repo_name
stringlengths
7
92
path
stringlengths
5
149
copies
stringlengths
1
3
size
stringlengths
4
6
content
stringlengths
911
693k
license
stringclasses
15 values
wzbozon/scikit-learn
sklearn/tests/test_learning_curve.py
225
10791
# Author: Alexander Fabisch <[email protected]> # # License: BSD 3 clause import sys from sklearn.externals.six.moves import cStringIO as StringIO import numpy as np import warnings from sklearn.base import BaseEstimator from sklearn.learning_curve import learning_curve, validation_curve from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_warns from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.datasets import make_classification from sklearn.cross_validation import KFold from sklearn.linear_model import PassiveAggressiveClassifier class MockImprovingEstimator(BaseEstimator): """Dummy classifier to test the learning curve""" def __init__(self, n_max_train_sizes): self.n_max_train_sizes = n_max_train_sizes self.train_sizes = 0 self.X_subset = None def fit(self, X_subset, y_subset=None): self.X_subset = X_subset self.train_sizes = X_subset.shape[0] return self def predict(self, X): raise NotImplementedError def score(self, X=None, Y=None): # training score becomes worse (2 -> 1), test error better (0 -> 1) if self._is_training_data(X): return 2. - float(self.train_sizes) / self.n_max_train_sizes else: return float(self.train_sizes) / self.n_max_train_sizes def _is_training_data(self, X): return X is self.X_subset class MockIncrementalImprovingEstimator(MockImprovingEstimator): """Dummy classifier that provides partial_fit""" def __init__(self, n_max_train_sizes): super(MockIncrementalImprovingEstimator, self).__init__(n_max_train_sizes) self.x = None def _is_training_data(self, X): return self.x in X def partial_fit(self, X, y=None, **params): self.train_sizes += X.shape[0] self.x = X[0] class MockEstimatorWithParameter(BaseEstimator): """Dummy classifier to test the validation curve""" def __init__(self, param=0.5): self.X_subset = None self.param = param def fit(self, X_subset, y_subset): self.X_subset = X_subset self.train_sizes = X_subset.shape[0] return self def predict(self, X): raise NotImplementedError def score(self, X=None, y=None): return self.param if self._is_training_data(X) else 1 - self.param def _is_training_data(self, X): return X is self.X_subset def test_learning_curve(): X, y = make_classification(n_samples=30, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) estimator = MockImprovingEstimator(20) with warnings.catch_warnings(record=True) as w: train_sizes, train_scores, test_scores = learning_curve( estimator, X, y, cv=3, train_sizes=np.linspace(0.1, 1.0, 10)) if len(w) > 0: raise RuntimeError("Unexpected warning: %r" % w[0].message) assert_equal(train_scores.shape, (10, 3)) assert_equal(test_scores.shape, (10, 3)) assert_array_equal(train_sizes, np.linspace(2, 20, 10)) assert_array_almost_equal(train_scores.mean(axis=1), np.linspace(1.9, 1.0, 10)) assert_array_almost_equal(test_scores.mean(axis=1), np.linspace(0.1, 1.0, 10)) def test_learning_curve_unsupervised(): X, _ = make_classification(n_samples=30, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) estimator = MockImprovingEstimator(20) train_sizes, train_scores, test_scores = learning_curve( estimator, X, y=None, cv=3, train_sizes=np.linspace(0.1, 1.0, 10)) assert_array_equal(train_sizes, np.linspace(2, 20, 10)) assert_array_almost_equal(train_scores.mean(axis=1), np.linspace(1.9, 1.0, 10)) assert_array_almost_equal(test_scores.mean(axis=1), np.linspace(0.1, 1.0, 10)) def test_learning_curve_verbose(): X, y = make_classification(n_samples=30, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) estimator = MockImprovingEstimator(20) old_stdout = sys.stdout sys.stdout = StringIO() try: train_sizes, train_scores, test_scores = \ learning_curve(estimator, X, y, cv=3, verbose=1) finally: out = sys.stdout.getvalue() sys.stdout.close() sys.stdout = old_stdout assert("[learning_curve]" in out) def test_learning_curve_incremental_learning_not_possible(): X, y = make_classification(n_samples=2, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) # The mockup does not have partial_fit() estimator = MockImprovingEstimator(1) assert_raises(ValueError, learning_curve, estimator, X, y, exploit_incremental_learning=True) def test_learning_curve_incremental_learning(): X, y = make_classification(n_samples=30, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) estimator = MockIncrementalImprovingEstimator(20) train_sizes, train_scores, test_scores = learning_curve( estimator, X, y, cv=3, exploit_incremental_learning=True, train_sizes=np.linspace(0.1, 1.0, 10)) assert_array_equal(train_sizes, np.linspace(2, 20, 10)) assert_array_almost_equal(train_scores.mean(axis=1), np.linspace(1.9, 1.0, 10)) assert_array_almost_equal(test_scores.mean(axis=1), np.linspace(0.1, 1.0, 10)) def test_learning_curve_incremental_learning_unsupervised(): X, _ = make_classification(n_samples=30, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) estimator = MockIncrementalImprovingEstimator(20) train_sizes, train_scores, test_scores = learning_curve( estimator, X, y=None, cv=3, exploit_incremental_learning=True, train_sizes=np.linspace(0.1, 1.0, 10)) assert_array_equal(train_sizes, np.linspace(2, 20, 10)) assert_array_almost_equal(train_scores.mean(axis=1), np.linspace(1.9, 1.0, 10)) assert_array_almost_equal(test_scores.mean(axis=1), np.linspace(0.1, 1.0, 10)) def test_learning_curve_batch_and_incremental_learning_are_equal(): X, y = make_classification(n_samples=30, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) train_sizes = np.linspace(0.2, 1.0, 5) estimator = PassiveAggressiveClassifier(n_iter=1, shuffle=False) train_sizes_inc, train_scores_inc, test_scores_inc = \ learning_curve( estimator, X, y, train_sizes=train_sizes, cv=3, exploit_incremental_learning=True) train_sizes_batch, train_scores_batch, test_scores_batch = \ learning_curve( estimator, X, y, cv=3, train_sizes=train_sizes, exploit_incremental_learning=False) assert_array_equal(train_sizes_inc, train_sizes_batch) assert_array_almost_equal(train_scores_inc.mean(axis=1), train_scores_batch.mean(axis=1)) assert_array_almost_equal(test_scores_inc.mean(axis=1), test_scores_batch.mean(axis=1)) def test_learning_curve_n_sample_range_out_of_bounds(): X, y = make_classification(n_samples=30, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) estimator = MockImprovingEstimator(20) assert_raises(ValueError, learning_curve, estimator, X, y, cv=3, train_sizes=[0, 1]) assert_raises(ValueError, learning_curve, estimator, X, y, cv=3, train_sizes=[0.0, 1.0]) assert_raises(ValueError, learning_curve, estimator, X, y, cv=3, train_sizes=[0.1, 1.1]) assert_raises(ValueError, learning_curve, estimator, X, y, cv=3, train_sizes=[0, 20]) assert_raises(ValueError, learning_curve, estimator, X, y, cv=3, train_sizes=[1, 21]) def test_learning_curve_remove_duplicate_sample_sizes(): X, y = make_classification(n_samples=3, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) estimator = MockImprovingEstimator(2) train_sizes, _, _ = assert_warns( RuntimeWarning, learning_curve, estimator, X, y, cv=3, train_sizes=np.linspace(0.33, 1.0, 3)) assert_array_equal(train_sizes, [1, 2]) def test_learning_curve_with_boolean_indices(): X, y = make_classification(n_samples=30, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) estimator = MockImprovingEstimator(20) cv = KFold(n=30, n_folds=3) train_sizes, train_scores, test_scores = learning_curve( estimator, X, y, cv=cv, train_sizes=np.linspace(0.1, 1.0, 10)) assert_array_equal(train_sizes, np.linspace(2, 20, 10)) assert_array_almost_equal(train_scores.mean(axis=1), np.linspace(1.9, 1.0, 10)) assert_array_almost_equal(test_scores.mean(axis=1), np.linspace(0.1, 1.0, 10)) def test_validation_curve(): X, y = make_classification(n_samples=2, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) param_range = np.linspace(0, 1, 10) with warnings.catch_warnings(record=True) as w: train_scores, test_scores = validation_curve( MockEstimatorWithParameter(), X, y, param_name="param", param_range=param_range, cv=2 ) if len(w) > 0: raise RuntimeError("Unexpected warning: %r" % w[0].message) assert_array_almost_equal(train_scores.mean(axis=1), param_range) assert_array_almost_equal(test_scores.mean(axis=1), 1 - param_range)
bsd-3-clause
irblsensitivity/irblsensitivity
scripts/analysis/MWU_Project_EMSE.py
1
9231
#-*- coding: utf-8 -*- ''' Created on 2017. 02. 12 Updated on 2017. 02. 12 ''' from __future__ import print_function import os import re import matplotlib # Force matplotlib to not use any Xwindows backend. matplotlib.use('Agg') from scipy.stats import mannwhitneyu, pearsonr from ExpBase import ExpBase import numpy as np from commons import Subjects class MWUTest(ExpBase): techniques = ['BugLocator', 'BRTracer', 'BLUiR', 'AmaLgam', 'BLIA', 'Locus'] validDigits = { 'AvgLOC': 2, 'InvNSrc': 4, 'AvgCC': 4, 'SrcAvgDistTk': 2, 'SrcAvgNTk': 2, 'SrcRatioDict': 4, 'NSrc': 2, 'SrcNumCmt': 4, 'SrcNDistTk': 0, 'SrcLocalDistTk': 3, 'SrcRatioCmt': 4, 'SrcNumMhd': 4, 'RatioEnum': 4, 'RepAvgTk': 2, 'NReport': 0, 'RepNDistTk': 0, 'RepAvgDistTk': 3, 'RepAvgLocalTk':4, 'RepAvgCE': 4, 'RatioCode': 4, 'RatioSTrace': 4, '|STinterRT|': 0, 'AvgMinIRf': 4, 'AvgMaxIRf': 4, 'AvgMeanIRf': 4, 'KSDist': 4, 'AvgUIRf': 4, 'AvgProdIRf': 4, 'hasCE': 4, 'hasSTrace': 4, 'hasCR': 4, 'hasEnum': 4, 'NTk':2, 'NDistTk':3, 'NLocalTk':4, 'NDistCE':3 } featureorders = { '01': ['AvgLOC', 'AvgCC', 'SrcAvgNTk', 'SrcAvgDistTk', 'SrcLocalDistTk', 'SrcNDistTk', 'NSrc', 'InvNSrc', 'SrcNumMhd', 'SrcNumCmt', 'SrcRatioCmt', 'SrcRatioDict'], '02': ['RatioEnum', 'RatioSTrace', 'RatioCode', 'RepNDistTk', 'RepAvgTk', 'RepAvgDistTk', 'RepAvgLocalTk', 'RepAvgCE', 'NReport'], '03': ['|STinterRT|', 'KSDist', 'AvgProdIRf', 'AvgMinIRf', 'AvgMaxIRf', 'AvgMeanIRf', 'AvgUIRf'], '04': ['hasEnum', 'hasSTrace', 'hasCR', 'hasCE'], '05': ['NTk', 'NDistTk', 'NLocalTk', 'NDistCE'] } def MWUtest(self, _dataA, _dataB, _bugsA=None, _bugsB=None): ''' Mann-Whitney U Test between IRBL technique results :param _nameA: The results of Type A :param _nameB: The results of Type B :param _bugsA: the count of bugs for each techniques :param _bugsB: the count of bugs for each techniques :return: {technique : pvalue, techinique: pvalue, ...} ''' results = {} for idx in range(len(self.techniques)): filteredDataA = [items[idx] for items in _dataA.values()] filteredDataB = [items[idx] for items in _dataB.values()] #filteredDataA, labels = self.get_array_items(_dataA, idx) #filteredDataB, labels = self.get_array_items(_dataB, idx) if _bugsA is not None: if isinstance(_bugsA, dict) is True: filteredDataA += ([0] * (_bugsA[self.techniques[idx]] - len(filteredDataA))) else: filteredDataA += ([0] * (_bugsA - len(filteredDataA))) if _bugsB is not None: if isinstance(_bugsB, dict) is True: filteredDataB += ([0] * (_bugsB[self.techniques[idx]] - len(filteredDataB))) else: filteredDataB += ([0] * (_bugsB - len(filteredDataB))) #slope, intercept, r_value, p_value, stderr = stats.linregress(dataMAP, dataFeature) t_statistic, t_pvalue = mannwhitneyu(filteredDataA, filteredDataB, use_continuity=True, alternative='two-sided') l_statistic, l_pvalue = mannwhitneyu(filteredDataA, filteredDataB, use_continuity=True, alternative='less') g_statistic, g_pvalue = mannwhitneyu(filteredDataA, filteredDataB, use_continuity=True, alternative='greater') pvalue = min(t_pvalue , l_pvalue, g_pvalue) #statistic, pvalue = mannwhitneyu(filteredDataA, filteredDataB, use_continuity=True, alternative='two-sided') # 'less', 'two-sided', 'greater' results[self.techniques[idx]] = pvalue return results def get_technique_averages(self, _source, _counts): ''' :param _source: project's bug results dict :param _count: original bug counts for each technique :return: ''' results = {} for idx in range(len(self.techniques)): sumValue = 0 for itemID, item in _source.iteritems(): sumValue += item[idx] results[self.techniques[idx]] = sumValue / float(_counts[self.techniques[idx]]) return results def compare_single_results(self, _basepath): ''' for Table 7 : single results :param _basepath: :return: ''' techinques, CNTdata = self.load_results(os.path.join(_basepath, u'BugCNT.txt'), ['str'] * 2 + ['int'] * 6) def get_averages(_itemType): results = {} for tData in ['Old', 'New_Single']: filepath = os.path.join(_basepath, u'%s_%s.txt' % (tData, _itemType)) titles, data = self.load_results_items(filepath, ['str'] * 3 + ['float'] * 6) for group in data: if group not in results: results[group] = {} for project in data[group]: CNTs = dict(zip(titles, CNTdata[group][project])) results[group][project] = self.get_technique_averages(data[group][project], CNTs) return results APresults = get_averages('AP') TPresults = get_averages('TP') features = self.extract_features(_basepath) print(u'Technique Mann-Whitney U Test p-values') print(u'\t' + u'\t\t'.join(self.techniques)) print(u'Subject\tMAP\tMRR\tMAP\tMRR\tMAP\tMRR\tMAP\tMRR\tMAP\tMRR\tMAP\tMRR') S = Subjects() S.groups.append(u'Previous') S.projects[u'Previous'] = [u'AspectJ', u'ZXing', u'PDE', u'JDT', u'SWT'] for group in S.groups: for project in S.projects[group]: text = u'%s' % project APmax = self.techniques[0] TPmax = self.techniques[0] for tech in self.techniques: if APresults[group][project][APmax] < APresults[group][project][tech]: APmax = tech if TPresults[group][project][TPmax] < TPresults[group][project][tech]: TPmax = tech for tech in self.techniques: if APmax != tech: text += u' & %.4f' % APresults[group][project][tech] else: text += u' & \\cellcolor{blue!25}\\textbf{%.4f}' % APresults[group][project][tech] if TPmax != tech: text += u' & %.4f' % TPresults[group][project][tech] else: text += u' & \\cellcolor{green!25}\\textbf{%.4f}' % TPresults[group][project][tech] # if group in features: # for fid in [u'RatioEnum', u'RatioSTrace', u'RatioCode', u'RepAvgTk']: # text += u' & %.4f' % features[group][project][fid] # text += u' \\\\' # else: # text += u' & & & & \\\\' text += u' \\\\' print(text) pass def compare_multi_results(self, _basepath): ''' for Table 7 : single results :param _basepath: :return: ''' techinques, CNTdata = self.load_results(os.path.join(_basepath, u'BugCNT.txt'), ['str'] * 2 + ['int'] * 6) def get_average_mwu(_itemType): results = {} multi = os.path.join(_basepath, u'New_Multiple_%s.txt' % _itemType) titles, dataM = self.load_results_items(multi, ['str'] * 3 + ['float'] * 6) # MWUresults = {} # single = os.path.join(_basepath, u'New_Single_%s.txt' % _itemType) # titles, dataS = self.load_results_items(single, ['str'] * 3 + ['float'] * 6) for group in dataM: if group not in results: results[group] = {} #if group not in MWUresults: MWUresults[group] = {} for project in dataM[group]: CNTs = dict(zip(titles, CNTdata[group][project])) results[group][project] = self.get_technique_averages(dataM[group][project], CNTs) #MWUresults[group][project] = self.MWUtest(dataS[group][project], dataM[group][project], CNTs, CNTs) return results #, MWUresults APresults = get_average_mwu('AP') TPresults = get_average_mwu('TP') print(u'') print(u'\t' + u'\t\t'.join(self.techniques)) print(u'Subject\tMAP\tMRR\tMAP\tMRR\tMAP\tMRR\tMAP\tMRR\tMAP\tMRR\tMAP\tMRR') S = Subjects() for group in S.groups: for project in S.projects[group]: text = u'%s' % project APmax = self.techniques[0] TPmax = self.techniques[0] for tech in self.techniques: if APresults[group][project][APmax] < APresults[group][project][tech]: APmax = tech if TPresults[group][project][TPmax] < TPresults[group][project][tech]: TPmax = tech for tech in self.techniques: if APmax != tech: text += u' & %.4f' % APresults[group][project][tech] else: text += u' & \\cellcolor{blue!25}\\textbf{%.4f}' % APresults[group][project][tech] if TPmax != tech: text += u' & %.4f ' % TPresults[group][project][tech] else: text += u' & \\cellcolor{green!25}\\textbf{%.4f} ' % TPresults[group][project][tech] print(text, end=u'') print(u' \\\\') pass def extract_features(self, _basepath): titles, data = self.load_results(os.path.join(_basepath, u'02_PW_Bug_Features.txt'), ['str'] * 2 + ['int'] + ['float'] * 3 + ['int', 'float'] ) for group in data: for project in data[group]: item = data[group][project] data[group][project] = dict(zip([u'RatioEnum', u'RatioSTrace', u'RatioCode', u'RepAvgTk'], [item[1], item[2], item[3], item[5]])) return data ############################################################################################################### ############################################################################################################### if __name__ == "__main__": basepath = u'/mnt/exp/Bug/analysis/' obj = MWUTest() obj.compare_multi_results(basepath) obj.compare_single_results(basepath) # obj.compare_test(basepath) #obj.calc_pearson(basepath) #obj.compare_dup_results(basepath)
apache-2.0
fmfn/UnbalancedDataset
examples/under-sampling/plot_illustration_tomek_links.py
2
3180
""" ============================================== Illustration of the definition of a Tomek link ============================================== This example illustrates what is a Tomek link. """ # Authors: Guillaume Lemaitre <[email protected]> # License: MIT # %% print(__doc__) import matplotlib.pyplot as plt import seaborn as sns sns.set_context("poster") # %% [markdown] # This function allows to make nice plotting # %% def make_plot_despine(ax): sns.despine(ax=ax, offset=10) ax.set_xlim([0, 3]) ax.set_ylim([0, 3]) ax.set_xlabel(r"$X_1$") ax.set_ylabel(r"$X_2$") ax.legend(loc="lower right") # %% [markdown] # We will generate some toy data that illustrates how # :class:`~imblearn.under_sampling.TomekLinks` is used to clean a dataset. # %% import numpy as np rng = np.random.RandomState(18) X_minority = np.transpose( [[1.1, 1.3, 1.15, 0.8, 0.55, 2.1], [1.0, 1.5, 1.7, 2.5, 0.55, 1.9]] ) X_majority = np.transpose( [ [2.1, 2.12, 2.13, 2.14, 2.2, 2.3, 2.5, 2.45], [1.5, 2.1, 2.7, 0.9, 1.0, 1.4, 2.4, 2.9], ] ) # %% [markdown] # In the figure above, the samples highlighted in green form a Tomek link since # they are of different classes and are nearest neighbors of each other. fig, ax = plt.subplots(figsize=(8, 8)) ax.scatter( X_minority[:, 0], X_minority[:, 1], label="Minority class", s=200, marker="_", ) ax.scatter( X_majority[:, 0], X_majority[:, 1], label="Majority class", s=200, marker="+", ) # highlight the samples of interest ax.scatter( [X_minority[-1, 0], X_majority[1, 0]], [X_minority[-1, 1], X_majority[1, 1]], label="Tomek link", s=200, alpha=0.3, ) make_plot_despine(ax) fig.suptitle("Illustration of a Tomek link") fig.tight_layout() # %% [markdown] # We can run the :class:`~imblearn.under_sampling.TomekLinks` sampling to # remove the corresponding samples. If `sampling_strategy='auto'` only the # sample from the majority class will be removed. If `sampling_strategy='all'` # both samples will be removed. # %% from imblearn.under_sampling import TomekLinks fig, axs = plt.subplots(nrows=1, ncols=2, figsize=(16, 8)) samplers = { "Removing only majority samples": TomekLinks(sampling_strategy="auto"), "Removing all samples": TomekLinks(sampling_strategy="all"), } for ax, (title, sampler) in zip(axs, samplers.items()): X_res, y_res = sampler.fit_resample( np.vstack((X_minority, X_majority)), np.array([0] * X_minority.shape[0] + [1] * X_majority.shape[0]), ) ax.scatter( X_res[y_res == 0][:, 0], X_res[y_res == 0][:, 1], label="Minority class", s=200, marker="_", ) ax.scatter( X_res[y_res == 1][:, 0], X_res[y_res == 1][:, 1], label="Majority class", s=200, marker="+", ) # highlight the samples of interest ax.scatter( [X_minority[-1, 0], X_majority[1, 0]], [X_minority[-1, 1], X_majority[1, 1]], label="Tomek link", s=200, alpha=0.3, ) ax.set_title(title) make_plot_despine(ax) fig.tight_layout() plt.show()
mit
waylonflinn/bquery
bquery/benchmarks/bench_groupby.py
2
2465
from __future__ import print_function # bench related imports import numpy as np import shutil import bquery import pandas as pd import itertools as itt import cytoolz import cytoolz.dicttoolz from toolz import valmap, compose from cytoolz.curried import pluck import blaze as blz # other imports import contextlib import os import time try: # Python 2 from itertools import izip except ImportError: # Python 3 izip = zip t_elapsed = 0.0 @contextlib.contextmanager def ctime(message=None): "Counts the time spent in some context" global t_elapsed t_elapsed = 0.0 print('\n') t = time.time() yield if message: print(message + ": ", end='') t_elapsed = time.time() - t print(round(t_elapsed, 4), "sec") ga = itt.cycle(['ES', 'NL']) gb = itt.cycle(['b1', 'b2', 'b3', 'b4', 'b5']) gx = itt.cycle([1, 2]) gy = itt.cycle([-1, -2]) rootdir = 'bench-data.bcolz' if os.path.exists(rootdir): shutil.rmtree(rootdir) n_rows = 1000000 print('Rows: ', n_rows) # -- data z = np.fromiter(((a, b, x, y) for a, b, x, y in izip(ga, gb, gx, gy)), dtype='S2,S2,i8,i8', count=n_rows) ct = bquery.ctable(z, rootdir=rootdir, ) print(ct) # -- pandas -- df = pd.DataFrame(z) with ctime(message='pandas'): result = df.groupby(['f0'])['f2'].sum() print(result) t_pandas = t_elapsed # -- cytoolz -- with ctime(message='cytoolz over bcolz'): # In Memory Split-Apply-Combine # http://toolz.readthedocs.org/en/latest/streaming-analytics.html?highlight=reduce#split-apply-combine-with-groupby-and-reduceby r = cytoolz.groupby(lambda row: row.f0, ct) result = valmap(compose(sum, pluck(2)), r) print('x{0} slower than pandas'.format(round(t_elapsed / t_pandas, 2))) print(result) # -- blaze + bcolz -- blaze_data = blz.Data(ct.rootdir) expr = blz.by(blaze_data.f0, sum_f2=blaze_data.f2.sum()) with ctime(message='blaze over bcolz'): result = blz.compute(expr) print('x{0} slower than pandas'.format(round(t_elapsed / t_pandas, 2))) print(result) # -- bquery -- with ctime(message='bquery over bcolz'): result = ct.groupby(['f0'], ['f2']) print('x{0} slower than pandas'.format(round(t_elapsed / t_pandas, 2))) print(result) ct.cache_factor(['f0'], refresh=True) with ctime(message='bquery over bcolz (factorization cached)'): result = ct.groupby(['f0'], ['f2']) print('x{0} slower than pandas'.format(round(t_elapsed / t_pandas, 2))) print(result) shutil.rmtree(rootdir)
bsd-3-clause
HiSPARC/sapphire
scripts/simulations/analyze_shower_front.py
1
5153
import numpy as np import tables from scipy.optimize import curve_fit from scipy.stats import scoreatpercentile from artist import GraphArtist from pylab import * import matplotlib.pyplot as plt import utils USE_TEX = False # For matplotlib plots if USE_TEX: rcParams['font.serif'] = 'Computer Modern' rcParams['font.sans-serif'] = 'Computer Modern' rcParams['font.family'] = 'sans-serif' rcParams['figure.figsize'] = [4 * x for x in (1, 2. / 3)] rcParams['figure.subplot.left'] = 0.175 rcParams['figure.subplot.bottom'] = 0.175 rcParams['font.size'] = 10 rcParams['legend.fontsize'] = 'small' rcParams['text.usetex'] = True def main(): global data data = tables.open_file('master-ch4v2.h5', 'r') #utils.set_suffix('E_1PeV') #scatterplot_core_distance_vs_time() #median_core_distance_vs_time() boxplot_core_distance_vs_time() #hists_core_distance_vs_time() plot_front_passage() def scatterplot_core_distance_vs_time(): plt.figure() sim = data.root.showers.E_1PeV.zenith_0 electrons = sim.electrons plt.loglog(electrons[:]['core_distance'], electrons[:]['arrival_time'], ',') plt.xlim(1e0, 1e2) plt.ylim(1e-3, 1e3) plt.xlabel("Core distance [m]") plt.ylabel("Arrival time [ns]") utils.title("Shower front timing structure") utils.saveplot() def median_core_distance_vs_time(): plt.figure() plot_and_fit_statistic(lambda a: scoreatpercentile(a, 25)) plot_and_fit_statistic(lambda a: scoreatpercentile(a, 75)) utils.title("Shower front timing structure (25, 75 %)") utils.saveplot() plt.xlabel("Core distance [m]") plt.ylabel("Median arrival time [ns]") legend(loc='lower right') def plot_and_fit_statistic(func): sim = data.root.showers.E_1PeV.zenith_0 electrons = sim.electrons bins = np.logspace(0, 2, 25) x, y = [], [] for low, high in zip(bins[:-1], bins[1:]): sel = electrons.read_where('(low < core_distance) & (core_distance <= high)') statistic = func(sel[:]['arrival_time']) x.append(np.mean([low, high])) y.append(statistic) plt.loglog(x, y) logx = log10(x) logy = log10(y) logf = lambda x, a, b: a * x + b g = lambda x, a, b: 10 ** logf(log10(x), a, b) popt, pcov = curve_fit(logf, logx, logy) plot(x, g(x, *popt), label="f(x) = %.2e * x ^ %.2e" % (10 ** popt[1], popt[0])) def boxplot_core_distance_vs_time(): plt.figure() sim = data.root.showers.E_1PeV.zenith_0.shower_0 leptons = sim.leptons #bins = np.logspace(0, 2, 25) bins = np.linspace(0, 100, 15) x, arrival_time, widths = [], [], [] t25, t50, t75 = [], [], [] for low, high in zip(bins[:-1], bins[1:]): sel = leptons.read_where('(low < core_distance) & (core_distance <= high)') x.append(np.mean([low, high])) arrival_time.append(sel[:]['arrival_time']) widths.append((high - low) / 2) ts = sel[:]['arrival_time'] t25.append(scoreatpercentile(ts, 25)) t50.append(scoreatpercentile(ts, 50)) t75.append(scoreatpercentile(ts, 75)) fill_between(x, t25, t75, color='0.75') plot(x, t50, 'o-', color='black') plt.xlabel("Core distance [m]") plt.ylabel("Arrival time [ns]") #utils.title("Shower front timing structure") utils.saveplot() graph = GraphArtist() graph.plot(x, t50, linestyle=None) graph.shade_region(x, t25, t75) graph.set_xlabel(r"Core distance [\si{\meter}]") graph.set_ylabel(r"Arrival time [\si{\nano\second}]") graph.set_ylimits(0, 30) graph.set_xlimits(0, 100) graph.save('plots/front-passage-vs-R') def hists_core_distance_vs_time(): plt.figure() sim = data.root.showers.E_1PeV.zenith_0 electrons = sim.electrons bins = np.logspace(0, 2, 5) for low, high in zip(bins[:-1], bins[1:]): sel = electrons.read_where('(low < core_distance) & (core_distance <= high)') arrival_time = sel[:]['arrival_time'] plt.hist(arrival_time, bins=np.logspace(-2, 3, 50), histtype='step', label="%.2f <= log10(R) < %.2f" % (np.log10(low), np.log10(high))) plt.xscale('log') plt.xlabel("Arrival Time [ns]") plt.ylabel("Count") plt.legend(loc='upper left') utils.title("Shower front timing structure") utils.saveplot() def plot_front_passage(): sim = data.root.showers.E_1PeV.zenith_0.shower_0 leptons = sim.leptons R = 40 dR = 2 low = R - dR high = R + dR global t t = leptons.read_where('(low < core_distance) & (core_distance <= high)', field='arrival_time') n, bins, patches = hist(t, bins=linspace(0, 30, 31), histtype='step') graph = GraphArtist() graph.histogram(n, bins) graph.set_xlabel(r"Arrival time [\si{\nano\second}]") graph.set_ylabel("Number of leptons") graph.set_ylimits(min=0) graph.set_xlimits(0, 30) graph.save('plots/front-passage') if __name__ == '__main__': main()
gpl-3.0
jmbeuken/abinit
scripts/post_processing/abinit_eignc_to_bandstructure.py
3
47417
#!/usr/bin/python #=================================================================# # Script to plot the bandstructure from an abinit bandstructure # # _EIG.nc netcdf file or from a wannier bandstructure, or from # # an _EIG.nc file+GW file+ bandstructure _EIG.nc file # #=================================================================# ######### #IMPORTS# ######### import numpy as N import matplotlib.pyplot as P import netCDF4 as nc import sys import os import argparse import time ############# ##VARIABLES## ############# class VariableContainer:pass #Constants csts = VariableContainer() csts.hartree2ev = N.float(27.211396132) csts.ev2hartree = N.float(1/csts.hartree2ev) csts.sqrtpi = N.float(N.sqrt(N.pi)) csts.invsqrtpi = N.float(1/csts.sqrtpi) csts.TOLKPTS = N.float(0.00001) ########### ##CLASSES## ########### class PolynomialFit(object): def __init__(self): self.degree = 2 class EigenvalueContainer(object): nsppol = None nkpt = None mband = None eigenvalues = None units = None wtk = None filename = None filefullpath = None bd_indices = None eigenvalue_type = None kpoints = None #kpoint_sampling_type: can be Monkhorst-Pack or Bandstructure KPT_W90_TOL = N.float(1.0e-6) KPT_DFT_TOL = N.float(1.0e-8) kpoint_sampling_type = 'Monkhorst-Pack' inputgvectors = None gvectors = None special_kpoints = None special_kpoints_names = None special_kpoints_indices = None kpoint_path_values = None kpoint_reduced_path_values = None kpoint_path_length = None #reduced_norm = None norm_paths = None norm_reduced_paths = None def __init__(self,directory=None,filename=None): if filename == None:return if directory == None:directory='.' self.filename = filename self.filefullpath = '%s/%s' %(directory,filename) self.file_open(self.filefullpath) def set_kpoint_sampling_type(self,kpoint_sampling_type): if kpoint_sampling_type != 'Monkhorst-Pack' and kpoint_sampling_type != 'Bandstructure': print 'ERROR: kpoint_sampling_type "%s" does not exists' %kpoint_sampling_type print ' it should be "Monkhorst-Pack" or "Bandstructure" ... exit' sys.exit() self.kpoint_sampling_type = kpoint_sampling_type def correct_kpt(self,kpoint,tolerance=N.float(1.0e-6)): kpt_correct = N.array(kpoint,N.float) changed = False for ii in range(3): if N.allclose(kpoint[ii],N.float(1.0/3.0),atol=tolerance): kpt_correct[ii] = N.float(1.0/3.0) changed = True elif N.allclose(kpoint[ii],N.float(1.0/6.0),atol=tolerance): kpt_correct[ii] = N.float(1.0/6.0) changed = True elif N.allclose(kpoint[ii],N.float(-1.0/6.0),atol=tolerance): kpt_correct[ii] = N.float(-1.0/6.0) changed = True elif N.allclose(kpoint[ii],N.float(-1.0/3.0),atol=tolerance): kpt_correct[ii] = N.float(-1.0/3.0) changed = True if changed: print 'COMMENT: kpoint %15.12f %15.12f %15.12f has been changed to %15.12f %15.12f %15.12f' %(kpoint[0],kpoint[1],kpoint[2],kpt_correct[0],kpt_correct[1],kpt_correct[2]) return kpt_correct def find_special_kpoints(self,gvectors=None): if self.kpoint_sampling_type != 'Bandstructure': print 'ERROR: special kpoints are usefull only for bandstructures ... returning find_special_kpoints' return if self.eigenvalue_type == 'W90': correct_kpt_tolerance = N.float(1.0e-4) KPT_TOL = self.KPT_W90_TOL elif self.eigenvalue_type == 'DFT': correct_kpt_tolerance = N.float(1.0e-6) KPT_TOL = self.KPT_DFT_TOL else: print 'ERROR: eigenvalue_type is "%s" while it should be "W90" or "DFT" ... returning find_special_kpoints' %self.eigenvalue_type return if gvectors == None: self.inputgvectors = False self.gvectors = N.identity(3,N.float) else: if N.shape(gvectors) != (3, 3): print 'ERROR: wrong gvectors ... exiting now' sys.exit() self.inputgvectors = True self.gvectors = gvectors full_kpoints = N.zeros((self.nkpt,3),N.float) for ikpt in range(self.nkpt): full_kpoints[ikpt,:] = self.kpoints[ikpt,0]*self.gvectors[0,:]+self.kpoints[ikpt,1]*self.gvectors[1,:]+self.kpoints[ikpt,2]*self.gvectors[2,:] delta_kpt = full_kpoints[1,:]-full_kpoints[0,:] self.special_kpoints_indices = list() self.special_kpoints = list() self.special_kpoints_indices.append(0) self.special_kpoints.append(self.correct_kpt(self.kpoints[0,:],tolerance=correct_kpt_tolerance)) for ikpt in range(1,self.nkpt-1): thisdelta = full_kpoints[ikpt+1,:]-full_kpoints[ikpt,:] if not N.allclose(thisdelta,delta_kpt,atol=KPT_TOL): delta_kpt = thisdelta self.special_kpoints_indices.append(ikpt) self.special_kpoints.append(self.correct_kpt(self.kpoints[ikpt,:],tolerance=correct_kpt_tolerance)) self.special_kpoints_indices.append(N.shape(self.kpoints)[0]-1) self.special_kpoints.append(self.correct_kpt(self.kpoints[-1,:],tolerance=correct_kpt_tolerance)) print 'Special Kpoints : ' print ' {0:d} : {1[0]: 8.8f} {1[1]: 8.8f} {1[2]: 8.8f}'.format(1,self.kpoints[0,:]) self.norm_paths = N.zeros((N.shape(self.special_kpoints_indices)[0]-1),N.float) self.norm_reduced_paths = N.zeros((N.shape(self.special_kpoints_indices)[0]-1),N.float) for ispkpt in range(1,N.shape(self.special_kpoints_indices)[0]): self.norm_paths[ispkpt-1] = N.linalg.norm(full_kpoints[self.special_kpoints_indices[ispkpt]]-full_kpoints[self.special_kpoints_indices[ispkpt-1]]) self.norm_reduced_paths[ispkpt-1] = N.linalg.norm(self.special_kpoints[ispkpt]-self.special_kpoints[ispkpt-1]) print ' {2:d}-{3:d} path length : {0: 8.8f} | reduced path length : {1: 8.8f}'.\ format(self.norm_paths[ispkpt-1],self.norm_reduced_paths[ispkpt-1],ispkpt,ispkpt+1) print ' {0:d} : {1[0]: 8.8f} {1[1]: 8.8f} {1[2]: 8.8f}'.format(ispkpt+1,self.kpoints[self.special_kpoints_indices[ispkpt],:]) self.kpoint_path_length = N.sum(self.norm_paths) self.kpoint_reduced_path_length = N.sum(self.norm_reduced_paths) self.normalized_kpoint_path_norm = self.norm_paths/self.kpoint_path_length self.normalized_kpoint_reduced_path_norm = self.norm_reduced_paths/self.kpoint_reduced_path_length kptredpathval = list() kptpathval = list() kptredpathval.append(N.float(0.0)) kptpathval.append(N.float(0.0)) curlen = N.float(0.0) redcurlen = N.float(0.0) for ispkpt in range(1,N.shape(self.special_kpoints_indices)[0]): kptredpathval.extend(N.linspace(redcurlen,redcurlen+self.norm_reduced_paths[ispkpt-1],self.special_kpoints_indices[ispkpt]-self.special_kpoints_indices[ispkpt-1]+1)[1:]) kptpathval.extend(N.linspace(curlen,curlen+self.norm_paths[ispkpt-1],self.special_kpoints_indices[ispkpt]-self.special_kpoints_indices[ispkpt-1]+1)[1:]) redcurlen = redcurlen + self.norm_reduced_paths[ispkpt-1] curlen = curlen + self.norm_paths[ispkpt-1] self.kpoint_path_values = N.array(kptpathval,N.float) self.kpoint_reduced_path_values = N.array(kptredpathval,N.float) self.normalized_kpoint_path_values = self.kpoint_path_values/self.kpoint_path_length self.normalized_kpoint_reduced_path_values = self.kpoint_reduced_path_values/self.kpoint_reduced_path_length self.special_kpoints = N.array(self.special_kpoints,N.float) def file_open(self,filefullpath): if filefullpath[-3:] == '_GW': self.gw_file_open(filefullpath) elif filefullpath[-7:] == '_EIG.nc': self.nc_eig_open(filefullpath) elif filefullpath[-4:] == '.dat': self.wannier_bs_file_open(filefullpath) def has_eigenvalue(self,nsppol,isppol,kpoint,iband): if self.nsppol != nsppol: return False for ikpt in range(self.nkpt): if N.absolute(self.kpoints[ikpt,0]-kpoint[0]) < csts.TOLKPTS and \ N.absolute(self.kpoints[ikpt,1]-kpoint[1]) < csts.TOLKPTS and \ N.absolute(self.kpoints[ikpt,2]-kpoint[2]) < csts.TOLKPTS: if iband >= self.bd_indices[isppol,ikpt,0]-1 and iband < self.bd_indices[isppol,ikpt,1]: return True return False return False def get_eigenvalue(self,nsppol,isppol,kpoint,iband): for ikpt in range(self.nkpt): if N.absolute(self.kpoints[ikpt,0]-kpoint[0]) < csts.TOLKPTS and \ N.absolute(self.kpoints[ikpt,1]-kpoint[1]) < csts.TOLKPTS and \ N.absolute(self.kpoints[ikpt,2]-kpoint[2]) < csts.TOLKPTS: return self.eigenvalues[isppol,ikpt,iband] def wannier_bs_file_open(self,filefullpath): if not (os.path.isfile(filefullpath)): print 'ERROR : file "%s" does not exists' %filefullpath print '... exiting now ...' sys.exit() print 'WARNING: no spin polarization reading yet for Wannier90 bandstructure files!' self.eigenvalue_type = 'W90' self.nsppol = None self.nkpt = None self.mband = None self.eigenvalues = None self.units = None self.filefullpath = filefullpath reader = open(self.filefullpath,'r') filedata = reader.readlines() reader.close() for iline in range(len(filedata)): if filedata[iline].strip() == '': self.nkpt = iline break self.mband = N.int(len(filedata)/self.nkpt) self.nsppol = 1 self.eigenvalues = N.zeros([self.nsppol,self.nkpt,self.mband],N.float) self.kpoints = N.zeros([self.nkpt,3],N.float) iline = 0 kpt_file = '%s.kpt' %filefullpath[:-4] if os.path.isfile(kpt_file): reader = open(kpt_file,'r') kptdata = reader.readlines() reader.close() if N.int(kptdata[0]) != self.nkpt: print 'ERROR : the number of kpoints in file "%s" is not the same as in "%s" ... exit' %(self.filefullpath,kpt_file) sys.exit() for ikpt in range(self.nkpt): linesplit = kptdata[ikpt+1].split() self.kpoints[ikpt,0] = N.float(linesplit[0]) self.kpoints[ikpt,1] = N.float(linesplit[1]) self.kpoints[ikpt,2] = N.float(linesplit[2]) else: for ikpt in range(self.nkpt): self.kpoints[ikpt,0] = N.float(filedata[ikpt].split()[0]) for iband in range(self.mband): for ikpt in range(self.nkpt): self.eigenvalues[0,ikpt,iband] = N.float(filedata[iline].split()[1]) iline = iline+1 iline = iline+1 self.eigenvalues = self.eigenvalues*csts.ev2hartree self.units = 'Hartree' def gw_file_open(self,filefullpath): if not (os.path.isfile(filefullpath)): print 'ERROR : file "%s" does not exists' %filefullpath print '... exiting now ...' sys.exit() self.eigenvalue_type = 'GW' self.nsppol = None self.nkpt = None self.mband = None self.eigenvalues = None self.units = None self.filefullpath = filefullpath reader = open(self.filefullpath,'r') filedata = reader.readlines() reader.close() self.nkpt = N.int(filedata[0].split()[0]) self.kpoints = N.ones([self.nkpt,3],N.float) self.nsppol = N.int(filedata[0].split()[1]) self.bd_indices = N.zeros((self.nsppol,self.nkpt,2),N.int) icur = 1 nbd_kpt = N.zeros([self.nsppol,self.nkpt],N.int) for isppol in range(self.nsppol): for ikpt in range(self.nkpt): self.kpoints[ikpt,:] = N.array(filedata[icur].split()[:],N.float) icur = icur + 1 nbd_kpt[isppol,ikpt] = N.int(filedata[icur]) self.bd_indices[isppol,ikpt,0] = N.int(filedata[icur+1].split()[0]) self.bd_indices[isppol,ikpt,1] = N.int(filedata[icur+nbd_kpt[isppol,ikpt]].split()[0]) icur = icur + nbd_kpt[isppol,ikpt] + 1 self.mband = N.max(self.bd_indices[:,:,1]) self.eigenvalues = N.zeros([self.nsppol,self.nkpt,self.mband],N.float) self.eigenvalues[:,:,:] = N.nan ii = 3 for isppol in range(self.nsppol): for ikpt in range(self.nkpt): for iband in range(self.bd_indices[isppol,ikpt,0]-1,self.bd_indices[isppol,ikpt,1]): self.eigenvalues[isppol,ikpt,iband] = N.float(filedata[ii].split()[1]) ii = ii + 1 ii = ii + 2 self.eigenvalues = csts.ev2hartree*self.eigenvalues self.units = 'Hartree' def pfit_gw_file_write(self,polyfitlist,directory=None,filename=None,bdgw=None,energy_pivots=None,gwec=None): if filename == None:return if directory == None:directory='.' filefullpath = '%s/%s' %(directory,filename) if (os.path.isfile(filefullpath)): user_input = raw_input('WARNING : file "%s" exists, do you want to overwrite it ? (y/n)' %filefullpath) if not (user_input == 'y' or user_input == 'Y'): return writer = open(filefullpath,'w') writer.write('%12s%12s\n' %(self.nkpt,self.nsppol)) if gwec == None: for ikpt in range(self.nkpt): for isppol in range(self.nsppol): writer.write('%10.6f%10.6f%10.6f\n' %(self.kpoints[ikpt,0],self.kpoints[ikpt,1],self.kpoints[ikpt,2])) writer.write('%4i\n' %(bdgw[1]-bdgw[0]+1)) for iband in range(bdgw[0]-1,bdgw[1]): delta = N.polyval(polyfitlist[-1],csts.hartree2ev*self.eigenvalues[isppol,ikpt,iband]) for ipivot in range(len(energy_pivots)): if csts.hartree2ev*self.eigenvalues[isppol,ikpt,iband] <= energy_pivots[ipivot]: delta = N.polyval(polyfitlist[ipivot],csts.hartree2ev*self.eigenvalues[isppol,ikpt,iband]) break writer.write('%6i%9.4f%9.4f%9.4f\n' %(iband+1,csts.hartree2ev*self.eigenvalues[isppol,ikpt,iband]+delta,delta,0.0)) else: for ikpt in range(self.nkpt): for isppol in range(self.nsppol): writer.write('%10.6f%10.6f%10.6f\n' %(self.kpoints[ikpt,0],self.kpoints[ikpt,1],self.kpoints[ikpt,2])) writer.write('%4i\n' %(bdgw[1]-bdgw[0]+1)) for iband in range(bdgw[0]-1,bdgw[1]): if gwec.has_eigenvalue(self.nsppol,isppol,self.kpoints[ikpt],iband): gw_eig = gwec.get_eigenvalue(self.nsppol,isppol,self.kpoints[ikpt],iband) writer.write('%6i%9.4f%9.4f%9.4f\n' %(iband+1,csts.hartree2ev*gw_eig,csts.hartree2ev*(gw_eig-self.eigenvalues[isppol,ikpt,iband]),0.0)) else: delta = N.polyval(polyfitlist[-1],csts.hartree2ev*self.eigenvalues[isppol,ikpt,iband]) for ipivot in range(len(energy_pivots)): if csts.hartree2ev*self.eigenvalues[isppol,ikpt,iband] <= energy_pivots[ipivot]: delta = N.polyval(polyfitlist[ipivot],csts.hartree2ev*self.eigenvalues[isppol,ikpt,iband]) break writer.write('%6i%9.4f%9.4f%9.4f\n' %(iband+1,csts.hartree2ev*self.eigenvalues[isppol,ikpt,iband]+delta,delta,0.0)) writer.close() def pfit_dft_to_gw_bs_write(self,polyfitlist,directory=None,filename=None,bdgw=None,energy_pivots=None,gwec=None): if filename == None:return if directory == None:directory='.' filefullpath = '%s/%s' %(directory,filename) if (os.path.isfile(filefullpath)): user_input = raw_input('WARNING : file "%s" exists, do you want to overwrite it ? (y/n)' %filefullpath) if not (user_input == 'y' or user_input == 'Y'): return writer = open(filefullpath,'w') if gwec == None: for ikpt in range(self.nkpt): writer.write('%s' %ikpt) for isppol in range(self.nsppol): for iband in range(bdgw[0]-1,bdgw[1]): delta = N.polyval(polyfitlist[-1],csts.hartree2ev*self.eigenvalues[isppol,ikpt,iband]) for ipivot in range(len(energy_pivots)): if csts.hartree2ev*self.eigenvalues[isppol,ikpt,iband] <= energy_pivots[ipivot]: delta = N.polyval(polyfitlist[ipivot],csts.hartree2ev*self.eigenvalues[isppol,ikpt,iband]) break writer.write(' %s' %(csts.hartree2ev*self.eigenvalues[isppol,ikpt,iband]+delta)) writer.write('\n') else: print 'NOT SUPPORTED YET' sys.exit() writer.close() def nc_eig_open(self,filefullpath): if not (os.path.isfile(filefullpath)): print 'ERROR : file "%s" does not exists' %filefullpath print '... exiting now ...' sys.exit() ncdata = nc.Dataset(filefullpath) self.eigenvalue_type = 'DFT' self.nsppol = None self.nkpt = None self.mband = None self.eigenvalues = None self.units = None self.filefullpath = filefullpath for dimname,dimobj in ncdata.dimensions.iteritems(): if dimname == 'nsppol':self.nsppol = N.int(len(dimobj)) if dimname == 'nkpt':self.nkpt = N.int(len(dimobj)) if dimname == 'mband':self.mband = N.int(len(dimobj)) for varname in ncdata.variables: if varname == 'Eigenvalues': varobj = ncdata.variables[varname] varshape = N.shape(varobj[:]) self.units = None for attrname in varobj.ncattrs(): if attrname == 'units': self.units = varobj.getncattr(attrname) if self.units == None: print 'WARNING : units are not specified' print '... assuming "Hartree" units ...' self.units = 'Hartree' elif self.units != 'Hartree': print 'ERROR : units are unknown : "%s"' %self.units print '... exiting now ...' sys.exit() self.eigenvalues = N.reshape(N.array(varobj,N.float),varshape) self.nsppol = varshape[0] self.nkpt = varshape[1] self.kpoints = -1*N.ones((self.nkpt,3),N.float) self.mband = varshape[2] self.bd_indices = N.zeros((self.nsppol,self.nkpt,2),N.int) self.bd_indices[:,:,0] = 1 self.bd_indices[:,:,1] = self.mband break for varname in ncdata.variables: if varname == 'Kptns': varobj = ncdata.variables[varname] varshape = N.shape(varobj[:]) self.kpoints = N.reshape(N.array(varobj,N.float),varshape) def write_bandstructure_to_file(self,filename,option_kpts='bohrm1_units'): #if option_kpts is set to 'normalized', the path of the bandstructure will be normalized to 1 (and special k-points correctly chosen) if self.kpoint_sampling_type != 'Bandstructure': print 'ERROR: kpoint_sampling_type is not "Bandstructure" ... returning from write_bandstructure_to_file' return if self.nsppol > 1: print 'ERROR: number of spins is more than 1, this is not fully tested ... use with care !' writer = open(filename,'w') writer.write('# BANDSTRUCTURE FILE FROM DAVID\'S SCRIPT\n') writer.write('# nsppol = %s\n' %self.nsppol) writer.write('# nband = %s\n' %self.mband) writer.write('# eigenvalue_type = %s\n' %self.eigenvalue_type) if self.inputgvectors: writer.write('# inputgvectors = 1 (%s)\n' %self.inputgvectors) else: writer.write('# inputgvectors = 0 (%s)\n' %self.inputgvectors) writer.write('# gvectors(1) = %20.17f %20.17f %20.17f \n' %(self.gvectors[0,0],self.gvectors[0,1],self.gvectors[0,2])) writer.write('# gvectors(2) = %20.17f %20.17f %20.17f \n' %(self.gvectors[1,0],self.gvectors[1,1],self.gvectors[1,2])) writer.write('# gvectors(3) = %20.17f %20.17f %20.17f \n' %(self.gvectors[2,0],self.gvectors[2,1],self.gvectors[2,2])) writer.write('# special_kpoints_number = %s\n' %(len(self.special_kpoints_indices))) writer.write('# list of special kpoints : (given in reduced coordinates, value_path is in Bohr^-1, value_red_path has its total path normalized to 1)\n') for ii in range(len(self.special_kpoints_indices)): ispkpt = self.special_kpoints_indices[ii] spkpt = self.special_kpoints[ii] writer.write('# special_kpt_index %5s : %20.17f %20.17f %20.17f (value_path = %20.17f | value_red_path = %20.17f)\n' %(ispkpt,spkpt[0],spkpt[1],spkpt[2],self.kpoint_path_values[ispkpt],self.kpoint_reduced_path_values[ispkpt])) writer.write('# special_kpoints_names :\n') for ii in range(len(self.special_kpoints_indices)): ispkpt = self.special_kpoints_indices[ii] spkpt = self.special_kpoints[ii] writer.write('# special_kpt_name %3s : "%s" : %20.17f %20.17f %20.17f\n' %(ii+1,self.special_kpoints_names[ii],spkpt[0],spkpt[1],spkpt[2])) writer.write('# kpoint_path_length = %20.17f \n' %(self.kpoint_path_length)) writer.write('# kpoint_path_number = %s \n' %(self.nkpt)) if self.inputgvectors: writer.write('# kpoint_path_units = %s\n' %(option_kpts)) else: writer.write('# kpoint_path_units = %s (!!! CONSIDERING UNITARY GVECTORS MATRIX !!!)\n' %(option_kpts)) writer.write('#BEGIN\n') if option_kpts == 'bohrm1_units': values_path = self.kpoint_path_values elif option_kpts == 'reduced': values_path = self.kpoint_reduced_path_values elif option_kpts == 'bohrm1_units_normalized': values_path = self.normalized_kpoint_path_values elif option_kpts == 'reduced_normalized': values_path = self.normalized_kpoint_reduced_path_values else: print 'ERROR: wrong option_kpts ... exit' writer.write('... CANCELLED (wrong option_kpts)') writer.close() sys.exit() for isppol in range(self.nsppol): writer.write('#isppol %s\n' %isppol) for iband in range(self.mband): writer.write('#iband %5s (band number %s)\n' %(iband,iband+1)) for ikpt in range(self.nkpt): writer.write('%20.17f %20.17f\n' %(values_path[ikpt],self.eigenvalues[isppol,ikpt,iband])) writer.write('\n') writer.write('#END\n') writer.write('\n#KPT_LIST\n') for ikpt in range(self.nkpt): writer.write('# %6d : %20.17f %20.17f %20.17f\n' %(ikpt,self.kpoints[ikpt,0],self.kpoints[ikpt,1],self.kpoints[ikpt,2])) writer.close() def read_bandstructure_from_file(self,filename): reader = open(filename,'r') bs_data = reader.readlines() reader.close() self.gvectors = N.identity(3,N.float) self.kpoint_sampling_type = 'Bandstructure' self.special_kpoints_indices = list() self.special_kpoints = list() for ii in range(len(bs_data)): if bs_data[ii] == '#BEGIN\n': ibegin = ii break elif bs_data[ii][:10] == '# nsppol =': self.nsppol = N.int(bs_data[ii][10:]) elif bs_data[ii][:9] == '# nband =': self.mband = N.int(bs_data[ii][9:]) elif bs_data[ii][:19] == '# eigenvalue_type =': self.eigenvalue_type = bs_data[ii][19:].strip() elif bs_data[ii][:17] == '# inputgvectors =': tt = N.int(bs_data[ii][18]) if tt == 1: self.inputgvectors = True elif tt == 0: self.inputgvectors = False else: print 'ERROR: reading inputgvectors ... exit' sys.exit() elif bs_data[ii][:15] == '# gvectors(1) =': sp = bs_data[ii][15:].split() self.gvectors[0,0] = N.float(sp[0]) self.gvectors[0,1] = N.float(sp[1]) self.gvectors[0,2] = N.float(sp[2]) elif bs_data[ii][:15] == '# gvectors(2) =': sp = bs_data[ii][15:].split() self.gvectors[1,0] = N.float(sp[0]) self.gvectors[1,1] = N.float(sp[1]) self.gvectors[1,2] = N.float(sp[2]) elif bs_data[ii][:15] == '# gvectors(3) =': sp = bs_data[ii][15:].split() self.gvectors[2,0] = N.float(sp[0]) self.gvectors[2,1] = N.float(sp[1]) self.gvectors[2,2] = N.float(sp[2]) elif bs_data[ii][:26] == '# special_kpoints_number =': special_kpoints_number = N.int(bs_data[ii][26:]) self.special_kpoints_names = ['']*special_kpoints_number elif bs_data[ii][:22] == '# special_kpt_index': sp = bs_data[ii][22:].split() self.special_kpoints_indices.append(N.int(sp[0])) self.special_kpoints.append(N.array([sp[2],sp[3],sp[4]])) elif bs_data[ii][:21] == '# special_kpt_name': sp = bs_data[ii][21:].split() ispkpt = N.int(sp[0])-1 self.special_kpoints_names[ispkpt] = sp[2][1:-1] elif bs_data[ii][:22] == '# kpoint_path_length =': self.kpoint_path_length = N.float(bs_data[ii][22:]) elif bs_data[ii][:22] == '# kpoint_path_number =': self.nkpt = N.int(bs_data[ii][22:]) elif bs_data[ii][:21] == '# kpoint_path_units =': kpoint_path_units = bs_data[ii][21:].strip() self.special_kpoints_indices = N.array(self.special_kpoints_indices,N.int) self.special_kpoints = N.array(self.special_kpoints,N.float) if len(self.special_kpoints_indices) != special_kpoints_number or len(self.special_kpoints) != special_kpoints_number: print 'ERROR: reading the special kpoints ... exit' sys.exit() self.kpoint_path_values = N.zeros([self.nkpt],N.float) self.kpoint_reduced_path_values = N.zeros([self.nkpt],N.float) if kpoint_path_units == 'bohrm1_units': jj = 0 for ii in range(ibegin+1,len(bs_data)): if bs_data[ii][:7] == '#isppol' or bs_data[ii][:6] == '#iband':continue if bs_data[ii] == '\n': break self.kpoint_path_values[jj] = N.float(bs_data[ii].split()[0]) jj = jj + 1 if jj != self.nkpt: print 'ERROR: reading bandstructure file ... exit' sys.exit() self.normalized_kpoint_path_values = self.kpoint_path_values/self.kpoint_path_length if kpoint_path_units == 'bohrm1_units_normalized': jj = 0 for ii in range(ibegin+1,len(bs_data)): if bs_data[ii][:7] == '#isppol' or bs_data[ii][:6] == '#iband':continue if bs_data[ii] == '\n': break self.normalized_kpoint_path_values[jj] = N.float(bs_data[ii].split()[0]) jj = jj + 1 if jj != self.nkpt: print 'ERROR: reading bandstructure file ... exit' sys.exit() self.kpoint_path_values = self.normalized_kpoint_path_values*self.kpoint_path_length elif kpoint_path_units == 'reduced_normalized': jj = 0 for ii in range(ibegin+1,len(bs_data)): if bs_data[ii][:7] == '#isppol' or bs_data[ii][:6] == '#iband':continue if bs_data[ii] == '\n': break self.normalized_kpoint_reduced_path_values[jj] = N.float(bs_data[ii].split()[0]) jj = jj + 1 if jj != self.nkpt: print 'ERROR: reading bandstructure file ... exit' sys.exit() self.kpoint_reduced_path_values = self.normalized_kpoint_reduced_path_values/self.kpoint_reduced_path_length elif kpoint_path_units == 'reduced': jj = 0 for ii in range(ibegin+1,len(bs_data)): if bs_data[ii][:7] == '#isppol' or bs_data[ii][:6] == '#iband':continue if bs_data[ii] == '\n': break self.kpoint_reduced_path_values[jj] = N.float(bs_data[ii].split()[0]) jj = jj + 1 if jj != self.nkpt: print 'ERROR: reading bandstructure file ... exit' sys.exit() self.normalized_kpoint_reduced_path_values = self.kpoint_reduced_path_values/self.kpoint_reduced_path_length self.eigenvalues = N.zeros([self.nsppol,self.nkpt,self.mband],N.float) check_nband = 0 for ii in range(ibegin+1,len(bs_data)): if bs_data[ii][:7] == '#isppol': isppol = N.int(bs_data[ii][7:]) elif bs_data[ii][:6] == '#iband': iband = N.int(bs_data[ii][6:].split()[0]) ikpt = 0 elif bs_data[ii][:4] == '#END': break elif bs_data[ii] == '\n': check_nband = check_nband + 1 else: self.eigenvalues[isppol,ikpt,iband] = N.float(bs_data[ii].split()[1]) ikpt = ikpt + 1 def check_gw_vs_dft_parameters(dftec,gwec): if gwec.eigenvalue_type != 'GW' or dftec.eigenvalue_type != 'DFT': print 'ERROR: eigenvalue files do not contain GW and DFT eigenvalues ... exiting now' sys.exit() if dftec.nsppol != gwec.nsppol or dftec.nkpt != gwec.nkpt: print 'ERROR: the number of spins/kpoints is not the same in the GW and DFT files used to make the interpolation ... exiting now' sys.exit() for ikpt in range(dftec.nkpt): if N.absolute(dftec.kpoints[ikpt,0]-gwec.kpoints[ikpt,0]) > csts.TOLKPTS or \ N.absolute(dftec.kpoints[ikpt,1]-gwec.kpoints[ikpt,1]) > csts.TOLKPTS or \ N.absolute(dftec.kpoints[ikpt,2]-gwec.kpoints[ikpt,2]) > csts.TOLKPTS: print 'ERROR: the kpoints are not the same in the GW and DFT files used to make the interpolation ... exiting now' sys.exit() def plot_gw_vs_dft_eig(dftec,gwec,vbm_index,energy_pivots=None,polyfit_degrees=None): if gwec.eigenvalue_type != 'GW' or dftec.eigenvalue_type != 'DFT': print 'ERROR: eigenvalue containers do not contain GW and DFT eigenvalues ... exiting now' sys.exit() if dftec.nsppol != gwec.nsppol or dftec.nkpt != gwec.nkpt: print 'ERROR: the number of spins/kpoints is not the same in the GW and DFT containers ... exiting now' sys.exit() valdftarray = N.array([],N.float) conddftarray = N.array([],N.float) valgwarray = N.array([],N.float) condgwarray = N.array([],N.float) for isppol in range(dftec.nsppol): for ikpt in range(dftec.nkpt): ibdmin = N.max([dftec.bd_indices[isppol,ikpt,0],gwec.bd_indices[isppol,ikpt,0]])-1 ibdmax = N.min([dftec.bd_indices[isppol,ikpt,1],gwec.bd_indices[isppol,ikpt,1]])-1 valdftarray = N.append(valdftarray,csts.hartree2ev*dftec.eigenvalues[isppol,ikpt,ibdmin:vbm_index]) valgwarray = N.append(valgwarray,csts.hartree2ev*gwec.eigenvalues[isppol,ikpt,ibdmin:vbm_index]) conddftarray = N.append(conddftarray,csts.hartree2ev*dftec.eigenvalues[isppol,ikpt,vbm_index:ibdmax+1]) condgwarray = N.append(condgwarray,csts.hartree2ev*gwec.eigenvalues[isppol,ikpt,vbm_index:ibdmax+1]) if energy_pivots == None: if plot_figures == 1: P.figure(1) P.hold(True) P.grid(True) P.plot(valdftarray,valgwarray,'bx') P.plot(conddftarray,condgwarray,'rx') P.xlabel('DFT eigenvalues (in eV)') P.ylabel('GW eigenvalues (in eV)') P.figure(2) P.hold(True) P.grid(True) P.plot(valdftarray,valgwarray-valdftarray,'bx') P.plot(conddftarray,condgwarray-conddftarray,'rx') P.xlabel('DFT eigenvalues (in eV)') P.ylabel('GW correction to the DFT eigenvalues (in eV)') P.show() return polyfitlist = list() if len(polyfit_degrees) == 1: print 'ERROR: making a fit with only one interval is not allowed ... exiting now' sys.exit() dftarray = N.append(valdftarray,conddftarray) gwarray = N.append(valgwarray,condgwarray) dftarray_list = list() gwarray_list = list() for iinterval in range(len(polyfit_degrees)): tmpdftarray = N.array([],N.float) tmpgwarray = N.array([],N.float) if iinterval == 0: emin = None emax = energy_pivots[0] for ii in range(len(dftarray)): if dftarray[ii] <= emax: tmpdftarray = N.append(tmpdftarray,[dftarray[ii]]) tmpgwarray = N.append(tmpgwarray,[gwarray[ii]]) elif iinterval == len(polyfit_degrees)-1: emin = energy_pivots[-1] emax = None for ii in range(len(dftarray)): if dftarray[ii] >= emin: tmpdftarray = N.append(tmpdftarray,[dftarray[ii]]) tmpgwarray = N.append(tmpgwarray,[gwarray[ii]]) else: emin = energy_pivots[iinterval-1] emax = energy_pivots[iinterval] for ii in range(len(dftarray)): if dftarray[ii] >= emin and dftarray[ii] <= emax: tmpdftarray = N.append(tmpdftarray,[dftarray[ii]]) tmpgwarray = N.append(tmpgwarray,[gwarray[ii]]) dftarray_list.append(tmpdftarray) gwarray_list.append(tmpgwarray) pfit = N.polyfit(tmpdftarray,tmpgwarray-tmpdftarray,polyfit_degrees[iinterval]) polyfitlist.append(pfit) if plot_figures == 1: linspace_npoints = 200 valpoly_x = N.linspace(N.min(valdftarray),N.max(valdftarray),linspace_npoints) condpoly_x = N.linspace(N.min(conddftarray),N.max(conddftarray),linspace_npoints) P.figure(3) P.hold(True) P.grid(True) P.plot(valdftarray,valgwarray-valdftarray,'bx') P.plot(conddftarray,condgwarray-conddftarray,'rx') [x_min,x_max] = P.xlim() for iinterval in range(len(polyfit_degrees)): if iinterval == 0: tmppoly_x = N.linspace(x_min,energy_pivots[iinterval],linspace_npoints) elif iinterval == len(polyfit_degrees)-1: tmppoly_x = N.linspace(energy_pivots[iinterval-1],x_max,linspace_npoints) else: tmppoly_x = N.linspace(energy_pivots[iinterval-1],energy_pivots[iinterval],linspace_npoints) P.plot(tmppoly_x,N.polyval(polyfitlist[iinterval],tmppoly_x),'k') for ipivot in range(len(energy_pivots)): en = energy_pivots[ipivot] P.plot([en,en],[N.polyval(polyfitlist[ipivot],en),N.polyval(polyfitlist[ipivot+1],en)],'k-.') P.xlabel('DFT eigenvalues (in eV)') P.ylabel('GW correction to the DFT eigenvalues (in eV)') P.figure(4) P.hold(True) P.grid(True) for iinterval in range(len(polyfit_degrees)): P.plot(dftarray_list[iinterval],gwarray_list[iinterval]-dftarray_list[iinterval]-N.polyval(polyfitlist[iinterval],dftarray_list[iinterval]),'bx') [x_min,x_max] = P.xlim() P.plot([x_min,x_max],[0,0],'k-') P.xlabel('DFT eigenvalues (in eV)') P.ylabel('Error in the fit (in eV)') P.show() return polyfitlist def compare_bandstructures(ec_ref,ec_test): nspkpt_ref = len(ec_ref.special_kpoints) nspkpt_test = len(ec_test.special_kpoints) if nspkpt_ref != nspkpt_test: print 'ERROR: The number of special kpoints is different in the two files ... exit' sys.exit() eig_type_ref = ec_ref.eigenvalue_type eig_type_test = ec_test.eigenvalue_type print eig_type_ref,eig_type_test if eig_type_ref == 'DFT' and eig_type_test == 'W90': TOL_KPTS = N.float(1.0e-4) else: TOL_KPTS = N.float(1.0e-6) print TOL_KPTS for ispkpt in range(nspkpt_ref): print 'difference between the two :',ec_ref.special_kpoints[ispkpt,:]-ec_test.special_kpoints[ispkpt,:] if not N.allclose(ec_ref.special_kpoints[ispkpt,:],ec_test.special_kpoints[ispkpt,:],atol=TOL_KPTS): print 'ERROR: The kpoints are not the same :' print ' Kpt #%s ' %ispkpt print ' Reference => %20.17f %20.17f %20.17f' %(ec_ref.special_kpoints[ispkpt,0],ec_ref.special_kpoints[ispkpt,1],ec_ref.special_kpoints[ispkpt,2]) print ' Compared => %20.17f %20.17f %20.17f' %(ec_test.special_kpoints[ispkpt,0],ec_test.special_kpoints[ispkpt,1],ec_test.special_kpoints[ispkpt,2]) print ' ... exit' sys.exit() mband_comparison = N.min([ec_ref.mband,ec_test.mband]) if mband_comparison < ec_ref.mband: print 'Number of bands in the test bandstructure is lower than the number of bands in the reference (%s)' %ec_ref.mband print ' => Comparison will proceed with %s bands' %ec_test.mband elif mband_comparison < ec_test.mband: print 'Number of bands in the reference bandstructure is lower than the number of bands in the test bandstructure (%s)' %ec_test.mband print ' => Comparison will only proceed with %s bands of the test bandstructure' %ec_ref.mband else: print 'Number of bands in the reference and test bandstructure is the same' print ' => Comparison will proceed with %s bands' %mband_comparison # eig_test_ref_path = ec_ref.eigenvalues[:,:,:mband_comparison] rmsd_per_band = N.zeros([ec_ref.nsppol,mband_comparison],N.float) nrmsd_per_band = N.zeros([ec_ref.nsppol,mband_comparison],N.float) mae_per_band = N.zeros([ec_ref.nsppol,mband_comparison],N.float) for isppol in range(ec_ref.nsppol): for iband in range(mband_comparison): interp = N.interp(ec_ref.normalized_kpoint_path_values,ec_test.normalized_kpoint_path_values,ec_test.eigenvalues[isppol,:,iband]) rmsd_per_band[isppol,iband] = N.sqrt(N.sum((csts.hartree2ev*interp-csts.hartree2ev*ec_ref.eigenvalues[isppol,:,iband])**2)/ec_ref.nkpt) mae_per_band[isppol,iband] = N.sum(N.abs(csts.hartree2ev*interp-csts.hartree2ev*ec_ref.eigenvalues[isppol,:,iband]))/ec_ref.nkpt P.figure(1) P.plot(mae_per_band[0,:]) P.figure(2) P.plot(rmsd_per_band[0,:]) P.show() def get_gvectors(): if os.path.isfile('.gvectors.bsinfo'): print 'File ".gvectors.bsinfo found with the following gvectors information :"' try: gvectors_reader = open('.gvectors.bsinfo','r') gvectors_data = gvectors_reader.readlines() gvectors_reader.close() trial_gvectors = N.identity(3,N.float) trial_gvectors[0,0] = N.float(gvectors_data[0].split()[0]) trial_gvectors[0,1] = N.float(gvectors_data[0].split()[1]) trial_gvectors[0,2] = N.float(gvectors_data[0].split()[2]) trial_gvectors[1,0] = N.float(gvectors_data[1].split()[0]) trial_gvectors[1,1] = N.float(gvectors_data[1].split()[1]) trial_gvectors[1,2] = N.float(gvectors_data[1].split()[2]) trial_gvectors[2,0] = N.float(gvectors_data[2].split()[0]) trial_gvectors[2,1] = N.float(gvectors_data[2].split()[1]) trial_gvectors[2,2] = N.float(gvectors_data[2].split()[2]) print ' gvectors(1) = [ %20.17f %20.17f %20.17f ]' %(trial_gvectors[0,0],trial_gvectors[0,1],trial_gvectors[0,2]) print ' gvectors(2) = [ %20.17f %20.17f %20.17f ]' %(trial_gvectors[1,0],trial_gvectors[1,1],trial_gvectors[1,2]) print ' gvectors(3) = [ %20.17f %20.17f %20.17f ]' %(trial_gvectors[2,0],trial_gvectors[2,1],trial_gvectors[2,2]) except: print 'ERROR: file ".gvectors.bsinfo" might be corrupted (empty or not formatted correctly ...)' print ' you should remove the file and start again or check the file ... exit' sys.exit() test = raw_input('Press <ENTER> to use these gvectors (any other character to enter manually other gvectors)\n') if test == '': gvectors = trial_gvectors else: gvectors = N.identity(3,N.float) test = raw_input('Enter G1 (example : "0.153 0 0") : \n') gvectors[0,0] = N.float(test.split()[0]) gvectors[0,1] = N.float(test.split()[1]) gvectors[0,2] = N.float(test.split()[2]) test = raw_input('Enter G2 (example : "0.042 1.023 0") : \n') gvectors[1,0] = N.float(test.split()[0]) gvectors[1,1] = N.float(test.split()[1]) gvectors[1,2] = N.float(test.split()[2]) test = raw_input('Enter G3 (example : "0 0 1.432") : \n') gvectors[2,0] = N.float(test.split()[0]) gvectors[2,1] = N.float(test.split()[1]) gvectors[2,2] = N.float(test.split()[2]) test = raw_input('Do you want to overwrite the gvectors contained in the file ".gvectors.bsinfo" ? (<ENTER> for yes, anything else for no)\n') if test == '': print 'Writing gvectors to file ".gvectors.bsinfo" ...' gvectors_writer = open('.gvectors.bsinfo','w') gvectors_writer.write('%20.17f %20.17f %20.17f\n' %(trial_gvectors[0,0],trial_gvectors[0,1],trial_gvectors[0,2])) gvectors_writer.write('%20.17f %20.17f %20.17f\n' %(trial_gvectors[1,0],trial_gvectors[1,1],trial_gvectors[1,2])) gvectors_writer.write('%20.17f %20.17f %20.17f\n' %(trial_gvectors[2,0],trial_gvectors[2,1],trial_gvectors[2,2])) gvectors_writer.close() print '... done' else: test = raw_input('Do you want to enter the the reciprocal space primitive vectors (y/n)\n') if test == 'y': gvectors = N.identity(3,N.float) test = raw_input('Enter G1 (example : "0.153 0 0") : ') gvectors[0,0] = N.float(test.split()[0]) gvectors[0,1] = N.float(test.split()[1]) gvectors[0,2] = N.float(test.split()[2]) test = raw_input('Enter G2 (example : "0.042 1.023 0") : ') gvectors[1,0] = N.float(test.split()[0]) gvectors[1,1] = N.float(test.split()[1]) gvectors[1,2] = N.float(test.split()[2]) test = raw_input('Enter G3 (example : "0 0 1.432") : ') gvectors[2,0] = N.float(test.split()[0]) gvectors[2,1] = N.float(test.split()[1]) gvectors[2,2] = N.float(test.split()[2]) test = raw_input('Do you want to write the gvectors to file ".gvectors.bsinfo" ? (<ENTER> for yes, anything else for no)\n') if test == '': print 'Writing gvectors to file ".gvectors.bsinfo" ...' gvectors_writer = open('.gvectors.bsinfo','w') gvectors_writer.write('%20.17f %20.17f %20.17f\n' %(gvectors[0,0],gvectors[0,1],gvectors[0,2])) gvectors_writer.write('%20.17f %20.17f %20.17f\n' %(gvectors[1,0],gvectors[1,1],gvectors[1,2])) gvectors_writer.write('%20.17f %20.17f %20.17f\n' %(gvectors[2,0],gvectors[2,1],gvectors[2,2])) gvectors_writer.close() print '... done' else: gvectors = None return gvectors # Parse the command line options parser = argparse.ArgumentParser(description='Tool for plotting dft bandstructures') parser.add_argument('files',help='files to be opened',nargs=1) args = parser.parse_args() args_dict = vars(args) if args_dict['files']: print 'will open the file' else: print 'ERROR: you should provide some bandstructure file ! exiting now ...' sys.exit() dft_file = args_dict['files'][0] gvectors = get_gvectors() ec_dft = EigenvalueContainer(directory='.',filename=dft_file) ec_dft.set_kpoint_sampling_type('Bandstructure') ec_dft.find_special_kpoints(gvectors) print 'Number of bands in the file : %s' %(N.shape(ec_dft.eigenvalues)[2]) test = raw_input('Enter the number of bands to be plotted (<ENTER> : %s) : \n' %(N.shape(ec_dft.eigenvalues)[2])) if test == '': nbd_plot = N.shape(ec_dft.eigenvalues)[2] else: nbd_plot = N.int(test) if nbd_plot > N.shape(ec_dft.eigenvalues)[2]: print 'ERROR: the number of bands to be plotted is larger than the number available ... exit' sys.exit() ec_dft.special_kpoints_names = ['']*len(ec_dft.special_kpoints_indices) for ii in range(len(ec_dft.special_kpoints_indices)): ec_dft.special_kpoints_names[ii] = 'k%s' %(ii+1) print 'List of special kpoints :' for ii in range(len(ec_dft.special_kpoints_indices)): spkpt = ec_dft.kpoints[ec_dft.special_kpoints_indices[ii]] print ' Kpoint %s : %s %s %s' %(ii+1,spkpt[0],spkpt[1],spkpt[2]) print 'Enter the name of the %s special k-points :' %(len(ec_dft.special_kpoints_indices)) test = raw_input('') if len(test.split()) == len(ec_dft.special_kpoints_indices): for ii in range(len(ec_dft.special_kpoints_indices)): ec_dft.special_kpoints_names[ii] = test.split()[ii] test = raw_input('Enter base name for bandstructure file : \n') ec_dft.write_bandstructure_to_file('%s.bandstructure' %test) P.figure(1,figsize=(3.464,5)) P.hold('on') P.grid('on') P.xticks(N.take(ec_dft.kpoint_reduced_path_values,N.array(ec_dft.special_kpoints_indices,N.int)),ec_dft.special_kpoints_names) if ec_dft.nsppol == 1: for iband in range(nbd_plot): P.plot(ec_dft.kpoint_reduced_path_values,ec_dft.eigenvalues[0,:,iband]*csts.hartree2ev,'k-',linewidth=2) elif ec_dft.nsppol == 2: for iband in range(nbd_plot): P.plot(ec_dft.kpoint_reduced_path_values,ec_dft.eigenvalues[0,:,iband]*csts.hartree2ev,'k-',linewidth=2) P.plot(ec_dft.kpoint_reduced_path_values,ec_dft.eigenvalues[1,:,iband]*csts.hartree2ev,'r-',linewidth=2) P.show()
gpl-3.0
robios/PyTES
pytes/Util.py
1
32573
import warnings import numpy as np import time from struct import unpack from scipy.stats import norm from scipy.signal import tukey from Filter import median_filter import Analysis, Filter, Constants def savefits(data, filename, vmax=1.0, sps=1e6, bits=14, noise=False, clobber=True): """ Save pulse/noise to FITS file """ import pyfits as pf # Prepare data data = (np.asarray(data)/vmax*2**(bits-1)).round() # Column Name if noise: colname = 'NoiseRec' else: colname = 'PulseRec' # Columns col_t = pf.Column(name='TIME', format='1D', unit='s', array=np.zeros(data.shape[0], dtype=int)) col_data = pf.Column(name=colname, format='%dI' % data.shape[1], unit='V', array=data) cols = pf.ColDefs([col_t, col_data]) tbhdu = pf.BinTableHDU.from_columns(cols) # Name of extension exthdr = tbhdu.header exthdr['EXTNAME'] = ('Record', 'name of this binary table extension') exthdr['EXTVER'] = (1, 'extension version number') # Add more attributes exthdr['TSCAL2'] = (vmax/2**(bits-1), '[V/ch]') exthdr['TZERO2'] = (0., '[V]') exthdr['THSCL2'] = (sps**-1, '[s/bin] horizontal resolution of record') exthdr['THZER2'] = (0, '[s] horizontal offset of record') exthdr['THSAM2'] = (data.shape[1], 'sample number of record') exthdr['THUNI2'] = ('s', 'physical unit of sampling step of record') exthdr['TRMIN2'] = (-2**(bits-1)+1, '[channel] minimum number of each sample') exthdr['TRMAX2'] = (2**(bits-1)-1, '[channel] maximum number of each sample') exthdr['TRBIN2'] = (1, '[channel] default bin number of each sample') # More attributes exthdr['TSTART'] = (0, 'start time of experiment in total second') exthdr['TSTOP'] = (0, 'end time of experiment in total second') exthdr['TEND'] = (0, 'end time of experiment (obsolete)') exthdr['DATE'] = (time.strftime("%Y-%m-%dT%H:%M:%S", time.gmtime()), 'file creation date (UT)') # We anyway need Primary HDU hdu = pf.PrimaryHDU() # Write to FITS thdulist = pf.HDUList([hdu, tbhdu]) with warnings.catch_warnings(): warnings.simplefilter("ignore") thdulist.writeto(filename, clobber=clobber) def fopen(filename): """ Read FITS file Parameters ========== filename: file number to read Returns ======= t: time array wave: waveform array """ import pyfits as pf # Open fits file and get pulse/noise data header = pf.open(filename) wave = header[1].data.field(1).copy() dt = header[1].header['THSCL2'] t = np.arange(wave.shape[-1]) * dt header.close() return t, wave def yopen(filenumber, summary=False, nf=None, tmin=None, tmax=None, raw=False): """ Read Yokogawa WVF file Parameters ========== filenumber: file number to read summary: to summary waves (default: False) nf: sigmas for valid data using median noise filter, None to disable noise filter (default: None) tmin: lower boundary of time for partial extraction, scaler or list (Default: None) tmax: upper boundary of time for partial extraction, scaler or list (Default: None) raw: returns raw data without scaling/offsetting if True (Default: False) Returns ======= if summary is False: [ t1, d1, t2, d2, t3, d3, ... ] if summary is True: [ t1, d1, err1, t2, d2, err2, ... ] if raw is True: t1 is a tuple of (hres1, hofs1, vres1, vofs1) where t1 is timing for 1st ch, d1 is data for 1st ch, err1 is error (1sigma) for 1st ch, and so on. """ # Read header (HDR) h = open(str(filenumber) + ".HDR") lines = h.readlines() h.close() # Parse $PublicInfo for line in lines: token = line.split() if len(token) > 0: # Check endian if token[0] == "Endian": endian = '>' if token[1] == "Big" else '<' # Check data format if token[0] == "DataFormat": format = token[1] assert format == "Block" # Check # of groups if token[0] == "GroupNumber": groups = int(token[1]) # Check # of total traces if token[0] == "TraceTotalNumber": ttraces = int(token[1]) # Check data offset if token[0] == "DataOffset": offset = int(token[1]) # Initialize containers traces = [None] * groups # Number of traces for each group blocks = [None] * ttraces # Number of blocks for each trace bsizes = [None] * ttraces # Block size for each trace vres = [None] * ttraces # VResolution for each trace voffset = [None] * ttraces # VOffset for each trace hres = [None] * ttraces # HResolution for each trace hoffset = [None] * ttraces # HOffset for each trace # Parse $Group for line in lines: token = line.split() if len(token) > 0: # Read current group number if token[0][:6] == "$Group": cgn = int(token[0][6:]) - 1 # Current group number (minus 1) # Check # of traces in this group if token[0] == "TraceNumber": traces[cgn] = int(token[1]) traceofs = np.sum(traces[:cgn], dtype=int) # Check # of Blocks if token[0] == "BlockNumber": blocks[traceofs:traceofs+traces[cgn]] = [ int(token[1]) ] * traces[cgn] # Check Block Size if token[0] == "BlockSize": bsizes[traceofs:traceofs+traces[cgn]] = [ int(s) for s in token[1:] ] # Check VResolusion if token[0] == "VResolution": vres[traceofs:traceofs+traces[cgn]] = [ float(res) for res in token[1:] ] # Check VOffset if token[0] == "VOffset": voffset[traceofs:traceofs+traces[cgn]] = [ float(ofs) for ofs in token[1:] ] # Check VDataType if token[0] == "VDataType": assert token[1] == "IS2" # Check HResolution if token[0] == "HResolution": hres[traceofs:traceofs+traces[cgn]] = [ float(res) for res in token[1:] ] # Check HOffset if token[0] == "HOffset": hoffset[traceofs:traceofs+traces[cgn]] = [ float(ofs) for ofs in token[1:] ] # Data Initialization time = [ np.array(range(bsizes[t])) * hres[t] + hoffset[t] for t in range(ttraces) ] data = [ [None] * blocks[t] for t in range(ttraces) ] # Open WVF f = open(str(filenumber) + ".WVF", 'rb') f.seek(offset) # Read WVF if format == "Block": # Block format (assuming block size is the same for all the traces in Block format) for b in range(blocks[0]): for t in range(ttraces): if raw: data[t][b] = np.array(unpack(endian + 'h'*bsizes[t], f.read(bsizes[t]*2)), dtype='int64') else: data[t][b] = np.array(unpack(endian + 'h'*bsizes[t], f.read(bsizes[t]*2))) * vres[t] + voffset[t] else: # Trace format for t in range(ttraces): for b in range(blocks[t]): if raw: data[t][b] = np.array(unpack(endian + 'h'*bsizes[t], f.read(bsizes[t]*2)), dtype='int64') else: data[t][b] = np.array(unpack(endian + 'h'*bsizes[t], f.read(bsizes[t]*2))) * vres[t] + voffset[t] # Array conversion for t in range(ttraces): if raw: data[t] = np.array(data[t], dtype='int64') else: data[t] = np.array(data[t]) # Tmin/Tmax filtering for t in range(ttraces): if type(tmin) == list or type(tmax) == list: if not (type(tmin) == list and type(tmax) == list and len(tmin) == len(tmax)): raise ValueError("tmin and tmax both have to be list and have to have the same length.") mask = np.add.reduce([ (time[t] >= _tmin) & (time[t] < _tmax) for (_tmax, _tmin) in zip(tmax, tmin)], dtype=bool) else: _tmin = np.min(time[t]) if tmin is None else tmin _tmax = np.max(time[t]) + 1 if tmax is None else tmax mask = (time[t] >= _tmin) & (time[t] < _tmax) data[t] = data[t][:, mask] time[t] = time[t][mask] f.close() if summary is False: # Return wave data as is if raw: return [ [ (hres[t], hoffset[t], vres[t], voffset[t]), data[t] ] for t in range(ttraces) ] else: return [ [ time[t], data[t] ] for t in range(ttraces) ] else: if nf is None: # Noise filter is off if raw: return [ [ (hres[t], hoffset[t], vres[t], voffset[t]), np.mean(data[t].astype(dtype='float64'), axis=0), np.std(data[t].astype(dtype='float64'), axis=0, ddof=1) ] for t in range(ttraces) ] else: return [ [ time[t], np.mean(data[t], axis=0), np.std(data[t], axis=0, ddof=1) ] for t in range(ttraces) ] else: # Noise filter is on if raw: return [ [ (hres[t], hoffset[t], vres[t], voffset[t]), np.apply_along_axis(lambda a: np.mean(a[median_filter(a, nf)]), 0, data[t].astype(dtype='float64')), np.apply_along_axis(lambda a: np.std(a[median_filter(a, nf)], ddof=1), 0, data[t].astype(dtype='float64')) ] for t in range(ttraces) ] else: return [ [ time[t], np.apply_along_axis(lambda a: np.mean(a[median_filter(a, nf)]), 0, data[t]), np.apply_along_axis(lambda a: np.std(a[median_filter(a, nf)], ddof=1), 0, data[t]) ] for t in range(ttraces) ] def popen(filename, ch=None, raw=False): """ Read pls file Parameters ========== filename: file name to read ch: returns data only for the given channel if given (Default: None) raw: returns raw data without scaling/offsetting if True (Default: False) Returns ======= if raw is True: [ header, vres, vofs, hres, hofs, tick, num, data, edata ] else: [ header, t, tick, num, data, edata ] """ # Initialize header = {'COMMENT': []} vres = {} vofs = {} hres = {} hofs = {} tick = {} num = {} data = {} edata = {} # Parser def parser(): """ PLS Data Parser (generator) """ # Initialization samples = -1 extra = 0 chunk = '' isHeader = True while True: while len(chunk) < 2: chunk += yield # Get the magic character magic = chunk[0] if isHeader and magic == 'C': # Comment while len(chunk) < 80: chunk += yield header['COMMENT'].append(chunk[2:80]) chunk = chunk[80:] elif isHeader and magic == 'V': # Version while len(chunk) < 80: chunk += yield header['VERSION'] = chunk[2:80] chunk = chunk[80:] elif isHeader and magic == 'O': # Date while len(chunk) < 10: chunk += yield _m, _d, _y = map(int, chunk[2:10].split()) header['DATE'] = "%d/%d/%d" % (_y, _m, _d) chunk = chunk[10:] elif isHeader and magic == 'S': # Number of Samples while len(chunk) < 7: chunk += yield header['SAMPLES'] = samples = int(chunk[2:7]) chunk = chunk[7:] elif isHeader and magic == 'E': # Extra Bytes while len(chunk) < 7: chunk += yield header['EXTRA'] = extra = int(chunk[2:7]) chunk = chunk[7:] elif isHeader and magic == 'P': # Discriminator while len(chunk) < 78: chunk += yield _dis = chunk[2:78].split() if _dis[0] == '01': header['ULD'] = eval(_dis[1]) elif _dis[0] == '02': header['LLD'] = eval(_dis[1]) chunk = chunk[78:] elif isHeader and magic == 'N': # Normalization while len(chunk) < 47: chunk += yield _ch, _hofs, _hres, _vofs, _vres = chunk[2:47].split() _ch = int(_ch) vres[_ch] = eval(_vres) vofs[_ch] = eval(_vofs) hres[_ch] = eval(_hres) hofs[_ch] = eval(_hofs) chunk = chunk[47:] elif magic == 'D': # Data isHeader = False if samples < 0: raise ValueError("Invalid number of samples.") while len(chunk) < (11 + samples*2): chunk += yield _ch, _tick, _num = unpack('<BII', chunk[2:11]) if not data.has_key(_ch): data[_ch] = bytearray() tick[_ch] = [] num[_ch] = [] edata[_ch] = bytearray() data[_ch] += chunk[11:11 + samples*2] tick[_ch].append(_tick) num[_ch].append(_num) edata[_ch] += chunk[11 + samples*2:11 + samples*2 + extra] chunk = chunk[11 + samples*2 + extra:] else: # Skip unknown magic chunk = chunk[1:] # Open pls file and read by chunks f = open(filename, 'rb') # Start parser p = parser() p.next() # Read by chunk and parse it with open(filename, 'rb') as f: while True: chunk = f.read(1024*1024) # read 1 MB if not chunk: break p.send(chunk) # Convert buffer to numpy array for k in ([ch] if ch else data.keys()): data[k] = np.frombuffer(data[k], dtype='>i2').reshape(-1, header['SAMPLES']) edata[k] = np.frombuffer(edata[k], dtype='>u1').reshape(-1, header['SAMPLES']) if raw: if ch: return header, vres[ch], vofs[ch], hres[ch], hofs[ch], tick[ch], num[ch], data[ch], edata[ch] else: return header, vres, vofs, hres, hofs, tick, num, data, edata else: t = {} for k in ([ch] if ch else data.keys()): # Normalize data using res/ofs t[k] = (np.arange(header['SAMPLES']) + hofs[k]) * hres[k] data[k] = (np.asarray(data[k]) + vofs[k]) * vres[k] if ch: return header, t[ch], tick[ch], num[ch], data[ch], edata[ch] else: return header, t, tick, num, data, edata def tesana(t, p, n, lpfc=None, hpfc=None, binsize=1, max_shift=10, thre=0.4, filt=None, nulldc=False, offset=False, center=False, sigma=3, gain=None, dsr=None, shift=False, ocmethod="ols", flip=False, atom="Mn", kbfit=False, ignorekb=False, method="mle", rshunt=None, tbias=None, ites=None, ka_min=80, kb_min=40, tex=False, plotting=True, savedat=False, session="Unnamed"): """ Perform TES Analysis Parameters (and their default