n1\n",
"YES\n1\n3\n9\n7\n19\n21\n10\n16\n5\n14\n17\n13\n8\n6\n2\n4\n12\n15\n11\n18\n20\n",
"YES\n1\n41\n27\n29\n56\n10\n16\n46\n28\n61\n54\n11\n34\n60\n18\n51\n42\n43\n15\n5\n35\n9\n12\n33\n31\n44\n22\n24\n26\n23\n4\n6\n58\n14\n19\n37\n20\n47\n48\n2\n50\n36\n21\n7\n39\n8\n52\n57\n38\n3\n30\n32\n17\n13\n53\n40\n49\n55\n59\n45\n25\n",
"YES\n1\n17\n3\n57\n8\n18\n21\n26\n28\n12\n61\n19\n2\n37\n16\n51\n56\n40\n9\n54\n20\n34\n46\n13\n52\n33\n43\n32\n58\n60\n47\n45\n53\n4\n24\n29\n15\n14\n39\n42\n59\n7\n25\n10\n5\n23\n41\n35\n55\n36\n50\n44\n49\n11\n27\n30\n22\n31\n6\n48\n38\n",
"YES\n56\n1\n2\n3\n4\n5\n6\n7\n8\n9\n10\n11\n12\n13\n14\n15\n16\n17\n18\n19\n20\n21\n22\n23\n24\n25\n26\n27\n28\n29\n30\n31\n32\n33\n34\n35\n36\n37\n38\n39\n40\n41\n42\n43\n44\n45\n46\n47\n49\n50\n51\n52\n53\n54\n55\n57\n58\n59\n60\n61\n48\n",
"YES\n18\n1\n2\n3\n4\n5\n7\n8\n9\n10\n11\n12\n13\n14\n15\n16\n17\n19\n20\n21\n6\n",
"YES\n1\n75\n116\n30\n62\n63\n81\n69\n120\n108\n92\n61\n88\n52\n66\n118\n86\n10\n53\n60\n51\n23\n94\n26\n59\n39\n117\n41\n34\n87\n9\n83\n16\n33\n4\n6\n7\n8\n12\n20\n21\n27\n29\n35\n37\n40\n42\n44\n47\n54\n55\n58\n65\n68\n71\n73\n74\n77\n82\n85\n89\n90\n97\n106\n109\n113\n114\n95\n101\n115\n91\n84\n78\n25\n17\n36\n76\n103\n24\n28\n70\n67\n102\n18\n93\n19\n111\n32\n46\n13\n38\n48\n112\n105\n80\n98\n49\n99\n121\n110\n96\n3\n5\n2\n14\n15\n79\n56\n100\n64\n22\n104\n43\n11\n50\n107\n72\n31\n45\n57\n119\n",
"YES\n11\n6\n9\n16\n7\n8\n13\n14\n19\n2\n10\n21\n18\n20\n3\n12\n4\n5\n15\n17\n1\n",
"NO\n",
"YES\n1\n4\n3\n5\n2\n14\n15\n56\n6\n23\n22\n36\n43\n11\n7\n50\n37\n39\n31\n45\n57\n58\n25\n44\n30\n51\n28\n8\n41\n12\n26\n47\n61\n33\n52\n29\n17\n16\n10\n53\n60\n59\n35\n20\n18\n40\n19\n27\n32\n46\n13\n38\n48\n54\n9\n24\n55\n49\n42\n34\n21\n",
"YES\n11\n6\n7\n16\n9\n13\n12\n4\n14\n2\n21\n18\n20\n10\n19\n3\n8\n5\n15\n17\n1\n",
"YES\n21\n13\n7\n11\n9\n8\n19\n10\n1\n18\n14\n5\n12\n20\n4\n3\n15\n2\n17\n6\n16\n",
"YES\n15\n5\n6\n2\n16\n10\n11\n20\n12\n13\n3\n17\n7\n4\n8\n9\n21\n14\n18\n19\n1\n",
"YES\n1\n5\n50\n33\n16\n57\n54\n55\n45\n3\n12\n14\n28\n31\n53\n27\n60\n22\n17\n38\n23\n35\n13\n20\n8\n29\n11\n48\n40\n9\n32\n34\n51\n46\n7\n56\n18\n52\n36\n37\n44\n19\n30\n49\n4\n10\n42\n61\n15\n43\n24\n59\n26\n39\n41\n6\n25\n21\n58\n2\n47\n",
"YES\n1\n33\n43\n17\n3\n57\n8\n18\n21\n26\n28\n12\n61\n19\n2\n37\n16\n51\n56\n40\n9\n54\n20\n34\n46\n13\n52\n32\n58\n60\n47\n45\n53\n4\n24\n29\n15\n14\n39\n42\n59\n7\n25\n10\n5\n23\n41\n35\n55\n36\n50\n44\n49\n11\n27\n30\n22\n31\n6\n48\n38\n",
"YES\n15\n21\n56\n2\n3\n4\n5\n6\n7\n8\n9\n10\n11\n12\n13\n14\n16\n17\n18\n19\n20\n22\n23\n24\n25\n26\n27\n28\n29\n30\n31\n32\n33\n34\n35\n36\n37\n38\n39\n40\n41\n42\n43\n44\n45\n46\n47\n49\n50\n51\n52\n53\n54\n55\n48\n57\n58\n59\n60\n61\n1\n",
"YES\n14\n9\n18\n2\n3\n4\n5\n7\n8\n10\n11\n12\n13\n15\n16\n17\n6\n19\n20\n21\n1\n",
"YES\n1\n75\n116\n30\n62\n63\n81\n69\n120\n108\n92\n61\n88\n52\n66\n118\n86\n10\n53\n60\n51\n23\n94\n26\n59\n39\n117\n41\n34\n87\n9\n83\n16\n42\n29\n33\n4\n6\n7\n8\n12\n20\n21\n27\n35\n37\n40\n44\n47\n54\n55\n58\n65\n68\n71\n73\n74\n77\n82\n85\n89\n90\n97\n106\n109\n113\n114\n95\n101\n115\n91\n84\n78\n25\n17\n36\n76\n103\n24\n28\n70\n67\n102\n18\n93\n19\n111\n32\n46\n13\n38\n48\n112\n105\n80\n98\n49\n99\n121\n110\n96\n3\n5\n2\n14\n15\n79\n56\n100\n64\n22\n104\n43\n11\n50\n107\n72\n31\n45\n57\n119\n",
"YES\n2\n3\n4\n5\n1\n",
"YES\n6\n9\n16\n7\n8\n13\n14\n19\n2\n10\n21\n18\n20\n3\n12\n4\n5\n11\n15\n17\n1\n",
"YES\n6\n20\n4\n3\n15\n2\n17\n12\n14\n18\n1\n9\n5\n11\n8\n19\n10\n13\n7\n21\n16\n",
"YES\n10\n4\n49\n16\n59\n26\n39\n41\n6\n57\n54\n55\n45\n3\n12\n14\n28\n31\n53\n27\n60\n22\n17\n38\n23\n35\n13\n20\n8\n29\n11\n48\n40\n9\n32\n34\n51\n46\n7\n56\n18\n52\n36\n37\n44\n19\n30\n33\n50\n5\n47\n2\n58\n21\n25\n24\n43\n15\n61\n42\n1\n",
"YES\n1\n33\n43\n17\n29\n15\n14\n39\n42\n59\n7\n25\n10\n5\n23\n41\n24\n55\n36\n50\n53\n4\n44\n49\n11\n27\n30\n22\n3\n57\n8\n18\n21\n26\n28\n12\n61\n19\n2\n37\n16\n51\n56\n40\n9\n54\n20\n34\n46\n13\n52\n32\n58\n60\n47\n35\n45\n31\n6\n48\n38\n",
"YES\n1\n2\n3\n4\n5\n",
"YES\n5\n6\n9\n16\n7\n8\n13\n14\n19\n2\n10\n21\n18\n20\n3\n12\n4\n11\n15\n17\n1\n",
"YES\n6\n20\n4\n3\n15\n2\n17\n18\n1\n12\n14\n9\n5\n11\n8\n19\n10\n13\n7\n21\n16\n",
"YES\n1\n29\n15\n14\n39\n42\n59\n7\n25\n10\n5\n23\n41\n24\n55\n36\n50\n47\n35\n45\n3\n57\n18\n21\n26\n28\n12\n61\n19\n2\n60\n16\n51\n46\n34\n31\n54\n20\n9\n13\n52\n32\n58\n56\n40\n37\n8\n53\n4\n44\n49\n11\n27\n30\n22\n33\n43\n17\n6\n48\n38\n",
"YES\n2\n4\n1\n3\n5\n",
"YES\n5\n6\n14\n19\n2\n10\n21\n18\n20\n3\n12\n4\n16\n7\n8\n13\n9\n11\n15\n17\n1\n",
"YES\n11\n6\n16\n7\n8\n13\n3\n12\n4\n21\n18\n20\n19\n10\n14\n2\n9\n5\n15\n17\n1\n",
"YES\n56\n7\n18\n46\n52\n51\n36\n34\n37\n32\n44\n9\n19\n40\n30\n39\n26\n41\n59\n6\n24\n25\n43\n21\n15\n58\n61\n2\n42\n47\n1\n5\n4\n55\n49\n29\n8\n20\n3\n13\n12\n35\n14\n23\n28\n38\n17\n22\n27\n60\n53\n31\n45\n11\n54\n48\n57\n33\n16\n50\n10\n",
"YES\n1\n4\n7\n15\n14\n2\n5\n3\n57\n45\n31\n39\n37\n50\n56\n6\n23\n22\n36\n43\n11\n58\n25\n44\n30\n51\n28\n8\n41\n12\n26\n47\n61\n33\n52\n29\n17\n16\n10\n53\n60\n59\n35\n20\n18\n40\n19\n27\n32\n46\n13\n38\n48\n54\n9\n24\n55\n49\n42\n34\n21\n",
"YES\n2\n21\n18\n20\n10\n19\n3\n9\n13\n8\n5\n11\n6\n7\n16\n12\n4\n14\n15\n17\n1\n",
"YES\n1\n16\n57\n54\n55\n8\n29\n11\n48\n33\n20\n13\n12\n3\n31\n53\n27\n60\n22\n17\n45\n42\n52\n51\n46\n7\n18\n56\n36\n37\n32\n34\n44\n9\n40\n30\n19\n14\n28\n38\n23\n35\n39\n41\n6\n24\n59\n26\n43\n15\n61\n2\n58\n21\n25\n47\n5\n50\n49\n4\n10\n",
"YES\n10\n4\n49\n16\n55\n45\n3\n12\n14\n28\n31\n53\n27\n60\n22\n17\n38\n23\n35\n13\n20\n8\n57\n54\n29\n11\n48\n33\n50\n5\n47\n2\n58\n21\n25\n6\n41\n39\n40\n9\n32\n34\n51\n46\n7\n56\n18\n52\n36\n37\n44\n19\n30\n26\n59\n24\n43\n15\n61\n42\n1\n",
"YES\n20\n4\n28\n55\n48\n24\n12\n41\n22\n16\n38\n44\n9\n42\n47\n63\n56\n2\n3\n5\n6\n7\n8\n10\n11\n13\n14\n15\n17\n18\n19\n21\n23\n25\n26\n27\n29\n30\n31\n32\n33\n34\n35\n36\n37\n39\n40\n43\n45\n46\n49\n50\n51\n52\n53\n54\n57\n58\n59\n60\n61\n62\n64\n65\n66\n67\n68\n69\n70\n71\n72\n73\n74\n75\n76\n77\n78\n79\n1\n",
"YES\n1\n75\n116\n30\n62\n63\n81\n69\n120\n108\n92\n61\n88\n52\n66\n10\n53\n60\n51\n23\n94\n26\n59\n39\n117\n41\n34\n87\n9\n83\n16\n33\n4\n6\n7\n8\n12\n20\n21\n27\n29\n35\n37\n40\n42\n44\n47\n54\n55\n58\n65\n68\n71\n73\n74\n77\n82\n85\n89\n90\n97\n106\n109\n113\n114\n95\n101\n115\n91\n84\n78\n25\n17\n36\n76\n103\n24\n28\n70\n67\n102\n86\n118\n19\n93\n18\n111\n32\n46\n13\n38\n48\n112\n105\n80\n98\n49\n99\n121\n110\n96\n3\n5\n2\n14\n15\n79\n56\n100\n64\n22\n104\n43\n11\n50\n107\n72\n31\n45\n57\n119\n",
"YES\n2\n5\n1\n3\n4\n",
"YES\n11\n4\n14\n2\n21\n18\n20\n10\n19\n6\n7\n16\n9\n13\n12\n3\n8\n5\n15\n17\n1\n",
"YES\n1\n5\n50\n33\n48\n11\n29\n8\n20\n13\n35\n23\n28\n14\n12\n3\n45\n55\n54\n57\n30\n9\n32\n34\n51\n46\n7\n56\n18\n52\n36\n37\n44\n19\n31\n53\n27\n60\n22\n17\n38\n40\n16\n49\n4\n10\n42\n61\n15\n43\n24\n59\n26\n39\n41\n6\n25\n21\n58\n2\n47\n",
"YES\n1\n33\n43\n17\n10\n23\n15\n14\n39\n42\n59\n7\n25\n41\n29\n35\n24\n55\n36\n50\n53\n4\n44\n49\n11\n27\n30\n22\n47\n45\n3\n57\n18\n21\n26\n28\n12\n61\n19\n2\n60\n56\n16\n5\n51\n40\n9\n54\n20\n34\n46\n13\n52\n32\n58\n37\n8\n31\n6\n48\n38\n",
"YES\n1\n75\n116\n30\n62\n63\n81\n69\n120\n108\n92\n61\n88\n52\n66\n118\n86\n10\n53\n60\n28\n24\n103\n76\n36\n17\n25\n78\n84\n91\n115\n101\n95\n42\n29\n33\n4\n6\n7\n8\n12\n20\n21\n27\n35\n37\n40\n44\n47\n54\n55\n58\n65\n68\n71\n73\n74\n82\n85\n89\n90\n97\n106\n109\n113\n114\n16\n83\n9\n87\n34\n41\n117\n39\n59\n26\n94\n23\n51\n77\n70\n67\n102\n18\n93\n19\n111\n32\n46\n13\n38\n48\n112\n105\n80\n98\n49\n99\n121\n110\n96\n3\n5\n2\n14\n15\n79\n56\n100\n64\n22\n104\n43\n11\n50\n107\n72\n31\n45\n57\n119\n",
"YES\n4\n3\n2\n5\n1\n",
"YES\n10\n4\n49\n48\n11\n29\n8\n45\n55\n54\n57\n30\n9\n32\n34\n51\n46\n7\n56\n18\n52\n36\n37\n44\n19\n3\n12\n14\n28\n31\n53\n27\n60\n22\n17\n38\n23\n35\n13\n20\n40\n16\n59\n26\n39\n41\n6\n33\n50\n5\n47\n2\n58\n21\n25\n24\n43\n15\n61\n42\n1\n",
"YES\n1\n33\n43\n17\n53\n4\n24\n15\n14\n39\n42\n25\n10\n5\n23\n41\n7\n44\n59\n29\n55\n36\n50\n49\n11\n27\n30\n22\n3\n57\n8\n18\n21\n26\n28\n12\n61\n19\n2\n37\n16\n51\n56\n40\n9\n54\n20\n34\n46\n13\n52\n32\n58\n60\n47\n35\n45\n31\n6\n48\n38\n",
"YES\n1\n21\n18\n2\n10\n19\n3\n12\n4\n9\n16\n7\n8\n13\n14\n6\n11\n5\n15\n17\n20\n",
"YES\n6\n20\n4\n3\n15\n2\n17\n18\n1\n12\n14\n11\n8\n19\n9\n5\n10\n13\n7\n21\n16\n",
"YES\n6\n48\n1\n29\n15\n14\n39\n42\n59\n7\n25\n10\n5\n23\n41\n24\n55\n36\n50\n47\n35\n45\n3\n57\n18\n21\n26\n28\n12\n61\n19\n2\n60\n16\n51\n46\n34\n31\n54\n20\n9\n13\n52\n32\n58\n56\n40\n37\n8\n53\n4\n44\n49\n11\n27\n30\n22\n33\n43\n17\n38\n",
"YES\n50\n33\n16\n48\n11\n13\n35\n14\n23\n28\n38\n17\n22\n27\n60\n53\n31\n20\n3\n8\n45\n55\n49\n29\n54\n57\n5\n4\n1\n10\n42\n47\n61\n2\n15\n21\n12\n56\n7\n18\n46\n52\n51\n36\n34\n37\n32\n44\n9\n19\n40\n30\n39\n26\n41\n59\n6\n24\n25\n43\n58\n",
"YES\n1\n4\n7\n15\n14\n2\n5\n3\n57\n45\n31\n39\n37\n50\n56\n6\n23\n22\n25\n44\n30\n51\n28\n8\n41\n12\n26\n47\n61\n33\n52\n29\n17\n16\n10\n53\n60\n59\n35\n20\n18\n40\n19\n27\n32\n46\n13\n38\n48\n54\n9\n24\n55\n49\n42\n34\n36\n43\n11\n58\n21\n",
"YES\n2\n21\n18\n20\n10\n19\n3\n9\n5\n11\n6\n7\n13\n8\n16\n12\n4\n14\n15\n17\n1\n",
"NO\n",
"YES\n21\n13\n7\n11\n9\n8\n19\n10\n1\n18\n14\n5\n12\n20\n4\n3\n15\n2\n17\n6\n16\n",
"NO\n",
"NO\n",
"NO\n"
]
} | 2CODEFORCES
|
963_B. Destruction of a Tree_194 | You are given a tree (a graph with n vertices and n - 1 edges in which it's possible to reach any vertex from any other vertex using only its edges).