values): t: time data (array-like) p: pulse data (array-like) n: noise data (array-like) lpfc: low-pass filter cut-off frequency in bins (Default: None) hpfc: high-pass filter cut-off frequency in bins (Default: None) binsize: energy bin size for histograms and fittings (only for ls ans cs) in eV (Default: 1) max_shift: maximum allowed shifts to calculate maximum cross correlation (Default: 10) thre: correlation threshold for offset correction (Default: 0.4) filt: window function (hanning/hamming/blackman/tukey) (Default: None) nulldc: nullify the DC bin when template generation (Default: False) offset: subtract DC offset (Default: False) center: centering pulse rise (Default: False) sigma: sigmas for median filter (Default: 3) gain: feedback gain for current-space conversion (Default: None) dsr: down-sampling rate (Default: None) shift: treat dE as energy shift instead of scaling (Default: False) ocmethod: offset correction fitting method (ols/odr) (Default: ols) flip: flip x and y when offset correction fitting (Default: False) atom: atom to fit (Default: Mn) kbfit: fit Kb line (Default: False) ignorekb: ignore Kb line when linearity correction (Default: False) method: fitting method (mle/ls/cs) (Default: mle) rshunt: shunt resistance value for r-space conversion (Default: None) tbias: TES bias current for r-space conversion (Default: None) ites: TES current for r-space conversion (Default: None) ka_min: minimum counts to group bins for Ka line (valid only for ls/cs fittings) (Default: 80) ka_min: minimum counts to group bins for Kb line (valid only for ls/cs fittings) (Default: 20) tex: use TeX for plots (Default: False) plotting: generate and save plots (Default: True) savedat: save data to files (Default: False) session: session name for plots and data files (Default: Unnamed) Note: - Use offset option when using filt option - Consider using center option when using filt option """ if plotting: # Import matplotlib import matplotlib matplotlib.use('Agg') matplotlib.rcParams['text.usetex'] = str(tex) from pylab import figure, plot, errorbar, hist, axvline, xlim, ylim, loglog, xlabel, ylabel, legend, tight_layout, savefig print "Session: %s" % session # Preparation p = np.asarray(p) n = np.asarray(n) t = np.asarray(t) dt = np.diff(t)[0] df = (dt * t.shape[-1])**-1 # Subtract offset if offset: ofs = np.median(n) p -= ofs n -= ofs # Convert to current-space if needed if gain: print "Converting to current-space" p /= gain n /= gain # Convert to resistance-space Rspace = False if gain and rshunt and tbias and ites: print "Converting to resistance-space" ofs = np.median(n) p += (ites - ofs) n += (ites - ofs) # Convert to resistance p = (tbias - p) * rshunt / p n = (tbias - n) * rshunt / n Rspace = True # Down-sample if dsr > 1: p = p[:,:p.shape[-1]/dsr*dsr].reshape(p.shape[0], -1, dsr).mean(axis=-1) n = n[:,:n.shape[-1]/dsr*dsr].reshape(n.shape[0], -1, dsr).mean(axis=-1) dt *= dsr t = t[::dsr] # Pulse centering (for filtering) if center: # Roll pulse to the center r = p.shape[-1] / 2 - np.median(abs(p - Filter.offset(p)[:, np.newaxis]).argmax(axis=-1)) p = np.hstack((p[...,-r:], p[...,:-r])) # Calculate offset (needs to be done before applying filter) if p.size > 0: offset = Filter.offset(p) # Generate Filter if filt is None: pass else: if filt.lower() == "hanning": f = np.hanning(p.shape[-1]) elif filt.lower() == "hamming": f = np.hamming(p.shape[-1]) elif filt.lower() == "blackman": f = np.blackman(p.shape[-1]) elif filt.lower() == "tukey": f = tukey(p.shape[-1]) else: raise ValueError('Unsupported filter: %s' % filt.lower()) print "Window filter function: %s" % filt.lower() # Amplitude correction cf = f.sum() / len(f) p *= (f / cf) n *= (f / cf) # Equivalent noise bandwidth correction enb = len(f)*(f**2).sum()/f.sum()**2 df *= enb if p.size > 0: # Calculate averaged pulse avgp = Filter.average_pulse(p, max_shift=max_shift) if savedat: np.savetxt('%s-averagepulse.dat' % session, np.vstack((t, avgp)).T, header='Time (s), Averaged Pulse (%s)' % ('R' if Rspace else ('A' if gain else 'V')), delimiter='\t') if plotting: figure() plot(t, avgp) xlabel('Time$\quad$(s)') ylabel('Averaged Pulse$\quad$(%s)' % ('R' if Rspace else ('A' if gain else 'V'))) tight_layout() savefig('%s-averagepulse.pdf' % session) # Calculate averaged pulse spectrum avgps = np.sqrt(Filter.power(avgp)) / df if savedat: np.savetxt('%s-avgpulse-power.dat' % session, np.vstack((np.arange(len(avgps))*df, avgps)).T, header='Frequency (Hz), Average Pulse Power (%s/srHz)' % ('R' if Rspace else ('A' if gain else 'V')), delimiter='\t') if plotting: avgps[0] = 0 # for better plot figure() plot(np.arange(len(avgps))*df, avgps) loglog() xlabel('Frequency$\quad$(Hz)') ylabel('Average Pulse Power$\quad$(%s/Hz)' % ('R' if Rspace else ('A' if gain else 'V'))) tight_layout() savefig('%s-avgpulse-power.pdf' % session) if n.size > 0: # Plot noise spectrum avgns = np.sqrt(Filter.average_noise(n) / df) if savedat: np.savetxt('%s-noise.dat' % session, np.vstack((np.arange(len(avgns))*df, avgns)).T, header='Frequency (Hz), Noise (%s/srHz)' % ('R' if Rspace else ('A' if gain else 'V')), delimiter='\t') if plotting: avgns[0] = 0 # for better plot figure() plot(np.arange(len(avgns))*df, avgns) loglog() xlabel('Frequency$\quad$(Hz)') ylabel('Noise$\quad$(%s/$\sqrt{\mathrm{Hz}}$)' % ('R' if Rspace else ('A' if gain else 'V'))) tight_layout() savefig('%s-noise.pdf' % session) if p.size > 0 and n.size > 0: # Generate template tmpl, sn = Filter.generate_template(p, n, lpfc=lpfc, hpfc=hpfc, nulldc=nulldc, max_shift=max_shift) if savedat: np.savetxt('%s-template.dat' % session, np.vstack((t, tmpl)).T, header='Time (s), Template (A.U.)', delimiter='\t') np.savetxt('%s-sn.dat' % session, np.vstack((np.arange(len(sn))*df, sn/np.sqrt(df))).T, header='Frequency (Hz), S/N (/srHz)', delimiter='\t') if plotting: # Plot template figure() plot(t, tmpl) xlabel('Time$\quad$(s)') ylabel('Template$\quad$(A.U.)') tight_layout() savefig('%s-template.pdf' % session) # Plot SNR figure() plot(np.arange(len(sn))*df, sn/np.sqrt(df)) loglog() xlabel('Frequency$\quad$(Hz)') ylabel('S/N$\quad$(/$\sqrt{\mathrm{Hz}}$)') tight_layout() savefig('%s-sn.pdf' % session) # Calculate baseline resolution print "Resolving power: %.2f (%.2f eV @ 5.9 keV)" % (np.sqrt((sn**2).sum()*2), Analysis.baseline(sn)) # Perform optimal filtering pha_p = Filter.optimal_filter(p, tmpl, max_shift=max_shift) pha_n = Filter.optimal_filter(n, tmpl, max_shift=0) # Offset correction (a, b), coef = Analysis.fit_offset(pha_p, offset, sigma=sigma, method=ocmethod, flip=flip) if coef > thre: oc_pha_p = Analysis.offset_correction(pha_p, offset, b) oc_pha_n = Analysis.offset_correction(pha_n, offset, b) print "Offset correction with: PHA = %f * (1 + %f * Offset)" % (a, b) if plotting: figure() ka = Analysis.ka(np.vstack((pha_p, offset)).T, sigma=sigma) plot(ka.T[1], ka.T[0], '.', c='k') x_min, x_max = xlim() ofs = np.linspace(x_min, x_max) label = '$\mathrm{PHA}=%.2f\\times(1+%.2f\\times\mathrm{Offset})$' % (a, b) plot(ofs, a*(1+b*ofs), 'r-', label=label) xlabel('Offset$\quad$(V)') ylabel('PHA$\quad$(V)') legend(frameon=False) tight_layout() savefig('%s-offset.pdf' % session) else: oc_pha_p = pha_p oc_pha_n = pha_n print "Skipped offset correction: correlation coefficient (%f) is too small" % coef # Check line database if "%sKa" % atom not in Constants.LE.keys() or "%sKb" % atom not in Constants.LE.keys(): raise ValueError('Unsupported atom: %s' % atom) # Linearity correction pha_line_center = np.asarray([ np.median(Analysis.ka(oc_pha_p, sigma=sigma)), np.median(Analysis.kb(oc_pha_p, sigma=sigma)) ]) line_energy = np.asarray([ Constants.LE['%sKa' % atom], Constants.LE['%sKb' % atom] ]) if ignorekb: a, b = Analysis.fit_linearity([pha_line_center[0]], [line_energy[0]], deg=1) print "Linearity correction with: PHA = %e * E" % (b) else: a, b = Analysis.fit_linearity(pha_line_center, line_energy, deg=2) print "Linearity correction with: PHA = %e * E^2 + %e * E" % (a, b) print "MnKb saturation ratio: %.2f %%" % ((pha_line_center[1]/pha_line_center[0])/(line_energy[1]/line_energy[0])*100) lc_pha_p = Analysis.linearity_correction(oc_pha_p, a, b) lc_pha_n = Analysis.linearity_correction(oc_pha_n, a, b) if savedat: np.savetxt('%s-linearity.dat' % session, array([pha_line_center[0]]) if ignorekb else pha_line_center[np.newaxis,:], header='%sKa PHA' % atom if ignorekb else '%sKa PHA, %sKb PHA' % (atom, atom), delimiter='\t') if plotting: figure() x = np.linspace(0, 7e3) if ignorekb: plot(line_energy[0]/1e3, pha_line_center[0], '+', color='b') plot(x/1e3, x*b, 'r--') else: plot(line_energy/1e3, pha_line_center, '+', color='b') plot(x/1e3, x**2*a+x*b, 'r--') xlim((0, 7)) xlabel('Energy$\quad$(keV)') ylabel('PHA$\quad$(a.u.)') tight_layout() savefig('%s-linearity.pdf' % session) # Energy Spectrum if plotting: figure() hcount, hbin, hpatch = hist(lc_pha_p[lc_pha_p==lc_pha_p]/1e3, bins=7000/binsize, histtype='stepfilled', color='y') xlim(0, 7) xlabel('Energy$\quad$(keV)') ylabel('Count') tight_layout() savefig('%s-spec.pdf' % session) if savedat: hcount, hbin = np.histogram(lc_pha_p[lc_pha_p==lc_pha_p]/1e3, bins=7000/binsize) np.savetxt('%s-spec.dat' % session, np.vstack(((hbin[1:]+hbin[:-1])/2, hcount)).T, header='Energy (keV), Count', delimiter='\t') # Line fitting def _line_fit(data, min, line): # Fit (dE, width), (dE_error, width_error), e = Analysis.fit(data, binsize=binsize, min=min, line=line, shift=shift, method=method) if method == "cs": chi_squared, dof = e if method in ("mle", "ls"): print "%s: %.2f +/- %.2f eV @ Ec%+.2f eV" \ % (line, width, width_error, dE) elif method == "cs": print "%s: %.2f +/- %.2f eV @ Ec%+.2f eV (Red. chi^2 = %.1f/%d = %.2f)" \ % (line, width, width_error, dE, chi_squared, dof, chi_squared/dof) return dE, width, width_error def _line_spectrum(data, min, line, dE, width, width_error): # Draw histogram n, bins = Analysis.histogram(data, binsize=binsize) if method in ("cs"): gn, gbins = Analysis.group_bin(n, bins, min=min) else: # No grouping in mle and ls gn, gbins = n, bins ngn = gn/(np.diff(gbins)) ngn_sigma = np.sqrt(gn)/(np.diff(gbins)) cbins = (gbins[1:]+gbins[:-1])/2 if plotting: figure() if width_error is not None: label = 'FWHM$=%.2f\pm %.2f$ eV' % (width, width_error) else: label = 'FWHM$=%.2f$ eV (Fixed)' % width if method == "cs": errorbar(cbins, ngn, yerr=ngn_sigma, xerr=np.diff(gbins)/2, capsize=0, ecolor='k', fmt=None, label=label) else: hist(data, bins=gbins, weights=np.ones(len(data))/binsize, histtype='step', ec='k', label=label) E = np.linspace(bins.min(), bins.max(), 1000) model = Analysis.normalization(ngn, gbins, dE, width, line=line, shift=shift) \ * Analysis.line_model(E, dE, width, line=line, shift=shift, full=True) # Plot theoretical model plot(E, model[0], 'r-') # Plot fine structures for m in model[1:]: plot(E, m, 'b--') xlabel('Energy$\quad$(eV)') ylabel('Normalized Count$\quad$(count/eV)') legend(frameon=False) ymin, ymax = ylim() ylim(ymin, ymax*1.1) tight_layout() savefig("%s-%s.pdf" % (session, line)) if savedat: np.savetxt('%s-%s.dat' % (session, line), np.vstack((cbins, gn)).T, header='Energy (keV), Count', delimiter='\t') ## Ka ka = Analysis.ka(lc_pha_p, sigma=sigma) dE, width, width_error = _line_fit(ka, ka_min, "%sKa" % atom) _line_spectrum(ka, ka_min, "%sKa" % atom, dE, width, width_error) ## Kb kb = Analysis.kb(lc_pha_p, sigma=sigma) if kbfit: dE, width, width_error = _line_fit(kb, kb_min, "%sKb" % atom) else: width_error = None _line_spectrum(kb, kb_min, "%sKb" % atom, dE, width, width_error) ## Baseline f_pha_n = lc_pha_n[Filter.median_filter(lc_pha_n, sigma=sigma)] baseline = Analysis.sigma2fwhm(np.std(f_pha_n)) print "Baseline resolution: %.2f eV" % baseline n, bins = Analysis.histogram(f_pha_n, binsize=binsize) if savedat: np.savetxt('%s-baseline.dat' % session, np.vstack(((bins[1:]+bins[:-1])/2, n)).T, header='Energy (keV), Count', delimiter='\t') if plotting: figure() label = 'FWHM$=%.2f$ eV' % baseline hist(f_pha_n, bins=bins, weights=np.ones(len(f_pha_n))/binsize, histtype='step', ec='k', label=label) mu, sigma = norm.fit(f_pha_n) E = np.linspace(bins.min(), bins.max(), 1000) plot(E, norm.pdf(E, loc=mu, scale=sigma)*len(f_pha_n), 'r-') xlabel('Energy$\quad$(eV)') ylabel('Normalized Count$\quad$(count/eV)') legend(frameon=False) tight_layout() savefig('%s-baseline.pdf' % session)
mit
mwv/scikit-learn
examples/linear_model/plot_sgd_loss_functions.py
249
1095
""" ========================== SGD: convex loss functions ========================== A plot that compares the various convex loss functions supported by :class:`sklearn.linear_model.SGDClassifier` . """ print(__doc__) import numpy as np import matplotlib.pyplot as plt def modified_huber_loss(y_true, y_pred): z = y_pred * y_true loss = -4 * z loss[z >= -1] = (1 - z[z >= -1]) ** 2 loss[z >= 1.] = 0 return loss xmin, xmax = -4, 4 xx = np.linspace(xmin, xmax, 100) plt.plot([xmin, 0, 0, xmax], [1, 1, 0, 0], 'k-', label="Zero-one loss") plt.plot(xx, np.where(xx < 1, 1 - xx, 0), 'g-', label="Hinge loss") plt.plot(xx, -np.minimum(xx, 0), 'm-', label="Perceptron loss") plt.plot(xx, np.log2(1 + np.exp(-xx)), 'r-', label="Log loss") plt.plot(xx, np.where(xx < 1, 1 - xx, 0) ** 2, 'b-', label="Squared hinge loss") plt.plot(xx, modified_huber_loss(xx, 1), 'y--', label="Modified Huber loss") plt.ylim((0, 8)) plt.legend(loc="upper right") plt.xlabel(r"Decision function $f(x)$") plt.ylabel("$L(y, f(x))$") plt.show()
bsd-3-clause
openfisca/openfisca-france-indirect-taxation
openfisca_france_indirect_taxation/examples/transports/plot_legislation/plot_ticpe_taux_implicite.py
4
2264
# -*- coding: utf-8 -*- """ Created on Mon Aug 17 18:06:45 2015 @author: thomas.douenne TICPE: Taxe intérieure sur la consommation des produits énergétiques """ # L'objectif de ce script est d'illustrer graphiquement l'évolution du taux implicite de la TICPE depuis 1993. # On étudie ce taux pour le diesel, et pour les carburants sans plombs. # Import de modules généraux from pandas import concat # Import de modules spécifiques à Openfisca from openfisca_france_indirect_taxation.examples.utils_example import graph_builder_bar_list from openfisca_france_indirect_taxation.examples.dataframes_from_legislation.get_accises import get_accises_carburants from openfisca_france_indirect_taxation.examples.dataframes_from_legislation.get_tva import get_tva_taux_plein from openfisca_france_indirect_taxation.examples.dataframes_from_legislation.get_prix_carburants import \ get_prix_carburants # Appel des paramètres de la législation et des prix ticpe = ['ticpe_gazole', 'ticpe_super9598'] accise_diesel = get_accises_carburants(ticpe) prix_ttc = ['diesel_ttc', 'super_95_ttc'] prix_carburants = get_prix_carburants(prix_ttc) tva_taux_plein = get_tva_taux_plein() # Création d'une dataframe contenant ces paramètres df_taux_implicite = concat([accise_diesel, prix_carburants, tva_taux_plein], axis = 1) df_taux_implicite.rename(columns = {'value': 'taux plein tva'}, inplace = True) # A partir des paramètres, calcul des taux de taxation implicites df_taux_implicite['taux_implicite_diesel'] = ( df_taux_implicite['accise ticpe gazole'] * (1 + df_taux_implicite['taux plein tva']) / (df_taux_implicite['prix diesel ttc'] - (df_taux_implicite['accise ticpe gazole'] * (1 + df_taux_implicite['taux plein tva']))) ) df_taux_implicite['taux_implicite_sp95'] = ( df_taux_implicite['accise ticpe super9598'] * (1 + df_taux_implicite['taux plein tva']) / (df_taux_implicite['prix super 95 ttc'] - (df_taux_implicite['accise ticpe super9598'] * (1 + df_taux_implicite['taux plein tva']))) ) df_taux_implicite = df_taux_implicite.dropna() # Réalisation des graphiques graph_builder_bar_list(df_taux_implicite['taux_implicite_diesel'], 1, 1) graph_builder_bar_list(df_taux_implicite['taux_implicite_sp95'], 1, 1)
agpl-3.0
jmontgom10/Mimir_pyPol
oldCode/04b_avgBAABditherHWPimages.py
1
17054
# -*- coding: utf-8 -*- """ Combines all the images for a given (TARGET, FILTER, HWP) combination to produce a single, average image. Estimates the sky background level of the on-target position at the time of the on-target observation using a bracketing pair of off-target observations through the same HWP polaroid rotation value. Subtracts this background level from each on-target image to produce background free images. Applies an airmass correction to each image, and combines these final image to produce a background free, airmass corrected, average image. """ # Core imports import os import sys import copy import warnings # Import scipy/numpy packages import numpy as np from scipy import ndimage # Import astropy packages from astropy.table import Table import astropy.units as u from astropy.convolution import Gaussian2DKernel from astropy.modeling import models, fitting from astropy.stats import gaussian_fwhm_to_sigma, sigma_clipped_stats from photutils import (make_source_mask, MedianBackground, SigmaClip, Background2D) # Import plotting utilities from matplotlib import pyplot as plt # Add the AstroImage class import astroimage as ai # Add the header handler to the BaseImage class from Mimir_header_handler import Mimir_header_handler ai.reduced.ReducedScience.set_header_handler(Mimir_header_handler) ai.set_instrument('mimir') #============================================================================== # *********************** CUSTOM USER CODE ************************************ # this is where the user specifies where the raw data is stored # and some of the subdirectory structure to find the actual .FITS images #============================================================================== # This is a list of targets for which to process each subgroup (observational # group... never spanning multiple nights, etc...) instead of combining into a # single "metagroup" for all observations of that target. The default behavior # is to go ahead and combine everything into a single, large "metagroup". The # calibration data should probably not be processed as a metagroup though. processSubGroupList = [] processSubGroupList = [t.upper() for t in processSubGroupList] # Define the location of the PPOL reduced data to be read and worked on PPOL_data = 'C:\\Users\\Jordan\\FITS_data\\Mimir_data\\PPOL_Reduced\\201611\\' S3_dir = os.path.join(PPOL_data, 'S3_Astrometry') # This is the location where all pyPol data will be saved pyPol_data = 'C:\\Users\\Jordan\\FITS_data\\Mimir_data\\pyPol_Reduced\\201611' # This is the location of the previously generated masks (step 4) maskDir = os.path.join(pyPol_data, 'Masks') # Setup new directory for polarimetry data polarimetryDir = os.path.join(pyPol_data, 'Polarimetry') if (not os.path.isdir(polarimetryDir)): os.mkdir(polarimetryDir, 0o755) HWPDir = os.path.join(polarimetryDir, 'HWPImgs') if (not os.path.isdir(HWPDir)): os.mkdir(HWPDir, 0o755) bkgPlotDir = os.path.join(HWPDir, 'bkgPlots') if (not os.path.isdir(bkgPlotDir)): os.mkdir(bkgPlotDir, 0o755) # # Setup PRISM detector properties # read_noise = 13.0 # electrons # effective_gain = 3.3 # electrons/ADU ######### ### Establish the atmospheric extinction (magnitudes/airmass) ######### # Following table from Hu (2011) # Data from Gaomeigu Observational Station # Passband | K'(lambda) [mag/airmass] | K'' [mag/(color*airmass)] # U 0.560 +/- 0.023 0.061 +/- 0.004 # B 0.336 +/- 0.021 0.012 +/- 0.003 # V 0.198 +/- 0.024 -0.015 +/- 0.004 # R 0.142 +/- 0.021 -0.067 +/- 0.005 # I 0.093 +/- 0.020 0.023 +/- 0.006 # Following table from Schmude (1994) # Data from Texas A & M University Observatory # Passband | K(lambda) [mag/airmass] | dispersion on K(lambda) # U 0.60 +/- 0.05 0.120 # B 0.40 +/- 0.06 0.165 # V 0.26 +/- 0.03 0.084 # R 0.19 +/- 0.03 0.068 # I 0.16 +/- 0.02 0.055 # TODO: Ask Dan about atmospheric extinction from airmass at NIR kappa = dict(zip(['U', 'B', 'V', 'R', 'I', 'J', 'H', 'K' ], [0.60, 0.40, 0.26, 0.19, 0.16, 0.05, 0.01, 0.005])) # Read in the indexFile data and select the filenames print('\nReading file index from disk') indexFile = os.path.join(pyPol_data, 'reducedFileIndex.csv') fileIndex = Table.read(indexFile, format='ascii.csv') # Determine which parts of the fileIndex pertain to HEX dither science images useFiles = np.logical_and( fileIndex['USE'] == 1, fileIndex['DITHER_TYPE'] == 'ABBA' ) useFileRows = np.where(useFiles) # Cull the file index to only include files selected for use fileIndex = fileIndex[useFileRows] # Define an approximate pixel scale pixScale = 0.5789*(u.arcsec/u.pixel) # TODO: implement a FWHM seeing cut... not yet working because PSF getter seems # to be malfunctioning in step 2 # # # # Loop through each unique GROUP_ID and test for bad seeing conditions. # groupByID = fileIndex.group_by(['GROUP_ID']) # for subGroup in groupByID.groups: # # Grab the FWHM values for this subGroup # thisFWHMs = subGroup['FWHM']*u.pixel # # # Grab the median and standard deviation of the seeing for this subgroup # medianSeeing = np.median(thisFWHMs) # stdSeeing = np.std(thisFWHMs) # # # Find bad FWHM values # badFWHMs = np.logical_not(np.isfinite(subGroup['FWHM'])) # badFWHMs = np.logical_or( # badFWHMs, # thisFWHMs <= 0 # ) # badFWHM = np.logical_and( # badFWHM, # thisFWHMs > 2.0*u.arcsec # ) # import pdb; pdb.set_trace() # Group the fileIndex by... # 1. Target # 2. Waveband fileIndexByTarget = fileIndex.group_by(['TARGET', 'FILTER']) # Loop through each group for group in fileIndexByTarget.groups: # Grab the current group information thisTarget = str(np.unique(group['TARGET'].data)[0]) thisFilter = str(np.unique(group['FILTER'].data)[0]) # # Skip the Merope nebula for now... not of primary scientific importance # if thisTarget == 'MEROPE': continue # Update the user on processing status print('\nProcessing images for') print('Target : {0}'.format(thisTarget)) print('Filter : {0}'.format(thisFilter)) # Grab the atmospheric extinction coefficient for this wavelength thisKappa = kappa[thisFilter] # Further divide this group by its constituent HWP values indexByPolAng = group.group_by(['IPPA']) # Loop over each of the HWP values, as these are independent from # eachother and should be treated entirely separately from eachother. for IPPAgroup in indexByPolAng.groups: # Grab the current HWP information thisIPPA = np.unique(IPPAgroup['IPPA'].data)[0] # Update the user on processing status print('\tIPPA : {0}'.format(thisIPPA)) # For ABBA dithers, we need to compute the background levels on a # sub-group basis. If this target has not been selected for subGroup # averaging, then simply append the background subtracted images to a # cumulative list of images to align and average. # Initalize an image list to store all the images for this # (target, filter, pol-ang) combination imgList = [] indexByGroupID = IPPAgroup.group_by(['GROUP_ID']) for subGroup in indexByGroupID.groups: # Grab the numae of this subGroup thisSubGroup = str(np.unique(subGroup['OBJECT'])[0]) # if (thisSubGroup != 'NGC2023_R1') and (thisSubGroup != 'NGC2023_R2'): continue # Construct the output file name and test if it alread exsits. if thisTarget in processSubGroupList: outFile = '_'.join([thisTarget, thisSubGroup, str(thisIPPA)]) outFile = os.path.join(HWPDir, outFile) + '.fits' elif thisTarget not in processSubGroupList: outFile = '_'.join([thisTarget, thisFilter, str(thisIPPA)]) outFile = os.path.join(HWPDir, outFile) + '.fits' # Test if this file has already been constructed and either skip # this subgroup or break out of the subgroup loop. if os.path.isfile(outFile): print('\t\tFile {0} already exists...'.format(os.path.basename(outFile))) if thisTarget in processSubGroupList: continue elif thisTarget not in processSubGroupList: break # Update the user on the current execution status print('\t\tProcessing images for subgroup {0}'.format(thisSubGroup)) # Initalize lists to store the A and B images. AimgList = [] BimgList = [] # Initalize a list to store the off-target sky background levels BbkgList = [] # Initilaze lists to store the times of observation AdatetimeList = [] BdatetimeList = [] # Read in all the images for this subgroup progressString = '\t\tNumber of Images : {0}' for iFile, filename in enumerate(subGroup['FILENAME']): # Update the user on processing status print(progressString.format(iFile+1), end='\r') # Read in a temporary compy of this image PPOL_file = os.path.join(S3_dir, filename) tmpImg = ai.reduced.ReducedScience.read(PPOL_file) # Crop the edges of this image ny, nx = tmpImg.shape binningArray = np.array(tmpImg.binning) # Compute the amount to crop to get a 1000 x 1000 image cy, cx = (ny - 1000, nx - 1000) # Compute the crop boundaries and apply them lf = np.int(np.round(0.5*cx)) rt = lf + 1000 bt = np.int(np.round(0.5*cy)) tp = bt + 1000 tmpImg = tmpImg[bt:tp, lf:rt] # Grab the on-off target value for this image thisAB = subGroup['AB'][iFile] # Place the image in a list and store required background values if thisAB == 'B': # Place B images in the BimgList BimgList.append(tmpImg) # Place the median value of this off-target image in list mask = make_source_mask( tmpImg.data, snr=2, npixels=5, dilate_size=11 ) mean, median, std = sigma_clipped_stats( tmpImg.data, sigma=3.0, mask=mask ) BbkgList.append(median) # Place the time of this image in a list of time values BdatetimeList.append(tmpImg.julianDate) if thisAB == 'A': # Read in any associated masks and store them. maskFile = os.path.join(maskDir, os.path.basename(filename)) # If there is a mask for this file, then apply it! if os.path.isfile(maskFile): # Read in the mask file tmpMask = ai.reduced.ReducedScience.read(maskFile) # Crop the mask to match the shape of the original image tmpMask = tmpMask[cy:ny-cy, cx:nx-cx] # Grab the data to be masked tmpData = tmpImg.data # Mask the data and put it back into the tmpImg maskInds = np.where(tmpMask.data) tmpData[maskInds] = np.NaN tmpImg.data = tmpData # Place B images in the BimgList AimgList.append(tmpImg) # Place the time of this image in a list of time values AdatetimeList.append(tmpImg.julianDate) # Create a new line for shell output print('') # Construct an image stack of the off-target images BimageStack = ai.utilitywrappers.ImageStack(BimgList) # Build a supersky image from these off-target images superskyImage = BimageStack.produce_supersky() import pdb; pdb.set_trace() # Locate regions outside of a 5% deviation tmpSuperskyData = superskyImage.data maskedPix = np.abs(tmpSuperskyData - 1.0) > 0.05 # Get rid of the small stuff and expand the big stuff maskedPix = ndimage.binary_opening(maskedPix, iterations=2) maskedPix = ndimage.binary_closing(maskedPix, iterations=2) maskedPix = ndimage.binary_dilation(maskedPix, iterations=4) # TODO: Make the box_size and filter_size sensitive to binning. binningArray = np.array(superskyImage.binning) box_size = tuple((100/binningArray).astype(int)) filter_size = tuple((10/binningArray).astype(int)) # Setup the sigma clipping and median background estimators sigma_clip = SigmaClip(sigma=3., iters=10) bkg_estimator = MedianBackground() # Compute a smoothed background image bkgData = Background2D(superskyImage.data, box_size=box_size, filter_size=filter_size, mask=maskedPix, sigma_clip=sigma_clip, bkg_estimator=bkg_estimator) # Construct a smoothed supersky image object smoothedSuperskyImage = ai.reduced.ReducedScience( bkgData.background/bkgData.background_median, uncertainty = bkgData.background_rms, properties={'unit':u.dimensionless_unscaled} ) # Interpolate background values to A times AbkgList = np.interp( AdatetimeList, BdatetimeList, BbkgList, left=-1e6, right=-1e6 ) # Cut out any extrapolated data (and corresponding images) goodInds = np.where(AbkgList > -1e5) AimgList = np.array(AimgList)[goodInds] AdatetimeList = np.array(AdatetimeList)[goodInds] AbkgList = AbkgList[goodInds] AsubtractedList = [] # Loop through the on-target images and subtract background values for Aimg, Abkg in zip(AimgList, AbkgList): # Subtract the interpolated background values from the A images tmpImg = Aimg - smoothedSuperskyImage*(Abkg*Aimg.unit) # Apply an airmass correction tmpImg = tmpImg.correct_airmass(thisKappa) # Append the subtracted and masked image to the list. AsubtractedList.append(tmpImg) # Now that the images have been fully processed, pause to generate # a plot to store in the "background plots" folder. These plots # constitute a good sanity check on background subtraction. plt.plot(BdatetimeList, BbkgList, '-ob') plt.scatter(AdatetimeList, AbkgList, marker='o', facecolor='r') plt.xlabel('Julian Date') plt.ylabel('Background Value [ADU]') figName = '_'.join([thisTarget, thisSubGroup, str(thisIPPA)]) figName = os.path.join(bkgPlotDir, figName) + '.png' plt.savefig(figName, dpi=300) plt.close('all') # Here is where I need to decide if each subgroup image should be # computed or if I should just continue with the loop. if thisTarget.upper() in processSubGroupList: # Construct an image combiner for the A images AimgStack = ai.utilitywrappers.ImageStack(AsubtractedList) # Align the images AimgStack.align_images_with_wcs( subPixel=False, padding=np.NaN ) # Combine the images AoutImg = imgStack.combine_images() # Save the image AoutImg.write(outFile, dtype=np.float64) else: # Extend the imgList variable with background corrected images imgList.extend(AsubtractedList) if len(imgList) > 0: # At the exit of the loop, process ALL the files from ALL the groups # Construct an image combiner for the A images imgStack = ai.utilitywrappers.ImageStack(imgList) # Align the images imgStack.align_images_with_wcs( subPixel=False, padding=np.NaN ) # Combine the images outImg = imgStack.combine_images() # Save the image outImg.write(outFile, dtype=np.float64) print('\nDone computing average images!')
mit
jldbc/pybaseball
pybaseball/standings.py
1
3820
from typing import List, Optional import pandas as pd import requests from bs4 import BeautifulSoup, Comment, PageElement, ResultSet from . import cache from .utils import most_recent_season def get_soup(year: int) -> BeautifulSoup: url = f'http://www.baseball-reference.com/leagues/MLB/{year}-standings.shtml' s = requests.get(url).content return BeautifulSoup(s, "lxml") def get_tables(soup: BeautifulSoup, season: int) -> List[pd.DataFrame]: datasets = [] if season >= 1969: tables: List[PageElement] = soup.find_all('table') if season == 1981: # For some reason BRef has 1981 broken down by halves and overall # https://www.baseball-reference.com/leagues/MLB/1981-standings.shtml tables = [x for x in tables if 'overall' in x.get('id', '')] for table in tables: data = [] headings: List[PageElement] = [th.get_text() for th in table.find("tr").find_all("th")] data.append(headings) table_body: PageElement = table.find('tbody') rows: List[PageElement] = table_body.find_all('tr') for row in rows: cols: List[PageElement] = row.find_all('td') cols_text: List[str] = [ele.text.strip() for ele in cols] cols_text.insert(0, row.find_all('a')[0].text.strip()) # team name data.append([ele for ele in cols_text if ele]) datasets.append(data) else: data = [] table = soup.find('table') headings = [th.get_text() for th in table.find("tr").find_all("th")] headings[0] = "Name" if season >= 1930: for _ in range(15): headings.pop() elif season >= 1876: for _ in range(14): headings.pop() else: for _ in range(16): headings.pop() data.append(headings) table_body = table.find('tbody') rows = table_body.find_all('tr') for row in rows: if row.find_all('a') == []: continue cols = row.find_all('td') if season >= 1930: for _ in range(15): cols.pop() elif season >= 1876: for _ in range(14): cols.pop() else: for _ in range(16): cols.pop() cols = [ele.text.strip() for ele in cols] cols.insert(0,row.find_all('a')[0].text.strip()) # team name data.append([ele for ele in cols if ele]) datasets.append(data) #convert list-of-lists to dataframes for idx in range(len(datasets)): datasets[idx] = pd.DataFrame(datasets[idx]) return datasets #returns a list of dataframes @cache.df_cache() def standings(season:Optional[int] = None) -> pd.DataFrame: # get most recent standings if date not specified if season is None: season = most_recent_season() if season < 1876: raise ValueError( "This query currently only returns standings until the 1876 season. " "Try looking at years from 1876 to present." ) # retrieve html from baseball reference soup = get_soup(season) if season >= 1969: raw_tables = get_tables(soup, season) else: t = [x for x in soup.find_all(string=lambda text:isinstance(text,Comment)) if 'expanded_standings_overall' in x] code = BeautifulSoup(t[0], "lxml") raw_tables = get_tables(code, season) tables = [pd.DataFrame(table) for table in raw_tables] for idx in range(len(tables)): tables[idx] = tables[idx].rename(columns=tables[idx].iloc[0]) tables[idx] = tables[idx].reindex(tables[idx].index.drop(0)) return tables
mit
BrainTech/openbci
obci/analysis/csp/MLogit.py
1
11792
#!/usr/bin/env python #-*- coding:utf-8 -*- """This is a class for Multinomial Logit Regression Class uses scipy.optimize package for minimalization of a cost function. The gradient of the cost function is passed to the minimizer. Piotr Milanowski, November 2011, Warsaw """ from scipy.optimize import fmin_ncg, fmin_bfgs, fmin import numpy as np import matplotlib.pyplot as plt def mix(x1, x2, deg=6): out = np.zeros([len(x1), sum(range(deg+2))]) k = 0 for i in xrange(deg+1): for j in range(i+1): out[:,k] = x1**(i-j)*x2**(j) k += 1 return out class logit(object): """This is a class for a normal two-class logistic regression The hypothesis of this regression is a sigmoid (logistic, logit) function. It returns the probability of the data belonging to the first class. The minimalization of a cost function is based on NCG algorithm from scipy.optimize package. The regression can account the regularization factors. """ def __init__(self, data, classes, labels=None): """Initialization of data A column of ones is added to the data array. Parameters: =========== data : 2darray NxM array. Rows of this array represent data points, columns represent features. classes : 1darray a N dimensional vector of classes. Each class is represented by either 0 or 1. class_dict [= None] : dictionary a 2 element dictionary that maps classses to their names. Example: ========= >>>X = np.random.rand(20, 4) #data >>>Y = np.random.randint(0,2,20) #classes >>>labels = ['class 1','class 2'] >>>MLogit.logit(X, Y, labels) """ self.dataNo, self.featureNo = data.shape if len(classes) != self.dataNo: raise ValueError, 'Not every data point has its target lable!' #Adding a columns of 1s and normalizing data - NO NORMALIZATION NEEDED self.X = np.concatenate((np.ones([self.dataNo, 1]), data), axis = 1) self.Y = classes def _sigmoid(self, z): """This returns the value of a sigmoid function. Sigmoid/Logistic/Logit finction looks like this: f(z) = over{1}{1 + exp(-z)} Parameters: =========== z : ndarray the parameter of the function Returns: sig : ndarray values of sigmoid function at z """ return 1/(1 + np.exp(-z)) def cost_function(self, theta, reg = 0): """The cost function of logit regression model It looks like this: J(theta) = -((1/M)*sum_{i=1}^{M}(y_i*log(h(theta;x_i))+(1-y_i)*log(1-h(theta;x_i)))) + + (reg/2*m)sum_{i=1}^{N}(theta_i)^2 Parameters: =========== theta : 1darray the array of parameters. It's a (N+1) dimensional vector reg [= 0] : float the regularization parameter. This parameter penalizes theta being too big (overfitting) Returns: ======== J : float the value of cost function for given theta """ z = self._sigmoid(np.dot(self.X, theta)) regular = (reg/(2.0*self.dataNo))*sum(theta[1:]*theta[1:]) J = self.Y * np.log(z) + (1 - self.Y)*np.log(1 - z) J = -(1.0 / self.dataNo) * sum(J) return regular + J def gradient_function(self, theta, reg = 0): """The gradient of cost function The gradient looks like this: g[0] = 1/N * sum_{i=1}^{N}(h(theta;x_i) - y_i)*x_i^0 g[j] = 1/N * sum_{i=1}^{N}(h(theta;x_i) - y_i)*x_i^j - theta[j]*reg/N Parameters: =========== theta : 1darray the vector of parameters reg : float the regularization parameter Returns: ======== fprime : 1darray the gradient of cost function. """ gradient = np.zeros(self.featureNo + 1) N = 1.0 / self.dataNo z = np.dot(self.X, theta) cost = self._sigmoid(z) - self.Y # gradient[0] = N * sum(cost * self.X[:, 0]) # for j in xrange(self.featureNo): # gradient[j] = N * sum(cost * self.X[:, j]) - reg * N * theta[j] gradient = N * np.dot(cost, self.X) gradient[1:] += reg * N * theta[1:] return gradient def fit(self, maxiter, reg = 0, initial_gues = None): """Minimizing function Based on NCG function from scipy.optimize package Parameters: =========== maxiter : int maximal number of iterations reg [= 0] : float regularization parameter initial_gueas [= None] : 1darray a vector of #features + 1 size. If None zeros will be asumed. Returns: ======== theta : 1darray optimal model parameters """ if initial_gues is None: initial_gues = np.zeros(self.featureNo + 1) out = fmin_bfgs(self.cost_function, initial_gues, \ self.gradient_function, args = ([reg])) self.theta = out return out def predict(self, x, val=0.9): """For prediction of x Returns predicted probability of x being in class 1 """ x = np.insert(x, 0, 1) #inserting one at the beginning z = np.dot(x, self.theta) #if self._sigmoid(z) >=val: #return 1 #else: #return 0 return self._sigmoid(z) def plot_features(self, show=True): y = self.Y idx = np.argsort(y) x = self.X[idx, :] y = y[idx] N, feats = x.shape if feats == 3: idx1 = np.where(y==1)[0][0] x1 = x[:idx1, :] x2 = x[idx1:, :] plt.plot(x1[:,1],x1[:,2],'ro',x2[:,1],x2[:,2],'go') for x in np.arange(-5, 5, 0.5): for y in np.arange(-3, 3, 0.5): if self.predict(np.array([x,y])) <=0.5: plt.plot(x,y,'r+') else: plt.plot(x,y,'g+') plt.legend(('Class 0','Class 1')) if show: plt.show() elif feats == 2: idx1 = np.where(y==1)[0][0] x1 = x[:idx1, :] x2 = x[idx1:, :] for x in np.arange(x1.min(), x1.max(), 0.1): for y in np.arange(x2.min(), x2.max(), 0.1): if self.predict(np.array([x,y])) <=0.01: plt.plot(x,y,'r+') else: plt.plot(x,y,'g+') plt.plot(x1[:,1],'ro',x2[:,1],'go') if show: plt.show() else: print "More than 2 dimmensions",x.shape # def plot_fitted(self): # N, feats = self.X.shape # if feats == 3: # x1 = se def __normalization(self, data): """Function normalizes the data Normalization is done by subtracting the mean of each column from each column member and dividing by the column variance. Parameters: =========== data : 2darray the data array Returns: ======== norms : 2darray normalized values """ mean = data.mean(axis = 0) variance = data.std(axis = 0) return (data - mean) / variance class mlogit(logit): """This is a multivariate variation of logit model """ def __init__(self, data, classes, labels=None): """See logit description""" super(mlogit, self).__init__(data, classes, labels) self.classesNo, classesIdx = np.unique(classes, return_inverse = True) self.count_table = np.zeros([len(classes), len(self.classesNo)]) self.count_table[range(len(classes)), classesIdx] = 1.0 def fit(self, maxiter, reg = 0, initial_gues = None): """Fitting logit model for multiclass case""" theta = np.zeros([self.featureNo + 1, len(self.classesNo)]) for i in range(len(self.classesNo)): self.Y = self.count_table[:,i] theta[:, i] = super(mlogit, self).fit(maxiter, reg = reg, initial_gues = initial_gues) self.theta = theta return theta def predict(self, x, val=0.9): """Class prediction""" x = np.insert(x, 0, 1) z = np.dot(x, self.theta) probs = super(mlogit, self)._sigmoid(z) idx = np.argmax(probs) if probs[idx] >= val: return self.classesNo[idx] else: return None def plot_features(self): cn = len(self.classesNo) idx = np.argsort(self.Y) y = self.Y[idx] x = self.X[idx,:] classes = [] if x.shape[1] == 3: for i in range(cn): beg, end = np.where(y==i)[0][[0,-1]] plt.plot(x[beg:end+1, 1], x[beg:end +1, 2],'o') classes.append('Class'+str(i)) plt.legend(classes) plt.show() else: print "More than 2 dimmesions" #class diagnostics(object): # def __init__(self, classifier_obj, division=[0.6, 0.2, 0.2]): # self.obj = classifier_obj # self.div = division # self.N, self.ft = self.obj.dataNo, self.obj.featureNo # self.cvNo = self.N * division[1] # self.testNo = self.N * division[2] # self.trainNo = self.N * division[0] # def diagnose(self, iters, reg, odrer=1, val=0.9): # idx = np.linspace(0, self.N-1, self.N) # TP, FP, TN, FN # train_ok = {'tp':0,'fp':0,'fn':0,'fp':0} # cv_ok = {'tp':0,'fp':0,'fn':0,'fp':0} # test_ok = {'tp':0,'fp':0,'fn':0,'fp':0} # X = self.obj.X # Y = self.obj.Y # for i in xrange(iters): # np.random.shuffle(idx) # train_set = X[idx[:self.trainNo], :] # cv_set = X[idx[self.trainNo:self.trainNo+self.cvNo], :] # test_set = X[idx[self.trainNo+self.cvNo:], :] # classes_train = Y[idx[:self.trainNo], :] # classes_cv = Y[idx[self.trainNo:self.trainNo+self.cvNo], :] # classes_test = Y[idx[self.trainNo+self.cvNo:], :] # Training # self.obj.X = train_set # self.obj.Y = classes_train # self.obj.fit(100) # for j, row in enumerate(train_set): # cl = self.obj.predict(row, val) # if cl == classes_train[j]: # train_ok['tp'] += 1 # elif cl is None: # train_ok['fn'] += 1 # else: # train_ok['fp'] += 1 # Crossvalidation # for j, row in enumerate(cv_set): # cl = self.obj.predict(row, val) # if cl == classes_cv[j]: # cv_ok['tp'] += 1 # elif cl in None: # cv_ok['fn'] += 1 # else: # cv_ok['fp'] += 1 # Test set # for j, row in enumerate(test_set): # cl = self.obj.predict(row, val) # if cl == classes_test[j]: # test_ok['tp'] += 1 # elif cl is None: # test_ok['fn'] += 1 # else: # test_ok['fp'] += 1 # def power_set(self, lst, l): # """Create a powerset of a list for given length""" # r = [[]] # for e in lst: # r.extend([s + [e] for s in r]) # return set([j for j in r if len(j) <= l]) # def next_order(self, kernel, next_o): # def make_order(self, p): # init_featsNo = self.featNo
gpl-3.0
vortex-exoplanet/VIP
vip_hci/negfc/utils_negfc.py
2
8821
#! /usr/bin/env python """ Module with post-processing related functions called from within the NFC algorithm. """ __author__ = 'Carlos Alberto Gomez Gonzalez' __all__ = ['cube_planet_free'] import numpy as np from ..metrics import cube_inject_companions import math from matplotlib.pyplot import plot, xlim, ylim, axes, gca, show def cube_planet_free(planet_parameter, cube, angs, psfn, plsc, imlib='opencv', interpolation='lanczos4',transmission=None): """ Return a cube in which we have injected negative fake companion at the position/flux given by planet_parameter. Parameters ---------- planet_parameter: numpy.array or list The (r, theta, flux) for all known companions. For a 4d cube r, theta and flux must all be 1d arrays with length equal to cube.shape[0]; i.e. planet_parameter should have shape: (n_pl,3,n_ch). cube: numpy.array The cube of fits images expressed as a numpy.array. angs: numpy.array The parallactic angle fits image expressed as a numpy.array. psfn: numpy.array The scaled psf expressed as a numpy.array. plsc: float The platescale, in arcsec per pixel. imlib : str, optional See the documentation of the ``vip_hci.preproc.frame_rotate`` function. interpolation : str, optional See the documentation of the ``vip_hci.preproc.frame_rotate`` function. Returns ------- cpf : numpy.array The cube with negative companions injected at the position given in planet_parameter. """ cpf = np.zeros_like(cube) planet_parameter = np.array(planet_parameter) if cube.ndim == 4: if planet_parameter.shape[3] != cube.shape[0]: raise TypeError("Input planet parameter with wrong dimensions.") for i in range(planet_parameter.shape[0]): if i == 0: cube_temp = cube else: cube_temp = cpf if cube.ndim == 4: for j in cube.shape[0]: cpf[j] = cube_inject_companions(cube_temp[j], psfn[j], angs, flevel=-planet_parameter[i, 2, j], plsc=plsc, rad_dists=[planet_parameter[i, 0, j]], n_branches=1, theta=planet_parameter[i, 1, j], imlib=imlib, interpolation=interpolation, verbose=False, transmission=transmission) else: cpf = cube_inject_companions(cube_temp, psfn, angs, flevel=-planet_parameter[i, 2], plsc=plsc, rad_dists=[planet_parameter[i, 0]], n_branches=1, theta=planet_parameter[i, 1], imlib=imlib, interpolation=interpolation, verbose=False, transmission=transmission) return cpf def radial_to_eq(r=1, t=0, rError=0, tError=0, display=False): """ Convert the position given in (r,t) into \delta RA and \delta DEC, as well as the corresponding uncertainties. t = 0 deg (resp. 90 deg) points toward North (resp. East). Parameters ---------- r: float The radial coordinate. t: float The angular coordinate. rError: float The error bar related to r. tError: float The error bar related to t. display: boolean, optional If True, a figure illustrating the error ellipse is displayed. Returns ------- out : tuple ((RA, RA error), (DEC, DEC error)) """ ra = (r * np.sin(math.radians(t))) dec = (r * np.cos(math.radians(t))) u, v = (ra, dec) nu = np.mod(np.pi/2-math.radians(t), 2*np.pi) a, b = (rError,r*np.sin(math.radians(tError))) beta = np.linspace(0, 2*np.pi, 5000) x, y = (u + (a * np.cos(beta) * np.cos(nu) - b * np.sin(beta) * np.sin(nu)), v + (b * np.sin(beta) * np.cos(nu) + a * np.cos(beta) * np.sin(nu))) raErrorInf = u - np.amin(x) raErrorSup = np.amax(x) - u decErrorInf = v - np.amin(y) decErrorSup = np.amax(y) - v if display: plot(u,v,'ks',x,y,'r') plot((r+rError) * np.cos(nu), (r+rError) * np.sin(nu),'ob', (r-rError) * np.cos(nu), (r-rError) * np.sin(nu),'ob') plot(r * np.cos(nu+math.radians(tError)), r*np.sin(nu+math.radians(tError)),'ok') plot(r * np.cos(nu-math.radians(tError)), r*np.sin(nu-math.radians(tError)),'ok') plot(0,0,'og',np.cos(np.linspace(0,2*np.pi,10000)) * r, np.sin(np.linspace(0,2*np.pi,10000)) * r,'y') plot([0,r*np.cos(nu+math.radians(tError*0))], [0,r*np.sin(nu+math.radians(tError*0))],'k') axes().set_aspect('equal') lim = np.amax([a,b]) * 2. xlim([ra-lim,ra+lim]) ylim([dec-lim,dec+lim]) gca().invert_xaxis() show() return ((ra,np.mean([raErrorInf,raErrorSup])), (dec,np.mean([decErrorInf,decErrorSup]))) def cart_to_polar(y, x, ceny=0, cenx=0): """ Convert cartesian into polar coordinates (r,theta) with respect to a given center (cenx,ceny). Parameters ---------- x,y: float The cartesian coordinates. Returns ------- out : tuple The polar coordinates (r,theta) with respect to the (cenx,ceny). Note that theta is given in degrees. """ r = np.sqrt((y-ceny)**2 + (x-cenx)**2) theta = np.degrees(np.arctan2(y-ceny, x-cenx)) return r, np.mod(theta,360) def polar_to_cart(r, theta, ceny=0, cenx=0): """ Convert polar coordinates with respect to the center (cenx,ceny) into cartesian coordinates (x,y) with respect to the bottom left corner of the image.. Parameters ---------- r,theta: float The polar coordinates. Returns ------- out : tuple The cartesian coordinates (x,y) with respect to the bottom left corner of the image.. """ x = r*np.cos(np.deg2rad(theta)) + cenx y = r*np.sin(np.deg2rad(theta)) + ceny return x,y def ds9index_to_polar(y, x, ceny=0, cenx=0): """ Convert pixel index read on image displayed with DS9 into polar coordinates (r,theta) with respect to a given center (cenx,ceny). Note that ds9 index (x,y) = Python matrix index (y,x). Furthermore, when an image M is displayed with DS9, the coordinates of the center of the pixel associated with M[0,0] is (1,1). Then, there is a shift of (0.5, 0.5) of the center of the coordinate system. As a conclusion, when you read (x_ds9, y_ds9) on a image displayed with DS9, the corresponding position is (y-0.5, x-0.5) and the associated pixel value is M(np.floor(y)-1,np.floor(x)-1). Parameters ---------- x,y: float The pixel index in DS9 Returns ------- out : tuple The polar coordinates (r,theta) with respect to the (cenx,ceny). Note that theta is given in degrees. """ r = np.sqrt((y-0.5-ceny)**2 + (x-0.5-cenx)**2) theta = np.degrees(np.arctan2(y-0.5-ceny, x-0.5-cenx)) return r, np.mod(theta,360) def polar_to_ds9index(r, theta, ceny=0, cenx=0): """ Convert position (r,theta) in an image with respect to a given center (cenx,ceny) into position in the image displayed with DS9. Note that ds9 index (x,y) = Python matrix index (y,x). Furthermore, when an image M is displayed with DS9, the coordinates of the center of the pixel associated with M[0,0] is (1,1). Then, there is a shift of (0.5, 0.5) of the center of the coordinate system. As a conclusion, when you read (x_ds9, y_ds9) on a image displayed with DS9, the corresponding position is (y-0.5, x-0.5) and the associated pixel value is M(np.floor(y)-1,np.floor(x)-1). Parameters ---------- x,y: float The pixel index in DS9 Returns ------- out : tuple The polar coordinates (r,theta) with respect to the (cenx,ceny). Note that theta is given in degrees. """ x_ds9 = r*np.cos(np.deg2rad(theta)) + 0.5 + cenx y_ds9 = r*np.sin(np.deg2rad(theta)) + 0.5 + ceny return x_ds9, y_ds9
mit
chaluemwut/smcdemo
demo_filter.py
1
2602
import pickle from feature_process import FeatureMapping import feature_process from text_processing import TextProcessing from sklearn.cross_validation import train_test_split is_not_important = {9:0, 13:0, 18:0, 19:0, 23:0, 28:0, 29:0, 33:0, 34:0, 37:0, 40:0, 44:0, 46:0, 50:0, 55:0, 59:0, 61:0, 62:0, 63:0, 72:0, 73:0, 78:0, 84:0, 86:0, 88:0, 97:0, 98:0, 103:0 } def create_training_data(): data_lst = pickle.load(open('data/harvest.data', 'rb')) feature_process.feature_map['source'] = {'Google':1, 'Twitter for iPad':2, 'Echofon':3, 'Bitly':4, 'twitterfeed':5, 'Twitter for iPhone':6, 'Foursquare':7, 'Facebook':8, 'Twitter for Android':9, 'TweetDeck':10, 'Twitter Web Client':11} feature_process.feature_map['geo'] = ['None'] feature_process.feature_map['place'] = ['None'] feature_process.feature_map['verified'] = ['False'] feature_process.feature_map['geo_enabled'] = ['False'] y = [] x = [] for i in range(0, len(data_lst)): try: label = is_not_important[i] except Exception as e: label = 1 data = data_lst[i] text = TextProcessing.process(data[0]) source = FeatureMapping.mapping('source', data[1]) re_tweet = data[2] geo = FeatureMapping.mapping_other('geo', data[3]) place = FeatureMapping.mapping_other('place', data[4]) hash_tag = data[5] media = data[6] verified = FeatureMapping.mapping_other('verified', data[7]) follower = data[8] statues = data[9] desc = TextProcessing.process(data[10]) friend = data[11] location = TextProcessing.process(data[12]) geo_enabled = FeatureMapping.mapping_other('geo_enabled', data[13]) y.append(label) x.append([text, source, re_tweet, geo, place, hash_tag, media, verified, follower, statues, desc, friend, location, geo_enabled]) x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=42) from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import f1_score, accuracy_score clf = RandomForestClassifier() clf.fit(x_train, y_train) y_pred = clf.predict(x_test) fsc = f1_score(y_test, y_pred) acc = accuracy_score(y_test, y_pred) print 'f1-score : ',fsc print 'accuracy : ',acc print y_pred print y_test if __name__ == '__main__': create_training_data()
apache-2.0
ChanChiChoi/scikit-learn
examples/exercises/plot_iris_exercise.py
323
1602
""" ================================ SVM Exercise ================================ A tutorial exercise for using different SVM kernels. This exercise is used in the :ref:`using_kernels_tut` part of the :ref:`supervised_learning_tut` section of the :ref:`stat_learn_tut_index`. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, svm iris = datasets.load_iris() X = iris.data y = iris.target X = X[y != 0, :2] y = y[y != 0] n_sample = len(X) np.random.seed(0) order = np.random.permutation(n_sample) X = X[order] y = y[order].astype(np.float) X_train = X[:.9 * n_sample] y_train = y[:.9 * n_sample] X_test = X[.9 * n_sample:] y_test = y[.9 * n_sample:] # fit the model for fig_num, kernel in enumerate(('linear', 'rbf', 'poly')): clf = svm.SVC(kernel=kernel, gamma=10) clf.fit(X_train, y_train) plt.figure(fig_num) plt.clf() plt.scatter(X[:, 0], X[:, 1], c=y, zorder=10, cmap=plt.cm.Paired) # Circle out the test data plt.scatter(X_test[:, 0], X_test[:, 1], s=80, facecolors='none', zorder=10) plt.axis('tight') x_min = X[:, 0].min() x_max = X[:, 0].max() y_min = X[:, 1].min() y_max = X[:, 1].max() XX, YY = np.mgrid[x_min:x_max:200j, y_min:y_max:200j] Z = clf.decision_function(np.c_[XX.ravel(), YY.ravel()]) # Put the result into a color plot Z = Z.reshape(XX.shape) plt.pcolormesh(XX, YY, Z > 0, cmap=plt.cm.Paired) plt.contour(XX, YY, Z, colors=['k', 'k', 'k'], linestyles=['--', '-', '--'], levels=[-.5, 0, .5]) plt.title(kernel) plt.show()
bsd-3-clause
ianatpn/nupictest
external/linux32/lib/python2.6/site-packages/matplotlib/pylab.py
70
10245
""" This is a procedural interface to the matplotlib object-oriented plotting library. The following plotting commands are provided; the majority have Matlab(TM) analogs and similar argument. _Plotting commands acorr - plot the autocorrelation function annotate - annotate something in the figure arrow - add an arrow to the axes axes - Create a new axes axhline - draw a horizontal line across axes axvline - draw a vertical line across axes axhspan - draw a horizontal bar across axes axvspan - draw a vertical bar across axes axis - Set or return the current axis limits bar - make a bar chart barh - a horizontal bar chart broken_barh - a set of horizontal bars with gaps box - set the axes frame on/off state boxplot - make a box and whisker plot cla - clear current axes clabel - label a contour plot clf - clear a figure window clim - adjust the color limits of the current image close - close a figure window colorbar - add a colorbar to the current figure cohere - make a plot of coherence contour - make a contour plot contourf - make a filled contour plot csd - make a plot of cross spectral density delaxes - delete an axes from the current figure draw - Force a redraw of the current figure errorbar - make an errorbar graph figlegend - make legend on the figure rather than the axes figimage - make a figure image figtext - add text in figure coords figure - create or change active figure fill - make filled polygons findobj - recursively find all objects matching some criteria gca - return the current axes gcf - return the current figure gci - get the current image, or None getp - get a handle graphics property grid - set whether gridding is on hist - make a histogram hold - set the axes hold state ioff - turn interaction mode off ion - turn interaction mode on isinteractive - return True if interaction mode is on imread - load image file into array imshow - plot image data ishold - return the hold state of the current axes legend - make an axes legend loglog - a log log plot matshow - display a matrix in a new figure preserving aspect pcolor - make a pseudocolor plot pcolormesh - make a pseudocolor plot using a quadrilateral mesh pie - make a pie chart plot - make a line plot plot_date - plot dates plotfile - plot column data from an ASCII tab/space/comma delimited file pie - pie charts polar - make a polar plot on a PolarAxes psd - make a plot of power spectral density quiver - make a direction field (arrows) plot rc - control the default params rgrids - customize the radial grids and labels for polar savefig - save the current figure scatter - make a scatter plot setp - set a handle graphics property semilogx - log x axis semilogy - log y axis show - show the figures specgram - a spectrogram plot spy - plot sparsity pattern using markers or image stem - make a stem plot subplot - make a subplot (numrows, numcols, axesnum) subplots_adjust - change the params controlling the subplot positions of current figure subplot_tool - launch the subplot configuration tool suptitle - add a figure title table - add a table to the plot text - add some text at location x,y to the current axes thetagrids - customize the radial theta grids and labels for polar title - add a title to the current axes xcorr - plot the autocorrelation function of x and y xlim - set/get the xlimits ylim - set/get the ylimits xticks - set/get the xticks yticks - set/get the yticks xlabel - add an xlabel to the current axes ylabel - add a ylabel to the current axes autumn - set the default colormap to autumn bone - set the default colormap to bone cool - set the default colormap to cool copper - set the default colormap to copper flag - set the default colormap to flag gray - set the default colormap to gray hot - set the default colormap to hot hsv - set the default colormap to hsv jet - set the default colormap to jet pink - set the default colormap to pink prism - set the default colormap to prism spring - set the default colormap to spring summer - set the default colormap to summer winter - set the default colormap to winter spectral - set the default colormap to spectral _Event handling connect - register an event handler disconnect - remove a connected event handler _Matrix commands cumprod - the cumulative product along a dimension cumsum - the cumulative sum along a dimension detrend - remove the mean or besdt fit line from an array diag - the k-th diagonal of matrix diff - the n-th differnce of an array eig - the eigenvalues and eigen vectors of v eye - a matrix where the k-th diagonal is ones, else zero find - return the indices where a condition is nonzero fliplr - flip the rows of a matrix up/down flipud - flip the columns of a matrix left/right linspace - a linear spaced vector of N values from min to max inclusive logspace - a log spaced vector of N values from min to max inclusive meshgrid - repeat x and y to make regular matrices ones - an array of ones rand - an array from the uniform distribution [0,1] randn - an array from the normal distribution rot90 - rotate matrix k*90 degress counterclockwise squeeze - squeeze an array removing any dimensions of length 1 tri - a triangular matrix tril - a lower triangular matrix triu - an upper triangular matrix vander - the Vandermonde matrix of vector x svd - singular value decomposition zeros - a matrix of zeros _Probability levypdf - The levy probability density function from the char. func. normpdf - The Gaussian probability density function rand - random numbers from the uniform distribution randn - random numbers from the normal distribution _Statistics corrcoef - correlation coefficient cov - covariance matrix amax - the maximum along dimension m mean - the mean along dimension m median - the median along dimension m amin - the minimum along dimension m norm - the norm of vector x prod - the product along dimension m ptp - the max-min along dimension m std - the standard deviation along dimension m asum - the sum along dimension m _Time series analysis bartlett - M-point Bartlett window blackman - M-point Blackman window cohere - the coherence using average periodiogram csd - the cross spectral density using average periodiogram fft - the fast Fourier transform of vector x hamming - M-point Hamming window hanning - M-point Hanning window hist - compute the histogram of x kaiser - M length Kaiser window psd - the power spectral density using average periodiogram sinc - the sinc function of array x _Dates date2num - convert python datetimes to numeric representation drange - create an array of numbers for date plots num2date - convert numeric type (float days since 0001) to datetime _Other angle - the angle of a complex array griddata - interpolate irregularly distributed data to a regular grid load - load ASCII data into array polyfit - fit x, y to an n-th order polynomial polyval - evaluate an n-th order polynomial roots - the roots of the polynomial coefficients in p save - save an array to an ASCII file trapz - trapezoidal integration __end """ import sys, warnings from cbook import flatten, is_string_like, exception_to_str, popd, \ silent_list, iterable, dedent import numpy as np from numpy import ma from matplotlib import mpl # pulls in most modules from matplotlib.dates import date2num, num2date,\ datestr2num, strpdate2num, drange,\ epoch2num, num2epoch, mx2num,\ DateFormatter, IndexDateFormatter, DateLocator,\ RRuleLocator, YearLocator, MonthLocator, WeekdayLocator,\ DayLocator, HourLocator, MinuteLocator, SecondLocator,\ rrule, MO, TU, WE, TH, FR, SA, SU, YEARLY, MONTHLY,\ WEEKLY, DAILY, HOURLY, MINUTELY, SECONDLY, relativedelta import matplotlib.dates # bring all the symbols in so folks can import them from # pylab in one fell swoop from matplotlib.mlab import window_hanning, window_none,\ conv, detrend, detrend_mean, detrend_none, detrend_linear,\ polyfit, polyval, entropy, normpdf, griddata,\ levypdf, find, trapz, prepca, rem, norm, orth, rank,\ sqrtm, prctile, center_matrix, rk4, exp_safe, amap,\ sum_flat, mean_flat, rms_flat, l1norm, l2norm, norm, frange,\ diagonal_matrix, base_repr, binary_repr, log2, ispower2,\ bivariate_normal, load, save from matplotlib.mlab import stineman_interp, slopes, \ stineman_interp, inside_poly, poly_below, poly_between, \ is_closed_polygon, path_length, distances_along_curve, vector_lengths from numpy import * from numpy.fft import * from numpy.random import * from numpy.linalg import * from matplotlib.mlab import window_hanning, window_none, conv, detrend, demean, \ detrend_mean, detrend_none, detrend_linear, entropy, normpdf, levypdf, \ find, longest_contiguous_ones, longest_ones, prepca, prctile, prctile_rank, \ center_matrix, rk4, bivariate_normal, get_xyz_where, get_sparse_matrix, dist, \ dist_point_to_segment, segments_intersect, fftsurr, liaupunov, movavg, \ save, load, exp_safe, \ amap, rms_flat, l1norm, l2norm, norm_flat, frange, diagonal_matrix, identity, \ base_repr, binary_repr, log2, ispower2, fromfunction_kw, rem, norm, orth, rank, sqrtm,\ mfuncC, approx_real, rec_append_field, rec_drop_fields, rec_join, csv2rec, rec2csv, isvector from matplotlib.pyplot import * # provide the recommended module abbrevs in the pylab namespace import matplotlib.pyplot as plt import numpy as np
gpl-3.0
ShujiaHuang/AsmVar
src/AsmvarGenotype/GMM/GMM2D.py
2
18363
""" ================================================ My own Gaussion Mixture Model for SV genotyping. Learn form scikit-learn ================================================ Author : Shujia Huang Date : 2014-01-06 14:33:45 """ import sys import numpy as np from scipy import linalg from sklearn import cluster from sklearn.base import BaseEstimator from sklearn.utils.extmath import logsumexp EPS = np.finfo(float).eps class GMM ( BaseEstimator ) : """ Copy from scikit-learn """ def __init__(self, n_components=1, covariance_type='diag', random_state=None, thresh=1e-2, min_covar=1e-3, n_iter=100, n_init=10, params='wmc', init_params='wmc'): self.n_components = n_components self.covariance_type = covariance_type self.thresh = thresh self.min_covar = min_covar self.random_state = random_state self.n_iter = n_iter self.n_init = n_init self.params = params self.init_params = init_params self.init_means = [] self.init_covars = [] self.category = [] # For genotype if not covariance_type in ['spherical', 'tied', 'diag', 'full']: raise ValueError( 'Invalid value for covariance_type: %s' % covariance_type ) if n_init < 1: raise ValueError('GMM estimation requires at least one run') self.weights_ = np.ones(self.n_components) / self.n_components # flag to indicate exit status of fit() method: converged (True) or # n_iter reached (False) def score_samples(self, X): """Return the per-sample likelihood of the data under the model. Compute the log probability of X under the model and return the posterior distribution (responsibilities) of each mixture component for each element of X. Parameters ---------- X: array_like, shape (n_samples, n_features) List of n_features-dimensional data points. Each row corresponds to a single data point. Returns ------- logprob : array_like, shape (n_samples,) Log probabilities of each data point in X. responsibilities : array_like, shape (n_samples, n_components) Posterior probabilities of each mixture component for each observation """ X = np.asarray(X) if X.ndim == 1: X = X[:, np.newaxis] if X.size == 0: return np.array([]), np.empty((0, self.n_components)) if X.shape[1] != self.means_.shape[1]: raise ValueError('The shape of X is not compatible with self') lpr = (log_multivariate_normal_density(X, self.means_, self.covars_,self.covariance_type) + np.log(self.weights_)) logprob = logsumexp(lpr, axis=1) responsibilities = np.exp(lpr - logprob[:, np.newaxis]) return logprob, responsibilities def predict(self, X): """ Predict label for data. Parameters ---------- X : array-like, shape = [n_samples, n_features] Returns ------- C : array, shape = (n_samples,) """ logprob, responsibilities = self.score_samples(X) return responsibilities.argmax(axis=1) def predict_proba(self, X): """ Predict posterior probability of data under each Gaussian in the model. Parameters ---------- X : array-like, shape = [n_samples, n_features] Returns ------- responsibilities : array-like, shape = (n_samples, n_components) Returns the probability of the sample for each Gaussian (state) in the model. """ logprob, responsibilities = self.score_samples(X) return responsibilities def fit(self, X): """ Copy form scikit-learn: gmm.py Estimate model parameters with the expectation-maximization algorithm. A initialization step is performed before entering the em algorithm. If you want to avoid this step, set the keyword argument init_params to the empty string '' when creating the GMM object. Likewise, if you would like just to do an initialization, set n_iter=0. Parameters ---------- X : array_like, shape (n, n_features) List of n_features-dimensional data points. Each row corresponds to a single data point. """ X = np.asarray(X, dtype=np.float) if X.ndim == 1: X = X[:, np.newaxis] if X.shape[0] < self.n_components: raise ValueError( 'GMM estimation with %s components, but got only %s samples' % (self.n_components, X.shape[0])) lowest_bias = np.infty c1,c2,c3 = '1/1', '0/1', '0/0' m1,m2,m3 = 0.001 , 0.5 , 1.0 v1,v2,v3 = 0.002, 0.002, 0.002 category = np.array([ [c1,c2,c3], [c1,c2], [c1,c3], [c2,c3] , [c1] , [c2] , [c3] ]) init_means = np.array([ [[ m1],[ m2] , [ m3]], [[ m1],[ m2]], [[m1],[m3]], [[m2],[m3]], [[m1]] , [[m2]] , [[m3]] ]) init_covars = np.array([ [[[ v1]],[[ v2]],[[ v3]]], [[[ v1]],[[ v2]]], [[[ v1]],[[ v3]]], [[[ v2]],[[ v3]]], [[[ v1]]] , [[[ v2]]] , [[[ v3]]] ]) bestCovars, bestMeans, bestWeights, bestConverged, bestCategory = [], [], [], [], [] for i, (m,v,c) in enumerate( zip(init_means, init_covars, category) ) : if i == 0 and self.n_components != 3 : continue if i < 4 and self.n_components == 1 : continue self.init_means = np.array(m) self.init_covars = np.array(v) self.category = np.array(c) best_params,bias = self.training(X) if lowest_bias > bias : lowest_bias = bias bestCovars = best_params['covars'] bestMeans = best_params['means'] bestWeights = best_params['weights'] bestConverged = best_params['converged'] bestCategory = best_params['category'] if self.n_components == 3 : break if self.n_components == 2 and i == 3 : break bestWeights = np.tile(1.0 / self.n_components, self.n_components) self.covars_ = bestCovars self.means_ = bestMeans self.weights_ = bestWeights self.converged_ = bestConverged self.category = bestCategory return self #### def training(self, X): max_log_prob = -np.infty lowest_bias = np.infty wmin, wmax = 0.8, 1.2 # Factor intervel [wmin, wmax] for w in np.linspace(wmin, wmax, self.n_init): if 'm' in self.init_params or not hasattr(self, 'means_'): #self.means_ = cluster.KMeans(n_clusters=self.n_components, random_state=self.random_state).fit(X).cluster_centers_ self.means_ = w * self.init_means if 'w' in self.init_params or not hasattr(self, 'weights_'): self.weights_= np.tile(1.0 / self.n_components, self.n_components) if 'c' in self.init_params or not hasattr(self, 'covars_'): """ cv = np.cov(X.T) + self.min_covar * np.eye(X.shape[1]) if not cv.shape : cv.shape = (1, 1) self.covars_ = distribute_covar_matrix_to_match_covariance_type(cv, self.covariance_type, self.n_components) """ self.covars_ = self.init_covars # EM algorithms log_likelihood = [] # reset self.converged_ to False self.converged_= False for i in range(self.n_iter): # Expectation step curr_log_likelihood, responsibilities = self.score_samples(X) log_likelihood.append(curr_log_likelihood.sum()) # Check for convergence. if i > 0 and abs(log_likelihood[-1] - log_likelihood[-2]) < self.thresh: self.converged_ = True break #Maximization step self._do_mstep(X, responsibilities, self.params, self.min_covar) if self.n_components == 3: curr_bias =(self.means_[0][0]-self.init_means[0][0])+np.abs(self.means_[1][0]-self.init_means[1][0])+(self.init_means[2][0]-self.means_[2][0]) elif self.n_components == 2: curr_bias =np.abs(self.means_[0][0] - self.init_means[0][0]) + np.abs(self.init_means[1][0] - self.means_[1][0]) elif self.n_components == 1: curr_bias =np.abs (self.means_[0][0] - self.init_means[0][0]) else : print >> sys.stderr, '[ERROR] The companent could only between [1,3]. But yours is ', self.n_components sys.exit(1) self.Label2Genotype() if w == wmin: max_log_prob = log_likelihood[-1] best_params = {'weights':self.weights_, 'means':self.means_, 'covars':self.covars_, 'converged':self.converged_, 'category':self.category} if self.converged_: lowest_bias = curr_bias if self.converged_ and lowest_bias > curr_bias: max_log_prob = log_likelihood[-1] lowest_bias = curr_bias best_params = {'weights': self.weights_, 'means': self.means_, 'covars': self.covars_, 'converged': self.converged_, 'category':self.category} # check the existence of an init param that was not subject to # likelihood computation issue. if np.isneginf(max_log_prob) and self.n_iter: raise RuntimeError( "EM algorithm was never able to compute a valid likelihood " + "given initial parameters. Try different init parameters " + "(or increasing n_init) or check for degenerate data." ) # if neendshift : # self.covars_ = tmp_params['covars'] # self.means_ = tmp_params['means'] # self.weights_ = tmp_params['weights'] # self.converged_ = tmp_params['converged'] # self.category = tmp_params['category'] return best_params, lowest_bias def _do_mstep(self, X, responsibilities, params, min_covar=0): """ Perform the Mstep of the EM algorithm and return the class weihgts. """ weights = responsibilities.sum(axis=0) weighted_X_sum = np.dot(responsibilities.T, X) inverse_weights = 1.0 / (weights[:, np.newaxis] + 10 * EPS) if 'w' in params: self.weights_ = (weights / (weights.sum() + 10 * EPS) + EPS) if 'm' in params: self.means_ = weighted_X_sum * inverse_weights if 'c' in params: covar_mstep_func = _covar_mstep_funcs[self.covariance_type] self.covars_ = covar_mstep_func(self, X, responsibilities, weighted_X_sum, inverse_weights,min_covar) return weights """ Here is just for genotyping process """ # Decide the different guassion mu(mean) to seperate the genotype def Label2Genotype(self): label2genotype = {} if self.converged_: if len(self.means_) > 3 : print >> sys.stderr, 'Do not allow more than 3 components. But you set', len(self.means_) sys.exit(1) for label,mu in enumerate(self.means_[:,0]): best_distance, bestIndx = np.infty, 0 for i,m in enumerate(self.init_means[:,0]): distance = np.abs(mu - m) if distance < best_distance: bestIndx = i best_distance = distance label2genotype[label] = self.category[bestIndx] # Put False if there are more than one 'label' points to the same 'genotype' g2c = {v:k for k,v in label2genotype.items()} if len(label2genotype) != len(g2c): self.converged_ = False else : label2genotype = { label: './.' for label in range( self.n_components ) } return label2genotype def Mendel(self, genotype, sample2col, family): ngIndx = [] m,n,num = 0.0,0.0,0 # m is match; n is not match for k,v in family.items(): #if v[0] not in sample2col or v[1] not in sample2col : continue if k not in sample2col or v[0] not in sample2col or v[1] not in sample2col: continue if k not in sample2col : print >> sys.stderr, 'The sample name is not in vcf file! ', k sys.exit(1) # c1 is son; c2 and c3 are the parents c1,c2,c3 = genotype[ sample2col[k] ], genotype[ sample2col[v[0]] ], genotype[ sample2col[v[1]] ] if c1 == './.' or c2 == './.' or c3 == './.': continue num += 1; ng = False if c2 == c3 : if c2 == '0/0' or c2 == '1/1' : if c1 == c2 : m += 1 else : n += 1 ng = True else : # c2 == '0/1' and c3 == '0/1' m += 1 elif c2 == '0/1' and c3 == '1/1' : if c1 == '0/0' : n += 1 ng = True else : m += 1 elif c2 == '0/1' and c3 == '0/0' : if c1 == '1/1' : n += 1 ng = True else : m += 1 elif c2 == '1/1' and c3 == '0/1' : if c1 == '0/0' : n += 1 ng = True else : m += 1 elif c2 == '1/1' and c3 == '0/0' : if c1 == '1/1' or c1 == '0/0': n += 1 ng = True else : m += 1 elif c2 == '0/0' and c3 == '0/1' : if c1 == '1/1' : n += 1 ng = True else : m += 1 elif c2 == '0/0' and c3 == '1/1' : if c1 == '0/0' or c1 == '1/1' : n += 1 ng = True else : m += 1 if ng : ngIndx.append(sample2col[k]) ngIndx.append(sample2col[v[0]]) ngIndx.append(sample2col[v[1]]) return m,n,num,set(ngIndx) ### def log_multivariate_normal_density(X, means, covars, covariance_type='full'): """ Log probability for full covariance matrices. """ X = np.asarray(X) if X.ndim == 1: X = X[:, np.newaxis] if X.size == 0: return np.array([]) if X.shape[1] != means.shape[1]: raise ValueError('The shape of X is not compatible with self') log_multivariate_normal_density_dict = { 'full' : _log_multivariate_normal_density_full } return log_multivariate_normal_density_dict[covariance_type]( X, means, covars ) def _log_multivariate_normal_density_full(X, means, covars, min_covar=1.e-7): """ Log probability for full covariance matrices. """ if hasattr(linalg, 'solve_triangular'): # only in scipy since 0.9 solve_triangular = linalg.solve_triangular else: # slower, but works solve_triangular = linalg.solve n_samples, n_dim = X.shape nmix = len(means) log_prob = np.empty((n_samples, nmix)) for c, (mu, cv) in enumerate(zip(means, covars)): try: cv_chol = linalg.cholesky(cv, lower=True) except linalg.LinAlgError: # The model is most probabily stuck in a component with too # few observations, we need to reinitialize this components cv_chol = linalg.cholesky(cv + min_covar * np.eye(n_dim), lower=True) cv_log_det = 2 * np.sum(np.log(np.diagonal(cv_chol))) cv_sol = solve_triangular(cv_chol, (X - mu).T, lower=True).T log_prob[:, c] = - .5 * (np.sum(cv_sol ** 2, axis=1) + n_dim * np.log(2 * np.pi) + cv_log_det) return log_prob def distribute_covar_matrix_to_match_covariance_type( tied_cv, covariance_type, n_components) : """ Create all the covariance matrices from a given template """ if covariance_type == 'spherical': cv = np.tile(tied_cv.mean() * np.ones(tied_cv.shape[1]), (n_components, 1)) elif covariance_type == 'tied': cv = tied_cv elif covariance_type == 'diag': cv = np.tile(np.diag(tied_cv), (n_components, 1)) elif covariance_type == 'full': cv = np.tile(tied_cv, (n_components, 1, 1)) else: raise ValueError("covariance_type must be one of " + "'spherical', 'tied', 'diag', 'full'") return cv def _covar_mstep_full(gmm, X, responsibilities, weighted_X_sum, norm, min_covar): """Performing the covariance M step for full cases""" # Eq. 12 from K. Murphy, "Fitting a Conditional Linear Gaussian # Distribution" n_features = X.shape[1] cv = np.empty((gmm.n_components, n_features, n_features)) for c in range(gmm.n_components): post = responsibilities[:, c] # Underflow Errors in doing post * X.T are not important np.seterr(under='ignore') avg_cv = np.dot(post * X.T, X) / (post.sum() + 10 * EPS) mu = gmm.means_[c][np.newaxis] cv[c] = (avg_cv - np.dot(mu.T, mu) + min_covar * np.eye(n_features)) return cv _covar_mstep_funcs = { 'full': _covar_mstep_full }
mit
kcyu1993/ML_course_kyu
projects/project1/scripts/model.py
1
19450
from __future__ import absolute_import from abc import ABCMeta, abstractmethod import copy from data_utils import build_k_indices from learning_model import * from regularizer import * from helpers import save_numpy_array import numpy as np class Model(object): """ Author: Kaicheng Yu Machine learning model engine Implement the optimizers sgd normal equations cross-validation of given parameters Abstract method: __call__ produce the raw prediction, use the latest weight obtained by training predict produce prediction values, could take weight as input get_gradient define gradient here, including the gradient for regularizer normalequ define normal equations Support: L1, L2 normalization Due to the distribution of work, only LogisticRegression is fully tested for fitting data, and cross-validation. LinearRegression model should also work but not fully tested. The goal of this class is not only specific to this learning project, but also for reusable and scalable to other problems, models. """ def __init__(self, train_data, validation=None, initial_weight=None, loss_function_name='mse', cal_weight='gradient', regularizer=None, regularizer_p=None): """ Initializer of all learning models. :param train_data: training data. :param validation_data: """ self.train_x = train_data[1] self.train_y = train_data[0] self.set_valid(validation) ''' Define the progress of history here ''' self.losses = [] self.iterations = 0 self.weights = [] self.misclass_rate = [] ''' Define loss, weight calculation, regularizer ''' self.loss_function = get_loss_function(loss_function_name) self.loss_function_name = loss_function_name self.calculate_weight = cal_weight self.regularizer = Regularizer.get_regularizer(regularizer, regularizer_p) self.regularizer_p = regularizer_p # Asserting degree if len(self.train_x.shape) > 1: degree = self.train_x.shape[1] else: degree = 1 # Initialize the weight for linear model. if initial_weight is not None: self.weights.append(initial_weight) else: self.weights.append(np.random.rand(degree)) def set_valid(self, validation): # Set validation here. self.validation = False self.valid_x = None self.valid_y = None self.valid_losses = None self.valid_misclass_rate = None if validation is not None: (valid_y, valid_x) = validation self.valid_x = valid_x self.valid_y = valid_y self.validation = True self.valid_losses = [] self.valid_misclass_rate = [] @abstractmethod def __call__(self, **kwargs): """Define the fit function and get prediction""" raise NotImplementedError @abstractmethod def get_gradient(self, y, x, weight): raise NotImplementedError @abstractmethod def predict(self, x, weight): raise NotImplementedError @abstractmethod def normalequ(self, **kwargs): ''' define normal equation method to calculate optimal weights''' raise NotImplementedError def compute_weight(self, y, x, test_x=None, test_y=None, **kwargs): """ Return weight under given parameter """ model = copy.copy(self) model.__setattr__('train_y', y) model.__setattr__('train_x', x) if test_x is not None and test_y is not None: model.set_valid((test_y, test_x)) _kwargs = [] for name, value in kwargs.items(): # Recognize parameter " if name is "regularizer_p": model.__setattr__(name, value) model.regularizer.set_parameter(value) else: _kwargs.append((name, value)) _kwargs = dict(_kwargs) if model.calculate_weight is 'gradient': return model.sgd(**_kwargs) # elif model.calculate_weight is 'newton': # return model.newton(**_kwargs) elif model.calculate_weight is 'normalequ': return model.normalequ(**_kwargs) def get_history(self): """ Get the training history of current model :return: list as [iterations, [losses], [weights], [mis_class]] """ if self.validation: return self.iterations, (self.losses, self.valid_losses), \ (self.weights), (self.misclass_rate, self.valid_misclass_rate) return self.iterations, self.losses, self.weights, self.misclass_rate def train(self, optimizer='sgd', loss_function='mse', **kwargs): """ Train function to perform one time training Will based optimizer to select. TODO: Would add 'newton' in the future This :param optimizer: only support 'sgd' :param loss_function: loss_function name {mse, mae, logistic} :param kwargs: passed into sgd :return: best weight """ self.loss_function = get_loss_function(loss_function) self.loss_function_name = loss_function if optimizer is 'sgd': self.sgd(**kwargs) return self.weights[-1] """====================================""" """ Beginning of the optimize Routines """ """====================================""" def sgd(self, lr=0.01, decay=0.5, max_iters=1000, batch_size=128, early_stop=150, decay_intval=50, decay_lim=9): """ Define the SGD algorithm here Implementing weight decay, early stop. :param lr: learning rate :param decay: weight decay after fix iterations :param max_iters: maximum iterations :param batch_size: batch_size :param early_stop: early_stop after no improvement :return: final weight vector """ np.set_printoptions(precision=4) w = self.weights[0] loss = self.compute_loss(self.train_y, self.train_x, w) best_loss = loss best_counter = 0 decay_counter = 0 # print("initial loss is {} ".format(loss)) for epoch in range(max_iters): for batch_y, batch_x in batch_iter(self.train_y, self.train_x, batch_size): grad = self.get_gradient(batch_y, batch_x, w) w = w - lr * grad loss = self.compute_loss(self.train_y, self.train_x, w) mis_class = self.compute_metrics(self.train_y, self.train_x, w) self.weights.append(w) self.losses.append(loss) self.misclass_rate.append(mis_class) if self.validation is True: valid_loss = self.compute_loss(self.valid_y, self.valid_x, w) valid_mis_class = self.compute_metrics(self.valid_y, self.valid_x, w) self.valid_losses.append(valid_loss) self.valid_misclass_rate.append(valid_mis_class) # Display every 25 epoch if (epoch + 1) % 25 == 0: print('Epoch {e} in {m}'.format(e=epoch + 1, m=max_iters), end="\t") if self.validation is True: # print('\tTrain Loss {0:0.4f}, \tTrain mis-class {0:0.4f}, ' # '\tvalid loss {0:0.4f}, \tvalid mis-class {0:0.4f}'. # format(loss, mis_class, valid_loss, valid_mis_class)) print('\tTrain Loss {}, \tTrain mis-class {}, ' '\tvalid loss {}, \tvalid mis-class {}'. format(loss, mis_class, valid_loss, valid_mis_class)) else: print('\tTrain Loss {}, \tTrain mis-class {}'. format(loss, mis_class)) # judge the performance if best_loss - loss > 0.000001: best_loss = loss best_counter = 0 else: best_counter += 1 if best_counter > early_stop: print("Learning early stop since loss not improving for {} epoch.".format(best_counter)) break if best_counter % decay_intval == 0: print("weight decay by {}".format(decay)) lr *= decay decay_counter += 1 if decay_counter > decay_lim: print("decay {} times, stop".format(decay_lim)) break return self.weights[-1] def newton(self, lr=0.01, max_iters=100): # TODO: implement newton method later raise NotImplementedError def cross_validation(self, cv, lambdas, lambda_name, seed=1, skip=False, plot=False, **kwargs): """ Cross validation method to acquire the best prediction parameters. It will use the train_x y as data and do K-fold cross validation. :param cv: cross validation times :param lambdas: array of lambdas to be validated :param lambda_name: the lambda name tag :param seed: random seed :param skip: skip the cross validation, only valid 1 time :param plot plot cross-validation plot, if machine does not support matplotlib.pyplot, set to false. :param kwargs: other parameters could pass into compute_weight :return: best weights, best_lambda, (training error, valid error) """ np.set_printoptions(precision=4) k_indices = build_k_indices(self.train_y, cv, seed) # define lists to store the loss of training data and test data err_tr = [] err_te = [] weights = [] print("K-fold ({}) cross validation to examine [{}]". format(cv, lambdas)) for lamb in lambdas: print("For lambda: {}".format(lamb)) _mse_tr = [] _mse_te = [] _weight = [] for k in range(cv): print('Cross valid iteration {}'.format(k)) weight, loss_tr, loss_te = self._loop_cross_validation(self.train_y, self.train_x, k_indices, k, lamb, lambda_name, **kwargs) _mse_tr += [loss_tr] _mse_te += [loss_te] _weight.append(weight) if skip: break avg_tr = np.average(_mse_tr) avg_te = np.average(_mse_te) err_tr += [avg_tr] err_te += [avg_te] weights.append(_weight) print("\t train error {}, \t valid error {}". format(avg_tr, avg_te)) # Select the best parameter during the cross validations. print('K-fold cross validation result: \n {} \n {}'. format(err_tr, err_te)) # Select the best based on least err_te min_err_te = np.argmin(err_te) print('Best err_te result {}, lambda {}'. format(err_te[min_err_te], lambdas[min_err_te])) if plot: from plots import cross_validation_visualization cross_validation_visualization(lambdas, err_tr, err_te, title=lambda_name, error_name=self.loss_function_name) else: save_numpy_array(lambdas, err_tr, err_te, names=['lambda', 'err_tr', 'err_te'], title=self.regularizer.name) return weights[min_err_te], lambdas[min_err_te], (err_tr, err_te) def _loop_cross_validation(self, y, x, k_indices, k, lamb, lambda_name, **kwargs): """ Single loop of cross validation :param y: train labels :param x: train data :param k_indices: indices array :param k: number of cross validations :param lamb: lambda to use :param lambda_name: lambda_name to pass into compute weight :return: weight, mis_tr, mis_te """ train_ind = np.concatenate((k_indices[:k], k_indices[k + 1:]), axis=0) train_ind = np.reshape(train_ind, (train_ind.size,)) test_ind = k_indices[k] # Note: different from np.ndarray, tuple is name[index,] # ndarray is name[index,:] train_x = x[train_ind,] train_y = y[train_ind,] test_x = x[test_ind,] test_y = y[test_ind,] # Insert one more kwargs item kwargs[lambda_name] = lamb weight = self.compute_weight(train_y, train_x, test_x, test_y, **kwargs) # Compute the metrics and return loss_tr = self.compute_metrics(train_y, train_x, weight) loss_te = self.compute_metrics(test_y, test_x, weight) return weight, loss_tr, loss_te def compute_metrics(self, target, data, weight): """ Compute the following metrics Misclassification rate """ pred = self.predict(data, weight) assert len(pred) == len(target) # Calculate the mis-classification rate: N = len(pred) pred = np.reshape(pred, (N,)) target = np.reshape(target, (N,)) nb_misclass = np.count_nonzero(target - pred) return nb_misclass / N def compute_loss(self, y, x, weight): return self.loss_function(y, x, weight) class LogisticRegression(Model): """ Logistic regression """ def __init__(self, train, validation=None, initial_weight=None, loss_function_name='logistic', calculate_weight='gradient', regularizer=None, regularizer_p=None): """ Constructor of Logistic Regression model :param train: tuple (y, x) :param validation: tuple (y, x) :param initial_weight: weight vector, dim align x :param loss_function: f(x, y, weight) :param regularizer: "Ridge" || "Lasso" :param regularizer_p: parameter """ # Initialize the super class with given data. # Transform the y into {0,1} y, tx = train y[np.where(y < 0)] = 0 train = (y, tx) if validation: val_y, val_tx = validation val_y[np.where(val_y < 0)] = 0 validation = (val_y, val_tx) super(LogisticRegression, self).__init__(train, validation, initial_weight=initial_weight, loss_function_name=loss_function_name, cal_weight=calculate_weight, regularizer=regularizer, regularizer_p=regularizer_p) # Set predicted label self.pred_label = [-1, 1] def __call__(self, x, weight=None): """ Define the fit function and get prediction, generate probability of occurrence """ if weight is None: weight = self.weights[-1] return sigmoid(np.dot(x, weight)) def get_gradient(self, y, x, weight): """ calculate gradient given data and weight """ y = np.reshape(y, (len(y),)) return np.dot(x.T, sigmoid(np.dot(x, weight)) - y) \ + self.regularizer.get_gradient(weight) def get_hessian(self, y, x, weight): # TODO: implement hessian for newton method raise NotImplementedError def predict(self, x, weight=None, cutting=0.5): """ Prediction of event {0,1} """ if weight is None: weight = self.weights[-1] pred = sigmoid(np.dot(x, weight)) pred[np.where(pred <= cutting)] = 0 pred[np.where(pred > cutting)] = 1 return pred def predict_label(self, x, weight=None, cutting=0.5, predict_label=None): """ Prediction result with labels """ if predict_label is None: predict_label = self.pred_label if weight is None: weight = self.weights[-1] pred = self.predict(x, weight, cutting) pred[np.where(pred == 0)] = predict_label[0] pred[np.where(pred == 1)] = predict_label[1] return pred def train(self, loss_function='logistic', lr=0.1, decay=0.5, max_iters=3000, batch_size=128, **kwargs): """ Make the default loss logistic, set default parameters """ return super(LogisticRegression, self).train('sgd', loss_function, lr=lr, decay=decay, max_iters=max_iters, batch_size=batch_size, **kwargs) def normalequ(self, **kwargs): """ Should never call """ raise NotImplementedError class LinearRegression(Model): """ Linear regression model This is not fully tested, especially the cross-validation, please refers to the implemenations.py for linear model. """ def __init__(self, train, validation=None, initial_weight=None, regularizer=None, regularizer_p=None, loss_function_name='mse', calculate_weight='normalequ'): # Initialize the super class with given data. super(LinearRegression, self).__init__(train, validation, initial_weight=initial_weight, loss_function_name=loss_function_name, cal_weight=calculate_weight, regularizer=regularizer, regularizer_p=regularizer_p) def __call__(self, x): """ calulate prediction based on latest result """ return np.dot(x, self.weights[-1]) def get_gradient(self, batch_y, batch_x, weight): """ return gradient of linear model, including the regularizer """ N = batch_y.shape[0] grad = np.empty(len(weight)) for index in range(N): _y = batch_y[index] _x = batch_x[index] grad = grad + gradient_least_square(_y, _x, weight, self.loss_function_name) grad /= N grad += self.regularizer.get_gradient(weight) return grad def predict(self, x, weight): """ Prediction function, predicting final result """ pred = np.dot(x, weight) pred[np.where(pred <= 0)] = -1 pred[np.where(pred > 0)] = 1 return pred def normalequ(self): """ Normal equation to get parameters """ tx = self.train_x y = self.train_y if self.regularizer is None: return np.linalg.solve(np.dot(tx.T, tx), np.dot(tx.T, y)) elif self.regularizer.name is 'Ridge': G = np.eye(tx.shape[1]) G[0, 0] = 0 hes = np.dot(tx.T, tx) + self.regularizer_p * G return np.linalg.solve(hes, np.dot(tx.T, y)) else: raise NotImplementedError
mit
jmetzen/scikit-learn
sklearn/base.py
22
18131
"""Base classes for all estimators.""" # Author: Gael Varoquaux <[email protected]> # License: BSD 3 clause import copy import warnings import numpy as np from scipy import sparse from .externals import six from .utils.fixes import signature from .utils.deprecation import deprecated from .exceptions import ChangedBehaviorWarning as ChangedBehaviorWarning_ class ChangedBehaviorWarning(ChangedBehaviorWarning_): pass ChangedBehaviorWarning = deprecated("ChangedBehaviorWarning has been moved " "into the sklearn.exceptions module. " "It will not be available here from " "version 0.19")(ChangedBehaviorWarning) ############################################################################## def clone(estimator, safe=True): """Constructs a new estimator with the same parameters. Clone does a deep copy of the model in an estimator without actually copying attached data. It yields a new estimator with the same parameters that has not been fit on any data. Parameters ---------- estimator: estimator object, or list, tuple or set of objects The estimator or group of estimators to be cloned safe: boolean, optional If safe is false, clone will fall back to a deepcopy on objects that are not estimators. """ estimator_type = type(estimator) # XXX: not handling dictionaries if estimator_type in (list, tuple, set, frozenset): return estimator_type([clone(e, safe=safe) for e in estimator]) elif not hasattr(estimator, 'get_params'): if not safe: return copy.deepcopy(estimator) else: raise TypeError("Cannot clone object '%s' (type %s): " "it does not seem to be a scikit-learn estimator " "as it does not implement a 'get_params' methods." % (repr(estimator), type(estimator))) klass = estimator.__class__ new_object_params = estimator.get_params(deep=False) for name, param in six.iteritems(new_object_params): new_object_params[name] = clone(param, safe=False) new_object = klass(**new_object_params) params_set = new_object.get_params(deep=False) # quick sanity check of the parameters of the clone for name in new_object_params: param1 = new_object_params[name] param2 = params_set[name] if isinstance(param1, np.ndarray): # For most ndarrays, we do not test for complete equality if not isinstance(param2, type(param1)): equality_test = False elif (param1.ndim > 0 and param1.shape[0] > 0 and isinstance(param2, np.ndarray) and param2.ndim > 0 and param2.shape[0] > 0): equality_test = ( param1.shape == param2.shape and param1.dtype == param2.dtype # We have to use '.flat' for 2D arrays and param1.flat[0] == param2.flat[0] and param1.flat[-1] == param2.flat[-1] ) else: equality_test = np.all(param1 == param2) elif sparse.issparse(param1): # For sparse matrices equality doesn't work if not sparse.issparse(param2): equality_test = False elif param1.size == 0 or param2.size == 0: equality_test = ( param1.__class__ == param2.__class__ and param1.size == 0 and param2.size == 0 ) else: equality_test = ( param1.__class__ == param2.__class__ and param1.data[0] == param2.data[0] and param1.data[-1] == param2.data[-1] and param1.nnz == param2.nnz and param1.shape == param2.shape ) else: new_obj_val = new_object_params[name] params_set_val = params_set[name] # The following construct is required to check equality on special # singletons such as np.nan that are not equal to them-selves: equality_test = (new_obj_val == params_set_val or new_obj_val is params_set_val) if not equality_test: raise RuntimeError('Cannot clone object %s, as the constructor ' 'does not seem to set parameter %s' % (estimator, name)) return new_object ############################################################################### def _pprint(params, offset=0, printer=repr): """Pretty print the dictionary 'params' Parameters ---------- params: dict The dictionary to pretty print offset: int The offset in characters to add at the begin of each line. printer: The function to convert entries to strings, typically the builtin str or repr """ # Do a multi-line justified repr: options = np.get_printoptions() np.set_printoptions(precision=5, threshold=64, edgeitems=2) params_list = list() this_line_length = offset line_sep = ',\n' + (1 + offset // 2) * ' ' for i, (k, v) in enumerate(sorted(six.iteritems(params))): if type(v) is float: # use str for representing floating point numbers # this way we get consistent representation across # architectures and versions. this_repr = '%s=%s' % (k, str(v)) else: # use repr of the rest this_repr = '%s=%s' % (k, printer(v)) if len(this_repr) > 500: this_repr = this_repr[:300] + '...' + this_repr[-100:] if i > 0: if (this_line_length + len(this_repr) >= 75 or '\n' in this_repr): params_list.append(line_sep) this_line_length = len(line_sep) else: params_list.append(', ') this_line_length += 2 params_list.append(this_repr) this_line_length += len(this_repr) np.set_printoptions(**options) lines = ''.join(params_list) # Strip trailing space to avoid nightmare in doctests lines = '\n'.join(l.rstrip(' ') for l in lines.split('\n')) return lines ############################################################################### class BaseEstimator(object): """Base class for all estimators in scikit-learn Notes ----- All estimators should specify all the parameters that can be set at the class level in their ``__init__`` as explicit keyword arguments (no ``*args`` or ``**kwargs``). """ @classmethod def _get_param_names(cls): """Get parameter names for the estimator""" # fetch the constructor or the original constructor before # deprecation wrapping if any init = getattr(cls.__init__, 'deprecated_original', cls.__init__) if init is object.__init__: # No explicit constructor to introspect return [] # introspect the constructor arguments to find the model parameters # to represent init_signature = signature(init) # Consider the constructor parameters excluding 'self' parameters = [p for p in init_signature.parameters.values() if p.name != 'self' and p.kind != p.VAR_KEYWORD] for p in parameters: if p.kind == p.VAR_POSITIONAL: raise RuntimeError("scikit-learn estimators should always " "specify their parameters in the signature" " of their __init__ (no varargs)." " %s with constructor %s doesn't " " follow this convention." % (cls, init_signature)) # Extract and sort argument names excluding 'self' return sorted([p.name for p in parameters]) def get_params(self, deep=True): """Get parameters for this estimator. Parameters ---------- deep: boolean, optional If True, will return the parameters for this estimator and contained subobjects that are estimators. Returns ------- params : mapping of string to any Parameter names mapped to their values. """ out = dict() for key in self._get_param_names(): # We need deprecation warnings to always be on in order to # catch deprecated param values. # This is set in utils/__init__.py but it gets overwritten # when running under python3 somehow. warnings.simplefilter("always", DeprecationWarning) try: with warnings.catch_warnings(record=True) as w: value = getattr(self, key, None) if len(w) and w[0].category == DeprecationWarning: # if the parameter is deprecated, don't show it continue finally: warnings.filters.pop(0) # XXX: should we rather test if instance of estimator? if deep and hasattr(value, 'get_params'): deep_items = value.get_params().items() out.update((key + '__' + k, val) for k, val in deep_items) out[key] = value return out def set_params(self, **params): """Set the parameters of this estimator. The method works on simple estimators as well as on nested objects (such as pipelines). The former have parameters of the form ``<component>__<parameter>`` so that it's possible to update each component of a nested object. Returns ------- self """ if not params: # Simple optimisation to gain speed (inspect is slow) return self valid_params = self.get_params(deep=True) for key, value in six.iteritems(params): split = key.split('__', 1) if len(split) > 1: # nested objects case name, sub_name = split if name not in valid_params: raise ValueError('Invalid parameter %s for estimator %s. ' 'Check the list of available parameters ' 'with `estimator.get_params().keys()`.' % (name, self)) sub_object = valid_params[name] sub_object.set_params(**{sub_name: value}) else: # simple objects case if key not in valid_params: raise ValueError('Invalid parameter %s for estimator %s. ' 'Check the list of available parameters ' 'with `estimator.get_params().keys()`.' % (key, self.__class__.__name__)) setattr(self, key, value) return self def __repr__(self): class_name = self.__class__.__name__ return '%s(%s)' % (class_name, _pprint(self.get_params(deep=False), offset=len(class_name),),) ############################################################################### class ClassifierMixin(object): """Mixin class for all classifiers in scikit-learn.""" _estimator_type = "classifier" def score(self, X, y, sample_weight=None): """Returns the mean accuracy on the given test data and labels. In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each sample that each label set be correctly predicted. Parameters ---------- X : array-like, shape = (n_samples, n_features) Test samples. y : array-like, shape = (n_samples) or (n_samples, n_outputs) True labels for X. sample_weight : array-like, shape = [n_samples], optional Sample weights. Returns ------- score : float Mean accuracy of self.predict(X) wrt. y. """ from .metrics import accuracy_score return accuracy_score(y, self.predict(X), sample_weight=sample_weight) ############################################################################### class RegressorMixin(object): """Mixin class for all regression estimators in scikit-learn.""" _estimator_type = "regressor" def score(self, X, y, sample_weight=None): """Returns the coefficient of determination R^2 of the prediction. The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y_true - y_pred) ** 2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0. Parameters ---------- X : array-like, shape = (n_samples, n_features) Test samples. y : array-like, shape = (n_samples) or (n_samples, n_outputs) True values for X. sample_weight : array-like, shape = [n_samples], optional Sample weights. Returns ------- score : float R^2 of self.predict(X) wrt. y. """ from .metrics import r2_score return r2_score(y, self.predict(X), sample_weight=sample_weight, multioutput='variance_weighted') ############################################################################### class ClusterMixin(object): """Mixin class for all cluster estimators in scikit-learn.""" _estimator_type = "clusterer" def fit_predict(self, X, y=None): """Performs clustering on X and returns cluster labels. Parameters ---------- X : ndarray, shape (n_samples, n_features) Input data. Returns ------- y : ndarray, shape (n_samples,) cluster labels """ # non-optimized default implementation; override when a better # method is possible for a given clustering algorithm self.fit(X) return self.labels_ class BiclusterMixin(object): """Mixin class for all bicluster estimators in scikit-learn""" @property def biclusters_(self): """Convenient way to get row and column indicators together. Returns the ``rows_`` and ``columns_`` members. """ return self.rows_, self.columns_ def get_indices(self, i): """Row and column indices of the i'th bicluster. Only works if ``rows_`` and ``columns_`` attributes exist. Returns ------- row_ind : np.array, dtype=np.intp Indices of rows in the dataset that belong to the bicluster. col_ind : np.array, dtype=np.intp Indices of columns in the dataset that belong to the bicluster. """ rows = self.rows_[i] columns = self.columns_[i] return np.nonzero(rows)[0], np.nonzero(columns)[0] def get_shape(self, i): """Shape of the i'th bicluster. Returns ------- shape : (int, int) Number of rows and columns (resp.) in the bicluster. """ indices = self.get_indices(i) return tuple(len(i) for i in indices) def get_submatrix(self, i, data): """Returns the submatrix corresponding to bicluster `i`. Works with sparse matrices. Only works if ``rows_`` and ``columns_`` attributes exist. """ from .utils.validation import check_array data = check_array(data, accept_sparse='csr') row_ind, col_ind = self.get_indices(i) return data[row_ind[:, np.newaxis], col_ind] ############################################################################### class TransformerMixin(object): """Mixin class for all transformers in scikit-learn.""" def fit_transform(self, X, y=None, **fit_params): """Fit to data, then transform it. Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X. Parameters ---------- X : numpy array of shape [n_samples, n_features] Training set. y : numpy array of shape [n_samples] Target values. Returns ------- X_new : numpy array of shape [n_samples, n_features_new] Transformed array. """ # non-optimized default implementation; override when a better # method is possible for a given clustering algorithm if y is None: # fit method of arity 1 (unsupervised transformation) return self.fit(X, **fit_params).transform(X) else: # fit method of arity 2 (supervised transformation) return self.fit(X, y, **fit_params).transform(X) ############################################################################### class MetaEstimatorMixin(object): """Mixin class for all meta estimators in scikit-learn.""" # this is just a tag for the moment ############################################################################### def is_classifier(estimator): """Returns True if the given estimator is (probably) a classifier.""" return getattr(estimator, "_estimator_type", None) == "classifier" def is_regressor(estimator): """Returns True if the given estimator is (probably) a regressor.""" return getattr(estimator, "_estimator_type", None) == "regressor"
bsd-3-clause
htygithub/bokeh
bokeh/sampledata/gapminder.py
41
2655
from __future__ import absolute_import import pandas as pd from os.path import join import sys from . import _data_dir ''' This module provides a pandas DataFrame instance of four of the datasets from gapminder.org. These are read in from csvs that have been downloaded from Bokeh's sample data on S3. But the original code that generated the csvs from the raw gapminder data is available at the bottom of this file. ''' data_dir = _data_dir() datasets = [ 'fertility', 'life_expectancy', 'population', 'regions', ] for dataset in datasets: filename = join(data_dir, 'gapminder_%s.csv' % dataset) try: setattr( sys.modules[__name__], dataset, pd.read_csv(filename, index_col='Country') ) except (IOError, OSError): raise RuntimeError('Could not load gapminder data file "%s". Please execute bokeh.sampledata.download()' % filename) __all__ = datasets # ==================================================== # Original data is from Gapminder - www.gapminder.org. # The google docs links are maintained by gapminder # The following script was used to get the data from gapminder # and process it into the csvs stored in bokeh's sampledata. """ population_url = "http://spreadsheets.google.com/pub?key=phAwcNAVuyj0XOoBL_n5tAQ&output=xls" fertility_url = "http://spreadsheets.google.com/pub?key=phAwcNAVuyj0TAlJeCEzcGQ&output=xls" life_expectancy_url = "http://spreadsheets.google.com/pub?key=tiAiXcrneZrUnnJ9dBU-PAw&output=xls" regions_url = "https://docs.google.com/spreadsheets/d/1OxmGUNWeADbPJkQxVPupSOK5MbAECdqThnvyPrwG5Os/pub?gid=1&output=xls" def _get_data(url): # Get the data from the url and return only 1962 - 2013 df = pd.read_excel(url, index_col=0) df = df.unstack().unstack() df = df[(df.index >= 1964) & (df.index <= 2013)] df = df.unstack().unstack() return df fertility_df = _get_data(fertility_url) life_expectancy_df = _get_data(life_expectancy_url) population_df = _get_data(population_url) regions_df = pd.read_excel(regions_url, index_col=0) # have common countries across all data fertility_df = fertility_df.drop(fertility_df.index.difference(life_expectancy_df.index)) population_df = population_df.drop(population_df.index.difference(life_expectancy_df.index)) regions_df = regions_df.drop(regions_df.index.difference(life_expectancy_df.index)) fertility_df.to_csv('gapminder_fertility.csv') population_df.to_csv('gapminder_population.csv') life_expectancy_df.to_csv('gapminder_life_expectancy.csv') regions_df.to_csv('gapminder_regions.csv') """ # ======================================================
bsd-3-clause
huongttlan/bokeh
bokeh/compat/mplexporter/renderers/base.py
44
14355
import warnings import itertools from contextlib import contextmanager import numpy as np from matplotlib import transforms from .. import utils from .. import _py3k_compat as py3k class Renderer(object): @staticmethod def ax_zoomable(ax): return bool(ax and ax.get_navigate()) @staticmethod def ax_has_xgrid(ax): return bool(ax and ax.xaxis._gridOnMajor and ax.yaxis.get_gridlines()) @staticmethod def ax_has_ygrid(ax): return bool(ax and ax.yaxis._gridOnMajor and ax.yaxis.get_gridlines()) @property def current_ax_zoomable(self): return self.ax_zoomable(self._current_ax) @property def current_ax_has_xgrid(self): return self.ax_has_xgrid(self._current_ax) @property def current_ax_has_ygrid(self): return self.ax_has_ygrid(self._current_ax) @contextmanager def draw_figure(self, fig, props): if hasattr(self, "_current_fig") and self._current_fig is not None: warnings.warn("figure embedded in figure: something is wrong") self._current_fig = fig self._fig_props = props self.open_figure(fig=fig, props=props) yield self.close_figure(fig=fig) self._current_fig = None self._fig_props = {} @contextmanager def draw_axes(self, ax, props): if hasattr(self, "_current_ax") and self._current_ax is not None: warnings.warn("axes embedded in axes: something is wrong") self._current_ax = ax self._ax_props = props self.open_axes(ax=ax, props=props) yield self.close_axes(ax=ax) self._current_ax = None self._ax_props = {} @contextmanager def draw_legend(self, legend, props): self._current_legend = legend self._legend_props = props self.open_legend(legend=legend, props=props) yield self.close_legend(legend=legend) self._current_legend = None self._legend_props = {} # Following are the functions which should be overloaded in subclasses def open_figure(self, fig, props): """ Begin commands for a particular figure. Parameters ---------- fig : matplotlib.Figure The Figure which will contain the ensuing axes and elements props : dictionary The dictionary of figure properties """ pass def close_figure(self, fig): """ Finish commands for a particular figure. Parameters ---------- fig : matplotlib.Figure The figure which is finished being drawn. """ pass def open_axes(self, ax, props): """ Begin commands for a particular axes. Parameters ---------- ax : matplotlib.Axes The Axes which will contain the ensuing axes and elements props : dictionary The dictionary of axes properties """ pass def close_axes(self, ax): """ Finish commands for a particular axes. Parameters ---------- ax : matplotlib.Axes The Axes which is finished being drawn. """ pass def open_legend(self, legend, props): """ Beging commands for a particular legend. Parameters ---------- legend : matplotlib.legend.Legend The Legend that will contain the ensuing elements props : dictionary The dictionary of legend properties """ pass def close_legend(self, legend): """ Finish commands for a particular legend. Parameters ---------- legend : matplotlib.legend.Legend The Legend which is finished being drawn """ pass def draw_marked_line(self, data, coordinates, linestyle, markerstyle, label, mplobj=None): """Draw a line that also has markers. If this isn't reimplemented by a renderer object, by default, it will make a call to BOTH draw_line and draw_markers when both markerstyle and linestyle are not None in the same Line2D object. """ if linestyle is not None: self.draw_line(data, coordinates, linestyle, label, mplobj) if markerstyle is not None: self.draw_markers(data, coordinates, markerstyle, label, mplobj) def draw_line(self, data, coordinates, style, label, mplobj=None): """ Draw a line. By default, draw the line via the draw_path() command. Some renderers might wish to override this and provide more fine-grained behavior. In matplotlib, lines are generally created via the plt.plot() command, though this command also can create marker collections. Parameters ---------- data : array_like A shape (N, 2) array of datapoints. coordinates : string A string code, which should be either 'data' for data coordinates, or 'figure' for figure (pixel) coordinates. style : dictionary a dictionary specifying the appearance of the line. mplobj : matplotlib object the matplotlib plot element which generated this line """ pathcodes = ['M'] + (data.shape[0] - 1) * ['L'] pathstyle = dict(facecolor='none', **style) pathstyle['edgecolor'] = pathstyle.pop('color') pathstyle['edgewidth'] = pathstyle.pop('linewidth') self.draw_path(data=data, coordinates=coordinates, pathcodes=pathcodes, style=pathstyle, mplobj=mplobj) @staticmethod def _iter_path_collection(paths, path_transforms, offsets, styles): """Build an iterator over the elements of the path collection""" N = max(len(paths), len(offsets)) if not path_transforms: path_transforms = [np.eye(3)] edgecolor = styles['edgecolor'] if np.size(edgecolor) == 0: edgecolor = ['none'] facecolor = styles['facecolor'] if np.size(facecolor) == 0: facecolor = ['none'] elements = [paths, path_transforms, offsets, edgecolor, styles['linewidth'], facecolor] it = itertools return it.islice(py3k.zip(*py3k.map(it.cycle, elements)), N) def draw_path_collection(self, paths, path_coordinates, path_transforms, offsets, offset_coordinates, offset_order, styles, mplobj=None): """ Draw a collection of paths. The paths, offsets, and styles are all iterables, and the number of paths is max(len(paths), len(offsets)). By default, this is implemented via multiple calls to the draw_path() function. For efficiency, Renderers may choose to customize this implementation. Examples of path collections created by matplotlib are scatter plots, histograms, contour plots, and many others. Parameters ---------- paths : list list of tuples, where each tuple has two elements: (data, pathcodes). See draw_path() for a description of these. path_coordinates: string the coordinates code for the paths, which should be either 'data' for data coordinates, or 'figure' for figure (pixel) coordinates. path_transforms: array_like an array of shape (*, 3, 3), giving a series of 2D Affine transforms for the paths. These encode translations, rotations, and scalings in the standard way. offsets: array_like An array of offsets of shape (N, 2) offset_coordinates : string the coordinates code for the offsets, which should be either 'data' for data coordinates, or 'figure' for figure (pixel) coordinates. offset_order : string either "before" or "after". This specifies whether the offset is applied before the path transform, or after. The matplotlib backend equivalent is "before"->"data", "after"->"screen". styles: dictionary A dictionary in which each value is a list of length N, containing the style(s) for the paths. mplobj : matplotlib object the matplotlib plot element which generated this collection """ if offset_order == "before": raise NotImplementedError("offset before transform") for tup in self._iter_path_collection(paths, path_transforms, offsets, styles): (path, path_transform, offset, ec, lw, fc) = tup vertices, pathcodes = path path_transform = transforms.Affine2D(path_transform) vertices = path_transform.transform(vertices) # This is a hack: if path_coordinates == "figure": path_coordinates = "points" style = {"edgecolor": utils.color_to_hex(ec), "facecolor": utils.color_to_hex(fc), "edgewidth": lw, "dasharray": "10,0", "alpha": styles['alpha'], "zorder": styles['zorder']} self.draw_path(data=vertices, coordinates=path_coordinates, pathcodes=pathcodes, style=style, offset=offset, offset_coordinates=offset_coordinates, mplobj=mplobj) def draw_markers(self, data, coordinates, style, label, mplobj=None): """ Draw a set of markers. By default, this is done by repeatedly calling draw_path(), but renderers should generally overload this method to provide a more efficient implementation. In matplotlib, markers are created using the plt.plot() command. Parameters ---------- data : array_like A shape (N, 2) array of datapoints. coordinates : string A string code, which should be either 'data' for data coordinates, or 'figure' for figure (pixel) coordinates. style : dictionary a dictionary specifying the appearance of the markers. mplobj : matplotlib object the matplotlib plot element which generated this marker collection """ vertices, pathcodes = style['markerpath'] pathstyle = dict((key, style[key]) for key in ['alpha', 'edgecolor', 'facecolor', 'zorder', 'edgewidth']) pathstyle['dasharray'] = "10,0" for vertex in data: self.draw_path(data=vertices, coordinates="points", pathcodes=pathcodes, style=pathstyle, offset=vertex, offset_coordinates=coordinates, mplobj=mplobj) def draw_text(self, text, position, coordinates, style, text_type=None, mplobj=None): """ Draw text on the image. Parameters ---------- text : string The text to draw position : tuple The (x, y) position of the text coordinates : string A string code, which should be either 'data' for data coordinates, or 'figure' for figure (pixel) coordinates. style : dictionary a dictionary specifying the appearance of the text. text_type : string or None if specified, a type of text such as "xlabel", "ylabel", "title" mplobj : matplotlib object the matplotlib plot element which generated this text """ raise NotImplementedError() def draw_path(self, data, coordinates, pathcodes, style, offset=None, offset_coordinates="data", mplobj=None): """ Draw a path. In matplotlib, paths are created by filled regions, histograms, contour plots, patches, etc. Parameters ---------- data : array_like A shape (N, 2) array of datapoints. coordinates : string A string code, which should be either 'data' for data coordinates, 'figure' for figure (pixel) coordinates, or "points" for raw point coordinates (useful in conjunction with offsets, below). pathcodes : list A list of single-character SVG pathcodes associated with the data. Path codes are one of ['M', 'm', 'L', 'l', 'Q', 'q', 'T', 't', 'S', 's', 'C', 'c', 'Z', 'z'] See the SVG specification for details. Note that some path codes consume more than one datapoint (while 'Z' consumes none), so in general, the length of the pathcodes list will not be the same as that of the data array. style : dictionary a dictionary specifying the appearance of the line. offset : list (optional) the (x, y) offset of the path. If not given, no offset will be used. offset_coordinates : string (optional) A string code, which should be either 'data' for data coordinates, or 'figure' for figure (pixel) coordinates. mplobj : matplotlib object the matplotlib plot element which generated this path """ raise NotImplementedError() def draw_image(self, imdata, extent, coordinates, style, mplobj=None): """ Draw an image. Parameters ---------- imdata : string base64 encoded png representation of the image extent : list the axes extent of the image: [xmin, xmax, ymin, ymax] coordinates: string A string code, which should be either 'data' for data coordinates, or 'figure' for figure (pixel) coordinates. style : dictionary a dictionary specifying the appearance of the image mplobj : matplotlib object the matplotlib plot object which generated this image """ raise NotImplementedError()
bsd-3-clause
joelfrederico/SciSalt
scisalt/qt/mplwidget.py
1
13557
from PyQt4 import QtGui from PyQt4 import QtCore from matplotlib.backends.backend_qt4agg import FigureCanvasQTAgg as _FigureCanvas from matplotlib.backends.backend_qt4 import NavigationToolbar2QT as _NavigationToolbar import matplotlib as _mpl import numpy as _np from .Rectangle import Rectangle import pdb import traceback import logging loggerlevel = logging.DEBUG logger = logging.getLogger(__name__) try: _fromUtf8 = QtCore.QString.fromUtf8 except AttributeError: def _fromUtf8(s): return s try: _encoding = QtGui.QApplication.UnicodeUTF8 def _translate(context, text, disambig): return QtGui.QApplication.translate(context, text, disambig, _encoding) except AttributeError: def _translate(context, text, disambig): return QtGui.QApplication.translate(context, text, disambig) class Slider_and_Text(QtGui.QWidget): valueChanged = QtCore.pyqtSignal(int) sliderReleased = QtCore.pyqtSignal(int) def __init__(self, parent=None): QtGui.QWidget.__init__(self) self.setMaximumHeight(40) # Enable tracking by default self._tracking = True self.hLayout = QtGui.QHBoxLayout() self.slider = QtGui.QSlider() self.leftbutton = QtGui.QPushButton() self.leftbutton.setText("<") sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Minimum, QtGui.QSizePolicy.Minimum) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.leftbutton.sizePolicy().hasHeightForWidth()) # self.leftbutton.setSizePolicy(sizePolicy) self.leftbutton.clicked.connect(self._subone) self.rightbutton = QtGui.QPushButton() self.rightbutton.setText(">") sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Minimum, QtGui.QSizePolicy.Minimum) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.rightbutton.sizePolicy().hasHeightForWidth()) # self.rightbutton.setSizePolicy(sizePolicy) self.rightbutton.clicked.connect(self._addone) self.v = QtGui.QIntValidator() self.box = QtGui.QLineEdit() self.box.setValidator(self.v) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Minimum, QtGui.QSizePolicy.Minimum) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.box.sizePolicy().hasHeightForWidth()) # self.box.setSizePolicy(sizePolicy) self.hLayout.addWidget(self.leftbutton) self.hLayout.addWidget(self.slider) self.hLayout.addWidget(self.box) self.hLayout.addWidget(self.rightbutton) self.setLayout(self.hLayout) self.slider.valueChanged.connect(self._sliderChanged) self.box.editingFinished.connect(self._textChanged) self.setOrientation(QtCore.Qt.Horizontal) # Connect release so tracking works as expected self.slider.sliderReleased.connect(self._sliderReleased) def _addone(self): self.value = self.value + 1 self.valueChanged.emit(self.value) def _subone(self): self.value = self.value - 1 self.valueChanged.emit(self.value) def _sliderReleased(self): print('Released') self.sliderReleased.emit(self.slider.value) def setTracking(self, val): print('Tracking set to {}'.format(val)) self._tracking = val def setMaximum(self, val): self.slider.setMaximum(val) self.v.setRange(self.slider.minimum(), self.slider.maximum()) self.box.setValidator(self.v) def setMinimum(self, val): self.slider.setMinimum(val) self.v.setRange(self.slider.minimum(), self.slider.maximum()) self.box.setValidator(self.v) def _sliderChanged(self, val): self.box.setText(str(val)) if self._tracking: try: self.slider.sliderReleased.disconnect() except: pass self.valueChanged.emit(val) else: try: self.slider.sliderReleased.disconnect() except: pass self.slider.sliderReleased.connect(self._sliderChanged_notracking) def _sliderChanged_notracking(self): val = self.slider.value() # print('Value to be emitted is {}'.format(val)) self.valueChanged.emit(val) def _textChanged(self): val = self.box.text() self.slider.setValue(int(val)) self._sliderChanged_notracking() def setOrientation(self, *args, **kwargs): self.slider.setOrientation(*args, **kwargs) def _getValue(self): return self.slider.value() def _setValue(self, val): self.slider.setValue(val) self.box.setText(str(val)) value = property(_getValue, _setValue) def setValue(self, val): self.slider.setValue(val) self.box.setText(str(val)) # self.valueChanged.emit(val) class Mpl_Plot(_FigureCanvas): def __init__(self, parent=None): # Initialize things self.fig = _mpl.figure.Figure() _FigureCanvas.__init__(self, self.fig) _FigureCanvas.setSizePolicy(self, QtGui.QSizePolicy.Expanding, QtGui.QSizePolicy.Expanding) _FigureCanvas.updateGeometry(self) # Create axes self.ax = self.fig.add_subplot(111) def plot(self, *args, **kwargs): self.ax.clear() self.ax.plot(*args, **kwargs) self.ax.ticklabel_format(style='sci', scilimits=(0, 0), axis='y') self.ax.figure.canvas.draw() class Mpl_Image(QtGui.QWidget): # Signal for when the rectangle is changed rectChanged = QtCore.pyqtSignal(Rectangle) def __init__(self, parent=None, rectbool = True, toolbarbool=False, image=None): # Initialize things QtGui.QWidget.__init__(self) self.rectbool = rectbool self._clim_min = 0 self._clim_max = 3600 self._pressed = False # Add a vertical layout self.vLayout = QtGui.QVBoxLayout() # Add a figure self.fig = _mpl.figure.Figure() # Add a canvas containing the fig self.canvas = _FigureCanvas(self.fig) _FigureCanvas.setSizePolicy(self.canvas, QtGui.QSizePolicy.Expanding, QtGui.QSizePolicy.Expanding) _FigureCanvas.updateGeometry(self.canvas) # Setup the layout if toolbarbool: self.toolbar = _NavigationToolbar(self.canvas, self) self.toolbar.setMaximumHeight(20) self.vLayout.addWidget(self.toolbar) self.vLayout.addWidget(self.canvas) self.setLayout(self.vLayout) # Create axes self.ax = self.fig.add_subplot(111) # Include rectangle functionality if rectbool: self.fig.canvas.mpl_connect('button_press_event', self.on_press) self.fig.canvas.mpl_connect('button_release_event', self.on_release) self.Rectangle = Rectangle( x = -10 , y = 0 , width = 0 , height = 3 , axes = self.ax ) # Add image self.image = image def _get_img(self): return self._image def _set_img(self, image): self.ax.clear() self._image = image if image is not None: self._imgplot = self.ax.imshow(image, interpolation='none') if self.rectbool: self.ax.add_patch(self.Rectangle.get_rect()) # imagemax = _np.max(_np.max(image)) self.set_clim(self._clim_min, self._clim_max) image = property(_get_img, _set_img) def set_clim(self, clim_min, clim_max): if self.image is not None: self._clim_min = clim_min self._clim_max = clim_max self._imgplot.set_clim(clim_min, clim_max) self.ax.figure.canvas.draw() def on_press(self, event): if self.toolbar._active is None: self._pressed = True self.x0 = event.xdata self.y0 = event.ydata logger.log(level=loggerlevel, msg='Pressed: x0: {}, y0: {}'.format(self.x0, self.y0)) def on_release(self, event): if self._pressed: self._pressed = False print('release') self.x1 = event.xdata self.y1 = event.ydata width = self.x1 - self.x0 height = self.y1 - self.y0 logger.log(level=loggerlevel, msg='Released: x0: {}, y0: {}, x1: {}, y1: {}, width: {}, height: {}'.format( self.x0 , self.y0 , self.x1 , self.y1 , width , height ) ) self.Rectangle.set_xy((self.x0, self.y0)) self.Rectangle.set_width(width) self.Rectangle.set_height(height) self.ax.figure.canvas.draw() self.rectChanged.emit(self.Rectangle) # print(self.rect) def zoom_rect(self, border=None, border_px=None): # ====================================== # Get x coordinates # ====================================== x0 = self.Rectangle.get_x() width = self.Rectangle.get_width() x1 = x0+width # ====================================== # Get y coordinates # ====================================== y0 = self.Rectangle.get_y() height = self.Rectangle.get_height() y1 = y0+height # ====================================== # Validate borders # ====================================== if (border_px is None) and (border is not None): xborder = border[0]*width yborder = border[1]*height elif (border_px is not None) and (border is None): xborder = border_px[0] yborder = border_px[1] elif (border_px is None) and (border is None): raise IOError('No border info specified!') elif (border_px is not None) and (border is not None): raise IOError('Too much border info specified, both border_px and border!') else: raise IOError('End of the line!') # ====================================== # Add borders # ====================================== x0 = x0 - xborder x1 = x1 + xborder y0 = y0 - yborder y1 = y1 + yborder # ====================================== # Validate coordinates to prevent # unPythonic crash # ====================================== if not ((0 <= x0 and x0 <= self.image.shape[1]) and (0 <= x1 and x1 <= self.image.shape[1])): print('X issue') print('Requested: x=({}, {})'.format(x0, x1)) x0 = 0 x1 = self.image.shape[1] if not ((0 <= y0 and y0 <= self.image.shape[0]) and (0 <= y1 and y1 <= self.image.shape[0])): print('y issue') print('Requested: y=({}, {})'.format(y0, y1)) y0 = 0 y1 = self.image.shape[0] # ====================================== # Set viewable area # ====================================== self.ax.set_xlim(x0, x1) self.ax.set_ylim(y0, y1) # ====================================== # Redraw canvas to show updates # ====================================== self.ax.figure.canvas.draw() class Mpl_Image_Plus_Slider(QtGui.QWidget): # def __init__(self, parent=None, **kwargs): def __init__(self, parent=None, **kwargs): # Initialize self as a widget QtGui.QWidget.__init__(self, parent) # Add a vertical layout with parent self self.vLayout = QtGui.QVBoxLayout(self) self.vLayout.setObjectName(_fromUtf8("vLayout")) # Add an Mpl_Image widget to vLayout, # save it to self._img # Pass arguments through to Mpl_Image. self._img = Mpl_Image(parent=parent, toolbarbool=True, **kwargs) self._img.setObjectName(_fromUtf8("_img")) self.vLayout.addWidget(self._img) # Add a slider to vLayout, # save it to self.max_slider # self.max_slider = QtGui.QSlider(self) self.max_slider = Slider_and_Text(self) self.max_slider.setObjectName(_fromUtf8("max_slider")) self.max_slider.setOrientation(QtCore.Qt.Horizontal) self.vLayout.addWidget(self.max_slider) # Setup slider to work with _img's clims self.max_slider.valueChanged.connect(lambda val: self.set_clim(0, val)) def _get_image(self): return self._img.image def _set_image(self, image): self._img.image = image maximage = _np.max(_np.max(image)) self.max_slider.setMaximum(maximage) image = property(_get_image, _set_image) def _get_ax(self): return self._img.ax ax = property(_get_ax) def _get_Rectangle(self): return self._img.Rectangle # def _set_rect(self, rect): # self._img.rect(rect) Rectangle = property(_get_Rectangle) def zoom_rect(self, border=None, border_px=None): self._img.zoom_rect(border, border_px) def set_clim(self, *args, **kwargs): self._img.set_clim(*args, **kwargs) def setSliderValue(self, val): self.max_slider.setValue(val)
mit
mathhun/scipy_2015_sklearn_tutorial
notebooks/figures/plot_kneighbors_regularization.py
25
1363
import numpy as np import matplotlib.pyplot as plt from sklearn.neighbors import KNeighborsRegressor def make_dataset(n_samples=100): rnd = np.random.RandomState(42) x = np.linspace(-3, 3, n_samples) y_no_noise = np.sin(4 * x) + x y = y_no_noise + rnd.normal(size=len(x)) return x, y def plot_regression_datasets(): fig, axes = plt.subplots(1, 3, figsize=(15, 5)) for n_samples, ax in zip([10, 100, 1000], axes): x, y = make_dataset(n_samples) ax.plot(x, y, 'o', alpha=.6) def plot_kneighbors_regularization(): rnd = np.random.RandomState(42) x = np.linspace(-3, 3, 100) y_no_noise = np.sin(4 * x) + x y = y_no_noise + rnd.normal(size=len(x)) X = x[:, np.newaxis] fig, axes = plt.subplots(1, 3, figsize=(15, 5)) x_test = np.linspace(-3, 3, 1000) for n_neighbors, ax in zip([2, 5, 20], axes.ravel()): kneighbor_regression = KNeighborsRegressor(n_neighbors=n_neighbors) kneighbor_regression.fit(X, y) ax.plot(x, y_no_noise, label="true function") ax.plot(x, y, "o", label="data") ax.plot(x_test, kneighbor_regression.predict(x_test[:, np.newaxis]), label="prediction") ax.legend() ax.set_title("n_neighbors = %d" % n_neighbors) if __name__ == "__main__": plot_kneighbors_regularization() plt.show()
cc0-1.0
qifeigit/scikit-learn
examples/decomposition/plot_pca_3d.py
354
2432
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= Principal components analysis (PCA) ========================================================= These figures aid in illustrating how a point cloud can be very flat in one direction--which is where PCA comes in to choose a direction that is not flat. """ print(__doc__) # Authors: Gael Varoquaux # Jaques Grobler # Kevin Hughes # License: BSD 3 clause from sklearn.decomposition import PCA from mpl_toolkits.mplot3d import Axes3D import numpy as np import matplotlib.pyplot as plt from scipy import stats ############################################################################### # Create the data e = np.exp(1) np.random.seed(4) def pdf(x): return 0.5 * (stats.norm(scale=0.25 / e).pdf(x) + stats.norm(scale=4 / e).pdf(x)) y = np.random.normal(scale=0.5, size=(30000)) x = np.random.normal(scale=0.5, size=(30000)) z = np.random.normal(scale=0.1, size=len(x)) density = pdf(x) * pdf(y) pdf_z = pdf(5 * z) density *= pdf_z a = x + y b = 2 * y c = a - b + z norm = np.sqrt(a.var() + b.var()) a /= norm b /= norm ############################################################################### # Plot the figures def plot_figs(fig_num, elev, azim): fig = plt.figure(fig_num, figsize=(4, 3)) plt.clf() ax = Axes3D(fig, rect=[0, 0, .95, 1], elev=elev, azim=azim) ax.scatter(a[::10], b[::10], c[::10], c=density[::10], marker='+', alpha=.4) Y = np.c_[a, b, c] # Using SciPy's SVD, this would be: # _, pca_score, V = scipy.linalg.svd(Y, full_matrices=False) pca = PCA(n_components=3) pca.fit(Y) pca_score = pca.explained_variance_ratio_ V = pca.components_ x_pca_axis, y_pca_axis, z_pca_axis = V.T * pca_score / pca_score.min() x_pca_axis, y_pca_axis, z_pca_axis = 3 * V.T x_pca_plane = np.r_[x_pca_axis[:2], - x_pca_axis[1::-1]] y_pca_plane = np.r_[y_pca_axis[:2], - y_pca_axis[1::-1]] z_pca_plane = np.r_[z_pca_axis[:2], - z_pca_axis[1::-1]] x_pca_plane.shape = (2, 2) y_pca_plane.shape = (2, 2) z_pca_plane.shape = (2, 2) ax.plot_surface(x_pca_plane, y_pca_plane, z_pca_plane) ax.w_xaxis.set_ticklabels([]) ax.w_yaxis.set_ticklabels([]) ax.w_zaxis.set_ticklabels([]) elev = -40 azim = -80 plot_figs(1, elev, azim) elev = 30 azim = 20 plot_figs(2, elev, azim) plt.show()
bsd-3-clause
sonyahanson/assaytools
examples/ipynbs/data-analysis/spectra/2015-12-18/xml2png4scans-spectra.py
8
5636
# This script takes xml data file output from the Tecan Infinite m1000 Pro plate reader # and makes quick and dirty images of the raw data. # But with scans and not just singlet reads. # This script specifically combines four spectrum scripts (AB, CD, EF, GH) into a single dataframe and plot. # The same procedure can be used to make matrices suitable for analysis using # matrix = dataframe.values # Made by Sonya Hanson, with some help from things that worked in xml2png.py and xml2png4scans.py # Friday, November 18,2015 # Usage: python xml2png4scans-spectra.py *.xml ############ For future to combine with xml2png.py # # for i, sect in enumerate(Sections): # reads = sect.xpath("*/Well") # parameters = root.xpath(path)[0] # if reads[0].attrib['Type'] == "Scan": # ############## import matplotlib.pyplot as plt from lxml import etree import pandas as pd import matplotlib.cm as cm import seaborn import sys import os ### Define xml files. xml_files = sys.argv[1:] so_many = len(xml_files) print "****This script is about to make png files for %s xml files. ****" % so_many ### Define extract function that extracts parameters def extract(taglist): result = [] for p in taglist: print "Attempting to extract tag '%s'..." % p try: param = parameters.xpath("*[@Name='" + p + "']")[0] result.append( p + '=' + param.attrib['Value']) except: ### tag not found result.append(None) return result ### Define an initial set of dataframes, one per each section large_dataframe0 = pd.DataFrame() large_dataframe1 = pd.DataFrame() large_dataframe2 = pd.DataFrame() for file in xml_files: ### Parse XML file. root = etree.parse(file) ### Remove extension from xml filename. file_name = os.path.splitext(file)[0] ### Extract plate type and barcode. plate = root.xpath("/*/Header/Parameters/Parameter[@Name='Plate']")[0] plate_type = plate.attrib['Value'] try: bar = root.xpath("/*/Plate/BC")[0] barcode = bar.text except: barcode = 'no barcode' ### Define Sections. Sections = root.xpath("/*/Section") much = len(Sections) print "****The xml file " + file + " has %s data sections:****" % much for sect in Sections: print sect.attrib['Name'] for i, sect in enumerate(Sections): ### Extract Parameters for this section. path = "/*/Section[@Name='" + sect.attrib['Name'] + "']/Parameters" parameters = root.xpath(path)[0] ### Parameters are extracted slightly differently depending on Absorbance or Fluorescence read. # Attach these to title1, title2, or title3, depending on section which will be the same for all 4 files. if parameters[0].attrib['Value'] == "Absorbance": result = extract(["Mode", "Wavelength Start", "Wavelength End", "Wavelength Step Size"]) globals()["title"+str(i)] = '%s, %s, %s, %s' % tuple(result) else: result = extract(["Gain", "Excitation Wavelength", "Emission Wavelength", "Part of Plate", "Mode"]) globals()["title"+str(i)] = '%s, %s, %s, \n %s, %s' % tuple(result) print "****The %sth section has the parameters:****" %i print globals()["title"+str(i)] ### Extract Reads for this section. Sections = root.xpath("/*/Section") reads = root.xpath("/*/Section[@Name='" + sect.attrib['Name'] + "']/*/Well") wellIDs = [read.attrib['Pos'] for read in reads] data = [(s.text, float(s.attrib['WL']), r.attrib['Pos']) for r in reads for s in r] dataframe = pd.DataFrame(data, columns=['fluorescence','wavelength (nm)','Well']) ### dataframe_rep replaces 'OVER' (when fluorescence signal maxes out) with '3289277', an arbitrarily high number dataframe_rep = dataframe.replace({'OVER':'3289277'}) dataframe_rep[['fluorescence']] = dataframe_rep[['fluorescence']].astype('float') ### Create large_dataframe1, large_dataframe2, and large_dataframe3 that collect data for each section ### as we run through cycle through sections and files. globals()["dataframe_pivot"+str(i)] = pd.pivot_table(dataframe_rep, index = 'wavelength (nm)', columns= ['Well']) print 'The max fluorescence value in this dataframe is %s'% globals()["dataframe_pivot"+str(i)].values.max() globals()["large_dataframe"+str(i)] = pd.concat([globals()["large_dataframe"+str(i)],globals()["dataframe_pivot"+str(i)]]) ### Plot, making a separate png for each section. for i, sect in enumerate(Sections): section_name = sect.attrib['Name'] path = "/*/Section[@Name='" + sect.attrib['Name'] + "']/Parameters" parameters = root.xpath(path)[0] if parameters[0].attrib['Value'] == "Absorbance": section_ylim = [0,0.2] else: section_ylim = [0,40000] Alphabet = ['A','B','C','D','E','F','G','H'] fig, axes = plt.subplots(nrows=3, ncols=3, figsize=(12, 12)) for j,A in enumerate(Alphabet): for k in range(1,12): try: globals()["large_dataframe"+str(i)].fluorescence.get(A + str(k)).plot(ax=axes[(j/3)%3,j%3], title=A, c=cm.hsv(k*15), ylim=section_ylim, xlim=[240,800]) except: print "****No row %s.****" %A fig.suptitle('%s \n %s \n Barcode = %s' % (globals()["title"+str(i)], plate_type, barcode), fontsize=14) fig.subplots_adjust(hspace=0.3) plt.savefig('%s_%s.png' % (file_name, section_name))
lgpl-2.1
nikitasingh981/scikit-learn
examples/text/hashing_vs_dict_vectorizer.py
93
3243
""" =========================================== FeatureHasher and DictVectorizer Comparison =========================================== Compares FeatureHasher and DictVectorizer by using both to vectorize text documents. The example demonstrates syntax and speed only; it doesn't actually do anything useful with the extracted vectors. See the example scripts {document_classification_20newsgroups,clustering}.py for actual learning on text documents. A discrepancy between the number of terms reported for DictVectorizer and for FeatureHasher is to be expected due to hash collisions. """ # Author: Lars Buitinck # License: BSD 3 clause from __future__ import print_function from collections import defaultdict import re import sys from time import time import numpy as np from sklearn.datasets import fetch_20newsgroups from sklearn.feature_extraction import DictVectorizer, FeatureHasher def n_nonzero_columns(X): """Returns the number of non-zero columns in a CSR matrix X.""" return len(np.unique(X.nonzero()[1])) def tokens(doc): """Extract tokens from doc. This uses a simple regex to break strings into tokens. For a more principled approach, see CountVectorizer or TfidfVectorizer. """ return (tok.lower() for tok in re.findall(r"\w+", doc)) def token_freqs(doc): """Extract a dict mapping tokens from doc to their frequencies.""" freq = defaultdict(int) for tok in tokens(doc): freq[tok] += 1 return freq categories = [ 'alt.atheism', 'comp.graphics', 'comp.sys.ibm.pc.hardware', 'misc.forsale', 'rec.autos', 'sci.space', 'talk.religion.misc', ] # Uncomment the following line to use a larger set (11k+ documents) #categories = None print(__doc__) print("Usage: %s [n_features_for_hashing]" % sys.argv[0]) print(" The default number of features is 2**18.") print() try: n_features = int(sys.argv[1]) except IndexError: n_features = 2 ** 18 except ValueError: print("not a valid number of features: %r" % sys.argv[1]) sys.exit(1) print("Loading 20 newsgroups training data") raw_data = fetch_20newsgroups(subset='train', categories=categories).data data_size_mb = sum(len(s.encode('utf-8')) for s in raw_data) / 1e6 print("%d documents - %0.3fMB" % (len(raw_data), data_size_mb)) print() print("DictVectorizer") t0 = time() vectorizer = DictVectorizer() vectorizer.fit_transform(token_freqs(d) for d in raw_data) duration = time() - t0 print("done in %fs at %0.3fMB/s" % (duration, data_size_mb / duration)) print("Found %d unique terms" % len(vectorizer.get_feature_names())) print() print("FeatureHasher on frequency dicts") t0 = time() hasher = FeatureHasher(n_features=n_features) X = hasher.transform(token_freqs(d) for d in raw_data) duration = time() - t0 print("done in %fs at %0.3fMB/s" % (duration, data_size_mb / duration)) print("Found %d unique terms" % n_nonzero_columns(X)) print() print("FeatureHasher on raw tokens") t0 = time() hasher = FeatureHasher(n_features=n_features, input_type="string") X = hasher.transform(tokens(d) for d in raw_data) duration = time() - t0 print("done in %fs at %0.3fMB/s" % (duration, data_size_mb / duration)) print("Found %d unique terms" % n_nonzero_columns(X))
bsd-3-clause
RomainBrault/scikit-learn
sklearn/neighbors/graph.py
36
6650
"""Nearest Neighbors graph functions""" # Author: Jake Vanderplas <[email protected]> # # License: BSD 3 clause (C) INRIA, University of Amsterdam from .base import KNeighborsMixin, RadiusNeighborsMixin from .unsupervised import NearestNeighbors def _check_params(X, metric, p, metric_params): """Check the validity of the input parameters""" params = zip(['metric', 'p', 'metric_params'], [metric, p, metric_params]) est_params = X.get_params() for param_name, func_param in params: if func_param != est_params[param_name]: raise ValueError( "Got %s for %s, while the estimator has %s for " "the same parameter." % ( func_param, param_name, est_params[param_name])) def _query_include_self(X, include_self): """Return the query based on include_self param""" if include_self: query = X._fit_X else: query = None return query def kneighbors_graph(X, n_neighbors, mode='connectivity', metric='minkowski', p=2, metric_params=None, include_self=False, n_jobs=1): """Computes the (weighted) graph of k-Neighbors for points in X Read more in the :ref:`User Guide <unsupervised_neighbors>`. Parameters ---------- X : array-like or BallTree, shape = [n_samples, n_features] Sample data, in the form of a numpy array or a precomputed :class:`BallTree`. n_neighbors : int Number of neighbors for each sample. mode : {'connectivity', 'distance'}, optional Type of returned matrix: 'connectivity' will return the connectivity matrix with ones and zeros, and 'distance' will return the distances between neighbors according to the given metric. metric : string, default 'minkowski' The distance metric used to calculate the k-Neighbors for each sample point. The DistanceMetric class gives a list of available metrics. The default distance is 'euclidean' ('minkowski' metric with the p param equal to 2.) include_self : bool, default=False. Whether or not to mark each sample as the first nearest neighbor to itself. If `None`, then True is used for mode='connectivity' and False for mode='distance' as this will preserve backwards compatibilty. p : int, default 2 Power parameter for the Minkowski metric. When p = 1, this is equivalent to using manhattan_distance (l1), and euclidean_distance (l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used. metric_params : dict, optional additional keyword arguments for the metric function. n_jobs : int, optional (default = 1) The number of parallel jobs to run for neighbors search. If ``-1``, then the number of jobs is set to the number of CPU cores. Returns ------- A : sparse matrix in CSR format, shape = [n_samples, n_samples] A[i, j] is assigned the weight of edge that connects i to j. Examples -------- >>> X = [[0], [3], [1]] >>> from sklearn.neighbors import kneighbors_graph >>> A = kneighbors_graph(X, 2, mode='connectivity', include_self=True) >>> A.toarray() array([[ 1., 0., 1.], [ 0., 1., 1.], [ 1., 0., 1.]]) See also -------- radius_neighbors_graph """ if not isinstance(X, KNeighborsMixin): X = NearestNeighbors(n_neighbors, metric=metric, p=p, metric_params=metric_params, n_jobs=n_jobs).fit(X) else: _check_params(X, metric, p, metric_params) query = _query_include_self(X, include_self) return X.kneighbors_graph(X=query, n_neighbors=n_neighbors, mode=mode) def radius_neighbors_graph(X, radius, mode='connectivity', metric='minkowski', p=2, metric_params=None, include_self=False, n_jobs=1): """Computes the (weighted) graph of Neighbors for points in X Neighborhoods are restricted the points at a distance lower than radius. Read more in the :ref:`User Guide <unsupervised_neighbors>`. Parameters ---------- X : array-like or BallTree, shape = [n_samples, n_features] Sample data, in the form of a numpy array or a precomputed :class:`BallTree`. radius : float Radius of neighborhoods. mode : {'connectivity', 'distance'}, optional Type of returned matrix: 'connectivity' will return the connectivity matrix with ones and zeros, and 'distance' will return the distances between neighbors according to the given metric. metric : string, default 'minkowski' The distance metric used to calculate the neighbors within a given radius for each sample point. The DistanceMetric class gives a list of available metrics. The default distance is 'euclidean' ('minkowski' metric with the param equal to 2.) include_self : bool, default=False Whether or not to mark each sample as the first nearest neighbor to itself. If `None`, then True is used for mode='connectivity' and False for mode='distance' as this will preserve backwards compatibilty. p : int, default 2 Power parameter for the Minkowski metric. When p = 1, this is equivalent to using manhattan_distance (l1), and euclidean_distance (l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used. metric_params : dict, optional additional keyword arguments for the metric function. n_jobs : int, optional (default = 1) The number of parallel jobs to run for neighbors search. If ``-1``, then the number of jobs is set to the number of CPU cores. Returns ------- A : sparse matrix in CSR format, shape = [n_samples, n_samples] A[i, j] is assigned the weight of edge that connects i to j. Examples -------- >>> X = [[0], [3], [1]] >>> from sklearn.neighbors import radius_neighbors_graph >>> A = radius_neighbors_graph(X, 1.5, mode='connectivity', include_self=True) >>> A.toarray() array([[ 1., 0., 1.], [ 0., 1., 0.], [ 1., 0., 1.]]) See also -------- kneighbors_graph """ if not isinstance(X, RadiusNeighborsMixin): X = NearestNeighbors(radius=radius, metric=metric, p=p, metric_params=metric_params, n_jobs=n_jobs).fit(X) else: _check_params(X, metric, p, metric_params) query = _query_include_self(X, include_self) return X.radius_neighbors_graph(query, radius, mode)
bsd-3-clause
micahcochran/geopandas
geopandas/_version.py
3
16750
# This file helps to compute a version number in source trees obtained from # git-archive tarball (such as those provided by githubs download-from-tag # feature). Distribution tarballs (built by setup.py sdist) and build # directories (produced by setup.py build) will contain a much shorter file # that just contains the computed version number. # This file is released into the public domain. Generated by # versioneer-0.16 (https://github.com/warner/python-versioneer) """Git implementation of _version.py.""" import errno import os import re import subprocess import sys def get_keywords(): """Get the keywords needed to look up the version information.""" # these strings will be replaced by git during git-archive. # setup.py/versioneer.py will grep for the variable names, so they must # each be defined on a line of their own. _version.py will just call # get_keywords(). git_refnames = "$Format:%d$" git_full = "$Format:%H$" keywords = {"refnames": git_refnames, "full": git_full} return keywords class VersioneerConfig: """Container for Versioneer configuration parameters.""" def get_config(): """Create, populate and return the VersioneerConfig() object.""" # these strings are filled in when 'setup.py versioneer' creates # _version.py cfg = VersioneerConfig() cfg.VCS = "git" cfg.style = "pep440" cfg.tag_prefix = "v" cfg.parentdir_prefix = "geopandas-" cfg.versionfile_source = "geopandas/_version.py" cfg.verbose = False return cfg class NotThisMethod(Exception): """Exception raised if a method is not valid for the current scenario.""" LONG_VERSION_PY = {} HANDLERS = {} def register_vcs_handler(vcs, method): # decorator """Decorator to mark a method as the handler for a particular VCS.""" def decorate(f): """Store f in HANDLERS[vcs][method].""" if vcs not in HANDLERS: HANDLERS[vcs] = {} HANDLERS[vcs][method] = f return f return decorate def run_command(commands, args, cwd=None, verbose=False, hide_stderr=False): """Call the given command(s).""" assert isinstance(commands, list) p = None for c in commands: try: dispcmd = str([c] + args) # remember shell=False, so use git.cmd on windows, not just git p = subprocess.Popen([c] + args, cwd=cwd, stdout=subprocess.PIPE, stderr=(subprocess.PIPE if hide_stderr else None)) break except EnvironmentError: e = sys.exc_info()[1] if e.errno == errno.ENOENT: continue if verbose: print("unable to run %s" % dispcmd) print(e) return None else: if verbose: print("unable to find command, tried %s" % (commands,)) return None stdout = p.communicate()[0].strip() if sys.version_info[0] >= 3: stdout = stdout.decode() if p.returncode != 0: if verbose: print("unable to run %s (error)" % dispcmd) return None return stdout def versions_from_parentdir(parentdir_prefix, root, verbose): """Try to determine the version from the parent directory name. Source tarballs conventionally unpack into a directory that includes both the project name and a version string. """ dirname = os.path.basename(root) if not dirname.startswith(parentdir_prefix): if verbose: print("guessing rootdir is '%s', but '%s' doesn't start with " "prefix '%s'" % (root, dirname, parentdir_prefix)) raise NotThisMethod("rootdir doesn't start with parentdir_prefix") return {"version": dirname[len(parentdir_prefix):], "full-revisionid": None, "dirty": False, "error": None} @register_vcs_handler("git", "get_keywords") def git_get_keywords(versionfile_abs): """Extract version information from the given file.""" # the code embedded in _version.py can just fetch the value of these # keywords. When used from setup.py, we don't want to import _version.py, # so we do it with a regexp instead. This function is not used from # _version.py. keywords = {} try: f = open(versionfile_abs, "r") for line in f.readlines(): if line.strip().startswith("git_refnames ="): mo = re.search(r'=\s*"(.*)"', line) if mo: keywords["refnames"] = mo.group(1) if line.strip().startswith("git_full ="): mo = re.search(r'=\s*"(.*)"', line) if mo: keywords["full"] = mo.group(1) f.close() except EnvironmentError: pass return keywords @register_vcs_handler("git", "keywords") def git_versions_from_keywords(keywords, tag_prefix, verbose): """Get version information from git keywords.""" if not keywords: raise NotThisMethod("no keywords at all, weird") refnames = keywords["refnames"].strip() if refnames.startswith("$Format"): if verbose: print("keywords are unexpanded, not using") raise NotThisMethod("unexpanded keywords, not a git-archive tarball") refs = set([r.strip() for r in refnames.strip("()").split(",")]) # starting in git-1.8.3, tags are listed as "tag: foo-1.0" instead of # just "foo-1.0". If we see a "tag: " prefix, prefer those. TAG = "tag: " tags = set([r[len(TAG):] for r in refs if r.startswith(TAG)]) if not tags: # Either we're using git < 1.8.3, or there really are no tags. We use # a heuristic: assume all version tags have a digit. The old git %d # expansion behaves like git log --decorate=short and strips out the # refs/heads/ and refs/tags/ prefixes that would let us distinguish # between branches and tags. By ignoring refnames without digits, we # filter out many common branch names like "release" and # "stabilization", as well as "HEAD" and "master". tags = set([r for r in refs if re.search(r'\d', r)]) if verbose: print("discarding '%s', no digits" % ",".join(refs-tags)) if verbose: print("likely tags: %s" % ",".join(sorted(tags))) for ref in sorted(tags): # sorting will prefer e.g. "2.0" over "2.0rc1" if ref.startswith(tag_prefix): r = ref[len(tag_prefix):] if verbose: print("picking %s" % r) return {"version": r, "full-revisionid": keywords["full"].strip(), "dirty": False, "error": None } # no suitable tags, so version is "0+unknown", but full hex is still there if verbose: print("no suitable tags, using unknown + full revision id") return {"version": "0+unknown", "full-revisionid": keywords["full"].strip(), "dirty": False, "error": "no suitable tags"} @register_vcs_handler("git", "pieces_from_vcs") def git_pieces_from_vcs(tag_prefix, root, verbose, run_command=run_command): """Get version from 'git describe' in the root of the source tree. This only gets called if the git-archive 'subst' keywords were *not* expanded, and _version.py hasn't already been rewritten with a short version string, meaning we're inside a checked out source tree. """ if not os.path.exists(os.path.join(root, ".git")): if verbose: print("no .git in %s" % root) raise NotThisMethod("no .git directory") GITS = ["git"] if sys.platform == "win32": GITS = ["git.cmd", "git.exe"] # if there is a tag matching tag_prefix, this yields TAG-NUM-gHEX[-dirty] # if there isn't one, this yields HEX[-dirty] (no NUM) describe_out = run_command(GITS, ["describe", "--tags", "--dirty", "--always", "--long", "--match", "%s*" % tag_prefix], cwd=root) # --long was added in git-1.5.5 if describe_out is None: raise NotThisMethod("'git describe' failed") describe_out = describe_out.strip() full_out = run_command(GITS, ["rev-parse", "HEAD"], cwd=root) if full_out is None: raise NotThisMethod("'git rev-parse' failed") full_out = full_out.strip() pieces = {} pieces["long"] = full_out pieces["short"] = full_out[:7] # maybe improved later pieces["error"] = None # parse describe_out. It will be like TAG-NUM-gHEX[-dirty] or HEX[-dirty] # TAG might have hyphens. git_describe = describe_out # look for -dirty suffix dirty = git_describe.endswith("-dirty") pieces["dirty"] = dirty if dirty: git_describe = git_describe[:git_describe.rindex("-dirty")] # now we have TAG-NUM-gHEX or HEX if "-" in git_describe: # TAG-NUM-gHEX mo = re.search(r'^(.+)-(\d+)-g([0-9a-f]+)$', git_describe) if not mo: # unparseable. Maybe git-describe is misbehaving? pieces["error"] = ("unable to parse git-describe output: '%s'" % describe_out) return pieces # tag full_tag = mo.group(1) if not full_tag.startswith(tag_prefix): if verbose: fmt = "tag '%s' doesn't start with prefix '%s'" print(fmt % (full_tag, tag_prefix)) pieces["error"] = ("tag '%s' doesn't start with prefix '%s'" % (full_tag, tag_prefix)) return pieces pieces["closest-tag"] = full_tag[len(tag_prefix):] # distance: number of commits since tag pieces["distance"] = int(mo.group(2)) # commit: short hex revision ID pieces["short"] = mo.group(3) else: # HEX: no tags pieces["closest-tag"] = None count_out = run_command(GITS, ["rev-list", "HEAD", "--count"], cwd=root) pieces["distance"] = int(count_out) # total number of commits return pieces def plus_or_dot(pieces): """Return a + if we don't already have one, else return a .""" if "+" in pieces.get("closest-tag", ""): return "." return "+" def render_pep440(pieces): """Build up version string, with post-release "local version identifier". Our goal: TAG[+DISTANCE.gHEX[.dirty]] . Note that if you get a tagged build and then dirty it, you'll get TAG+0.gHEX.dirty Exceptions: 1: no tags. git_describe was just HEX. 0+untagged.DISTANCE.gHEX[.dirty] """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"] or pieces["dirty"]: rendered += plus_or_dot(pieces) rendered += "%d.g%s" % (pieces["distance"], pieces["short"]) if pieces["dirty"]: rendered += ".dirty" else: # exception #1 rendered = "0+untagged.%d.g%s" % (pieces["distance"], pieces["short"]) if pieces["dirty"]: rendered += ".dirty" return rendered def render_pep440_pre(pieces): """TAG[.post.devDISTANCE] -- No -dirty. Exceptions: 1: no tags. 0.post.devDISTANCE """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"]: rendered += ".post.dev%d" % pieces["distance"] else: # exception #1 rendered = "0.post.dev%d" % pieces["distance"] return rendered def render_pep440_post(pieces): """TAG[.postDISTANCE[.dev0]+gHEX] . The ".dev0" means dirty. Note that .dev0 sorts backwards (a dirty tree will appear "older" than the corresponding clean one), but you shouldn't be releasing software with -dirty anyways. Exceptions: 1: no tags. 0.postDISTANCE[.dev0] """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"] or pieces["dirty"]: rendered += ".post%d" % pieces["distance"] if pieces["dirty"]: rendered += ".dev0" rendered += plus_or_dot(pieces) rendered += "g%s" % pieces["short"] else: # exception #1 rendered = "0.post%d" % pieces["distance"] if pieces["dirty"]: rendered += ".dev0" rendered += "+g%s" % pieces["short"] return rendered def render_pep440_old(pieces): """TAG[.postDISTANCE[.dev0]] . The ".dev0" means dirty. Eexceptions: 1: no tags. 0.postDISTANCE[.dev0] """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"] or pieces["dirty"]: rendered += ".post%d" % pieces["distance"] if pieces["dirty"]: rendered += ".dev0" else: # exception #1 rendered = "0.post%d" % pieces["distance"] if pieces["dirty"]: rendered += ".dev0" return rendered def render_git_describe(pieces): """TAG[-DISTANCE-gHEX][-dirty]. Like 'git describe --tags --dirty --always'. Exceptions: 1: no tags. HEX[-dirty] (note: no 'g' prefix) """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"]: rendered += "-%d-g%s" % (pieces["distance"], pieces["short"]) else: # exception #1 rendered = pieces["short"] if pieces["dirty"]: rendered += "-dirty" return rendered def render_git_describe_long(pieces): """TAG-DISTANCE-gHEX[-dirty]. Like 'git describe --tags --dirty --always -long'. The distance/hash is unconditional. Exceptions: 1: no tags. HEX[-dirty] (note: no 'g' prefix) """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] rendered += "-%d-g%s" % (pieces["distance"], pieces["short"]) else: # exception #1 rendered = pieces["short"] if pieces["dirty"]: rendered += "-dirty" return rendered def render(pieces, style): """Render the given version pieces into the requested style.""" if pieces["error"]: return {"version": "unknown", "full-revisionid": pieces.get("long"), "dirty": None, "error": pieces["error"]} if not style or style == "default": style = "pep440" # the default if style == "pep440": rendered = render_pep440(pieces) elif style == "pep440-pre": rendered = render_pep440_pre(pieces) elif style == "pep440-post": rendered = render_pep440_post(pieces) elif style == "pep440-old": rendered = render_pep440_old(pieces) elif style == "git-describe": rendered = render_git_describe(pieces) elif style == "git-describe-long": rendered = render_git_describe_long(pieces) else: raise ValueError("unknown style '%s'" % style) return {"version": rendered, "full-revisionid": pieces["long"], "dirty": pieces["dirty"], "error": None} def get_versions(): """Get version information or return default if unable to do so.""" # I am in _version.py, which lives at ROOT/VERSIONFILE_SOURCE. If we have # __file__, we can work backwards from there to the root. Some # py2exe/bbfreeze/non-CPython implementations don't do __file__, in which # case we can only use expanded keywords. cfg = get_config() verbose = cfg.verbose try: return git_versions_from_keywords(get_keywords(), cfg.tag_prefix, verbose) except NotThisMethod: pass try: root = os.path.realpath(__file__) # versionfile_source is the relative path from the top of the source # tree (where the .git directory might live) to this file. Invert # this to find the root from __file__. for i in cfg.versionfile_source.split('/'): root = os.path.dirname(root) except NameError: return {"version": "0+unknown", "full-revisionid": None, "dirty": None, "error": "unable to find root of source tree"} try: pieces = git_pieces_from_vcs(cfg.tag_prefix, root, verbose) return render(pieces, cfg.style) except NotThisMethod: pass try: if cfg.parentdir_prefix: return versions_from_parentdir(cfg.parentdir_prefix, root, verbose) except NotThisMethod: pass return {"version": "0+unknown", "full-revisionid": None, "dirty": None, "error": "unable to compute version"}
bsd-3-clause