A vertex can be destroyed if this vertex has even degree. If you destroy a vertex, all edges connected to it are also deleted.
Destroy all vertices in the given tree or determine that it is impossible.
Input
The first line contains integer n (1 ≤ n ≤ 2·105) — number of vertices in a tree.
The second line contains n integers p1, p2, ..., pn (0 ≤ pi ≤ n). If pi ≠ 0 there is an edge between vertices i and pi. It is guaranteed that the given graph is a tree.
Output
If it's possible to destroy all vertices, print "YES" (without quotes), otherwise print "NO" (without quotes).
If it's possible to destroy all vertices, in the next n lines print the indices of the vertices in order you destroy them. If there are multiple correct answers, print any.
Examples
Input
5
0 1 2 1 2
Output
YES
1
2
3
5
4
Input
4
0 1 2 3
Output
NO
Note
In the first example at first you have to remove the vertex with index 1 (after that, the edges (1, 2) and (1, 4) are removed), then the vertex with index 2 (and edges (2, 3) and (2, 5) are removed). After that there are no edges in the tree, so you can remove remaining vertices in any order.
<image> | import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.util.List;
import java.io.BufferedWriter;
import java.io.Writer;
import java.io.OutputStreamWriter;
import java.util.InputMismatchException;
import java.io.IOException;
import java.util.ArrayList;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author The Viet Nguyen
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
TaskB solver = new TaskB();
solver.solve(1, in, out);
out.close();
}
static class TaskB {
static final int N = (int) 2e5 + 1;
int n;
List<Integer>[] graph = new ArrayList[N];
int[] sz = new int[N];
int root;
OutputWriter out;
public void solve(int testNumber, InputReader in, OutputWriter out) {
this.out = out;
n = in.readInt();
for (int i = 1; i <= n; i++) graph[i] = new ArrayList<>();
for (int i = 1; i <= n; i++) {
int p = in.readInt();
if (p == 0) root = i;
else graph[p].add(i);
}
if (n % 2 == 0) {
out.printLine("NO");
return;
}
out.printLine("YES");
countEdges(root);
removeVertices(root);
}
void countEdges(int cur) {
sz[cur] = 1;
for (int nxt : graph[cur]) {
countEdges(nxt);
sz[cur] += sz[nxt];
}
}
void removeVertices(int cur) {
for (int nxt : graph[cur]) {
if (sz[nxt] % 2 == 0) {
removeVertices(nxt);
}
}
out.printLine(cur);
for (int nxt : graph[cur]) {
if (sz[nxt] % 2 != 0) {
removeVertices(nxt);
}
}
}
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private InputReader.SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public static boolean isWhitespace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public int read() {
if (numChars == -1) {
throw new InputMismatchException();
}
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0) {
return -1;
}
}
return buf[curChar++];
}
public int readInt() {
return (int) readLong();
}
public long readLong() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
long res = 0;
do {
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public boolean isSpaceChar(int c) {
if (filter != null) {
return filter.isSpaceChar(c);
}
return isWhitespace(c);
}
public interface SpaceCharFilter {
boolean isSpaceChar(int ch);
}
}
static class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void print(Object... objects) {
for (int i = 0; i < objects.length; i++) {
if (i != 0) {
writer.print(' ');
}
writer.print(objects[i]);
}
}
public void printLine(Object... objects) {
print(objects);
writer.println();
}
public void close() {
writer.close();
}
public void printLine(int i) {
writer.println(i);
}
}
}
| 4JAVA
| {
"input": [
"5\n0 1 2 1 2\n",
"4\n0 1 2 3\n",
"21\n11 19 4 19 6 0 13 7 6 2 5 3 16 10 1 9 15 21 9 21 2\n",
"100\n57 85 27 81 41 27 73 10 73 95 91 90 89 41 86 44 6 20 9 13 46 73 56 19 37 32 40 42 79 76 96 5 6 8 76 52 14 86 33 69 100 95 58 87 43 47 17 39 48 28 77 65 100 100 41 39 87 5 61 67 94 64 61 88 32 23 79 44 0 67 44 23 48 96 48 56 86 75 90 2 17 46 4 75 42 90 17 77 5 33 87 91 27 28 58 95 58 47 33 6\n",
"61\n5 61 20 5 50 59 56 29 44 1 48 13 20 35 61 33 38 52 30 8 43 17 35 43 24 59 22 23 11 26 38 37 48 36 13 37 44 23 30 19 26 1 15 19 8 18 42 0 50 33 52 36 17 11 29 18 48 15 24 22 42\n",
"8\n3 1 4 0 4 2 4 5\n",
"61\n58 39 45 57 31 43 11 24 8 18 56 54 47 37 50 40 19 16 29 10 1 23 36 28 21 48 52 55 27 42 2 33 46 25 53 6 15 26 14 17 9 44 56 34 5 61 38 12 30 7 49 32 20 41 51 0 3 4 60 35 13\n",
"21\n11 10 12 3 6 0 8 6 16 14 5 9 7 19 1 13 15 21 4 2 20\n",
"100\n81 96 65 28 4 40 5 49 5 89 48 70 94 70 17 58 58 1 61 19 45 33 46 19 22 83 56 67 62 82 57 16 29 36 84 71 42 66 78 54 73 45 82 80 67 88 79 69 61 66 5 36 24 60 96 21 77 67 68 29 87 37 91 34 78 43 0 69 49 62 16 2 68 79 57 1 60 12 39 99 14 37 30 92 47 18 14 75 73 39 94 12 43 87 90 22 91 59 54 71\n",
"21\n21 6 4 20 14 1 13 10 11 0 10 18 10 12 4 1 2 2 8 2 13\n",
"1\n0\n",
"21\n15 6 13 7 15 21 8 0 7 16 16 21 12 6 12 12 13 6 15 16 7\n",
"61\n47 61 20 5 10 59 46 55 44 1 57 13 3 35 21 48 31 7 9 45 43 53 14 6 42 39 22 23 54 40 45 37 16 36 12 44 34 28 25 19 26 33 25 39 33 36 42 0 50 4 52 46 17 11 29 7 48 15 41 27 58\n",
"61\n10 42 20 50 4 24 18 55 19 5 57 13 3 35 58 48 31 46 40 45 15 53 14 25 43 41 22 23 54 39 38 44 16 37 12 34 32 28 26 30 59 47 21 9 8 52 1 0 33 49 36 51 17 11 29 7 48 61 6 27 2\n",
"21\n5 20 9 19 8 0 13 6 13 19 5 3 8 10 1 9 1 20 3 10 18\n",
"79\n0 56 56 42 56 56 56 56 4 56 56 22 56 56 56 48 56 56 56 56 56 24 56 16 56 56 56 9 56 56 56 56 56 56 56 56 56 55 56 56 12 20 56 28 56 56 56 38 56 56 56 56 56 56 44 1 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56\n",
"21\n18 0 18 2 21 2 9 15 3 5 8 2 8 21 6 10 21 13 9 1 13\n",
"61\n45 48 30 23 15 47 8 3 35 56 54 35 17 47 35 56 32 42 14 37 36 44 6 44 1 44 41 46 43 0 33 3 44 54 43 3 47 57 7 32 29 60 36 36 43 61 36 47 3 48 18 8 17 29 3 54 3 6 43 43 56\n",
"61\n17 19 8 53 10 38 59 60 46 25 49 28 46 15 25 56 53 60 60 54 18 49 10 53 29 19 11 61 24 11 17 52 32 54 29 55 0 1 14 56 25 14 33 53 47 56 8 6 53 55 16 46 47 9 24 37 3 52 25 37 26\n",
"61\n56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 0 56 56 56 56 56 56 56 48 56 56 56 56 56\n",
"21\n18 18 18 18 18 0 18 18 18 18 18 18 18 18 18 18 18 6 18 18 18\n",
"121\n110 31 57 33 45 33 33 33 91 102 79 33 61 72 107 101 117 10 118 33 33 64 24 94 117 76 33 23 33 49 5 52 95 78 33 39 33 92 17 33 25 33 56 33 3 88 33 108 62 15 28 111 67 33 33 11 96 33 36 70 46 98 80 104 33 19 60 33 112 51 33 2 33 33 121 59 33 41 50 81 105 33 115 34 33 18 84 32 33 33 87 13 86 103 16 119 33 63 30 43 83 53 26 100 69 33 14 38 33 75 66 120 33 33 9 99 0 93 1 48 116\n",
"21\n11 19 4 19 6 0 13 7 6 2 5 3 16 16 1 9 15 21 9 21 2\n",
"100\n57 85 27 81 41 27 73 10 73 95 91 90 89 41 86 44 6 20 9 13 46 73 56 19 37 32 40 42 79 76 96 5 6 8 76 52 14 86 33 69 100 95 58 87 43 47 17 39 48 28 77 65 100 100 41 39 87 5 61 67 94 64 61 88 32 23 79 44 0 67 44 23 48 96 48 56 86 75 90 2 17 46 4 75 79 90 17 77 5 33 87 91 27 28 58 95 58 47 33 6\n",
"61\n58 39 45 57 31 43 11 24 8 18 56 54 47 37 50 40 19 16 29 10 1 23 36 28 21 48 52 55 27 42 2 33 46 25 53 6 15 26 14 17 9 44 56 34 5 61 38 12 30 11 49 32 20 41 51 0 3 4 60 35 13\n",
"21\n11 10 12 3 6 0 8 6 16 14 5 8 7 19 1 13 15 21 4 2 20\n",
"21\n21 6 4 20 14 1 13 10 11 0 10 18 11 12 4 1 2 2 8 2 13\n",
"21\n15 6 13 7 15 21 8 0 7 16 16 21 12 6 6 12 13 6 15 16 7\n",
"61\n10 42 20 50 4 24 18 55 19 5 57 13 3 35 58 48 31 46 40 45 15 53 14 25 43 41 22 23 54 16 38 44 16 37 12 34 32 28 26 30 59 47 21 9 8 52 1 0 33 49 36 51 17 11 29 7 48 61 6 27 2\n",
"61\n17 19 8 53 10 38 59 60 46 25 49 28 46 15 25 56 53 60 60 54 18 49 10 53 29 19 11 61 24 11 17 52 17 54 29 55 0 1 14 56 25 14 33 53 47 56 8 6 53 55 16 46 47 9 24 37 3 52 25 37 26\n",
"61\n56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 15 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 0 56 56 56 56 56 56 56 48 56 56 56 56 56\n",
"21\n18 18 18 18 18 0 18 18 14 18 18 18 18 18 18 18 18 6 18 18 18\n",
"121\n110 31 57 33 45 33 33 33 91 102 79 33 61 72 107 101 117 10 118 33 33 64 24 94 117 76 33 23 42 49 5 52 95 78 33 39 33 92 17 33 25 33 56 33 3 88 33 108 62 15 28 111 67 33 33 11 96 33 36 70 46 98 80 104 33 19 60 33 112 51 33 2 33 33 121 59 33 41 50 81 105 33 115 34 33 18 84 32 33 33 87 13 86 103 16 119 33 63 30 43 83 53 26 100 69 33 14 38 33 75 66 120 33 33 9 99 0 93 1 48 116\n",
"5\n0 1 2 2 2\n",
"21\n5 19 4 19 6 0 13 7 6 2 5 3 16 16 1 9 15 21 9 21 2\n",
"21\n21 6 4 20 9 1 13 10 11 0 10 18 11 12 4 1 2 2 8 2 13\n",
"61\n10 42 20 50 4 16 18 55 19 5 57 13 3 35 58 48 31 46 40 45 15 53 14 25 43 41 22 23 54 16 38 44 16 37 12 34 32 28 26 30 59 47 21 9 8 52 1 0 33 49 36 51 17 11 29 7 48 61 6 27 2\n",
"61\n17 19 8 53 10 38 59 60 46 25 49 28 46 15 25 56 53 60 60 54 18 49 10 53 29 19 11 61 24 11 17 52 17 54 47 55 0 1 14 56 25 14 33 53 47 56 8 6 53 55 16 46 47 9 24 37 3 52 25 37 26\n",
"5\n0 1 2 2 1\n",
"21\n5 19 4 19 6 0 13 7 6 2 6 3 16 16 1 9 15 21 9 21 2\n",
"21\n21 6 4 20 9 1 13 10 11 0 10 13 11 12 4 1 2 2 8 2 13\n",
"61\n17 19 8 53 10 38 59 60 46 25 49 28 46 15 25 56 53 60 60 54 18 49 10 53 29 19 11 61 24 11 34 52 17 54 47 55 0 1 14 56 25 14 33 53 47 56 8 6 53 55 16 46 47 9 24 37 3 52 25 37 26\n",
"5\n0 1 1 2 1\n",
"21\n5 19 4 19 6 0 13 7 6 2 6 3 16 16 1 9 15 21 14 21 2\n",
"21\n11 19 4 19 6 0 13 7 6 2 5 3 16 10 1 9 15 21 9 21 4\n",
"61\n5 61 20 5 50 59 56 29 44 1 48 13 20 35 61 33 38 52 30 8 43 17 35 43 24 59 22 23 11 26 38 37 48 36 13 37 44 23 30 19 26 1 15 19 8 18 42 0 55 33 52 36 17 11 29 18 48 15 24 22 42\n",
"61\n58 39 45 11 31 43 11 24 8 18 56 54 47 37 50 40 19 16 29 10 1 23 36 28 21 48 52 55 27 42 2 33 46 25 53 6 15 26 14 17 9 44 56 34 5 61 38 12 30 7 49 32 20 41 51 0 3 4 60 35 13\n",
"21\n10 10 12 3 6 0 8 6 16 14 5 9 7 19 1 13 15 21 4 2 20\n",
"61\n47 61 20 5 10 59 46 55 44 1 57 13 3 35 21 48 31 7 9 45 43 53 14 6 42 39 22 23 54 40 45 37 16 36 9 44 34 28 25 19 26 33 25 39 33 36 42 0 50 4 52 46 17 11 29 7 48 15 41 27 58\n",
"61\n10 42 20 50 4 24 18 55 19 5 57 13 3 35 58 48 31 46 40 45 15 53 14 25 43 41 22 23 54 39 38 44 16 37 12 34 32 28 26 30 59 47 21 9 8 52 1 0 33 49 36 51 17 11 57 7 48 61 6 27 2\n",
"79\n0 56 56 42 56 56 56 56 4 56 56 22 56 56 56 48 56 56 56 56 56 24 56 16 56 56 56 9 56 56 56 56 56 56 56 56 56 55 56 56 12 20 56 28 56 56 56 38 56 56 56 56 56 56 44 1 56 56 56 56 56 56 47 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56\n",
"121\n110 31 57 33 45 33 33 33 91 102 79 33 61 72 107 101 117 10 118 33 33 64 24 94 117 76 33 23 33 49 5 52 95 78 33 39 33 92 17 33 25 33 56 33 3 88 33 108 62 15 28 111 67 33 33 11 96 33 36 70 46 98 80 104 33 18 60 33 112 51 33 2 33 33 121 59 33 41 50 81 105 33 115 34 33 18 84 32 33 33 87 13 86 103 16 119 33 63 30 43 83 53 26 100 69 33 14 38 33 75 66 120 33 33 9 99 0 93 1 48 116\n",
"5\n0 1 1 1 2\n",
"21\n11 10 12 5 6 0 8 6 16 14 5 8 7 19 1 13 15 21 4 2 20\n",
"61\n10 42 20 50 4 24 18 55 19 5 57 13 3 35 58 48 31 46 40 45 15 53 14 25 43 41 22 23 54 16 38 44 16 37 12 34 32 19 26 30 59 47 21 9 8 52 1 0 33 49 36 51 17 11 29 7 48 61 6 27 2\n",
"61\n17 19 8 53 16 38 59 60 46 25 49 28 46 15 25 56 53 60 60 54 18 49 10 53 29 19 11 61 24 11 17 52 17 54 29 55 0 1 14 56 25 14 33 53 47 56 8 6 53 55 16 46 47 9 24 37 3 52 25 37 26\n",
"121\n110 31 57 33 45 33 33 33 91 102 79 33 61 72 107 101 117 10 118 33 33 64 24 94 117 76 33 23 42 49 5 52 95 78 33 39 33 92 17 33 25 33 56 33 3 88 33 108 62 15 28 111 67 33 33 11 96 33 36 70 46 98 80 104 33 19 60 33 112 51 33 2 33 33 121 59 51 41 50 81 105 33 115 34 33 18 84 32 33 33 87 13 86 103 16 119 33 63 30 43 83 53 26 100 69 33 14 38 33 75 66 120 33 33 9 99 0 93 1 48 116\n",
"5\n0 1 4 2 2\n",
"61\n10 42 20 50 4 16 18 55 19 5 57 13 3 35 58 48 31 46 40 19 15 53 14 25 43 41 22 23 54 16 38 44 16 37 12 34 32 28 26 30 59 47 21 9 8 52 1 0 33 49 36 51 17 11 29 7 48 61 6 27 2\n",
"61\n17 19 8 53 10 38 59 60 46 25 49 28 46 15 25 56 53 60 60 54 18 49 10 53 29 19 11 61 24 11 17 52 17 54 47 55 0 1 14 56 25 14 33 7 47 56 8 6 53 55 16 46 47 9 24 37 3 52 25 37 26\n",
"21\n5 19 4 19 6 0 13 7 6 2 6 3 16 16 1 9 15 21 9 15 2\n",
"21\n21 6 4 20 9 1 13 10 10 0 10 13 11 12 4 1 2 2 8 2 13\n",
"61\n17 19 8 53 10 1 59 60 46 25 49 28 46 15 25 56 53 60 60 54 18 49 10 53 29 19 11 61 24 11 34 52 17 54 47 55 0 1 14 56 25 14 33 53 47 56 8 6 53 55 16 46 47 9 24 37 3 52 25 37 26\n",
"61\n5 61 20 5 50 59 56 29 44 1 48 21 20 35 61 33 38 52 30 8 43 17 35 43 24 59 22 23 11 26 38 37 48 36 13 37 44 23 30 19 26 1 15 19 8 18 42 0 55 33 52 36 17 11 29 18 48 15 24 22 42\n",
"61\n58 39 45 11 31 43 11 24 8 18 56 54 47 37 50 40 19 16 29 10 1 23 36 28 36 48 52 55 27 42 2 33 46 25 53 6 15 26 14 17 9 44 56 34 5 61 38 12 30 7 49 32 20 41 51 0 3 4 60 35 13\n",
"21\n10 10 12 3 6 0 8 6 16 14 5 9 7 19 1 6 15 21 4 2 20\n",
"100\n81 96 65 28 4 40 5 49 5 89 48 70 94 70 17 58 58 1 61 19 45 33 46 19 22 83 56 67 62 82 57 16 29 36 84 71 42 66 78 54 73 45 82 80 67 88 79 69 61 66 5 36 24 60 96 21 77 67 68 29 87 37 91 34 78 43 0 69 49 62 16 2 68 79 57 1 60 2 39 99 14 37 30 92 47 18 14 75 73 39 94 12 43 87 90 22 91 59 54 71\n",
"21\n21 6 4 20 14 1 13 10 11 0 8 18 10 12 4 1 2 2 8 2 13\n",
"4\n0 1 1 3\n",
"100\n57 85 27 81 41 27 73 10 73 95 91 90 89 41 86 44 6 20 9 13 46 73 56 19 37 32 40 42 79 76 96 5 6 8 76 52 14 86 33 69 100 95 58 87 43 47 17 39 48 28 77 65 100 100 41 39 87 5 61 67 94 64 61 88 32 23 79 44 0 67 44 23 48 96 48 56 86 75 90 2 17 46 4 75 79 90 17 77 5 33 87 91 27 28 58 95 64 47 33 6\n",
"100\n81 96 65 28 4 40 5 49 5 89 48 70 94 70 17 58 58 1 61 19 45 33 46 19 22 83 56 67 73 82 57 16 29 36 84 71 42 66 78 54 73 45 82 80 67 88 79 69 61 66 5 36 24 60 96 21 77 67 68 29 87 37 91 34 78 43 0 69 49 62 16 2 68 79 57 1 60 2 39 99 14 37 30 92 47 18 14 75 73 39 94 12 43 87 90 22 91 59 54 71\n"
],
"output": [
"YES\n1\n2\n3\n5\n4\n",
"NO\n",
"YES\n11\n6\n16\n7\n8\n13\n10\n14\n2\n21\n18\n20\n19\n3\n12\n4\n9\n5\n15\n17\n1\n",
"NO\n",
"YES\n56\n7\n18\n46\n52\n51\n36\n34\n37\n32\n44\n9\n19\n40\n30\n39\n26\n41\n59\n6\n24\n25\n43\n21\n15\n58\n61\n2\n42\n47\n1\n10\n5\n4\n50\n49\n33\n16\n48\n11\n29\n8\n20\n3\n13\n12\n35\n14\n23\n28\n38\n17\n22\n27\n60\n53\n31\n45\n55\n54\n57\n",
"NO\n",
"YES\n1\n4\n3\n5\n2\n14\n15\n7\n56\n6\n23\n22\n36\n43\n11\n50\n37\n39\n31\n45\n57\n58\n25\n44\n30\n51\n28\n8\n41\n12\n26\n47\n61\n33\n52\n29\n17\n16\n10\n53\n60\n59\n35\n20\n18\n40\n19\n27\n32\n46\n13\n38\n48\n54\n9\n24\n55\n49\n42\n34\n21\n",
"YES\n11\n6\n7\n16\n12\n4\n14\n2\n21\n18\n20\n10\n19\n3\n9\n13\n8\n5\n15\n17\n1\n",
"NO\n",
"YES\n21\n13\n7\n8\n19\n11\n9\n10\n1\n18\n14\n5\n12\n20\n4\n3\n15\n2\n17\n6\n16\n",
"YES\n1\n",
"YES\n15\n5\n16\n10\n11\n20\n12\n6\n2\n14\n18\n7\n4\n8\n9\n21\n13\n3\n17\n19\n1\n",
"YES\n1\n43\n15\n61\n2\n58\n21\n25\n39\n41\n6\n24\n59\n26\n9\n40\n30\n19\n52\n51\n46\n7\n18\n56\n36\n37\n32\n34\n44\n42\n16\n57\n54\n55\n8\n29\n11\n48\n31\n53\n27\n60\n22\n17\n45\n3\n12\n14\n28\n38\n23\n35\n13\n20\n33\n47\n5\n50\n49\n4\n10\n",
"YES\n10\n4\n49\n16\n57\n54\n55\n45\n3\n12\n14\n28\n31\n53\n27\n60\n22\n17\n38\n23\n35\n13\n20\n8\n29\n11\n48\n33\n50\n5\n47\n2\n58\n21\n25\n6\n41\n39\n40\n9\n32\n34\n51\n46\n7\n56\n18\n52\n36\n37\n44\n19\n30\n26\n59\n24\n43\n15\n61\n42\n1\n",
"YES\n18\n21\n20\n2\n10\n14\n19\n4\n3\n12\n9\n16\n13\n7\n8\n5\n1\n15\n17\n11\n6\n",
"YES\n12\n41\n24\n22\n48\n16\n55\n38\n28\n44\n4\n9\n20\n42\n56\n2\n3\n5\n6\n7\n8\n10\n11\n13\n14\n15\n17\n18\n19\n21\n23\n25\n26\n27\n29\n30\n31\n32\n33\n34\n35\n36\n37\n39\n40\n43\n45\n46\n47\n49\n50\n51\n52\n53\n54\n57\n58\n59\n60\n61\n62\n63\n64\n65\n66\n67\n68\n69\n70\n71\n72\n73\n74\n75\n76\n77\n78\n79\n1\n",
"YES\n1\n3\n9\n7\n19\n21\n10\n16\n5\n14\n17\n13\n8\n6\n2\n4\n12\n15\n11\n18\n20\n",
"YES\n1\n41\n27\n29\n56\n10\n16\n46\n28\n61\n54\n11\n34\n60\n18\n51\n42\n43\n15\n5\n35\n9\n12\n33\n31\n44\n22\n24\n26\n23\n4\n6\n58\n14\n19\n37\n20\n47\n48\n2\n50\n36\n21\n7\n39\n8\n52\n57\n38\n3\n30\n32\n17\n13\n53\n40\n49\n55\n59\n45\n25\n",
"YES\n1\n17\n3\n57\n8\n18\n21\n26\n28\n12\n61\n19\n2\n37\n16\n51\n56\n40\n9\n54\n20\n34\n46\n13\n52\n33\n43\n32\n58\n60\n47\n45\n53\n4\n24\n29\n15\n14\n39\n42\n59\n7\n25\n10\n5\n23\n41\n35\n55\n36\n50\n44\n49\n11\n27\n30\n22\n31\n6\n48\n38\n",
"YES\n56\n1\n2\n3\n4\n5\n6\n7\n8\n9\n10\n11\n12\n13\n14\n15\n16\n17\n18\n19\n20\n21\n22\n23\n24\n25\n26\n27\n28\n29\n30\n31\n32\n33\n34\n35\n36\n37\n38\n39\n40\n41\n42\n43\n44\n45\n46\n47\n49\n50\n51\n52\n53\n54\n55\n57\n58\n59\n60\n61\n48\n",
"YES\n18\n1\n2\n3\n4\n5\n7\n8\n9\n10\n11\n12\n13\n14\n15\n16\n17\n19\n20\n21\n6\n",
"YES\n1\n75\n116\n30\n62\n63\n81\n69\n120\n108\n92\n61\n88\n52\n66\n118\n86\n10\n53\n60\n51\n23\n94\n26\n59\n39\n117\n41\n34\n87\n9\n83\n16\n33\n4\n6\n7\n8\n12\n20\n21\n27\n29\n35\n37\n40\n42\n44\n47\n54\n55\n58\n65\n68\n71\n73\n74\n77\n82\n85\n89\n90\n97\n106\n109\n113\n114\n95\n101\n115\n91\n84\n78\n25\n17\n36\n76\n103\n24\n28\n70\n67\n102\n18\n93\n19\n111\n32\n46\n13\n38\n48\n112\n105\n80\n98\n49\n99\n121\n110\n96\n3\n5\n2\n14\n15\n79\n56\n100\n64\n22\n104\n43\n11\n50\n107\n72\n31\n45\n57\n119\n",