zycdragonball/tensorflow
tensorflow/contrib/learn/python/learn/estimators/linear_test.py
58
71789
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for estimators.linear.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools import json import tempfile import numpy as np from tensorflow.contrib.layers.python.layers import feature_column as feature_column_lib from tensorflow.contrib.learn.python.learn import experiment from tensorflow.contrib.learn.python.learn.datasets import base from tensorflow.contrib.learn.python.learn.estimators import _sklearn from tensorflow.contrib.learn.python.learn.estimators import estimator from tensorflow.contrib.learn.python.learn.estimators import estimator_test_utils from tensorflow.contrib.learn.python.learn.estimators import head as head_lib from tensorflow.contrib.learn.python.learn.estimators import linear from tensorflow.contrib.learn.python.learn.estimators import run_config from tensorflow.contrib.learn.python.learn.estimators import test_data from tensorflow.contrib.learn.python.learn.metric_spec import MetricSpec from tensorflow.contrib.linear_optimizer.python import sdca_optimizer as sdca_optimizer_lib from tensorflow.contrib.metrics.python.ops import metric_ops from tensorflow.python.feature_column import feature_column as fc_core from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import sparse_tensor from tensorflow.python.ops import array_ops from tensorflow.python.ops import math_ops from tensorflow.python.platform import test from tensorflow.python.training import ftrl from tensorflow.python.training import input as input_lib from tensorflow.python.training import server_lib def _prepare_iris_data_for_logistic_regression(): # Converts iris data to a logistic regression problem. iris = base.load_iris() ids = np.where((iris.target == 0) | (iris.target == 1)) iris = base.Dataset(data=iris.data[ids], target=iris.target[ids]) return iris class LinearClassifierTest(test.TestCase): def testExperimentIntegration(self): cont_features = [ feature_column_lib.real_valued_column( 'feature', dimension=4) ] exp = experiment.Experiment( estimator=linear.LinearClassifier( n_classes=3, feature_columns=cont_features), train_input_fn=test_data.iris_input_multiclass_fn, eval_input_fn=test_data.iris_input_multiclass_fn) exp.test() def testEstimatorContract(self): estimator_test_utils.assert_estimator_contract(self, linear.LinearClassifier) def testTrain(self): """Tests that loss goes down with training.""" def input_fn(): return { 'age': constant_op.constant([1]), 'language': sparse_tensor.SparseTensor( values=['english'], indices=[[0, 0]], dense_shape=[1, 1]) }, constant_op.constant([[1]]) language = feature_column_lib.sparse_column_with_hash_bucket('language', 100) age = feature_column_lib.real_valued_column('age') classifier = linear.LinearClassifier(feature_columns=[age, language]) classifier.fit(input_fn=input_fn, steps=100) loss1 = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] classifier.fit(input_fn=input_fn, steps=200) loss2 = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] self.assertLess(loss2, loss1) self.assertLess(loss2, 0.01) def testJointTrain(self): """Tests that loss goes down with training with joint weights.""" def input_fn(): return { 'age': sparse_tensor.SparseTensor( values=['1'], indices=[[0, 0]], dense_shape=[1, 1]), 'language': sparse_tensor.SparseTensor( values=['english'], indices=[[0, 0]], dense_shape=[1, 1]) }, constant_op.constant([[1]]) language = feature_column_lib.sparse_column_with_hash_bucket('language', 100) age = feature_column_lib.sparse_column_with_hash_bucket('age', 2) classifier = linear.LinearClassifier( _joint_weight=True, feature_columns=[age, language]) classifier.fit(input_fn=input_fn, steps=100) loss1 = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] classifier.fit(input_fn=input_fn, steps=200) loss2 = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] self.assertLess(loss2, loss1) self.assertLess(loss2, 0.01) def testMultiClass_MatrixData(self): """Tests multi-class classification using matrix data as input.""" feature_column = feature_column_lib.real_valued_column( 'feature', dimension=4) classifier = linear.LinearClassifier( n_classes=3, feature_columns=[feature_column]) classifier.fit(input_fn=test_data.iris_input_multiclass_fn, steps=100) scores = classifier.evaluate( input_fn=test_data.iris_input_multiclass_fn, steps=100) self.assertGreater(scores['accuracy'], 0.9) def testMultiClass_MatrixData_Labels1D(self): """Same as the last test, but labels shape is [150] instead of [150, 1].""" def _input_fn(): iris = base.load_iris() return { 'feature': constant_op.constant( iris.data, dtype=dtypes.float32) }, constant_op.constant( iris.target, shape=[150], dtype=dtypes.int32) feature_column = feature_column_lib.real_valued_column( 'feature', dimension=4) classifier = linear.LinearClassifier( n_classes=3, feature_columns=[feature_column]) classifier.fit(input_fn=_input_fn, steps=100) scores = classifier.evaluate(input_fn=_input_fn, steps=1) self.assertGreater(scores['accuracy'], 0.9) def testMultiClass_NpMatrixData(self): """Tests multi-class classification using numpy matrix data as input.""" iris = base.load_iris() train_x = iris.data train_y = iris.target feature_column = feature_column_lib.real_valued_column('', dimension=4) classifier = linear.LinearClassifier( n_classes=3, feature_columns=[feature_column]) classifier.fit(x=train_x, y=train_y, steps=100) scores = classifier.evaluate(x=train_x, y=train_y, steps=1) self.assertGreater(scores['accuracy'], 0.9) def testMultiClassLabelKeys(self): """Tests n_classes > 2 with label_keys vocabulary for labels.""" # Byte literals needed for python3 test to pass. label_keys = [b'label0', b'label1', b'label2'] def _input_fn(num_epochs=None): features = { 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } labels = constant_op.constant( [[label_keys[1]], [label_keys[0]], [label_keys[0]]], dtype=dtypes.string) return features, labels language_column = feature_column_lib.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) classifier = linear.LinearClassifier( n_classes=3, feature_columns=[language_column], label_keys=label_keys) classifier.fit(input_fn=_input_fn, steps=50) scores = classifier.evaluate(input_fn=_input_fn, steps=1) self.assertGreater(scores['accuracy'], 0.9) self.assertIn('loss', scores) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predicted_classes = list( classifier.predict_classes( input_fn=predict_input_fn, as_iterable=True)) self.assertEqual(3, len(predicted_classes)) for pred in predicted_classes: self.assertIn(pred, label_keys) predictions = list( classifier.predict(input_fn=predict_input_fn, as_iterable=True)) self.assertAllEqual(predicted_classes, predictions) def testLogisticRegression_MatrixData(self): """Tests binary classification using matrix data as input.""" def _input_fn(): iris = _prepare_iris_data_for_logistic_regression() return { 'feature': constant_op.constant( iris.data, dtype=dtypes.float32) }, constant_op.constant( iris.target, shape=[100, 1], dtype=dtypes.int32) feature_column = feature_column_lib.real_valued_column( 'feature', dimension=4) classifier = linear.LinearClassifier(feature_columns=[feature_column]) classifier.fit(input_fn=_input_fn, steps=100) scores = classifier.evaluate(input_fn=_input_fn, steps=1) self.assertGreater(scores['accuracy'], 0.9) def testEstimatorWithCoreFeatureColumns(self): def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[.8], [0.2], [.1]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant([[1], [0], [0]], dtype=dtypes.int32) language_column = fc_core.categorical_column_with_hash_bucket( 'language', hash_bucket_size=20) feature_columns = [language_column, fc_core.numeric_column('age')] classifier = linear.LinearClassifier(feature_columns=feature_columns) classifier.fit(input_fn=_input_fn, steps=100) scores = classifier.evaluate(input_fn=_input_fn, steps=1) self.assertGreater(scores['accuracy'], 0.9) def testLogisticRegression_MatrixData_Labels1D(self): """Same as the last test, but labels shape is [100] instead of [100, 1].""" def _input_fn(): iris = _prepare_iris_data_for_logistic_regression() return { 'feature': constant_op.constant( iris.data, dtype=dtypes.float32) }, constant_op.constant( iris.target, shape=[100], dtype=dtypes.int32) feature_column = feature_column_lib.real_valued_column( 'feature', dimension=4) classifier = linear.LinearClassifier(feature_columns=[feature_column]) classifier.fit(input_fn=_input_fn, steps=100) scores = classifier.evaluate(input_fn=_input_fn, steps=1) self.assertGreater(scores['accuracy'], 0.9) def testLogisticRegression_NpMatrixData(self): """Tests binary classification using numpy matrix data as input.""" iris = _prepare_iris_data_for_logistic_regression() train_x = iris.data train_y = iris.target feature_columns = [feature_column_lib.real_valued_column('', dimension=4)] classifier = linear.LinearClassifier(feature_columns=feature_columns) classifier.fit(x=train_x, y=train_y, steps=100) scores = classifier.evaluate(x=train_x, y=train_y, steps=1) self.assertGreater(scores['accuracy'], 0.9) def testWeightAndBiasNames(self): """Tests that weight and bias names haven't changed.""" feature_column = feature_column_lib.real_valued_column( 'feature', dimension=4) classifier = linear.LinearClassifier( n_classes=3, feature_columns=[feature_column]) classifier.fit(input_fn=test_data.iris_input_multiclass_fn, steps=100) variable_names = classifier.get_variable_names() self.assertIn('linear/feature/weight', variable_names) self.assertIn('linear/bias_weight', variable_names) self.assertEqual( 4, len(classifier.get_variable_value('linear/feature/weight'))) self.assertEqual( 3, len(classifier.get_variable_value('linear/bias_weight'))) def testCustomOptimizerByObject(self): """Tests multi-class classification using matrix data as input.""" feature_column = feature_column_lib.real_valued_column( 'feature', dimension=4) classifier = linear.LinearClassifier( n_classes=3, optimizer=ftrl.FtrlOptimizer(learning_rate=0.1), feature_columns=[feature_column]) classifier.fit(input_fn=test_data.iris_input_multiclass_fn, steps=100) scores = classifier.evaluate( input_fn=test_data.iris_input_multiclass_fn, steps=100) self.assertGreater(scores['accuracy'], 0.9) def testCustomOptimizerByString(self): """Tests multi-class classification using matrix data as input.""" feature_column = feature_column_lib.real_valued_column( 'feature', dimension=4) def _optimizer(): return ftrl.FtrlOptimizer(learning_rate=0.1) classifier = linear.LinearClassifier( n_classes=3, optimizer=_optimizer, feature_columns=[feature_column]) classifier.fit(input_fn=test_data.iris_input_multiclass_fn, steps=100) scores = classifier.evaluate( input_fn=test_data.iris_input_multiclass_fn, steps=100) self.assertGreater(scores['accuracy'], 0.9) def testCustomOptimizerByFunction(self): """Tests multi-class classification using matrix data as input.""" feature_column = feature_column_lib.real_valued_column( 'feature', dimension=4) classifier = linear.LinearClassifier( n_classes=3, optimizer='Ftrl', feature_columns=[feature_column]) classifier.fit(input_fn=test_data.iris_input_multiclass_fn, steps=100) scores = classifier.evaluate( input_fn=test_data.iris_input_multiclass_fn, steps=100) self.assertGreater(scores['accuracy'], 0.9) def testCustomMetrics(self): """Tests custom evaluation metrics.""" def _input_fn(num_epochs=None): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) labels = constant_op.constant([[1], [0], [0], [0]], dtype=dtypes.float32) features = { 'x': input_lib.limit_epochs( array_ops.ones( shape=[4, 1], dtype=dtypes.float32), num_epochs=num_epochs) } return features, labels def _my_metric_op(predictions, labels): # For the case of binary classification, the 2nd column of "predictions" # denotes the model predictions. predictions = array_ops.strided_slice( predictions, [0, 1], [-1, 2], end_mask=1) return math_ops.reduce_sum(math_ops.multiply(predictions, labels)) classifier = linear.LinearClassifier( feature_columns=[feature_column_lib.real_valued_column('x')]) classifier.fit(input_fn=_input_fn, steps=100) scores = classifier.evaluate( input_fn=_input_fn, steps=100, metrics={ 'my_accuracy': MetricSpec( metric_fn=metric_ops.streaming_accuracy, prediction_key='classes'), 'my_precision': MetricSpec( metric_fn=metric_ops.streaming_precision, prediction_key='classes'), 'my_metric': MetricSpec( metric_fn=_my_metric_op, prediction_key='probabilities') }) self.assertTrue( set(['loss', 'my_accuracy', 'my_precision', 'my_metric']).issubset( set(scores.keys()))) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predictions = np.array(list(classifier.predict_classes( input_fn=predict_input_fn))) self.assertEqual( _sklearn.accuracy_score([1, 0, 0, 0], predictions), scores['my_accuracy']) # Tests the case where the prediction_key is neither "classes" nor # "probabilities". with self.assertRaisesRegexp(KeyError, 'bad_type'): classifier.evaluate( input_fn=_input_fn, steps=100, metrics={ 'bad_name': MetricSpec( metric_fn=metric_ops.streaming_auc, prediction_key='bad_type') }) # Tests the case where the 2nd element of the key is neither "classes" nor # "probabilities". with self.assertRaises(KeyError): classifier.evaluate( input_fn=_input_fn, steps=100, metrics={('bad_name', 'bad_type'): metric_ops.streaming_auc}) # Tests the case where the tuple of the key doesn't have 2 elements. with self.assertRaises(ValueError): classifier.evaluate( input_fn=_input_fn, steps=100, metrics={ ('bad_length_name', 'classes', 'bad_length'): metric_ops.streaming_accuracy }) def testLogisticFractionalLabels(self): """Tests logistic training with fractional labels.""" def input_fn(num_epochs=None): return { 'age': input_lib.limit_epochs( constant_op.constant([[1], [2]]), num_epochs=num_epochs), }, constant_op.constant( [[.7], [0]], dtype=dtypes.float32) age = feature_column_lib.real_valued_column('age') classifier = linear.LinearClassifier( feature_columns=[age], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=input_fn, steps=500) predict_input_fn = functools.partial(input_fn, num_epochs=1) predictions_proba = list( classifier.predict_proba(input_fn=predict_input_fn)) # Prediction probabilities mirror the labels column, which proves that the # classifier learns from float input. self.assertAllClose([[.3, .7], [1., 0.]], predictions_proba, atol=.1) def testTrainWithPartitionedVariables(self): """Tests training with partitioned variables.""" def _input_fn(): features = { 'language': sparse_tensor.SparseTensor( values=['en', 'fr', 'zh'], indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } labels = constant_op.constant([[1], [0], [0]]) return features, labels sparse_features = [ # The given hash_bucket_size results in variables larger than the # default min_slice_size attribute, so the variables are partitioned. feature_column_lib.sparse_column_with_hash_bucket( 'language', hash_bucket_size=2e7) ] tf_config = { 'cluster': { run_config.TaskType.PS: ['fake_ps_0', 'fake_ps_1'] } } with test.mock.patch.dict('os.environ', {'TF_CONFIG': json.dumps(tf_config)}): config = run_config.RunConfig() # Because we did not start a distributed cluster, we need to pass an # empty ClusterSpec, otherwise the device_setter will look for # distributed jobs, such as "/job:ps" which are not present. config._cluster_spec = server_lib.ClusterSpec({}) classifier = linear.LinearClassifier( feature_columns=sparse_features, config=config) classifier.fit(input_fn=_input_fn, steps=200) loss = classifier.evaluate(input_fn=_input_fn, steps=1)['loss'] self.assertLess(loss, 0.07) def testTrainSaveLoad(self): """Tests that insures you can save and reload a trained model.""" def input_fn(num_epochs=None): return { 'age': input_lib.limit_epochs( constant_op.constant([1]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=['english'], indices=[[0, 0]], dense_shape=[1, 1]), }, constant_op.constant([[1]]) language = feature_column_lib.sparse_column_with_hash_bucket('language', 100) age = feature_column_lib.real_valued_column('age') model_dir = tempfile.mkdtemp() classifier = linear.LinearClassifier( model_dir=model_dir, feature_columns=[age, language]) classifier.fit(input_fn=input_fn, steps=30) predict_input_fn = functools.partial(input_fn, num_epochs=1) out1_class = list( classifier.predict_classes( input_fn=predict_input_fn, as_iterable=True)) out1_proba = list( classifier.predict_proba( input_fn=predict_input_fn, as_iterable=True)) del classifier classifier2 = linear.LinearClassifier( model_dir=model_dir, feature_columns=[age, language]) out2_class = list( classifier2.predict_classes( input_fn=predict_input_fn, as_iterable=True)) out2_proba = list( classifier2.predict_proba( input_fn=predict_input_fn, as_iterable=True)) self.assertTrue(np.array_equal(out1_class, out2_class)) self.assertTrue(np.array_equal(out1_proba, out2_proba)) def testWeightColumn(self): """Tests training with given weight column.""" def _input_fn_train(): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) # First row has more weight than others. Model should fit (y=x) better # than (y=Not(x)) due to the relative higher weight of the first row. labels = constant_op.constant([[1], [0], [0], [0]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[100.], [3.], [2.], [2.]]) } return features, labels def _input_fn_eval(): # Create 4 rows (y = x) labels = constant_op.constant([[1], [1], [1], [1]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[1.], [1.], [1.], [1.]]) } return features, labels classifier = linear.LinearClassifier( weight_column_name='w', feature_columns=[feature_column_lib.real_valued_column('x')], config=run_config.RunConfig(tf_random_seed=3)) classifier.fit(input_fn=_input_fn_train, steps=100) scores = classifier.evaluate(input_fn=_input_fn_eval, steps=1) # All examples in eval data set are y=x. self.assertGreater(scores['labels/actual_label_mean'], 0.9) # If there were no weight column, model would learn y=Not(x). Because of # weights, it learns y=x. self.assertGreater(scores['labels/prediction_mean'], 0.9) # All examples in eval data set are y=x. So if weight column were ignored, # then accuracy would be zero. Because of weights, accuracy should be close # to 1.0. self.assertGreater(scores['accuracy'], 0.9) scores_train_set = classifier.evaluate(input_fn=_input_fn_train, steps=1) # Considering weights, the mean label should be close to 1.0. # If weights were ignored, it would be 0.25. self.assertGreater(scores_train_set['labels/actual_label_mean'], 0.9) # The classifier has learned y=x. If weight column were ignored in # evaluation, then accuracy for the train set would be 0.25. # Because weight is not ignored, accuracy is greater than 0.6. self.assertGreater(scores_train_set['accuracy'], 0.6) def testWeightColumnLoss(self): """Test ensures that you can specify per-example weights for loss.""" def _input_fn(): features = { 'age': constant_op.constant([[20], [20], [20]]), 'weights': constant_op.constant([[100], [1], [1]]), } labels = constant_op.constant([[1], [0], [0]]) return features, labels age = feature_column_lib.real_valued_column('age') classifier = linear.LinearClassifier(feature_columns=[age]) classifier.fit(input_fn=_input_fn, steps=100) loss_unweighted = classifier.evaluate(input_fn=_input_fn, steps=1)['loss'] classifier = linear.LinearClassifier( feature_columns=[age], weight_column_name='weights') classifier.fit(input_fn=_input_fn, steps=100) loss_weighted = classifier.evaluate(input_fn=_input_fn, steps=1)['loss'] self.assertLess(loss_weighted, loss_unweighted) def testExport(self): """Tests that export model for servo works.""" def input_fn(): return { 'age': constant_op.constant([1]), 'language': sparse_tensor.SparseTensor( values=['english'], indices=[[0, 0]], dense_shape=[1, 1]) }, constant_op.constant([[1]]) language = feature_column_lib.sparse_column_with_hash_bucket('language', 100) age = feature_column_lib.real_valued_column('age') classifier = linear.LinearClassifier(feature_columns=[age, language]) classifier.fit(input_fn=input_fn, steps=100) export_dir = tempfile.mkdtemp() classifier.export(export_dir) def testDisableCenteredBias(self): """Tests that we can disable centered bias.""" def input_fn(): return { 'age': constant_op.constant([1]), 'language': sparse_tensor.SparseTensor( values=['english'], indices=[[0, 0]], dense_shape=[1, 1]) }, constant_op.constant([[1]]) language = feature_column_lib.sparse_column_with_hash_bucket('language', 100) age = feature_column_lib.real_valued_column('age') classifier = linear.LinearClassifier( feature_columns=[age, language], enable_centered_bias=False) classifier.fit(input_fn=input_fn, steps=100) self.assertNotIn('centered_bias_weight', classifier.get_variable_names()) def testEnableCenteredBias(self): """Tests that we can enable centered bias.""" def input_fn(): return { 'age': constant_op.constant([1]), 'language': sparse_tensor.SparseTensor( values=['english'], indices=[[0, 0]], dense_shape=[1, 1]) }, constant_op.constant([[1]]) language = feature_column_lib.sparse_column_with_hash_bucket('language', 100) age = feature_column_lib.real_valued_column('age') classifier = linear.LinearClassifier( feature_columns=[age, language], enable_centered_bias=True) classifier.fit(input_fn=input_fn, steps=100) self.assertIn('linear/binary_logistic_head/centered_bias_weight', classifier.get_variable_names()) def testTrainOptimizerWithL1Reg(self): """Tests l1 regularized model has higher loss.""" def input_fn(): return { 'language': sparse_tensor.SparseTensor( values=['hindi'], indices=[[0, 0]], dense_shape=[1, 1]) }, constant_op.constant([[1]]) language = feature_column_lib.sparse_column_with_hash_bucket('language', 100) classifier_no_reg = linear.LinearClassifier(feature_columns=[language]) classifier_with_reg = linear.LinearClassifier( feature_columns=[language], optimizer=ftrl.FtrlOptimizer( learning_rate=1.0, l1_regularization_strength=100.)) loss_no_reg = classifier_no_reg.fit(input_fn=input_fn, steps=100).evaluate( input_fn=input_fn, steps=1)['loss'] loss_with_reg = classifier_with_reg.fit(input_fn=input_fn, steps=100).evaluate( input_fn=input_fn, steps=1)['loss'] self.assertLess(loss_no_reg, loss_with_reg) def testTrainWithMissingFeature(self): """Tests that training works with missing features.""" def input_fn(): return { 'language': sparse_tensor.SparseTensor( values=['Swahili', 'turkish'], indices=[[0, 0], [2, 0]], dense_shape=[3, 1]) }, constant_op.constant([[1], [1], [1]]) language = feature_column_lib.sparse_column_with_hash_bucket('language', 100) classifier = linear.LinearClassifier(feature_columns=[language]) classifier.fit(input_fn=input_fn, steps=100) loss = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] self.assertLess(loss, 0.07) def testSdcaOptimizerRealValuedFeatures(self): """Tests LinearClassifier with SDCAOptimizer and real valued features.""" def input_fn(): return { 'example_id': constant_op.constant(['1', '2']), 'maintenance_cost': constant_op.constant([[500.0], [200.0]]), 'sq_footage': constant_op.constant([[800.0], [600.0]]), 'weights': constant_op.constant([[1.0], [1.0]]) }, constant_op.constant([[0], [1]]) maintenance_cost = feature_column_lib.real_valued_column('maintenance_cost') sq_footage = feature_column_lib.real_valued_column('sq_footage') sdca_optimizer = sdca_optimizer_lib.SDCAOptimizer( example_id_column='example_id') classifier = linear.LinearClassifier( feature_columns=[maintenance_cost, sq_footage], weight_column_name='weights', optimizer=sdca_optimizer) classifier.fit(input_fn=input_fn, steps=100) loss = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] self.assertLess(loss, 0.05) def testSdcaOptimizerRealValuedFeatureWithHigherDimension(self): """Tests SDCAOptimizer with real valued features of higher dimension.""" # input_fn is identical to the one in testSdcaOptimizerRealValuedFeatures # where 2 1-dimensional dense features have been replaced by 1 2-dimensional # feature. def input_fn(): return { 'example_id': constant_op.constant(['1', '2']), 'dense_feature': constant_op.constant([[500.0, 800.0], [200.0, 600.0]]) }, constant_op.constant([[0], [1]]) dense_feature = feature_column_lib.real_valued_column( 'dense_feature', dimension=2) sdca_optimizer = sdca_optimizer_lib.SDCAOptimizer( example_id_column='example_id') classifier = linear.LinearClassifier( feature_columns=[dense_feature], optimizer=sdca_optimizer) classifier.fit(input_fn=input_fn, steps=100) loss = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] self.assertLess(loss, 0.05) def testSdcaOptimizerBucketizedFeatures(self): """Tests LinearClassifier with SDCAOptimizer and bucketized features.""" def input_fn(): return { 'example_id': constant_op.constant(['1', '2', '3']), 'price': constant_op.constant([[600.0], [1000.0], [400.0]]), 'sq_footage': constant_op.constant([[1000.0], [600.0], [700.0]]), 'weights': constant_op.constant([[1.0], [1.0], [1.0]]) }, constant_op.constant([[1], [0], [1]]) price_bucket = feature_column_lib.bucketized_column( feature_column_lib.real_valued_column('price'), boundaries=[500.0, 700.0]) sq_footage_bucket = feature_column_lib.bucketized_column( feature_column_lib.real_valued_column('sq_footage'), boundaries=[650.0]) sdca_optimizer = sdca_optimizer_lib.SDCAOptimizer( example_id_column='example_id', symmetric_l2_regularization=1.0) classifier = linear.LinearClassifier( feature_columns=[price_bucket, sq_footage_bucket], weight_column_name='weights', optimizer=sdca_optimizer) classifier.fit(input_fn=input_fn, steps=50) scores = classifier.evaluate(input_fn=input_fn, steps=1) self.assertGreater(scores['accuracy'], 0.9) def testSdcaOptimizerSparseFeatures(self): """Tests LinearClassifier with SDCAOptimizer and sparse features.""" def input_fn(): return { 'example_id': constant_op.constant(['1', '2', '3']), 'price': constant_op.constant([0.4, 0.6, 0.3]), 'country': sparse_tensor.SparseTensor( values=['IT', 'US', 'GB'], indices=[[0, 0], [1, 3], [2, 1]], dense_shape=[3, 5]), 'weights': constant_op.constant([[1.0], [1.0], [1.0]]) }, constant_op.constant([[1], [0], [1]]) price = feature_column_lib.real_valued_column('price') country = feature_column_lib.sparse_column_with_hash_bucket( 'country', hash_bucket_size=5) sdca_optimizer = sdca_optimizer_lib.SDCAOptimizer( example_id_column='example_id') classifier = linear.LinearClassifier( feature_columns=[price, country], weight_column_name='weights', optimizer=sdca_optimizer) classifier.fit(input_fn=input_fn, steps=50) scores = classifier.evaluate(input_fn=input_fn, steps=1) self.assertGreater(scores['accuracy'], 0.9) def testSdcaOptimizerWeightedSparseFeatures(self): """LinearClassifier with SDCAOptimizer and weighted sparse features.""" def input_fn(): return { 'example_id': constant_op.constant(['1', '2', '3']), 'price': sparse_tensor.SparseTensor( values=[2., 3., 1.], indices=[[0, 0], [1, 0], [2, 0]], dense_shape=[3, 5]), 'country': sparse_tensor.SparseTensor( values=['IT', 'US', 'GB'], indices=[[0, 0], [1, 0], [2, 0]], dense_shape=[3, 5]) }, constant_op.constant([[1], [0], [1]]) country = feature_column_lib.sparse_column_with_hash_bucket( 'country', hash_bucket_size=5) country_weighted_by_price = feature_column_lib.weighted_sparse_column( country, 'price') sdca_optimizer = sdca_optimizer_lib.SDCAOptimizer( example_id_column='example_id') classifier = linear.LinearClassifier( feature_columns=[country_weighted_by_price], optimizer=sdca_optimizer) classifier.fit(input_fn=input_fn, steps=50) scores = classifier.evaluate(input_fn=input_fn, steps=1) self.assertGreater(scores['accuracy'], 0.9) def testSdcaOptimizerCrossedFeatures(self): """Tests LinearClassifier with SDCAOptimizer and crossed features.""" def input_fn(): return { 'example_id': constant_op.constant(['1', '2', '3']), 'language': sparse_tensor.SparseTensor( values=['english', 'italian', 'spanish'], indices=[[0, 0], [1, 0], [2, 0]], dense_shape=[3, 1]), 'country': sparse_tensor.SparseTensor( values=['US', 'IT', 'MX'], indices=[[0, 0], [1, 0], [2, 0]], dense_shape=[3, 1]) }, constant_op.constant([[0], [0], [1]]) language = feature_column_lib.sparse_column_with_hash_bucket( 'language', hash_bucket_size=5) country = feature_column_lib.sparse_column_with_hash_bucket( 'country', hash_bucket_size=5) country_language = feature_column_lib.crossed_column( [language, country], hash_bucket_size=10) sdca_optimizer = sdca_optimizer_lib.SDCAOptimizer( example_id_column='example_id') classifier = linear.LinearClassifier( feature_columns=[country_language], optimizer=sdca_optimizer) classifier.fit(input_fn=input_fn, steps=10) scores = classifier.evaluate(input_fn=input_fn, steps=1) self.assertGreater(scores['accuracy'], 0.9) def testSdcaOptimizerMixedFeatures(self): """Tests LinearClassifier with SDCAOptimizer and a mix of features.""" def input_fn(): return { 'example_id': constant_op.constant(['1', '2', '3']), 'price': constant_op.constant([[0.6], [0.8], [0.3]]), 'sq_footage': constant_op.constant([[900.0], [700.0], [600.0]]), 'country': sparse_tensor.SparseTensor( values=['IT', 'US', 'GB'], indices=[[0, 0], [1, 3], [2, 1]], dense_shape=[3, 5]), 'weights': constant_op.constant([[3.0], [1.0], [1.0]]) }, constant_op.constant([[1], [0], [1]]) price = feature_column_lib.real_valued_column('price') sq_footage_bucket = feature_column_lib.bucketized_column( feature_column_lib.real_valued_column('sq_footage'), boundaries=[650.0, 800.0]) country = feature_column_lib.sparse_column_with_hash_bucket( 'country', hash_bucket_size=5) sq_footage_country = feature_column_lib.crossed_column( [sq_footage_bucket, country], hash_bucket_size=10) sdca_optimizer = sdca_optimizer_lib.SDCAOptimizer( example_id_column='example_id') classifier = linear.LinearClassifier( feature_columns=[price, sq_footage_bucket, country, sq_footage_country], weight_column_name='weights', optimizer=sdca_optimizer) classifier.fit(input_fn=input_fn, steps=50) scores = classifier.evaluate(input_fn=input_fn, steps=1) self.assertGreater(scores['accuracy'], 0.9) def testEval(self): """Tests that eval produces correct metrics. """ def input_fn(): return { 'age': constant_op.constant([[1], [2]]), 'language': sparse_tensor.SparseTensor( values=['greek', 'chinese'], indices=[[0, 0], [1, 0]], dense_shape=[2, 1]), }, constant_op.constant([[1], [0]]) language = feature_column_lib.sparse_column_with_hash_bucket('language', 100) age = feature_column_lib.real_valued_column('age') classifier = linear.LinearClassifier(feature_columns=[age, language]) # Evaluate on trained model classifier.fit(input_fn=input_fn, steps=100) classifier.evaluate(input_fn=input_fn, steps=1) # TODO(ispir): Enable accuracy check after resolving the randomness issue. # self.assertLess(evaluated_values['loss/mean'], 0.3) # self.assertGreater(evaluated_values['accuracy/mean'], .95) class LinearRegressorTest(test.TestCase): def testExperimentIntegration(self): cont_features = [ feature_column_lib.real_valued_column( 'feature', dimension=4) ] exp = experiment.Experiment( estimator=linear.LinearRegressor(feature_columns=cont_features), train_input_fn=test_data.iris_input_logistic_fn, eval_input_fn=test_data.iris_input_logistic_fn) exp.test() def testEstimatorContract(self): estimator_test_utils.assert_estimator_contract(self, linear.LinearRegressor) def testRegression(self): """Tests that loss goes down with training.""" def input_fn(): return { 'age': constant_op.constant([1]), 'language': sparse_tensor.SparseTensor( values=['english'], indices=[[0, 0]], dense_shape=[1, 1]) }, constant_op.constant([[10.]]) language = feature_column_lib.sparse_column_with_hash_bucket('language', 100) age = feature_column_lib.real_valued_column('age') classifier = linear.LinearRegressor(feature_columns=[age, language]) classifier.fit(input_fn=input_fn, steps=100) loss1 = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] classifier.fit(input_fn=input_fn, steps=200) loss2 = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] self.assertLess(loss2, loss1) self.assertLess(loss2, 0.5) def testRegression_MatrixData(self): """Tests regression using matrix data as input.""" cont_features = [ feature_column_lib.real_valued_column( 'feature', dimension=4) ] regressor = linear.LinearRegressor( feature_columns=cont_features, config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=test_data.iris_input_multiclass_fn, steps=100) scores = regressor.evaluate( input_fn=test_data.iris_input_multiclass_fn, steps=1) self.assertLess(scores['loss'], 0.2) def testRegression_TensorData(self): """Tests regression using tensor data as input.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=['en', 'fr', 'zh'], indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant( [1.0, 0., 0.2], dtype=dtypes.float32) feature_columns = [ feature_column_lib.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20), feature_column_lib.real_valued_column('age') ] regressor = linear.LinearRegressor( feature_columns=feature_columns, config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=100) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertLess(scores['loss'], 0.2) def testLoss(self): """Tests loss calculation.""" def _input_fn_train(): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) # The algorithm should learn (y = 0.25). labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = {'x': array_ops.ones(shape=[4, 1], dtype=dtypes.float32),} return features, labels regressor = linear.LinearRegressor( feature_columns=[feature_column_lib.real_valued_column('x')], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn_train, steps=100) scores = regressor.evaluate(input_fn=_input_fn_train, steps=1) # Average square loss = (0.75^2 + 3*0.25^2) / 4 = 0.1875 self.assertAlmostEqual(0.1875, scores['loss'], delta=0.1) def testLossWithWeights(self): """Tests loss calculation with weights.""" def _input_fn_train(): # 4 rows with equal weight, one of them (y = x), three of them (y=Not(x)) # The algorithm should learn (y = 0.25). labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[1.], [1.], [1.], [1.]]) } return features, labels def _input_fn_eval(): # 4 rows, with different weights. labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[7.], [1.], [1.], [1.]]) } return features, labels regressor = linear.LinearRegressor( weight_column_name='w', feature_columns=[feature_column_lib.real_valued_column('x')], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn_train, steps=100) scores = regressor.evaluate(input_fn=_input_fn_eval, steps=1) # Weighted average square loss = (7*0.75^2 + 3*0.25^2) / 10 = 0.4125 self.assertAlmostEqual(0.4125, scores['loss'], delta=0.1) def testTrainWithWeights(self): """Tests training with given weight column.""" def _input_fn_train(): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) # First row has more weight than others. Model should fit (y=x) better # than (y=Not(x)) due to the relative higher weight of the first row. labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[100.], [3.], [2.], [2.]]) } return features, labels def _input_fn_eval(): # Create 4 rows (y = x) labels = constant_op.constant([[1.], [1.], [1.], [1.]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[1.], [1.], [1.], [1.]]) } return features, labels regressor = linear.LinearRegressor( weight_column_name='w', feature_columns=[feature_column_lib.real_valued_column('x')], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn_train, steps=100) scores = regressor.evaluate(input_fn=_input_fn_eval, steps=1) # The model should learn (y = x) because of the weights, so the loss should # be close to zero. self.assertLess(scores['loss'], 0.1) def testPredict_AsIterableFalse(self): """Tests predict method with as_iterable=False.""" labels = [1.0, 0., 0.2] def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=['en', 'fr', 'zh'], indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant(labels, dtype=dtypes.float32) feature_columns = [ feature_column_lib.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20), feature_column_lib.real_valued_column('age') ] regressor = linear.LinearRegressor( feature_columns=feature_columns, config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=100) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertLess(scores['loss'], 0.1) predicted_scores = regressor.predict_scores( input_fn=_input_fn, as_iterable=False) self.assertAllClose(labels, predicted_scores, atol=0.1) predictions = regressor.predict(input_fn=_input_fn, as_iterable=False) self.assertAllClose(predicted_scores, predictions) def testPredict_AsIterable(self): """Tests predict method with as_iterable=True.""" labels = [1.0, 0., 0.2] def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=['en', 'fr', 'zh'], indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant(labels, dtype=dtypes.float32) feature_columns = [ feature_column_lib.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20), feature_column_lib.real_valued_column('age') ] regressor = linear.LinearRegressor( feature_columns=feature_columns, config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=100) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertLess(scores['loss'], 0.1) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predicted_scores = list( regressor.predict_scores( input_fn=predict_input_fn, as_iterable=True)) self.assertAllClose(labels, predicted_scores, atol=0.1) predictions = list( regressor.predict( input_fn=predict_input_fn, as_iterable=True)) self.assertAllClose(predicted_scores, predictions) def testCustomMetrics(self): """Tests custom evaluation metrics.""" def _input_fn(num_epochs=None): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = { 'x': input_lib.limit_epochs( array_ops.ones( shape=[4, 1], dtype=dtypes.float32), num_epochs=num_epochs) } return features, labels def _my_metric_op(predictions, labels): return math_ops.reduce_sum(math_ops.multiply(predictions, labels)) regressor = linear.LinearRegressor( feature_columns=[feature_column_lib.real_valued_column('x')], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=100) scores = regressor.evaluate( input_fn=_input_fn, steps=1, metrics={ 'my_error': MetricSpec( metric_fn=metric_ops.streaming_mean_squared_error, prediction_key='scores'), 'my_metric': MetricSpec( metric_fn=_my_metric_op, prediction_key='scores') }) self.assertIn('loss', set(scores.keys())) self.assertIn('my_error', set(scores.keys())) self.assertIn('my_metric', set(scores.keys())) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predictions = np.array(list( regressor.predict_scores(input_fn=predict_input_fn))) self.assertAlmostEqual( _sklearn.mean_squared_error(np.array([1, 0, 0, 0]), predictions), scores['my_error']) # Tests the case where the prediction_key is not "scores". with self.assertRaisesRegexp(KeyError, 'bad_type'): regressor.evaluate( input_fn=_input_fn, steps=1, metrics={ 'bad_name': MetricSpec( metric_fn=metric_ops.streaming_auc, prediction_key='bad_type') }) # Tests the case where the 2nd element of the key is not "scores". with self.assertRaises(KeyError): regressor.evaluate( input_fn=_input_fn, steps=1, metrics={ ('my_error', 'predictions'): metric_ops.streaming_mean_squared_error }) # Tests the case where the tuple of the key doesn't have 2 elements. with self.assertRaises(ValueError): regressor.evaluate( input_fn=_input_fn, steps=1, metrics={ ('bad_length_name', 'scores', 'bad_length'): metric_ops.streaming_mean_squared_error }) def testTrainSaveLoad(self): """Tests that insures you can save and reload a trained model.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=['en', 'fr', 'zh'], indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant( [1.0, 0., 0.2], dtype=dtypes.float32) feature_columns = [ feature_column_lib.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20), feature_column_lib.real_valued_column('age') ] model_dir = tempfile.mkdtemp() regressor = linear.LinearRegressor( model_dir=model_dir, feature_columns=feature_columns, config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=100) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predictions = list(regressor.predict_scores(input_fn=predict_input_fn)) del regressor regressor2 = linear.LinearRegressor( model_dir=model_dir, feature_columns=feature_columns) predictions2 = list(regressor2.predict_scores(input_fn=predict_input_fn)) self.assertAllClose(predictions, predictions2) def testTrainWithPartitionedVariables(self): """Tests training with partitioned variables.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=['en', 'fr', 'zh'], indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant( [1.0, 0., 0.2], dtype=dtypes.float32) feature_columns = [ # The given hash_bucket_size results in variables larger than the # default min_slice_size attribute, so the variables are partitioned. feature_column_lib.sparse_column_with_hash_bucket( 'language', hash_bucket_size=2e7), feature_column_lib.real_valued_column('age') ] tf_config = { 'cluster': { run_config.TaskType.PS: ['fake_ps_0', 'fake_ps_1'] } } with test.mock.patch.dict('os.environ', {'TF_CONFIG': json.dumps(tf_config)}): config = run_config.RunConfig(tf_random_seed=1) # Because we did not start a distributed cluster, we need to pass an # empty ClusterSpec, otherwise the device_setter will look for # distributed jobs, such as "/job:ps" which are not present. config._cluster_spec = server_lib.ClusterSpec({}) regressor = linear.LinearRegressor( feature_columns=feature_columns, config=config) regressor.fit(input_fn=_input_fn, steps=100) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertLess(scores['loss'], 0.1) def testDisableCenteredBias(self): """Tests that we can disable centered bias.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=['en', 'fr', 'zh'], indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant( [1.0, 0., 0.2], dtype=dtypes.float32) feature_columns = [ feature_column_lib.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20), feature_column_lib.real_valued_column('age') ] regressor = linear.LinearRegressor( feature_columns=feature_columns, enable_centered_bias=False, config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=100) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertLess(scores['loss'], 0.1) def testRecoverWeights(self): rng = np.random.RandomState(67) n = 1000 n_weights = 10 bias = 2 x = rng.uniform(-1, 1, (n, n_weights)) weights = 10 * rng.randn(n_weights) y = np.dot(x, weights) y += rng.randn(len(x)) * 0.05 + rng.normal(bias, 0.01) feature_columns = estimator.infer_real_valued_columns_from_input(x) regressor = linear.LinearRegressor( feature_columns=feature_columns, optimizer=ftrl.FtrlOptimizer(learning_rate=0.8)) regressor.fit(x, y, batch_size=64, steps=2000) self.assertIn('linear//weight', regressor.get_variable_names()) regressor_weights = regressor.get_variable_value('linear//weight') # Have to flatten weights since they come in (x, 1) shape. self.assertAllClose(weights, regressor_weights.flatten(), rtol=1) # TODO(ispir): Disable centered_bias. # assert abs(bias - regressor.bias_) < 0.1 def testSdcaOptimizerRealValuedLinearFeatures(self): """Tests LinearRegressor with SDCAOptimizer and real valued features.""" x = [[1.2, 2.0, -1.5], [-2.0, 3.0, -0.5], [1.0, -0.5, 4.0]] weights = [[3.0], [-1.2], [0.5]] y = np.dot(x, weights) def input_fn(): return { 'example_id': constant_op.constant(['1', '2', '3']), 'x': constant_op.constant(x), 'weights': constant_op.constant([[10.0], [10.0], [10.0]]) }, constant_op.constant(y) x_column = feature_column_lib.real_valued_column('x', dimension=3) sdca_optimizer = sdca_optimizer_lib.SDCAOptimizer( example_id_column='example_id') regressor = linear.LinearRegressor( feature_columns=[x_column], weight_column_name='weights', optimizer=sdca_optimizer) regressor.fit(input_fn=input_fn, steps=20) loss = regressor.evaluate(input_fn=input_fn, steps=1)['loss'] self.assertLess(loss, 0.01) self.assertIn('linear/x/weight', regressor.get_variable_names()) regressor_weights = regressor.get_variable_value('linear/x/weight') self.assertAllClose( [w[0] for w in weights], regressor_weights.flatten(), rtol=0.1) def testSdcaOptimizerMixedFeaturesArbitraryWeights(self): """Tests LinearRegressor with SDCAOptimizer and a mix of features.""" def input_fn(): return { 'example_id': constant_op.constant(['1', '2', '3']), 'price': constant_op.constant([0.6, 0.8, 0.3]), 'sq_footage': constant_op.constant([[900.0], [700.0], [600.0]]), 'country': sparse_tensor.SparseTensor( values=['IT', 'US', 'GB'], indices=[[0, 0], [1, 3], [2, 1]], dense_shape=[3, 5]), 'weights': constant_op.constant([[3.0], [5.0], [7.0]]) }, constant_op.constant([[1.55], [-1.25], [-3.0]]) price = feature_column_lib.real_valued_column('price') sq_footage_bucket = feature_column_lib.bucketized_column( feature_column_lib.real_valued_column('sq_footage'), boundaries=[650.0, 800.0]) country = feature_column_lib.sparse_column_with_hash_bucket( 'country', hash_bucket_size=5) sq_footage_country = feature_column_lib.crossed_column( [sq_footage_bucket, country], hash_bucket_size=10) sdca_optimizer = sdca_optimizer_lib.SDCAOptimizer( example_id_column='example_id', symmetric_l2_regularization=1.0) regressor = linear.LinearRegressor( feature_columns=[price, sq_footage_bucket, country, sq_footage_country], weight_column_name='weights', optimizer=sdca_optimizer) regressor.fit(input_fn=input_fn, steps=20) loss = regressor.evaluate(input_fn=input_fn, steps=1)['loss'] self.assertLess(loss, 0.05) def testSdcaOptimizerSparseFeaturesWithL1Reg(self): """Tests LinearClassifier with SDCAOptimizer and sparse features.""" def input_fn(): return { 'example_id': constant_op.constant(['1', '2', '3']), 'price': constant_op.constant([[0.4], [0.6], [0.3]]), 'country': sparse_tensor.SparseTensor( values=['IT', 'US', 'GB'], indices=[[0, 0], [1, 3], [2, 1]], dense_shape=[3, 5]), 'weights': constant_op.constant([[10.0], [10.0], [10.0]]) }, constant_op.constant([[1.4], [-0.8], [2.6]]) price = feature_column_lib.real_valued_column('price') country = feature_column_lib.sparse_column_with_hash_bucket( 'country', hash_bucket_size=5) # Regressor with no L1 regularization. sdca_optimizer = sdca_optimizer_lib.SDCAOptimizer( example_id_column='example_id') regressor = linear.LinearRegressor( feature_columns=[price, country], weight_column_name='weights', optimizer=sdca_optimizer) regressor.fit(input_fn=input_fn, steps=20) no_l1_reg_loss = regressor.evaluate(input_fn=input_fn, steps=1)['loss'] variable_names = regressor.get_variable_names() self.assertIn('linear/price/weight', variable_names) self.assertIn('linear/country/weights', variable_names) no_l1_reg_weights = { 'linear/price/weight': regressor.get_variable_value( 'linear/price/weight'), 'linear/country/weights': regressor.get_variable_value( 'linear/country/weights'), } # Regressor with L1 regularization. sdca_optimizer = sdca_optimizer_lib.SDCAOptimizer( example_id_column='example_id', symmetric_l1_regularization=1.0) regressor = linear.LinearRegressor( feature_columns=[price, country], weight_column_name='weights', optimizer=sdca_optimizer) regressor.fit(input_fn=input_fn, steps=20) l1_reg_loss = regressor.evaluate(input_fn=input_fn, steps=1)['loss'] l1_reg_weights = { 'linear/price/weight': regressor.get_variable_value( 'linear/price/weight'), 'linear/country/weights': regressor.get_variable_value( 'linear/country/weights'), } # Unregularized loss is lower when there is no L1 regularization. self.assertLess(no_l1_reg_loss, l1_reg_loss) self.assertLess(no_l1_reg_loss, 0.05) # But weights returned by the regressor with L1 regularization have smaller # L1 norm. l1_reg_weights_norm, no_l1_reg_weights_norm = 0.0, 0.0 for var_name in sorted(l1_reg_weights): l1_reg_weights_norm += sum( np.absolute(l1_reg_weights[var_name].flatten())) no_l1_reg_weights_norm += sum( np.absolute(no_l1_reg_weights[var_name].flatten())) print('Var name: %s, value: %s' % (var_name, no_l1_reg_weights[var_name].flatten())) self.assertLess(l1_reg_weights_norm, no_l1_reg_weights_norm) def testSdcaOptimizerBiasOnly(self): """Tests LinearClassifier with SDCAOptimizer and validates bias weight.""" def input_fn(): """Testing the bias weight when it's the only feature present. All of the instances in this input only have the bias feature, and a 1/4 of the labels are positive. This means that the expected weight for the bias should be close to the average prediction, i.e 0.25. Returns: Training data for the test. """ num_examples = 40 return { 'example_id': constant_op.constant([str(x + 1) for x in range(num_examples)]), # place_holder is an empty column which is always 0 (absent), because # LinearClassifier requires at least one column. 'place_holder': constant_op.constant([[0.0]] * num_examples), }, constant_op.constant( [[1 if i % 4 is 0 else 0] for i in range(num_examples)]) place_holder = feature_column_lib.real_valued_column('place_holder') sdca_optimizer = sdca_optimizer_lib.SDCAOptimizer( example_id_column='example_id') regressor = linear.LinearRegressor( feature_columns=[place_holder], optimizer=sdca_optimizer) regressor.fit(input_fn=input_fn, steps=100) self.assertNear( regressor.get_variable_value('linear/bias_weight')[0], 0.25, err=0.1) def testSdcaOptimizerBiasAndOtherColumns(self): """Tests LinearClassifier with SDCAOptimizer and validates bias weight.""" def input_fn(): """Testing the bias weight when there are other features present. 1/2 of the instances in this input have feature 'a', the rest have feature 'b', and we expect the bias to be added to each instance as well. 0.4 of all instances that have feature 'a' are positive, and 0.2 of all instances that have feature 'b' are positive. The labels in the dataset are ordered to appear shuffled since SDCA expects shuffled data, and converges faster with this pseudo-random ordering. If the bias was centered we would expect the weights to be: bias: 0.3 a: 0.1 b: -0.1 Until b/29339026 is resolved, the bias gets regularized with the same global value for the other columns, and so the expected weights get shifted and are: bias: 0.2 a: 0.2 b: 0.0 Returns: The test dataset. """ num_examples = 200 half = int(num_examples / 2) return { 'example_id': constant_op.constant([str(x + 1) for x in range(num_examples)]), 'a': constant_op.constant([[1]] * int(half) + [[0]] * int(half)), 'b': constant_op.constant([[0]] * int(half) + [[1]] * int(half)), }, constant_op.constant( [[x] for x in [1, 0, 0, 1, 1, 0, 0, 0, 1, 0] * int(half / 10) + [0, 1, 0, 0, 0, 0, 0, 0, 1, 0] * int(half / 10)]) sdca_optimizer = sdca_optimizer_lib.SDCAOptimizer( example_id_column='example_id') regressor = linear.LinearRegressor( feature_columns=[ feature_column_lib.real_valued_column('a'), feature_column_lib.real_valued_column('b') ], optimizer=sdca_optimizer) regressor.fit(input_fn=input_fn, steps=200) variable_names = regressor.get_variable_names() self.assertIn('linear/bias_weight', variable_names) self.assertIn('linear/a/weight', variable_names) self.assertIn('linear/b/weight', variable_names) # TODO(b/29339026): Change the expected results to expect a centered bias. self.assertNear( regressor.get_variable_value('linear/bias_weight')[0], 0.2, err=0.05) self.assertNear( regressor.get_variable_value('linear/a/weight')[0], 0.2, err=0.05) self.assertNear( regressor.get_variable_value('linear/b/weight')[0], 0.0, err=0.05) def testSdcaOptimizerBiasAndOtherColumnsFabricatedCentered(self): """Tests LinearClassifier with SDCAOptimizer and validates bias weight.""" def input_fn(): """Testing the bias weight when there are other features present. 1/2 of the instances in this input have feature 'a', the rest have feature 'b', and we expect the bias to be added to each instance as well. 0.1 of all instances that have feature 'a' have a label of 1, and 0.1 of all instances that have feature 'b' have a label of -1. We can expect the weights to be: bias: 0.0 a: 0.1 b: -0.1 Returns: The test dataset. """ num_examples = 200 half = int(num_examples / 2) return { 'example_id': constant_op.constant([str(x + 1) for x in range(num_examples)]), 'a': constant_op.constant([[1]] * int(half) + [[0]] * int(half)), 'b': constant_op.constant([[0]] * int(half) + [[1]] * int(half)), }, constant_op.constant([[1 if x % 10 == 0 else 0] for x in range(half)] + [[-1 if x % 10 == 0 else 0] for x in range(half)]) sdca_optimizer = sdca_optimizer_lib.SDCAOptimizer( example_id_column='example_id') regressor = linear.LinearRegressor( feature_columns=[ feature_column_lib.real_valued_column('a'), feature_column_lib.real_valued_column('b') ], optimizer=sdca_optimizer) regressor.fit(input_fn=input_fn, steps=100) variable_names = regressor.get_variable_names() self.assertIn('linear/bias_weight', variable_names) self.assertIn('linear/a/weight', variable_names) self.assertIn('linear/b/weight', variable_names) self.assertNear( regressor.get_variable_value('linear/bias_weight')[0], 0.0, err=0.05) self.assertNear( regressor.get_variable_value('linear/a/weight')[0], 0.1, err=0.05) self.assertNear( regressor.get_variable_value('linear/b/weight')[0], -0.1, err=0.05) class LinearEstimatorTest(test.TestCase): def testExperimentIntegration(self): cont_features = [ feature_column_lib.real_valued_column( 'feature', dimension=4) ] exp = experiment.Experiment( estimator=linear.LinearEstimator(feature_columns=cont_features, head=head_lib.regression_head()), train_input_fn=test_data.iris_input_logistic_fn, eval_input_fn=test_data.iris_input_logistic_fn) exp.test() def testEstimatorContract(self): estimator_test_utils.assert_estimator_contract(self, linear.LinearEstimator) def testLinearRegression(self): """Tests that loss goes down with training.""" def input_fn(): return { 'age': constant_op.constant([1]), 'language': sparse_tensor.SparseTensor( values=['english'], indices=[[0, 0]], dense_shape=[1, 1]) }, constant_op.constant([[10.]]) language = feature_column_lib.sparse_column_with_hash_bucket('language', 100) age = feature_column_lib.real_valued_column('age') linear_estimator = linear.LinearEstimator(feature_columns=[age, language], head=head_lib.regression_head()) linear_estimator.fit(input_fn=input_fn, steps=100) loss1 = linear_estimator.evaluate(input_fn=input_fn, steps=1)['loss'] linear_estimator.fit(input_fn=input_fn, steps=400) loss2 = linear_estimator.evaluate(input_fn=input_fn, steps=1)['loss'] self.assertLess(loss2, loss1) self.assertLess(loss2, 0.5) def testPoissonRegression(self): """Tests that loss goes down with training.""" def input_fn(): return { 'age': constant_op.constant([1]), 'language': sparse_tensor.SparseTensor( values=['english'], indices=[[0, 0]], dense_shape=[1, 1]) }, constant_op.constant([[10.]]) language = feature_column_lib.sparse_column_with_hash_bucket('language', 100) age = feature_column_lib.real_valued_column('age') linear_estimator = linear.LinearEstimator( feature_columns=[age, language], head=head_lib.poisson_regression_head()) linear_estimator.fit(input_fn=input_fn, steps=10) loss1 = linear_estimator.evaluate(input_fn=input_fn, steps=1)['loss'] linear_estimator.fit(input_fn=input_fn, steps=100) loss2 = linear_estimator.evaluate(input_fn=input_fn, steps=1)['loss'] self.assertLess(loss2, loss1) # Here loss of 2.1 implies a prediction of ~9.9998 self.assertLess(loss2, 2.1) def testSDCANotSupported(self): """Tests that we detect error for SDCA.""" maintenance_cost = feature_column_lib.real_valued_column('maintenance_cost') sq_footage = feature_column_lib.real_valued_column('sq_footage') sdca_optimizer = sdca_optimizer_lib.SDCAOptimizer( example_id_column='example_id') with self.assertRaises(ValueError): linear.LinearEstimator( head=head_lib.regression_head(label_dimension=1), feature_columns=[maintenance_cost, sq_footage], optimizer=sdca_optimizer, _joint_weights=True) def boston_input_fn(): boston = base.load_boston() features = math_ops.cast( array_ops.reshape(constant_op.constant(boston.data), [-1, 13]), dtypes.float32) labels = math_ops.cast( array_ops.reshape(constant_op.constant(boston.target), [-1, 1]), dtypes.float32) return features, labels class FeatureColumnTest(test.TestCase): def testTrain(self): feature_columns = estimator.infer_real_valued_columns_from_input_fn( boston_input_fn) est = linear.LinearRegressor(feature_columns=feature_columns) est.fit(input_fn=boston_input_fn, steps=1) _ = est.evaluate(input_fn=boston_input_fn, steps=1) if __name__ == '__main__': test.main()
apache-2.0
yqzhang/OpenANN
benchmarks/iris/benchmark.py
5
3308
## \page IrisBenchmark Iris Flower Dataset # # The iris dataset is a standard machine learning dataset. # See e.g. the <a href="http://en.wikipedia.org/wiki/Iris_flower_data_set" # target=_blank>Wikipedia article</a> for more details. # # You can start the benchmark with the script: # \verbatim # python benchmark.py [run] # \endverbatim # Note that you need Scikit Learn to load the dataset. # # The result will look like # \verbatim # Iris data set has 4 inputs, 3 classes and 150 examples # The data has been split up input training and validation set. # Correct predictions on training set: 120/120 # Confusion matrix: # [[ 40. 0. 0.] # [ 0. 40. 0.] # [ 0. 0. 40.]] # Correct predictions on test set: 30/30 # Confusion matrix: # [[ 10. 0. 0.] # [ 0. 10. 0.] # [ 0. 0. 10.]] # \endverbatim import sys try: from sklearn import datasets except: print("scikit-learn is required to run this example.") exit(1) try: from openann import * except: print("OpenANN Python bindings are not installed!") exit(1) def print_usage(): print("Usage:") print(" python benchmark [run]") def run_iris(): # Load IRIS dataset iris = datasets.load_iris() X = iris.data Y = iris.target D = X.shape[1] F = len(numpy.unique(Y)) N = len(X) # Preprocess data (normalization and 1-of-c encoding) X = (X - X.mean(axis=0)) / X.std(axis=0) T = numpy.zeros((N, F)) T[(range(N), Y)] = 1.0 # Setup network net = Net() net.set_regularization(0.0, 0.01, 0.0) net.input_layer(D) net.fully_connected_layer(100, Activation.RECTIFIER) net.fully_connected_layer(100, Activation.RECTIFIER) net.output_layer(F, Activation.SOFTMAX) net.set_error_function(Error.CE) # Split dataset into training set and validation set and make sure that # each class is equally distributed in the datasets X1 = numpy.vstack((X[0:40], X[50:90], X[100:140])) T1 = numpy.vstack((T[0:40], T[50:90], T[100:140])) training_set = DataSet(X1, T1) X2 = numpy.vstack((X[40:50], X[90:100], X[140:150])) T2 = numpy.vstack((T[40:50], T[90:100], T[140:150])) validation_set = DataSet(X2, T2) # Train for 500 episodes (with tuned parameters for MBSGD) optimizer = MBSGD({"maximal_iterations": 500}, learning_rate=0.7, learning_rate_decay=0.999, min_learning_rate=0.001, momentum=0.5, batch_size=16) Log.set_info() # Deactivate debug output optimizer.optimize(net, training_set) print("Iris data set has %d inputs, %d classes and %d examples" % (D, F, N)) print("The data has been split up input training and validation set.") print("Correct predictions on training set: %d/%d" % (classification_hits(net, training_set), len(X1))) print("Confusion matrix:") print(confusion_matrix(net, training_set)) print("Correct predictions on test set: %d/%d" % (classification_hits(net, validation_set), len(X2))) print("Confusion matrix:") print(confusion_matrix(net, validation_set)) if __name__ == "__main__": if len(sys.argv) == 1: print_usage() for command in sys.argv[1:]: if command == "run": run_iris() else: print_usage() exit(1)
gpl-3.0
alexei-matveev/ase-local
doc/exercises/siesta1/answer1.py
3
1197
# -*- coding: utf-8 -*- # creates: ener.png distance.png angle.png import os import matplotlib matplotlib.use('Agg') import pylab as plt e_s = [0.01,0.1,0.2,0.3,0.4,0.5] E = [-463.2160, -462.9633, -462.4891, -462.0551, -461.5426, -461.1714] d = [1.1131, 1.1046, 1.0960, 1.0901, 1.0857, 1.0810] alpha = [100.832453365, 99.568214268, 99.1486065462, 98.873671379, 98.1726341945, 98.0535643778] fig=plt.figure(figsize=(3, 2.5)) fig.subplots_adjust(left=.29, right=.96, top=.9, bottom=0.16) plt.plot(e_s, E, 'o-') plt.xlabel(u'Energy shift [eV]') plt.ylabel(u'Energy [eV]') plt.title('Total Energy vs Eshift') plt.savefig('ener.png') fig=plt.figure(figsize=(3, 2.5)) fig.subplots_adjust(left=.24, right=.96, top=.9, bottom=0.16) plt.plot(e_s, d, 'o-') plt.xlabel(u'Energy shift [eV]') plt.ylabel(u'O-H distance [Å]') limits = plt.axis('tight') plt.title('O-H distance vs Eshift') plt.savefig('distance.png') fig=plt.figure(figsize=(3, 2.5)) fig.subplots_adjust(left=.26, right=.96, top=.9, bottom=0.16) plt.plot(e_s, alpha, 'o-') plt.xlabel(u'Energy shift [eV]') plt.ylabel(u'H20 angle') limits = plt.axis('tight') plt.title('O-H distance vs Eshift') plt.savefig('angle.png')
gpl-2.0
mugwizaleon/PCRasterMapstacks
pcrastermapstackvisualisation.py
1
17920
# -*- coding: utf-8 -*- """ /*************************************************************************** PcrasterMapstackVisualisation A QGIS plugin PCRaster Mapstack visualisation ------------------- begin : 2014-06-28 copyright : (C) 2014 by Leon email : [email protected] ***************************************************************************/ /*************************************************************************** * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * ***************************************************************************/ """ # Import the PyQt and QGIS libraries from PyQt4.QtCore import * from PyQt4.QtGui import * from qgis.core import * from qgis.gui import * import qgis.utils # Initialize Qt resources from file resources.py import resources_rc # Import the code for the dialog from pcrastermapstackvisualisationdialog import PcrasterMapstackVisualisationDialog from Animationdialog import AnimationDialog from TSSvisualizationdialog import TSSVisualizationDialog # Import modules import os.path import os, glob import time import sys import string class PcrasterMapstackVisualisation: def __init__(self, iface): # Save reference to the QGIS interface self.iface = iface # initialize plugin directory self.plugin_dir = os.path.dirname(__file__) # initialize locale locale = QSettings().value("locale/userLocale")[0:2] localePath = os.path.join(self.plugin_dir, 'i18n', 'pcrastermapstackvisualisation_{}.qm'.format(locale)) if os.path.exists(localePath): self.translator = QTranslator() self.translator.load(localePath) if qVersion() > '4.3.3': QCoreApplication.installTranslator(self.translator) # Create the dialog (after translation) and keep reference self.dlg = PcrasterMapstackVisualisationDialog() self.dlg2 = AnimationDialog() self.dlg3 = TSSVisualizationDialog() # Mapstack series visualization QObject.connect( self.dlg.ui.pushButton_7, SIGNAL( "clicked()" ), self.DisplayTSSnames) QObject.connect( self.dlg.ui.pushButton_6, SIGNAL( "clicked()" ), self.TSSgraphs) QObject.connect( self.dlg.ui.btnBaseDir_3, SIGNAL( "clicked()" ), self.selectDir ) #link the button to the function of selecting the directory QObject.connect( self.dlg.ui.btnBaseDir_3, SIGNAL( "clicked()" ), self.loadMapStackCoreName ) #link the button to the function of selecting the directory QObject.connect( self.dlg.ui.pushButton_5, SIGNAL( "clicked()" ), self.actionStart) QObject.connect( self.dlg2.ui.pushButton_2, SIGNAL( "clicked()" ), self.ActionAnim) QObject.connect( self.dlg2.ui.pushButton_3, SIGNAL( "clicked()" ), self.actionNext) QObject.connect( self.dlg2.ui.pushButton, SIGNAL( "clicked()" ), self.actionPrevious) QObject.connect( self.dlg2.ui.pushButton_4, SIGNAL( "clicked()" ), self.actionStart) QObject.connect( self.dlg2.ui.pushButton_5, SIGNAL( "clicked()" ), self.actionLast) QObject.connect(self.dlg.ui.comboBox, SIGNAL("currentIndexChanged (const QString&)"), self.changelist) #Change the list of mapstacks #Close dialogs widgets QObject.connect( self.dlg.ui.pushButton, SIGNAL( "clicked()" ), self.close1) QObject.connect( self.dlg3.ui.pushButton, SIGNAL( "clicked()" ), self.close2) QObject.connect( self.dlg2.ui.pushButton_6, SIGNAL( "clicked()" ), self.close3) def initGui(self): # Create action that will start plugin configuration self.action = QAction( QIcon(":/plugins/pcrastermapstackvisualisation/Myicon.png"), u"Mapstacks_visualisation", self.iface.mainWindow()) # connect the action to the run method self.action.triggered.connect(self.run) # Add toolbar button and menu item self.iface.addToolBarIcon(self.action) self.iface.addPluginToMenu(u"&PCRaster Mapstacks Viewer", self.action) self.iface.addPluginToRasterMenu(u"&PCRaster Mapstacks Viewer", self.action) def unload(self): # Remove the plugin menu item and icon self.iface.removePluginMenu(u"&PCRaster Time series Viewer", self.action) self.iface.removeToolBarIcon(self.action) # run method that performs all the real work def run(self): # show the dialog self.dlg.show() # Run the dialog event loop result = self.dlg.exec_() # See if OK was pressed def close1(self): self.dlg.close() def TSSview(self): self.dlg3.move(10, 300) self.dlg3.show()# show the dialog def close2(self): self.dlg3.close() self.dlg.show() def AnimationDlg (self): self.dlg2.move(200, 200) self.dlg2.show()# show the dialog def close3(self): self.dlg2.close() self.dlg.show() # Selecting the directory containg files def selectDir( self ): self.dlg.hide() settings = QSettings() path = QFileDialog.getExistingDirectory( self.iface.mainWindow(), "Select a directory") if path: self.dlg.ui.txtBaseDir2_5.setText( path ) self.dlg.show() def actionRemove(self): layers = self.iface.legendInterface().layers() layer = qgis.utils.iface.activeLayer() self.PrincipalLayer = layer.name() for layer in layers : if layer.name() == self.PrincipalLayer : pass else : self.iface.legendInterface().moveLayer( layer, 0 ) self.iface.legendInterface().removeGroup(0) def AddLayer(self, input): layerPath = os.path.join(self.dataDir, input) fileInfo = QFileInfo(layerPath) baseName = fileInfo.baseName() layer = QgsRasterLayer(layerPath, baseName) uri = os.path.join(self.dataDir, 'MyFile.qml') layer.loadNamedStyle(uri) QgsMapLayerRegistry.instance().addMapLayer(layer) def loadFiles(self, filename): self.dataDir = str(self.dlg.ui.txtBaseDir2_5.text()) os.chdir(self.dataDir ) file_list = glob.glob(filename) for index in file_list: list = index.split(".") if (len(list) < 2) : file_list.remove(index) for index in file_list: if index.endswith(".tss"): file_list.remove(index) for index in file_list: if index.endswith(".xml") or index.endswith(".aux.xml") : file_list.remove(index) for index in file_list: if index.endswith(".tss"): file_list.remove(index) file_list.sort() return file_list def loadMapStackCoreName(self): self.dataDir = str(self.dlg.ui.txtBaseDir2_5.text()) files= os.listdir(self.dataDir) self.dlg.ui.comboBox.clear() self.dlg.ui.comboBox_2.clear() MyList=[] MyList2 =[] MyList3 = [] for index in files: list = index.split(".") if (len(list)==2) and (len(list[0])== 8) and (len(list[1])== 3) and (list[1].isdigit()): MyList.append(index) if index.endswith(".tss"): MyList3.append(index) for index in MyList: list = index.split(".") words = list[0].replace("0", "") MyList2.append(words) FinalList = [] for i in MyList2: if i not in FinalList: FinalList.append(i) self.dlg.ui.comboBox.addItems(FinalList) self.dlg.ui.comboBox_2.addItems(MyList3) def DisplayTSSnames(self): self.dataDir = str(self.dlg.ui.txtBaseDir2_5.text()) if not self.dataDir : pass else: os.chdir(self.dataDir ) if not self.dlg.ui.comboBox.currentText(): pass else: filename = '*'+str(self.dlg.ui.comboBox.currentText())+'*' file_list = self.loadFiles(filename) self.dlg.ui.listWidget.clear() for index, file in enumerate(file_list): self.dlg.ui.listWidget.addItem(file) def changelist(self): self.dlg.ui.listWidget.clear() def ActionAnim(self): self.actionRemove() Group = self.iface.legendInterface().addGroup("group_foo") import numpy numpy.seterr(divide='ignore', invalid='ignore', over='ignore') self.dataDir = str(self.dlg.ui.txtBaseDir2_5.text()) os.chdir(self.dataDir ) filename = '*'+str(self.dlg.ui.comboBox.currentText())+'*' file_list = self.loadFiles(filename) legend = self.iface.legendInterface() self.dlg2.ui.pushButton_6.setEnabled(False) for index, file in enumerate(file_list): canvas = qgis.utils.iface.mapCanvas() import Styling Styling.style1(file_list[index], 'value', self.dataDir, file_list ) uri = os.path.join(self.dataDir, 'MyFile.qml') self.iface.addRasterLayer(file, os.path.basename(str(file))).loadNamedStyle(uri) canvas.refresh() canvas.zoomToFullExtent() rlayer = qgis.utils.iface.activeLayer() legend.moveLayer( rlayer, 0 ) time.sleep(float(self.dlg2.ui.txtBaseDir2_5.text())) self.dlg2.ui.pushButton_6.setEnabled(True) def actionStart(self): import Styling self.dlg.hide() self.iface.messageBar().clearWidgets () layers = self.iface.legendInterface().layers() for layer in layers : if self.iface.legendInterface().isLayerVisible(layer) : self.iface.legendInterface().setLayerVisible(layer, False) import numpy numpy.seterr(divide='ignore', invalid='ignore', over='ignore') self.dataDir = str(self.dlg.ui.txtBaseDir2_5.text()) if not self.dataDir : QMessageBox.information( self.iface.mainWindow(),"Info", "Please select a directory first") self.dlg.show() else : os.chdir(self.dataDir ) filename = '*'+str(self.dlg.ui.comboBox.currentText())+'*' file_list = self.loadFiles(filename) if not self.dlg.ui.comboBox.currentText(): QMessageBox.information( self.iface.mainWindow(),"Info", "The are no PCRaster mapstacks in this directory") self.dlg.show() # return else: self.AnimationDlg() Styling.style1(filename, 'value', self.dataDir, file_list ) s = QSettings() oldValidation = s.value( "/Projections/defaultBehaviour", "useGlobal" ) s.setValue( "/Projections/defaultBehaviour", "useGlobal" ) self.AddLayer(str(file_list[0])) s.setValue( "/Projections/defaultBehaviour", oldValidation ) layer = qgis.utils.iface.activeLayer() # self.PrincipalLayer = layer.name() # print self.PrincipalLayer self.iface.legendInterface().setLayerExpanded(layer, True) def actionLast(self): self.actionRemove() self.dlg.hide() self.AnimationDlg() self.iface.messageBar().clearWidgets () layers = self.iface.legendInterface().layers() for layer in layers : if self.iface.legendInterface().isLayerVisible(layer) : self.iface.legendInterface().setLayerVisible(layer, False) import numpy numpy.seterr(divide='ignore', invalid='ignore', over='ignore') self.dataDir = str(self.dlg.ui.txtBaseDir2_5.text()) os.chdir(self.dataDir ) filename = '*'+str(self.dlg.ui.comboBox.currentText())+'*' file_list = self.loadFiles(filename) index = len(file_list) - 1 canvas = qgis.utils.iface.mapCanvas() import Styling Styling.style1(file_list[index], 'value', self.dataDir, file_list ) uri = os.path.join(self.dataDir, 'MyFile.qml') self.iface.addRasterLayer(file_list[index], os.path.basename(str(file_list[index]))).loadNamedStyle(uri) canvas.refresh() canvas.zoomToFullExtent() def actionNext(self): self.actionRemove() self.iface.messageBar().clearWidgets () import numpy numpy.seterr(divide='ignore', invalid='ignore', over='ignore') self.dataDir = str(self.dlg.ui.txtBaseDir2_5.text()) os.chdir(self.dataDir ) filename = '*'+str(self.dlg.ui.comboBox.currentText())+'*' file_list = self.loadFiles(filename) layer = qgis.utils.iface.activeLayer() self.PrincipalLayer = layer.name() if layer is None : index = 0 elif layer.name() not in file_list: index = 0 else : counter = file_list.index(layer.name()) index = counter + 1 if counter == len(file_list) - 1 : layers = self.iface.legendInterface().layers() self.iface.legendInterface().addGroup("group_foo") for layer in layers : if layer.name() == self.PrincipalLayer : pass elif self.iface.legendInterface().isLayerVisible(layer) : self.iface.legendInterface().moveLayer( layer, 0 ) index = 0 canvas = qgis.utils.iface.mapCanvas() import Styling Styling.style1(file_list[index], 'value', self.dataDir, file_list ) uri = os.path.join(self.dataDir, 'MyFile.qml') self.iface.addRasterLayer(file_list[index], os.path.basename(str(file_list[index]))).loadNamedStyle(uri) canvas.refresh() canvas.zoomToFullExtent() def actionPrevious(self): self.actionRemove() self.iface.messageBar().clearWidgets () import numpy numpy.seterr(divide='ignore', invalid='ignore', over='ignore') self.dataDir = str(self.dlg.ui.txtBaseDir2_5.text()) os.chdir(self.dataDir ) filename = '*'+str(self.dlg.ui.comboBox.currentText())+'*' file_list = self.loadFiles(filename) layer = qgis.utils.iface.activeLayer() self.PrincipalLayer = layer.name() if layer is None : index = len(file_list) - 1 elif layer.name() not in file_list: index = len(file_list) - 1 else : counter = file_list.index(layer.name()) index = counter - 1 if counter == 0 : layers = self.iface.legendInterface().layers() self.iface.legendInterface().addGroup("group_foo") for layer in layers : if layer.name() == self.PrincipalLayer : pass elif self.iface.legendInterface().isLayerVisible(layer) : self.iface.legendInterface().moveLayer( layer, 0 ) index = len(file_list) - 1 canvas = qgis.utils.iface.mapCanvas() import Styling Styling.style1(file_list[index], 'value', self.dataDir, file_list ) uri = os.path.join(self.dataDir, 'MyFile.qml') self.iface.addRasterLayer(file_list[index], os.path.basename(str(file_list[index]))).loadNamedStyle(uri) canvas.refresh() canvas.zoomToFullExtent() def TSSgraphs(self):# wtih matplotlib self.dlg.hide() filename = str(self.dlg.ui.comboBox_2.currentText()) self.dataDir = str(self.dlg.ui.txtBaseDir2_5.text()) file = os.path.join (self.dataDir, filename) if os.path.isfile(file): self.TSSview() self.dataDir = str(self.dlg.ui.txtBaseDir2_5.text()) os.chdir(self.dataDir ) stripped = [] stripper = open(filename, 'r') st_lines = stripper.readlines()[4:] stripper.close() for lines in st_lines: stripped_line = " ".join(lines.split()) stripped.append(stripped_line) data = "\n".join(stripped) data = data.split('\n') values = [] dates = [] years = 0 yl = [] for row in data: x, y = row.split() values.append(float(y)) year = (int(x.translate(string.maketrans("\n\t\r", " ")).strip())) dates.append(year) years = years +1 yl.append(years) xlabels = yl self.dlg3.ui.widget.canvas.ax.clear() self.dlg3.ui.widget.canvas.ax.set_position([0.155,0.15,0.82,0.75]) self.dlg3.ui.widget.canvas.ax.set_title(filename) self.dlg3.ui.widget.canvas.ax.set_xlabel ('Time step') self.dlg3.ui.widget.canvas.ax.set_ylabel ('Values') self.dlg3.ui.widget.canvas.ax.plot(dates, values) self.dlg3.ui.widget.canvas.ax.set_xticks(dates) self.dlg3.ui.widget.canvas.ax.set_xticklabels(xlabels, rotation=30, fontsize=10) self.dlg3.ui.widget.canvas.draw() else: QMessageBox.information( self.iface.mainWindow(),"Info", "The are no PCRaster timeseries this directory") self.dlg.show()
apache-2.0