"YES\n11\n6\n9\n16\n7\n8\n13\n14\n19\n2\n10\n21\n18\n20\n3\n12\n4\n5\n15\n17\n1\n",
"NO\n",
"YES\n1\n4\n3\n5\n2\n14\n15\n56\n6\n23\n22\n36\n43\n11\n7\n50\n37\n39\n31\n45\n57\n58\n25\n44\n30\n51\n28\n8\n41\n12\n26\n47\n61\n33\n52\n29\n17\n16\n10\n53\n60\n59\n35\n20\n18\n40\n19\n27\n32\n46\n13\n38\n48\n54\n9\n24\n55\n49\n42\n34\n21\n",
"YES\n11\n6\n7\n16\n9\n13\n12\n4\n14\n2\n21\n18\n20\n10\n19\n3\n8\n5\n15\n17\n1\n",
"YES\n21\n13\n7\n11\n9\n8\n19\n10\n1\n18\n14\n5\n12\n20\n4\n3\n15\n2\n17\n6\n16\n",
"YES\n15\n5\n6\n2\n16\n10\n11\n20\n12\n13\n3\n17\n7\n4\n8\n9\n21\n14\n18\n19\n1\n",
"YES\n1\n5\n50\n33\n16\n57\n54\n55\n45\n3\n12\n14\n28\n31\n53\n27\n60\n22\n17\n38\n23\n35\n13\n20\n8\n29\n11\n48\n40\n9\n32\n34\n51\n46\n7\n56\n18\n52\n36\n37\n44\n19\n30\n49\n4\n10\n42\n61\n15\n43\n24\n59\n26\n39\n41\n6\n25\n21\n58\n2\n47\n",
"YES\n1\n33\n43\n17\n3\n57\n8\n18\n21\n26\n28\n12\n61\n19\n2\n37\n16\n51\n56\n40\n9\n54\n20\n34\n46\n13\n52\n32\n58\n60\n47\n45\n53\n4\n24\n29\n15\n14\n39\n42\n59\n7\n25\n10\n5\n23\n41\n35\n55\n36\n50\n44\n49\n11\n27\n30\n22\n31\n6\n48\n38\n",
"YES\n15\n21\n56\n2\n3\n4\n5\n6\n7\n8\n9\n10\n11\n12\n13\n14\n16\n17\n18\n19\n20\n22\n23\n24\n25\n26\n27\n28\n29\n30\n31\n32\n33\n34\n35\n36\n37\n38\n39\n40\n41\n42\n43\n44\n45\n46\n47\n49\n50\n51\n52\n53\n54\n55\n48\n57\n58\n59\n60\n61\n1\n",
"YES\n14\n9\n18\n2\n3\n4\n5\n7\n8\n10\n11\n12\n13\n15\n16\n17\n6\n19\n20\n21\n1\n",
"YES\n1\n75\n116\n30\n62\n63\n81\n69\n120\n108\n92\n61\n88\n52\n66\n118\n86\n10\n53\n60\n51\n23\n94\n26\n59\n39\n117\n41\n34\n87\n9\n83\n16\n42\n29\n33\n4\n6\n7\n8\n12\n20\n21\n27\n35\n37\n40\n44\n47\n54\n55\n58\n65\n68\n71\n73\n74\n77\n82\n85\n89\n90\n97\n106\n109\n113\n114\n95\n101\n115\n91\n84\n78\n25\n17\n36\n76\n103\n24\n28\n70\n67\n102\n18\n93\n19\n111\n32\n46\n13\n38\n48\n112\n105\n80\n98\n49\n99\n121\n110\n96\n3\n5\n2\n14\n15\n79\n56\n100\n64\n22\n104\n43\n11\n50\n107\n72\n31\n45\n57\n119\n",
"YES\n2\n3\n4\n5\n1\n",
"YES\n6\n9\n16\n7\n8\n13\n14\n19\n2\n10\n21\n18\n20\n3\n12\n4\n5\n11\n15\n17\n1\n",
"YES\n6\n20\n4\n3\n15\n2\n17\n12\n14\n18\n1\n9\n5\n11\n8\n19\n10\n13\n7\n21\n16\n",
"YES\n10\n4\n49\n16\n59\n26\n39\n41\n6\n57\n54\n55\n45\n3\n12\n14\n28\n31\n53\n27\n60\n22\n17\n38\n23\n35\n13\n20\n8\n29\n11\n48\n40\n9\n32\n34\n51\n46\n7\n56\n18\n52\n36\n37\n44\n19\n30\n33\n50\n5\n47\n2\n58\n21\n25\n24\n43\n15\n61\n42\n1\n",
"YES\n1\n33\n43\n17\n29\n15\n14\n39\n42\n59\n7\n25\n10\n5\n23\n41\n24\n55\n36\n50\n53\n4\n44\n49\n11\n27\n30\n22\n3\n57\n8\n18\n21\n26\n28\n12\n61\n19\n2\n37\n16\n51\n56\n40\n9\n54\n20\n34\n46\n13\n52\n32\n58\n60\n47\n35\n45\n31\n6\n48\n38\n",
"YES\n1\n2\n3\n4\n5\n",
"YES\n5\n6\n9\n16\n7\n8\n13\n14\n19\n2\n10\n21\n18\n20\n3\n12\n4\n11\n15\n17\n1\n",
"YES\n6\n20\n4\n3\n15\n2\n17\n18\n1\n12\n14\n9\n5\n11\n8\n19\n10\n13\n7\n21\n16\n",
"YES\n1\n29\n15\n14\n39\n42\n59\n7\n25\n10\n5\n23\n41\n24\n55\n36\n50\n47\n35\n45\n3\n57\n18\n21\n26\n28\n12\n61\n19\n2\n60\n16\n51\n46\n34\n31\n54\n20\n9\n13\n52\n32\n58\n56\n40\n37\n8\n53\n4\n44\n49\n11\n27\n30\n22\n33\n43\n17\n6\n48\n38\n",
"YES\n2\n4\n1\n3\n5\n",
"YES\n5\n6\n14\n19\n2\n10\n21\n18\n20\n3\n12\n4\n16\n7\n8\n13\n9\n11\n15\n17\n1\n",
"YES\n11\n6\n16\n7\n8\n13\n3\n12\n4\n21\n18\n20\n19\n10\n14\n2\n9\n5\n15\n17\n1\n",
"YES\n56\n7\n18\n46\n52\n51\n36\n34\n37\n32\n44\n9\n19\n40\n30\n39\n26\n41\n59\n6\n24\n25\n43\n21\n15\n58\n61\n2\n42\n47\n1\n5\n4\n55\n49\n29\n8\n20\n3\n13\n12\n35\n14\n23\n28\n38\n17\n22\n27\n60\n53\n31\n45\n11\n54\n48\n57\n33\n16\n50\n10\n",
"YES\n1\n4\n7\n15\n14\n2\n5\n3\n57\n45\n31\n39\n37\n50\n56\n6\n23\n22\n36\n43\n11\n58\n25\n44\n30\n51\n28\n8\n41\n12\n26\n47\n61\n33\n52\n29\n17\n16\n10\n53\n60\n59\n35\n20\n18\n40\n19\n27\n32\n46\n13\n38\n48\n54\n9\n24\n55\n49\n42\n34\n21\n",
"YES\n2\n21\n18\n20\n10\n19\n3\n9\n13\n8\n5\n11\n6\n7\n16\n12\n4\n14\n15\n17\n1\n",
"YES\n1\n16\n57\n54\n55\n8\n29\n11\n48\n33\n20\n13\n12\n3\n31\n53\n27\n60\n22\n17\n45\n42\n52\n51\n46\n7\n18\n56\n36\n37\n32\n34\n44\n9\n40\n30\n19\n14\n28\n38\n23\n35\n39\n41\n6\n24\n59\n26\n43\n15\n61\n2\n58\n21\n25\n47\n5\n50\n49\n4\n10\n",
"YES\n10\n4\n49\n16\n55\n45\n3\n12\n14\n28\n31\n53\n27\n60\n22\n17\n38\n23\n35\n13\n20\n8\n57\n54\n29\n11\n48\n33\n50\n5\n47\n2\n58\n21\n25\n6\n41\n39\n40\n9\n32\n34\n51\n46\n7\n56\n18\n52\n36\n37\n44\n19\n30\n26\n59\n24\n43\n15\n61\n42\n1\n",
"YES\n20\n4\n28\n55\n48\n24\n12\n41\n22\n16\n38\n44\n9\n42\n47\n63\n56\n2\n3\n5\n6\n7\n8\n10\n11\n13\n14\n15\n17\n18\n19\n21\n23\n25\n26\n27\n29\n30\n31\n32\n33\n34\n35\n36\n37\n39\n40\n43\n45\n46\n49\n50\n51\n52\n53\n54\n57\n58\n59\n60\n61\n62\n64\n65\n66\n67\n68\n69\n70\n71\n72\n73\n74\n75\n76\n77\n78\n79\n1\n",
"YES\n1\n75\n116\n30\n62\n63\n81\n69\n120\n108\n92\n61\n88\n52\n66\n10\n53\n60\n51\n23\n94\n26\n59\n39\n117\n41\n34\n87\n9\n83\n16\n33\n4\n6\n7\n8\n12\n20\n21\n27\n29\n35\n37\n40\n42\n44\n47\n54\n55\n58\n65\n68\n71\n73\n74\n77\n82\n85\n89\n90\n97\n106\n109\n113\n114\n95\n101\n115\n91\n84\n78\n25\n17\n36\n76\n103\n24\n28\n70\n67\n102\n86\n118\n19\n93\n18\n111\n32\n46\n13\n38\n48\n112\n105\n80\n98\n49\n99\n121\n110\n96\n3\n5\n2\n14\n15\n79\n56\n100\n64\n22\n104\n43\n11\n50\n107\n72\n31\n45\n57\n119\n",
"YES\n2\n5\n1\n3\n4\n",
"YES\n11\n4\n14\n2\n21\n18\n20\n10\n19\n6\n7\n16\n9\n13\n12\n3\n8\n5\n15\n17\n1\n",
"YES\n1\n5\n50\n33\n48\n11\n29\n8\n20\n13\n35\n23\n28\n14\n12\n3\n45\n55\n54\n57\n30\n9\n32\n34\n51\n46\n7\n56\n18\n52\n36\n37\n44\n19\n31\n53\n27\n60\n22\n17\n38\n40\n16\n49\n4\n10\n42\n61\n15\n43\n24\n59\n26\n39\n41\n6\n25\n21\n58\n2\n47\n",
"YES\n1\n33\n43\n17\n10\n23\n15\n14\n39\n42\n59\n7\n25\n41\n29\n35\n24\n55\n36\n50\n53\n4\n44\n49\n11\n27\n30\n22\n47\n45\n3\n57\n18\n21\n26\n28\n12\n61\n19\n2\n60\n56\n16\n5\n51\n40\n9\n54\n20\n34\n46\n13\n52\n32\n58\n37\n8\n31\n6\n48\n38\n",
"YES\n1\n75\n116\n30\n62\n63\n81\n69\n120\n108\n92\n61\n88\n52\n66\n118\n86\n10\n53\n60\n28\n24\n103\n76\n36\n17\n25\n78\n84\n91\n115\n101\n95\n42\n29\n33\n4\n6\n7\n8\n12\n20\n21\n27\n35\n37\n40\n44\n47\n54\n55\n58\n65\n68\n71\n73\n74\n82\n85\n89\n90\n97\n106\n109\n113\n114\n16\n83\n9\n87\n34\n41\n117\n39\n59\n26\n94\n23\n51\n77\n70\n67\n102\n18\n93\n19\n111\n32\n46\n13\n38\n48\n112\n105\n80\n98\n49\n99\n121\n110\n96\n3\n5\n2\n14\n15\n79\n56\n100\n64\n22\n104\n43\n11\n50\n107\n72\n31\n45\n57\n119\n",
"YES\n4\n3\n2\n5\n1\n",
"YES\n10\n4\n49\n48\n11\n29\n8\n45\n55\n54\n57\n30\n9\n32\n34\n51\n46\n7\n56\n18\n52\n36\n37\n44\n19\n3\n12\n14\n28\n31\n53\n27\n60\n22\n17\n38\n23\n35\n13\n20\n40\n16\n59\n26\n39\n41\n6\n33\n50\n5\n47\n2\n58\n21\n25\n24\n43\n15\n61\n42\n1\n",
"YES\n1\n33\n43\n17\n53\n4\n24\n15\n14\n39\n42\n25\n10\n5\n23\n41\n7\n44\n59\n29\n55\n36\n50\n49\n11\n27\n30\n22\n3\n57\n8\n18\n21\n26\n28\n12\n61\n19\n2\n37\n16\n51\n56\n40\n9\n54\n20\n34\n46\n13\n52\n32\n58\n60\n47\n35\n45\n31\n6\n48\n38\n",
"YES\n1\n21\n18\n2\n10\n19\n3\n12\n4\n9\n16\n7\n8\n13\n14\n6\n11\n5\n15\n17\n20\n",
"YES\n6\n20\n4\n3\n15\n2\n17\n18\n1\n12\n14\n11\n8\n19\n9\n5\n10\n13\n7\n21\n16\n",
"YES\n6\n48\n1\n29\n15\n14\n39\n42\n59\n7\n25\n10\n5\n23\n41\n24\n55\n36\n50\n47\n35\n45\n3\n57\n18\n21\n26\n28\n12\n61\n19\n2\n60\n16\n51\n46\n34\n31\n54\n20\n9\n13\n52\n32\n58\n56\n40\n37\n8\n53\n4\n44\n49\n11\n27\n30\n22\n33\n43\n17\n38\n",
"YES\n50\n33\n16\n48\n11\n13\n35\n14\n23\n28\n38\n17\n22\n27\n60\n53\n31\n20\n3\n8\n45\n55\n49\n29\n54\n57\n5\n4\n1\n10\n42\n47\n61\n2\n15\n21\n12\n56\n7\n18\n46\n52\n51\n36\n34\n37\n32\n44\n9\n19\n40\n30\n39\n26\n41\n59\n6\n24\n25\n43\n58\n",
"YES\n1\n4\n7\n15\n14\n2\n5\n3\n57\n45\n31\n39\n37\n50\n56\n6\n23\n22\n25\n44\n30\n51\n28\n8\n41\n12\n26\n47\n61\n33\n52\n29\n17\n16\n10\n53\n60\n59\n35\n20\n18\n40\n19\n27\n32\n46\n13\n38\n48\n54\n9\n24\n55\n49\n42\n34\n36\n43\n11\n58\n21\n",
"YES\n2\n21\n18\n20\n10\n19\n3\n9\n5\n11\n6\n7\n13\n8\n16\n12\n4\n14\n15\n17\n1\n",
"NO\n",
"YES\n21\n13\n7\n11\n9\n8\n19\n10\n1\n18\n14\n5\n12\n20\n4\n3\n15\n2\n17\n6\n16\n",
"NO\n",
"NO\n",
"NO\n"
]
} | 2CODEFORCES
|
990_E. Post Lamps_195 | Adilbek's house is located on a street which can be represented as the OX axis. This street is really dark, so Adilbek wants to install some post lamps to illuminate it. Street has n positions to install lamps, they correspond to the integer numbers from 0 to n - 1 on the OX axis. However, some positions are blocked and no post lamp can be placed there.
There are post lamps of different types which differ only by their power. When placed in position x, post lamp of power l illuminates the segment [x; x + l]. The power of each post lamp is always a positive integer number.
The post lamp shop provides an infinite amount of lamps of each type from power 1 to power k. Though each customer is only allowed to order post lamps of exactly one type. Post lamps of power l cost a_l each.
What is the minimal total cost of the post lamps of exactly one type Adilbek can buy to illuminate the entire segment [0; n] of the street? If some lamps illuminate any other segment of the street, Adilbek does not care, so, for example, he may place a lamp of power 3 in position n - 1 (even though its illumination zone doesn't completely belong to segment [0; n]).
Input
The first line contains three integer numbers n, m and k (1 ≤ k ≤ n ≤ 10^6, 0 ≤ m ≤ n) — the length of the segment of the street Adilbek wants to illuminate, the number of the blocked positions and the maximum power of the post lamp available.
The second line contains m integer numbers s_1, s_2, ..., s_m (0 ≤ s_1 < s_2 < ... s_m < n) — the blocked positions.
The third line contains k integer numbers a_1, a_2, ..., a_k (1 ≤ a_i ≤ 10^6) — the costs of the post lamps.
Output
Print the minimal total cost of the post lamps of exactly one type Adilbek can buy to illuminate the entire segment [0; n] of the street.
If illumintaing the entire segment [0; n] is impossible, print -1.
Examples
Input
6 2 3
1 3
1 2 3
Output
6
Input
4 3 4
1 2 3
1 10 100 1000
Output
1000
Input
5 1 5
0
3 3 3 3 3
Output
-1
Input
7 4 3
2 4 5 6
3 14 15
Output
-1 | get = lambda: [int(x) for x in raw_input().split()]
n, m, k = get()
block = get()
a = get()
can = [1] * n
for x in block:
can[x] = 0
last_can = [0] * n
last = -1
for i in range(n):
last_can[i] = i if can[i] else last
last = last_can[i]
ans = 10**13
if can[0]:
for i in range(k):
step = i+1
cnt = 1
x = 0
while x+step < n and last_can[x+step] > x:
cnt += 1
x = last_can[x+step]
if x+step >= n:
ans = min(ans, cnt * a[i])
print(-1 if ans == 10**13 else ans)
d = 8
| 1Python2
| {
"input": [
"5 1 5\n0\n3 3 3 3 3\n",
"4 3 4\n1 2 3\n1 10 100 1000\n",
"7 4 3\n2 4 5 6\n3 14 15\n",
"6 2 3\n1 3\n1 2 3\n",
"3 1 2\n2\n1 1\n",
"3 1 2\n1\n8 61\n",
"3 0 3\n\n334 500 1001\n",
"20 16 16\n1 2 3 4 5 6 8 9 10 11 13 14 15 16 18 19\n2 1 1 1 1 1 3 3 2 2 1 3 3 3 3 2\n",
"1 1 1\n0\n1000\n",
"4 1 3\n3\n838 185 210\n",
"3 1 1\n2\n1\n",
"3 0 3\n\n333 500 1001\n",
"6 2 3\n2 3\n1 1 3\n",
"20 2 10\n9 16\n109 58 165 715 341 620 574 732 653 675\n",
"11 4 6\n3 4 5 6\n1000000 1000000 1000000 1000000 1000000 1\n",
"1000000 0 1\n\n1000000\n",
"2 1 2\n1\n1 2\n",
"3 2 3\n1 2\n1 1 1000000\n",
"1000000 0 1\n\n999999\n",
"4 1 3\n3\n3 2 9\n",
"9 4 3\n3 4 7 8\n1 1 1\n",
"4 0 4\n\n1 4 4 3\n",
"10 3 2\n2 3 8\n2 4\n",
"2 1 1\n1\n1\n",
"1 0 1\n\n1000000\n",
"3 1 2\n1\n1 1\n",
"3 0 3\n\n334 500 0001\n",
"3 0 3\n\n333 187 1001\n",
"6 2 3\n2 3\n1 1 1\n",
"3 2 1\n1 2\n1 1 1000000\n",
"1000000 0 1\n\n1000016\n",
"4 1 3\n3\n3 2 2\n",
"5 0 4\n\n1 4 4 3\n",
"1000000 0 1\n\n74740\n",
"4 0 3\n\n382 26 1001\n",
"3 1 2\n2\n8 61\n",
"4 1 3\n3\n838 213 210\n",
"3 0 3\n\n333 600 1001\n",
"20 2 10\n9 16\n68 58 165 715 341 620 574 732 653 675\n",
"3 2 3\n1 2\n1 1 1000001\n",
"2 0 1\n\n1000000\n",
"6 2 3\n2 3\n1 2 3\n",
"4 0 3\n\n382 269 1001\n",
"6 1 2\n2\n8 61\n",
"4 1 3\n3\n838 213 253\n",
"9 4 3\n3 4 7 8\n0 1 1\n",
"5 1 5\n0\n3 6 3 3 3\n",
"3 1 2\n1\n1 2\n",
"4 0 3\n\n333 187 1001\n",
"4 0 4\n\n1 4 4 6\n",
"4 1 5\n0\n3 6 3 3 3\n",
"4 0 3\n\n382 187 1001\n",
"4 1 5\n0\n3 4 3 3 3\n",
"3 1 2\n2\n0 1\n",
"20 16 16\n1 2 3 4 5 6 8 9 10 11 13 14 15 16 18 19\n2 1 1 1 1 1 3 1 2 2 1 3 3 3 3 2\n",
"3 1 1\n2\n0\n",
"2 1 2\n0\n1 2\n",
"11 3 2\n2 3 8\n2 4\n",
"5 1 5\n0\n1 3 3 3 3\n",
"4 1 2\n3\n3 2 2\n",
"9 4 3\n3 8 7 8\n0 1 1\n",
"5 0 4\n\n1 4 4 5\n",
"5 1 5\n0\n2 6 3 3 3\n",
"4 0 4\n\n1 4 4 10\n",
"4 1 5\n0\n3 4 3 1 3\n",
"3 1 0\n2\n0\n",
"3 0 3\n\n333 779 1001\n",
"20 2 10\n9 16\n68 58 165 1079 341 620 574 732 653 675\n",
"2 1 2\n0\n2 2\n"
],
"output": [
"-1\n",
"1000\n",
"-1\n",
"6\n",
"2\n",
"122\n",
"1000\n",
"3\n",
"-1\n",
"370\n",
"-1\n",
"999\n",
"9\n",
"638\n",
"3\n",
"1000000000000\n",
"2\n",
"1000000\n",
"999999000000\n",
"4\n",
"4\n",
"3\n",
"-1\n",
"-1\n",
"1000000\n",
"2\n",
"1\n",
"374\n",
"3\n",
"-1\n",
"1000016000000\n",
"4\n",
"5\n",
"74740000000\n",
"52\n",
"122\n",
"420\n",
"999\n",
"638\n",
"1000001\n",
"2000000\n",
"9\n",
"538\n",
"244\n",
"426\n",
"4\n",
"-1\n",
"4\n",
"374\n",
"4\n",
"-1\n",
"374\n",
"-1\n",
"2\n",
"3\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"4\n",
"4\n",
"5\n",
"-1\n",
"4\n",
"-1\n",
"-1\n",
"999\n",
"638\n",
"-1\n"
]
} | 2CODEFORCES
|
990_E. Post Lamps_196 | Adilbek's house is located on a street which can be represented as the OX axis. This street is really dark, so Adilbek wants to install some post lamps to illuminate it. Street has n positions to install lamps, they correspond to the integer numbers from 0 to n - 1 on the OX axis. However, some positions are blocked and no post lamp can be placed there.
There are post lamps of different types which differ only by their power. When placed in position x, post lamp of power l illuminates the segment [x; x + l]. The power of each post lamp is always a positive integer number.
The post lamp shop provides an infinite amount of lamps of each type from power 1 to power k. Though each customer is only allowed to order post lamps of exactly one type. Post lamps of power l cost a_l each.
What is the minimal total cost of the post lamps of exactly one type Adilbek can buy to illuminate the entire segment [0; n] of the street? If some lamps illuminate any other segment of the street, Adilbek does not care, so, for example, he may place a lamp of power 3 in position n - 1 (even though its illumination zone doesn't completely belong to segment [0; n]).
Input
The first line contains three integer numbers n, m and k (1 ≤ k ≤ n ≤ 10^6, 0 ≤ m ≤ n) — the length of the segment of the street Adilbek wants to illuminate, the number of the blocked positions and the maximum power of the post lamp available.
The second line contains m integer numbers s_1, s_2, ..., s_m (0 ≤ s_1 < s_2 < ... s_m < n) — the blocked positions.
The third line contains k integer numbers a_1, a_2, ..., a_k (1 ≤ a_i ≤ 10^6) — the costs of the post lamps.
Output
Print the minimal total cost of the post lamps of exactly one type Adilbek can buy to illuminate the entire segment [0; n] of the street.
If illumintaing the entire segment [0; n] is impossible, print -1.
Examples
Input
6 2 3
1 3
1 2 3
Output
6
Input
4 3 4
1 2 3
1 10 100 1000
Output
1000
Input
5 1 5
0
3 3 3 3 3
Output
-1
Input
7 4 3
2 4 5 6
3 14 15
Output
-1 | #include <bits/stdc++.h>
using namespace std;
const int maxn = 1e6 + 7;
const long long INF = 1e18 + 7;
int a[maxn];
int aa[maxn];
int pre[maxn];
int b[maxn];
int main() {
int i, j, m, n, t, z;
int k;
scanf("%d%d%d", &n, &m, &k);
for (i = 1; i <= m; i++) {
scanf("%d", &a[i]);
aa[a[i]] = 1;
}
for (i = 1; i <= k; i++) {
scanf("%d", &b[i]);
}
if (aa[0]) {
puts("-1");
return 0;
}
for (i = 0; i < n; i++) {
if (!aa[i]) {
pre[i] = i;
} else {
pre[i] = pre[i - 1];
}
}
long long ans = 1e18;
for (i = 1; i <= k; i++) {
long long tem = 0;
int cnt = 0;
while (cnt < n) {
if (cnt + i >= n) {
tem++;
cnt = n;
break;
}
if (pre[cnt + i] <= cnt) {
break;
} else {
cnt = pre[cnt + i];
tem++;
}
}
if (cnt == n) {
ans = min(ans, b[i] * tem);
}
}
if (ans != INF)
printf("%lld\n", ans);
else {
printf("-1\n");
}
return 0;
}
| 2C++
| {
"input": [
"5 1 5\n0\n3 3 3 3 3\n",
"4 3 4\n1 2 3\n1 10 100 1000\n",
"7 4 3\n2 4 5 6\n3 14 15\n",
"6 2 3\n1 3\n1 2 3\n",
"3 1 2\n2\n1 1\n",
"3 1 2\n1\n8 61\n",
"3 0 3\n\n334 500 1001\n",
"20 16 16\n1 2 3 4 5 6 8 9 10 11 13 14 15 16 18 19\n2 1 1 1 1 1 3 3 2 2 1 3 3 3 3 2\n",
"1 1 1\n0\n1000\n",
"4 1 3\n3\n838 185 210\n",
"3 1 1\n2\n1\n",
"3 0 3\n\n333 500 1001\n",
"6 2 3\n2 3\n1 1 3\n",
"20 2 10\n9 16\n109 58 165 715 341 620 574 732 653 675\n",
"11 4 6\n3 4 5 6\n1000000 1000000 1000000 1000000 1000000 1\n",
"1000000 0 1\n\n1000000\n",
"2 1 2\n1\n1 2\n",
"3 2 3\n1 2\n1 1 1000000\n",
"1000000 0 1\n\n999999\n",
"4 1 3\n3\n3 2 9\n",
"9 4 3\n3 4 7 8\n1 1 1\n",
"4 0 4\n\n1 4 4 3\n",
"10 3 2\n2 3 8\n2 4\n",
"2 1 1\n1\n1\n",
"1 0 1\n\n1000000\n",
"3 1 2\n1\n1 1\n",
"3 0 3\n\n334 500 0001\n",
"3 0 3\n\n333 187 1001\n",
"6 2 3\n2 3\n1 1 1\n",
"3 2 1\n1 2\n1 1 1000000\n",
"1000000 0 1\n\n1000016\n",
"4 1 3\n3\n3 2 2\n",
"5 0 4\n\n1 4 4 3\n",
"1000000 0 1\n\n74740\n",
"4 0 3\n\n382 26 1001\n",
"3 1 2\n2\n8 61\n",
"4 1 3\n3\n838 213 210\n",
"3 0 3\n\n333 600 1001\n",
"20 2 10\n9 16\n68 58 165 715 341 620 574 732 653 675\n",
"3 2 3\n1 2\n1 1 1000001\n",
"2 0 1\n\n1000000\n",
"6 2 3\n2 3\n1 2 3\n",
"4 0 3\n\n382 269 1001\n",
"6 1 2\n2\n8 61\n",
"4 1 3\n3\n838 213 253\n",
"9 4 3\n3 4 7 8\n0 1 1\n",
"5 1 5\n0\n3 6 3 3 3\n",
"3 1 2\n1\n1 2\n",
"4 0 3\n\n333 187 1001\n",
"4 0 4\n\n1 4 4 6\n",
"4 1 5\n0\n3 6 3 3 3\n",
"4 0 3\n\n382 187 1001\n",
"4 1 5\n0\n3 4 3 3 3\n",
"3 1 2\n2\n0 1\n",
"20 16 16\n1 2 3 4 5 6 8 9 10 11 13 14 15 16 18 19\n2 1 1 1 1 1 3 1 2 2 1 3 3 3 3 2\n",
"3 1 1\n2\n0\n",
"2 1 2\n0\n1 2\n",
"11 3 2\n2 3 8\n2 4\n",
"5 1 5\n0\n1 3 3 3 3\n",
"4 1 2\n3\n3 2 2\n",
"9 4 3\n3 8 7 8\n0 1 1\n",
"5 0 4\n\n1 4 4 5\n",
"5 1 5\n0\n2 6 3 3 3\n",
"4 0 4\n\n1 4 4 10\n",
"4 1 5\n0\n3 4 3 1 3\n",
"3 1 0\n2\n0\n",
"3 0 3\n\n333 779 1001\n",
"20 2 10\n9 16\n68 58 165 1079 341 620 574 732 653 675\n",
"2 1 2\n0\n2 2\n"
],
"output": [
"-1\n",
"1000\n",
"-1\n",
"6\n",
"2\n",
"122\n",
"1000\n",
"3\n",
"-1\n",
"370\n",
"-1\n",
"999\n",
"9\n",
"638\n",
"3\n",
"1000000000000\n",
"2\n",
"1000000\n",
"999999000000\n",
"4\n",
"4\n",
"3\n",
"-1\n",
"-1\n",
"1000000\n",
"2\n",
"1\n",
"374\n",
"3\n",
"-1\n",
"1000016000000\n",
"4\n",
"5\n",
"74740000000\n",
"52\n",
"122\n",
"420\n",
"999\n",
"638\n",
"1000001\n",
"2000000\n",
"9\n",
"538\n",
"244\n",
"426\n",
"4\n",
"-1\n",
"4\n",
"374\n",
"4\n",
"-1\n",
"374\n",
"-1\n",
"2\n",
"3\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"4\n",
"4\n",
"5\n",
"-1\n",
"4\n",
"-1\n",
"-1\n",
"999\n",
"638\n",
"-1\n"
]
} | 2CODEFORCES
|
990_E. Post Lamps_197 | Adilbek's house is located on a street which can be represented as the OX axis. This street is really dark, so Adilbek wants to install some post lamps to illuminate it. Street has n positions to install lamps, they correspond to the integer numbers from 0 to n - 1 on the OX axis. However, some positions are blocked and no post lamp can be placed there.