jreback/pandas
pandas/io/formats/latex.py
2
25201
""" Module for formatting output data in Latex. """ from abc import ABC, abstractmethod from typing import Iterator, List, Optional, Sequence, Tuple, Type, Union import numpy as np from pandas.core.dtypes.generic import ABCMultiIndex from pandas.io.formats.format import DataFrameFormatter def _split_into_full_short_caption( caption: Optional[Union[str, Tuple[str, str]]] ) -> Tuple[str, str]: """Extract full and short captions from caption string/tuple. Parameters ---------- caption : str or tuple, optional Either table caption string or tuple (full_caption, short_caption). If string is provided, then it is treated as table full caption, while short_caption is considered an empty string. Returns ------- full_caption, short_caption : tuple Tuple of full_caption, short_caption strings. """ if caption: if isinstance(caption, str): full_caption = caption short_caption = "" else: try: full_caption, short_caption = caption except ValueError as err: msg = "caption must be either a string or a tuple of two strings" raise ValueError(msg) from err else: full_caption = "" short_caption = "" return full_caption, short_caption class RowStringConverter(ABC): r"""Converter for dataframe rows into LaTeX strings. Parameters ---------- formatter : `DataFrameFormatter` Instance of `DataFrameFormatter`. multicolumn: bool, optional Whether to use \multicolumn macro. multicolumn_format: str, optional Multicolumn format. multirow: bool, optional Whether to use \multirow macro. """ def __init__( self, formatter: DataFrameFormatter, multicolumn: bool = False, multicolumn_format: Optional[str] = None, multirow: bool = False, ): self.fmt = formatter self.frame = self.fmt.frame self.multicolumn = multicolumn self.multicolumn_format = multicolumn_format self.multirow = multirow self.clinebuf: List[List[int]] = [] self.strcols = self._get_strcols() self.strrows = list(zip(*self.strcols)) def get_strrow(self, row_num: int) -> str: """Get string representation of the row.""" row = self.strrows[row_num] is_multicol = ( row_num < self.column_levels and self.fmt.header and self.multicolumn ) is_multirow = ( row_num >= self.header_levels and self.fmt.index and self.multirow and self.index_levels > 1 ) is_cline_maybe_required = is_multirow and row_num < len(self.strrows) - 1 crow = self._preprocess_row(row) if is_multicol: crow = self._format_multicolumn(crow) if is_multirow: crow = self._format_multirow(crow, row_num) lst = [] lst.append(" & ".join(crow)) lst.append(" \\\\") if is_cline_maybe_required: cline = self._compose_cline(row_num, len(self.strcols)) lst.append(cline) return "".join(lst) @property def _header_row_num(self) -> int: """Number of rows in header.""" return self.header_levels if self.fmt.header else 0 @property def index_levels(self) -> int: """Integer number of levels in index.""" return self.frame.index.nlevels @property def column_levels(self) -> int: return self.frame.columns.nlevels @property def header_levels(self) -> int: nlevels = self.column_levels if self.fmt.has_index_names and self.fmt.show_index_names: nlevels += 1 return nlevels def _get_strcols(self) -> List[List[str]]: """String representation of the columns.""" if self.fmt.frame.empty: strcols = [[self._empty_info_line]] else: strcols = self.fmt.get_strcols() # reestablish the MultiIndex that has been joined by get_strcols() if self.fmt.index and isinstance(self.frame.index, ABCMultiIndex): out = self.frame.index.format( adjoin=False, sparsify=self.fmt.sparsify, names=self.fmt.has_index_names, na_rep=self.fmt.na_rep, ) # index.format will sparsify repeated entries with empty strings # so pad these with some empty space def pad_empties(x): for pad in reversed(x): if pad: break return [x[0]] + [i if i else " " * len(pad) for i in x[1:]] gen = (pad_empties(i) for i in out) # Add empty spaces for each column level clevels = self.frame.columns.nlevels out = [[" " * len(i[-1])] * clevels + i for i in gen] # Add the column names to the last index column cnames = self.frame.columns.names if any(cnames): new_names = [i if i else "{}" for i in cnames] out[self.frame.index.nlevels - 1][:clevels] = new_names # Get rid of old multiindex column and add new ones strcols = out + strcols[1:] return strcols @property def _empty_info_line(self): return ( f"Empty {type(self.frame).__name__}\n" f"Columns: {self.frame.columns}\n" f"Index: {self.frame.index}" ) def _preprocess_row(self, row: Sequence[str]) -> List[str]: """Preprocess elements of the row.""" if self.fmt.escape: crow = _escape_symbols(row) else: crow = [x if x else "{}" for x in row] if self.fmt.bold_rows and self.fmt.index: crow = _convert_to_bold(crow, self.index_levels) return crow def _format_multicolumn(self, row: List[str]) -> List[str]: r""" Combine columns belonging to a group to a single multicolumn entry according to self.multicolumn_format e.g.: a & & & b & c & will become \multicolumn{3}{l}{a} & b & \multicolumn{2}{l}{c} """ row2 = row[: self.index_levels] ncol = 1 coltext = "" def append_col(): # write multicolumn if needed if ncol > 1: row2.append( f"\\multicolumn{{{ncol:d}}}{{{self.multicolumn_format}}}" f"{{{coltext.strip()}}}" ) # don't modify where not needed else: row2.append(coltext) for c in row[self.index_levels :]: # if next col has text, write the previous if c.strip(): if coltext: append_col() coltext = c ncol = 1 # if not, add it to the previous multicolumn else: ncol += 1 # write last column name if coltext: append_col() return row2 def _format_multirow(self, row: List[str], i: int) -> List[str]: r""" Check following rows, whether row should be a multirow e.g.: becomes: a & 0 & \multirow{2}{*}{a} & 0 & & 1 & & 1 & b & 0 & \cline{1-2} b & 0 & """ for j in range(self.index_levels): if row[j].strip(): nrow = 1 for r in self.strrows[i + 1 :]: if not r[j].strip(): nrow += 1 else: break if nrow > 1: # overwrite non-multirow entry row[j] = f"\\multirow{{{nrow:d}}}{{*}}{{{row[j].strip()}}}" # save when to end the current block with \cline self.clinebuf.append([i + nrow - 1, j + 1]) return row def _compose_cline(self, i: int, icol: int) -> str: """ Create clines after multirow-blocks are finished. """ lst = [] for cl in self.clinebuf: if cl[0] == i: lst.append(f"\n\\cline{{{cl[1]:d}-{icol:d}}}") # remove entries that have been written to buffer self.clinebuf = [x for x in self.clinebuf if x[0] != i] return "".join(lst) class RowStringIterator(RowStringConverter): """Iterator over rows of the header or the body of the table.""" @abstractmethod def __iter__(self) -> Iterator[str]: """Iterate over LaTeX string representations of rows.""" class RowHeaderIterator(RowStringIterator): """Iterator for the table header rows.""" def __iter__(self) -> Iterator[str]: for row_num in range(len(self.strrows)): if row_num < self._header_row_num: yield self.get_strrow(row_num) class RowBodyIterator(RowStringIterator): """Iterator for the table body rows.""" def __iter__(self) -> Iterator[str]: for row_num in range(len(self.strrows)): if row_num >= self._header_row_num: yield self.get_strrow(row_num) class TableBuilderAbstract(ABC): """ Abstract table builder producing string representation of LaTeX table. Parameters ---------- formatter : `DataFrameFormatter` Instance of `DataFrameFormatter`. column_format: str, optional Column format, for example, 'rcl' for three columns. multicolumn: bool, optional Use multicolumn to enhance MultiIndex columns. multicolumn_format: str, optional The alignment for multicolumns, similar to column_format. multirow: bool, optional Use multirow to enhance MultiIndex rows. caption: str, optional Table caption. short_caption: str, optional Table short caption. label: str, optional LaTeX label. position: str, optional Float placement specifier, for example, 'htb'. """ def __init__( self, formatter: DataFrameFormatter, column_format: Optional[str] = None, multicolumn: bool = False, multicolumn_format: Optional[str] = None, multirow: bool = False, caption: Optional[str] = None, short_caption: Optional[str] = None, label: Optional[str] = None, position: Optional[str] = None, ): self.fmt = formatter self.column_format = column_format self.multicolumn = multicolumn self.multicolumn_format = multicolumn_format self.multirow = multirow self.caption = caption self.short_caption = short_caption self.label = label self.position = position def get_result(self) -> str: """String representation of LaTeX table.""" elements = [ self.env_begin, self.top_separator, self.header, self.middle_separator, self.env_body, self.bottom_separator, self.env_end, ] result = "\n".join([item for item in elements if item]) trailing_newline = "\n" result += trailing_newline return result @property @abstractmethod def env_begin(self) -> str: """Beginning of the environment.""" @property @abstractmethod def top_separator(self) -> str: """Top level separator.""" @property @abstractmethod def header(self) -> str: """Header lines.""" @property @abstractmethod def middle_separator(self) -> str: """Middle level separator.""" @property @abstractmethod def env_body(self) -> str: """Environment body.""" @property @abstractmethod def bottom_separator(self) -> str: """Bottom level separator.""" @property @abstractmethod def env_end(self) -> str: """End of the environment.""" class GenericTableBuilder(TableBuilderAbstract): """Table builder producing string representation of LaTeX table.""" @property def header(self) -> str: iterator = self._create_row_iterator(over="header") return "\n".join(list(iterator)) @property def top_separator(self) -> str: return "\\toprule" @property def middle_separator(self) -> str: return "\\midrule" if self._is_separator_required() else "" @property def env_body(self) -> str: iterator = self._create_row_iterator(over="body") return "\n".join(list(iterator)) def _is_separator_required(self) -> bool: return bool(self.header and self.env_body) @property def _position_macro(self) -> str: r"""Position macro, extracted from self.position, like [h].""" return f"[{self.position}]" if self.position else "" @property def _caption_macro(self) -> str: r"""Caption macro, extracted from self.caption. With short caption: \caption[short_caption]{caption_string}. Without short caption: \caption{caption_string}. """ if self.caption: return "".join( [ r"\caption", f"[{self.short_caption}]" if self.short_caption else "", f"{{{self.caption}}}", ] ) return "" @property def _label_macro(self) -> str: r"""Label macro, extracted from self.label, like \label{ref}.""" return f"\\label{{{self.label}}}" if self.label else "" def _create_row_iterator(self, over: str) -> RowStringIterator: """Create iterator over header or body of the table. Parameters ---------- over : {'body', 'header'} Over what to iterate. Returns ------- RowStringIterator Iterator over body or header. """ iterator_kind = self._select_iterator(over) return iterator_kind( formatter=self.fmt, multicolumn=self.multicolumn, multicolumn_format=self.multicolumn_format, multirow=self.multirow, ) def _select_iterator(self, over: str) -> Type[RowStringIterator]: """Select proper iterator over table rows.""" if over == "header": return RowHeaderIterator elif over == "body": return RowBodyIterator else: msg = f"'over' must be either 'header' or 'body', but {over} was provided" raise ValueError(msg) class LongTableBuilder(GenericTableBuilder): """Concrete table builder for longtable. >>> from pandas import DataFrame >>> from pandas.io.formats import format as fmt >>> df = DataFrame({"a": [1, 2], "b": ["b1", "b2"]}) >>> formatter = fmt.DataFrameFormatter(df) >>> builder = LongTableBuilder(formatter, caption='a long table', ... label='tab:long', column_format='lrl') >>> table = builder.get_result() >>> print(table) \\begin{longtable}{lrl} \\caption{a long table} \\label{tab:long}\\\\ \\toprule {} & a & b \\\\ \\midrule \\endfirsthead \\caption[]{a long table} \\\\ \\toprule {} & a & b \\\\ \\midrule \\endhead \\midrule \\multicolumn{3}{r}{{Continued on next page}} \\\\ \\midrule \\endfoot <BLANKLINE> \\bottomrule \\endlastfoot 0 & 1 & b1 \\\\ 1 & 2 & b2 \\\\ \\end{longtable} <BLANKLINE> """ @property def env_begin(self) -> str: first_row = ( f"\\begin{{longtable}}{self._position_macro}{{{self.column_format}}}" ) elements = [first_row, f"{self._caption_and_label()}"] return "\n".join([item for item in elements if item]) def _caption_and_label(self) -> str: if self.caption or self.label: double_backslash = "\\\\" elements = [f"{self._caption_macro}", f"{self._label_macro}"] caption_and_label = "\n".join([item for item in elements if item]) caption_and_label += double_backslash return caption_and_label else: return "" @property def middle_separator(self) -> str: iterator = self._create_row_iterator(over="header") # the content between \endfirsthead and \endhead commands # mitigates repeated List of Tables entries in the final LaTeX # document when dealing with longtable environments; GH #34360 elements = [ "\\midrule", "\\endfirsthead", f"\\caption[]{{{self.caption}}} \\\\" if self.caption else "", self.top_separator, self.header, "\\midrule", "\\endhead", "\\midrule", f"\\multicolumn{{{len(iterator.strcols)}}}{{r}}" "{{Continued on next page}} \\\\", "\\midrule", "\\endfoot\n", "\\bottomrule", "\\endlastfoot", ] if self._is_separator_required(): return "\n".join(elements) return "" @property def bottom_separator(self) -> str: return "" @property def env_end(self) -> str: return "\\end{longtable}" class RegularTableBuilder(GenericTableBuilder): """Concrete table builder for regular table. >>> from pandas import DataFrame >>> from pandas.io.formats import format as fmt >>> df = DataFrame({"a": [1, 2], "b": ["b1", "b2"]}) >>> formatter = fmt.DataFrameFormatter(df) >>> builder = RegularTableBuilder(formatter, caption='caption', label='lab', ... column_format='lrc') >>> table = builder.get_result() >>> print(table) \\begin{table} \\centering \\caption{caption} \\label{lab} \\begin{tabular}{lrc} \\toprule {} & a & b \\\\ \\midrule 0 & 1 & b1 \\\\ 1 & 2 & b2 \\\\ \\bottomrule \\end{tabular} \\end{table} <BLANKLINE> """ @property def env_begin(self) -> str: elements = [ f"\\begin{{table}}{self._position_macro}", "\\centering", f"{self._caption_macro}", f"{self._label_macro}", f"\\begin{{tabular}}{{{self.column_format}}}", ] return "\n".join([item for item in elements if item]) @property def bottom_separator(self) -> str: return "\\bottomrule" @property def env_end(self) -> str: return "\n".join(["\\end{tabular}", "\\end{table}"]) class TabularBuilder(GenericTableBuilder): """Concrete table builder for tabular environment. >>> from pandas import DataFrame >>> from pandas.io.formats import format as fmt >>> df = DataFrame({"a": [1, 2], "b": ["b1", "b2"]}) >>> formatter = fmt.DataFrameFormatter(df) >>> builder = TabularBuilder(formatter, column_format='lrc') >>> table = builder.get_result() >>> print(table) \\begin{tabular}{lrc} \\toprule {} & a & b \\\\ \\midrule 0 & 1 & b1 \\\\ 1 & 2 & b2 \\\\ \\bottomrule \\end{tabular} <BLANKLINE> """ @property def env_begin(self) -> str: return f"\\begin{{tabular}}{{{self.column_format}}}" @property def bottom_separator(self) -> str: return "\\bottomrule" @property def env_end(self) -> str: return "\\end{tabular}" class LatexFormatter: r""" Used to render a DataFrame to a LaTeX tabular/longtable environment output. Parameters ---------- formatter : `DataFrameFormatter` longtable : bool, default False Use longtable environment. column_format : str, default None The columns format as specified in `LaTeX table format <https://en.wikibooks.org/wiki/LaTeX/Tables>`__ e.g 'rcl' for 3 columns multicolumn : bool, default False Use \multicolumn to enhance MultiIndex columns. multicolumn_format : str, default 'l' The alignment for multicolumns, similar to `column_format` multirow : bool, default False Use \multirow to enhance MultiIndex rows. caption : str or tuple, optional Tuple (full_caption, short_caption), which results in \caption[short_caption]{full_caption}; if a single string is passed, no short caption will be set. label : str, optional The LaTeX label to be placed inside ``\label{}`` in the output. position : str, optional The LaTeX positional argument for tables, to be placed after ``\begin{}`` in the output. See Also -------- HTMLFormatter """ def __init__( self, formatter: DataFrameFormatter, longtable: bool = False, column_format: Optional[str] = None, multicolumn: bool = False, multicolumn_format: Optional[str] = None, multirow: bool = False, caption: Optional[Union[str, Tuple[str, str]]] = None, label: Optional[str] = None, position: Optional[str] = None, ): self.fmt = formatter self.frame = self.fmt.frame self.longtable = longtable self.column_format = column_format self.multicolumn = multicolumn self.multicolumn_format = multicolumn_format self.multirow = multirow self.caption, self.short_caption = _split_into_full_short_caption(caption) self.label = label self.position = position def to_string(self) -> str: """ Render a DataFrame to a LaTeX tabular, longtable, or table/tabular environment output. """ return self.builder.get_result() @property def builder(self) -> TableBuilderAbstract: """Concrete table builder. Returns ------- TableBuilder """ builder = self._select_builder() return builder( formatter=self.fmt, column_format=self.column_format, multicolumn=self.multicolumn, multicolumn_format=self.multicolumn_format, multirow=self.multirow, caption=self.caption, short_caption=self.short_caption, label=self.label, position=self.position, ) def _select_builder(self) -> Type[TableBuilderAbstract]: """Select proper table builder.""" if self.longtable: return LongTableBuilder if any([self.caption, self.label, self.position]): return RegularTableBuilder return TabularBuilder @property def column_format(self) -> Optional[str]: """Column format.""" return self._column_format @column_format.setter def column_format(self, input_column_format: Optional[str]) -> None: """Setter for column format.""" if input_column_format is None: self._column_format = ( self._get_index_format() + self._get_column_format_based_on_dtypes() ) elif not isinstance(input_column_format, str): raise ValueError( f"column_format must be str or unicode, " f"not {type(input_column_format)}" ) else: self._column_format = input_column_format def _get_column_format_based_on_dtypes(self) -> str: """Get column format based on data type. Right alignment for numbers and left - for strings. """ def get_col_type(dtype): if issubclass(dtype.type, np.number): return "r" return "l" dtypes = self.frame.dtypes._values return "".join(map(get_col_type, dtypes)) def _get_index_format(self) -> str: """Get index column format.""" return "l" * self.frame.index.nlevels if self.fmt.index else "" def _escape_symbols(row: Sequence[str]) -> List[str]: """Carry out string replacements for special symbols. Parameters ---------- row : list List of string, that may contain special symbols. Returns ------- list list of strings with the special symbols replaced. """ return [ ( x.replace("\\", "\\textbackslash ") .replace("_", "\\_") .replace("%", "\\%") .replace("$", "\\$") .replace("#", "\\#") .replace("{", "\\{") .replace("}", "\\}") .replace("~", "\\textasciitilde ") .replace("^", "\\textasciicircum ") .replace("&", "\\&") if (x and x != "{}") else "{}" ) for x in row ] def _convert_to_bold(crow: Sequence[str], ilevels: int) -> List[str]: """Convert elements in ``crow`` to bold.""" return [ f"\\textbf{{{x}}}" if j < ilevels and x.strip() not in ["", "{}"] else x for j, x in enumerate(crow) ] if __name__ == "__main__": import doctest doctest.testmod()
bsd-3-clause
trungnt13/scikit-learn
examples/feature_selection/plot_rfe_with_cross_validation.py
226
1384
""" =================================================== Recursive feature elimination with cross-validation =================================================== A recursive feature elimination example with automatic tuning of the number of features selected with cross-validation. """ print(__doc__) import matplotlib.pyplot as plt from sklearn.svm import SVC from sklearn.cross_validation import StratifiedKFold from sklearn.feature_selection import RFECV from sklearn.datasets import make_classification # Build a classification task using 3 informative features X, y = make_classification(n_samples=1000, n_features=25, n_informative=3, n_redundant=2, n_repeated=0, n_classes=8, n_clusters_per_class=1, random_state=0) # Create the RFE object and compute a cross-validated score. svc = SVC(kernel="linear") # The "accuracy" scoring is proportional to the number of correct # classifications rfecv = RFECV(estimator=svc, step=1, cv=StratifiedKFold(y, 2), scoring='accuracy') rfecv.fit(X, y) print("Optimal number of features : %d" % rfecv.n_features_) # Plot number of features VS. cross-validation scores plt.figure() plt.xlabel("Number of features selected") plt.ylabel("Cross validation score (nb of correct classifications)") plt.plot(range(1, len(rfecv.grid_scores_) + 1), rfecv.grid_scores_) plt.show()
bsd-3-clause
michelp/pywt
util/refguide_check.py
2
27051
#!/usr/bin/env python """ refguide_check.py [OPTIONS] [-- ARGS] Check for a PyWavelets submodule whether the objects in its __all__ dict correspond to the objects included in the reference guide. Example of usage:: $ python refguide_check.py optimize Note that this is a helper script to be able to check if things are missing; the output of this script does need to be checked manually. In some cases objects are left out of the refguide for a good reason (it's an alias of another function, or deprecated, or ...) Another use of this helper script is to check validity of code samples in docstrings. This is different from doctesting [we do not aim to have scipy docstrings doctestable!], this is just to make sure that code in docstrings is valid python:: $ python refguide_check.py --check_docs optimize """ from __future__ import print_function import sys import os import re import copy import inspect import warnings import doctest import tempfile import io import docutils.core from docutils.parsers.rst import directives import shutil import glob from doctest import NORMALIZE_WHITESPACE, ELLIPSIS, IGNORE_EXCEPTION_DETAIL from argparse import ArgumentParser import numpy as np # sys.path.insert(0, os.path.join(os.path.dirname(__file__), '..', 'doc', # 'sphinxext')) from numpydoc.docscrape_sphinx import get_doc_object # Remove sphinx directives that don't run without Sphinx environment directives._directives.pop('versionadded', None) directives._directives.pop('versionchanged', None) directives._directives.pop('moduleauthor', None) directives._directives.pop('sectionauthor', None) directives._directives.pop('codeauthor', None) directives._directives.pop('toctree', None) BASE_MODULE = "pywt" PUBLIC_SUBMODULES = [] # Docs for these modules are included in the parent module OTHER_MODULE_DOCS = {} # these names are known to fail doctesting and we like to keep it that way # e.g. sometimes pseudocode is acceptable etc DOCTEST_SKIPLIST = set([]) # these names are not required to be present in ALL despite being in # autosummary:: listing REFGUIDE_ALL_SKIPLIST = [] HAVE_MATPLOTLIB = False def short_path(path, cwd=None): """ Return relative or absolute path name, whichever is shortest. """ if not isinstance(path, str): return path if cwd is None: cwd = os.getcwd() abspath = os.path.abspath(path) relpath = os.path.relpath(path, cwd) if len(abspath) <= len(relpath): return abspath return relpath def find_names(module, names_dict): # Refguide entries: # # - 3 spaces followed by function name, and maybe some spaces, some # dashes, and an explanation; only function names listed in # refguide are formatted like this (mostly, there may be some false # positives) # # - special directives, such as data and function # # - (scipy.constants only): quoted list # patterns = [ r"^\s\s\s([a-z_0-9A-Z]+)(\s+-+.*)?$", r"^\.\. (?:data|function)::\s*([a-z_0-9A-Z]+)\s*$" ] if module.__name__ == 'scipy.constants': patterns += ["^``([a-z_0-9A-Z]+)``"] patterns = [re.compile(pattern) for pattern in patterns] module_name = module.__name__ for line in module.__doc__.splitlines(): res = re.search(r"^\s*\.\. (?:currentmodule|module):: ([a-z0-9A-Z_.]+)\s*$", line) if res: module_name = res.group(1) continue for pattern in patterns: res = re.match(pattern, line) if res is not None: name = res.group(1) entry = '.'.join([module_name, name]) names_dict.setdefault(module_name, set()).add(name) break def get_all_dict(module): """Return a copy of the __all__ dict with irrelevant items removed.""" if hasattr(module, "__all__"): all_dict = copy.deepcopy(module.__all__) else: all_dict = copy.deepcopy(dir(module)) all_dict = [name for name in all_dict if not name.startswith("_")] for name in ['absolute_import', 'division', 'print_function']: try: all_dict.remove(name) except ValueError: pass # Modules are almost always private; real submodules need a separate # run of refguide_check. all_dict = [name for name in all_dict if not inspect.ismodule(getattr(module, name, None))] deprecated = [] not_deprecated = [] for name in all_dict: f = getattr(module, name, None) if callable(f) and is_deprecated(f): deprecated.append(name) else: not_deprecated.append(name) others = set(dir(module)).difference(set(deprecated)).difference(set(not_deprecated)) return not_deprecated, deprecated, others def compare(all_dict, others, names, module_name): """Return sets of objects only in __all__, refguide, or completely missing.""" only_all = set() for name in all_dict: if name not in names: only_all.add(name) only_ref = set() missing = set() for name in names: if name not in all_dict: for pat in REFGUIDE_ALL_SKIPLIST: if re.match(pat, module_name + '.' + name): if name not in others: missing.add(name) break else: only_ref.add(name) return only_all, only_ref, missing def is_deprecated(f): with warnings.catch_warnings(record=True) as w: warnings.simplefilter("error") try: f(**{"not a kwarg": None}) except DeprecationWarning: return True except: pass return False def check_items(all_dict, names, deprecated, others, module_name, dots=True): num_all = len(all_dict) num_ref = len(names) output = "" output += "Non-deprecated objects in __all__: %i\n" % num_all output += "Objects in refguide: %i\n\n" % num_ref only_all, only_ref, missing = compare(all_dict, others, names, module_name) dep_in_ref = set(only_ref).intersection(deprecated) only_ref = set(only_ref).difference(deprecated) if len(dep_in_ref) > 0: output += "Deprecated objects in refguide::\n\n" for name in sorted(deprecated): output += " " + name + "\n" if len(only_all) == len(only_ref) == len(missing) == 0: if dots: output_dot('.') return [(None, True, output)] else: if len(only_all) > 0: output += "ERROR: objects in %s.__all__ but not in refguide::\n\n" % module_name for name in sorted(only_all): output += " " + name + "\n" if len(only_ref) > 0: output += "ERROR: objects in refguide but not in %s.__all__::\n\n" % module_name for name in sorted(only_ref): output += " " + name + "\n" if len(missing) > 0: output += "ERROR: missing objects::\n\n" for name in sorted(missing): output += " " + name + "\n" if dots: output_dot('F') return [(None, False, output)] def validate_rst_syntax(text, name, dots=True): if text is None: if dots: output_dot('E') return False, "ERROR: %s: no documentation" % (name,) ok_unknown_items = set([ 'mod', 'currentmodule', 'autosummary', 'data', 'obj', 'versionadded', 'versionchanged', 'module', 'class', 'ref', 'func', 'toctree', 'moduleauthor', 'sectionauthor', 'codeauthor', 'eq', ]) # Run through docutils error_stream = io.StringIO() def resolve(name, is_label=False): return ("http://foo", name) token = '<RST-VALIDATE-SYNTAX-CHECK>' docutils.core.publish_doctree( text, token, settings_overrides = dict(halt_level=5, traceback=True, default_reference_context='title-reference', default_role='emphasis', link_base='', resolve_name=resolve, stylesheet_path='', raw_enabled=0, file_insertion_enabled=0, warning_stream=error_stream)) # Print errors, disregarding unimportant ones error_msg = error_stream.getvalue() errors = error_msg.split(token) success = True output = "" for error in errors: lines = error.splitlines() if not lines: continue m = re.match(r'.*Unknown (?:interpreted text role|directive type) "(.*)".*$', lines[0]) if m: if m.group(1) in ok_unknown_items: continue m = re.match(r'.*Error in "math" directive:.*unknown option: "label"', " ".join(lines), re.S) if m: continue output += name + lines[0] + "::\n " + "\n ".join(lines[1:]).rstrip() + "\n" success = False if not success: output += " " + "-"*72 + "\n" for lineno, line in enumerate(text.splitlines()): output += " %-4d %s\n" % (lineno+1, line) output += " " + "-"*72 + "\n\n" if dots: output_dot('.' if success else 'F') return success, output def output_dot(msg='.', stream=sys.stderr): stream.write(msg) stream.flush() def check_rest(module, names, dots=True): """ Check reStructuredText formatting of docstrings Returns: [(name, success_flag, output), ...] """ try: skip_types = (dict, str, unicode, float, int) except NameError: # python 3 skip_types = (dict, str, float, int) results = [] if module.__name__[6:] not in OTHER_MODULE_DOCS: results += [(module.__name__,) + validate_rst_syntax(inspect.getdoc(module), module.__name__, dots=dots)] for name in names: full_name = module.__name__ + '.' + name obj = getattr(module, name, None) if obj is None: results.append((full_name, False, "%s has no docstring" % (full_name,))) continue elif isinstance(obj, skip_types): continue if inspect.ismodule(obj): text = inspect.getdoc(obj) else: try: text = str(get_doc_object(obj)) except: import traceback results.append((full_name, False, "Error in docstring format!\n" + traceback.format_exc())) continue m = re.search("([\x00-\x09\x0b-\x1f])", text) if m: msg = ("Docstring contains a non-printable character %r! " "Maybe forgot r\"\"\"?" % (m.group(1),)) results.append((full_name, False, msg)) continue try: src_file = short_path(inspect.getsourcefile(obj)) except TypeError: src_file = None if src_file: file_full_name = src_file + ':' + full_name else: file_full_name = full_name results.append((full_name,) + validate_rst_syntax(text, file_full_name, dots=dots)) return results ### Doctest helpers #### # the namespace to run examples in DEFAULT_NAMESPACE = {'np': np} # the namespace to do checks in CHECK_NAMESPACE = { 'np': np, 'assert_allclose': np.testing.assert_allclose, 'assert_equal': np.testing.assert_equal, # recognize numpy repr's 'array': np.array, 'matrix': np.matrix, 'int64': np.int64, 'uint64': np.uint64, 'int8': np.int8, 'int32': np.int32, 'float64': np.float64, 'dtype': np.dtype, 'nan': np.nan, 'NaN': np.nan, 'inf': np.inf, 'Inf': np.inf, } class DTRunner(doctest.DocTestRunner): DIVIDER = "\n" def __init__(self, item_name, checker=None, verbose=None, optionflags=0): self._item_name = item_name doctest.DocTestRunner.__init__(self, checker=checker, verbose=verbose, optionflags=optionflags) def _report_item_name(self, out, new_line=False): if self._item_name is not None: if new_line: out("\n") self._item_name = None def report_start(self, out, test, example): self._checker._source = example.source return doctest.DocTestRunner.report_start(self, out, test, example) def report_success(self, out, test, example, got): if self._verbose: self._report_item_name(out, new_line=True) return doctest.DocTestRunner.report_success( self, out, test, example, got) def report_unexpected_exception(self, out, test, example, exc_info): self._report_item_name(out) return doctest.DocTestRunner.report_unexpected_exception( self, out, test, example, exc_info) def report_failure(self, out, test, example, got): self._report_item_name(out) return doctest.DocTestRunner.report_failure(self, out, test, example, got) class Checker(doctest.OutputChecker): obj_pattern = re.compile('at 0x[0-9a-fA-F]+>') vanilla = doctest.OutputChecker() rndm_markers = {'# random', '# Random', '#random', '#Random', "# may vary"} stopwords = {'plt.', '.hist', '.show', '.ylim', '.subplot(', 'set_title', 'imshow', 'plt.show', 'ax.axis', 'plt.plot(', '.bar(', '.title', '.ylabel', '.xlabel', 'set_ylim', 'set_xlim', '# reformatted'} def __init__(self, parse_namedtuples=True, ns=None, atol=1e-8, rtol=1e-2): self.parse_namedtuples = parse_namedtuples self.atol, self.rtol = atol, rtol if ns is None: self.ns = dict(CHECK_NAMESPACE) else: self.ns = ns def check_output(self, want, got, optionflags): # cut it short if they are equal if want == got: return True # skip stopwords in source if any(word in self._source for word in self.stopwords): return True # skip random stuff if any(word in want for word in self.rndm_markers): return True # skip function/object addresses if self.obj_pattern.search(got): return True # ignore comments (e.g. signal.freqresp) if want.lstrip().startswith("#"): return True # try the standard doctest try: if self.vanilla.check_output(want, got, optionflags): return True except Exception: pass # OK then, convert strings to objects try: a_want = eval(want, dict(self.ns)) a_got = eval(got, dict(self.ns)) except: if not self.parse_namedtuples: return False # suppose that "want" is a tuple, and "got" is smth like # MoodResult(statistic=10, pvalue=0.1). # Then convert the latter to the tuple (10, 0.1), # and then compare the tuples. try: num = len(a_want) regex = ('[\w\d_]+\(' + ', '.join(['[\w\d_]+=(.+)']*num) + '\)') grp = re.findall(regex, got.replace('\n', ' ')) if len(grp) > 1: # no more than one for now return False # fold it back to a tuple got_again = '(' + ', '.join(grp[0]) + ')' return self.check_output(want, got_again, optionflags) except Exception: return False # ... and defer to numpy try: return self._do_check(a_want, a_got) except Exception: # heterog tuple, eg (1, np.array([1., 2.])) try: return all(self._do_check(w, g) for w, g in zip(a_want, a_got)) except (TypeError, ValueError): return False def _do_check(self, want, got): # This should be done exactly as written to correctly handle all of # numpy-comparable objects, strings, and heterogenous tuples try: if want == got: return True except Exception: pass return np.allclose(want, got, atol=self.atol, rtol=self.rtol) def _run_doctests(tests, full_name, verbose, doctest_warnings): """Run modified doctests for the set of `tests`. Returns: list of [(success_flag, output), ...] """ flags = NORMALIZE_WHITESPACE | ELLIPSIS | IGNORE_EXCEPTION_DETAIL runner = DTRunner(full_name, checker=Checker(), optionflags=flags, verbose=verbose) output = [] success = True def out(msg): output.append(msg) class MyStderr(object): """Redirect stderr to the current stdout""" def write(self, msg): if doctest_warnings: sys.stdout.write(msg) else: out(msg) # Run tests, trying to restore global state afterward old_printoptions = np.get_printoptions() old_errstate = np.seterr() old_stderr = sys.stderr cwd = os.getcwd() tmpdir = tempfile.mkdtemp() sys.stderr = MyStderr() try: os.chdir(tmpdir) # try to ensure random seed is NOT reproducible np.random.seed(None) for t in tests: t.filename = short_path(t.filename, cwd) fails, successes = runner.run(t, out=out) if fails > 0: success = False finally: sys.stderr = old_stderr os.chdir(cwd) shutil.rmtree(tmpdir) np.set_printoptions(**old_printoptions) np.seterr(**old_errstate) return success, output def check_doctests(module, verbose, ns=None, dots=True, doctest_warnings=False): """Check code in docstrings of the module's public symbols. Returns: list of [(item_name, success_flag, output), ...] """ if ns is None: ns = dict(DEFAULT_NAMESPACE) # Loop over non-deprecated items results = [] for name in get_all_dict(module)[0]: full_name = module.__name__ + '.' + name if full_name in DOCTEST_SKIPLIST: continue try: obj = getattr(module, name) except AttributeError: import traceback results.append((full_name, False, "Missing item!\n" + traceback.format_exc())) continue finder = doctest.DocTestFinder() try: tests = finder.find(obj, name, globs=dict(ns)) except: import traceback results.append((full_name, False, "Failed to get doctests!\n" + traceback.format_exc())) continue success, output = _run_doctests(tests, full_name, verbose, doctest_warnings) if dots: output_dot('.' if success else 'F') results.append((full_name, success, "".join(output))) if HAVE_MATPLOTLIB: import matplotlib.pyplot as plt plt.close('all') return results def check_doctests_testfile(fname, verbose, ns=None, dots=True, doctest_warnings=False): """Check code in a text file. Mimic `check_doctests` above, differing mostly in test discovery. (which is borrowed from stdlib's doctest.testfile here, https://github.com/python-git/python/blob/master/Lib/doctest.py) Returns: list of [(item_name, success_flag, output), ...] Notes ----- We also try to weed out pseudocode: * We maintain a list of exceptions which signal pseudocode, * We split the text file into "blocks" of code separated by empty lines and/or intervening text. * If a block contains a marker, the whole block is then assumed to be pseudocode. It is then not being doctested. The rationale is that typically, the text looks like this: blah <BLANKLINE> >>> from numpy import some_module # pseudocode! >>> func = some_module.some_function >>> func(42) # still pseudocode 146 <BLANKLINE> blah <BLANKLINE> >>> 2 + 3 # real code, doctest it 5 """ results = [] if ns is None: ns = dict(DEFAULT_NAMESPACE) _, short_name = os.path.split(fname) if short_name in DOCTEST_SKIPLIST: return results full_name = fname text = open(fname).read() PSEUDOCODE = set(['some_function', 'some_module', 'import example', 'ctypes.CDLL', # likely need compiling, skip it 'integrate.nquad(func,' # ctypes integrate tutotial ]) # split the text into "blocks" and try to detect and omit pseudocode blocks. parser = doctest.DocTestParser() good_parts = [] for part in text.split('\n\n'): tests = parser.get_doctest(part, ns, fname, fname, 0) if any(word in ex.source for word in PSEUDOCODE for ex in tests.examples): # omit it pass else: # `part` looks like a good code, let's doctest it good_parts += [part] # Reassemble the good bits and doctest them: good_text = '\n\n'.join(good_parts) tests = parser.get_doctest(good_text, ns, fname, fname, 0) success, output = _run_doctests([tests], full_name, verbose, doctest_warnings) if dots: output_dot('.' if success else 'F') results.append((full_name, success, "".join(output))) if HAVE_MATPLOTLIB: import matplotlib.pyplot as plt plt.close('all') return results def init_matplotlib(): global HAVE_MATPLOTLIB try: import matplotlib matplotlib.use('Agg') HAVE_MATPLOTLIB = True except ImportError: HAVE_MATPLOTLIB = False def main(argv): parser = ArgumentParser(usage=__doc__.lstrip()) parser.add_argument("module_names", metavar="SUBMODULES", default=[], nargs='*', help="Submodules to check (default: all public)") parser.add_argument("--doctests", action="store_true", help="Run also doctests") parser.add_argument("-v", "--verbose", action="count", default=0) parser.add_argument("--doctest-warnings", action="store_true", help="Enforce warning checking for doctests") parser.add_argument("--skip-examples", action="store_true", help="Skip running doctests in the examples.") args = parser.parse_args(argv) modules = [] names_dict = {} if args.module_names: args.skip_examples = True else: args.module_names = list(PUBLIC_SUBMODULES) os.environ['SCIPY_PIL_IMAGE_VIEWER'] = 'true' module_names = list(args.module_names) for name in list(module_names): if name in OTHER_MODULE_DOCS: name = OTHER_MODULE_DOCS[name] if name not in module_names: module_names.append(name) for submodule_name in module_names: module_name = BASE_MODULE + '.' + submodule_name __import__(module_name) module = sys.modules[module_name] if submodule_name not in OTHER_MODULE_DOCS: find_names(module, names_dict) if submodule_name in args.module_names: modules.append(module) dots = True success = True results = [] print("Running checks for %d modules:" % (len(modules),)) if args.doctests or not args.skip_examples: init_matplotlib() for module in modules: if dots: if module is not modules[0]: sys.stderr.write(' ') sys.stderr.write(module.__name__ + ' ') sys.stderr.flush() all_dict, deprecated, others = get_all_dict(module) names = names_dict.get(module.__name__, set()) mod_results = [] mod_results += check_items(all_dict, names, deprecated, others, module.__name__) mod_results += check_rest(module, set(names).difference(deprecated), dots=dots) if args.doctests: mod_results += check_doctests(module, (args.verbose >= 2), dots=dots, doctest_warnings=args.doctest_warnings) for v in mod_results: assert isinstance(v, tuple), v results.append((module, mod_results)) if dots: sys.stderr.write("\n") sys.stderr.flush() if not args.skip_examples: examples_path = os.path.join( os.getcwd(), 'doc', 'source', 'regression', '*.rst') print('\nChecking examples files at %s:' % examples_path) for filename in sorted(glob.glob(examples_path)): if dots: sys.stderr.write('\n') sys.stderr.write(os.path.split(filename)[1] + ' ') sys.stderr.flush() examples_results = check_doctests_testfile( filename, (args.verbose >= 2), dots=dots, doctest_warnings=args.doctest_warnings) def scratch(): pass # stub out a "module", see below scratch.__name__ = filename results.append((scratch, examples_results)) if dots: sys.stderr.write("\n") sys.stderr.flush() # Report results all_success = True for module, mod_results in results: success = all(x[1] for x in mod_results) all_success = all_success and success if success and args.verbose == 0: continue print("") print("=" * len(module.__name__)) print(module.__name__) print("=" * len(module.__name__)) print("") for name, success, output in mod_results: if name is None: if not success or args.verbose >= 1: print(output.strip()) print("") elif not success or (args.verbose >= 2 and output.strip()): print(name) print("-"*len(name)) print("") print(output.strip()) print("") if all_success: print("\nOK: refguide and doctests checks passed!") sys.exit(0) else: print("\nERROR: refguide or doctests have errors") sys.exit(1) if __name__ == '__main__': main(argv=sys.argv[1:])
mit
samklr/spark-timeseries
python/sparkts/test/test_timeseriesrdd.py
6
5407
from test_utils import PySparkTestCase from sparkts.timeseriesrdd import * from sparkts.timeseriesrdd import _TimeSeriesSerializer from sparkts.datetimeindex import * import pandas as pd import numpy as np from unittest import TestCase from io import BytesIO from pyspark.sql import SQLContext class TimeSeriesSerializerTestCase(TestCase): def test_times_series_serializer(self): serializer = _TimeSeriesSerializer() stream = BytesIO() series = [('abc', np.array([4.0, 4.0, 5.0])), ('123', np.array([1.0, 2.0, 3.0]))] serializer.dump_stream(iter(series), stream) stream.seek(0) reconstituted = list(serializer.load_stream(stream)) self.assertEquals(reconstituted[0][0], series[0][0]) self.assertEquals(reconstituted[1][0], series[1][0]) self.assertTrue((reconstituted[0][1] == series[0][1]).all()) self.assertTrue((reconstituted[1][1] == series[1][1]).all()) class TimeSeriesRDDTestCase(PySparkTestCase): def test_time_series_rdd(self): freq = DayFrequency(1, self.sc) start = '2015-04-09' dt_index = uniform(start, periods=10, freq=freq, sc=self.sc) vecs = [np.arange(0, 10), np.arange(10, 20), np.arange(20, 30)] rdd = self.sc.parallelize(vecs).map(lambda x: (str(x[0]), x)) tsrdd = TimeSeriesRDD(dt_index, rdd) self.assertEquals(tsrdd.count(), 3) contents = tsrdd.collectAsMap() self.assertEquals(len(contents), 3) self.assertTrue((contents["0"] == np.arange(0, 10)).all()) self.assertTrue((contents["10"] == np.arange(10, 20)).all()) self.assertTrue((contents["20"] == np.arange(20, 30)).all()) subslice = tsrdd['2015-04-10':'2015-04-15'] self.assertEquals(subslice.index(), uniform('2015-04-10', periods=6, freq=freq, sc=self.sc)) contents = subslice.collectAsMap() self.assertEquals(len(contents), 3) self.assertTrue((contents["0"] == np.arange(1, 7)).all()) self.assertTrue((contents["10"] == np.arange(11, 17)).all()) self.assertTrue((contents["20"] == np.arange(21, 27)).all()) def test_to_instants(self): vecs = [np.arange(x, x + 4) for x in np.arange(0, 20, 4)] labels = ['a', 'b', 'c', 'd', 'e'] start = '2015-4-9' dt_index = uniform(start, periods=4, freq=DayFrequency(1, self.sc), sc=self.sc) rdd = self.sc.parallelize(zip(labels, vecs), 3) tsrdd = TimeSeriesRDD(dt_index, rdd) samples = tsrdd.to_instants().collect() target_dates = ['2015-4-9', '2015-4-10', '2015-4-11', '2015-4-12'] self.assertEquals([x[0] for x in samples], [pd.Timestamp(x) for x in target_dates]) self.assertTrue((samples[0][1] == np.arange(0, 20, 4)).all()) self.assertTrue((samples[1][1] == np.arange(1, 20, 4)).all()) self.assertTrue((samples[2][1] == np.arange(2, 20, 4)).all()) self.assertTrue((samples[3][1] == np.arange(3, 20, 4)).all()) def test_to_observations(self): sql_ctx = SQLContext(self.sc) vecs = [np.arange(x, x + 4) for x in np.arange(0, 20, 4)] labels = ['a', 'b', 'c', 'd', 'e'] start = '2015-4-9' dt_index = uniform(start, periods=4, freq=DayFrequency(1, self.sc), sc=self.sc) print(dt_index._jdt_index.size()) rdd = self.sc.parallelize(zip(labels, vecs), 3) tsrdd = TimeSeriesRDD(dt_index, rdd) obsdf = tsrdd.to_observations_dataframe(sql_ctx) tsrdd_from_df = time_series_rdd_from_observations( \ dt_index, obsdf, 'timestamp', 'key', 'value') ts1 = tsrdd.collect() ts1.sort(key = lambda x: x[0]) ts2 = tsrdd_from_df.collect() ts2.sort(key = lambda x: x[0]) self.assertTrue(all([pair[0][0] == pair[1][0] and (pair[0][1] == pair[1][1]).all() \ for pair in zip(ts1, ts2)])) df1 = obsdf.collect() df1.sort(key = lambda x: x.value) df2 = tsrdd_from_df.to_observations_dataframe(sql_ctx).collect() df2.sort(key = lambda x: x.value) self.assertEquals(df1, df2) def test_filter(self): vecs = [np.arange(x, x + 4) for x in np.arange(0, 20, 4)] labels = ['a', 'b', 'c', 'd', 'e'] start = '2015-4-9' dt_index = uniform(start, periods=4, freq=DayFrequency(1, self.sc), sc=self.sc) rdd = self.sc.parallelize(zip(labels, vecs), 3) tsrdd = TimeSeriesRDD(dt_index, rdd) filtered = tsrdd.filter(lambda x: x[0] == 'a' or x[0] == 'b') self.assertEquals(filtered.count(), 2) # assert it has TimeSeriesRDD functionality: filtered['2015-04-10':'2015-04-15'].count() def test_to_pandas_series_rdd(self): vecs = [np.arange(x, x + 4) for x in np.arange(0, 20, 4)] labels = ['a', 'b', 'c', 'd', 'e'] start = '2015-4-9' dt_index = uniform(start, periods=4, freq=DayFrequency(1, self.sc), sc=self.sc) rdd = self.sc.parallelize(zip(labels, vecs), 3) tsrdd = TimeSeriesRDD(dt_index, rdd) series_arr = tsrdd.to_pandas_series_rdd().collect() pd_index = dt_index.to_pandas_index() self.assertEquals(len(vecs), len(series_arr)) for i in xrange(len(vecs)): self.assertEquals(series_arr[i][0], labels[i]) self.assertTrue(pd.Series(vecs[i], pd_index).equals(series_arr[i][1]))
apache-2.0
jblackburne/scikit-learn
sklearn/tree/tests/test_tree.py
7
55471
""" Testing for the tree module (sklearn.tree). """ import pickle from functools import partial from itertools import product import struct import numpy as np from scipy.sparse import csc_matrix from scipy.sparse import csr_matrix from scipy.sparse import coo_matrix from sklearn.random_projection import sparse_random_matrix from sklearn.metrics import accuracy_score from sklearn.metrics import mean_squared_error from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_in from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_greater_equal from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_less_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_warns from sklearn.utils.testing import raises from sklearn.utils.testing import ignore_warnings from sklearn.utils.validation import check_random_state from sklearn.exceptions import NotFittedError from sklearn.tree import DecisionTreeClassifier from sklearn.tree import DecisionTreeRegressor from sklearn.tree import ExtraTreeClassifier from sklearn.tree import ExtraTreeRegressor from sklearn import tree from sklearn.tree._tree import TREE_LEAF from sklearn import datasets from sklearn.utils import compute_sample_weight CLF_CRITERIONS = ("gini", "entropy") REG_CRITERIONS = ("mse", "mae") CLF_TREES = { "DecisionTreeClassifier": DecisionTreeClassifier, "Presort-DecisionTreeClassifier": partial(DecisionTreeClassifier, presort=True), "ExtraTreeClassifier": ExtraTreeClassifier, } REG_TREES = { "DecisionTreeRegressor": DecisionTreeRegressor, "Presort-DecisionTreeRegressor": partial(DecisionTreeRegressor, presort=True), "ExtraTreeRegressor": ExtraTreeRegressor, } ALL_TREES = dict() ALL_TREES.update(CLF_TREES) ALL_TREES.update(REG_TREES) SPARSE_TREES = ["DecisionTreeClassifier", "DecisionTreeRegressor", "ExtraTreeClassifier", "ExtraTreeRegressor"] X_small = np.array([ [0, 0, 4, 0, 0, 0, 1, -14, 0, -4, 0, 0, 0, 0, ], [0, 0, 5, 3, 0, -4, 0, 0, 1, -5, 0.2, 0, 4, 1, ], [-1, -1, 0, 0, -4.5, 0, 0, 2.1, 1, 0, 0, -4.5, 0, 1, ], [-1, -1, 0, -1.2, 0, 0, 0, 0, 0, 0, 0.2, 0, 0, 1, ], [-1, -1, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 1, ], [-1, -2, 0, 4, -3, 10, 4, 0, -3.2, 0, 4, 3, -4, 1, ], [2.11, 0, -6, -0.5, 0, 11, 0, 0, -3.2, 6, 0.5, 0, -3, 1, ], [2.11, 0, -6, -0.5, 0, 11, 0, 0, -3.2, 6, 0, 0, -2, 1, ], [2.11, 8, -6, -0.5, 0, 11, 0, 0, -3.2, 6, 0, 0, -2, 1, ], [2.11, 8, -6, -0.5, 0, 11, 0, 0, -3.2, 6, 0.5, 0, -1, 0, ], [2, 8, 5, 1, 0.5, -4, 10, 0, 1, -5, 3, 0, 2, 0, ], [2, 0, 1, 1, 1, -1, 1, 0, 0, -2, 3, 0, 1, 0, ], [2, 0, 1, 2, 3, -1, 10, 2, 0, -1, 1, 2, 2, 0, ], [1, 1, 0, 2, 2, -1, 1, 2, 0, -5, 1, 2, 3, 0, ], [3, 1, 0, 3, 0, -4, 10, 0, 1, -5, 3, 0, 3, 1, ], [2.11, 8, -6, -0.5, 0, 1, 0, 0, -3.2, 6, 0.5, 0, -3, 1, ], [2.11, 8, -6, -0.5, 0, 1, 0, 0, -3.2, 6, 1.5, 1, -1, -1, ], [2.11, 8, -6, -0.5, 0, 10, 0, 0, -3.2, 6, 0.5, 0, -1, -1, ], [2, 0, 5, 1, 0.5, -2, 10, 0, 1, -5, 3, 1, 0, -1, ], [2, 0, 1, 1, 1, -2, 1, 0, 0, -2, 0, 0, 0, 1, ], [2, 1, 1, 1, 2, -1, 10, 2, 0, -1, 0, 2, 1, 1, ], [1, 1, 0, 0, 1, -3, 1, 2, 0, -5, 1, 2, 1, 1, ], [3, 1, 0, 1, 0, -4, 1, 0, 1, -2, 0, 0, 1, 0, ]]) y_small = [1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0] y_small_reg = [1.0, 2.1, 1.2, 0.05, 10, 2.4, 3.1, 1.01, 0.01, 2.98, 3.1, 1.1, 0.0, 1.2, 2, 11, 0, 0, 4.5, 0.201, 1.06, 0.9, 0] # toy sample X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]] y = [-1, -1, -1, 1, 1, 1] T = [[-1, -1], [2, 2], [3, 2]] true_result = [-1, 1, 1] # also load the iris dataset # and randomly permute it iris = datasets.load_iris() rng = np.random.RandomState(1) perm = rng.permutation(iris.target.size) iris.data = iris.data[perm] iris.target = iris.target[perm] # also load the boston dataset # and randomly permute it boston = datasets.load_boston() perm = rng.permutation(boston.target.size) boston.data = boston.data[perm] boston.target = boston.target[perm] digits = datasets.load_digits() perm = rng.permutation(digits.target.size) digits.data = digits.data[perm] digits.target = digits.target[perm] random_state = check_random_state(0) X_multilabel, y_multilabel = datasets.make_multilabel_classification( random_state=0, n_samples=30, n_features=10) X_sparse_pos = random_state.uniform(size=(20, 5)) X_sparse_pos[X_sparse_pos <= 0.8] = 0. y_random = random_state.randint(0, 4, size=(20, )) X_sparse_mix = sparse_random_matrix(20, 10, density=0.25, random_state=0) DATASETS = { "iris": {"X": iris.data, "y": iris.target}, "boston": {"X": boston.data, "y": boston.target}, "digits": {"X": digits.data, "y": digits.target}, "toy": {"X": X, "y": y}, "clf_small": {"X": X_small, "y": y_small}, "reg_small": {"X": X_small, "y": y_small_reg}, "multilabel": {"X": X_multilabel, "y": y_multilabel}, "sparse-pos": {"X": X_sparse_pos, "y": y_random}, "sparse-neg": {"X": - X_sparse_pos, "y": y_random}, "sparse-mix": {"X": X_sparse_mix, "y": y_random}, "zeros": {"X": np.zeros((20, 3)), "y": y_random} } for name in DATASETS: DATASETS[name]["X_sparse"] = csc_matrix(DATASETS[name]["X"]) def assert_tree_equal(d, s, message): assert_equal(s.node_count, d.node_count, "{0}: inequal number of node ({1} != {2})" "".format(message, s.node_count, d.node_count)) assert_array_equal(d.children_right, s.children_right, message + ": inequal children_right") assert_array_equal(d.children_left, s.children_left, message + ": inequal children_left") external = d.children_right == TREE_LEAF internal = np.logical_not(external) assert_array_equal(d.feature[internal], s.feature[internal], message + ": inequal features") assert_array_equal(d.threshold[internal], s.threshold[internal], message + ": inequal threshold") assert_array_equal(d.n_node_samples.sum(), s.n_node_samples.sum(), message + ": inequal sum(n_node_samples)") assert_array_equal(d.n_node_samples, s.n_node_samples, message + ": inequal n_node_samples") assert_almost_equal(d.impurity, s.impurity, err_msg=message + ": inequal impurity") assert_array_almost_equal(d.value[external], s.value[external], err_msg=message + ": inequal value") def test_classification_toy(): # Check classification on a toy dataset. for name, Tree in CLF_TREES.items(): clf = Tree(random_state=0) clf.fit(X, y) assert_array_equal(clf.predict(T), true_result, "Failed with {0}".format(name)) clf = Tree(max_features=1, random_state=1) clf.fit(X, y) assert_array_equal(clf.predict(T), true_result, "Failed with {0}".format(name)) def test_weighted_classification_toy(): # Check classification on a weighted toy dataset. for name, Tree in CLF_TREES.items(): clf = Tree(random_state=0) clf.fit(X, y, sample_weight=np.ones(len(X))) assert_array_equal(clf.predict(T), true_result, "Failed with {0}".format(name)) clf.fit(X, y, sample_weight=np.ones(len(X)) * 0.5) assert_array_equal(clf.predict(T), true_result, "Failed with {0}".format(name)) def test_regression_toy(): # Check regression on a toy dataset. for name, Tree in REG_TREES.items(): reg = Tree(random_state=1) reg.fit(X, y) assert_almost_equal(reg.predict(T), true_result, err_msg="Failed with {0}".format(name)) clf = Tree(max_features=1, random_state=1) clf.fit(X, y) assert_almost_equal(reg.predict(T), true_result, err_msg="Failed with {0}".format(name)) def test_xor(): # Check on a XOR problem y = np.zeros((10, 10)) y[:5, :5] = 1 y[5:, 5:] = 1 gridx, gridy = np.indices(y.shape) X = np.vstack([gridx.ravel(), gridy.ravel()]).T y = y.ravel() for name, Tree in CLF_TREES.items(): clf = Tree(random_state=0) clf.fit(X, y) assert_equal(clf.score(X, y), 1.0, "Failed with {0}".format(name)) clf = Tree(random_state=0, max_features=1) clf.fit(X, y) assert_equal(clf.score(X, y), 1.0, "Failed with {0}".format(name)) def test_iris(): # Check consistency on dataset iris. for (name, Tree), criterion in product(CLF_TREES.items(), CLF_CRITERIONS): clf = Tree(criterion=criterion, random_state=0) clf.fit(iris.data, iris.target) score = accuracy_score(clf.predict(iris.data), iris.target) assert_greater(score, 0.9, "Failed with {0}, criterion = {1} and score = {2}" "".format(name, criterion, score)) clf = Tree(criterion=criterion, max_features=2, random_state=0) clf.fit(iris.data, iris.target) score = accuracy_score(clf.predict(iris.data), iris.target) assert_greater(score, 0.5, "Failed with {0}, criterion = {1} and score = {2}" "".format(name, criterion, score)) def test_boston(): # Check consistency on dataset boston house prices. for (name, Tree), criterion in product(REG_TREES.items(), REG_CRITERIONS): reg = Tree(criterion=criterion, random_state=0) reg.fit(boston.data, boston.target) score = mean_squared_error(boston.target, reg.predict(boston.data)) assert_less(score, 1, "Failed with {0}, criterion = {1} and score = {2}" "".format(name, criterion, score)) # using fewer features reduces the learning ability of this tree, # but reduces training time. reg = Tree(criterion=criterion, max_features=6, random_state=0) reg.fit(boston.data, boston.target) score = mean_squared_error(boston.target, reg.predict(boston.data)) assert_less(score, 2, "Failed with {0}, criterion = {1} and score = {2}" "".format(name, criterion, score)) def test_probability(): # Predict probabilities using DecisionTreeClassifier. for name, Tree in CLF_TREES.items(): clf = Tree(max_depth=1, max_features=1, random_state=42) clf.fit(iris.data, iris.target) prob_predict = clf.predict_proba(iris.data) assert_array_almost_equal(np.sum(prob_predict, 1), np.ones(iris.data.shape[0]), err_msg="Failed with {0}".format(name)) assert_array_equal(np.argmax(prob_predict, 1), clf.predict(iris.data), err_msg="Failed with {0}".format(name)) assert_almost_equal(clf.predict_proba(iris.data), np.exp(clf.predict_log_proba(iris.data)), 8, err_msg="Failed with {0}".format(name)) def test_arrayrepr(): # Check the array representation. # Check resize X = np.arange(10000)[:, np.newaxis] y = np.arange(10000) for name, Tree in REG_TREES.items(): reg = Tree(max_depth=None, random_state=0) reg.fit(X, y) def test_pure_set(): # Check when y is pure. X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]] y = [1, 1, 1, 1, 1, 1] for name, TreeClassifier in CLF_TREES.items(): clf = TreeClassifier(random_state=0) clf.fit(X, y) assert_array_equal(clf.predict(X), y, err_msg="Failed with {0}".format(name)) for name, TreeRegressor in REG_TREES.items(): reg = TreeRegressor(random_state=0) reg.fit(X, y) assert_almost_equal(clf.predict(X), y, err_msg="Failed with {0}".format(name)) def test_numerical_stability(): # Check numerical stability. X = np.array([ [152.08097839, 140.40744019, 129.75102234, 159.90493774], [142.50700378, 135.81935120, 117.82884979, 162.75781250], [127.28772736, 140.40744019, 129.75102234, 159.90493774], [132.37025452, 143.71923828, 138.35694885, 157.84558105], [103.10237122, 143.71928406, 138.35696411, 157.84559631], [127.71276855, 143.71923828, 138.35694885, 157.84558105], [120.91514587, 140.40744019, 129.75102234, 159.90493774]]) y = np.array( [1., 0.70209277, 0.53896582, 0., 0.90914464, 0.48026916, 0.49622521]) with np.errstate(all="raise"): for name, Tree in REG_TREES.items(): reg = Tree(random_state=0) reg.fit(X, y) reg.fit(X, -y) reg.fit(-X, y) reg.fit(-X, -y) def test_importances(): # Check variable importances. X, y = datasets.make_classification(n_samples=2000, n_features=10, n_informative=3, n_redundant=0, n_repeated=0, shuffle=False, random_state=0) for name, Tree in CLF_TREES.items(): clf = Tree(random_state=0) clf.fit(X, y) importances = clf.feature_importances_ n_important = np.sum(importances > 0.1) assert_equal(importances.shape[0], 10, "Failed with {0}".format(name)) assert_equal(n_important, 3, "Failed with {0}".format(name)) X_new = assert_warns( DeprecationWarning, clf.transform, X, threshold="mean") assert_less(0, X_new.shape[1], "Failed with {0}".format(name)) assert_less(X_new.shape[1], X.shape[1], "Failed with {0}".format(name)) # Check on iris that importances are the same for all builders clf = DecisionTreeClassifier(random_state=0) clf.fit(iris.data, iris.target) clf2 = DecisionTreeClassifier(random_state=0, max_leaf_nodes=len(iris.data)) clf2.fit(iris.data, iris.target) assert_array_equal(clf.feature_importances_, clf2.feature_importances_) @raises(ValueError) def test_importances_raises(): # Check if variable importance before fit raises ValueError. clf = DecisionTreeClassifier() clf.feature_importances_ def test_importances_gini_equal_mse(): # Check that gini is equivalent to mse for binary output variable X, y = datasets.make_classification(n_samples=2000, n_features=10, n_informative=3, n_redundant=0, n_repeated=0, shuffle=False, random_state=0) # The gini index and the mean square error (variance) might differ due # to numerical instability. Since those instabilities mainly occurs at # high tree depth, we restrict this maximal depth. clf = DecisionTreeClassifier(criterion="gini", max_depth=5, random_state=0).fit(X, y) reg = DecisionTreeRegressor(criterion="mse", max_depth=5, random_state=0).fit(X, y) assert_almost_equal(clf.feature_importances_, reg.feature_importances_) assert_array_equal(clf.tree_.feature, reg.tree_.feature) assert_array_equal(clf.tree_.children_left, reg.tree_.children_left) assert_array_equal(clf.tree_.children_right, reg.tree_.children_right) assert_array_equal(clf.tree_.n_node_samples, reg.tree_.n_node_samples) def test_max_features(): # Check max_features. for name, TreeRegressor in REG_TREES.items(): reg = TreeRegressor(max_features="auto") reg.fit(boston.data, boston.target) assert_equal(reg.max_features_, boston.data.shape[1]) for name, TreeClassifier in CLF_TREES.items(): clf = TreeClassifier(max_features="auto") clf.fit(iris.data, iris.target) assert_equal(clf.max_features_, 2) for name, TreeEstimator in ALL_TREES.items(): est = TreeEstimator(max_features="sqrt") est.fit(iris.data, iris.target) assert_equal(est.max_features_, int(np.sqrt(iris.data.shape[1]))) est = TreeEstimator(max_features="log2") est.fit(iris.data, iris.target) assert_equal(est.max_features_, int(np.log2(iris.data.shape[1]))) est = TreeEstimator(max_features=1) est.fit(iris.data, iris.target) assert_equal(est.max_features_, 1) est = TreeEstimator(max_features=3) est.fit(iris.data, iris.target) assert_equal(est.max_features_, 3) est = TreeEstimator(max_features=0.01) est.fit(iris.data, iris.target) assert_equal(est.max_features_, 1) est = TreeEstimator(max_features=0.5) est.fit(iris.data, iris.target) assert_equal(est.max_features_, int(0.5 * iris.data.shape[1])) est = TreeEstimator(max_features=1.0) est.fit(iris.data, iris.target) assert_equal(est.max_features_, iris.data.shape[1]) est = TreeEstimator(max_features=None) est.fit(iris.data, iris.target) assert_equal(est.max_features_, iris.data.shape[1]) # use values of max_features that are invalid est = TreeEstimator(max_features=10) assert_raises(ValueError, est.fit, X, y) est = TreeEstimator(max_features=-1) assert_raises(ValueError, est.fit, X, y) est = TreeEstimator(max_features=0.0) assert_raises(ValueError, est.fit, X, y) est = TreeEstimator(max_features=1.5) assert_raises(ValueError, est.fit, X, y) est = TreeEstimator(max_features="foobar") assert_raises(ValueError, est.fit, X, y) def test_error(): # Test that it gives proper exception on deficient input. for name, TreeEstimator in CLF_TREES.items(): # predict before fit est = TreeEstimator() assert_raises(NotFittedError, est.predict_proba, X) est.fit(X, y) X2 = [[-2, -1, 1]] # wrong feature shape for sample assert_raises(ValueError, est.predict_proba, X2) for name, TreeEstimator in ALL_TREES.items(): # Invalid values for parameters assert_raises(ValueError, TreeEstimator(min_samples_leaf=-1).fit, X, y) assert_raises(ValueError, TreeEstimator(min_samples_leaf=.6).fit, X, y) assert_raises(ValueError, TreeEstimator(min_samples_leaf=0.).fit, X, y) assert_raises(ValueError, TreeEstimator(min_weight_fraction_leaf=-1).fit, X, y) assert_raises(ValueError, TreeEstimator(min_weight_fraction_leaf=0.51).fit, X, y) assert_raises(ValueError, TreeEstimator(min_samples_split=-1).fit, X, y) assert_raises(ValueError, TreeEstimator(min_samples_split=0.0).fit, X, y) assert_raises(ValueError, TreeEstimator(min_samples_split=1.1).fit, X, y) assert_raises(ValueError, TreeEstimator(max_depth=-1).fit, X, y) assert_raises(ValueError, TreeEstimator(max_features=42).fit, X, y) assert_raises(ValueError, TreeEstimator(min_impurity_split=-1.0).fit, X, y) # Wrong dimensions est = TreeEstimator() y2 = y[:-1] assert_raises(ValueError, est.fit, X, y2) # Test with arrays that are non-contiguous. Xf = np.asfortranarray(X) est = TreeEstimator() est.fit(Xf, y) assert_almost_equal(est.predict(T), true_result) # predict before fitting est = TreeEstimator() assert_raises(NotFittedError, est.predict, T) # predict on vector with different dims est.fit(X, y) t = np.asarray(T) assert_raises(ValueError, est.predict, t[:, 1:]) # wrong sample shape Xt = np.array(X).T est = TreeEstimator() est.fit(np.dot(X, Xt), y) assert_raises(ValueError, est.predict, X) assert_raises(ValueError, est.apply, X) clf = TreeEstimator() clf.fit(X, y) assert_raises(ValueError, clf.predict, Xt) assert_raises(ValueError, clf.apply, Xt) # apply before fitting est = TreeEstimator() assert_raises(NotFittedError, est.apply, T) def test_min_samples_split(): """Test min_samples_split parameter""" X = np.asfortranarray(iris.data.astype(tree._tree.DTYPE)) y = iris.target # test both DepthFirstTreeBuilder and BestFirstTreeBuilder # by setting max_leaf_nodes for max_leaf_nodes, name in product((None, 1000), ALL_TREES.keys()): TreeEstimator = ALL_TREES[name] # test for integer parameter est = TreeEstimator(min_samples_split=10, max_leaf_nodes=max_leaf_nodes, random_state=0) est.fit(X, y) # count samples on nodes, -1 means it is a leaf node_samples = est.tree_.n_node_samples[est.tree_.children_left != -1] assert_greater(np.min(node_samples), 9, "Failed with {0}".format(name)) # test for float parameter est = TreeEstimator(min_samples_split=0.2, max_leaf_nodes=max_leaf_nodes, random_state=0) est.fit(X, y) # count samples on nodes, -1 means it is a leaf node_samples = est.tree_.n_node_samples[est.tree_.children_left != -1] assert_greater(np.min(node_samples), 9, "Failed with {0}".format(name)) def test_min_samples_leaf(): # Test if leaves contain more than leaf_count training examples X = np.asfortranarray(iris.data.astype(tree._tree.DTYPE)) y = iris.target # test both DepthFirstTreeBuilder and BestFirstTreeBuilder # by setting max_leaf_nodes for max_leaf_nodes, name in product((None, 1000), ALL_TREES.keys()): TreeEstimator = ALL_TREES[name] # test integer parameter est = TreeEstimator(min_samples_leaf=5, max_leaf_nodes=max_leaf_nodes, random_state=0) est.fit(X, y) out = est.tree_.apply(X) node_counts = np.bincount(out) # drop inner nodes leaf_count = node_counts[node_counts != 0] assert_greater(np.min(leaf_count), 4, "Failed with {0}".format(name)) # test float parameter est = TreeEstimator(min_samples_leaf=0.1, max_leaf_nodes=max_leaf_nodes, random_state=0) est.fit(X, y) out = est.tree_.apply(X) node_counts = np.bincount(out) # drop inner nodes leaf_count = node_counts[node_counts != 0] assert_greater(np.min(leaf_count), 4, "Failed with {0}".format(name)) def check_min_weight_fraction_leaf(name, datasets, sparse=False): """Test if leaves contain at least min_weight_fraction_leaf of the training set""" if sparse: X = DATASETS[datasets]["X_sparse"].astype(np.float32) else: X = DATASETS[datasets]["X"].astype(np.float32) y = DATASETS[datasets]["y"] weights = rng.rand(X.shape[0]) total_weight = np.sum(weights) TreeEstimator = ALL_TREES[name] # test both DepthFirstTreeBuilder and BestFirstTreeBuilder # by setting max_leaf_nodes for max_leaf_nodes, frac in product((None, 1000), np.linspace(0, 0.5, 6)): est = TreeEstimator(min_weight_fraction_leaf=frac, max_leaf_nodes=max_leaf_nodes, random_state=0) est.fit(X, y, sample_weight=weights) if sparse: out = est.tree_.apply(X.tocsr()) else: out = est.tree_.apply(X) node_weights = np.bincount(out, weights=weights) # drop inner nodes leaf_weights = node_weights[node_weights != 0] assert_greater_equal( np.min(leaf_weights), total_weight * est.min_weight_fraction_leaf, "Failed with {0} " "min_weight_fraction_leaf={1}".format( name, est.min_weight_fraction_leaf)) def test_min_weight_fraction_leaf(): # Check on dense input for name in ALL_TREES: yield check_min_weight_fraction_leaf, name, "iris" # Check on sparse input for name in SPARSE_TREES: yield check_min_weight_fraction_leaf, name, "multilabel", True def test_min_impurity_split(): # test if min_impurity_split creates leaves with impurity # [0, min_impurity_split) when min_samples_leaf = 1 and # min_samples_split = 2. X = np.asfortranarray(iris.data.astype(tree._tree.DTYPE)) y = iris.target # test both DepthFirstTreeBuilder and BestFirstTreeBuilder # by setting max_leaf_nodes for max_leaf_nodes, name in product((None, 1000), ALL_TREES.keys()): TreeEstimator = ALL_TREES[name] min_impurity_split = .5 # verify leaf nodes without min_impurity_split less than # impurity 1e-7 est = TreeEstimator(max_leaf_nodes=max_leaf_nodes, random_state=0) assert_less_equal(est.min_impurity_split, 1e-7, "Failed, min_impurity_split = {0} > 1e-7".format( est.min_impurity_split)) est.fit(X, y) for node in range(est.tree_.node_count): if (est.tree_.children_left[node] == TREE_LEAF or est.tree_.children_right[node] == TREE_LEAF): assert_equal(est.tree_.impurity[node], 0., "Failed with {0} " "min_impurity_split={1}".format( est.tree_.impurity[node], est.min_impurity_split)) # verify leaf nodes have impurity [0,min_impurity_split] when using min_impurity_split est = TreeEstimator(max_leaf_nodes=max_leaf_nodes, min_impurity_split=min_impurity_split, random_state=0) est.fit(X, y) for node in range(est.tree_.node_count): if (est.tree_.children_left[node] == TREE_LEAF or est.tree_.children_right[node] == TREE_LEAF): assert_greater_equal(est.tree_.impurity[node], 0, "Failed with {0}, " "min_impurity_split={1}".format( est.tree_.impurity[node], est.min_impurity_split)) assert_less_equal(est.tree_.impurity[node], min_impurity_split, "Failed with {0}, " "min_impurity_split={1}".format( est.tree_.impurity[node], est.min_impurity_split)) def test_pickle(): for name, TreeEstimator in ALL_TREES.items(): if "Classifier" in name: X, y = iris.data, iris.target else: X, y = boston.data, boston.target est = TreeEstimator(random_state=0) est.fit(X, y) score = est.score(X, y) fitted_attribute = dict() for attribute in ["max_depth", "node_count", "capacity"]: fitted_attribute[attribute] = getattr(est.tree_, attribute) serialized_object = pickle.dumps(est) est2 = pickle.loads(serialized_object) assert_equal(type(est2), est.__class__) score2 = est2.score(X, y) assert_equal(score, score2, "Failed to generate same score after pickling " "with {0}".format(name)) for attribute in fitted_attribute: assert_equal(getattr(est2.tree_, attribute), fitted_attribute[attribute], "Failed to generate same attribute {0} after " "pickling with {1}".format(attribute, name)) def test_multioutput(): # Check estimators on multi-output problems. X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1], [-2, 1], [-1, 1], [-1, 2], [2, -1], [1, -1], [1, -2]] y = [[-1, 0], [-1, 0], [-1, 0], [1, 1], [1, 1], [1, 1], [-1, 2], [-1, 2], [-1, 2], [1, 3], [1, 3], [1, 3]] T = [[-1, -1], [1, 1], [-1, 1], [1, -1]] y_true = [[-1, 0], [1, 1], [-1, 2], [1, 3]] # toy classification problem for name, TreeClassifier in CLF_TREES.items(): clf = TreeClassifier(random_state=0) y_hat = clf.fit(X, y).predict(T) assert_array_equal(y_hat, y_true) assert_equal(y_hat.shape, (4, 2)) proba = clf.predict_proba(T) assert_equal(len(proba), 2) assert_equal(proba[0].shape, (4, 2)) assert_equal(proba[1].shape, (4, 4)) log_proba = clf.predict_log_proba(T) assert_equal(len(log_proba), 2) assert_equal(log_proba[0].shape, (4, 2)) assert_equal(log_proba[1].shape, (4, 4)) # toy regression problem for name, TreeRegressor in REG_TREES.items(): reg = TreeRegressor(random_state=0) y_hat = reg.fit(X, y).predict(T) assert_almost_equal(y_hat, y_true) assert_equal(y_hat.shape, (4, 2)) def test_classes_shape(): # Test that n_classes_ and classes_ have proper shape. for name, TreeClassifier in CLF_TREES.items(): # Classification, single output clf = TreeClassifier(random_state=0) clf.fit(X, y) assert_equal(clf.n_classes_, 2) assert_array_equal(clf.classes_, [-1, 1]) # Classification, multi-output _y = np.vstack((y, np.array(y) * 2)).T clf = TreeClassifier(random_state=0) clf.fit(X, _y) assert_equal(len(clf.n_classes_), 2) assert_equal(len(clf.classes_), 2) assert_array_equal(clf.n_classes_, [2, 2]) assert_array_equal(clf.classes_, [[-1, 1], [-2, 2]]) def test_unbalanced_iris(): # Check class rebalancing. unbalanced_X = iris.data[:125] unbalanced_y = iris.target[:125] sample_weight = compute_sample_weight("balanced", unbalanced_y) for name, TreeClassifier in CLF_TREES.items(): clf = TreeClassifier(random_state=0) clf.fit(unbalanced_X, unbalanced_y, sample_weight=sample_weight) assert_almost_equal(clf.predict(unbalanced_X), unbalanced_y) def test_memory_layout(): # Check that it works no matter the memory layout for (name, TreeEstimator), dtype in product(ALL_TREES.items(), [np.float64, np.float32]): est = TreeEstimator(random_state=0) # Nothing X = np.asarray(iris.data, dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) # C-order X = np.asarray(iris.data, order="C", dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) # F-order X = np.asarray(iris.data, order="F", dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) # Contiguous X = np.ascontiguousarray(iris.data, dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) if not est.presort: # csr matrix X = csr_matrix(iris.data, dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) # csc_matrix X = csc_matrix(iris.data, dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) # Strided X = np.asarray(iris.data[::3], dtype=dtype) y = iris.target[::3] assert_array_equal(est.fit(X, y).predict(X), y) def test_sample_weight(): # Check sample weighting. # Test that zero-weighted samples are not taken into account X = np.arange(100)[:, np.newaxis] y = np.ones(100) y[:50] = 0.0 sample_weight = np.ones(100) sample_weight[y == 0] = 0.0 clf = DecisionTreeClassifier(random_state=0) clf.fit(X, y, sample_weight=sample_weight) assert_array_equal(clf.predict(X), np.ones(100)) # Test that low weighted samples are not taken into account at low depth X = np.arange(200)[:, np.newaxis] y = np.zeros(200) y[50:100] = 1 y[100:200] = 2 X[100:200, 0] = 200 sample_weight = np.ones(200) sample_weight[y == 2] = .51 # Samples of class '2' are still weightier clf = DecisionTreeClassifier(max_depth=1, random_state=0) clf.fit(X, y, sample_weight=sample_weight) assert_equal(clf.tree_.threshold[0], 149.5) sample_weight[y == 2] = .5 # Samples of class '2' are no longer weightier clf = DecisionTreeClassifier(max_depth=1, random_state=0) clf.fit(X, y, sample_weight=sample_weight) assert_equal(clf.tree_.threshold[0], 49.5) # Threshold should have moved # Test that sample weighting is the same as having duplicates X = iris.data y = iris.target duplicates = rng.randint(0, X.shape[0], 100) clf = DecisionTreeClassifier(random_state=1) clf.fit(X[duplicates], y[duplicates]) sample_weight = np.bincount(duplicates, minlength=X.shape[0]) clf2 = DecisionTreeClassifier(random_state=1) clf2.fit(X, y, sample_weight=sample_weight) internal = clf.tree_.children_left != tree._tree.TREE_LEAF assert_array_almost_equal(clf.tree_.threshold[internal], clf2.tree_.threshold[internal]) def test_sample_weight_invalid(): # Check sample weighting raises errors. X = np.arange(100)[:, np.newaxis] y = np.ones(100) y[:50] = 0.0 clf = DecisionTreeClassifier(random_state=0) sample_weight = np.random.rand(100, 1) assert_raises(ValueError, clf.fit, X, y, sample_weight=sample_weight) sample_weight = np.array(0) assert_raises(ValueError, clf.fit, X, y, sample_weight=sample_weight) sample_weight = np.ones(101) assert_raises(ValueError, clf.fit, X, y, sample_weight=sample_weight) sample_weight = np.ones(99) assert_raises(ValueError, clf.fit, X, y, sample_weight=sample_weight) def check_class_weights(name): """Check class_weights resemble sample_weights behavior.""" TreeClassifier = CLF_TREES[name] # Iris is balanced, so no effect expected for using 'balanced' weights clf1 = TreeClassifier(random_state=0) clf1.fit(iris.data, iris.target) clf2 = TreeClassifier(class_weight='balanced', random_state=0) clf2.fit(iris.data, iris.target) assert_almost_equal(clf1.feature_importances_, clf2.feature_importances_) # Make a multi-output problem with three copies of Iris iris_multi = np.vstack((iris.target, iris.target, iris.target)).T # Create user-defined weights that should balance over the outputs clf3 = TreeClassifier(class_weight=[{0: 2., 1: 2., 2: 1.