There are post lamps of different types which differ only by their power. When placed in position x, post lamp of power l illuminates the segment [x; x + l]. The power of each post lamp is always a positive integer number.
The post lamp shop provides an infinite amount of lamps of each type from power 1 to power k. Though each customer is only allowed to order post lamps of exactly one type. Post lamps of power l cost a_l each.
What is the minimal total cost of the post lamps of exactly one type Adilbek can buy to illuminate the entire segment [0; n] of the street? If some lamps illuminate any other segment of the street, Adilbek does not care, so, for example, he may place a lamp of power 3 in position n - 1 (even though its illumination zone doesn't completely belong to segment [0; n]).
Input
The first line contains three integer numbers n, m and k (1 ≤ k ≤ n ≤ 10^6, 0 ≤ m ≤ n) — the length of the segment of the street Adilbek wants to illuminate, the number of the blocked positions and the maximum power of the post lamp available.
The second line contains m integer numbers s_1, s_2, ..., s_m (0 ≤ s_1 < s_2 < ... s_m < n) — the blocked positions.
The third line contains k integer numbers a_1, a_2, ..., a_k (1 ≤ a_i ≤ 10^6) — the costs of the post lamps.
Output
Print the minimal total cost of the post lamps of exactly one type Adilbek can buy to illuminate the entire segment [0; n] of the street.
If illumintaing the entire segment [0; n] is impossible, print -1.
Examples
Input
6 2 3
1 3
1 2 3
Output
6
Input
4 3 4
1 2 3
1 10 100 1000
Output
1000
Input
5 1 5
0
3 3 3 3 3
Output
-1
Input
7 4 3
2 4 5 6
3 14 15
Output
-1 | import sys
from array import array
n, m, k = map(int, input().split())
block = list(map(int, input().split()))
a = [0] + list(map(int, input().split()))
if block and block[0] == 0:
print(-1)
exit()
prev = array('i', list(range(n)))
for x in block:
prev[x] = -1
for i in range(1, n):
if prev[i] == -1:
prev[i] = prev[i-1]
inf = ans = 10**18
for i in range(1, k+1):
s = 0
cost = 0
while True:
cost += a[i]
t = s+i
if t >= n:
break
if prev[t] == s:
cost = inf
break
s = prev[t]
ans = min(ans, cost)
print(ans if ans < inf else -1)
| 3Python3
| {
"input": [
"5 1 5\n0\n3 3 3 3 3\n",
"4 3 4\n1 2 3\n1 10 100 1000\n",
"7 4 3\n2 4 5 6\n3 14 15\n",
"6 2 3\n1 3\n1 2 3\n",
"3 1 2\n2\n1 1\n",
"3 1 2\n1\n8 61\n",
"3 0 3\n\n334 500 1001\n",
"20 16 16\n1 2 3 4 5 6 8 9 10 11 13 14 15 16 18 19\n2 1 1 1 1 1 3 3 2 2 1 3 3 3 3 2\n",
"1 1 1\n0\n1000\n",
"4 1 3\n3\n838 185 210\n",
"3 1 1\n2\n1\n",
"3 0 3\n\n333 500 1001\n",
"6 2 3\n2 3\n1 1 3\n",
"20 2 10\n9 16\n109 58 165 715 341 620 574 732 653 675\n",
"11 4 6\n3 4 5 6\n1000000 1000000 1000000 1000000 1000000 1\n",
"1000000 0 1\n\n1000000\n",
"2 1 2\n1\n1 2\n",
"3 2 3\n1 2\n1 1 1000000\n",
"1000000 0 1\n\n999999\n",
"4 1 3\n3\n3 2 9\n",
"9 4 3\n3 4 7 8\n1 1 1\n",
"4 0 4\n\n1 4 4 3\n",
"10 3 2\n2 3 8\n2 4\n",
"2 1 1\n1\n1\n",
"1 0 1\n\n1000000\n",
"3 1 2\n1\n1 1\n",
"3 0 3\n\n334 500 0001\n",
"3 0 3\n\n333 187 1001\n",
"6 2 3\n2 3\n1 1 1\n",
"3 2 1\n1 2\n1 1 1000000\n",
"1000000 0 1\n\n1000016\n",
"4 1 3\n3\n3 2 2\n",
"5 0 4\n\n1 4 4 3\n",
"1000000 0 1\n\n74740\n",
"4 0 3\n\n382 26 1001\n",
"3 1 2\n2\n8 61\n",
"4 1 3\n3\n838 213 210\n",
"3 0 3\n\n333 600 1001\n",
"20 2 10\n9 16\n68 58 165 715 341 620 574 732 653 675\n",
"3 2 3\n1 2\n1 1 1000001\n",
"2 0 1\n\n1000000\n",
"6 2 3\n2 3\n1 2 3\n",
"4 0 3\n\n382 269 1001\n",
"6 1 2\n2\n8 61\n",
"4 1 3\n3\n838 213 253\n",
"9 4 3\n3 4 7 8\n0 1 1\n",
"5 1 5\n0\n3 6 3 3 3\n",
"3 1 2\n1\n1 2\n",
"4 0 3\n\n333 187 1001\n",
"4 0 4\n\n1 4 4 6\n",
"4 1 5\n0\n3 6 3 3 3\n",
"4 0 3\n\n382 187 1001\n",
"4 1 5\n0\n3 4 3 3 3\n",
"3 1 2\n2\n0 1\n",
"20 16 16\n1 2 3 4 5 6 8 9 10 11 13 14 15 16 18 19\n2 1 1 1 1 1 3 1 2 2 1 3 3 3 3 2\n",
"3 1 1\n2\n0\n",
"2 1 2\n0\n1 2\n",
"11 3 2\n2 3 8\n2 4\n",
"5 1 5\n0\n1 3 3 3 3\n",
"4 1 2\n3\n3 2 2\n",
"9 4 3\n3 8 7 8\n0 1 1\n",
"5 0 4\n\n1 4 4 5\n",
"5 1 5\n0\n2 6 3 3 3\n",
"4 0 4\n\n1 4 4 10\n",
"4 1 5\n0\n3 4 3 1 3\n",
"3 1 0\n2\n0\n",
"3 0 3\n\n333 779 1001\n",
"20 2 10\n9 16\n68 58 165 1079 341 620 574 732 653 675\n",
"2 1 2\n0\n2 2\n"
],
"output": [
"-1\n",
"1000\n",
"-1\n",
"6\n",
"2\n",
"122\n",
"1000\n",
"3\n",
"-1\n",
"370\n",
"-1\n",
"999\n",
"9\n",
"638\n",
"3\n",
"1000000000000\n",
"2\n",
"1000000\n",
"999999000000\n",
"4\n",
"4\n",
"3\n",
"-1\n",
"-1\n",
"1000000\n",
"2\n",
"1\n",
"374\n",
"3\n",
"-1\n",
"1000016000000\n",
"4\n",
"5\n",
"74740000000\n",
"52\n",
"122\n",
"420\n",
"999\n",
"638\n",
"1000001\n",
"2000000\n",
"9\n",
"538\n",
"244\n",
"426\n",
"4\n",
"-1\n",
"4\n",
"374\n",
"4\n",
"-1\n",
"374\n",
"-1\n",
"2\n",
"3\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"4\n",
"4\n",
"5\n",
"-1\n",
"4\n",
"-1\n",
"-1\n",
"999\n",
"638\n",
"-1\n"
]
} | 2CODEFORCES
|
990_E. Post Lamps_198 | Adilbek's house is located on a street which can be represented as the OX axis. This street is really dark, so Adilbek wants to install some post lamps to illuminate it. Street has n positions to install lamps, they correspond to the integer numbers from 0 to n - 1 on the OX axis. However, some positions are blocked and no post lamp can be placed there.
There are post lamps of different types which differ only by their power. When placed in position x, post lamp of power l illuminates the segment [x; x + l]. The power of each post lamp is always a positive integer number.
The post lamp shop provides an infinite amount of lamps of each type from power 1 to power k. Though each customer is only allowed to order post lamps of exactly one type. Post lamps of power l cost a_l each.
What is the minimal total cost of the post lamps of exactly one type Adilbek can buy to illuminate the entire segment [0; n] of the street? If some lamps illuminate any other segment of the street, Adilbek does not care, so, for example, he may place a lamp of power 3 in position n - 1 (even though its illumination zone doesn't completely belong to segment [0; n]).
Input
The first line contains three integer numbers n, m and k (1 ≤ k ≤ n ≤ 10^6, 0 ≤ m ≤ n) — the length of the segment of the street Adilbek wants to illuminate, the number of the blocked positions and the maximum power of the post lamp available.
The second line contains m integer numbers s_1, s_2, ..., s_m (0 ≤ s_1 < s_2 < ... s_m < n) — the blocked positions.
The third line contains k integer numbers a_1, a_2, ..., a_k (1 ≤ a_i ≤ 10^6) — the costs of the post lamps.
Output
Print the minimal total cost of the post lamps of exactly one type Adilbek can buy to illuminate the entire segment [0; n] of the street.
If illumintaing the entire segment [0; n] is impossible, print -1.
Examples
Input
6 2 3
1 3
1 2 3
Output
6
Input
4 3 4
1 2 3
1 10 100 1000
Output
1000
Input
5 1 5
0
3 3 3 3 3
Output
-1
Input
7 4 3
2 4 5 6
3 14 15
Output
-1 |
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.util.Arrays;
import java.util.StringTokenizer;
public class E {
public static void solve(FastScanner fs) {
int length=fs.nextInt();
int numBlocked=fs.nextInt();
int maxLamp=fs.nextInt();
boolean[] road=new boolean[length];
Arrays.fill(road, true);
for (int i=0; i<numBlocked; i++) road[fs.nextInt()]=false;
long[] lampCosts=fs.readLongArray(maxLamp);
int[] lastValidSpot=new int[length];
if (!road[0]) {
System.out.println(-1);
return;
}
for (int i=1; i<length; i++) {
if (road[i]) lastValidSpot[i]=i;
else lastValidSpot[i]=lastValidSpot[i-1];
}
long bestCost=Long.MAX_VALUE;
outer: for (int dist=0; dist<maxLamp; dist++) {
int count=1, pos=0;
while (pos+dist+1<length) {
if (lastValidSpot[pos+dist+1]<=pos)
continue outer;
else {
count++;
pos=lastValidSpot[pos+dist+1];
}
}
bestCost=Math.min(bestCost, count*lampCosts[dist]);
}
if (bestCost==Long.MAX_VALUE) {
System.out.println(-1);
}
else {
System.out.println(bestCost);
}
}
public static void main(String[] args) throws NumberFormatException, IOException {
FastScanner scanner = new FastScanner(System.in);
solve(scanner);
}
private static class FastScanner {
BufferedReader br;
StringTokenizer st;
public FastScanner(InputStream in) {
br = new BufferedReader(new InputStreamReader(in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
int[] readArray(int n) {
int[] a=new int[n];
for (int i=0; i<n; i++)
a[i]=nextInt();
return a;
}
long[] readLongArray(int n) {
long[] a=new long[n];
for (int i=0; i<n; i++)
a[i]=nextLong();
return a;
}
}
}
| 4JAVA
| {
"input": [
"5 1 5\n0\n3 3 3 3 3\n",
"4 3 4\n1 2 3\n1 10 100 1000\n",
"7 4 3\n2 4 5 6\n3 14 15\n",
"6 2 3\n1 3\n1 2 3\n",
"3 1 2\n2\n1 1\n",
"3 1 2\n1\n8 61\n",
"3 0 3\n\n334 500 1001\n",
"20 16 16\n1 2 3 4 5 6 8 9 10 11 13 14 15 16 18 19\n2 1 1 1 1 1 3 3 2 2 1 3 3 3 3 2\n",
"1 1 1\n0\n1000\n",
"4 1 3\n3\n838 185 210\n",
"3 1 1\n2\n1\n",
"3 0 3\n\n333 500 1001\n",
"6 2 3\n2 3\n1 1 3\n",
"20 2 10\n9 16\n109 58 165 715 341 620 574 732 653 675\n",
"11 4 6\n3 4 5 6\n1000000 1000000 1000000 1000000 1000000 1\n",
"1000000 0 1\n\n1000000\n",
"2 1 2\n1\n1 2\n",
"3 2 3\n1 2\n1 1 1000000\n",
"1000000 0 1\n\n999999\n",
"4 1 3\n3\n3 2 9\n",
"9 4 3\n3 4 7 8\n1 1 1\n",
"4 0 4\n\n1 4 4 3\n",
"10 3 2\n2 3 8\n2 4\n",
"2 1 1\n1\n1\n",
"1 0 1\n\n1000000\n",
"3 1 2\n1\n1 1\n",
"3 0 3\n\n334 500 0001\n",
"3 0 3\n\n333 187 1001\n",
"6 2 3\n2 3\n1 1 1\n",
"3 2 1\n1 2\n1 1 1000000\n",
"1000000 0 1\n\n1000016\n",
"4 1 3\n3\n3 2 2\n",
"5 0 4\n\n1 4 4 3\n",
"1000000 0 1\n\n74740\n",
"4 0 3\n\n382 26 1001\n",
"3 1 2\n2\n8 61\n",
"4 1 3\n3\n838 213 210\n",
"3 0 3\n\n333 600 1001\n",
"20 2 10\n9 16\n68 58 165 715 341 620 574 732 653 675\n",
"3 2 3\n1 2\n1 1 1000001\n",
"2 0 1\n\n1000000\n",
"6 2 3\n2 3\n1 2 3\n",
"4 0 3\n\n382 269 1001\n",
"6 1 2\n2\n8 61\n",
"4 1 3\n3\n838 213 253\n",
"9 4 3\n3 4 7 8\n0 1 1\n",
"5 1 5\n0\n3 6 3 3 3\n",
"3 1 2\n1\n1 2\n",
"4 0 3\n\n333 187 1001\n",
"4 0 4\n\n1 4 4 6\n",
"4 1 5\n0\n3 6 3 3 3\n",
"4 0 3\n\n382 187 1001\n",
"4 1 5\n0\n3 4 3 3 3\n",
"3 1 2\n2\n0 1\n",
"20 16 16\n1 2 3 4 5 6 8 9 10 11 13 14 15 16 18 19\n2 1 1 1 1 1 3 1 2 2 1 3 3 3 3 2\n",
"3 1 1\n2\n0\n",
"2 1 2\n0\n1 2\n",
"11 3 2\n2 3 8\n2 4\n",
"5 1 5\n0\n1 3 3 3 3\n",
"4 1 2\n3\n3 2 2\n",
"9 4 3\n3 8 7 8\n0 1 1\n",
"5 0 4\n\n1 4 4 5\n",
"5 1 5\n0\n2 6 3 3 3\n",
"4 0 4\n\n1 4 4 10\n",
"4 1 5\n0\n3 4 3 1 3\n",
"3 1 0\n2\n0\n",
"3 0 3\n\n333 779 1001\n",
"20 2 10\n9 16\n68 58 165 1079 341 620 574 732 653 675\n",
"2 1 2\n0\n2 2\n"
],
"output": [
"-1\n",
"1000\n",
"-1\n",
"6\n",
"2\n",
"122\n",
"1000\n",
"3\n",
"-1\n",
"370\n",
"-1\n",
"999\n",
"9\n",
"638\n",
"3\n",
"1000000000000\n",
"2\n",
"1000000\n",
"999999000000\n",
"4\n",
"4\n",
"3\n",
"-1\n",
"-1\n",
"1000000\n",
"2\n",
"1\n",
"374\n",
"3\n",
"-1\n",
"1000016000000\n",
"4\n",
"5\n",
"74740000000\n",
"52\n",
"122\n",
"420\n",
"999\n",
"638\n",
"1000001\n",
"2000000\n",
"9\n",
"538\n",
"244\n",
"426\n",
"4\n",
"-1\n",
"4\n",
"374\n",
"4\n",
"-1\n",
"374\n",
"-1\n",
"2\n",
"3\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"4\n",
"4\n",
"5\n",
"-1\n",
"4\n",
"-1\n",
"-1\n",
"999\n",
"638\n",
"-1\n"
]
} | 2CODEFORCES
|
appu-and-sugarcane-farm_199 | As you know Appu created aversion to Maths after that maths problem given by his teacher.So he stopped studying and began to do farming. He has some land where he starts growing sugarcane. At the end of the season he grew N sugarcanes. Is Appu satisfied??. No,
He wants all his sugar canes to be of the same height. He goes to the nearby market .He finds a powder which when applied to one of his sugarcanes will double the height of that sugar cane. Now he needs to find out whether is it possible to make all the sugarcanes of the same height . Oh No!! Again maths.
Please help him to find whether is it possible make all the sugar cane of the same height?
Input
First line contains N - the number of sugarcanes.Next N lines contains heights of sugarcanes seperated by space
Output
Print "YES" if it is possible make all the sugar cane of the same height or
"NO" otherwise (quotes only for clarity)
Constraints
1 ≤ N ≤ 50
Initial Height of all sugarcanes will be between 1 and 1,000,000,000, inclusive.
SAMPLE INPUT
2
1 23
SAMPLE OUTPUT
NO | '''
# Read input from stdin and provide input before running code
name = raw_input('What is your name?\n')
print 'Hi, %s.' % name
'''
num_of_sugarcanes = int(raw_input())
list_of_sugarcanes = map(int,raw_input().split())
max_of_sugarcanes = max(list_of_sugarcanes)
def xyz (list_of_sugarcanes, max_sugar):
for x in list_of_sugarcanes:
z = x
while z < max_sugar:
z *= 2
if z > max_sugar:
return "NO"
return "YES"
print (xyz(list_of_sugarcanes, max_of_sugarcanes)) | 1Python2
| {
"input": [
"2\n1 23\n\nSAMPLE",
"47\n169884146 730277703 8645016 732791141 331583052 25104065 895622218 478600214 924154067 813310590 389843997 977252329 338578814 512086554 953548504 508435813 602216502 773835133 194230149 661387945 354427757 690709868 320153566 468158534 287696464 210587004 734620117 534953438 709154008 123773340 158880245 336766149 165968720 167637128 947182489 162048595 449945322 743190739 426987749 783219375 443513281 903494440 853812390 851061819 772823670 651380762 603104316",
"3\n2 2 2",
"3\n1 2 3",
"50\n558017747 707412184 571476824 27885972 347137128 534455142 266330082 381698014 939365541 506551897 225052521 672800684 64370521 756181857 592652322 228887401 599530996 111233973 330484393 490574767 309080152 39589626 763859303 515779418 857884239 413041773 131315151 512215539 928427585 94435842 33406756 609835791 487402355 166452913 499376588 897716502 326057450 61190422 970933314 569598840 513628820 813343928 217617307 25607210 543256089 157579238 279363811 687651296 615413851 921335291",
"3\n148 298 1184",
"2\n999999733 999999733",
"50\n1 2 1 1 1 1 2 1 1 2 2 2 1 2 1 2 1 2 1 1 2 2 1 1 2 1 1 2 2 2 1 1 1 1 1 2 1 2 1 2 1 1 1 1 2 2 1 1 1 2",
"4\n1 1000000000 1000000000 1000000000",
"50\n253633508 253633508 126816754 63408377 63408377 126816754 126816754 253633508 63408377 126816754 507267016 63408377 63408377 63408377 253633508 126816754 507267016 63408377 253633508 63408377 126816754 253633508 253633508 507267016 507267016 253633508 507267016 63408377 253633508 63408377 126816754 507267016 253633508 507267016 126816754 126816754 253633508 63408377 126816754 507267016 507267016 126816754 63408377 126816754 253633508 253633508 126816754 63408377 126816754 507267016",
"2\n9 3",
"1\n1",
"49\n169 208 674 775 224 27 301 904 894 711 146 668 628 996 445 316 412 454 747 32 483 281 86 411 414 618 176 909 775 191 821 749 690 59 271 956 940 849 877 949 862 543 664 357 683 177 629 685 881",
"3\n1 1 3",
"49\n3 3 1 2 3 3 1 3 2 1 3 1 1 2 2 3 1 1 1 2 3 2 3 3 2 2 2 3 1 3 3 3 1 2 2 2 1 1 1 2 2 2 1 2 3 1 3 2 3",
"47\n169884146 730277703 8645016 732791141 331583052 25104065 895622218 478600214 924154067 813310590 389843997 977252329 338578814 512086554 953548504 508435813 602216502 773835133 194230149 661387945 354427757 690709868 320153566 468158534 287696464 210587004 734620117 534953438 709154008 123773340 158880245 336766149 165968720 167637128 947182489 162048595 449945322 743190739 426987749 783219375 443513281 903494440 853812390 851061819 772823670 651380762 823985420",
"3\n4 2 2",
"3\n2 2 3",
"50\n558017747 707412184 571476824 27885972 347137128 534455142 266330082 381698014 475845546 506551897 225052521 672800684 64370521 756181857 592652322 228887401 599530996 111233973 330484393 490574767 309080152 39589626 763859303 515779418 857884239 413041773 131315151 512215539 928427585 94435842 33406756 609835791 487402355 166452913 499376588 897716502 326057450 61190422 970933314 569598840 513628820 813343928 217617307 25607210 543256089 157579238 279363811 687651296 615413851 921335291",
"3\n148 298 2123",
"2\n255693184 999999733",
"50\n1 2 1 1 1 1 2 1 1 2 2 2 1 2 1 2 1 2 1 1 2 2 1 1 2 1 1 2 2 2 1 1 1 1 1 2 1 2 1 2 1 1 1 1 2 2 2 1 1 2",
"4\n2 1000000000 1000000000 1000000000",
"50\n253633508 253633508 126816754 63408377 63408377 126816754 126816754 253633508 63408377 126816754 507267016 63408377 63408377 63408377 253633508 126816754 507267016 63408377 253633508 63408377 126816754 253633508 253633508 507267016 507267016 253633508 507267016 63408377 253633508 63408377 126816754 507267016 253633508 507267016 126816754 126816754 253633508 63408377 126816754 507267016 507267016 25445907 63408377 126816754 253633508 253633508 126816754 63408377 126816754 507267016",
"2\n9 1",
"49\n169 208 674 775 224 27 301 904 1689 711 146 668 628 996 445 316 412 454 747 32 483 281 86 411 414 618 176 909 775 191 821 749 690 59 271 956 940 849 877 949 862 543 664 357 683 177 629 685 881",
"49\n3 3 1 2 3 3 1 3 2 1 3 1 2 2 2 3 1 1 1 2 3 2 3 3 2 2 2 3 1 3 3 3 1 2 2 2 1 1 1 2 2 2 1 2 3 1 3 2 3",
"2\n1 10\n\nSAMPLE",
"47\n169884146 730277703 8645016 732791141 331583052 25104065 895622218 478600214 924154067 813310590 389843997 977252329 338578814 512086554 953548504 508435813 602216502 773835133 194230149 661387945 354427757 690709868 320153566 468158534 220775649 210587004 734620117 534953438 709154008 123773340 158880245 336766149 165968720 167637128 947182489 162048595 449945322 743190739 426987749 783219375 443513281 903494440 853812390 851061819 772823670 651380762 823985420",
"3\n2 3 3",
"50\n558017747 707412184 571476824 27885972 347137128 534455142 266330082 293791105 475845546 506551897 225052521 672800684 64370521 756181857 592652322 228887401 599530996 111233973 330484393 490574767 309080152 39589626 763859303 515779418 857884239 413041773 131315151 512215539 928427585 94435842 33406756 609835791 487402355 166452913 499376588 897716502 326057450 61190422 970933314 569598840 513628820 813343928 217617307 25607210 543256089 157579238 279363811 687651296 615413851 921335291",
"3\n33 298 2123",
"2\n308497801 999999733",
"4\n2 1000000000 1000000000 1000001000",
"50\n253633508 253633508 126816754 63408377 63408377 126816754 126816754 253633508 63408377 126816754 507267016 63408377 63408377 63408377 253633508 38030190 507267016 63408377 253633508 63408377 126816754 253633508 253633508 507267016 507267016 253633508 507267016 63408377 253633508 63408377 126816754 507267016 253633508 507267016 126816754 126816754 253633508 63408377 126816754 507267016 507267016 25445907 63408377 126816754 253633508 253633508 126816754 63408377 126816754 507267016",
"49\n169 208 674 775 224 32 301 904 1689 711 146 668 628 996 445 316 412 454 747 32 483 281 86 411 414 618 176 909 775 191 821 749 690 59 271 956 940 849 877 949 862 543 664 357 683 177 629 685 881",
"49\n3 3 1 2 3 3 1 3 2 1 3 1 2 2 2 3 1 2 1 2 3 2 3 3 2 2 2 3 1 3 3 3 1 2 2 2 1 1 1 2 2 2 1 2 3 1 3 2 3",
"2\n1 10\n\nSAMQLE",
"47\n169884146 730277703 8645016 732791141 331583052 25104065 895622218 478600214 924154067 813310590 389843997 977252329 338578814 512086554 953548504 508435813 602216502 773835133 194230149 661387945 354427757 690709868 320153566 468158534 220775649 210587004 734620117 534953438 709154008 123773340 158880245 336766149 165968720 167637128 947182489 162048595 449945322 743190739 426987749 525627152 443513281 903494440 853812390 851061819 772823670 651380762 823985420",
"3\n2 5 3",
"50\n558017747 707412184 571476824 27885972 347137128 534455142 266330082 293791105 475845546 506551897 225052521 672800684 64370521 756181857 592652322 228887401 599530996 111233973 330484393 490574767 309080152 39589626 763859303 515779418 857884239 413041773 131315151 512215539 928427585 94435842 33406756 609835791 487402355 166452913 499376588 897716502 326057450 61190422 970933314 569598840 513628820 813343928 217617307 25607210 543256089 157579238 279363811 687651296 615413851 1372188137",
"3\n55 298 2123",
"2\n308497801 690619835",
"4\n2 1000000000 1000000000 1010001000",
"50\n253633508 253633508 126816754 121250564 63408377 126816754 126816754 253633508 63408377 126816754 507267016 63408377 63408377 63408377 253633508 38030190 507267016 63408377 253633508 63408377 126816754 253633508 253633508 507267016 507267016 253633508 507267016 63408377 253633508 63408377 126816754 507267016 253633508 507267016 126816754 126816754 253633508 63408377 126816754 507267016 507267016 25445907 63408377 126816754 253633508 253633508 126816754 63408377 126816754 507267016",
"49\n169 208 674 775 224 32 301 904 1689 711 146 668 628 996 445 316 412 454 747 32 483 281 86 411 414 618 176 909 775 191 821 749 690 59 271 956 940 849 877 949 862 543 664 28 683 177 629 685 881",
"49\n3 3 1 2 3 3 1 3 2 1 3 1 2 2 4 3 1 2 1 2 3 2 3 3 2 2 2 3 1 3 3 3 1 2 2 2 1 1 1 2 2 2 1 2 3 1 3 2 3",
"2\n1 10\n\nEAMQLS",
"47\n169884146 730277703 8645016 732791141 331583052 25104065 895622218 478600214 924154067 813310590 389843997 977252329 338578814 512086554 953548504 508435813 602216502 773835133 194230149 661387945 354427757 690709868 320153566 468158534 220775649 210587004 734620117 534953438 709154008 123773340 158880245 336766149 165968720 167637128 1562163077 162048595 449945322 743190739 426987749 525627152 443513281 903494440 853812390 851061819 772823670 651380762 823985420",
"3\n1 5 3",
"50\n558017747 707412184 571476824 27885972 347137128 534455142 266330082 293791105 475845546 506551897 225052521 672800684 64370521 756181857 592652322 228887401 599530996 111233973 330484393 490574767 309080152 39589626 763859303 515779418 857884239 413041773 131315151 512215539 928427585 94435842 33406756 609835791 487402355 166452913 499376588 897716502 47063801 61190422 970933314 569598840 513628820 813343928 217617307 25607210 543256089 157579238 279363811 687651296 615413851 1372188137",
"3\n55 543 2123",
"2\n567704889 690619835",
"4\n2 1000000000 1000000100 1010001000",
"50\n253633508 146998685 126816754 121250564 63408377 126816754 126816754 253633508 63408377 126816754 507267016 63408377 63408377 63408377 253633508 38030190 507267016 63408377 253633508 63408377 126816754 253633508 253633508 507267016 507267016 253633508 507267016 63408377 253633508 63408377 126816754 507267016 253633508 507267016 126816754 126816754 253633508 63408377 126816754 507267016 507267016 25445907 63408377 126816754 253633508 253633508 126816754 63408377 126816754 507267016",
"49\n169 208 674 775 224 32 301 904 1689 711 146 668 628 996 445 316 412 454 747 32 483 281 86 411 414 618 176 909 775 191 821 749 690 59 271 956 940 849 877 949 862 543 664 28 683 177 629 685 1627",
"49\n3 3 1 2 3 3 1 3 1 1 3 1 2 2 4 3 1 2 1 2 3 2 3 3 2 2 2 3 1 3 3 3 1 2 2 2 1 1 1 2 2 2 1 2 3 1 3 2 3",
"2\n1 10\n\nDAMQLS",
"47\n169884146 730277703 8645016 732791141 331583052 25104065 895622218 478600214 924154067 813310590 389843997 977252329 338578814 512086554 953548504 508435813 602216502 773835133 194230149 661387945 354427757 690709868 320153566 468158534 220775649 210587004 734620117 534953438 709154008 123773340 158880245 336766149 165968720 167637128 1562163077 162048595 449945322 743190739 426987749 525627152 443513281 903494440 853812390 851061819 772823670 179386044 823985420",
"3\n1 5 6",
"50\n558017747 707412184 571476824 27885972 347137128 534455142 266330082 293791105 475845546 506551897 225052521 672800684 64370521 756181857 592652322 228887401 599530996 111233973 330484393 490574767 309080152 39589626 763859303 515779418 857884239 413041773 131315151 512215539 928427585 94435842 33406756 609835791 487402355 166452913 499376588 897716502 47063801 61190422 970933314 569598840 513628820 813343928 217617307 25607210 543256089 157579238 279363811 687651296 115806160 1372188137",
"3\n55 282 2123",
"2\n1078465062 690619835",
"4\n2 1000000000 1000001100 1010001000",