}, {0: 2., 1: 1., 2: 2.}, {0: 1., 1: 2., 2: 2.}], random_state=0) clf3.fit(iris.data, iris_multi) assert_almost_equal(clf2.feature_importances_, clf3.feature_importances_) # Check against multi-output "auto" which should also have no effect clf4 = TreeClassifier(class_weight='balanced', random_state=0) clf4.fit(iris.data, iris_multi) assert_almost_equal(clf3.feature_importances_, clf4.feature_importances_) # Inflate importance of class 1, check against user-defined weights sample_weight = np.ones(iris.target.shape) sample_weight[iris.target == 1] *= 100 class_weight = {0: 1., 1: 100., 2: 1.} clf1 = TreeClassifier(random_state=0) clf1.fit(iris.data, iris.target, sample_weight) clf2 = TreeClassifier(class_weight=class_weight, random_state=0) clf2.fit(iris.data, iris.target) assert_almost_equal(clf1.feature_importances_, clf2.feature_importances_) # Check that sample_weight and class_weight are multiplicative clf1 = TreeClassifier(random_state=0) clf1.fit(iris.data, iris.target, sample_weight ** 2) clf2 = TreeClassifier(class_weight=class_weight, random_state=0) clf2.fit(iris.data, iris.target, sample_weight) assert_almost_equal(clf1.feature_importances_, clf2.feature_importances_) def test_class_weights(): for name in CLF_TREES: yield check_class_weights, name def check_class_weight_errors(name): # Test if class_weight raises errors and warnings when expected. TreeClassifier = CLF_TREES[name] _y = np.vstack((y, np.array(y) * 2)).T # Invalid preset string clf = TreeClassifier(class_weight='the larch', random_state=0) assert_raises(ValueError, clf.fit, X, y) assert_raises(ValueError, clf.fit, X, _y) # Not a list or preset for multi-output clf = TreeClassifier(class_weight=1, random_state=0) assert_raises(ValueError, clf.fit, X, _y) # Incorrect length list for multi-output clf = TreeClassifier(class_weight=[{-1: 0.5, 1: 1.}], random_state=0) assert_raises(ValueError, clf.fit, X, _y) def test_class_weight_errors(): for name in CLF_TREES: yield check_class_weight_errors, name def test_max_leaf_nodes(): # Test greedy trees with max_depth + 1 leafs. from sklearn.tree._tree import TREE_LEAF X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) k = 4 for name, TreeEstimator in ALL_TREES.items(): est = TreeEstimator(max_depth=None, max_leaf_nodes=k + 1).fit(X, y) tree = est.tree_ assert_equal((tree.children_left == TREE_LEAF).sum(), k + 1) # max_leaf_nodes in (0, 1) should raise ValueError est = TreeEstimator(max_depth=None, max_leaf_nodes=0) assert_raises(ValueError, est.fit, X, y) est = TreeEstimator(max_depth=None, max_leaf_nodes=1) assert_raises(ValueError, est.fit, X, y) est = TreeEstimator(max_depth=None, max_leaf_nodes=0.1) assert_raises(ValueError, est.fit, X, y) def test_max_leaf_nodes_max_depth(): # Test precedence of max_leaf_nodes over max_depth. X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) k = 4 for name, TreeEstimator in ALL_TREES.items(): est = TreeEstimator(max_depth=1, max_leaf_nodes=k).fit(X, y) tree = est.tree_ assert_greater(tree.max_depth, 1) def test_arrays_persist(): # Ensure property arrays' memory stays alive when tree disappears # non-regression for #2726 for attr in ['n_classes', 'value', 'children_left', 'children_right', 'threshold', 'impurity', 'feature', 'n_node_samples']: value = getattr(DecisionTreeClassifier().fit([[0], [1]], [0, 1]).tree_, attr) # if pointing to freed memory, contents may be arbitrary assert_true(-3 <= value.flat[0] < 3, 'Array points to arbitrary memory') def test_only_constant_features(): random_state = check_random_state(0) X = np.zeros((10, 20)) y = random_state.randint(0, 2, (10, )) for name, TreeEstimator in ALL_TREES.items(): est = TreeEstimator(random_state=0) est.fit(X, y) assert_equal(est.tree_.max_depth, 0) def test_with_only_one_non_constant_features(): X = np.hstack([np.array([[1.], [1.], [0.], [0.]]), np.zeros((4, 1000))]) y = np.array([0., 1., 0., 1.0]) for name, TreeEstimator in CLF_TREES.items(): est = TreeEstimator(random_state=0, max_features=1) est.fit(X, y) assert_equal(est.tree_.max_depth, 1) assert_array_equal(est.predict_proba(X), 0.5 * np.ones((4, 2))) for name, TreeEstimator in REG_TREES.items(): est = TreeEstimator(random_state=0, max_features=1) est.fit(X, y) assert_equal(est.tree_.max_depth, 1) assert_array_equal(est.predict(X), 0.5 * np.ones((4, ))) def test_big_input(): # Test if the warning for too large inputs is appropriate. X = np.repeat(10 ** 40., 4).astype(np.float64).reshape(-1, 1) clf = DecisionTreeClassifier() try: clf.fit(X, [0, 1, 0, 1]) except ValueError as e: assert_in("float32", str(e)) def test_realloc(): from sklearn.tree._utils import _realloc_test assert_raises(MemoryError, _realloc_test) def test_huge_allocations(): n_bits = 8 * struct.calcsize("P") X = np.random.randn(10, 2) y = np.random.randint(0, 2, 10) # Sanity check: we cannot request more memory than the size of the address # space. Currently raises OverflowError. huge = 2 ** (n_bits + 1) clf = DecisionTreeClassifier(splitter='best', max_leaf_nodes=huge) assert_raises(Exception, clf.fit, X, y) # Non-regression test: MemoryError used to be dropped by Cython # because of missing "except *". huge = 2 ** (n_bits - 1) - 1 clf = DecisionTreeClassifier(splitter='best', max_leaf_nodes=huge) assert_raises(MemoryError, clf.fit, X, y) def check_sparse_input(tree, dataset, max_depth=None): TreeEstimator = ALL_TREES[tree] X = DATASETS[dataset]["X"] X_sparse = DATASETS[dataset]["X_sparse"] y = DATASETS[dataset]["y"] # Gain testing time if dataset in ["digits", "boston"]: n_samples = X.shape[0] // 5 X = X[:n_samples] X_sparse = X_sparse[:n_samples] y = y[:n_samples] for sparse_format in (csr_matrix, csc_matrix, coo_matrix): X_sparse = sparse_format(X_sparse) # Check the default (depth first search) d = TreeEstimator(random_state=0, max_depth=max_depth).fit(X, y) s = TreeEstimator(random_state=0, max_depth=max_depth).fit(X_sparse, y) assert_tree_equal(d.tree_, s.tree_, "{0} with dense and sparse format gave different " "trees".format(tree)) y_pred = d.predict(X) if tree in CLF_TREES: y_proba = d.predict_proba(X) y_log_proba = d.predict_log_proba(X) for sparse_matrix in (csr_matrix, csc_matrix, coo_matrix): X_sparse_test = sparse_matrix(X_sparse, dtype=np.float32) assert_array_almost_equal(s.predict(X_sparse_test), y_pred) if tree in CLF_TREES: assert_array_almost_equal(s.predict_proba(X_sparse_test), y_proba) assert_array_almost_equal(s.predict_log_proba(X_sparse_test), y_log_proba) def test_sparse_input(): for tree, dataset in product(SPARSE_TREES, ("clf_small", "toy", "digits", "multilabel", "sparse-pos", "sparse-neg", "sparse-mix", "zeros")): max_depth = 3 if dataset == "digits" else None yield (check_sparse_input, tree, dataset, max_depth) # Due to numerical instability of MSE and too strict test, we limit the # maximal depth for tree, dataset in product(REG_TREES, ["boston", "reg_small"]): if tree in SPARSE_TREES: yield (check_sparse_input, tree, dataset, 2) def check_sparse_parameters(tree, dataset): TreeEstimator = ALL_TREES[tree] X = DATASETS[dataset]["X"] X_sparse = DATASETS[dataset]["X_sparse"] y = DATASETS[dataset]["y"] # Check max_features d = TreeEstimator(random_state=0, max_features=1, max_depth=2).fit(X, y) s = TreeEstimator(random_state=0, max_features=1, max_depth=2).fit(X_sparse, y) assert_tree_equal(d.tree_, s.tree_, "{0} with dense and sparse format gave different " "trees".format(tree)) assert_array_almost_equal(s.predict(X), d.predict(X)) # Check min_samples_split d = TreeEstimator(random_state=0, max_features=1, min_samples_split=10).fit(X, y) s = TreeEstimator(random_state=0, max_features=1, min_samples_split=10).fit(X_sparse, y) assert_tree_equal(d.tree_, s.tree_, "{0} with dense and sparse format gave different " "trees".format(tree)) assert_array_almost_equal(s.predict(X), d.predict(X)) # Check min_samples_leaf d = TreeEstimator(random_state=0, min_samples_leaf=X_sparse.shape[0] // 2).fit(X, y) s = TreeEstimator(random_state=0, min_samples_leaf=X_sparse.shape[0] // 2).fit(X_sparse, y) assert_tree_equal(d.tree_, s.tree_, "{0} with dense and sparse format gave different " "trees".format(tree)) assert_array_almost_equal(s.predict(X), d.predict(X)) # Check best-first search d = TreeEstimator(random_state=0, max_leaf_nodes=3).fit(X, y) s = TreeEstimator(random_state=0, max_leaf_nodes=3).fit(X_sparse, y) assert_tree_equal(d.tree_, s.tree_, "{0} with dense and sparse format gave different " "trees".format(tree)) assert_array_almost_equal(s.predict(X), d.predict(X)) def test_sparse_parameters(): for tree, dataset in product(SPARSE_TREES, ["sparse-pos", "sparse-neg", "sparse-mix", "zeros"]): yield (check_sparse_parameters, tree, dataset) def check_sparse_criterion(tree, dataset): TreeEstimator = ALL_TREES[tree] X = DATASETS[dataset]["X"] X_sparse = DATASETS[dataset]["X_sparse"] y = DATASETS[dataset]["y"] # Check various criterion CRITERIONS = REG_CRITERIONS if tree in REG_TREES else CLF_CRITERIONS for criterion in CRITERIONS: d = TreeEstimator(random_state=0, max_depth=3, criterion=criterion).fit(X, y) s = TreeEstimator(random_state=0, max_depth=3, criterion=criterion).fit(X_sparse, y) assert_tree_equal(d.tree_, s.tree_, "{0} with dense and sparse format gave different " "trees".format(tree)) assert_array_almost_equal(s.predict(X), d.predict(X)) def test_sparse_criterion(): for tree, dataset in product(SPARSE_TREES, ["sparse-pos", "sparse-neg", "sparse-mix", "zeros"]): yield (check_sparse_criterion, tree, dataset) def check_explicit_sparse_zeros(tree, max_depth=3, n_features=10): TreeEstimator = ALL_TREES[tree] # n_samples set n_feature to ease construction of a simultaneous # construction of a csr and csc matrix n_samples = n_features samples = np.arange(n_samples) # Generate X, y random_state = check_random_state(0) indices = [] data = [] offset = 0 indptr = [offset] for i in range(n_features): n_nonzero_i = random_state.binomial(n_samples, 0.5) indices_i = random_state.permutation(samples)[:n_nonzero_i] indices.append(indices_i) data_i = random_state.binomial(3, 0.5, size=(n_nonzero_i, )) - 1 data.append(data_i) offset += n_nonzero_i indptr.append(offset) indices = np.concatenate(indices) data = np.array(np.concatenate(data), dtype=np.float32) X_sparse = csc_matrix((data, indices, indptr), shape=(n_samples, n_features)) X = X_sparse.toarray() X_sparse_test = csr_matrix((data, indices, indptr), shape=(n_samples, n_features)) X_test = X_sparse_test.toarray() y = random_state.randint(0, 3, size=(n_samples, )) # Ensure that X_sparse_test owns its data, indices and indptr array X_sparse_test = X_sparse_test.copy() # Ensure that we have explicit zeros assert_greater((X_sparse.data == 0.).sum(), 0) assert_greater((X_sparse_test.data == 0.).sum(), 0) # Perform the comparison d = TreeEstimator(random_state=0, max_depth=max_depth).fit(X, y) s = TreeEstimator(random_state=0, max_depth=max_depth).fit(X_sparse, y) assert_tree_equal(d.tree_, s.tree_, "{0} with dense and sparse format gave different " "trees".format(tree)) Xs = (X_test, X_sparse_test) for X1, X2 in product(Xs, Xs): assert_array_almost_equal(s.tree_.apply(X1), d.tree_.apply(X2)) assert_array_almost_equal(s.apply(X1), d.apply(X2)) assert_array_almost_equal(s.apply(X1), s.tree_.apply(X1)) assert_array_almost_equal(s.tree_.decision_path(X1).toarray(), d.tree_.decision_path(X2).toarray()) assert_array_almost_equal(s.decision_path(X1).toarray(), d.decision_path(X2).toarray()) assert_array_almost_equal(s.decision_path(X1).toarray(), s.tree_.decision_path(X1).toarray()) assert_array_almost_equal(s.predict(X1), d.predict(X2)) if tree in CLF_TREES: assert_array_almost_equal(s.predict_proba(X1), d.predict_proba(X2)) def test_explicit_sparse_zeros(): for tree in SPARSE_TREES: yield (check_explicit_sparse_zeros, tree) @ignore_warnings def check_raise_error_on_1d_input(name): TreeEstimator = ALL_TREES[name] X = iris.data[:, 0].ravel() X_2d = iris.data[:, 0].reshape((-1, 1)) y = iris.target assert_raises(ValueError, TreeEstimator(random_state=0).fit, X, y) est = TreeEstimator(random_state=0) est.fit(X_2d, y) assert_raises(ValueError, est.predict, [X]) @ignore_warnings def test_1d_input(): for name in ALL_TREES: yield check_raise_error_on_1d_input, name def _check_min_weight_leaf_split_level(TreeEstimator, X, y, sample_weight): # Private function to keep pretty printing in nose yielded tests est = TreeEstimator(random_state=0) est.fit(X, y, sample_weight=sample_weight) assert_equal(est.tree_.max_depth, 1) est = TreeEstimator(random_state=0, min_weight_fraction_leaf=0.4) est.fit(X, y, sample_weight=sample_weight) assert_equal(est.tree_.max_depth, 0) def check_min_weight_leaf_split_level(name): TreeEstimator = ALL_TREES[name] X = np.array([[0], [0], [0], [0], [1]]) y = [0, 0, 0, 0, 1] sample_weight = [0.2, 0.2, 0.2, 0.2, 0.2] _check_min_weight_leaf_split_level(TreeEstimator, X, y, sample_weight) if not TreeEstimator().presort: _check_min_weight_leaf_split_level(TreeEstimator, csc_matrix(X), y, sample_weight) def test_min_weight_leaf_split_level(): for name in ALL_TREES: yield check_min_weight_leaf_split_level, name def check_public_apply(name): X_small32 = X_small.astype(tree._tree.DTYPE) est = ALL_TREES[name]() est.fit(X_small, y_small) assert_array_equal(est.apply(X_small), est.tree_.apply(X_small32)) def check_public_apply_sparse(name): X_small32 = csr_matrix(X_small.astype(tree._tree.DTYPE)) est = ALL_TREES[name]() est.fit(X_small, y_small) assert_array_equal(est.apply(X_small), est.tree_.apply(X_small32)) def test_public_apply(): for name in ALL_TREES: yield (check_public_apply, name) for name in SPARSE_TREES: yield (check_public_apply_sparse, name) def check_presort_sparse(est, X, y): assert_raises(ValueError, est.fit, X, y) def test_presort_sparse(): ests = (DecisionTreeClassifier(presort=True), DecisionTreeRegressor(presort=True)) sparse_matrices = (csr_matrix, csc_matrix, coo_matrix) y, X = datasets.make_multilabel_classification(random_state=0, n_samples=50, n_features=1, n_classes=20) y = y[:, 0] for est, sparse_matrix in product(ests, sparse_matrices): yield check_presort_sparse, est, sparse_matrix(X), y def test_decision_path_hardcoded(): X = iris.data y = iris.target est = DecisionTreeClassifier(random_state=0, max_depth=1).fit(X, y) node_indicator = est.decision_path(X[:2]).toarray() assert_array_equal(node_indicator, [[1, 1, 0], [1, 0, 1]]) def check_decision_path(name): X = iris.data y = iris.target n_samples = X.shape[0] TreeEstimator = ALL_TREES[name] est = TreeEstimator(random_state=0, max_depth=2) est.fit(X, y) node_indicator_csr = est.decision_path(X) node_indicator = node_indicator_csr.toarray() assert_equal(node_indicator.shape, (n_samples, est.tree_.node_count)) # Assert that leaves index are correct leaves = est.apply(X) leave_indicator = [node_indicator[i, j] for i, j in enumerate(leaves)] assert_array_almost_equal(leave_indicator, np.ones(shape=n_samples)) # Ensure only one leave node per sample all_leaves = est.tree_.children_left == TREE_LEAF assert_array_almost_equal(np.dot(node_indicator, all_leaves), np.ones(shape=n_samples)) # Ensure max depth is consistent with sum of indicator max_depth = node_indicator.sum(axis=1).max() assert_less_equal(est.tree_.max_depth, max_depth) def test_decision_path(): for name in ALL_TREES: yield (check_decision_path, name) def check_no_sparse_y_support(name): X, y = X_multilabel, csr_matrix(y_multilabel) TreeEstimator = ALL_TREES[name] assert_raises(TypeError, TreeEstimator(random_state=0).fit, X, y) def test_no_sparse_y_support(): # Currently we don't support sparse y for name in ALL_TREES: yield (check_no_sparse_y_support, name) def test_mae(): # check MAE criterion produces correct results # on small toy dataset dt_mae = DecisionTreeRegressor(random_state=0, criterion="mae", max_leaf_nodes=2) dt_mae.fit([[3],[5],[3],[8],[5]],[6,7,3,4,3]) assert_array_equal(dt_mae.tree_.impurity, [1.4, 1.5, 4.0/3.0]) assert_array_equal(dt_mae.tree_.value.flat, [4, 4.5, 4.0]) dt_mae.fit([[3],[5],[3],[8],[5]],[6,7,3,4,3], [0.6,0.3,0.1,1.0,0.3]) assert_array_equal(dt_mae.tree_.impurity, [7.0/2.3, 3.0/0.7, 4.0/1.6]) assert_array_equal(dt_mae.tree_.value.flat, [4.0, 6.0, 4.0])
bsd-3-clause
andaag/scikit-learn
examples/semi_supervised/plot_label_propagation_versus_svm_iris.py
286
2378
""" ===================================================================== Decision boundary of label propagation versus SVM on the Iris dataset ===================================================================== Comparison for decision boundary generated on iris dataset between Label Propagation and SVM. This demonstrates Label Propagation learning a good boundary even with a small amount of labeled data. """ print(__doc__) # Authors: Clay Woolam <[email protected]> # Licence: BSD import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn import svm from sklearn.semi_supervised import label_propagation rng = np.random.RandomState(0) iris = datasets.load_iris() X = iris.data[:, :2] y = iris.target # step size in the mesh h = .02 y_30 = np.copy(y) y_30[rng.rand(len(y)) < 0.3] = -1 y_50 = np.copy(y) y_50[rng.rand(len(y)) < 0.5] = -1 # we create an instance of SVM and fit out data. We do not scale our # data since we want to plot the support vectors ls30 = (label_propagation.LabelSpreading().fit(X, y_30), y_30) ls50 = (label_propagation.LabelSpreading().fit(X, y_50), y_50) ls100 = (label_propagation.LabelSpreading().fit(X, y), y) rbf_svc = (svm.SVC(kernel='rbf').fit(X, y), y) # create a mesh to plot in x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) # title for the plots titles = ['Label Spreading 30% data', 'Label Spreading 50% data', 'Label Spreading 100% data', 'SVC with rbf kernel'] color_map = {-1: (1, 1, 1), 0: (0, 0, .9), 1: (1, 0, 0), 2: (.8, .6, 0)} for i, (clf, y_train) in enumerate((ls30, ls50, ls100, rbf_svc)): # Plot the decision boundary. For that, we will assign a color to each # point in the mesh [x_min, m_max]x[y_min, y_max]. plt.subplot(2, 2, i + 1) Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape(xx.shape) plt.contourf(xx, yy, Z, cmap=plt.cm.Paired) plt.axis('off') # Plot also the training points colors = [color_map[y] for y in y_train] plt.scatter(X[:, 0], X[:, 1], c=colors, cmap=plt.cm.Paired) plt.title(titles[i]) plt.text(.90, 0, "Unlabeled points are colored white") plt.show()
bsd-3-clause
liberatorqjw/scikit-learn
sklearn/tree/export.py
30
4529
""" This module defines export functions for decision trees. """ # Authors: Gilles Louppe <[email protected]> # Peter Prettenhofer <[email protected]> # Brian Holt <[email protected]> # Noel Dawe <[email protected]> # Satrajit Gosh <[email protected]> # Licence: BSD 3 clause from ..externals import six from . import _tree def export_graphviz(decision_tree, out_file="tree.dot", feature_names=None, max_depth=None): """Export a decision tree in DOT format. This function generates a GraphViz representation of the decision tree, which is then written into `out_file`. Once exported, graphical renderings can be generated using, for example:: $ dot -Tps tree.dot -o tree.ps (PostScript format) $ dot -Tpng tree.dot -o tree.png (PNG format) The sample counts that are shown are weighted with any sample_weights that might be present. Parameters ---------- decision_tree : decision tree classifier The decision tree to be exported to GraphViz. out_file : file object or string, optional (default="tree.dot") Handle or name of the output file. feature_names : list of strings, optional (default=None) Names of each of the features. max_depth : int, optional (default=None) The maximum depth of the representation. If None, the tree is fully generated. Examples -------- >>> from sklearn.datasets import load_iris >>> from sklearn import tree >>> clf = tree.DecisionTreeClassifier() >>> iris = load_iris() >>> clf = clf.fit(iris.data, iris.target) >>> tree.export_graphviz(clf, ... out_file='tree.dot') # doctest: +SKIP """ def node_to_str(tree, node_id, criterion): if not isinstance(criterion, six.string_types): criterion = "impurity" value = tree.value[node_id] if tree.n_outputs == 1: value = value[0, :] if tree.children_left[node_id] == _tree.TREE_LEAF: return "%s = %.4f\\nsamples = %s\\nvalue = %s" \ % (criterion, tree.impurity[node_id], tree.n_node_samples[node_id], value) else: if feature_names is not None: feature = feature_names[tree.feature[node_id]] else: feature = "X[%s]" % tree.feature[node_id] return "%s <= %.4f\\n%s = %s\\nsamples = %s" \ % (feature, tree.threshold[node_id], criterion, tree.impurity[node_id], tree.n_node_samples[node_id]) def recurse(tree, node_id, criterion, parent=None, depth=0): if node_id == _tree.TREE_LEAF: raise ValueError("Invalid node_id %s" % _tree.TREE_LEAF) left_child = tree.children_left[node_id] right_child = tree.children_right[node_id] # Add node with description if max_depth is None or depth <= max_depth: out_file.write('%d [label="%s", shape="box"] ;\n' % (node_id, node_to_str(tree, node_id, criterion))) if parent is not None: # Add edge to parent out_file.write('%d -> %d ;\n' % (parent, node_id)) if left_child != _tree.TREE_LEAF: recurse(tree, left_child, criterion=criterion, parent=node_id, depth=depth + 1) recurse(tree, right_child, criterion=criterion, parent=node_id, depth=depth + 1) else: out_file.write('%d [label="(...)", shape="box"] ;\n' % node_id) if parent is not None: # Add edge to parent out_file.write('%d -> %d ;\n' % (parent, node_id)) own_file = False try: if isinstance(out_file, six.string_types): if six.PY3: out_file = open(out_file, "w", encoding="utf-8") else: out_file = open(out_file, "wb") own_file = True out_file.write("digraph Tree {\n") if isinstance(decision_tree, _tree.Tree): recurse(decision_tree, 0, criterion="impurity") else: recurse(decision_tree.tree_, 0, criterion=decision_tree.criterion) out_file.write("}") finally: if own_file: out_file.close()
bsd-3-clause
crichardson17/starburst_atlas
Low_resolution_sims/DustFree_LowRes/Padova_inst/padova_inst_6/Optical1.py
33
7366
import csv import matplotlib.pyplot as plt from numpy import * import scipy.interpolate import math from pylab import * from matplotlib.ticker import MultipleLocator, FormatStrFormatter import matplotlib.patches as patches from matplotlib.path import Path import os # ------------------------------------------------------------------------------------------------------ #inputs for file in os.listdir('.'): if file.endswith(".grd"): inputfile = file for file in os.listdir('.'): if file.endswith(".txt"): inputfile2 = file # ------------------------------------------------------------------------------------------------------ #Patches data #for the Kewley and Levesque data verts = [ (1., 7.97712125471966000000), # left, bottom (1., 9.57712125471966000000), # left, top (2., 10.57712125471970000000), # right, top (2., 8.97712125471966000000), # right, bottom (0., 0.), # ignored ] codes = [Path.MOVETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.CLOSEPOLY, ] path = Path(verts, codes) # ------------------------ #for the Kewley 01 data verts2 = [ (2.4, 9.243038049), # left, bottom (2.4, 11.0211893), # left, top (2.6, 11.0211893), # right, top (2.6, 9.243038049), # right, bottom (0, 0.), # ignored ] path = Path(verts, codes) path2 = Path(verts2, codes) # ------------------------- #for the Moy et al data verts3 = [ (1., 6.86712125471966000000), # left, bottom (1., 10.18712125471970000000), # left, top (3., 12.18712125471970000000), # right, top (3., 8.86712125471966000000), # right, bottom (0., 0.), # ignored ] path = Path(verts, codes) path3 = Path(verts3, codes) # ------------------------------------------------------------------------------------------------------ #the routine to add patches for others peoples' data onto our plots. def add_patches(ax): patch3 = patches.PathPatch(path3, facecolor='yellow', lw=0) patch2 = patches.PathPatch(path2, facecolor='green', lw=0) patch = patches.PathPatch(path, facecolor='red', lw=0) ax1.add_patch(patch3) ax1.add_patch(patch2) ax1.add_patch(patch) # ------------------------------------------------------------------------------------------------------ #the subplot routine def add_sub_plot(sub_num): numplots = 16 plt.subplot(numplots/4.,4,sub_num) rbf = scipy.interpolate.Rbf(x, y, z[:,sub_num-1], function='linear') zi = rbf(xi, yi) contour = plt.contour(xi,yi,zi, levels, colors='c', linestyles = 'dashed') contour2 = plt.contour(xi,yi,zi, levels2, colors='k', linewidths=1.5) plt.scatter(max_values[line[sub_num-1],2], max_values[line[sub_num-1],3], c ='k',marker = '*') plt.annotate(headers[line[sub_num-1]], xy=(8,11), xytext=(6,8.5), fontsize = 10) plt.annotate(max_values[line[sub_num-1],0], xy= (max_values[line[sub_num-1],2], max_values[line[sub_num-1],3]), xytext = (0, -10), textcoords = 'offset points', ha = 'right', va = 'bottom', fontsize=10) if sub_num == numplots / 2.: print "half the plots are complete" #axis limits yt_min = 8 yt_max = 23 xt_min = 0 xt_max = 12 plt.ylim(yt_min,yt_max) plt.xlim(xt_min,xt_max) plt.yticks(arange(yt_min+1,yt_max,1),fontsize=10) plt.xticks(arange(xt_min+1,xt_max,1), fontsize = 10) if sub_num in [2,3,4,6,7,8,10,11,12,14,15,16]: plt.tick_params(labelleft = 'off') else: plt.tick_params(labelleft = 'on') plt.ylabel('Log ($ \phi _{\mathrm{H}} $)') if sub_num in [1,2,3,4,5,6,7,8,9,10,11,12]: plt.tick_params(labelbottom = 'off') else: plt.tick_params(labelbottom = 'on') plt.xlabel('Log($n _{\mathrm{H}} $)') if sub_num == 1: plt.yticks(arange(yt_min+1,yt_max+1,1),fontsize=10) if sub_num == 13: plt.yticks(arange(yt_min,yt_max,1),fontsize=10) plt.xticks(arange(xt_min,xt_max,1), fontsize = 10) if sub_num == 16 : plt.xticks(arange(xt_min+1,xt_max+1,1), fontsize = 10) # --------------------------------------------------- #this is where the grid information (phi and hdens) is read in and saved to grid. grid = []; with open(inputfile, 'rb') as f: csvReader = csv.reader(f,delimiter='\t') for row in csvReader: grid.append(row); grid = asarray(grid) #here is where the data for each line is read in and saved to dataEmissionlines dataEmissionlines = []; with open(inputfile2, 'rb') as f: csvReader = csv.reader(f,delimiter='\t') headers = csvReader.next() for row in csvReader: dataEmissionlines.append(row); dataEmissionlines = asarray(dataEmissionlines) print "import files complete" # --------------------------------------------------- #for grid phi_values = grid[1:len(dataEmissionlines)+1,6] hdens_values = grid[1:len(dataEmissionlines)+1,7] #for lines headers = headers[1:] Emissionlines = dataEmissionlines[:, 1:] concatenated_data = zeros((len(Emissionlines),len(Emissionlines[0]))) max_values = zeros((len(Emissionlines[0]),4)) #select the scaling factor #for 1215 #incident = Emissionlines[1:,4] #for 4860 incident = Emissionlines[:,57] #take the ratio of incident and all the lines and put it all in an array concatenated_data for i in range(len(Emissionlines)): for j in range(len(Emissionlines[0])): if math.log(4860.*(float(Emissionlines[i,j])/float(Emissionlines[i,57])), 10) > 0: concatenated_data[i,j] = math.log(4860.*(float(Emissionlines[i,j])/float(Emissionlines[i,57])), 10) else: concatenated_data[i,j] == 0 # for 1215 #for i in range(len(Emissionlines)): # for j in range(len(Emissionlines[0])): # if math.log(1215.*(float(Emissionlines[i,j])/float(Emissionlines[i,4])), 10) > 0: # concatenated_data[i,j] = math.log(1215.*(float(Emissionlines[i,j])/float(Emissionlines[i,4])), 10) # else: # concatenated_data[i,j] == 0 #find the maxima to plot onto the contour plots for j in range(len(concatenated_data[0])): max_values[j,0] = max(concatenated_data[:,j]) max_values[j,1] = argmax(concatenated_data[:,j], axis = 0) max_values[j,2] = hdens_values[max_values[j,1]] max_values[j,3] = phi_values[max_values[j,1]] #to round off the maxima max_values[:,0] = [ '%.1f' % elem for elem in max_values[:,0] ] print "data arranged" # --------------------------------------------------- #Creating the grid to interpolate with for contours. gridarray = zeros((len(Emissionlines),2)) gridarray[:,0] = hdens_values gridarray[:,1] = phi_values x = gridarray[:,0] y = gridarray[:,1] #change desired lines here! line = [36, #NE 3 3343A 38, #BA C 39, #3646 40, #3726 41, #3727 42, #3729 43, #3869 44, #3889 45, #3933 46, #4026 47, #4070 48, #4074 49, #4078 50, #4102 51, #4340 52] #4363 #create z array for this plot z = concatenated_data[:,line[:]] # --------------------------------------------------- # Interpolate print "starting interpolation" xi, yi = linspace(x.min(), x.max(), 10), linspace(y.min(), y.max(), 10) xi, yi = meshgrid(xi, yi) # --------------------------------------------------- print "interpolatation complete; now plotting" #plot plt.subplots_adjust(wspace=0, hspace=0) #remove space between plots levels = arange(10**-1,10, .2) levels2 = arange(10**-2,10**2, 1) plt.suptitle("Optical Lines", fontsize=14) # --------------------------------------------------- for i in range(16): add_sub_plot(i) ax1 = plt.subplot(4,4,1) add_patches(ax1) print "complete" plt.savefig('optical_lines.pdf') plt.clf()
gpl-2.0
rphlypo/parietalretreat
setup_data_path_salma.py
1
6001
import glob import os.path from pandas import DataFrame import pandas def get_all_paths(data_set=None, root_dir="/"): # TODO # if data_set ... collections.Sequence # iterate over list if data_set is None: data_set = {"hcp", "henson2010faces", "ds105", "ds107"} list_ = list() head, tail_ = os.path.split(root_dir) counter = 0 while tail_: head, tail_ = os.path.split(head) counter += 1 if hasattr(data_set, "__iter__"): df_ = list() for ds in data_set: df_.append(get_all_paths(data_set=ds, root_dir=root_dir)) df = pandas.concat(df_, keys=data_set) elif data_set.startswith("ds") or data_set == "henson2010faces": base_path = os.path.join(root_dir, "storage/workspace/brainpedia/preproc/", data_set) with open(os.path.join(base_path, "scan_key.txt")) as file_: TR = file_.readline()[3:-1] for fun_path in glob.iglob(os.path.join(base_path, "sub*/model/model*/" "BOLD/task*/bold.nii.gz")): head, tail_ = os.path.split(fun_path) tail = [tail_] while tail_: head, tail_ = os.path.split(head) tail.append(tail_) tail.reverse() subj_id = tail[6 + counter][-3:] model = tail[8 + counter][-3:] task, run = tail[10 + counter].split("_") tmp_base = os.path.split(os.path.split(fun_path)[0])[0] anat = os.path.join(tmp_base, "anatomy", "highres{}.nii.gz".format(model[-3:])) onsets = glob.glob(os.path.join(tmp_base, "onsets", "task{}_run{}".format(task, run), "cond*.txt")) confds = os.path.join(os.path.split(fun_path)[0], "motion.txt") list_.append({"subj_id": subj_id, "model": model, "task": task[-3:], "run": run[-3:], "func": fun_path, "anat": anat, "confds": confds, "TR": TR}) if onsets: list_[-1]["onsets"] = onsets df = DataFrame(list_) elif data_set == "hcp": base_path = os.path.join(root_dir, "storage/data/HCP/Q2/") for fun_path in glob.iglob(os.path.join(base_path, "*/MNINonLinear/Results/", "*/*.nii.gz")): head, tail = os.path.split(fun_path) if head[-2:] not in ["LR", "RL"]: continue tail = [tail] while head != "/": head, t = os.path.split(head) tail.append(t) if tail[0][:-7] != tail[1]: continue tail.reverse() subj_id = tail[4 + counter] task = tail[7 + counter][6:-3] if tail[7 + counter].startswith("rfMRI"): run = task[-1] task = task[:-1] mode = tail[7 + counter][-2:] anat = os.path.join(base_path, subj_id, "MNINonLinear/T1w.nii.gz") confds = os.path.join(os.path.split(fun_path)[0], "Movement_Regressors.txt") list_.append({"subj_id": subj_id, "task": task, "mode": mode, "func": fun_path, "anat": anat, "confds": confds, "TR": 0.72}) if tail[8 + counter].startswith("rfMRI"): list_[-1]["run"] = run else: onsets = [onset for onset in glob.glob(os.path.join( os.path.split(fun_path)[0], "EVs/*.txt")) if os.path.split(onset)[1][0] != "S"] list_[-1]["onsets"] = onsets df = DataFrame(list_) return df if __name__ == "__main__": from nilearn.input_data import MultiNiftiMasker, NiftiMapsMasker from joblib import Memory, Parallel, delayed import joblib from sklearn.base import clone import nibabel root_dir = "/media/Elements/volatile/new/salma" mem = Memory(cachedir=os.path.join(root_dir, ("storage/workspace/brainpedia" "/preproc/henson2010faces/dump/"))) print "Loading all paths and variables into memory" df = get_all_paths(root_dir=root_dir, data_set=["henson2010faces"]) target_affine_ = nibabel.load(df["func"][0]).get_affine() target_shape_ = nibabel.load(df["func"][0]).shape[:-1] print "preparing and running MultiNiftiMasker" mnm = MultiNiftiMasker(mask_strategy="epi", memory=mem, n_jobs=1, verbose=10, target_affine=target_affine_, target_shape=target_shape_) mask_img = mnm.fit(list(df["func"])).mask_img_ print "preparing and running NiftiMapsMasker" nmm = NiftiMapsMasker( maps_img=os.path.join("/usr/share/fsl/data/atlases/HarvardOxford/", "HarvardOxford-cortl-prob-2mm.nii.gz"), mask_img=mask_img, detrend=True, smoothing_fwhm=5, standardize=True, low_pass=None, high_pass=None, memory=mem, verbose=10) region_ts = [clone(nmm).fit_transform(niimg, n_hv_confounds=5) for niimg in list(df["func"])] joblib.dump(region_ts, "/home/storage/workspace/rphlypo/retreat/results/") region_signals = DataFrame({"region_signals": region_ts}, index=df.index) df.join(region_signals)
bsd-2-clause
debsankha/bedtime-programming
ls222/visual-lotka.py
1
5120
#!/usr/bin/env python from math import * import thread import random import time import pygtk pygtk.require("2.0") import gtk import gtk.glade import commands import matplotlib.pyplot class rodent: def __init__(self): self.time_from_last_childbirth=0 class felix: def __init__(self): self.size=0 self.is_virgin=1 self.reproduction_gap=0 self.time_from_last_childbirth=0 self.age=0 # print 'painted' class gui_display: def __init__(self): self.gladefile='./lvshort.glade' self.wTree = gtk.glade.XML(self.gladefile) dic={"on_start_clicked":self.dynamics,"on_mainwin_destroy":gtk.main_quit} self.wTree.signal_autoconnect(dic) self.wTree.get_widget("mainwin").show() self.wTree.get_widget("image").set_from_file("./start.png") def visualize(self,catn,mousen): # while True: num=40 size=10 catno=catn*num**2/(catn+mousen) cats=random.sample(range(num**2),catno) for i in range(num**2): if i in cats: self.dic[i].color=visual.color.red else : self.dic[i].color=visual.color.green def dynamics(self,*args,**kwargs): self.wTree.get_widget("image").set_from_file("./wait.png") print 'dynamics started' mouse_size=20 #ind parameter cat_mature_size=60 #ind parameter # catch_rate=5*10**-4 #parameter # cat_efficiency=0.8 #parameter # a=0.2 #will get from slider # c=0.2 #will get from slider cat_catch_rate=self.wTree.get_widget("catchrate").get_value()*10**-4 #parameter cat_efficiency=self.wTree.get_widget("efficiency").get_value() #parameter a=self.wTree.get_widget("a").get_value() #parameter c=self.wTree.get_widget("c").get_value() #parameter mouse_no=1000 cat_no=1000 t=0 tmax=200 dt=1 timeli=[] miceli=[] catli=[] mice=[rodent() for i in range(mouse_no)] cats=[felix() for i in range(cat_no)] catn=len(cats) mousen=len(mice) self.dic={} num=40 size=10 catno=catn*num**2/(catn+mousen) disp_cats=random.sample(range(num**2),catno) if self.wTree.get_widget("anim").get_active()==1: print 'yay!' for i in range(num**2): coords=((i%num)*size*2-num*size,(i/num)*size*2-num*size) if i in disp_cats: self.dic[i]=visual.sphere(pos=coords,radius=size,color=visual.color.red) else : self.dic[i]=visual.sphere(pos=coords,radius=size,color=visual.color.green) print self.dic catn=len(cats) mousen=len(mice) data=open('tempdata.dat','w') timestart=time.time() while (len(mice)>0 or len(cats)>0) and t<tmax and (time.time()-timestart)<60: # print time.time()-timestart catn=len(cats) mousen=len(mice) if self.wTree.get_widget("anim").get_active()==1: print 'yay!' # self.visualize(catn,mousen) thread.start_new_thread(self.visualize,(catn,mousen)) for mouse in mice: if mouse.time_from_last_childbirth>=1/a: mouse.time_from_last_childbirth=0 mice.append(rodent()) mouse.time_from_last_childbirth+=dt ind=0 while ind<len(cats): cat=cats[ind] cat.age+=dt num=cat_catch_rate*dt*len(mice) for i in range(int(num)): caught=random.randint(0,len(mice)-1) cat.size+=mouse_size*cat_efficiency #size increases mice.pop(caught) if (num-int(num))>random.uniform(0,1): caught=random.randint(0,len(mice)-1) cat.size+=mouse_size*cat_efficiency #size increases mice.pop(caught) if cat.size>cat_mature_size: if cat.is_virgin: cat.is_virgin=0 cat.reproduction_gap=cat.age cats.append(felix()) else : if cat.time_from_last_childbirth>cat.reproduction_gap: cats.append(felix()) cat.time_from_last_childbirth=0 if cat.is_virgin==0: cat.time_from_last_childbirth+=dt if len(cats)>0: if c*dt*2*atan(0.05*len(cats))/pi>random.uniform(0,1): cats.pop(ind) else : ind+=1 else : ind+=1 timeli.append(t) miceli.append(len(mice)) catli.append(len(cats)) print t,'\t',len(mice),'\t',len(cats) print >> data, t,'\t',len(mice),'\t',len(cats) t+=dt data.close() upper_limit=1.2*len(mice) pltfile=open('lv.plt','w') print >> pltfile,"""se te png se o "/tmp/lv.png" unse ke #se yrange [0:%f] se xl "Time" se yl "Number of Prey/Predator" p 'tempdata.dat' u 1:2 w l,'tempdata.dat' u 1:3 w l """%upper_limit pltfile.close() commands.getoutput('gnuplot lv.plt') self.wTree.get_widget("image").set_from_file("/tmp/lv.png") print 'dynamics ended' reload(matplotlib.pyplot) matplotlib.pyplot.plot(timeli,catli,'g-')#timeli,catli,'r-') matplotlib.pyplot.xlabel("Time") matplotlib.pyplot.ylabel("Number of mice and cats") matplotlib.pyplot.show() gui=gui_display() gtk.main() #dynamics() #import matplotlib.pyplot as plt #plt.plot(timeli,miceli,'go',timeli,catli,'ro') #plt.show()
gpl-3.0
blaze/distributed
distributed/protocol/tests/test_collection_cuda.py
1
2448
import pytest from distributed.protocol import serialize, deserialize from dask.dataframe.utils import assert_eq import pandas as pd @pytest.mark.parametrize("collection", [tuple, dict]) @pytest.mark.parametrize("y,y_serializer", [(50, "cuda"), (None, "pickle")]) def test_serialize_cupy(collection, y, y_serializer): cupy = pytest.importorskip("cupy") x = cupy.arange(100) if y is not None: y = cupy.arange(y) if issubclass(collection, dict): header, frames = serialize( {"x": x, "y": y}, serializers=("cuda", "dask", "pickle") ) else: header, frames = serialize((x, y), serializers=("cuda", "dask", "pickle")) t = deserialize(header, frames, deserializers=("cuda", "dask", "pickle", "error")) assert header["is-collection"] is True sub_headers = header["sub-headers"] assert sub_headers[0]["serializer"] == "cuda" assert sub_headers[1]["serializer"] == y_serializer assert isinstance(t, collection) assert ((t["x"] if isinstance(t, dict) else t[0]) == x).all() if y is None: assert (t["y"] if isinstance(t, dict) else t[1]) is None else: assert ((t["y"] if isinstance(t, dict) else t[1]) == y).all() @pytest.mark.parametrize("collection", [tuple, dict]) @pytest.mark.parametrize( "df2,df2_serializer", [(pd.DataFrame({"C": [3, 4, 5], "D": [2.5, 3.5, 4.5]}), "cuda"), (None, "pickle")], ) def test_serialize_pandas_pandas(collection, df2, df2_serializer): cudf = pytest.importorskip("cudf") df1 = cudf.DataFrame({"A": [1, 2, None], "B": [1.0, 2.0, None]}) if df2 is not None: df2 = cudf.from_pandas(df2) if issubclass(collection, dict): header, frames = serialize( {"df1": df1, "df2": df2}, serializers=("cuda", "dask", "pickle") ) else: header, frames = serialize((df1, df2), serializers=("cuda", "dask", "pickle")) t = deserialize(header, frames, deserializers=("cuda", "dask", "pickle")) assert header["is-collection"] is True sub_headers = header["sub-headers"] assert sub_headers[0]["serializer"] == "cuda" assert sub_headers[1]["serializer"] == df2_serializer assert isinstance(t, collection) assert_eq(t["df1"] if isinstance(t, dict) else t[0], df1) if df2 is None: assert (t["df2"] if isinstance(t, dict) else t[1]) is None else: assert_eq(t["df2"] if isinstance(t, dict) else t[1], df2)
bsd-3-clause
nicholaschris/landsatpy
utils.py
1
2693
import operator import pandas as pd import numpy as np from numpy import ma from scipy.misc import imresize import scipy.ndimage as ndimage from skimage.morphology import disk, dilation def get_truth(input_one, input_two, comparison): # too much abstraction ops = {'>': operator.gt, '<': operator.lt, '>=': operator.ge, '<=': operator.le, '=': operator.eq} return ops[comparison](input_one, input_two) def convert_to_celsius(brightness_temp_input): return brightness_temp_input - 272.15 def calculate_percentile(input_masked_array, percentile): flat_fill_input = input_masked_array.filled(np.nan).flatten() df = pd.DataFrame(flat_fill_input) percentile = df.quantile(percentile/100.0) return percentile[0] def save_object(obj, filename): import pickle with open(filename, 'wb') as output: pickle.dump(obj, output) def downsample(input_array, factor=4): output_array = input_array[::2, ::2] / 4 + input_array[1::2, ::2] / 4 + input_array[::2, 1::2] / 4 + input_array[1::2, 1::2] / 4 return output_array def dilate_boolean_array(input_array, disk_size=3): selem = disk(disk_size) dilated = dilation(input_array, selem) return dilated def get_resized_array(img, size): lena = imresize(img, (size, size)) return lena def interp_and_resize(array, new_length): orig_y_length, orig_x_length = array.shape interp_factor_y = new_length / orig_y_length interp_factor_x = new_length / orig_x_length y = round(interp_factor_y * orig_y_length) x = round(interp_factor_x * orig_x_length) # http://docs.scipy.org/doc/numpy/reference/generated/numpy.mgrid.html new_indicies = np.mgrid[0:orig_y_length:y * 1j, 0:orig_x_length:x * 1j] # order=1 indicates bilinear interpolation. interp_array = ndimage.map_coordinates(array, new_indicies, order=1, output=array.dtype) interp_array = interp_array.reshape((y, x)) return interp_array def parse_mtl(in_file): awesome = True f = open(in_file, 'r') print(in_file) mtl_dict = {} with open(in_file, 'r') as f: while awesome: line = f.readline() if line.strip() == '' or line.strip() == 'END': return mtl_dict elif 'END_GROUP' in line: pass elif 'GROUP' in line: curr_group = line.split('=')[1].strip() mtl_dict[curr_group] = {} else: attr, value = line.split('=')[0].strip(), line.split('=')[1].strip() mtl_dict[curr_group][attr] = value
mit
kwilliams-mo/iris
lib/iris/tests/test_plot.py
1
32122
# (C) British Crown Copyright 2010 - 2013, Met Office # # This file is part of Iris. # # Iris is free software: you can redistribute it and/or modify it under # the terms of the GNU Lesser General Public License as published by the # Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Iris is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with Iris. If not, see <http://www.gnu.org/licenses/>. # import iris tests first so that some things can be initialised before # importing anything else import iris.tests as tests from functools import wraps import types import warnings import matplotlib.pyplot as plt import numpy as np import iris import iris.coords as coords import iris.plot as iplt import iris.quickplot as qplt import iris.symbols import iris.tests.stock import iris.tests.test_mapping as test_mapping def simple_cube(): cube = iris.tests.stock.realistic_4d() cube = cube[:, 0, 0, :] cube.coord('time').guess_bounds() return cube class TestSimple(tests.GraphicsTest): def test_points(self): cube = simple_cube() qplt.contourf(cube) self.check_graphic() def test_bounds(self): cube = simple_cube() qplt.pcolor(cube) self.check_graphic() class TestMissingCoord(tests.GraphicsTest): def _check(self, cube): qplt.contourf(cube) self.check_graphic() qplt.pcolor(cube) self.check_graphic() def test_no_u(self): cube = simple_cube() cube.remove_coord('grid_longitude') self._check(cube) def test_no_v(self): cube = simple_cube() cube.remove_coord('time') self._check(cube) def test_none(self): cube = simple_cube() cube.remove_coord('grid_longitude') cube.remove_coord('time') self._check(cube) @iris.tests.skip_data class TestMissingCS(tests.GraphicsTest): @iris.tests.skip_data def test_missing_cs(self): cube = tests.stock.simple_pp() cube.coord("latitude").coord_system = None cube.coord("longitude").coord_system = None qplt.contourf(cube) qplt.plt.gca().coastlines() self.check_graphic() class TestHybridHeight(tests.GraphicsTest): def setUp(self): self.cube = iris.tests.stock.realistic_4d()[0, :15, 0, :] def _check(self, plt_method, test_altitude=True): plt_method(self.cube) self.check_graphic() plt_method(self.cube, coords=['level_height', 'grid_longitude']) self.check_graphic() plt_method(self.cube, coords=['grid_longitude', 'level_height']) self.check_graphic() if test_altitude: plt_method(self.cube, coords=['grid_longitude', 'altitude']) self.check_graphic() plt_method(self.cube, coords=['altitude', 'grid_longitude']) self.check_graphic() def test_points(self): self._check(qplt.contourf) def test_bounds(self): self._check(qplt.pcolor, test_altitude=False) def test_orography(self): qplt.contourf(self.cube) iplt.orography_at_points(self.cube) iplt.points(self.cube) self.check_graphic() coords = ['altitude', 'grid_longitude'] qplt.contourf(self.cube, coords=coords) iplt.orography_at_points(self.cube, coords=coords) iplt.points(self.cube, coords=coords) self.check_graphic() # TODO: Test bounds once they are supported. with self.assertRaises(NotImplementedError): qplt.pcolor(self.cube) iplt.orography_at_bounds(self.cube) iplt.outline(self.cube) self.check_graphic() class Test1dPlotMultiArgs(tests.GraphicsTest): # tests for iris.plot using multi-argument calling convention def setUp(self): self.cube1d = _load_4d_testcube()[0, :, 0, 0] self.draw_method = iplt.plot def test_cube(self): # just plot a cube against its dim coord self.draw_method(self.cube1d) # altitude vs temp self.check_graphic() def test_coord(self): # plot the altitude coordinate self.draw_method(self.cube1d.coord('altitude')) self.check_graphic() def test_coord_cube(self): # plot temperature against sigma self.draw_method(self.cube1d.coord('sigma'), self.cube1d) self.check_graphic() def test_cube_coord(self): # plot a vertical profile of temperature self.draw_method(self.cube1d, self.cube1d.coord('altitude')) self.check_graphic() def test_coord_coord(self): # plot two coordinates that are not mappable self.draw_method(self.cube1d.coord('sigma'), self.cube1d.coord('altitude')) self.check_graphic() def test_coord_coord_map(self): # plot lat-lon aux coordinates of a trajectory, which draws a map lon = iris.coords.AuxCoord([0, 5, 10, 15, 20, 25, 30, 35, 40, 45], standard_name='longitude', units='degrees_north') lat = iris.coords.AuxCoord([45, 55, 50, 60, 55, 65, 60, 70, 65, 75], standard_name='latitude', units='degrees_north') self.draw_method(lon, lat) plt.gca().coastlines() self.check_graphic() def test_cube_cube(self): # plot two phenomena against eachother, in this case just dummy data cube1 = self.cube1d.copy() cube2 = self.cube1d.copy() cube1.rename('some phenomenon') cube2.rename('some other phenomenon') cube1.units = iris.unit.Unit('no_unit') cube2.units = iris.unit.Unit('no_unit') cube1.data[:] = np.linspace(0, 1, 7) cube2.data[:] = np.exp(cube1.data) self.draw_method(cube1, cube2) self.check_graphic() def test_incompatible_objects(self): # incompatible objects (not the same length) should raise an error with self.assertRaises(ValueError): self.draw_method(self.cube1d.coord('time'), (self.cube1d)) def test_multimidmensional(self): # multidimensional cubes are not allowed cube = _load_4d_testcube()[0, :, :, 0] with self.assertRaises(ValueError): self.draw_method(cube) def test_not_cube_or_coord(self): # inputs must be cubes or coordinates, otherwise an error should be # raised xdim = np.arange(self.cube1d.shape[0]) with self.assertRaises(TypeError): self.draw_method(xdim, self.cube1d) def test_coords_deprecated(self): # ensure a warning is raised if the old coords keyword argument is # used, and make sure the plot produced is consistent with the old # interface msg = 'Missing deprecation warning for coords keyword.' with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') self.draw_method(self.cube1d, coords=['sigma']) self.assertEqual(len(w), 1, msg) self.check_graphic() def test_coords_deprecation_too_many(self): # in deprecation mode, too many coords is an error with self.assertRaises(ValueError): self.draw_method(self.cube1d, coords=['sigma', 'sigma']) def test_coords_deprecation_invalid_span(self): # in deprecation mode, a coordinate that doesn't span data is an error with self.assertRaises(ValueError): self.draw_method(self.cube1d, coords=['time']) class Test1dQuickplotPlotMultiArgs(Test1dPlotMultiArgs): # tests for iris.plot using multi-argument calling convention def setUp(self): self.cube1d = _load_4d_testcube()[0, :, 0, 0] self.draw_method = qplt.plot @tests.skip_data class Test1dScatter(tests.GraphicsTest): def setUp(self): self.cube = iris.load_cube( tests.get_data_path(('NAME', 'NAMEIII_trajectory.txt')), 'Temperature') self.draw_method = iplt.scatter def test_coord_coord(self): x = self.cube.coord('longitude') y = self.cube.coord('height') c = self.cube.data self.draw_method(x, y, c=c, edgecolor='none') self.check_graphic() def test_coord_coord_map(self): x = self.cube.coord('longitude') y = self.cube.coord('latitude') c = self.cube.data self.draw_method(x, y, c=c, edgecolor='none') plt.gca().coastlines() self.check_graphic() def test_coord_cube(self): x = self.cube.coord('latitude') y = self.cube c = self.cube.coord('Travel Time').points self.draw_method(x, y, c=c, edgecolor='none') self.check_graphic() def test_cube_coord(self): x = self.cube y = self.cube.coord('height') c = self.cube.coord('Travel Time').points self.draw_method(x, y, c=c, edgecolor='none') self.check_graphic() def test_cube_cube(self): x = iris.load_cube( tests.get_data_path(('NAME', 'NAMEIII_trajectory.txt')), 'Rel Humidity') y = self.cube c = self.cube.coord('Travel Time').points self.draw_method(x, y, c=c, edgecolor='none') self.check_graphic() def test_incompatible_objects(self): # cubes/coordinates of different sizes cannot be plotted x = self.cube y = self.cube.coord('height')[:-1] with self.assertRaises(ValueError): self.draw_method(x, y) def test_multidimensional(self): # multidimensional cubes/coordinates are not allowed x = _load_4d_testcube()[0, :, :, 0] y = x.coord('model_level_number') with self.assertRaises(ValueError): self.draw_method(x, y) def test_not_cube_or_coord(self): # inputs must be cubes or coordinates x = np.arange(self.cube.shape[0]) y = self.cube with self.assertRaises(TypeError): self.draw_method(x, y) @tests.skip_data class Test1dQuickplotScatter(Test1dScatter): def setUp(self): self.cube = iris.load_cube( tests.get_data_path(('NAME', 'NAMEIII_trajectory.txt')), 'Temperature') self.draw_method = qplt.scatter @iris.tests.skip_data class TestAttributePositive(tests.GraphicsTest): def test_1d_positive_up(self): path = tests.get_data_path(('NetCDF', 'ORCA2', 'votemper.nc')) cube = iris.load_cube(path) qplt.plot(cube.coord('depth'), cube[0, :, 60, 80]) self.check_graphic() def test_1d_positive_down(self): path = tests.get_data_path(('NetCDF', 'ORCA2', 'votemper.nc')) cube = iris.load_cube(path) qplt.plot(cube[0, :, 60, 80], cube.coord('depth')) self.check_graphic() def test_2d_positive_up(self): path = tests.get_data_path(('NetCDF', 'testing', 'small_theta_colpex.nc')) cube = iris.load_cube(path)[0, :, 42, :] qplt.pcolormesh(cube) self.check_graphic() def test_2d_positive_down(self): path = tests.get_data_path(('NetCDF', 'ORCA2', 'votemper.nc')) cube = iris.load_cube(path)[0, :, 42, :] qplt.pcolormesh(cube) self.check_graphic() # Caches _load_4d_testcube so subsequent calls are faster def cache(fn, cache={}): def inner(*args, **kwargs): key = fn.__name__ if key not in cache: cache[key] = fn(*args, **kwargs) return cache[key] return inner @cache def _load_4d_testcube(): # Load example 4d data (TZYX). test_cube = iris.tests.stock.realistic_4d() # Replace forecast_period coord with a multi-valued version. time_coord = test_cube.coord('time') n_times = len(time_coord.points) forecast_dims = test_cube.coord_dims(time_coord) test_cube.remove_coord('forecast_period') # Make up values (including bounds), to roughly match older testdata. point_values = np.linspace((1 + 1.0 / 6), 2.0, n_times) point_uppers = point_values + (point_values[1] - point_values[0]) bound_values = np.column_stack([point_values, point_uppers]) # NOTE: this must be a DimCoord # - an equivalent AuxCoord produces different plots. new_forecast_coord = iris.coords.DimCoord( points=point_values, bounds=bound_values, standard_name='forecast_period', units=iris.unit.Unit('hours') ) test_cube.add_aux_coord(new_forecast_coord, forecast_dims) # Heavily reduce dimensions for faster testing. # NOTE: this makes ZYX non-contiguous. Doesn't seem to matter for now. test_cube = test_cube[:, ::10, ::10, ::10] return test_cube @cache def _load_wind_no_bounds(): # Load the COLPEX data => TZYX path = tests.get_data_path(('PP', 'COLPEX', 'small_eastward_wind.pp')) wind = iris.load_cube(path, 'eastward_wind') # Remove bounds from all coords that have them. wind.coord('grid_latitude').bounds = None wind.coord('grid_longitude').bounds = None wind.coord('level_height').bounds = None wind.coord('sigma').bounds = None return wind[:, :, :50, :50] def _time_series(src_cube): # Until we have plotting support for multiple axes on the same dimension, # remove the time coordinate and its axis. cube = src_cube.copy() cube.remove_coord('time') return cube def _date_series(src_cube): # Until we have plotting support for multiple axes on the same dimension, # remove the forecast_period coordinate and its axis. cube = src_cube.copy() cube.remove_coord('forecast_period') return cube class SliceMixin(object): """Mixin class providing tests for each 2-dimensional permutation of axes. Requires self.draw_method to be the relevant plotting function, and self.results to be a dictionary containing the desired test results.""" def test_yx(self): cube = self.wind[0, 0, :, :] self.draw_method(cube) self.check_graphic() def test_zx(self): cube = self.wind[0, :, 0, :] self.draw_method(cube) self.check_graphic() def test_tx(self): cube = _time_series(self.wind[:, 0, 0, :]) self.draw_method(cube) self.check_graphic() def test_zy(self): cube = self.wind[0, :, :, 0] self.draw_method(cube) self.check_graphic() def test_ty(self): cube = _time_series(self.wind[:, 0, :, 0]) self.draw_method(cube) self.check_graphic() def test_tz(self): cube = _time_series(self.wind[:, :, 0, 0]) self.draw_method(cube) self.check_graphic() @iris.tests.skip_data class TestContour(tests.GraphicsTest, SliceMixin): """Test the iris.plot.contour routine.""" def setUp(self): self.wind = _load_4d_testcube() self.draw_method = iplt.contour @iris.tests.skip_data class TestContourf(tests.GraphicsTest, SliceMixin): """Test the iris.plot.contourf routine.""" def setUp(self): self.wind = _load_4d_testcube() self.draw_method = iplt.contourf @iris.tests.skip_data class TestPcolor(tests.GraphicsTest, SliceMixin): """Test the iris.plot.pcolor routine.""" def setUp(self): self.wind = _load_4d_testcube() self.draw_method = iplt.pcolor @iris.tests.skip_data class TestPcolormesh(tests.GraphicsTest, SliceMixin): """Test the iris.plot.pcolormesh routine.""" def setUp(self): self.wind = _load_4d_testcube() self.draw_method = iplt.pcolormesh def check_warnings(method): """ Decorator that adds a catch_warnings and filter to assert the method being decorated issues a UserWarning. """ @wraps(method) def decorated_method(self, *args, **kwargs): # Force reset of iris.coords warnings registry to avoid suppression of # repeated warnings. warnings.resetwarnings() does not do this. if hasattr(coords, '__warningregistry__'): coords.__warningregistry__.clear() # Check that method raises warning. with warnings.catch_warnings(): warnings.simplefilter("error") with self.assertRaises(UserWarning): return method(self, *args, **kwargs) return decorated_method def ignore_warnings(method): """ Decorator that adds a catch_warnings and filter to suppress any warnings issues by the method being decorated. """ @wraps(method) def decorated_method(self, *args, **kwargs): with warnings.catch_warnings(): warnings.simplefilter("ignore") return method(self, *args, **kwargs) return decorated_method class CheckForWarningsMetaclass(type): """ Metaclass that adds a further test for each base class test that checks that each test raises a UserWarning. Each base class test is then overriden to ignore warnings in order to check the underlying functionality. """ def __new__(cls, name, bases, local): def add_decorated_methods(attr_dict, target_dict, decorator): for key, value in attr_dict.items(): if (isinstance(value, types.FunctionType) and key.startswith('test')): new_key = '_'.join((key, decorator.__name__)) if new_key not in target_dict: wrapped = decorator(value) wrapped.__name__ = new_key target_dict[new_key] = wrapped else: raise RuntimeError('A attribute called {!r} ' 'already exists.'.format(new_key)) def override_with_decorated_methods(attr_dict, target_dict, decorator): for key, value in attr_dict.items(): if (isinstance(value, types.FunctionType) and key.startswith('test')): target_dict[key] = decorator(value) # Add decorated versions of base methods # to check for warnings. for base in bases: add_decorated_methods(base.__dict__, local, check_warnings) # Override base methods to ignore warnings. for base in bases: override_with_decorated_methods(base.__dict__, local, ignore_warnings) return type.__new__(cls, name, bases, local) @iris.tests.skip_data class TestPcolorNoBounds(tests.GraphicsTest, SliceMixin): """ Test the iris.plot.pcolor routine on a cube with coordinates that have no bounds. """ __metaclass__ = CheckForWarningsMetaclass def setUp(self): self.wind = _load_wind_no_bounds() self.draw_method = iplt.pcolor @iris.tests.skip_data class TestPcolormeshNoBounds(tests.GraphicsTest, SliceMixin): """ Test the iris.plot.pcolormesh routine on a cube with coordinates that have no bounds. """ __metaclass__ = CheckForWarningsMetaclass def setUp(self): self.wind = _load_wind_no_bounds() self.draw_method = iplt.pcolormesh class Slice1dMixin(object): """Mixin class providing tests for each 1-dimensional permutation of axes. Requires self.draw_method to be the relevant plotting function, and self.results to be a dictionary containing the desired test results.""" def test_x(self): cube = self.wind[0, 0, 0, :] self.draw_method(cube) self.check_graphic() def test_y(self): cube = self.wind[0, 0, :, 0] self.draw_method(cube) self.check_graphic() def test_z(self): cube = self.wind[0, :, 0, 0] self.draw_method(cube) self.check_graphic() def test_t(self): cube = _time_series(self.wind[:, 0, 0, 0]) self.draw_method(cube) self.check_graphic() def test_t_dates(self): cube = _date_series(self.wind[:, 0, 0, 0]) self.draw_method(cube) plt.gcf().autofmt_xdate() plt.xlabel('Phenomenon time') self.check_graphic() @iris.tests.skip_data class TestPlot(tests.GraphicsTest, Slice1dMixin): """Test the iris.plot.plot routine.""" def setUp(self): self.wind = _load_4d_testcube() self.draw_method = iplt.plot @iris.tests.skip_data class TestQuickplotPlot(tests.GraphicsTest, Slice1dMixin): """Test the iris.quickplot.plot routine.""" def setUp(self): self.wind = _load_4d_testcube() self.draw_method = qplt.plot _load_cube_once_cache = {} def load_cube_once(filename, constraint): """Same syntax as load_cube, but will only load a file once, then cache the answer in a dictionary. """ global _load_cube_once_cache key = (filename, str(constraint)) cube = _load_cube_once_cache.get(key, None) if cube is None: cube = iris.load_cube(filename, constraint) _load_cube_once_cache[key] = cube return cube class LambdaStr(object): """Provides a callable function which has a sensible __repr__.""" def __init__(self, repr, lambda_fn): self.repr = repr self.lambda_fn = lambda_fn def __call__(self, *args, **kwargs): return self.lambda_fn(*args, **kwargs) def __repr__(self): return self.repr @iris.tests.skip_data class TestPlotCoordinatesGiven(tests.GraphicsTest): def setUp(self): filename = tests.get_data_path(('PP', 'COLPEX', 'theta_and_orog_subset.pp')) self.cube = load_cube_once(filename, 'air_potential_temperature') self.draw_module = iris.plot self.contourf = LambdaStr('iris.plot.contourf', lambda cube, *args, **kwargs: iris.plot.contourf(cube, *args, **kwargs)) self.contour = LambdaStr('iris.plot.contour', lambda cube, *args, **kwargs: iris.plot.contour(cube, *args, **kwargs)) self.points = LambdaStr('iris.plot.points', lambda cube, *args, **kwargs: iris.plot.points(cube, c=cube.data, *args, **kwargs)) self.plot = LambdaStr('iris.plot.plot', lambda cube, *args, **kwargs: iris.plot.plot(cube, *args, **kwargs)) self.results = {'yx': ([self.contourf, ['grid_latitude', 'grid_longitude']], [self.contourf, ['grid_longitude', 'grid_latitude']], [self.contour, ['grid_latitude', 'grid_longitude']], [self.contour, ['grid_longitude', 'grid_latitude']], [self.points, ['grid_latitude', 'grid_longitude']], [self.points, ['grid_longitude', 'grid_latitude']],), 'zx': ([self.contourf, ['model_level_number', 'grid_longitude']], [self.contourf, ['grid_longitude', 'model_level_number']], [self.contour, ['model_level_number', 'grid_longitude']], [self.contour, ['grid_longitude', 'model_level_number']], [self.points, ['model_level_number', 'grid_longitude']], [self.points, ['grid_longitude', 'model_level_number']],), 'tx': ([self.contourf, ['time', 'grid_longitude']], [self.contourf, ['grid_longitude', 'time']], [self.contour, ['time', 'grid_longitude']], [self.contour, ['grid_longitude', 'time']], [self.points, ['time', 'grid_longitude']], [self.points, ['grid_longitude', 'time']],), 'x': ([self.plot, ['grid_longitude']],), 'y': ([self.plot, ['grid_latitude']],) } def draw(self, draw_method, *args, **kwargs): draw_fn = getattr(self.draw_module, draw_method) draw_fn(*args, **kwargs) self.check_graphic() def run_tests(self, cube, results): for draw_method, coords in results: draw_method(cube, coords=coords) try: self.check_graphic() except AssertionError, err: self.fail('Draw method %r failed with coords: %r. ' 'Assertion message: %s' % (draw_method, coords, err)) def run_tests_1d(self, cube, results): # there is a different calling convention for 1d plots for draw_method, coords in results: draw_method(cube.coord(coords[0]), cube) try: self.check_graphic() except AssertionError as err: msg = 'Draw method {!r} failed with coords: {!r}. ' \ 'Assertion message: {!s}' self.fail(msg.format(draw_method, coords, err)) def test_yx(self): test_cube = self.cube[0, 0, :, :] self.run_tests(test_cube, self.results['yx']) def test_zx(self): test_cube = self.cube[0, :15, 0, :] self.run_tests(test_cube, self.results['zx']) def test_tx(self): test_cube = self.cube[:, 0, 0, :] self.run_tests(test_cube, self.results['tx']) def test_x(self): test_cube = self.cube[0, 0, 0, :] self.run_tests_1d(test_cube, self.results['x']) def test_y(self): test_cube = self.cube[0, 0, :, 0] self.run_tests_1d(test_cube, self.results['y']) def test_badcoords(self): cube = self.cube[0, 0, :, :] draw_fn = getattr(self.draw_module, 'contourf') self.assertRaises(ValueError, draw_fn, cube, coords=['grid_longitude', 'grid_longitude']) self.assertRaises(ValueError, draw_fn, cube, coords=['grid_longitude', 'grid_longitude', 'grid_latitude']) self.assertRaises(iris.exceptions.CoordinateNotFoundError, draw_fn, cube, coords=['grid_longitude', 'wibble']) self.assertRaises(ValueError, draw_fn, cube, coords=[]) self.assertRaises(ValueError, draw_fn, cube, coords=[cube.coord('grid_longitude'), cube.coord('grid_longitude')]) self.assertRaises(ValueError, draw_fn, cube, coords=[cube.coord('grid_longitude'), cube.coord('grid_longitude'), cube.coord('grid_longitude')]) def test_non_cube_coordinate(self): cube = self.cube[0, :, :, 0] pts = -100 + np.arange(cube.shape[1]) * 13 x = coords.DimCoord(pts, standard_name='model_level_number', attributes={'positive': 'up'}) self.draw('contourf', cube, coords=['grid_latitude', x]) @iris.tests.skip_data class TestPlotDimAndAuxCoordsKwarg(tests.GraphicsTest): def setUp(self): filename = tests.get_data_path(('NetCDF', 'rotated', 'xy', 'rotPole_landAreaFraction.nc')) self.cube = iris.load_cube(filename) def test_default(self): iplt.contourf(self.cube) plt.gca().coastlines() self.check_graphic() def test_coords(self): # Pass in dimension coords. rlat = self.cube.coord('grid_latitude') rlon = self.cube.coord('grid_longitude') iplt.contourf(self.cube, coords=[rlon, rlat]) plt.gca().coastlines() self.check_graphic() # Pass in auxiliary coords. lat = self.cube.coord('latitude') lon = self.cube.coord('longitude') iplt.contourf(self.cube, coords=[lon, lat]) plt.gca().coastlines() self.check_graphic() def test_coord_names(self): # Pass in names of dimension coords. iplt.contourf(self.cube, coords=['grid_longitude', 'grid_latitude']) plt.gca().coastlines() self.check_graphic() # Pass in names of auxiliary coords. iplt.contourf(self.cube, coords=['longitude', 'latitude']) plt.gca().coastlines() self.check_graphic() def test_yx_order(self): # Do not attempt to draw coastlines as it is not a map. iplt.contourf(self.cube, coords=['grid_latitude', 'grid_longitude']) self.check_graphic() iplt.contourf(self.cube, coords=['latitude', 'longitude']) self.check_graphic() class TestSymbols(tests.GraphicsTest): def test_cloud_cover(self): iplt.symbols(range(10), [0] * 10, [iris.symbols.CLOUD_COVER[i] for i in range(10)], 0.375) self.check_graphic() class TestPlottingExceptions(tests.IrisTest): def setUp(self): self.bounded_cube = tests.stock.lat_lon_cube() self.bounded_cube.coord("latitude").guess_bounds() self.bounded_cube.coord("longitude").guess_bounds() def test_boundmode_multidim(self): # Test exception translation. # We can't get contiguous bounded grids from multi-d coords. cube = self.bounded_cube cube.remove_coord("latitude") cube.add_aux_coord(coords.AuxCoord(points=cube.data, standard_name='latitude', units='degrees'), [0, 1]) with self.assertRaises(ValueError): iplt.pcolormesh(cube, coords=['longitude', 'latitude']) def test_boundmode_4bounds(self): # Test exception translation. # We can only get contiguous bounded grids with 2 bounds per point. cube = self.bounded_cube lat = coords.AuxCoord.from_coord(cube.coord("latitude")) lat.bounds = np.array([lat.points, lat.points + 1, lat.points + 2, lat.points + 3]).transpose() cube.remove_coord("latitude") cube.add_aux_coord(lat, 0) with self.assertRaises(ValueError): iplt.pcolormesh(cube, coords=['longitude', 'latitude']) def test_different_coord_systems(self): cube = self.bounded_cube lat = cube.coord('latitude') lon = cube.coord('longitude') lat.coord_system = iris.coord_systems.GeogCS(7000000) lon.coord_system = iris.coord_systems.GeogCS(7000001) with self.assertRaises(ValueError): iplt.pcolormesh(cube, coords=['longitude', 'latitude']) @iris.tests.skip_data class TestPlotOtherCoordSystems(tests.GraphicsTest): def test_plot_tmerc(self): filename = tests.get_data_path(('NetCDF', 'transverse_mercator', 'tmean_1910_1910.nc')) self.cube = iris.load_cube(filename) iplt.pcolormesh(self.cube[0]) plt.gca().coastlines() self.check_graphic() if __name__ == "__main__": tests.main()
gpl-3.0
kaichogami/scikit-learn
sklearn/utils/multiclass.py
40
12966
# Author: Arnaud Joly, Joel Nothman, Hamzeh Alsalhi # # License: BSD 3 clause """ Multi-class / multi-label utility function ========================================== """ from __future__ import division from collections import Sequence from itertools import chain from scipy.sparse import issparse from scipy.sparse.base import spmatrix from scipy.sparse import dok_matrix from scipy.sparse import lil_matrix import numpy as np from ..externals.six import string_types from .validation import check_array from ..utils.fixes import bincount from ..utils.fixes import array_equal def _unique_multiclass(y): if hasattr(y, '__array__'): return np.unique(np.asarray(y)) else: return set(y) def _unique_indicator(y): return np.arange(check_array(y, ['csr', 'csc', 'coo']).shape[1]) _FN_UNIQUE_LABELS = { 'binary': _unique_multiclass, 'multiclass': _unique_multiclass, 'multilabel-indicator': _unique_indicator, } def unique_labels(*ys): """Extract an ordered array of unique labels We don't allow: - mix of multilabel and multiclass (single label) targets - mix of label indicator matrix and anything else, because there are no explicit labels) - mix of label indicator matrices of different sizes - mix of string and integer labels At the moment, we also don't allow "multiclass-multioutput" input type. Parameters ---------- *ys : array-likes, Returns ------- out : numpy array of shape [n_unique_labels] An ordered array of unique labels. Examples -------- >>> from sklearn.utils.multiclass import unique_labels >>> unique_labels([3, 5, 5, 5, 7, 7]) array([3, 5, 7]) >>> unique_labels([1, 2, 3, 4], [2, 2, 3, 4]) array([1, 2, 3, 4]) >>> unique_labels([1, 2, 10], [5, 11]) array([ 1, 2, 5, 10, 11]) """ if not ys: raise ValueError('No argument has been passed.') # Check that we don't mix label format ys_types = set(type_of_target(x) for x in ys) if ys_types == set(["binary", "multiclass"]): ys_types = set(["multiclass"]) if len(ys_types) > 1: raise ValueError("Mix type of y not allowed, got types %s" % ys_types) label_type = ys_types.pop() # Check consistency for the indicator format if (label_type == "multilabel-indicator" and len(set(check_array(y, ['csr', 'csc', 'coo']).shape[1] for y in ys)) > 1): raise ValueError("Multi-label binary indicator input with " "different numbers of labels") # Get the unique set of labels _unique_labels = _FN_UNIQUE_LABELS.get(label_type, None) if not _unique_labels: raise ValueError("Unknown label type: %s" % repr(ys)) ys_labels = set(chain.from_iterable(_unique_labels(y) for y in ys)) # Check that we don't mix string type with number type if (len(set(isinstance(label, string_types) for label in ys_labels)) > 1): raise ValueError("Mix of label input types (string and number)") return np.array(sorted(ys_labels)) def _is_integral_float(y): return y.dtype.kind == 'f' and np.all(y.astype(int) == y) def is_multilabel(y): """ Check if ``y`` is in a multilabel format. Parameters ---------- y : numpy array of shape [n_samples] Target values. Returns ------- out : bool, Return ``True``, if ``y`` is in a multilabel format, else ```False``. Examples -------- >>> import numpy as np >>> from sklearn.utils.multiclass import is_multilabel >>> is_multilabel([0, 1, 0, 1]) False >>> is_multilabel([[1], [0, 2], []]) False >>> is_multilabel(np.array([[1, 0], [0, 0]])) True >>> is_multilabel(np.array([[1], [0], [0]])) False >>> is_multilabel(np.array([[1, 0, 0]])) True """ if hasattr(y, '__array__'): y = np.asarray(y) if not (hasattr(y, "shape") and y.ndim == 2 and y.shape[1] > 1): return False if issparse(y): if isinstance(y, (dok_matrix, lil_matrix)): y = y.tocsr() return (len(y.data) == 0 or np.unique(y.data).size == 1 and (y.dtype.kind in 'biu' or # bool, int, uint _is_integral_float(np.unique(y.data)))) else: labels = np.unique(y) return len(labels) < 3 and (y.dtype.kind in 'biu' or # bool, int, uint _is_integral_float(labels)) def check_classification_targets(y): """Ensure that target y is of a non-regression type. Only the following target types (as defined in type_of_target) are allowed: 'binary', 'multiclass', 'multiclass-multioutput', 'multilabel-indicator', 'multilabel-sequences' Parameters ---------- y : array-like """ y_type = type_of_target(y) if y_type not in ['binary', 'multiclass', 'multiclass-multioutput', 'multilabel-indicator', 'multilabel-sequences']: raise ValueError("Unknown label type: %r" % y_type) def type_of_target(y): """Determine the type of data indicated by target `y` Parameters ---------- y : array-like Returns ------- target_type : string One of: * 'continuous': `y` is an array-like of floats that are not all integers, and is 1d or a column vector. * 'continuous-multioutput': `y` is a 2d array of floats that are not all integers, and both dimensions are of size > 1. * 'binary': `y` contains <= 2 discrete values and is 1d or a column vector. * 'multiclass': `y` contains more than two discrete values, is not a sequence of sequences, and is 1d or a column vector. * 'multiclass-multioutput': `y` is a 2d array that contains more than two discrete values, is not a sequence of sequences, and both dimensions are of size > 1. * 'multilabel-indicator': `y` is a label indicator matrix, an array of two dimensions with at least two columns, and at most 2 unique values. * 'unknown': `y` is array-like but none of the above, such as a 3d array, sequence of sequences, or an array of non-sequence objects. Examples -------- >>> import numpy as np >>> type_of_target([0.1, 0.6]) 'continuous' >>> type_of_target([1, -1, -1, 1]) 'binary' >>> type_of_target(['a', 'b', 'a']) 'binary' >>> type_of_target([1.0, 2.0]) 'binary' >>> type_of_target([1, 0, 2]) 'multiclass' >>> type_of_target([1.0, 0.0, 3.0]) 'multiclass' >>> type_of_target(['a', 'b', 'c']) 'multiclass' >>> type_of_target(np.array([[1, 2], [3, 1]])) 'multiclass-multioutput' >>> type_of_target([[1, 2]]) 'multiclass-multioutput' >>> type_of_target(np.array([[1.5, 2.0], [3.0, 1.6]])) 'continuous-multioutput' >>> type_of_target(np.array([[0, 1], [1, 1]])) 'multilabel-indicator' """ valid = ((isinstance(y, (Sequence, spmatrix)) or hasattr(y, '__array__')) and not isinstance(y, string_types)) if not valid: raise ValueError('Expected array-like (array or non-string sequence), ' 'got %r' % y) if is_multilabel(y): return 'multilabel-indicator' try: y = np.asarray(y) except ValueError: # Known to fail in numpy 1.3 for array of arrays return 'unknown' # The old sequence of sequences format try: if (not hasattr(y[0], '__array__') and isinstance(y[0], Sequence) and not isinstance(y[0], string_types)): raise ValueError('You appear to be using a legacy multi-label data' ' representation. Sequence of sequences are no' ' longer supported; use a binary array or sparse' ' matrix instead.') except IndexError: pass # Invalid inputs if y.ndim > 2 or (y.dtype == object and len(y) and not isinstance(y.flat[0], string_types)): return 'unknown' # [[[1, 2]]] or [obj_1] and not ["label_1"] if y.ndim == 2 and y.shape[1] == 0: return 'unknown' # [[]] if y.ndim == 2 and y.shape[1] > 1: suffix = "-multioutput" # [[1, 2], [1, 2]] else: suffix = "" # [1, 2, 3] or [[1], [2], [3]] # check float and contains non-integer float values if y.dtype.kind == 'f' and np.any(y != y.astype(int)): # [.1, .2, 3] or [[.1, .2, 3]] or [[1., .2]] and not [1., 2., 3.] return 'continuous' + suffix if (len(np.unique(y)) > 2) or (y.ndim >= 2 and len(y[0]) > 1): return 'multiclass' + suffix # [1, 2, 3] or [[1., 2., 3]] or [[1, 2]] else: return 'binary' # [1, 2] or [["a"], ["b"]] def _check_partial_fit_first_call(clf, classes=None): """Private helper function for factorizing common classes param logic Estimators that implement the ``partial_fit`` API need to be provided with the list of possible classes at the first call to partial_fit. Subsequent calls to partial_fit should check that ``classes`` is still consistent with a previous value of ``clf.classes_`` when provided. This function returns True if it detects that this was the first call to ``partial_fit`` on ``clf``. In that case the ``classes_`` attribute is also set on ``clf``. """ if getattr(clf, 'classes_', None) is None and classes is None: raise ValueError("classes must be passed on the first call " "to partial_fit.") elif classes is not None: if getattr(clf, 'classes_', None) is not None: if not array_equal(clf.classes_, unique_labels(classes)): raise ValueError( "`classes=%r` is not the same as on last call " "to partial_fit, was: %r" % (classes, clf.classes_)) else: # This is the first call to partial_fit clf.classes_ = unique_labels(classes) return True # classes is None and clf.classes_ has already previously been set: # nothing to do return False def class_distribution(y, sample_weight=None): """Compute class priors from multioutput-multiclass target data Parameters ---------- y : array like or sparse matrix of size (n_samples, n_outputs) The labels for each example. sample_weight : array-like of shape = (n_samples,), optional Sample weights. Returns ------- classes : list of size n_outputs of arrays of size (n_classes,) List of classes for each column. n_classes : list of integers of size n_outputs Number of classes in each column class_prior : list of size n_outputs of arrays of size (n_classes,) Class distribution of each column. """ classes = [] n_classes = [] class_prior = [] n_samples, n_outputs = y.shape if issparse(y): y = y.tocsc() y_nnz = np.diff(y.indptr) for k in range(n_outputs): col_nonzero = y.indices[y.indptr[k]:y.indptr[k + 1]] # separate sample weights for zero and non-zero elements if sample_weight is not None: nz_samp_weight = np.asarray(sample_weight)[col_nonzero] zeros_samp_weight_sum = (np.sum(sample_weight) - np.sum(nz_samp_weight)) else: nz_samp_weight = None zeros_samp_weight_sum = y.shape[0] - y_nnz[k] classes_k, y_k = np.unique(y.data[y.indptr[k]:y.indptr[k + 1]], return_inverse=True) class_prior_k = bincount(y_k, weights=nz_samp_weight) # An explicit zero was found, combine its weight with the weight # of the implicit zeros if 0 in classes_k: class_prior_k[classes_k == 0] += zeros_samp_weight_sum # If an there is an implicit zero and it is not in classes and # class_prior, make an entry for it if 0 not in classes_k and y_nnz[k] < y.shape[0]: classes_k = np.insert(classes_k, 0, 0) class_prior_k = np.insert(class_prior_k, 0, zeros_samp_weight_sum) classes.append(classes_k) n_classes.append(classes_k.shape[0]) class_prior.append(class_prior_k / class_prior_k.sum()) else: for k in range(n_outputs): classes_k, y_k = np.unique(y[:, k], return_inverse=True) classes.append(classes_k) n_classes.append(classes_k.shape[0]) class_prior_k = bincount(y_k, weights=sample_weight) class_prior.append(class_prior_k / class_prior_k.sum()) return (classes, n_classes, class_prior)
bsd-3-clause