"50\n253633508 146998685 126816754 121250564 63408377 126816754 126816754 253633508 63408377 126816754 507267016 63408377 63408377 28782781 253633508 38030190 507267016 63408377 253633508 63408377 126816754 253633508 253633508 507267016 507267016 253633508 507267016 63408377 253633508 63408377 126816754 507267016 253633508 507267016 126816754 126816754 253633508 63408377 126816754 507267016 507267016 25445907 63408377 126816754 253633508 253633508 126816754 63408377 126816754 507267016",
"49\n169 208 674 775 224 32 301 904 1689 711 146 668 628 996 445 316 412 454 747 32 483 435 86 411 414 618 176 909 775 191 821 749 690 59 271 956 940 849 877 949 862 543 664 28 683 177 629 685 1627",
"49\n3 3 1 3 3 3 1 3 1 1 3 1 2 2 4 3 1 2 1 2 3 2 3 3 2 2 2 3 1 3 3 3 1 2 2 2 1 1 1 2 2 2 1 2 3 1 3 2 3",
"2\n2 10\n\nDAMQLS",
"47\n169884146 730277703 8645016 732791141 331583052 25104065 895622218 478600214 924154067 813310590 389843997 977252329 338578814 512086554 953548504 508435813 602216502 773835133 194230149 661387945 354427757 690709868 320153566 468158534 220775649 210587004 734620117 534953438 709154008 123773340 39133725 336766149 165968720 167637128 1562163077 162048595 449945322 743190739 426987749 525627152 443513281 903494440 853812390 851061819 772823670 179386044 823985420",
"3\n1 5 1",
"50\n558017747 707412184 571476824 27885972 347137128 534455142 266330082 293791105 475845546 506551897 225052521 672800684 64370521 756181857 592652322 228887401 599530996 111233973 330484393 490574767 193547744 39589626 763859303 515779418 857884239 413041773 131315151 512215539 928427585 94435842 33406756 609835791 487402355 166452913 499376588 897716502 47063801 61190422 970933314 569598840 513628820 813343928 217617307 25607210 543256089 157579238 279363811 687651296 115806160 1372188137",
"3\n55 225 2123",
"2\n1078465062 1283974555",
"4\n1 1000000000 1000001100 1010001000",
"50\n253633508 146998685 126816754 121250564 63408377 126816754 126816754 253633508 63408377 126816754 507267016 63408377 63408377 28782781 253633508 38030190 507267016 63408377 253633508 63408377 126816754 253633508 253633508 507267016 507267016 253633508 507267016 63408377 253633508 63408377 126816754 507267016 253633508 507267016 126816754 126816754 253633508 63408377 126816754 507267016 507267016 46167009 63408377 126816754 253633508 253633508 126816754 63408377 126816754 507267016",
"49\n169 208 674 775 224 32 301 904 1689 711 146 668 628 996 445 316 412 454 747 32 483 435 86 411 414 618 176 909 775 191 360 749 690 59 271 956 940 849 877 949 862 543 664 28 683 177 629 685 1627",
"49\n3 3 1 3 3 3 1 3 1 1 3 1 2 2 4 3 1 2 1 2 3 2 3 3 2 2 2 6 1 3 3 3 1 2 2 2 1 1 1 2 2 2 1 2 3 1 3 2 3",
"2\n2 10\n\nDAMPLS",
"47\n169884146 730277703 8645016 732791141 331583052 25104065 895622218 478600214 924154067 813310590 389843997 977252329 338578814 512086554 953548504 508435813 602216502 773835133 194230149 661387945 354427757 690709868 320153566 468158534 220775649 210587004 734620117 534953438 531493073 123773340 39133725 336766149 165968720 167637128 1562163077 162048595 449945322 743190739 426987749 525627152 443513281 903494440 853812390 851061819 772823670 179386044 823985420",
"50\n558017747 707412184 1039499059 27885972 347137128 534455142 266330082 293791105 475845546 506551897 225052521 672800684 64370521 756181857 592652322 228887401 599530996 111233973 330484393 490574767 193547744 39589626 763859303 515779418 857884239 413041773 131315151 512215539 928427585 94435842 33406756 609835791 487402355 166452913 499376588 897716502 47063801 61190422 970933314 569598840 513628820 813343928 217617307 25607210 543256089 157579238 279363811 687651296 115806160 1372188137",
"3\n97 225 2123",
"2\n568712688 1283974555",
"4\n1 1000000000 1000001100 1010000000",
"50\n253633508 146998685 126816754 121250564 63408377 126816754 126816754 253633508 63408377 126816754 507267016 63408377 63408377 28782781 253633508 38030190 507267016 63408377 253633508 63408377 126816754 253633508 253633508 507267016 507267016 253633508 507267016 63408377 253633508 63408377 126816754 507267016 253633508 507267016 126816754 126816754 253633508 63408377 126816754 507267016 507267016 46167009 62570564 126816754 253633508 253633508 126816754 63408377 126816754 507267016",
"49\n169 208 674 775 224 32 301 904 1689 711 146 668 628 996 445 316 412 743 747 32 483 435 86 411 414 618 176 909 775 191 360 749 690 59 271 956 940 849 877 949 862 543 664 28 683 177 629 685 1627",
"49\n3 3 1 2 3 3 1 3 1 1 3 1 2 2 4 3 1 2 1 2 3 2 3 3 2 2 2 6 1 3 3 3 1 2 2 2 1 1 1 2 2 2 1 2 3 1 3 2 3",
"2\n2 9\n\nDAMPLS",
"47\n169884146 730277703 8645016 732791141 331583052 25104065 895622218 478600214 924154067 813310590 389843997 977252329 338578814 512086554 953548504 508435813 502453082 773835133 194230149 661387945 354427757 690709868 320153566 468158534 220775649 210587004 734620117 534953438 531493073 123773340 39133725 336766149 165968720 167637128 1562163077 162048595 449945322 743190739 426987749 525627152 443513281 903494440 853812390 851061819 772823670 179386044 823985420",
"50\n558017747 707412184 1039499059 27885972 347137128 534455142 266330082 293791105 475845546 506551897 225052521 672800684 64370521 756181857 592652322 228887401 599530996 111233973 330484393 113349450 193547744 39589626 763859303 515779418 857884239 413041773 131315151 512215539 928427585 94435842 33406756 609835791 487402355 166452913 499376588 897716502 47063801 61190422 970933314 569598840 513628820 813343928 217617307 25607210 543256089 157579238 279363811 687651296 115806160 1372188137",
"3\n16 225 2123",
"2\n568712688 2267905090",
"4\n1 1010000000 1000001100 1010000000",
"50\n253633508 146998685 126816754 121250564 63408377 126816754 126816754 253633508 63408377 126816754 961504815 63408377 63408377 28782781 253633508 38030190 507267016 63408377 253633508 63408377 126816754 253633508 253633508 507267016 507267016 253633508 507267016 63408377 253633508 63408377 126816754 507267016 253633508 507267016 126816754 126816754 253633508 63408377 126816754 507267016 507267016 46167009 62570564 126816754 253633508 253633508 126816754 63408377 126816754 507267016",
"49\n169 208 674 775 224 32 301 904 1689 711 146 668 628 996 445 316 412 743 747 32 483 435 86 411 414 618 176 909 775 191 360 749 690 59 22 956 940 849 877 949 862 543 664 28 683 177 629 685 1627",
"49\n3 3 1 2 3 3 1 3 1 1 6 1 2 2 4 3 1 2 1 2 3 2 3 3 2 2 2 6 1 3 3 3 1 2 2 2 1 1 1 2 2 2 1 2 3 1 3 2 3",
"47\n169884146 730277703 8645016 732791141 331583052 25104065 895622218 478600214 924154067 813310590 389843997 977252329 338578814 512086554 953548504 508435813 502453082 773835133 194230149 661387945 354427757 690709868 320153566 468158534 220775649 210587004 734620117 534953438 531493073 123773340 39133725 336766149 165968720 167637128 1562163077 162048595 449945322 743190739 426987749 525627152 443513281 903494440 853812390 851061819 772823670 46479523 823985420",
"50\n558017747 707412184 1039499059 27885972 470519346 534455142 266330082 293791105 475845546 506551897 225052521 672800684 64370521 756181857 592652322 228887401 599530996 111233973 330484393 113349450 193547744 39589626 763859303 515779418 857884239 413041773 131315151 512215539 928427585 94435842 33406756 609835791 487402355 166452913 499376588 897716502 47063801 61190422 970933314 569598840 513628820 813343928 217617307 25607210 543256089 157579238 279363811 687651296 115806160 1372188137",
"3\n3 225 2123",
"2\n919791480 2267905090",
"4\n2 1010000000 1000001100 1010000000",
"50\n253633508 146998685 126816754 121250564 63408377 126816754 126816754 253633508 63408377 126816754 961504815 63408377 63408377 28782781 253633508 38030190 507267016 63408377 253633508 63408377 126816754 253633508 153201044 507267016 507267016 253633508 507267016 63408377 253633508 63408377 126816754 507267016 253633508 507267016 126816754 126816754 253633508 63408377 126816754 507267016 507267016 46167009 62570564 126816754 253633508 253633508 126816754 63408377 126816754 507267016",
"49\n169 208 674 775 224 32 473 904 1689 711 146 668 628 996 445 316 412 743 747 32 483 435 86 411 414 618 176 909 775 191 360 749 690 59 22 956 940 849 877 949 862 543 664 28 683 177 629 685 1627",
"49\n3 3 1 2 3 3 1 3 1 1 6 1 2 2 4 3 1 2 1 2 3 1 3 3 2 2 2 6 1 3 3 3 1 2 2 2 1 1 1 2 2 2 1 2 3 1 3 2 3",
"47\n169884146 730277703 8645016 732791141 331583052 25104065 895622218 478600214 924154067 813310590 389843997 977252329 338578814 512086554 953548504 508435813 502453082 773835133 194230149 661387945 354427757 690709868 320153566 468158534 220775649 210587004 734620117 534953438 531493073 123773340 39133725 336766149 165968720 167637128 1562163077 162048595 449945322 743190739 426987749 525627152 443513281 903494440 853812390 851061819 1358846565 46479523 823985420",
"50\n558017747 707412184 1039499059 27885972 470519346 534455142 266330082 293791105 475845546 506551897 225052521 135344881 64370521 756181857 592652322 228887401 599530996 111233973 330484393 113349450 193547744 39589626 763859303 515779418 857884239 413041773 131315151 512215539 928427585 94435842 33406756 609835791 487402355 166452913 499376588 897716502 47063801 61190422 970933314 569598840 513628820 813343928 217617307 25607210 543256089 157579238 279363811 687651296 115806160 1372188137",
"2\n1453993503 2267905090",
"4\n2 1011000000 1000001100 1010000000",
"50\n253633508 146998685 126816754 121250564 63408377 126816754 126816754 253633508 63408377 126816754 961504815 63408377 63408377 28782781 253633508 38030190 507267016 63408377 253633508 63408377 126816754 253633508 153201044 507267016 507267016 253633508 507267016 63408377 253633508 63408377 126816754 507267016 253633508 507267016 126816754 126816754 253633508 63408377 126816754 507267016 507267016 46167009 62570564 126816754 253633508 253633508 126816754 63408377 149145178 507267016",
"49\n169 208 674 775 224 32 473 904 1689 711 146 668 628 996 445 316 412 743 747 32 483 435 86 411 414 618 176 164 775 191 360 749 690 59 22 956 940 849 877 949 862 543 664 28 683 177 629 685 1627",
"49\n3 3 1 2 3 3 1 3 1 1 6 1 2 2 4 4 1 2 1 2 3 1 3 3 2 2 2 6 1 3 3 3 1 2 2 2 1 1 1 2 2 2 1 2 3 1 3 2 3",
"47\n169884146 730277703 8645016 732791141 331583052 25104065 895622218 478600214 924154067 813310590 389843997 977252329 338578814 512086554 953548504 508435813 502453082 773835133 194230149 661387945 354427757 690709868 320153566 468158534 220775649 210587004 734620117 534953438 531493073 123773340 39133725 336766149 165968720 167637128 595916842 162048595 449945322 743190739 426987749 525627152 443513281 903494440 853812390 851061819 1358846565 46479523 823985420",
"50\n558017747 707412184 1039499059 27885972 470519346 534455142 266330082 293791105 475845546 506551897 225052521 135344881 64370521 756181857 592652322 228887401 403195730 111233973 330484393 113349450 193547744 39589626 763859303 515779418 857884239 413041773 131315151 512215539 928427585 94435842 33406756 609835791 487402355 166452913 499376588 897716502 47063801 61190422 970933314 569598840 513628820 813343928 217617307 25607210 543256089 157579238 279363811 687651296 115806160 1372188137",
"2\n1453993503 4099150481",
"4\n1 1011000000 1000001100 1010000000",
"50\n253633508 146998685 126816754 121250564 63408377 126816754 126816754 253633508 63408377 126816754 961504815 63408377 63408377 28782781 253633508 38030190 507267016 63408377 253633508 63408377 126816754 253633508 153201044 507267016 507267016 253633508 104630142 63408377 253633508 63408377 126816754 507267016 253633508 507267016 126816754 126816754 253633508 63408377 126816754 507267016 507267016 46167009 62570564 126816754 253633508 253633508 126816754 63408377 149145178 507267016"
],
"output": [
"NO\n",
"NO\n",
"YES\n",
"NO\n",
"NO\n",
"NO\n",
"YES\n",
"YES\n",
"NO\n",
"YES\n",
"NO\n",
"YES\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"YES\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"YES\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n"
]
} | 3HACKEREARTH
|