ONEcampaign/humanitarian-data-service
displacement_tracker_data.py
1
27157
import requests import pandas as pd import os.path import resources.constants import json from pandas.io.json import json_normalize from utils.data_utils import get_ordinal_number """ This script aggregates data from multiple endpoints and returns a single .json file containing all data used in the displacement tracker project. Scheduling this script would mean that the /displacement_tracker endpoint always returned the latest data contained within the Humanitarian Data Service API. """ # For development #ROOT = 'http://localhost:5000' # For live ROOT = 'http://ec2-34-200-18-111.compute-1.amazonaws.com' # Set year for country-level funding data FUNDING_YEAR = 2016 # Define all endpoints URL_POPULATIONS_REFUGEELIKE_ASYLUM = '/populations/refugeelike/asylum/index' URL_POPULATIONS_REFUGEELIKE_ORIGIN = '/populations/refugeelike/origin/index' URL_INDICATORS_GNI = '/indicators/gni/index' URL_PLANS_PROGRESS = '/funding/plans/progress/index' URL_POPULATION = '/populations/totals/index' URL_FRAGILE_STATE = '/fragility/fragile-state-index/index' URL_NEEDS = '/needs/plans/index' URL_FUNDING_DEST_COUNTRY = '/funding/countries/destination/index/{}'.format(FUNDING_YEAR) URL_FUNDING_DEST_DONORS = '/funding/countries/donors/index' # Define path for raw country names data country_names_path = os.path.join(resources.constants.EXAMPLE_RAW_DATA_PATH, 'UNSD Methodology.csv') # Define path for relatable geography populations data relatable_population_path = os.path.join(resources.constants.EXAMPLE_DERIVED_DATA_PATH, '2017_relatable_population_rankings.csv') # Define path for stories of displacement displacement_stories_path = os.path.join(resources.constants.EXAMPLE_DERIVED_DATA_PATH, 'stories_of_displacement_links.csv') # Create a blank dictionary to store metadata for each field metadata_dict = {} def merge_data( funding_year = FUNDING_YEAR, country_names_path=country_names_path, relatable_population_path=relatable_population_path, displacement_stories_path=displacement_stories_path, url_populations_refugeelike_asylum=(ROOT + URL_POPULATIONS_REFUGEELIKE_ASYLUM), url_populations_refugeelike_origin=(ROOT + URL_POPULATIONS_REFUGEELIKE_ORIGIN), url_indicators_gni=(ROOT + URL_INDICATORS_GNI), url_plans_progress=(ROOT + URL_PLANS_PROGRESS), url_population=(ROOT + URL_POPULATION), url_fragile_state=(ROOT + URL_FRAGILE_STATE), url_needs=(ROOT + URL_NEEDS), url_funding_dest_country=(ROOT + URL_FUNDING_DEST_COUNTRY), url_funding_dest_donors=(ROOT + URL_FUNDING_DEST_DONORS) ): #################### COUNTRY NAMES #################### # Get the data from .csv df_country_names = pd.read_csv(country_names_path, encoding='utf-8') # Select relevant fields df_country_names = df_country_names[[ 'Country or Area', 'ISO-alpha3 Code' ]] # Add Taiwan df_country_names.loc[-1] = ["Taiwan", "TWN"] # Drop null values df_country_names = df_country_names.dropna() # Set country code to be the index df_country_names = df_country_names.set_index('ISO-alpha3 Code') # Rename fields df_country_names.rename(columns={'Country or Area': 'Country'}, inplace=True) #################### DISPLACEMENT STORIES #################### # Get the data from .csv df_displacement_stories = pd.read_csv(displacement_stories_path, encoding='utf-8') # Set country code to be the index df_displacement_stories = df_displacement_stories.set_index('countryCode') # Select relevant fields df_displacement_stories = df_displacement_stories[[ 'storyTitle', 'storySource', 'storyTagLine', 'storyURL' ]] # Drop null values df_displacement_stories = df_displacement_stories.dropna() # Add metadata for each field to overall metadata dictionary for column in df_displacement_stories.columns: metadata_dict[column] = {} #################### POPULATIONS #################### # Get the data from the API population_data = requests.get(url_population).json() # Extract metadata if 'metadata' in population_data: population_metadata = population_data['metadata'] else: population_metadata = {} # Build dataframe df_population = pd.DataFrame(population_data['data']).T # Select relevant fields df_population = df_population[[ 'PopTotal' ]] # Rename fields df_population.rename(columns={'PopTotal': 'Population'}, inplace=True) # Drop null values df_population = df_population.dropna() # Add metadata for each field to overall metadata dictionary for column in df_population.columns: metadata_dict[column] = population_metadata #################### FRAGILE STATE #################### # Get the data from the API fragile_state_data = requests.get(url_fragile_state).json() # Extract metadata if 'metadata' in fragile_state_data: fragile_state_metadata = fragile_state_data['metadata'] else: fragile_state_metadata = {} # Build a dataframe df_fragile_state = pd.DataFrame(fragile_state_data['data']).T # Select relevant fields df_fragile_state = df_fragile_state[[ 'Total', 'Rank' ]] # Rename fields df_fragile_state.rename(columns={'Total': 'Fragile State Index Score', 'Rank': 'Fragile State Index Rank'}, inplace=True) # Drop null values df_fragile_state = df_fragile_state.dropna() # Add metadata for each field to overall metadata dictionary for column in df_fragile_state.columns: metadata_dict[column] = fragile_state_metadata #################### POPULATIONS_REFUGEELIKE_ASYLUM #################### # Get the data from the API populations_refugeelike_asylum_data = requests.get(url_populations_refugeelike_asylum).json() # Extract metadata if 'metadata' in populations_refugeelike_asylum_data: populations_refugeelike_asylum_metadata = populations_refugeelike_asylum_data['metadata'] else: populations_refugeelike_asylum_metadata = {} # Build a dataframe df_populations_refugeelike_asylum = pd.DataFrame(populations_refugeelike_asylum_data['data']).T # Select relevant fields df_populations_refugeelike_asylum = df_populations_refugeelike_asylum[[ 'Total population of concern', 'Total Refugee and people in refugee-like situations', 'IDPs protected/assisted by UNHCR, incl. people in IDP-like situations','Asylum-seekers' ]] # Rename fields df_populations_refugeelike_asylum.rename(columns={ 'IDPs protected/assisted by UNHCR, incl. people in IDP-like situations': 'IDPs protected/assisted by UNHCR', 'Asylum-seekers': 'Asylum-seekers (asylum)' }, inplace=True) # Add field to rank total total population of concern df_populations_refugeelike_asylum['Rank of total population of concern'] = df_populations_refugeelike_asylum[ 'Total population of concern'].rank(ascending=False, method='min').astype(int) # Add field to add refugees and asylum-seekers df_populations_refugeelike_asylum['Total refugees and asylum-seekers (asylum)'] = df_populations_refugeelike_asylum[ 'Total Refugee and people in refugee-like situations'] + df_populations_refugeelike_asylum['Asylum-seekers (asylum)'] # Drop null values df_populations_refugeelike_asylum = df_populations_refugeelike_asylum.dropna() # Add metadata for each field to overall metadata dictionary for column in df_populations_refugeelike_asylum.columns: metadata_dict[column] = populations_refugeelike_asylum_metadata #################### POPULATIONS_REFUGEELIKE_ORIGIN #################### # Get the data from the API populations_refugeelike_origin_data = requests.get(url_populations_refugeelike_origin).json() # Extract metadata if 'metadata' in populations_refugeelike_origin_data: populations_refugeelike_origin_metadata = populations_refugeelike_origin_data['metadata'] else: populations_refugeelike_origin_metadata = {} # Build a dataframe df_populations_refugeelike_origin = pd.DataFrame(populations_refugeelike_origin_data['data']).T # Select relevant fields df_populations_refugeelike_origin = df_populations_refugeelike_origin[[ 'Total Refugee and people in refugee-like situations', 'Asylum-seekers' ]] # Rename fields df_populations_refugeelike_origin.rename(columns={ 'Total Refugee and people in refugee-like situations': 'Total refugees who have fled from country', 'Asylum-seekers': 'Asylum-seekers (origin)' }, inplace=True) # Add field to add refugees and asylum-seekers df_populations_refugeelike_origin['Total refugees and asylum-seekers (origin)'] = df_populations_refugeelike_origin[ 'Total refugees who have fled from country'] + df_populations_refugeelike_origin['Asylum-seekers (origin)'] # Drop null values df_populations_refugeelike_origin = df_populations_refugeelike_origin.dropna() # Add metadata for each field to overall metadata dictionary for column in df_populations_refugeelike_origin.columns: metadata_dict[column] = populations_refugeelike_origin_metadata #################### INDICATORS GNI #################### # Get the data from the API indicators_gni_data = requests.get(url_indicators_gni).json() # Extract metadata if 'metadata' in indicators_gni_data: indicators_gni_metadata = indicators_gni_data['metadata'] else: indicators_gni_metadata = {} # Build a dataframe df_indicators_gni = pd.DataFrame(indicators_gni_data['data']).T # Select relevant fields df_indicators_gni = df_indicators_gni[[ '2015' ]] # Rename fields df_indicators_gni.rename(columns={'2015': 'GDP Per Capita'}, inplace=True) # Drop null values df_indicators_gni = df_indicators_gni.dropna() # Add metadata for each field to overall metadata dictionary for column in df_indicators_gni.columns: metadata_dict[column] = indicators_gni_metadata #################### PLANS PROGRESS #################### # Get the data from the API plans_progress_data = requests.get(url_plans_progress).json() # Extract metadata if 'metadata' in plans_progress_data: plans_progress_metadata = plans_progress_data['metadata'] else: plans_progress_metadata = {} # Build a dataframe df_plans_progress = pd.DataFrame(plans_progress_data['data']).T # Select relevant fields df_plans_progress = df_plans_progress[[ 'appealFunded', 'revisedRequirements', 'neededFunding' ]] # Rename fields df_plans_progress.rename(columns={'appealFunded': 'Appeal funds committed to date', 'revisedRequirements': 'Appeal funds requested', 'neededFunding': 'Appeal funds still needed'}, inplace=True) df_plans_progress['Appeal percent funded'] = df_plans_progress['Appeal funds committed to date']/df_plans_progress['Appeal funds requested'] # Drop null values df_plans_progress = df_plans_progress.dropna() # Add metadata for each field to overall metadata dictionary for column in df_plans_progress.columns: metadata_dict[column] = plans_progress_metadata # Add an FTS data as-of date so it can be included in the .csv data dump df_plans_progress['FTS funding data as-of date'] = plans_progress_data['metadata']['source_data'] ######## FUNDING BY DESTINATION COUNTRY ############ #Get the data from the API funding_dest_country_data = requests.get(url_funding_dest_country).json() # Extract metadata if 'metadata' in funding_dest_country_data: funding_dest_country_metadata = funding_dest_country_data['metadata'] else: funding_dest_country_metadata = {} # Build a dataframe df_funding_dest_country = pd.DataFrame(funding_dest_country_data['data']).T # Select relevant fields df_funding_dest_country = df_funding_dest_country[[ 'totalFunding' ]] # Keep only records where totalFunding > 0 df_funding_dest_country = df_funding_dest_country[df_funding_dest_country['totalFunding'] > 0] # Rename fields df_funding_dest_country.rename(columns={'totalFunding': 'Humanitarian aid received'}, inplace=True) # Add field to rank total total population of concern df_funding_dest_country['Rank of humanitarian aid received'] = df_funding_dest_country[ 'Humanitarian aid received'].rank(ascending=False, method='min').astype(int) # Drop null values df_funding_dest_country = df_funding_dest_country.dropna() # Add metadata for each field to overall metadata dictionary for column in df_funding_dest_country.columns: metadata_dict[column] = funding_dest_country_metadata ################## TOP 5 DONORS TO EACH DESTINATION COUNTRY ################### #Get the data from the API funding_dest_donors_data = requests.get(url_funding_dest_donors).json() # Extract metadata if 'metadata' in funding_dest_donors_data: funding_dest_donors_metadata = funding_dest_donors_data['metadata'] else: funding_dest_donors_metadata = {} # Build a dataframe df_funding_dest_donors = json_normalize(funding_dest_donors_data['data']).T #df_funding_dest_donors = pd.DataFrame(funding_dest_donors_data['data']).T df_funding_dest_donors.columns = (['Top 5 Donors']) # Add metadata for each field to overall metadata dictionary for column in df_funding_dest_donors.columns: metadata_dict[column] = funding_dest_donors_metadata #################### NEEDS #################### # Get the data from the API needs_data = requests.get(url_needs).json() # Extract metadata if 'metadata' in needs_data: needs_metadata = needs_data['metadata'] else: needs_metadata = {} # Build a dataframe df_needs = pd.DataFrame(needs_data['data']).T # Exclude rows where country code is missing df_needs = df_needs.drop('null') # Select relevant fields df_needs = df_needs[[ 'inNeedTotal', 'inNeedHealth', 'inNeedEducation', 'inNeedFoodSecurity', 'inNeedProtection', 'sourceURL', 'inNeedShelter-CCCM-NFI', 'inNeedWASH', 'sourceType' ]] # Rename fields df_needs.rename(columns={'inNeedTotal': 'Total people in need', 'inNeedHealth': 'People in need of health support', 'inNeedEducation': 'Children in need of education', 'inNeedFoodSecurity': 'People who are food insecure', 'inNeedProtection': 'People in need of protection', 'inNeedShelter-CCCM-NFI': 'People in need of shelter', 'inNeedWASH': 'People in need of water, sanitization & hygiene', 'sourceURL': 'Source of needs data', 'sourceType': 'Source type of needs data' }, inplace=True) # Add metadata for each field to overall metadata dictionary for column in df_needs.columns: metadata_dict[column] = needs_metadata ######## FIND PLACES WITH SIMILAR POPULATIONS TO PEOPLE IN NEED ######## # Get the relateable populations data from .csv df_relatable_populations = pd.read_csv(relatable_population_path) df_relatable_populations['Population'] = df_relatable_populations[[ 'Population - World Bank (2015)','Population - UNFPA (2016)' ]].max(axis=1) df_relatable_populations = df_relatable_populations[['City, State, Country','Population']].dropna() def find_nearest_place_population(reference_value): if reference_value: nearest_row = df_relatable_populations.iloc[(df_relatable_populations['Population']- reference_value).abs().argsort()[0]] nearest_population = nearest_row['Population'] else: nearest_population = 0.00 return nearest_population def find_nearest_place(reference_value): if reference_value: nearest_row = df_relatable_populations.iloc[(df_relatable_populations['Population']- reference_value).abs().argsort()[0]] nearest_place = nearest_row['City, State, Country'] else: nearest_place = '' return nearest_place df_needs['Place with similar population as people in need'] = df_needs['Total people in need'].apply( find_nearest_place) # Add metadata metadata_dict['Place with similar population as people in need'] = {} df_needs['Population of place with similar population'] = df_needs['Total people in need'].apply( find_nearest_place_population) # Add metadata metadata_dict['Population of place with similar population'] = {} #################### SAMPLE CLUSTERS #################### # Build a dataframe # df_clusters = pd.read_json('sample_clusters.json').T # df_clusters = df_clusters[['clusters']] ################# COMBINE ALL DATA ############## # Make a list of all dataframes all_dataframes = [ df_country_names, df_populations_refugeelike_asylum, df_indicators_gni, df_plans_progress, df_population, df_fragile_state, df_needs, df_funding_dest_country, df_funding_dest_donors, df_displacement_stories, df_populations_refugeelike_origin # df_clusters ] df_final = pd.concat(all_dataframes, axis=1) # Add calculation for displaced people as a ratio of total population df_final['Population of concern per 1000 population'] = (df_final['Total population of concern'] / df_final[ 'Population'])*1000 # And metadata metadata_dict['Population of concern per 1000 population'] = {} metadata_dict['Population of concern per 1000 population']['Calculation'] = '(Total population of concern / Population) * 1000' # Add calculation for displaced people per million GDP df_final['Population of concern per million GDP'] = ((df_final['Total population of concern'] * 1000000) / (df_final[ 'GDP Per Capita'] * df_final['Population'])) # And metadata metadata_dict['Population of concern per million GDP'] = {} metadata_dict['Population of concern per million GDP']['Calculation'] = '(Total population of concern] * 1000000) / (GDP Per Capita * Population)' # Add field to specify whether country has current humanitarian appeal in FTS df_final['Country has current appeal'] = df_final['Appeal funds requested'].notnull() # And metadata metadata_dict['Country has current appeal'] = {} metadata_dict['Country has current appeal']['Calculation'] = 'Is Appeal funds requested not null' # Make the ranked variables ordinal def get_ordinal_number(value): try: value = int(value) except ValueError: return value if value % 100 // 10 != 1: if value % 10 == 1: ordval = u"%d%s" % (value, "st") elif value % 10 == 2: ordval = u"%d%s" % (value, "nd") elif value % 10 == 3: ordval = u"%d%s" % (value, "rd") else: ordval = u"%d%s" % (value, "th") else: ordval = u"%d%s" % (value, "th") return ordval df_final['Rank of total population of concern'] = df_final['Rank of total population of concern'].apply( get_ordinal_number) df_final['Rank of humanitarian aid received'] = df_final['Rank of humanitarian aid received'].apply( get_ordinal_number) ################## STRUCTURE DICTIONARY ################## # Clean up NaN values df_final = df_final.fillna('') # Transform dataframe to dictionary df_as_dict = df_final.to_dict(orient='index') # Define field names for each strand strand_01_fields = ['Appeal funds still needed', 'Appeal funds requested', 'Appeal funds committed to date', 'Appeal percent funded', 'Source of needs data', 'Source type of needs data', 'Total people in need', 'Place with similar population as people in need', 'Population of place with similar population'] strand_02_fields = ['Population of concern per 1000 population', 'Fragile State Index Score', 'Total population of concern', 'IDPs protected/assisted by UNHCR', 'GDP Per Capita', 'Total refugees and asylum-seekers (asylum)', 'Total refugees and asylum-seekers (origin)'] strand_03_fields = ['Humanitarian aid received', 'Appeal funds requested', 'Appeal percent funded', 'Rank of total population of concern', 'Rank of humanitarian aid received'] needs_fields = ['People in need of health support','Children in need of education', 'People who are food insecure','People in need of protection','People in need of shelter', 'People in need of water, sanitization & hygiene'] story_fields = ['storyTitle', 'storySource', 'storyTagLine', 'storyURL'] # For every object, get / group the values by strand data = {} for x in df_as_dict.keys(): # Create an empty dict country_dict = {} # Populate the dict with those value that don't require nesting country_dict['Country'] = df_as_dict[x]['Country'] country_dict['Fragile State Index Rank'] = df_as_dict[x]['Fragile State Index Rank'] country_dict['Country has current appeal'] = df_as_dict[x]['Country has current appeal'] # Populate the dict with story fields story_fields_dict = {} if df_as_dict[x]['storyURL']: for field in story_fields: story_fields_dict[field] = (df_as_dict[x][field]) country_dict['Displacement_story'] = story_fields_dict # Populate the dict with strand 1 data if the country has a current appeal strand_01_dict = {} if df_as_dict[x]['Country has current appeal']: strand_01_dict['Needs_Data'] = {} for names_01 in strand_01_fields: strand_01_dict[names_01] = (df_as_dict[x][names_01]) for name in needs_fields: if df_as_dict[x][name] != '': strand_01_dict['Needs_Data'][name] = (df_as_dict[x][name]) country_dict['Strand_01_Needs'] = strand_01_dict # Populate the dict with strand 2 data strand_02_dict = {} for names_02 in strand_02_fields: strand_02_dict[names_02] = (df_as_dict[x][names_02]) country_dict['Strand_02_People'] = strand_02_dict # Populate the dict with strand 3 data strand_03_dict = {} strand_03_dict['Top 5 donors of humanitarian aid'] = [] for names_03 in strand_03_fields: strand_03_dict[names_03] = (df_as_dict[x][names_03]) if df_as_dict[x]['Top 5 Donors']: strand_03_dict['Top 5 donors of humanitarian aid'] = df_as_dict[x]['Top 5 Donors'] country_dict['Strand_03_Aid'] = strand_03_dict # Add the country dict to the data dict data[x] = country_dict # Add World totals # Create an empty dict world_dict = {} # Populate the dict with aggregated strand 1 data strand_01_dict = {} strand_01_dict['Needs_Data'] = {} strand_01_dict['Total people in need'] = df_needs['Total people in need'].sum() strand_01_dict['Count of current crises with people in need'] = df_needs['Total people in need'].count() strand_01_dict['Place with similar population as people in need'] = find_nearest_place( df_needs['Total people in need'].sum() ) strand_01_dict['Population of place with similar population'] = find_nearest_place_population( df_needs['Total people in need'].sum() ) for name in needs_fields: strand_01_dict['Needs_Data'][name] = df_needs[name].sum() world_dict['Strand_01_Needs'] = strand_01_dict # Add the world dict to the data dict data['WORLD'] = world_dict # Create the metadata dict metadata = {} # Populate the dict with those value that don't require nesting #metadata['Country'] = metadata_dict['Country'] metadata['Fragile State Index Rank'] = metadata_dict['Fragile State Index Rank'] metadata['Country has current appeal'] = metadata_dict['Country has current appeal'] # Populate the dict with story fields story_fields_dict = {} if metadata_dict['storyURL']: for field in story_fields: story_fields_dict[field] = (metadata_dict[field]) metadata['Displacement_story'] = story_fields_dict # Populate the dict with strand 1 data if the country has a current appeal strand_01_dict = {} strand_01_dict['Needs_Data'] = {} for names_01 in strand_01_fields: strand_01_dict[names_01] = (metadata_dict[names_01]) metadata['Strand_01_Needs'] = strand_01_dict # Populate the dict with strand 2 data strand_02_dict = {} for names_02 in strand_02_fields: strand_02_dict[names_02] = (metadata_dict[names_02]) metadata['Strand_02_People'] = strand_02_dict # Populate the dict with strand 3 data strand_03_dict = {} strand_03_dict['Top 5 donors of humanitarian aid'] = [] for names_03 in strand_03_fields: strand_03_dict[names_03] = (metadata_dict[names_03]) if metadata_dict['Top 5 Donors']: strand_03_dict['Top 5 donors of humanitarian aid'] = metadata_dict['Top 5 Donors'] metadata['Strand_03_Aid'] = strand_03_dict # At the higher level, structure the json with 'data' and 'metadata' final_json = { 'data': data, 'metadata': metadata } return final_json, metadata, df_final def run(): print 'Pulling and merging data' final_json, metadata, final_csv = merge_data() print 'Writing Combined JSON file' with open(os.path.join(resources.constants.EXAMPLE_DERIVED_DATA_PATH, 'displacement_tracker.json'), 'w') as outfile: json.dump(final_json, outfile, indent=4, separators=(',', ': '), ensure_ascii=True, sort_keys=True) print 'Writing Combined JSON metadata file' with open(os.path.join(resources.constants.EXAMPLE_DERIVED_DATA_PATH, 'displacement_tracker_metadata.json'), 'w') as outfile: json.dump(metadata, outfile, indent=4, separators=(',', ': '), ensure_ascii=True, sort_keys=True) print 'Writing Combined CSV file' final_csv.to_csv(os.path.join(resources.constants.EXAMPLE_DERIVED_DATA_PATH, 'displacement_tracker.csv'), index_label='CountryCode', encoding='utf-8') if __name__ == "__main__": run()
mit
Tong-Chen/scikit-learn
sklearn/tests/test_cross_validation.py
4
30858
"""Test the cross_validation module""" from __future__ import division import warnings import numpy as np from scipy.sparse import coo_matrix from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_not_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_warns from sklearn.utils.testing import ignore_warnings from sklearn.utils.fixes import unique from sklearn import cross_validation as cval from sklearn.base import BaseEstimator from sklearn.datasets import make_regression from sklearn.datasets import load_digits from sklearn.datasets import load_iris from sklearn.metrics import accuracy_score from sklearn.metrics import f1_score from sklearn.metrics import explained_variance_score from sklearn.metrics import fbeta_score from sklearn.metrics import make_scorer from sklearn.externals import six from sklearn.linear_model import Ridge from sklearn.svm import SVC class MockListClassifier(BaseEstimator): """Dummy classifier to test the cross-validation. Checks that GridSearchCV didn't convert X to array. """ def __init__(self, foo_param=0): self.foo_param = foo_param def fit(self, X, Y): assert_true(len(X) == len(Y)) assert_true(isinstance(X, list)) return self def predict(self, T): return T.shape[0] def score(self, X=None, Y=None): if self.foo_param > 1: score = 1. else: score = 0. return score class MockClassifier(BaseEstimator): """Dummy classifier to test the cross-validation""" def __init__(self, a=0): self.a = a def fit(self, X, Y=None, sample_weight=None, class_prior=None): if sample_weight is not None: assert_true(sample_weight.shape[0] == X.shape[0], 'MockClassifier extra fit_param sample_weight.shape[0]' ' is {0}, should be {1}'.format(sample_weight.shape[0], X.shape[0])) if class_prior is not None: assert_true(class_prior.shape[0] == len(np.unique(y)), 'MockClassifier extra fit_param class_prior.shape[0]' ' is {0}, should be {1}'.format(class_prior.shape[0], len(np.unique(y)))) return self def predict(self, T): return T.shape[0] def score(self, X=None, Y=None): return 1. / (1 + np.abs(self.a)) X = np.ones((10, 2)) X_sparse = coo_matrix(X) y = np.arange(10) // 2 ############################################################################## # Tests def check_valid_split(train, test, n_samples=None): # Use python sets to get more informative assertion failure messages train, test = set(train), set(test) # Train and test split should not overlap assert_equal(train.intersection(test), set()) if n_samples is not None: # Check that the union of train an test split cover all the indices assert_equal(train.union(test), set(range(n_samples))) def check_cv_coverage(cv, expected_n_iter=None, n_samples=None): # Check that a all the samples appear at least once in a test fold if expected_n_iter is not None: assert_equal(len(cv), expected_n_iter) else: expected_n_iter = len(cv) collected_test_samples = set() iterations = 0 for train, test in cv: check_valid_split(train, test, n_samples=n_samples) iterations += 1 collected_test_samples.update(test) # Check that the accumulated test samples cover the whole dataset assert_equal(iterations, expected_n_iter) if n_samples is not None: assert_equal(collected_test_samples, set(range(n_samples))) def test_kfold_valueerrors(): # Check that errors are raised if there is not enough samples assert_raises(ValueError, cval.KFold, 3, 4) # Check that a warning is raised if the least populated class has too few # members. with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') y = [3, 3, -1, -1, 2] cv = cval.StratifiedKFold(y, 3) # checking there was only one warning. assert_equal(len(w), 1) # checking it has the right type assert_equal(w[0].category, Warning) # checking it's the right warning. This might be a bad test since it's # a characteristic of the code and not a behavior assert_true("The least populated class" in str(w[0])) # Check that despite the warning the folds are still computed even # though all the classes are not necessarily represented at on each # side of the split at each split check_cv_coverage(cv, expected_n_iter=3, n_samples=len(y)) # Error when number of folds is <= 1 assert_raises(ValueError, cval.KFold, 2, 0) assert_raises(ValueError, cval.KFold, 2, 1) assert_raises(ValueError, cval.StratifiedKFold, y, 0) assert_raises(ValueError, cval.StratifiedKFold, y, 1) # When n is not integer: assert_raises(ValueError, cval.KFold, 2.5, 2) # When n_folds is not integer: assert_raises(ValueError, cval.KFold, 5, 1.5) assert_raises(ValueError, cval.StratifiedKFold, y, 1.5) def test_kfold_indices(): # Check all indices are returned in the test folds kf = cval.KFold(300, 3) check_cv_coverage(kf, expected_n_iter=3, n_samples=300) # Check all indices are returned in the test folds even when equal-sized # folds are not possible kf = cval.KFold(17, 3) check_cv_coverage(kf, expected_n_iter=3, n_samples=17) def test_kfold_no_shuffle(): # Manually check that KFold preserves the data ordering on toy datasets splits = iter(cval.KFold(4, 2)) train, test = next(splits) assert_array_equal(test, [0, 1]) assert_array_equal(train, [2, 3]) train, test = next(splits) assert_array_equal(test, [2, 3]) assert_array_equal(train, [0, 1]) splits = iter(cval.KFold(5, 2)) train, test = next(splits) assert_array_equal(test, [0, 1, 2]) assert_array_equal(train, [3, 4]) train, test = next(splits) assert_array_equal(test, [3, 4]) assert_array_equal(train, [0, 1, 2]) def test_stratified_kfold_no_shuffle(): # Manually check that StratifiedKFold preserves the data ordering as much # as possible on toy datasets in order to avoid hiding sample dependencies # when possible splits = iter(cval.StratifiedKFold([1, 1, 0, 0], 2)) train, test = next(splits) assert_array_equal(test, [0, 2]) assert_array_equal(train, [1, 3]) train, test = next(splits) assert_array_equal(test, [1, 3]) assert_array_equal(train, [0, 2]) splits = iter(cval.StratifiedKFold([1, 1, 1, 0, 0, 0, 0], 2)) train, test = next(splits) assert_array_equal(test, [0, 1, 3, 4]) assert_array_equal(train, [2, 5, 6]) train, test = next(splits) assert_array_equal(test, [2, 5, 6]) assert_array_equal(train, [0, 1, 3, 4]) def test_stratified_kfold_ratios(): # Check that stratified kfold preserves label ratios in individual splits n_samples = 1000 labels = np.array([4] * int(0.10 * n_samples) + [0] * int(0.89 * n_samples) + [1] * int(0.01 * n_samples)) for train, test in cval.StratifiedKFold(labels, 5): assert_almost_equal(np.sum(labels[train] == 4) / len(train), 0.10, 2) assert_almost_equal(np.sum(labels[train] == 0) / len(train), 0.89, 2) assert_almost_equal(np.sum(labels[train] == 1) / len(train), 0.01, 2) assert_almost_equal(np.sum(labels[test] == 4) / len(test), 0.10, 2) assert_almost_equal(np.sum(labels[test] == 0) / len(test), 0.89, 2) assert_almost_equal(np.sum(labels[test] == 1) / len(test), 0.01, 2) def test_kfold_balance(): # Check that KFold returns folds with balanced sizes for kf in [cval.KFold(i, 5) for i in range(11, 17)]: sizes = [] for _, test in kf: sizes.append(len(test)) assert_true((np.max(sizes) - np.min(sizes)) <= 1) assert_equal(np.sum(sizes), kf.n) def test_stratifiedkfold_balance(): # Check that KFold returns folds with balanced sizes (only when # stratification is possible) labels = [0] * 3 + [1] * 14 for skf in [cval.StratifiedKFold(labels[:i], 3) for i in range(11, 17)]: sizes = [] for _, test in skf: sizes.append(len(test)) assert_true((np.max(sizes) - np.min(sizes)) <= 1) assert_equal(np.sum(sizes), skf.n) def test_shuffle_kfold(): # Check the indices are shuffled properly, and that all indices are # returned in the different test folds kf = cval.KFold(300, 3, shuffle=True, random_state=0) ind = np.arange(300) all_folds = None for train, test in kf: sorted_array = np.arange(100) assert_true(np.any(sorted_array != ind[train])) sorted_array = np.arange(101, 200) assert_true(np.any(sorted_array != ind[train])) sorted_array = np.arange(201, 300) assert_true(np.any(sorted_array != ind[train])) if all_folds is None: all_folds = ind[test].copy() else: all_folds = np.concatenate((all_folds, ind[test])) all_folds.sort() assert_array_equal(all_folds, ind) def test_kfold_can_detect_dependent_samples_on_digits(): # see #2372 # The digits samples are dependent: they are apparently grouped by authors # although we don't have any information on the groups segment locations # for this data. We can highlight this fact be computing k-fold cross- # validation with and without shuffling: we observe that the shuffling case # wrongly makes the IID assumption and is therefore too optimistic: it # estimates a much higher accuracy (around 0.96) than than the non # shuffling variant (around 0.86). digits = load_digits() X, y = digits.data[:800], digits.target[:800] model = SVC(C=10, gamma=0.005) n = len(y) cv = cval.KFold(n, 5, shuffle=False) mean_score = cval.cross_val_score(model, X, y, cv=cv).mean() assert_greater(0.88, mean_score) assert_greater(mean_score, 0.85) # Shuffling the data artificially breaks the dependency and hides the # overfitting of the model w.r.t. the writing style of the authors # by yielding a seriously overestimated score: cv = cval.KFold(n, 5, shuffle=True, random_state=0) mean_score = cval.cross_val_score(model, X, y, cv=cv).mean() assert_greater(mean_score, 0.95) cv = cval.KFold(n, 5, shuffle=True, random_state=1) mean_score = cval.cross_val_score(model, X, y, cv=cv).mean() assert_greater(mean_score, 0.95) # Similarly, StratifiedKFold should try to shuffle the data as little # as possible (while respecting the balanced class constraints) # and thus be able to detect the dependency by not overestimating # the CV score either. As the digits dataset is approximately balanced # the estimated mean score is close to the score measured with # non-shuffled KFold cv = cval.StratifiedKFold(y, 5) mean_score = cval.cross_val_score(model, X, y, cv=cv).mean() assert_greater(0.88, mean_score) assert_greater(mean_score, 0.85) def test_shuffle_split(): ss1 = cval.ShuffleSplit(10, test_size=0.2, random_state=0) ss2 = cval.ShuffleSplit(10, test_size=2, random_state=0) ss3 = cval.ShuffleSplit(10, test_size=np.int32(2), random_state=0) for typ in six.integer_types: ss4 = cval.ShuffleSplit(10, test_size=typ(2), random_state=0) for t1, t2, t3, t4 in zip(ss1, ss2, ss3, ss4): assert_array_equal(t1[0], t2[0]) assert_array_equal(t2[0], t3[0]) assert_array_equal(t3[0], t4[0]) assert_array_equal(t1[1], t2[1]) assert_array_equal(t2[1], t3[1]) assert_array_equal(t3[1], t4[1]) def test_stratified_shuffle_split_init(): y = np.asarray([0, 1, 1, 1, 2, 2, 2]) # Check that error is raised if there is a class with only one sample assert_raises(ValueError, cval.StratifiedShuffleSplit, y, 3, 0.2) # Check that error is raised if the test set size is smaller than n_classes assert_raises(ValueError, cval.StratifiedShuffleSplit, y, 3, 2) # Check that error is raised if the train set size is smaller than # n_classes assert_raises(ValueError, cval.StratifiedShuffleSplit, y, 3, 3, 2) y = np.asarray([0, 0, 0, 1, 1, 1, 2, 2, 2]) # Check that errors are raised if there is not enough samples assert_raises(ValueError, cval.StratifiedShuffleSplit, y, 3, 0.5, 0.6) assert_raises(ValueError, cval.StratifiedShuffleSplit, y, 3, 8, 0.6) assert_raises(ValueError, cval.StratifiedShuffleSplit, y, 3, 0.6, 8) # Train size or test size too small assert_raises(ValueError, cval.StratifiedShuffleSplit, y, train_size=2) assert_raises(ValueError, cval.StratifiedShuffleSplit, y, test_size=2) def test_stratified_shuffle_split_iter(): ys = [np.array([1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3]), np.array([0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3]), np.array([0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2]), np.array([1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4]), np.array([-1] * 800 + [1] * 50) ] for y in ys: sss = cval.StratifiedShuffleSplit(y, 6, test_size=0.33, random_state=0) for train, test in sss: assert_array_equal(unique(y[train]), unique(y[test])) # Checks if folds keep classes proportions p_train = (np.bincount(unique(y[train], return_inverse=True)[1]) / float(len(y[train]))) p_test = (np.bincount(unique(y[test], return_inverse=True)[1]) / float(len(y[test]))) assert_array_almost_equal(p_train, p_test, 1) assert_equal(y[train].size + y[test].size, y.size) assert_array_equal(np.lib.arraysetops.intersect1d(train, test), []) @ignore_warnings def test_stratified_shuffle_split_iter_no_indices(): y = np.asarray([0, 1, 2] * 10) sss1 = cval.StratifiedShuffleSplit(y, indices=False, random_state=0) train_mask, test_mask = next(iter(sss1)) sss2 = cval.StratifiedShuffleSplit(y, indices=True, random_state=0) train_indices, test_indices = next(iter(sss2)) assert_array_equal(sorted(test_indices), np.where(test_mask)[0]) def test_leave_label_out_changing_labels(): """Check that LeaveOneLabelOut and LeavePLabelOut work normally if the labels variable is changed before calling __iter__""" labels = np.array([0, 1, 2, 1, 1, 2, 0, 0]) labels_changing = np.array(labels, copy=True) lolo = cval.LeaveOneLabelOut(labels) lolo_changing = cval.LeaveOneLabelOut(labels_changing) lplo = cval.LeavePLabelOut(labels, p=2) lplo_changing = cval.LeavePLabelOut(labels_changing, p=2) labels_changing[:] = 0 for llo, llo_changing in [(lolo, lolo_changing), (lplo, lplo_changing)]: for (train, test), (train_chan, test_chan) in zip(llo, llo_changing): assert_array_equal(train, train_chan) assert_array_equal(test, test_chan) def test_cross_val_score(): clf = MockClassifier() for a in range(-10, 10): clf.a = a # Smoke test scores = cval.cross_val_score(clf, X, y) assert_array_equal(scores, clf.score(X, y)) # test with multioutput y scores = cval.cross_val_score(clf, X_sparse, X) assert_array_equal(scores, clf.score(X_sparse, X)) scores = cval.cross_val_score(clf, X_sparse, y) assert_array_equal(scores, clf.score(X_sparse, y)) # test with multioutput y scores = cval.cross_val_score(clf, X_sparse, X) assert_array_equal(scores, clf.score(X_sparse, X)) # test with X as list clf = MockListClassifier() scores = cval.cross_val_score(clf, X.tolist(), y) assert_raises(ValueError, cval.cross_val_score, clf, X, y, scoring="sklearn") def test_cross_val_score_precomputed(): # test for svm with precomputed kernel svm = SVC(kernel="precomputed") iris = load_iris() X, y = iris.data, iris.target linear_kernel = np.dot(X, X.T) score_precomputed = cval.cross_val_score(svm, linear_kernel, y) svm = SVC(kernel="linear") score_linear = cval.cross_val_score(svm, X, y) assert_array_equal(score_precomputed, score_linear) # Error raised for non-square X svm = SVC(kernel="precomputed") assert_raises(ValueError, cval.cross_val_score, svm, X, y) # test error is raised when the precomputed kernel is not array-like # or sparse assert_raises(ValueError, cval.cross_val_score, svm, linear_kernel.tolist(), y) def test_cross_val_score_fit_params(): clf = MockClassifier() n_samples = X.shape[0] n_classes = len(np.unique(y)) fit_params = {'sample_weight': np.ones(n_samples), 'class_prior': np.ones(n_classes) / n_classes} cval.cross_val_score(clf, X, y, fit_params=fit_params) def test_cross_val_score_score_func(): clf = MockClassifier() _score_func_args = [] def score_func(y_test, y_predict): _score_func_args.append((y_test, y_predict)) return 1.0 with warnings.catch_warnings(record=True): score = cval.cross_val_score(clf, X, y, score_func=score_func) assert_array_equal(score, [1.0, 1.0, 1.0]) assert len(_score_func_args) == 3 def test_cross_val_score_errors(): class BrokenEstimator: pass assert_raises(TypeError, cval.cross_val_score, BrokenEstimator(), X) def test_train_test_split_errors(): assert_raises(ValueError, cval.train_test_split) assert_raises(ValueError, cval.train_test_split, range(3), train_size=1.1) assert_raises(ValueError, cval.train_test_split, range(3), test_size=0.6, train_size=0.6) assert_raises(ValueError, cval.train_test_split, range(3), test_size=np.float32(0.6), train_size=np.float32(0.6)) assert_raises(ValueError, cval.train_test_split, range(3), test_size="wrong_type") assert_raises(ValueError, cval.train_test_split, range(3), test_size=2, train_size=4) assert_raises(TypeError, cval.train_test_split, range(3), some_argument=1.1) assert_raises(ValueError, cval.train_test_split, range(3), range(42)) def test_train_test_split(): X = np.arange(100).reshape((10, 10)) X_s = coo_matrix(X) y = range(10) split = cval.train_test_split(X, X_s, y) X_train, X_test, X_s_train, X_s_test, y_train, y_test = split assert_array_equal(X_train, X_s_train.toarray()) assert_array_equal(X_test, X_s_test.toarray()) assert_array_equal(X_train[:, 0], y_train * 10) assert_array_equal(X_test[:, 0], y_test * 10) split = cval.train_test_split(X, y, test_size=None, train_size=.5) X_train, X_test, y_train, y_test = split assert_equal(len(y_test), len(y_train)) def test_cross_val_score_with_score_func_classification(): iris = load_iris() clf = SVC(kernel='linear') # Default score (should be the accuracy score) scores = cval.cross_val_score(clf, iris.data, iris.target, cv=5) assert_array_almost_equal(scores, [0.97, 1., 0.97, 0.97, 1.], 2) # Correct classification score (aka. zero / one score) - should be the # same as the default estimator score zo_scores = cval.cross_val_score(clf, iris.data, iris.target, scoring="accuracy", cv=5) assert_array_almost_equal(zo_scores, [0.97, 1., 0.97, 0.97, 1.], 2) # F1 score (class are balanced so f1_score should be equal to zero/one # score f1_scores = cval.cross_val_score(clf, iris.data, iris.target, scoring="f1", cv=5) assert_array_almost_equal(f1_scores, [0.97, 1., 0.97, 0.97, 1.], 2) # also test deprecated old way with warnings.catch_warnings(record=True): f1_scores = cval.cross_val_score(clf, iris.data, iris.target, score_func=f1_score, cv=5) assert_array_almost_equal(f1_scores, [0.97, 1., 0.97, 0.97, 1.], 2) def test_cross_val_score_with_score_func_regression(): X, y = make_regression(n_samples=30, n_features=20, n_informative=5, random_state=0) reg = Ridge() # Default score of the Ridge regression estimator scores = cval.cross_val_score(reg, X, y, cv=5) assert_array_almost_equal(scores, [0.94, 0.97, 0.97, 0.99, 0.92], 2) # R2 score (aka. determination coefficient) - should be the # same as the default estimator score r2_scores = cval.cross_val_score(reg, X, y, scoring="r2", cv=5) assert_array_almost_equal(r2_scores, [0.94, 0.97, 0.97, 0.99, 0.92], 2) # Mean squared error; this is a loss function, so "scores" are negative mse_scores = cval.cross_val_score(reg, X, y, cv=5, scoring="mean_squared_error") expected_mse = np.array([-763.07, -553.16, -274.38, -273.26, -1681.99]) assert_array_almost_equal(mse_scores, expected_mse, 2) # Explained variance with warnings.catch_warnings(record=True): ev_scores = cval.cross_val_score(reg, X, y, cv=5, score_func=explained_variance_score) assert_array_almost_equal(ev_scores, [0.94, 0.97, 0.97, 0.99, 0.92], 2) def test_permutation_score(): iris = load_iris() X = iris.data X_sparse = coo_matrix(X) y = iris.target svm = SVC(kernel='linear') cv = cval.StratifiedKFold(y, 2) score, scores, pvalue = cval.permutation_test_score( svm, X, y, cv=cv, scoring="accuracy") assert_greater(score, 0.9) assert_almost_equal(pvalue, 0.0, 1) score_label, _, pvalue_label = cval.permutation_test_score( svm, X, y, cv=cv, scoring="accuracy", labels=np.ones(y.size), random_state=0) assert_true(score_label == score) assert_true(pvalue_label == pvalue) # test with custom scoring object scorer = make_scorer(fbeta_score, beta=2) score_label, _, pvalue_label = cval.permutation_test_score( svm, X, y, scoring=scorer, cv=cv, labels=np.ones(y.size), random_state=0) assert_almost_equal(score_label, .97, 2) assert_almost_equal(pvalue_label, 0.01, 3) # check that we obtain the same results with a sparse representation svm_sparse = SVC(kernel='linear') cv_sparse = cval.StratifiedKFold(y, 2) score_label, _, pvalue_label = cval.permutation_test_score( svm_sparse, X_sparse, y, cv=cv_sparse, scoring="accuracy", labels=np.ones(y.size), random_state=0) assert_true(score_label == score) assert_true(pvalue_label == pvalue) # set random y y = np.mod(np.arange(len(y)), 3) score, scores, pvalue = cval.permutation_test_score(svm, X, y, cv=cv, scoring="accuracy") assert_less(score, 0.5) assert_greater(pvalue, 0.2) # test with deprecated interface with warnings.catch_warnings(record=True): score, scores, pvalue = cval.permutation_test_score( svm, X, y, score_func=accuracy_score, cv=cv) assert_less(score, 0.5) assert_greater(pvalue, 0.2) def test_cross_val_generator_with_mask(): X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]]) y = np.array([1, 1, 2, 2]) labels = np.array([1, 2, 3, 4]) loo = assert_warns(DeprecationWarning, cval.LeaveOneOut, 4, indices=False) lpo = assert_warns(DeprecationWarning, cval.LeavePOut, 4, 2, indices=False) kf = assert_warns(DeprecationWarning, cval.KFold, 4, 2, indices=False) skf = assert_warns(DeprecationWarning, cval.StratifiedKFold, y, 2, indices=False) lolo = assert_warns(DeprecationWarning, cval.LeaveOneLabelOut, labels, indices=False) lopo = assert_warns(DeprecationWarning, cval.LeavePLabelOut, labels, 2, indices=False) ss = assert_warns(DeprecationWarning, cval.ShuffleSplit, 4, indices=False) for cv in [loo, lpo, kf, skf, lolo, lopo, ss]: for train, test in cv: assert_equal(np.asarray(train).dtype.kind, 'b') assert_equal(np.asarray(train).dtype.kind, 'b') X_train, X_test = X[train], X[test] y_train, y_test = y[train], y[test] def test_cross_val_generator_with_indices(): X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]]) y = np.array([1, 1, 2, 2]) labels = np.array([1, 2, 3, 4]) # explicitly passing indices value is deprecated loo = assert_warns(DeprecationWarning, cval.LeaveOneOut, 4, indices=True) lpo = assert_warns(DeprecationWarning, cval.LeavePOut, 4, 2, indices=True) kf = assert_warns(DeprecationWarning, cval.KFold, 4, 2, indices=True) skf = assert_warns(DeprecationWarning, cval.StratifiedKFold, y, 2, indices=True) lolo = assert_warns(DeprecationWarning, cval.LeaveOneLabelOut, labels, indices=True) lopo = assert_warns(DeprecationWarning, cval.LeavePLabelOut, labels, 2, indices=True) b = cval.Bootstrap(2) # only in index mode ss = assert_warns(DeprecationWarning, cval.ShuffleSplit, 2, indices=True) for cv in [loo, lpo, kf, skf, lolo, lopo, b, ss]: for train, test in cv: assert_not_equal(np.asarray(train).dtype.kind, 'b') assert_not_equal(np.asarray(train).dtype.kind, 'b') X_train, X_test = X[train], X[test] y_train, y_test = y[train], y[test] def test_cross_val_generator_with_default_indices(): X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]]) y = np.array([1, 1, 2, 2]) labels = np.array([1, 2, 3, 4]) loo = cval.LeaveOneOut(4) lpo = cval.LeavePOut(4, 2) kf = cval.KFold(4, 2) skf = cval.StratifiedKFold(y, 2) lolo = cval.LeaveOneLabelOut(labels) lopo = cval.LeavePLabelOut(labels, 2) b = cval.Bootstrap(2) # only in index mode ss = cval.ShuffleSplit(2) for cv in [loo, lpo, kf, skf, lolo, lopo, b, ss]: for train, test in cv: assert_not_equal(np.asarray(train).dtype.kind, 'b') assert_not_equal(np.asarray(train).dtype.kind, 'b') X_train, X_test = X[train], X[test] y_train, y_test = y[train], y[test] @ignore_warnings def test_cross_val_generator_mask_indices_same(): # Test that the cross validation generators return the same results when # indices=True and when indices=False y = np.array([0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2]) labels = np.array([1, 1, 2, 3, 3, 3, 4]) loo_mask = cval.LeaveOneOut(5, indices=False) loo_ind = cval.LeaveOneOut(5, indices=True) lpo_mask = cval.LeavePOut(10, 2, indices=False) lpo_ind = cval.LeavePOut(10, 2, indices=True) kf_mask = cval.KFold(10, 5, indices=False, shuffle=True, random_state=1) kf_ind = cval.KFold(10, 5, indices=True, shuffle=True, random_state=1) skf_mask = cval.StratifiedKFold(y, 3, indices=False) skf_ind = cval.StratifiedKFold(y, 3, indices=True) lolo_mask = cval.LeaveOneLabelOut(labels, indices=False) lolo_ind = cval.LeaveOneLabelOut(labels, indices=True) lopo_mask = cval.LeavePLabelOut(labels, 2, indices=False) lopo_ind = cval.LeavePLabelOut(labels, 2, indices=True) for cv_mask, cv_ind in [(loo_mask, loo_ind), (lpo_mask, lpo_ind), (kf_mask, kf_ind), (skf_mask, skf_ind), (lolo_mask, lolo_ind), (lopo_mask, lopo_ind)]: for (train_mask, test_mask), (train_ind, test_ind) in \ zip(cv_mask, cv_ind): assert_array_equal(np.where(train_mask)[0], train_ind) assert_array_equal(np.where(test_mask)[0], test_ind) def test_bootstrap_errors(): assert_raises(ValueError, cval.Bootstrap, 10, train_size=100) assert_raises(ValueError, cval.Bootstrap, 10, test_size=100) assert_raises(ValueError, cval.Bootstrap, 10, train_size=1.1) assert_raises(ValueError, cval.Bootstrap, 10, test_size=1.1) def test_bootstrap_test_sizes(): assert_equal(cval.Bootstrap(10, test_size=0.2).test_size, 2) assert_equal(cval.Bootstrap(10, test_size=2).test_size, 2) assert_equal(cval.Bootstrap(10, test_size=None).test_size, 5) def test_shufflesplit_errors(): assert_raises(ValueError, cval.ShuffleSplit, 10, test_size=2.0) assert_raises(ValueError, cval.ShuffleSplit, 10, test_size=1.0) assert_raises(ValueError, cval.ShuffleSplit, 10, test_size=0.1, train_size=0.95) assert_raises(ValueError, cval.ShuffleSplit, 10, test_size=11) assert_raises(ValueError, cval.ShuffleSplit, 10, test_size=10) assert_raises(ValueError, cval.ShuffleSplit, 10, test_size=8, train_size=3) assert_raises(ValueError, cval.ShuffleSplit, 10, train_size=1j) assert_raises(ValueError, cval.ShuffleSplit, 10, test_size=None, train_size=None) def test_shufflesplit_reproducible(): # Check that iterating twice on the ShuffleSplit gives the same # sequence of train-test when the random_state is given ss = cval.ShuffleSplit(10, random_state=21) assert_array_equal(list(a for a, b in ss), list(a for a, b in ss)) @ignore_warnings def test_cross_indices_exception(): X = coo_matrix(np.array([[1, 2], [3, 4], [5, 6], [7, 8]])) y = np.array([1, 1, 2, 2]) labels = np.array([1, 2, 3, 4]) loo = cval.LeaveOneOut(4, indices=False) lpo = cval.LeavePOut(4, 2, indices=False) kf = cval.KFold(4, 2, indices=False) skf = cval.StratifiedKFold(y, 2, indices=False) lolo = cval.LeaveOneLabelOut(labels, indices=False) lopo = cval.LeavePLabelOut(labels, 2, indices=False) assert_raises(ValueError, cval.check_cv, loo, X, y) assert_raises(ValueError, cval.check_cv, lpo, X, y) assert_raises(ValueError, cval.check_cv, kf, X, y) assert_raises(ValueError, cval.check_cv, skf, X, y) assert_raises(ValueError, cval.check_cv, lolo, X, y) assert_raises(ValueError, cval.check_cv, lopo, X, y)
bsd-3-clause
ahoyosid/scikit-learn
examples/applications/plot_stock_market.py
227
8284
""" ======================================= Visualizing the stock market structure ======================================= This example employs several unsupervised learning techniques to extract the stock market structure from variations in historical quotes. The quantity that we use is the daily variation in quote price: quotes that are linked tend to cofluctuate during a day. .. _stock_market: Learning a graph structure -------------------------- We use sparse inverse covariance estimation to find which quotes are correlated conditionally on the others. Specifically, sparse inverse covariance gives us a graph, that is a list of connection. For each symbol, the symbols that it is connected too are those useful to explain its fluctuations. Clustering ---------- We use clustering to group together quotes that behave similarly. Here, amongst the :ref:`various clustering techniques <clustering>` available in the scikit-learn, we use :ref:`affinity_propagation` as it does not enforce equal-size clusters, and it can choose automatically the number of clusters from the data. Note that this gives us a different indication than the graph, as the graph reflects conditional relations between variables, while the clustering reflects marginal properties: variables clustered together can be considered as having a similar impact at the level of the full stock market. Embedding in 2D space --------------------- For visualization purposes, we need to lay out the different symbols on a 2D canvas. For this we use :ref:`manifold` techniques to retrieve 2D embedding. Visualization ------------- The output of the 3 models are combined in a 2D graph where nodes represents the stocks and edges the: - cluster labels are used to define the color of the nodes - the sparse covariance model is used to display the strength of the edges - the 2D embedding is used to position the nodes in the plan This example has a fair amount of visualization-related code, as visualization is crucial here to display the graph. One of the challenge is to position the labels minimizing overlap. For this we use an heuristic based on the direction of the nearest neighbor along each axis. """ print(__doc__) # Author: Gael Varoquaux [email protected] # License: BSD 3 clause import datetime import numpy as np import matplotlib.pyplot as plt from matplotlib import finance from matplotlib.collections import LineCollection from sklearn import cluster, covariance, manifold ############################################################################### # Retrieve the data from Internet # Choose a time period reasonnably calm (not too long ago so that we get # high-tech firms, and before the 2008 crash) d1 = datetime.datetime(2003, 1, 1) d2 = datetime.datetime(2008, 1, 1) # kraft symbol has now changed from KFT to MDLZ in yahoo symbol_dict = { 'TOT': 'Total', 'XOM': 'Exxon', 'CVX': 'Chevron', 'COP': 'ConocoPhillips', 'VLO': 'Valero Energy', 'MSFT': 'Microsoft', 'IBM': 'IBM', 'TWX': 'Time Warner', 'CMCSA': 'Comcast', 'CVC': 'Cablevision', 'YHOO': 'Yahoo', 'DELL': 'Dell', 'HPQ': 'HP', 'AMZN': 'Amazon', 'TM': 'Toyota', 'CAJ': 'Canon', 'MTU': 'Mitsubishi', 'SNE': 'Sony', 'F': 'Ford', 'HMC': 'Honda', 'NAV': 'Navistar', 'NOC': 'Northrop Grumman', 'BA': 'Boeing', 'KO': 'Coca Cola', 'MMM': '3M', 'MCD': 'Mc Donalds', 'PEP': 'Pepsi', 'MDLZ': 'Kraft Foods', 'K': 'Kellogg', 'UN': 'Unilever', 'MAR': 'Marriott', 'PG': 'Procter Gamble', 'CL': 'Colgate-Palmolive', 'GE': 'General Electrics', 'WFC': 'Wells Fargo', 'JPM': 'JPMorgan Chase', 'AIG': 'AIG', 'AXP': 'American express', 'BAC': 'Bank of America', 'GS': 'Goldman Sachs', 'AAPL': 'Apple', 'SAP': 'SAP', 'CSCO': 'Cisco', 'TXN': 'Texas instruments', 'XRX': 'Xerox', 'LMT': 'Lookheed Martin', 'WMT': 'Wal-Mart', 'WBA': 'Walgreen', 'HD': 'Home Depot', 'GSK': 'GlaxoSmithKline', 'PFE': 'Pfizer', 'SNY': 'Sanofi-Aventis', 'NVS': 'Novartis', 'KMB': 'Kimberly-Clark', 'R': 'Ryder', 'GD': 'General Dynamics', 'RTN': 'Raytheon', 'CVS': 'CVS', 'CAT': 'Caterpillar', 'DD': 'DuPont de Nemours'} symbols, names = np.array(list(symbol_dict.items())).T quotes = [finance.quotes_historical_yahoo(symbol, d1, d2, asobject=True) for symbol in symbols] open = np.array([q.open for q in quotes]).astype(np.float) close = np.array([q.close for q in quotes]).astype(np.float) # The daily variations of the quotes are what carry most information variation = close - open ############################################################################### # Learn a graphical structure from the correlations edge_model = covariance.GraphLassoCV() # standardize the time series: using correlations rather than covariance # is more efficient for structure recovery X = variation.copy().T X /= X.std(axis=0) edge_model.fit(X) ############################################################################### # Cluster using affinity propagation _, labels = cluster.affinity_propagation(edge_model.covariance_) n_labels = labels.max() for i in range(n_labels + 1): print('Cluster %i: %s' % ((i + 1), ', '.join(names[labels == i]))) ############################################################################### # Find a low-dimension embedding for visualization: find the best position of # the nodes (the stocks) on a 2D plane # We use a dense eigen_solver to achieve reproducibility (arpack is # initiated with random vectors that we don't control). In addition, we # use a large number of neighbors to capture the large-scale structure. node_position_model = manifold.LocallyLinearEmbedding( n_components=2, eigen_solver='dense', n_neighbors=6) embedding = node_position_model.fit_transform(X.T).T ############################################################################### # Visualization plt.figure(1, facecolor='w', figsize=(10, 8)) plt.clf() ax = plt.axes([0., 0., 1., 1.]) plt.axis('off') # Display a graph of the partial correlations partial_correlations = edge_model.precision_.copy() d = 1 / np.sqrt(np.diag(partial_correlations)) partial_correlations *= d partial_correlations *= d[:, np.newaxis] non_zero = (np.abs(np.triu(partial_correlations, k=1)) > 0.02) # Plot the nodes using the coordinates of our embedding plt.scatter(embedding[0], embedding[1], s=100 * d ** 2, c=labels, cmap=plt.cm.spectral) # Plot the edges start_idx, end_idx = np.where(non_zero) #a sequence of (*line0*, *line1*, *line2*), where:: # linen = (x0, y0), (x1, y1), ... (xm, ym) segments = [[embedding[:, start], embedding[:, stop]] for start, stop in zip(start_idx, end_idx)] values = np.abs(partial_correlations[non_zero]) lc = LineCollection(segments, zorder=0, cmap=plt.cm.hot_r, norm=plt.Normalize(0, .7 * values.max())) lc.set_array(values) lc.set_linewidths(15 * values) ax.add_collection(lc) # Add a label to each node. The challenge here is that we want to # position the labels to avoid overlap with other labels for index, (name, label, (x, y)) in enumerate( zip(names, labels, embedding.T)): dx = x - embedding[0] dx[index] = 1 dy = y - embedding[1] dy[index] = 1 this_dx = dx[np.argmin(np.abs(dy))] this_dy = dy[np.argmin(np.abs(dx))] if this_dx > 0: horizontalalignment = 'left' x = x + .002 else: horizontalalignment = 'right' x = x - .002 if this_dy > 0: verticalalignment = 'bottom' y = y + .002 else: verticalalignment = 'top' y = y - .002 plt.text(x, y, name, size=10, horizontalalignment=horizontalalignment, verticalalignment=verticalalignment, bbox=dict(facecolor='w', edgecolor=plt.cm.spectral(label / float(n_labels)), alpha=.6)) plt.xlim(embedding[0].min() - .15 * embedding[0].ptp(), embedding[0].max() + .10 * embedding[0].ptp(),) plt.ylim(embedding[1].min() - .03 * embedding[1].ptp(), embedding[1].max() + .03 * embedding[1].ptp()) plt.show()
bsd-3-clause
DESatAPSU/DAWDs
python/origBandpass_FITSToCSV.py
1
1930
# Converts STD_BANDPASSES_Y3A1_FGCM_20170630_extend3000.fits to # y3a2_std_passband_extend3000_ugrizYatm.csv # # To run (bash): # python origBandpass_FITSToCSV.py > origBandpass_FITSToCSV.log 2>&1 & # # To run (tcsh): # python origBandpass_FITSToCSV.py >& origBandpass_FITSToCSV.log & # # DLT, 2017-06-30 # based in part on scripts by Jack Mueller and Jacob Robertson. # Initial setup... import numpy as np import pandas as pd import os import string import shutil import pyfits # Be sure to edit these next two line2 appropriately... bandsDir = '/Users/dtucker/IRAF/DECam/StdBands_Y3A2_extend3000' inputFile = bandsDir+'/'+'STD_BANDPASSES_Y3A1_FGCM_20170630_extend3000.fits' # List of filter bands (plus atm)... bandList = ['g', 'r', 'i', 'z', 'Y', 'atm'] # Read in inputFile to create a reformatted version in CSV format... hdulist = pyfits.open(inputFile) tbdata = hdulist[1].data # Create lists from each column... lambdaList = tbdata['LAMBDA'].tolist() gList = tbdata['g'].tolist() rList = tbdata['r'].tolist() iList = tbdata['i'].tolist() zList = tbdata['z'].tolist() YList = tbdata['Y'].tolist() atmList = tbdata['atm'].tolist() # Create pandas dataframe from the lists... df = pd.DataFrame(np.column_stack([lambdaList,gList,rList,iList,zList,YList,atmList]), columns=['lambda','g','r','i','z','Y','atm']) # Output the full table as a CSV file outputFile = bandsDir+'/'+'STD_BANDPASSES_Y3A1_FGCM_20170630_extend3000.csv' if os.path.isfile(outputFile): shutil.move(outputFile, outputFile+'~') df.to_csv(outputFile,index=False) # Output individual bands (+atm)... for band in bandList: outputFile = bandsDir+'/'+'STD_BANDPASSES_Y3A1_FGCM_20170630_extend3000.'+band+'.csv' if os.path.isfile(outputFile): shutil.move(outputFile, outputFile+'~') columnNames = ['lambda',band] df.to_csv(outputFile,index=False,columns=columnNames,header=False) # Finis! exit()
mit
nmartensen/pandas
asv_bench/benchmarks/gil.py
7
11003
from .pandas_vb_common import * from pandas.core.algorithms import take_1d try: from cStringIO import StringIO except ImportError: from io import StringIO try: from pandas._libs import algos except ImportError: from pandas import algos try: from pandas.util.testing import test_parallel have_real_test_parallel = True except ImportError: have_real_test_parallel = False def test_parallel(num_threads=1): def wrapper(fname): return fname return wrapper class NoGilGroupby(object): goal_time = 0.2 def setup(self): self.N = 1000000 self.ngroups = 1000 np.random.seed(1234) self.df = DataFrame({'key': np.random.randint(0, self.ngroups, size=self.N), 'data': np.random.randn(self.N), }) np.random.seed(1234) self.size = 2 ** 22 self.ngroups = 100 self.data = Series(np.random.randint(0, self.ngroups, size=self.size)) if (not have_real_test_parallel): raise NotImplementedError @test_parallel(num_threads=2) def _pg2_count(self): self.df.groupby('key')['data'].count() def time_count_2(self): self._pg2_count() @test_parallel(num_threads=2) def _pg2_last(self): self.df.groupby('key')['data'].last() def time_last_2(self): self._pg2_last() @test_parallel(num_threads=2) def _pg2_max(self): self.df.groupby('key')['data'].max() def time_max_2(self): self._pg2_max() @test_parallel(num_threads=2) def _pg2_mean(self): self.df.groupby('key')['data'].mean() def time_mean_2(self): self._pg2_mean() @test_parallel(num_threads=2) def _pg2_min(self): self.df.groupby('key')['data'].min() def time_min_2(self): self._pg2_min() @test_parallel(num_threads=2) def _pg2_prod(self): self.df.groupby('key')['data'].prod() def time_prod_2(self): self._pg2_prod() @test_parallel(num_threads=2) def _pg2_sum(self): self.df.groupby('key')['data'].sum() def time_sum_2(self): self._pg2_sum() @test_parallel(num_threads=4) def _pg4_sum(self): self.df.groupby('key')['data'].sum() def time_sum_4(self): self._pg4_sum() def time_sum_4_notp(self): for i in range(4): self.df.groupby('key')['data'].sum() def _f_sum(self): self.df.groupby('key')['data'].sum() @test_parallel(num_threads=8) def _pg8_sum(self): self._f_sum() def time_sum_8(self): self._pg8_sum() def time_sum_8_notp(self): for i in range(8): self._f_sum() @test_parallel(num_threads=2) def _pg2_var(self): self.df.groupby('key')['data'].var() def time_var_2(self): self._pg2_var() # get groups def _groups(self): self.data.groupby(self.data).groups @test_parallel(num_threads=2) def _pg2_groups(self): self._groups() def time_groups_2(self): self._pg2_groups() @test_parallel(num_threads=4) def _pg4_groups(self): self._groups() def time_groups_4(self): self._pg4_groups() @test_parallel(num_threads=8) def _pg8_groups(self): self._groups() def time_groups_8(self): self._pg8_groups() class nogil_take1d_float64(object): goal_time = 0.2 def setup(self): self.N = 1000000 self.ngroups = 1000 np.random.seed(1234) self.df = DataFrame({'key': np.random.randint(0, self.ngroups, size=self.N), 'data': np.random.randn(self.N), }) if (not have_real_test_parallel): raise NotImplementedError self.N = 10000000.0 self.df = DataFrame({'int64': np.arange(self.N, dtype='int64'), 'float64': np.arange(self.N, dtype='float64'), }) self.indexer = np.arange(100, (len(self.df) - 100)) def time_nogil_take1d_float64(self): self.take_1d_pg2_int64() @test_parallel(num_threads=2) def take_1d_pg2_int64(self): take_1d(self.df.int64.values, self.indexer) @test_parallel(num_threads=2) def take_1d_pg2_float64(self): take_1d(self.df.float64.values, self.indexer) class nogil_take1d_int64(object): goal_time = 0.2 def setup(self): self.N = 1000000 self.ngroups = 1000 np.random.seed(1234) self.df = DataFrame({'key': np.random.randint(0, self.ngroups, size=self.N), 'data': np.random.randn(self.N), }) if (not have_real_test_parallel): raise NotImplementedError self.N = 10000000.0 self.df = DataFrame({'int64': np.arange(self.N, dtype='int64'), 'float64': np.arange(self.N, dtype='float64'), }) self.indexer = np.arange(100, (len(self.df) - 100)) def time_nogil_take1d_int64(self): self.take_1d_pg2_float64() @test_parallel(num_threads=2) def take_1d_pg2_int64(self): take_1d(self.df.int64.values, self.indexer) @test_parallel(num_threads=2) def take_1d_pg2_float64(self): take_1d(self.df.float64.values, self.indexer) class nogil_kth_smallest(object): number = 1 repeat = 5 def setup(self): if (not have_real_test_parallel): raise NotImplementedError np.random.seed(1234) self.N = 10000000 self.k = 500000 self.a = np.random.randn(self.N) self.b = self.a.copy() self.kwargs_list = [{'arr': self.a}, {'arr': self.b}] def time_nogil_kth_smallest(self): @test_parallel(num_threads=2, kwargs_list=self.kwargs_list) def run(arr): algos.kth_smallest(arr, self.k) run() class nogil_datetime_fields(object): goal_time = 0.2 def setup(self): self.N = 100000000 self.dti = pd.date_range('1900-01-01', periods=self.N, freq='T') self.period = self.dti.to_period('D') if (not have_real_test_parallel): raise NotImplementedError def time_datetime_field_year(self): @test_parallel(num_threads=2) def run(dti): dti.year run(self.dti) def time_datetime_field_day(self): @test_parallel(num_threads=2) def run(dti): dti.day run(self.dti) def time_datetime_field_daysinmonth(self): @test_parallel(num_threads=2) def run(dti): dti.days_in_month run(self.dti) def time_datetime_field_normalize(self): @test_parallel(num_threads=2) def run(dti): dti.normalize() run(self.dti) def time_datetime_to_period(self): @test_parallel(num_threads=2) def run(dti): dti.to_period('S') run(self.dti) def time_period_to_datetime(self): @test_parallel(num_threads=2) def run(period): period.to_timestamp() run(self.period) class nogil_rolling_algos_slow(object): goal_time = 0.2 def setup(self): self.win = 100 np.random.seed(1234) self.arr = np.random.rand(100000) if (not have_real_test_parallel): raise NotImplementedError def time_nogil_rolling_median(self): @test_parallel(num_threads=2) def run(arr, win): rolling_median(arr, win) run(self.arr, self.win) class nogil_rolling_algos_fast(object): goal_time = 0.2 def setup(self): self.win = 100 np.random.seed(1234) self.arr = np.random.rand(1000000) if (not have_real_test_parallel): raise NotImplementedError def time_nogil_rolling_mean(self): @test_parallel(num_threads=2) def run(arr, win): rolling_mean(arr, win) run(self.arr, self.win) def time_nogil_rolling_min(self): @test_parallel(num_threads=2) def run(arr, win): rolling_min(arr, win) run(self.arr, self.win) def time_nogil_rolling_max(self): @test_parallel(num_threads=2) def run(arr, win): rolling_max(arr, win) run(self.arr, self.win) def time_nogil_rolling_var(self): @test_parallel(num_threads=2) def run(arr, win): rolling_var(arr, win) run(self.arr, self.win) def time_nogil_rolling_skew(self): @test_parallel(num_threads=2) def run(arr, win): rolling_skew(arr, win) run(self.arr, self.win) def time_nogil_rolling_kurt(self): @test_parallel(num_threads=2) def run(arr, win): rolling_kurt(arr, win) run(self.arr, self.win) def time_nogil_rolling_std(self): @test_parallel(num_threads=2) def run(arr, win): rolling_std(arr, win) run(self.arr, self.win) class nogil_read_csv(object): number = 1 repeat = 5 def setup(self): if (not have_real_test_parallel): raise NotImplementedError # Using the values self.df = DataFrame(np.random.randn(10000, 50)) self.df.to_csv('__test__.csv') self.rng = date_range('1/1/2000', periods=10000) self.df_date_time = DataFrame(np.random.randn(10000, 50), index=self.rng) self.df_date_time.to_csv('__test_datetime__.csv') self.df_object = DataFrame('foo', index=self.df.index, columns=self.create_cols('object')) self.df_object.to_csv('__test_object__.csv') def create_cols(self, name): return [('%s%03d' % (name, i)) for i in range(5)] @test_parallel(num_threads=2) def pg_read_csv(self): read_csv('__test__.csv', sep=',', header=None, float_precision=None) def time_read_csv(self): self.pg_read_csv() @test_parallel(num_threads=2) def pg_read_csv_object(self): read_csv('__test_object__.csv', sep=',') def time_read_csv_object(self): self.pg_read_csv_object() @test_parallel(num_threads=2) def pg_read_csv_datetime(self): read_csv('__test_datetime__.csv', sep=',', header=None) def time_read_csv_datetime(self): self.pg_read_csv_datetime() class nogil_factorize(object): number = 1 repeat = 5 def setup(self): if (not have_real_test_parallel): raise NotImplementedError np.random.seed(1234) self.strings = tm.makeStringIndex(100000) def factorize_strings(self): pd.factorize(self.strings) @test_parallel(num_threads=4) def _pg_factorize_strings_4(self): self.factorize_strings() def time_factorize_strings_4(self): for i in range(2): self._pg_factorize_strings_4() @test_parallel(num_threads=2) def _pg_factorize_strings_2(self): self.factorize_strings() def time_factorize_strings_2(self): for i in range(4): self._pg_factorize_strings_2() def time_factorize_strings(self): for i in range(8): self.factorize_strings()
bsd-3-clause
great-expectations/great_expectations
tests/datasource/test_batch_generators.py
1
6706
import os from great_expectations.datasource.batch_kwargs_generator import ( DatabricksTableBatchKwargsGenerator, GlobReaderBatchKwargsGenerator, SubdirReaderBatchKwargsGenerator, ) try: from unittest import mock except ImportError: from unittest import mock def test_file_kwargs_generator( data_context_parameterized_expectation_suite, filesystem_csv ): base_dir = filesystem_csv datasource = data_context_parameterized_expectation_suite.add_datasource( "default", module_name="great_expectations.datasource", class_name="PandasDatasource", batch_kwargs_generators={ "subdir_reader": { "class_name": "SubdirReaderBatchKwargsGenerator", "base_directory": str(base_dir), } }, ) generator = datasource.get_batch_kwargs_generator("subdir_reader") known_data_asset_names = datasource.get_available_data_asset_names() # Use set to avoid order dependency assert set(known_data_asset_names["subdir_reader"]["names"]) == { ("f1", "file"), ("f2", "file"), ("f3", "directory"), } f1_batches = [ batch_kwargs["path"] for batch_kwargs in generator.get_iterator(data_asset_name="f1") ] assert len(f1_batches) == 1 expected_batches = [{"path": os.path.join(base_dir, "f1.csv")}] for batch in expected_batches: assert batch["path"] in f1_batches f3_batches = [ batch_kwargs["path"] for batch_kwargs in generator.get_iterator(data_asset_name="f3") ] assert len(f3_batches) == 2 expected_batches = [ {"path": os.path.join(base_dir, "f3", "f3_20190101.csv")}, {"path": os.path.join(base_dir, "f3", "f3_20190102.csv")}, ] for batch in expected_batches: assert batch["path"] in f3_batches def test_glob_reader_generator(basic_pandas_datasource, tmp_path_factory): """Provides an example of how glob generator works: we specify our own names for data_assets, and an associated glob; the generator will take care of providing batches consisting of one file per batch corresponding to the glob.""" basedir = str(tmp_path_factory.mktemp("test_glob_reader_generator")) with open(os.path.join(basedir, "f1.blarg"), "w") as outfile: outfile.write("\n\n\n") with open(os.path.join(basedir, "f2.csv"), "w") as outfile: outfile.write("\n\n\n") with open(os.path.join(basedir, "f3.blarg"), "w") as outfile: outfile.write("\n\n\n") with open(os.path.join(basedir, "f4.blarg"), "w") as outfile: outfile.write("\n\n\n") with open(os.path.join(basedir, "f5.blarg"), "w") as outfile: outfile.write("\n\n\n") with open(os.path.join(basedir, "f6.blarg"), "w") as outfile: outfile.write("\n\n\n") with open(os.path.join(basedir, "f7.xls"), "w") as outfile: outfile.write("\n\n\n") with open(os.path.join(basedir, "f8.parquet"), "w") as outfile: outfile.write("\n\n\n") with open(os.path.join(basedir, "f9.xls"), "w") as outfile: outfile.write("\n\n\n") with open(os.path.join(basedir, "f0.json"), "w") as outfile: outfile.write("\n\n\n") g2 = GlobReaderBatchKwargsGenerator( base_directory=basedir, datasource=basic_pandas_datasource, asset_globs={"blargs": {"glob": "*.blarg"}, "fs": {"glob": "f*"}}, ) g2_assets = g2.get_available_data_asset_names() # Use set in test to avoid order issues assert set(g2_assets["names"]) == {("blargs", "path"), ("fs", "path")} blargs_kwargs = [x["path"] for x in g2.get_iterator(data_asset_name="blargs")] real_blargs = [ os.path.join(basedir, "f1.blarg"), os.path.join(basedir, "f3.blarg"), os.path.join(basedir, "f4.blarg"), os.path.join(basedir, "f5.blarg"), os.path.join(basedir, "f6.blarg"), ] for kwargs in real_blargs: assert kwargs in blargs_kwargs assert len(blargs_kwargs) == len(real_blargs) def test_file_kwargs_generator_extensions(tmp_path_factory): """csv, xls, parquet, json should be recognized file extensions""" basedir = str(tmp_path_factory.mktemp("test_file_kwargs_generator_extensions")) # Do not include: invalid extension with open(os.path.join(basedir, "f1.blarg"), "w") as outfile: outfile.write("\n\n\n") # Include with open(os.path.join(basedir, "f2.csv"), "w") as outfile: outfile.write("\n\n\n") # Do not include: valid subdir, but no valid files in it os.mkdir(os.path.join(basedir, "f3")) with open(os.path.join(basedir, "f3", "f3_1.blarg"), "w") as outfile: outfile.write("\n\n\n") with open(os.path.join(basedir, "f3", "f3_2.blarg"), "w") as outfile: outfile.write("\n\n\n") # Include: valid subdir with valid files os.mkdir(os.path.join(basedir, "f4")) with open(os.path.join(basedir, "f4", "f4_1.csv"), "w") as outfile: outfile.write("\n\n\n") with open(os.path.join(basedir, "f4", "f4_2.csv"), "w") as outfile: outfile.write("\n\n\n") # Do not include: valid extension, but dot prefix with open(os.path.join(basedir, ".f5.csv"), "w") as outfile: outfile.write("\n\n\n") # Include: valid extensions with open(os.path.join(basedir, "f6.tsv"), "w") as outfile: outfile.write("\n\n\n") with open(os.path.join(basedir, "f7.xls"), "w") as outfile: outfile.write("\n\n\n") with open(os.path.join(basedir, "f8.parquet"), "w") as outfile: outfile.write("\n\n\n") with open(os.path.join(basedir, "f9.xls"), "w") as outfile: outfile.write("\n\n\n") with open(os.path.join(basedir, "f0.json"), "w") as outfile: outfile.write("\n\n\n") g1 = SubdirReaderBatchKwargsGenerator(datasource="foo", base_directory=basedir) g1_assets = g1.get_available_data_asset_names() # Use set in test to avoid order issues assert set(g1_assets["names"]) == { ("f7", "file"), ("f4", "directory"), ("f6", "file"), ("f0", "file"), ("f2", "file"), ("f9", "file"), ("f8", "file"), } def test_databricks_generator(basic_sparkdf_datasource): generator = DatabricksTableBatchKwargsGenerator(datasource=basic_sparkdf_datasource) available_assets = generator.get_available_data_asset_names() # We have no tables available assert available_assets == {"names": []} databricks_kwargs_iterator = generator.get_iterator(data_asset_name="foo") kwargs = [batch_kwargs for batch_kwargs in databricks_kwargs_iterator] assert "select * from" in kwargs[0]["query"].lower()
apache-2.0
jblackburne/scikit-learn
sklearn/gaussian_process/gpc.py
42
31571
"""Gaussian processes classification.""" # Authors: Jan Hendrik Metzen <[email protected]> # # License: BSD 3 clause import warnings from operator import itemgetter import numpy as np from scipy.linalg import cholesky, cho_solve, solve from scipy.optimize import fmin_l_bfgs_b from scipy.special import erf from sklearn.base import BaseEstimator, ClassifierMixin, clone from sklearn.gaussian_process.kernels \ import RBF, CompoundKernel, ConstantKernel as C from sklearn.utils.validation import check_X_y, check_is_fitted, check_array from sklearn.utils import check_random_state from sklearn.preprocessing import LabelEncoder from sklearn.multiclass import OneVsRestClassifier, OneVsOneClassifier # Values required for approximating the logistic sigmoid by # error functions. coefs are obtained via: # x = np.array([0, 0.6, 2, 3.5, 4.5, np.inf]) # b = logistic(x) # A = (erf(np.dot(x, self.lambdas)) + 1) / 2 # coefs = lstsq(A, b)[0] LAMBDAS = np.array([0.41, 0.4, 0.37, 0.44, 0.39])[:, np.newaxis] COEFS = np.array([-1854.8214151, 3516.89893646, 221.29346712, 128.12323805, -2010.49422654])[:, np.newaxis] class _BinaryGaussianProcessClassifierLaplace(BaseEstimator): """Binary Gaussian process classification based on Laplace approximation. The implementation is based on Algorithm 3.1, 3.2, and 5.1 of ``Gaussian Processes for Machine Learning'' (GPML) by Rasmussen and Williams. Internally, the Laplace approximation is used for approximating the non-Gaussian posterior by a Gaussian. Currently, the implementation is restricted to using the logistic link function. Parameters ---------- kernel : kernel object The kernel specifying the covariance function of the GP. If None is passed, the kernel "1.0 * RBF(1.0)" is used as default. Note that the kernel's hyperparameters are optimized during fitting. optimizer : string or callable, optional (default: "fmin_l_bfgs_b") Can either be one of the internally supported optimizers for optimizing the kernel's parameters, specified by a string, or an externally defined optimizer passed as a callable. If a callable is passed, it must have the signature:: def optimizer(obj_func, initial_theta, bounds): # * 'obj_func' is the objective function to be maximized, which # takes the hyperparameters theta as parameter and an # optional flag eval_gradient, which determines if the # gradient is returned additionally to the function value # * 'initial_theta': the initial value for theta, which can be # used by local optimizers # * 'bounds': the bounds on the values of theta .... # Returned are the best found hyperparameters theta and # the corresponding value of the target function. return theta_opt, func_min Per default, the 'fmin_l_bfgs_b' algorithm from scipy.optimize is used. If None is passed, the kernel's parameters are kept fixed. Available internal optimizers are:: 'fmin_l_bfgs_b' n_restarts_optimizer: int, optional (default: 0) The number of restarts of the optimizer for finding the kernel's parameters which maximize the log-marginal likelihood. The first run of the optimizer is performed from the kernel's initial parameters, the remaining ones (if any) from thetas sampled log-uniform randomly from the space of allowed theta-values. If greater than 0, all bounds must be finite. Note that n_restarts_optimizer=0 implies that one run is performed. max_iter_predict: int, optional (default: 100) The maximum number of iterations in Newton's method for approximating the posterior during predict. Smaller values will reduce computation time at the cost of worse results. warm_start : bool, optional (default: False) If warm-starts are enabled, the solution of the last Newton iteration on the Laplace approximation of the posterior mode is used as initialization for the next call of _posterior_mode(). This can speed up convergence when _posterior_mode is called several times on similar problems as in hyperparameter optimization. copy_X_train : bool, optional (default: True) If True, a persistent copy of the training data is stored in the object. Otherwise, just a reference to the training data is stored, which might cause predictions to change if the data is modified externally. random_state : integer or numpy.RandomState, optional The generator used to initialize the centers. If an integer is given, it fixes the seed. Defaults to the global numpy random number generator. Attributes ---------- X_train_ : array-like, shape = (n_samples, n_features) Feature values in training data (also required for prediction) y_train_: array-like, shape = (n_samples,) Target values in training data (also required for prediction) classes_ : array-like, shape = (n_classes,) Unique class labels. kernel_: kernel object The kernel used for prediction. The structure of the kernel is the same as the one passed as parameter but with optimized hyperparameters L_: array-like, shape = (n_samples, n_samples) Lower-triangular Cholesky decomposition of the kernel in X_train_ pi_: array-like, shape = (n_samples,) The probabilities of the positive class for the training points X_train_ W_sr_: array-like, shape = (n_samples,) Square root of W, the Hessian of log-likelihood of the latent function values for the observed labels. Since W is diagonal, only the diagonal of sqrt(W) is stored. log_marginal_likelihood_value_: float The log-marginal-likelihood of ``self.kernel_.theta`` """ def __init__(self, kernel=None, optimizer="fmin_l_bfgs_b", n_restarts_optimizer=0, max_iter_predict=100, warm_start=False, copy_X_train=True, random_state=None): self.kernel = kernel self.optimizer = optimizer self.n_restarts_optimizer = n_restarts_optimizer self.max_iter_predict = max_iter_predict self.warm_start = warm_start self.copy_X_train = copy_X_train self.random_state = random_state def fit(self, X, y): """Fit Gaussian process classification model Parameters ---------- X : array-like, shape = (n_samples, n_features) Training data y : array-like, shape = (n_samples,) Target values, must be binary Returns ------- self : returns an instance of self. """ if self.kernel is None: # Use an RBF kernel as default self.kernel_ = C(1.0, constant_value_bounds="fixed") \ * RBF(1.0, length_scale_bounds="fixed") else: self.kernel_ = clone(self.kernel) self.rng = check_random_state(self.random_state) self.X_train_ = np.copy(X) if self.copy_X_train else X # Encode class labels and check that it is a binary classification # problem label_encoder = LabelEncoder() self.y_train_ = label_encoder.fit_transform(y) self.classes_ = label_encoder.classes_ if self.classes_.size > 2: raise ValueError("%s supports only binary classification. " "y contains classes %s" % (self.__class__.__name__, self.classes_)) elif self.classes_.size == 1: raise ValueError("{0:s} requires 2 classes.".format( self.__class__.__name__)) if self.optimizer is not None and self.kernel_.n_dims > 0: # Choose hyperparameters based on maximizing the log-marginal # likelihood (potentially starting from several initial values) def obj_func(theta, eval_gradient=True): if eval_gradient: lml, grad = self.log_marginal_likelihood( theta, eval_gradient=True) return -lml, -grad else: return -self.log_marginal_likelihood(theta) # First optimize starting from theta specified in kernel optima = [self._constrained_optimization(obj_func, self.kernel_.theta, self.kernel_.bounds)] # Additional runs are performed from log-uniform chosen initial # theta if self.n_restarts_optimizer > 0: if not np.isfinite(self.kernel_.bounds).all(): raise ValueError( "Multiple optimizer restarts (n_restarts_optimizer>0) " "requires that all bounds are finite.") bounds = self.kernel_.bounds for iteration in range(self.n_restarts_optimizer): theta_initial = np.exp(self.rng.uniform(bounds[:, 0], bounds[:, 1])) optima.append( self._constrained_optimization(obj_func, theta_initial, bounds)) # Select result from run with minimal (negative) log-marginal # likelihood lml_values = list(map(itemgetter(1), optima)) self.kernel_.theta = optima[np.argmin(lml_values)][0] self.log_marginal_likelihood_value_ = -np.min(lml_values) else: self.log_marginal_likelihood_value_ = \ self.log_marginal_likelihood(self.kernel_.theta) # Precompute quantities required for predictions which are independent # of actual query points K = self.kernel_(self.X_train_) _, (self.pi_, self.W_sr_, self.L_, _, _) = \ self._posterior_mode(K, return_temporaries=True) return self def predict(self, X): """Perform classification on an array of test vectors X. Parameters ---------- X : array-like, shape = (n_samples, n_features) Returns ------- C : array, shape = (n_samples,) Predicted target values for X, values are from ``classes_`` """ check_is_fitted(self, ["X_train_", "y_train_", "pi_", "W_sr_", "L_"]) # As discussed on Section 3.4.2 of GPML, for making hard binary # decisions, it is enough to compute the MAP of the posterior and # pass it through the link function K_star = self.kernel_(self.X_train_, X) # K_star =k(x_star) f_star = K_star.T.dot(self.y_train_ - self.pi_) # Algorithm 3.2,Line 4 return np.where(f_star > 0, self.classes_[1], self.classes_[0]) def predict_proba(self, X): """Return probability estimates for the test vector X. Parameters ---------- X : array-like, shape = (n_samples, n_features) Returns ------- C : array-like, shape = (n_samples, n_classes) Returns the probability of the samples for each class in the model. The columns correspond to the classes in sorted order, as they appear in the attribute ``classes_``. """ check_is_fitted(self, ["X_train_", "y_train_", "pi_", "W_sr_", "L_"]) # Based on Algorithm 3.2 of GPML K_star = self.kernel_(self.X_train_, X) # K_star =k(x_star) f_star = K_star.T.dot(self.y_train_ - self.pi_) # Line 4 v = solve(self.L_, self.W_sr_[:, np.newaxis] * K_star) # Line 5 # Line 6 (compute np.diag(v.T.dot(v)) via einsum) var_f_star = self.kernel_.diag(X) - np.einsum("ij,ij->j", v, v) # Line 7: # Approximate \int log(z) * N(z | f_star, var_f_star) # Approximation is due to Williams & Barber, "Bayesian Classification # with Gaussian Processes", Appendix A: Approximate the logistic # sigmoid by a linear combination of 5 error functions. # For information on how this integral can be computed see # blitiri.blogspot.de/2012/11/gaussian-integral-of-error-function.html alpha = 1 / (2 * var_f_star) gamma = LAMBDAS * f_star integrals = np.sqrt(np.pi / alpha) \ * erf(gamma * np.sqrt(alpha / (alpha + LAMBDAS**2))) \ / (2 * np.sqrt(var_f_star * 2 * np.pi)) pi_star = (COEFS * integrals).sum(axis=0) + .5 * COEFS.sum() return np.vstack((1 - pi_star, pi_star)).T def log_marginal_likelihood(self, theta=None, eval_gradient=False): """Returns log-marginal likelihood of theta for training data. Parameters ---------- theta : array-like, shape = (n_kernel_params,) or None Kernel hyperparameters for which the log-marginal likelihood is evaluated. If None, the precomputed log_marginal_likelihood of ``self.kernel_.theta`` is returned. eval_gradient : bool, default: False If True, the gradient of the log-marginal likelihood with respect to the kernel hyperparameters at position theta is returned additionally. If True, theta must not be None. Returns ------- log_likelihood : float Log-marginal likelihood of theta for training data. log_likelihood_gradient : array, shape = (n_kernel_params,), optional Gradient of the log-marginal likelihood with respect to the kernel hyperparameters at position theta. Only returned when eval_gradient is True. """ if theta is None: if eval_gradient: raise ValueError( "Gradient can only be evaluated for theta!=None") return self.log_marginal_likelihood_value_ kernel = self.kernel_.clone_with_theta(theta) if eval_gradient: K, K_gradient = kernel(self.X_train_, eval_gradient=True) else: K = kernel(self.X_train_) # Compute log-marginal-likelihood Z and also store some temporaries # which can be reused for computing Z's gradient Z, (pi, W_sr, L, b, a) = \ self._posterior_mode(K, return_temporaries=True) if not eval_gradient: return Z # Compute gradient based on Algorithm 5.1 of GPML d_Z = np.empty(theta.shape[0]) # XXX: Get rid of the np.diag() in the next line R = W_sr[:, np.newaxis] * cho_solve((L, True), np.diag(W_sr)) # Line 7 C = solve(L, W_sr[:, np.newaxis] * K) # Line 8 # Line 9: (use einsum to compute np.diag(C.T.dot(C)))) s_2 = -0.5 * (np.diag(K) - np.einsum('ij, ij -> j', C, C)) \ * (pi * (1 - pi) * (1 - 2 * pi)) # third derivative for j in range(d_Z.shape[0]): C = K_gradient[:, :, j] # Line 11 # Line 12: (R.T.ravel().dot(C.ravel()) = np.trace(R.dot(C))) s_1 = .5 * a.T.dot(C).dot(a) - .5 * R.T.ravel().dot(C.ravel()) b = C.dot(self.y_train_ - pi) # Line 13 s_3 = b - K.dot(R.dot(b)) # Line 14 d_Z[j] = s_1 + s_2.T.dot(s_3) # Line 15 return Z, d_Z def _posterior_mode(self, K, return_temporaries=False): """Mode-finding for binary Laplace GPC and fixed kernel. This approximates the posterior of the latent function values for given inputs and target observations with a Gaussian approximation and uses Newton's iteration to find the mode of this approximation. """ # Based on Algorithm 3.1 of GPML # If warm_start are enabled, we reuse the last solution for the # posterior mode as initialization; otherwise, we initialize with 0 if self.warm_start and hasattr(self, "f_cached") \ and self.f_cached.shape == self.y_train_.shape: f = self.f_cached else: f = np.zeros_like(self.y_train_, dtype=np.float64) # Use Newton's iteration method to find mode of Laplace approximation log_marginal_likelihood = -np.inf for _ in range(self.max_iter_predict): # Line 4 pi = 1 / (1 + np.exp(-f)) W = pi * (1 - pi) # Line 5 W_sr = np.sqrt(W) W_sr_K = W_sr[:, np.newaxis] * K B = np.eye(W.shape[0]) + W_sr_K * W_sr L = cholesky(B, lower=True) # Line 6 b = W * f + (self.y_train_ - pi) # Line 7 a = b - W_sr * cho_solve((L, True), W_sr_K.dot(b)) # Line 8 f = K.dot(a) # Line 10: Compute log marginal likelihood in loop and use as # convergence criterion lml = -0.5 * a.T.dot(f) \ - np.log(1 + np.exp(-(self.y_train_ * 2 - 1) * f)).sum() \ - np.log(np.diag(L)).sum() # Check if we have converged (log marginal likelihood does # not decrease) # XXX: more complex convergence criterion if lml - log_marginal_likelihood < 1e-10: break log_marginal_likelihood = lml self.f_cached = f # Remember solution for later warm-starts if return_temporaries: return log_marginal_likelihood, (pi, W_sr, L, b, a) else: return log_marginal_likelihood def _constrained_optimization(self, obj_func, initial_theta, bounds): if self.optimizer == "fmin_l_bfgs_b": theta_opt, func_min, convergence_dict = \ fmin_l_bfgs_b(obj_func, initial_theta, bounds=bounds) if convergence_dict["warnflag"] != 0: warnings.warn("fmin_l_bfgs_b terminated abnormally with the " " state: %s" % convergence_dict) elif callable(self.optimizer): theta_opt, func_min = \ self.optimizer(obj_func, initial_theta, bounds=bounds) else: raise ValueError("Unknown optimizer %s." % self.optimizer) return theta_opt, func_min class GaussianProcessClassifier(BaseEstimator, ClassifierMixin): """Gaussian process classification (GPC) based on Laplace approximation. The implementation is based on Algorithm 3.1, 3.2, and 5.1 of Gaussian Processes for Machine Learning (GPML) by Rasmussen and Williams. Internally, the Laplace approximation is used for approximating the non-Gaussian posterior by a Gaussian. Currently, the implementation is restricted to using the logistic link function. For multi-class classification, several binary one-versus rest classifiers are fitted. Note that this class thus does not implement a true multi-class Laplace approximation. Parameters ---------- kernel : kernel object The kernel specifying the covariance function of the GP. If None is passed, the kernel "1.0 * RBF(1.0)" is used as default. Note that the kernel's hyperparameters are optimized during fitting. optimizer : string or callable, optional (default: "fmin_l_bfgs_b") Can either be one of the internally supported optimizers for optimizing the kernel's parameters, specified by a string, or an externally defined optimizer passed as a callable. If a callable is passed, it must have the signature:: def optimizer(obj_func, initial_theta, bounds): # * 'obj_func' is the objective function to be maximized, which # takes the hyperparameters theta as parameter and an # optional flag eval_gradient, which determines if the # gradient is returned additionally to the function value # * 'initial_theta': the initial value for theta, which can be # used by local optimizers # * 'bounds': the bounds on the values of theta .... # Returned are the best found hyperparameters theta and # the corresponding value of the target function. return theta_opt, func_min Per default, the 'fmin_l_bfgs_b' algorithm from scipy.optimize is used. If None is passed, the kernel's parameters are kept fixed. Available internal optimizers are:: 'fmin_l_bfgs_b' n_restarts_optimizer: int, optional (default: 0) The number of restarts of the optimizer for finding the kernel's parameters which maximize the log-marginal likelihood. The first run of the optimizer is performed from the kernel's initial parameters, the remaining ones (if any) from thetas sampled log-uniform randomly from the space of allowed theta-values. If greater than 0, all bounds must be finite. Note that n_restarts_optimizer=0 implies that one run is performed. max_iter_predict: int, optional (default: 100) The maximum number of iterations in Newton's method for approximating the posterior during predict. Smaller values will reduce computation time at the cost of worse results. warm_start : bool, optional (default: False) If warm-starts are enabled, the solution of the last Newton iteration on the Laplace approximation of the posterior mode is used as initialization for the next call of _posterior_mode(). This can speed up convergence when _posterior_mode is called several times on similar problems as in hyperparameter optimization. copy_X_train : bool, optional (default: True) If True, a persistent copy of the training data is stored in the object. Otherwise, just a reference to the training data is stored, which might cause predictions to change if the data is modified externally. random_state : integer or numpy.RandomState, optional The generator used to initialize the centers. If an integer is given, it fixes the seed. Defaults to the global numpy random number generator. multi_class: string, default: "one_vs_rest" Specifies how multi-class classification problems are handled. Supported are "one_vs_rest" and "one_vs_one". In "one_vs_rest", one binary Gaussian process classifier is fitted for each class, which is trained to separate this class from the rest. In "one_vs_one", one binary Gaussian process classifier is fitted for each pair of classes, which is trained to separate these two classes. The predictions of these binary predictors are combined into multi-class predictions. Note that "one_vs_one" does not support predicting probability estimates. n_jobs : int, optional, default: 1 The number of jobs to use for the computation. If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which is useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one are used. Attributes ---------- kernel_ : kernel object The kernel used for prediction. In case of binary classification, the structure of the kernel is the same as the one passed as parameter but with optimized hyperparameters. In case of multi-class classification, a CompoundKernel is returned which consists of the different kernels used in the one-versus-rest classifiers. log_marginal_likelihood_value_: float The log-marginal-likelihood of ``self.kernel_.theta`` classes_ : array-like, shape = (n_classes,) Unique class labels. n_classes_ : int The number of classes in the training data """ def __init__(self, kernel=None, optimizer="fmin_l_bfgs_b", n_restarts_optimizer=0, max_iter_predict=100, warm_start=False, copy_X_train=True, random_state=None, multi_class="one_vs_rest", n_jobs=1): self.kernel = kernel self.optimizer = optimizer self.n_restarts_optimizer = n_restarts_optimizer self.max_iter_predict = max_iter_predict self.warm_start = warm_start self.copy_X_train = copy_X_train self.random_state = random_state self.multi_class = multi_class self.n_jobs = n_jobs def fit(self, X, y): """Fit Gaussian process classification model Parameters ---------- X : array-like, shape = (n_samples, n_features) Training data y : array-like, shape = (n_samples,) Target values, must be binary Returns ------- self : returns an instance of self. """ X, y = check_X_y(X, y, multi_output=False) self.base_estimator_ = _BinaryGaussianProcessClassifierLaplace( self.kernel, self.optimizer, self.n_restarts_optimizer, self.max_iter_predict, self.warm_start, self.copy_X_train, self.random_state) self.classes_ = np.unique(y) self.n_classes_ = self.classes_.size if self.n_classes_ == 1: raise ValueError("GaussianProcessClassifier requires 2 or more " "distinct classes. Only class %s present." % self.classes_[0]) if self.n_classes_ > 2: if self.multi_class == "one_vs_rest": self.base_estimator_ = \ OneVsRestClassifier(self.base_estimator_, n_jobs=self.n_jobs) elif self.multi_class == "one_vs_one": self.base_estimator_ = \ OneVsOneClassifier(self.base_estimator_, n_jobs=self.n_jobs) else: raise ValueError("Unknown multi-class mode %s" % self.multi_class) self.base_estimator_.fit(X, y) if self.n_classes_ > 2: self.log_marginal_likelihood_value_ = np.mean( [estimator.log_marginal_likelihood() for estimator in self.base_estimator_.estimators_]) else: self.log_marginal_likelihood_value_ = \ self.base_estimator_.log_marginal_likelihood() return self def predict(self, X): """Perform classification on an array of test vectors X. Parameters ---------- X : array-like, shape = (n_samples, n_features) Returns ------- C : array, shape = (n_samples,) Predicted target values for X, values are from ``classes_`` """ check_is_fitted(self, ["classes_", "n_classes_"]) X = check_array(X) return self.base_estimator_.predict(X) def predict_proba(self, X): """Return probability estimates for the test vector X. Parameters ---------- X : array-like, shape = (n_samples, n_features) Returns ------- C : array-like, shape = (n_samples, n_classes) Returns the probability of the samples for each class in the model. The columns correspond to the classes in sorted order, as they appear in the attribute `classes_`. """ check_is_fitted(self, ["classes_", "n_classes_"]) if self.n_classes_ > 2 and self.multi_class == "one_vs_one": raise ValueError("one_vs_one multi-class mode does not support " "predicting probability estimates. Use " "one_vs_rest mode instead.") X = check_array(X) return self.base_estimator_.predict_proba(X) @property def kernel_(self): if self.n_classes_ == 2: return self.base_estimator_.kernel_ else: return CompoundKernel( [estimator.kernel_ for estimator in self.base_estimator_.estimators_]) def log_marginal_likelihood(self, theta=None, eval_gradient=False): """Returns log-marginal likelihood of theta for training data. In the case of multi-class classification, the mean log-marginal likelihood of the one-versus-rest classifiers are returned. Parameters ---------- theta : array-like, shape = (n_kernel_params,) or none Kernel hyperparameters for which the log-marginal likelihood is evaluated. In the case of multi-class classification, theta may be the hyperparameters of the compound kernel or of an individual kernel. In the latter case, all individual kernel get assigned the same theta values. If None, the precomputed log_marginal_likelihood of ``self.kernel_.theta`` is returned. eval_gradient : bool, default: False If True, the gradient of the log-marginal likelihood with respect to the kernel hyperparameters at position theta is returned additionally. Note that gradient computation is not supported for non-binary classification. If True, theta must not be None. Returns ------- log_likelihood : float Log-marginal likelihood of theta for training data. log_likelihood_gradient : array, shape = (n_kernel_params,), optional Gradient of the log-marginal likelihood with respect to the kernel hyperparameters at position theta. Only returned when eval_gradient is True. """ check_is_fitted(self, ["classes_", "n_classes_"]) if theta is None: if eval_gradient: raise ValueError( "Gradient can only be evaluated for theta!=None") return self.log_marginal_likelihood_value_ theta = np.asarray(theta) if self.n_classes_ == 2: return self.base_estimator_.log_marginal_likelihood( theta, eval_gradient) else: if eval_gradient: raise NotImplementedError( "Gradient of log-marginal-likelihood not implemented for " "multi-class GPC.") estimators = self.base_estimator_.estimators_ n_dims = estimators[0].kernel_.n_dims if theta.shape[0] == n_dims: # use same theta for all sub-kernels return np.mean( [estimator.log_marginal_likelihood(theta) for i, estimator in enumerate(estimators)]) elif theta.shape[0] == n_dims * self.classes_.shape[0]: # theta for compound kernel return np.mean( [estimator.log_marginal_likelihood( theta[n_dims * i:n_dims * (i + 1)]) for i, estimator in enumerate(estimators)]) else: raise ValueError("Shape of theta must be either %d or %d. " "Obtained theta with shape %d." % (n_dims, n_dims * self.classes_.shape[0], theta.shape[0]))
bsd-3-clause
dsquareindia/scikit-learn
sklearn/decomposition/tests/test_fastica.py
70
7808
""" Test the fastica algorithm. """ import itertools import warnings import numpy as np from scipy import stats from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_warns from sklearn.utils.testing import assert_raises from sklearn.decomposition import FastICA, fastica, PCA from sklearn.decomposition.fastica_ import _gs_decorrelation from sklearn.externals.six import moves def center_and_norm(x, axis=-1): """ Centers and norms x **in place** Parameters ----------- x: ndarray Array with an axis of observations (statistical units) measured on random variables. axis: int, optional Axis along which the mean and variance are calculated. """ x = np.rollaxis(x, axis) x -= x.mean(axis=0) x /= x.std(axis=0) def test_gs(): # Test gram schmidt orthonormalization # generate a random orthogonal matrix rng = np.random.RandomState(0) W, _, _ = np.linalg.svd(rng.randn(10, 10)) w = rng.randn(10) _gs_decorrelation(w, W, 10) assert_less((w ** 2).sum(), 1.e-10) w = rng.randn(10) u = _gs_decorrelation(w, W, 5) tmp = np.dot(u, W.T) assert_less((tmp[:5] ** 2).sum(), 1.e-10) def test_fastica_simple(add_noise=False): # Test the FastICA algorithm on very simple data. rng = np.random.RandomState(0) # scipy.stats uses the global RNG: np.random.seed(0) n_samples = 1000 # Generate two sources: s1 = (2 * np.sin(np.linspace(0, 100, n_samples)) > 0) - 1 s2 = stats.t.rvs(1, size=n_samples) s = np.c_[s1, s2].T center_and_norm(s) s1, s2 = s # Mixing angle phi = 0.6 mixing = np.array([[np.cos(phi), np.sin(phi)], [np.sin(phi), -np.cos(phi)]]) m = np.dot(mixing, s) if add_noise: m += 0.1 * rng.randn(2, 1000) center_and_norm(m) # function as fun arg def g_test(x): return x ** 3, (3 * x ** 2).mean(axis=-1) algos = ['parallel', 'deflation'] nls = ['logcosh', 'exp', 'cube', g_test] whitening = [True, False] for algo, nl, whiten in itertools.product(algos, nls, whitening): if whiten: k_, mixing_, s_ = fastica(m.T, fun=nl, algorithm=algo) assert_raises(ValueError, fastica, m.T, fun=np.tanh, algorithm=algo) else: X = PCA(n_components=2, whiten=True).fit_transform(m.T) k_, mixing_, s_ = fastica(X, fun=nl, algorithm=algo, whiten=False) assert_raises(ValueError, fastica, X, fun=np.tanh, algorithm=algo) s_ = s_.T # Check that the mixing model described in the docstring holds: if whiten: assert_almost_equal(s_, np.dot(np.dot(mixing_, k_), m)) center_and_norm(s_) s1_, s2_ = s_ # Check to see if the sources have been estimated # in the wrong order if abs(np.dot(s1_, s2)) > abs(np.dot(s1_, s1)): s2_, s1_ = s_ s1_ *= np.sign(np.dot(s1_, s1)) s2_ *= np.sign(np.dot(s2_, s2)) # Check that we have estimated the original sources if not add_noise: assert_almost_equal(np.dot(s1_, s1) / n_samples, 1, decimal=2) assert_almost_equal(np.dot(s2_, s2) / n_samples, 1, decimal=2) else: assert_almost_equal(np.dot(s1_, s1) / n_samples, 1, decimal=1) assert_almost_equal(np.dot(s2_, s2) / n_samples, 1, decimal=1) # Test FastICA class _, _, sources_fun = fastica(m.T, fun=nl, algorithm=algo, random_state=0) ica = FastICA(fun=nl, algorithm=algo, random_state=0) sources = ica.fit_transform(m.T) assert_equal(ica.components_.shape, (2, 2)) assert_equal(sources.shape, (1000, 2)) assert_array_almost_equal(sources_fun, sources) assert_array_almost_equal(sources, ica.transform(m.T)) assert_equal(ica.mixing_.shape, (2, 2)) for fn in [np.tanh, "exp(-.5(x^2))"]: ica = FastICA(fun=fn, algorithm=algo, random_state=0) assert_raises(ValueError, ica.fit, m.T) assert_raises(TypeError, FastICA(fun=moves.xrange(10)).fit, m.T) def test_fastica_nowhiten(): m = [[0, 1], [1, 0]] # test for issue #697 ica = FastICA(n_components=1, whiten=False, random_state=0) assert_warns(UserWarning, ica.fit, m) assert_true(hasattr(ica, 'mixing_')) def test_non_square_fastica(add_noise=False): # Test the FastICA algorithm on very simple data. rng = np.random.RandomState(0) n_samples = 1000 # Generate two sources: t = np.linspace(0, 100, n_samples) s1 = np.sin(t) s2 = np.ceil(np.sin(np.pi * t)) s = np.c_[s1, s2].T center_and_norm(s) s1, s2 = s # Mixing matrix mixing = rng.randn(6, 2) m = np.dot(mixing, s) if add_noise: m += 0.1 * rng.randn(6, n_samples) center_and_norm(m) k_, mixing_, s_ = fastica(m.T, n_components=2, random_state=rng) s_ = s_.T # Check that the mixing model described in the docstring holds: assert_almost_equal(s_, np.dot(np.dot(mixing_, k_), m)) center_and_norm(s_) s1_, s2_ = s_ # Check to see if the sources have been estimated # in the wrong order if abs(np.dot(s1_, s2)) > abs(np.dot(s1_, s1)): s2_, s1_ = s_ s1_ *= np.sign(np.dot(s1_, s1)) s2_ *= np.sign(np.dot(s2_, s2)) # Check that we have estimated the original sources if not add_noise: assert_almost_equal(np.dot(s1_, s1) / n_samples, 1, decimal=3) assert_almost_equal(np.dot(s2_, s2) / n_samples, 1, decimal=3) def test_fit_transform(): # Test FastICA.fit_transform rng = np.random.RandomState(0) X = rng.random_sample((100, 10)) for whiten, n_components in [[True, 5], [False, None]]: n_components_ = (n_components if n_components is not None else X.shape[1]) ica = FastICA(n_components=n_components, whiten=whiten, random_state=0) Xt = ica.fit_transform(X) assert_equal(ica.components_.shape, (n_components_, 10)) assert_equal(Xt.shape, (100, n_components_)) ica = FastICA(n_components=n_components, whiten=whiten, random_state=0) ica.fit(X) assert_equal(ica.components_.shape, (n_components_, 10)) Xt2 = ica.transform(X) assert_array_almost_equal(Xt, Xt2) def test_inverse_transform(): # Test FastICA.inverse_transform n_features = 10 n_samples = 100 n1, n2 = 5, 10 rng = np.random.RandomState(0) X = rng.random_sample((n_samples, n_features)) expected = {(True, n1): (n_features, n1), (True, n2): (n_features, n2), (False, n1): (n_features, n2), (False, n2): (n_features, n2)} for whiten in [True, False]: for n_components in [n1, n2]: n_components_ = (n_components if n_components is not None else X.shape[1]) ica = FastICA(n_components=n_components, random_state=rng, whiten=whiten) with warnings.catch_warnings(record=True): # catch "n_components ignored" warning Xt = ica.fit_transform(X) expected_shape = expected[(whiten, n_components_)] assert_equal(ica.mixing_.shape, expected_shape) X2 = ica.inverse_transform(Xt) assert_equal(X.shape, X2.shape) # reversibility test in non-reduction case if n_components == X.shape[1]: assert_array_almost_equal(X, X2)
bsd-3-clause
untom/scikit-learn
sklearn/decomposition/base.py
313
5647
"""Principal Component Analysis Base Classes""" # Author: Alexandre Gramfort <[email protected]> # Olivier Grisel <[email protected]> # Mathieu Blondel <[email protected]> # Denis A. Engemann <[email protected]> # Kyle Kastner <[email protected]> # # License: BSD 3 clause import numpy as np from scipy import linalg from ..base import BaseEstimator, TransformerMixin from ..utils import check_array from ..utils.extmath import fast_dot from ..utils.validation import check_is_fitted from ..externals import six from abc import ABCMeta, abstractmethod class _BasePCA(six.with_metaclass(ABCMeta, BaseEstimator, TransformerMixin)): """Base class for PCA methods. Warning: This class should not be used directly. Use derived classes instead. """ def get_covariance(self): """Compute data covariance with the generative model. ``cov = components_.T * S**2 * components_ + sigma2 * eye(n_features)`` where S**2 contains the explained variances, and sigma2 contains the noise variances. Returns ------- cov : array, shape=(n_features, n_features) Estimated covariance of data. """ components_ = self.components_ exp_var = self.explained_variance_ if self.whiten: components_ = components_ * np.sqrt(exp_var[:, np.newaxis]) exp_var_diff = np.maximum(exp_var - self.noise_variance_, 0.) cov = np.dot(components_.T * exp_var_diff, components_) cov.flat[::len(cov) + 1] += self.noise_variance_ # modify diag inplace return cov def get_precision(self): """Compute data precision matrix with the generative model. Equals the inverse of the covariance but computed with the matrix inversion lemma for efficiency. Returns ------- precision : array, shape=(n_features, n_features) Estimated precision of data. """ n_features = self.components_.shape[1] # handle corner cases first if self.n_components_ == 0: return np.eye(n_features) / self.noise_variance_ if self.n_components_ == n_features: return linalg.inv(self.get_covariance()) # Get precision using matrix inversion lemma components_ = self.components_ exp_var = self.explained_variance_ if self.whiten: components_ = components_ * np.sqrt(exp_var[:, np.newaxis]) exp_var_diff = np.maximum(exp_var - self.noise_variance_, 0.) precision = np.dot(components_, components_.T) / self.noise_variance_ precision.flat[::len(precision) + 1] += 1. / exp_var_diff precision = np.dot(components_.T, np.dot(linalg.inv(precision), components_)) precision /= -(self.noise_variance_ ** 2) precision.flat[::len(precision) + 1] += 1. / self.noise_variance_ return precision @abstractmethod def fit(X, y=None): """Placeholder for fit. Subclasses should implement this method! Fit the model with X. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data, where n_samples is the number of samples and n_features is the number of features. Returns ------- self : object Returns the instance itself. """ def transform(self, X, y=None): """Apply dimensionality reduction to X. X is projected on the first principal components previously extracted from a training set. Parameters ---------- X : array-like, shape (n_samples, n_features) New data, where n_samples is the number of samples and n_features is the number of features. Returns ------- X_new : array-like, shape (n_samples, n_components) Examples -------- >>> import numpy as np >>> from sklearn.decomposition import IncrementalPCA >>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]]) >>> ipca = IncrementalPCA(n_components=2, batch_size=3) >>> ipca.fit(X) IncrementalPCA(batch_size=3, copy=True, n_components=2, whiten=False) >>> ipca.transform(X) # doctest: +SKIP """ check_is_fitted(self, ['mean_', 'components_'], all_or_any=all) X = check_array(X) if self.mean_ is not None: X = X - self.mean_ X_transformed = fast_dot(X, self.components_.T) if self.whiten: X_transformed /= np.sqrt(self.explained_variance_) return X_transformed def inverse_transform(self, X, y=None): """Transform data back to its original space. In other words, return an input X_original whose transform would be X. Parameters ---------- X : array-like, shape (n_samples, n_components) New data, where n_samples is the number of samples and n_components is the number of components. Returns ------- X_original array-like, shape (n_samples, n_features) Notes ----- If whitening is enabled, inverse_transform will compute the exact inverse operation, which includes reversing whitening. """ if self.whiten: return fast_dot(X, np.sqrt(self.explained_variance_[:, np.newaxis]) * self.components_) + self.mean_ else: return fast_dot(X, self.components_) + self.mean_
bsd-3-clause
dmargala/qusp
examples/compare_delta.py
1
7364
#!/usr/bin/env python import argparse import numpy as np import numpy.ma as ma import h5py import qusp import matplotlib.pyplot as plt import scipy.interpolate import fitsio class DeltaLOS(object): def __init__(self, thing_id): path = '/data/lya/deltas/delta-%d.fits' % thing_id hdulist = fitsio.FITS(path, mode=fitsio.READONLY) self.pmf = hdulist[1].read_header()['pmf'] self.loglam = hdulist[1]['loglam'][:] self.wave = np.power(10.0, self.loglam) self.delta = hdulist[1]['delta'][:] self.weight = hdulist[1]['weight'][:] self.cont = hdulist[1]['cont'][:] self.msha = hdulist[1]['msha'][:] self.mabs = hdulist[1]['mabs'][:] self.ivar = hdulist[1]['ivar'][:] self.cf = self.cont*self.msha*self.mabs self.flux = (1+self.delta)*self.cf def main(): # parse command-line arguments parser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument("--verbose", action="store_true", help="print verbose output") ## targets to fit parser.add_argument("--name", type=str, default=None, help="target list") parser.add_argument("--gamma", type=float, default=3.8, help="LSS growth and redshift evolution of mean absorption gamma") parser.add_argument("--index", type=int, default=1000, help="target index") parser.add_argument("--pmf", type=str, default=None, help="target plate-mjd-fiber string") args = parser.parse_args() print 'Loading forest data...' # import data skim = h5py.File(args.name+'.hdf5', 'r') if args.pmf: plate, mjd, fiber = [int(val) for val in args.pmf.split('-')] index = np.where((skim['meta']['plate'] == plate) & (skim['meta']['mjd'] == mjd) & (skim['meta']['fiber'] == fiber))[0][0] else: index = args.index flux = np.ma.MaskedArray(skim['flux'][index], mask=skim['mask'][index]) ivar = np.ma.MaskedArray(skim['ivar'][index], mask=skim['mask'][index]) loglam = skim['loglam'][:] wave = np.power(10.0, loglam) z = skim['z'][index] norm = skim['norm'][index] meta = skim['meta'][index] linear_continuum = h5py.File(args.name+'-linear-continuum.hdf5', 'r') a = linear_continuum['params_a'][index] b = linear_continuum['params_b'][index] continuum = linear_continuum['continuum'] continuum_wave = linear_continuum['continuum_wave'] continuum_interp = scipy.interpolate.UnivariateSpline(continuum_wave, continuum, ext=1, s=0) abs_alpha = linear_continuum.attrs['abs_alpha'] abs_beta = linear_continuum.attrs['abs_beta'] forest_wave_ref = (1+z)*linear_continuum.attrs['forest_wave_ref'] wave_lya = linear_continuum.attrs['wave_lya'] forest_pixel_redshifts = wave/wave_lya - 1 abs_coefs = abs_alpha*np.power(1+forest_pixel_redshifts, abs_beta) print 'flux 1280 Ang: %.2f' % norm print 'fit param a: %.2f' % a print 'fit param b: %.2f' % b def model_flux(a, b): return a*np.power(wave/forest_wave_ref, b)*continuum_interp(wave/(1+z))*np.exp(-abs_coefs) def chisq(p): mflux = model_flux(p[0], p[1]) res = flux - mflux return ma.sum(res*res*ivar)/ma.sum(ivar) from scipy.optimize import minimize result = minimize(chisq, (a, b)) a,b = result.x print 'fit param a: %.2f' % a print 'fit param b: %.2f' % b # rest and obs refer to pixel grid print 'Estimating deltas in forest frame...' mflux = model_flux(a,b) delta_flux = flux/mflux - 1.0 delta_ivar = ivar*mflux*mflux forest_min_z = linear_continuum.attrs['forest_min_z'] forest_max_z = linear_continuum.attrs['forest_max_z'] forest_dz = 0.1 forest_z_bins = np.arange(forest_min_z, forest_max_z + forest_dz, forest_dz) print 'Adjusting weights for pipeline variance and LSS variance...' var_lss = scipy.interpolate.UnivariateSpline(forest_z_bins, 0.05 + 0.06*(forest_z_bins - 2.0)**2, s=0) var_pipe_scale = scipy.interpolate.UnivariateSpline(forest_z_bins, 0.7 + 0.2*(forest_z_bins - 2.0)**2, s=0) delta_weight = delta_ivar*var_pipe_scale(forest_pixel_redshifts) delta_weight = delta_weight/(1 + delta_weight*var_lss(forest_pixel_redshifts)) thing_id = meta['thing_id'] pmf = '%s-%s-%s' % (meta['plate'],meta['mjd'],meta['fiber']) los = DeltaLOS(thing_id) my_msha = norm*a*np.power(wave/forest_wave_ref, b) my_wave = wave my_flux = norm*flux my_cf = my_msha*continuum_interp(wave/(1+z))*np.exp(-abs_coefs) my_ivar = ivar/(norm*norm) my_delta = delta_flux my_weight = delta_weight # mean_ratio = np.average(my_msha*continuum)/ma.average(los.msha*los.cont) # print mean_ratio plt.figure(figsize=(12,4)) plt.plot(my_wave, my_flux, color='gray') my_dflux = ma.power(my_ivar, -0.5) plt.fill_between(my_wave, my_flux - my_dflux, my_flux + my_dflux, color='gray', alpha=0.5) plt.plot(my_wave, my_msha*continuum_interp(wave/(1+z)), label='My continuum', color='blue') plt.plot(los.wave, los.cont, label='Busca continuum', color='red') plt.plot(my_wave, my_cf, label='My cf', color='green') plt.plot(los.wave, los.cf, label='Busca cf', color='orange') plt.legend() plt.title(r'%s (%s), $z$ = %.2f' % (pmf, thing_id, z)) plt.xlabel(r'Observed Wavelength ($\AA$)') plt.ylabel(r'Observed Flux') plt.xlim(los.wave[[0,-1]]) plt.savefig(args.name+'-example-flux.png', dpi=100, bbox_inches='tight') plt.close() plt.figure(figsize=(12,4)) my_delta_sigma = ma.power(delta_weight, -0.5) # plt.fill_between(my_wave, my_delta - my_delta_sigma, my_delta + my_delta_sigma, color='blue', alpha=0.1, label='My Delta') plt.scatter(my_wave, my_delta, color='blue', marker='+', label='My Delta') plt.plot(my_wave, +my_delta_sigma, color='blue', ls=':') plt.plot(my_wave, -my_delta_sigma, color='blue', ls=':') los_delta_sigma = ma.power(los.weight, -0.5) # plt.fill_between(los.wave, los.delta - los_delta_sigma, los.delta + los_delta_sigma, color='red', alpha=01, label='Busca Delta') plt.scatter(los.wave, los.delta, color='red', marker='+', label='Busca Delta') plt.plot(los.wave, +los_delta_sigma, color='red', ls=':') plt.plot(los.wave, -los_delta_sigma, color='red', ls=':') my_lss_sigma = np.sqrt(var_lss(forest_pixel_redshifts)) plt.plot(my_wave, +my_lss_sigma, color='black', ls='--') plt.plot(my_wave, -my_lss_sigma, color='black', ls='--') # my_sn_sigma = np.sqrt(np.power(1 + forest_pixel_redshifts, 0.5*abs_beta))/10 # plt.plot(my_wave, +my_sn_sigma, color='orange', ls='--') # plt.plot(my_wave, -my_sn_sigma, color='orange', ls='--') # import matplotlib.patches as mpatches # # blue_patch = mpatches.Patch(color='blue', alpha=0.3, label='My Delta') # red_patch = mpatches.Patch(color='red', alpha=0.3, label='Busca Delta') # plt.legend(handles=[blue_patch,red_patch]) plt.title(r'%s (%s), $z$ = %.2f' % (pmf, thing_id, z)) plt.ylim(-2,2) plt.xlim(los.wave[[0,-1]]) plt.xlabel(r'Observed Wavelength ($\AA$)') plt.ylabel(r'Delta') plt.legend() plt.savefig(args.name+'-example-delta.png', dpi=100, bbox_inches='tight') plt.close() if __name__ == '__main__': main()
mit
guildai/guild
examples/iris-svm/plot_iris_exercise.py
1
1702
""" A tutorial exercise for using different SVM kernels. Adapted from: https://scikit-learn.org/stable/auto_examples/exercises/plot_iris_exercise.html """ import numpy as np import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt from sklearn import datasets, svm kernel = 'linear' # choice of linear, rbf, poly test_split = 0.1 random_seed = 0 degree = 3 gamma = 10 iris = datasets.load_iris() X = iris.data y = iris.target X = X[y != 0, :2] y = y[y != 0] n_sample = len(X) np.random.seed(random_seed) order = np.random.permutation(n_sample) X = X[order] y = y[order].astype(np.float) split_pos = int((1 - test_split) * n_sample) X_train = X[:split_pos] y_train = y[:split_pos] X_test = X[split_pos:] y_test = y[split_pos:] # fit the model clf = svm.SVC(kernel=kernel, degree=degree, gamma=gamma) clf.fit(X_train, y_train) print("Train accuracy: %s" % clf.score(X_train, y_train)) print("Test accuracy: %f" % clf.score(X_test, y_test)) plt.figure() plt.clf() plt.scatter(X[:, 0], X[:, 1], c=y, zorder=10, cmap=plt.cm.Paired, edgecolor='k', s=20) # Circle out the test data plt.scatter(X_test[:, 0], X_test[:, 1], s=80, facecolors='none', zorder=10, edgecolor='k') plt.axis('tight') x_min = X[:, 0].min() x_max = X[:, 0].max() y_min = X[:, 1].min() y_max = X[:, 1].max() XX, YY = np.mgrid[x_min:x_max:200j, y_min:y_max:200j] Z = clf.decision_function(np.c_[XX.ravel(), YY.ravel()]) # Put the result into a color plot Z = Z.reshape(XX.shape) plt.pcolormesh(XX, YY, Z > 0, cmap=plt.cm.Paired) plt.contour(XX, YY, Z, colors=['k', 'k', 'k'], linestyles=['--', '-', '--'], levels=[-.5, 0, .5]) plt.title(kernel) plt.savefig("plot.png")
apache-2.0
jzt5132/scikit-learn
examples/svm/plot_rbf_parameters.py
132
8096
''' ================== RBF SVM parameters ================== This example illustrates the effect of the parameters ``gamma`` and ``C`` of the Radial Basis Function (RBF) kernel SVM. Intuitively, the ``gamma`` parameter defines how far the influence of a single training example reaches, with low values meaning 'far' and high values meaning 'close'. The ``gamma`` parameters can be seen as the inverse of the radius of influence of samples selected by the model as support vectors. The ``C`` parameter trades off misclassification of training examples against simplicity of the decision surface. A low ``C`` makes the decision surface smooth, while a high ``C`` aims at classifying all training examples correctly by giving the model freedom to select more samples as support vectors. The first plot is a visualization of the decision function for a variety of parameter values on a simplified classification problem involving only 2 input features and 2 possible target classes (binary classification). Note that this kind of plot is not possible to do for problems with more features or target classes. The second plot is a heatmap of the classifier's cross-validation accuracy as a function of ``C`` and ``gamma``. For this example we explore a relatively large grid for illustration purposes. In practice, a logarithmic grid from :math:`10^{-3}` to :math:`10^3` is usually sufficient. If the best parameters lie on the boundaries of the grid, it can be extended in that direction in a subsequent search. Note that the heat map plot has a special colorbar with a midpoint value close to the score values of the best performing models so as to make it easy to tell them appart in the blink of an eye. The behavior of the model is very sensitive to the ``gamma`` parameter. If ``gamma`` is too large, the radius of the area of influence of the support vectors only includes the support vector itself and no amount of regularization with ``C`` will be able to prevent overfitting. When ``gamma`` is very small, the model is too constrained and cannot capture the complexity or "shape" of the data. The region of influence of any selected support vector would include the whole training set. The resulting model will behave similarly to a linear model with a set of hyperplanes that separate the centers of high density of any pair of two classes. For intermediate values, we can see on the second plot that good models can be found on a diagonal of ``C`` and ``gamma``. Smooth models (lower ``gamma`` values) can be made more complex by selecting a larger number of support vectors (larger ``C`` values) hence the diagonal of good performing models. Finally one can also observe that for some intermediate values of ``gamma`` we get equally performing models when ``C`` becomes very large: it is not necessary to regularize by limiting the number of support vectors. The radius of the RBF kernel alone acts as a good structural regularizer. In practice though it might still be interesting to limit the number of support vectors with a lower value of ``C`` so as to favor models that use less memory and that are faster to predict. We should also note that small differences in scores results from the random splits of the cross-validation procedure. Those spurious variations can be smoothed out by increasing the number of CV iterations ``n_iter`` at the expense of compute time. Increasing the value number of ``C_range`` and ``gamma_range`` steps will increase the resolution of the hyper-parameter heat map. ''' print(__doc__) import numpy as np import matplotlib.pyplot as plt from matplotlib.colors import Normalize from sklearn.svm import SVC from sklearn.preprocessing import StandardScaler from sklearn.datasets import load_iris from sklearn.cross_validation import StratifiedShuffleSplit from sklearn.grid_search import GridSearchCV # Utility function to move the midpoint of a colormap to be around # the values of interest. class MidpointNormalize(Normalize): def __init__(self, vmin=None, vmax=None, midpoint=None, clip=False): self.midpoint = midpoint Normalize.__init__(self, vmin, vmax, clip) def __call__(self, value, clip=None): x, y = [self.vmin, self.midpoint, self.vmax], [0, 0.5, 1] return np.ma.masked_array(np.interp(value, x, y)) ############################################################################## # Load and prepare data set # # dataset for grid search iris = load_iris() X = iris.data y = iris.target # Dataset for decision function visualization: we only keep the first two # features in X and sub-sample the dataset to keep only 2 classes and # make it a binary classification problem. X_2d = X[:, :2] X_2d = X_2d[y > 0] y_2d = y[y > 0] y_2d -= 1 # It is usually a good idea to scale the data for SVM training. # We are cheating a bit in this example in scaling all of the data, # instead of fitting the transformation on the training set and # just applying it on the test set. scaler = StandardScaler() X = scaler.fit_transform(X) X_2d = scaler.fit_transform(X_2d) ############################################################################## # Train classifiers # # For an initial search, a logarithmic grid with basis # 10 is often helpful. Using a basis of 2, a finer # tuning can be achieved but at a much higher cost. C_range = np.logspace(-2, 10, 13) gamma_range = np.logspace(-9, 3, 13) param_grid = dict(gamma=gamma_range, C=C_range) cv = StratifiedShuffleSplit(y, n_iter=5, test_size=0.2, random_state=42) grid = GridSearchCV(SVC(), param_grid=param_grid, cv=cv) grid.fit(X, y) print("The best parameters are %s with a score of %0.2f" % (grid.best_params_, grid.best_score_)) # Now we need to fit a classifier for all parameters in the 2d version # (we use a smaller set of parameters here because it takes a while to train) C_2d_range = [1e-2, 1, 1e2] gamma_2d_range = [1e-1, 1, 1e1] classifiers = [] for C in C_2d_range: for gamma in gamma_2d_range: clf = SVC(C=C, gamma=gamma) clf.fit(X_2d, y_2d) classifiers.append((C, gamma, clf)) ############################################################################## # visualization # # draw visualization of parameter effects plt.figure(figsize=(8, 6)) xx, yy = np.meshgrid(np.linspace(-3, 3, 200), np.linspace(-3, 3, 200)) for (k, (C, gamma, clf)) in enumerate(classifiers): # evaluate decision function in a grid Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) # visualize decision function for these parameters plt.subplot(len(C_2d_range), len(gamma_2d_range), k + 1) plt.title("gamma=10^%d, C=10^%d" % (np.log10(gamma), np.log10(C)), size='medium') # visualize parameter's effect on decision function plt.pcolormesh(xx, yy, -Z, cmap=plt.cm.RdBu) plt.scatter(X_2d[:, 0], X_2d[:, 1], c=y_2d, cmap=plt.cm.RdBu_r) plt.xticks(()) plt.yticks(()) plt.axis('tight') # plot the scores of the grid # grid_scores_ contains parameter settings and scores # We extract just the scores scores = [x[1] for x in grid.grid_scores_] scores = np.array(scores).reshape(len(C_range), len(gamma_range)) # Draw heatmap of the validation accuracy as a function of gamma and C # # The score are encoded as colors with the hot colormap which varies from dark # red to bright yellow. As the most interesting scores are all located in the # 0.92 to 0.97 range we use a custom normalizer to set the mid-point to 0.92 so # as to make it easier to visualize the small variations of score values in the # interesting range while not brutally collapsing all the low score values to # the same color. plt.figure(figsize=(8, 6)) plt.subplots_adjust(left=.2, right=0.95, bottom=0.15, top=0.95) plt.imshow(scores, interpolation='nearest', cmap=plt.cm.hot, norm=MidpointNormalize(vmin=0.2, midpoint=0.92)) plt.xlabel('gamma') plt.ylabel('C') plt.colorbar() plt.xticks(np.arange(len(gamma_range)), gamma_range, rotation=45) plt.yticks(np.arange(len(C_range)), C_range) plt.title('Validation accuracy') plt.show()
bsd-3-clause
etkirsch/scikit-learn
examples/semi_supervised/plot_label_propagation_digits.py
268
2723
""" =================================================== Label Propagation digits: Demonstrating performance =================================================== This example demonstrates the power of semisupervised learning by training a Label Spreading model to classify handwritten digits with sets of very few labels. The handwritten digit dataset has 1797 total points. The model will be trained using all points, but only 30 will be labeled. Results in the form of a confusion matrix and a series of metrics over each class will be very good. At the end, the top 10 most uncertain predictions will be shown. """ print(__doc__) # Authors: Clay Woolam <[email protected]> # Licence: BSD import numpy as np import matplotlib.pyplot as plt from scipy import stats from sklearn import datasets from sklearn.semi_supervised import label_propagation from sklearn.metrics import confusion_matrix, classification_report digits = datasets.load_digits() rng = np.random.RandomState(0) indices = np.arange(len(digits.data)) rng.shuffle(indices) X = digits.data[indices[:330]] y = digits.target[indices[:330]] images = digits.images[indices[:330]] n_total_samples = len(y) n_labeled_points = 30 indices = np.arange(n_total_samples) unlabeled_set = indices[n_labeled_points:] # shuffle everything around y_train = np.copy(y) y_train[unlabeled_set] = -1 ############################################################################### # Learn with LabelSpreading lp_model = label_propagation.LabelSpreading(gamma=0.25, max_iter=5) lp_model.fit(X, y_train) predicted_labels = lp_model.transduction_[unlabeled_set] true_labels = y[unlabeled_set] cm = confusion_matrix(true_labels, predicted_labels, labels=lp_model.classes_) print("Label Spreading model: %d labeled & %d unlabeled points (%d total)" % (n_labeled_points, n_total_samples - n_labeled_points, n_total_samples)) print(classification_report(true_labels, predicted_labels)) print("Confusion matrix") print(cm) # calculate uncertainty values for each transduced distribution pred_entropies = stats.distributions.entropy(lp_model.label_distributions_.T) # pick the top 10 most uncertain labels uncertainty_index = np.argsort(pred_entropies)[-10:] ############################################################################### # plot f = plt.figure(figsize=(7, 5)) for index, image_index in enumerate(uncertainty_index): image = images[image_index] sub = f.add_subplot(2, 5, index + 1) sub.imshow(image, cmap=plt.cm.gray_r) plt.xticks([]) plt.yticks([]) sub.set_title('predict: %i\ntrue: %i' % ( lp_model.transduction_[image_index], y[image_index])) f.suptitle('Learning with small amount of labeled data') plt.show()
bsd-3-clause
nmartensen/pandas
asv_bench/benchmarks/categoricals.py
3
2803
from .pandas_vb_common import * try: from pandas.api.types import union_categoricals except ImportError: try: from pandas.types.concat import union_categoricals except ImportError: pass class Categoricals(object): goal_time = 0.2 def setup(self): N = 100000 self.s = pd.Series((list('aabbcd') * N)).astype('category') self.a = pd.Categorical((list('aabbcd') * N)) self.b = pd.Categorical((list('bbcdjk') * N)) self.categories = list('abcde') self.cat_idx = Index(self.categories) self.values = np.tile(self.categories, N) self.codes = np.tile(range(len(self.categories)), N) self.datetimes = pd.Series(pd.date_range( '1995-01-01 00:00:00', periods=10000, freq='s')) def time_concat(self): concat([self.s, self.s]) def time_union(self): union_categoricals([self.a, self.b]) def time_constructor_regular(self): Categorical(self.values, self.categories) def time_constructor_fastpath(self): Categorical(self.codes, self.cat_idx, fastpath=True) def time_constructor_datetimes(self): Categorical(self.datetimes) def time_constructor_datetimes_with_nat(self): t = self.datetimes t.iloc[-1] = pd.NaT Categorical(t) class Categoricals2(object): goal_time = 0.2 def setup(self): n = 500000 np.random.seed(2718281) arr = ['s%04d' % i for i in np.random.randint(0, n // 10, size=n)] self.ts = Series(arr).astype('category') self.sel = self.ts.loc[[0]] def time_value_counts(self): self.ts.value_counts(dropna=False) def time_value_counts_dropna(self): self.ts.value_counts(dropna=True) def time_rendering(self): str(self.sel) def time_set_categories(self): self.ts.cat.set_categories(self.ts.cat.categories[::2]) class Categoricals3(object): goal_time = 0.2 def setup(self): N = 100000 ncats = 100 self.s1 = Series(np.array(tm.makeCategoricalIndex(N, ncats))) self.s1_cat = self.s1.astype('category') self.s1_cat_ordered = self.s1.astype('category', ordered=True) self.s2 = Series(np.random.randint(0, ncats, size=N)) self.s2_cat = self.s2.astype('category') self.s2_cat_ordered = self.s2.astype('category', ordered=True) def time_rank_string(self): self.s1.rank() def time_rank_string_cat(self): self.s1_cat.rank() def time_rank_string_cat_ordered(self): self.s1_cat_ordered.rank() def time_rank_int(self): self.s2.rank() def time_rank_int_cat(self): self.s2_cat.rank() def time_rank_int_cat_ordered(self): self.s2_cat_ordered.rank()
bsd-3-clause
YinongLong/scikit-learn
examples/preprocessing/plot_function_transformer.py
158
1993
""" ========================================================= Using FunctionTransformer to select columns ========================================================= Shows how to use a function transformer in a pipeline. If you know your dataset's first principle component is irrelevant for a classification task, you can use the FunctionTransformer to select all but the first column of the PCA transformed data. """ import matplotlib.pyplot as plt import numpy as np from sklearn.model_selection import train_test_split from sklearn.decomposition import PCA from sklearn.pipeline import make_pipeline from sklearn.preprocessing import FunctionTransformer def _generate_vector(shift=0.5, noise=15): return np.arange(1000) + (np.random.rand(1000) - shift) * noise def generate_dataset(): """ This dataset is two lines with a slope ~ 1, where one has a y offset of ~100 """ return np.vstack(( np.vstack(( _generate_vector(), _generate_vector() + 100, )).T, np.vstack(( _generate_vector(), _generate_vector(), )).T, )), np.hstack((np.zeros(1000), np.ones(1000))) def all_but_first_column(X): return X[:, 1:] def drop_first_component(X, y): """ Create a pipeline with PCA and the column selector and use it to transform the dataset. """ pipeline = make_pipeline( PCA(), FunctionTransformer(all_but_first_column), ) X_train, X_test, y_train, y_test = train_test_split(X, y) pipeline.fit(X_train, y_train) return pipeline.transform(X_test), y_test if __name__ == '__main__': X, y = generate_dataset() lw = 0 plt.figure() plt.scatter(X[:, 0], X[:, 1], c=y, lw=lw) plt.figure() X_transformed, y_transformed = drop_first_component(*generate_dataset()) plt.scatter( X_transformed[:, 0], np.zeros(len(X_transformed)), c=y_transformed, lw=lw, s=60 ) plt.show()
bsd-3-clause
newville/scikit-image
doc/examples/plot_rank_mean.py
17
1499
""" ============ Mean filters ============ This example compares the following mean filters of the rank filter package: * **local mean**: all pixels belonging to the structuring element to compute average gray level. * **percentile mean**: only use values between percentiles p0 and p1 (here 10% and 90%). * **bilateral mean**: only use pixels of the structuring element having a gray level situated inside g-s0 and g+s1 (here g-500 and g+500) Percentile and usual mean give here similar results, these filters smooth the complete image (background and details). Bilateral mean exhibits a high filtering rate for continuous area (i.e. background) while higher image frequencies remain untouched. """ import numpy as np import matplotlib.pyplot as plt from skimage import data from skimage.morphology import disk from skimage.filters import rank image = (data.coins()).astype(np.uint16) * 16 selem = disk(20) percentile_result = rank.mean_percentile(image, selem=selem, p0=.1, p1=.9) bilateral_result = rank.mean_bilateral(image, selem=selem, s0=500, s1=500) normal_result = rank.mean(image, selem=selem) fig, axes = plt.subplots(nrows=3, figsize=(8, 10)) ax0, ax1, ax2 = axes ax0.imshow(np.hstack((image, percentile_result))) ax0.set_title('Percentile mean') ax0.axis('off') ax1.imshow(np.hstack((image, bilateral_result))) ax1.set_title('Bilateral mean') ax1.axis('off') ax2.imshow(np.hstack((image, normal_result))) ax2.set_title('Local mean') ax2.axis('off') plt.show()
bsd-3-clause
dipanjanS/text-analytics-with-python
Old-First-Edition/Ch06_Text_Similarity_and_Clustering/utils.py
1
1097
# -*- coding: utf-8 -*- """ Created on Sun Sep 11 23:06:06 2016 @author: DIP """ from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer def build_feature_matrix(documents, feature_type='frequency', ngram_range=(1, 1), min_df=0.0, max_df=1.0): feature_type = feature_type.lower().strip() if feature_type == 'binary': vectorizer = CountVectorizer(binary=True, min_df=min_df, max_df=max_df, ngram_range=ngram_range) elif feature_type == 'frequency': vectorizer = CountVectorizer(binary=False, min_df=min_df, max_df=max_df, ngram_range=ngram_range) elif feature_type == 'tfidf': vectorizer = TfidfVectorizer(min_df=min_df, max_df=max_df, ngram_range=ngram_range) else: raise Exception("Wrong feature type entered. Possible values: 'binary', 'frequency', 'tfidf'") feature_matrix = vectorizer.fit_transform(documents).astype(float) return vectorizer, feature_matrix
apache-2.0
billy-inn/scikit-learn
examples/decomposition/plot_ica_vs_pca.py
306
3329
""" ========================== FastICA on 2D point clouds ========================== This example illustrates visually in the feature space a comparison by results using two different component analysis techniques. :ref:`ICA` vs :ref:`PCA`. Representing ICA in the feature space gives the view of 'geometric ICA': ICA is an algorithm that finds directions in the feature space corresponding to projections with high non-Gaussianity. These directions need not be orthogonal in the original feature space, but they are orthogonal in the whitened feature space, in which all directions correspond to the same variance. PCA, on the other hand, finds orthogonal directions in the raw feature space that correspond to directions accounting for maximum variance. Here we simulate independent sources using a highly non-Gaussian process, 2 student T with a low number of degrees of freedom (top left figure). We mix them to create observations (top right figure). In this raw observation space, directions identified by PCA are represented by orange vectors. We represent the signal in the PCA space, after whitening by the variance corresponding to the PCA vectors (lower left). Running ICA corresponds to finding a rotation in this space to identify the directions of largest non-Gaussianity (lower right). """ print(__doc__) # Authors: Alexandre Gramfort, Gael Varoquaux # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.decomposition import PCA, FastICA ############################################################################### # Generate sample data rng = np.random.RandomState(42) S = rng.standard_t(1.5, size=(20000, 2)) S[:, 0] *= 2. # Mix data A = np.array([[1, 1], [0, 2]]) # Mixing matrix X = np.dot(S, A.T) # Generate observations pca = PCA() S_pca_ = pca.fit(X).transform(X) ica = FastICA(random_state=rng) S_ica_ = ica.fit(X).transform(X) # Estimate the sources S_ica_ /= S_ica_.std(axis=0) ############################################################################### # Plot results def plot_samples(S, axis_list=None): plt.scatter(S[:, 0], S[:, 1], s=2, marker='o', zorder=10, color='steelblue', alpha=0.5) if axis_list is not None: colors = ['orange', 'red'] for color, axis in zip(colors, axis_list): axis /= axis.std() x_axis, y_axis = axis # Trick to get legend to work plt.plot(0.1 * x_axis, 0.1 * y_axis, linewidth=2, color=color) plt.quiver(0, 0, x_axis, y_axis, zorder=11, width=0.01, scale=6, color=color) plt.hlines(0, -3, 3) plt.vlines(0, -3, 3) plt.xlim(-3, 3) plt.ylim(-3, 3) plt.xlabel('x') plt.ylabel('y') plt.figure() plt.subplot(2, 2, 1) plot_samples(S / S.std()) plt.title('True Independent Sources') axis_list = [pca.components_.T, ica.mixing_] plt.subplot(2, 2, 2) plot_samples(X / np.std(X), axis_list=axis_list) legend = plt.legend(['PCA', 'ICA'], loc='upper right') legend.set_zorder(100) plt.title('Observations') plt.subplot(2, 2, 3) plot_samples(S_pca_ / np.std(S_pca_, axis=0)) plt.title('PCA recovered signals') plt.subplot(2, 2, 4) plot_samples(S_ica_ / np.std(S_ica_)) plt.title('ICA recovered signals') plt.subplots_adjust(0.09, 0.04, 0.94, 0.94, 0.26, 0.36) plt.show()
bsd-3-clause
hrjn/scikit-learn
sklearn/cluster/tests/test_hierarchical.py
33
20167
""" Several basic tests for hierarchical clustering procedures """ # Authors: Vincent Michel, 2010, Gael Varoquaux 2012, # Matteo Visconti di Oleggio Castello 2014 # License: BSD 3 clause from tempfile import mkdtemp import shutil from functools import partial import numpy as np from scipy import sparse from scipy.cluster import hierarchy from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_raise_message from sklearn.utils.testing import ignore_warnings from sklearn.cluster import ward_tree from sklearn.cluster import AgglomerativeClustering, FeatureAgglomeration from sklearn.cluster.hierarchical import (_hc_cut, _TREE_BUILDERS, linkage_tree) from sklearn.feature_extraction.image import grid_to_graph from sklearn.metrics.pairwise import PAIRED_DISTANCES, cosine_distances,\ manhattan_distances, pairwise_distances from sklearn.metrics.cluster import normalized_mutual_info_score from sklearn.neighbors.graph import kneighbors_graph from sklearn.cluster._hierarchical import average_merge, max_merge from sklearn.utils.fast_dict import IntFloatDict from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_warns def test_linkage_misc(): # Misc tests on linkage rng = np.random.RandomState(42) X = rng.normal(size=(5, 5)) assert_raises(ValueError, AgglomerativeClustering(linkage='foo').fit, X) assert_raises(ValueError, linkage_tree, X, linkage='foo') assert_raises(ValueError, linkage_tree, X, connectivity=np.ones((4, 4))) # Smoke test FeatureAgglomeration FeatureAgglomeration().fit(X) # test hierarchical clustering on a precomputed distances matrix dis = cosine_distances(X) res = linkage_tree(dis, affinity="precomputed") assert_array_equal(res[0], linkage_tree(X, affinity="cosine")[0]) # test hierarchical clustering on a precomputed distances matrix res = linkage_tree(X, affinity=manhattan_distances) assert_array_equal(res[0], linkage_tree(X, affinity="manhattan")[0]) def test_structured_linkage_tree(): # Check that we obtain the correct solution for structured linkage trees. rng = np.random.RandomState(0) mask = np.ones([10, 10], dtype=np.bool) # Avoiding a mask with only 'True' entries mask[4:7, 4:7] = 0 X = rng.randn(50, 100) connectivity = grid_to_graph(*mask.shape) for tree_builder in _TREE_BUILDERS.values(): children, n_components, n_leaves, parent = \ tree_builder(X.T, connectivity) n_nodes = 2 * X.shape[1] - 1 assert_true(len(children) + n_leaves == n_nodes) # Check that ward_tree raises a ValueError with a connectivity matrix # of the wrong shape assert_raises(ValueError, tree_builder, X.T, np.ones((4, 4))) # Check that fitting with no samples raises an error assert_raises(ValueError, tree_builder, X.T[:0], connectivity) def test_unstructured_linkage_tree(): # Check that we obtain the correct solution for unstructured linkage trees. rng = np.random.RandomState(0) X = rng.randn(50, 100) for this_X in (X, X[0]): # With specified a number of clusters just for the sake of # raising a warning and testing the warning code with ignore_warnings(): children, n_nodes, n_leaves, parent = assert_warns( UserWarning, ward_tree, this_X.T, n_clusters=10) n_nodes = 2 * X.shape[1] - 1 assert_equal(len(children) + n_leaves, n_nodes) for tree_builder in _TREE_BUILDERS.values(): for this_X in (X, X[0]): with ignore_warnings(): children, n_nodes, n_leaves, parent = assert_warns( UserWarning, tree_builder, this_X.T, n_clusters=10) n_nodes = 2 * X.shape[1] - 1 assert_equal(len(children) + n_leaves, n_nodes) def test_height_linkage_tree(): # Check that the height of the results of linkage tree is sorted. rng = np.random.RandomState(0) mask = np.ones([10, 10], dtype=np.bool) X = rng.randn(50, 100) connectivity = grid_to_graph(*mask.shape) for linkage_func in _TREE_BUILDERS.values(): children, n_nodes, n_leaves, parent = linkage_func(X.T, connectivity) n_nodes = 2 * X.shape[1] - 1 assert_true(len(children) + n_leaves == n_nodes) def test_agglomerative_clustering_wrong_arg_memory(): # Test either if an error is raised when memory is not # either a str or a joblib.Memory instance rng = np.random.RandomState(0) n_samples = 100 X = rng.randn(n_samples, 50) memory = 5 clustering = AgglomerativeClustering(memory=memory) assert_raises(ValueError, clustering.fit, X) def test_agglomerative_clustering(): # Check that we obtain the correct number of clusters with # agglomerative clustering. rng = np.random.RandomState(0) mask = np.ones([10, 10], dtype=np.bool) n_samples = 100 X = rng.randn(n_samples, 50) connectivity = grid_to_graph(*mask.shape) for linkage in ("ward", "complete", "average"): clustering = AgglomerativeClustering(n_clusters=10, connectivity=connectivity, linkage=linkage) clustering.fit(X) # test caching try: tempdir = mkdtemp() clustering = AgglomerativeClustering( n_clusters=10, connectivity=connectivity, memory=tempdir, linkage=linkage) clustering.fit(X) labels = clustering.labels_ assert_true(np.size(np.unique(labels)) == 10) finally: shutil.rmtree(tempdir) # Turn caching off now clustering = AgglomerativeClustering( n_clusters=10, connectivity=connectivity, linkage=linkage) # Check that we obtain the same solution with early-stopping of the # tree building clustering.compute_full_tree = False clustering.fit(X) assert_almost_equal(normalized_mutual_info_score(clustering.labels_, labels), 1) clustering.connectivity = None clustering.fit(X) assert_true(np.size(np.unique(clustering.labels_)) == 10) # Check that we raise a TypeError on dense matrices clustering = AgglomerativeClustering( n_clusters=10, connectivity=sparse.lil_matrix( connectivity.toarray()[:10, :10]), linkage=linkage) assert_raises(ValueError, clustering.fit, X) # Test that using ward with another metric than euclidean raises an # exception clustering = AgglomerativeClustering( n_clusters=10, connectivity=connectivity.toarray(), affinity="manhattan", linkage="ward") assert_raises(ValueError, clustering.fit, X) # Test using another metric than euclidean works with linkage complete for affinity in PAIRED_DISTANCES.keys(): # Compare our (structured) implementation to scipy clustering = AgglomerativeClustering( n_clusters=10, connectivity=np.ones((n_samples, n_samples)), affinity=affinity, linkage="complete") clustering.fit(X) clustering2 = AgglomerativeClustering( n_clusters=10, connectivity=None, affinity=affinity, linkage="complete") clustering2.fit(X) assert_almost_equal(normalized_mutual_info_score(clustering2.labels_, clustering.labels_), 1) # Test that using a distance matrix (affinity = 'precomputed') has same # results (with connectivity constraints) clustering = AgglomerativeClustering(n_clusters=10, connectivity=connectivity, linkage="complete") clustering.fit(X) X_dist = pairwise_distances(X) clustering2 = AgglomerativeClustering(n_clusters=10, connectivity=connectivity, affinity='precomputed', linkage="complete") clustering2.fit(X_dist) assert_array_equal(clustering.labels_, clustering2.labels_) def test_ward_agglomeration(): # Check that we obtain the correct solution in a simplistic case rng = np.random.RandomState(0) mask = np.ones([10, 10], dtype=np.bool) X = rng.randn(50, 100) connectivity = grid_to_graph(*mask.shape) agglo = FeatureAgglomeration(n_clusters=5, connectivity=connectivity) agglo.fit(X) assert_true(np.size(np.unique(agglo.labels_)) == 5) X_red = agglo.transform(X) assert_true(X_red.shape[1] == 5) X_full = agglo.inverse_transform(X_red) assert_true(np.unique(X_full[0]).size == 5) assert_array_almost_equal(agglo.transform(X_full), X_red) # Check that fitting with no samples raises a ValueError assert_raises(ValueError, agglo.fit, X[:0]) def assess_same_labelling(cut1, cut2): """Util for comparison with scipy""" co_clust = [] for cut in [cut1, cut2]: n = len(cut) k = cut.max() + 1 ecut = np.zeros((n, k)) ecut[np.arange(n), cut] = 1 co_clust.append(np.dot(ecut, ecut.T)) assert_true((co_clust[0] == co_clust[1]).all()) def test_scikit_vs_scipy(): # Test scikit linkage with full connectivity (i.e. unstructured) vs scipy n, p, k = 10, 5, 3 rng = np.random.RandomState(0) # Not using a lil_matrix here, just to check that non sparse # matrices are well handled connectivity = np.ones((n, n)) for linkage in _TREE_BUILDERS.keys(): for i in range(5): X = .1 * rng.normal(size=(n, p)) X -= 4. * np.arange(n)[:, np.newaxis] X -= X.mean(axis=1)[:, np.newaxis] out = hierarchy.linkage(X, method=linkage) children_ = out[:, :2].astype(np.int) children, _, n_leaves, _ = _TREE_BUILDERS[linkage](X, connectivity) cut = _hc_cut(k, children, n_leaves) cut_ = _hc_cut(k, children_, n_leaves) assess_same_labelling(cut, cut_) # Test error management in _hc_cut assert_raises(ValueError, _hc_cut, n_leaves + 1, children, n_leaves) def test_connectivity_propagation(): # Check that connectivity in the ward tree is propagated correctly during # merging. X = np.array([(.014, .120), (.014, .099), (.014, .097), (.017, .153), (.017, .153), (.018, .153), (.018, .153), (.018, .153), (.018, .153), (.018, .153), (.018, .153), (.018, .153), (.018, .152), (.018, .149), (.018, .144)]) connectivity = kneighbors_graph(X, 10, include_self=False) ward = AgglomerativeClustering( n_clusters=4, connectivity=connectivity, linkage='ward') # If changes are not propagated correctly, fit crashes with an # IndexError ward.fit(X) def test_ward_tree_children_order(): # Check that children are ordered in the same way for both structured and # unstructured versions of ward_tree. # test on five random datasets n, p = 10, 5 rng = np.random.RandomState(0) connectivity = np.ones((n, n)) for i in range(5): X = .1 * rng.normal(size=(n, p)) X -= 4. * np.arange(n)[:, np.newaxis] X -= X.mean(axis=1)[:, np.newaxis] out_unstructured = ward_tree(X) out_structured = ward_tree(X, connectivity=connectivity) assert_array_equal(out_unstructured[0], out_structured[0]) def test_ward_linkage_tree_return_distance(): # Test return_distance option on linkage and ward trees # test that return_distance when set true, gives same # output on both structured and unstructured clustering. n, p = 10, 5 rng = np.random.RandomState(0) connectivity = np.ones((n, n)) for i in range(5): X = .1 * rng.normal(size=(n, p)) X -= 4. * np.arange(n)[:, np.newaxis] X -= X.mean(axis=1)[:, np.newaxis] out_unstructured = ward_tree(X, return_distance=True) out_structured = ward_tree(X, connectivity=connectivity, return_distance=True) # get children children_unstructured = out_unstructured[0] children_structured = out_structured[0] # check if we got the same clusters assert_array_equal(children_unstructured, children_structured) # check if the distances are the same dist_unstructured = out_unstructured[-1] dist_structured = out_structured[-1] assert_array_almost_equal(dist_unstructured, dist_structured) for linkage in ['average', 'complete']: structured_items = linkage_tree( X, connectivity=connectivity, linkage=linkage, return_distance=True)[-1] unstructured_items = linkage_tree( X, linkage=linkage, return_distance=True)[-1] structured_dist = structured_items[-1] unstructured_dist = unstructured_items[-1] structured_children = structured_items[0] unstructured_children = unstructured_items[0] assert_array_almost_equal(structured_dist, unstructured_dist) assert_array_almost_equal( structured_children, unstructured_children) # test on the following dataset where we know the truth # taken from scipy/cluster/tests/hierarchy_test_data.py X = np.array([[1.43054825, -7.5693489], [6.95887839, 6.82293382], [2.87137846, -9.68248579], [7.87974764, -6.05485803], [8.24018364, -6.09495602], [7.39020262, 8.54004355]]) # truth linkage_X_ward = np.array([[3., 4., 0.36265956, 2.], [1., 5., 1.77045373, 2.], [0., 2., 2.55760419, 2.], [6., 8., 9.10208346, 4.], [7., 9., 24.7784379, 6.]]) linkage_X_complete = np.array( [[3., 4., 0.36265956, 2.], [1., 5., 1.77045373, 2.], [0., 2., 2.55760419, 2.], [6., 8., 6.96742194, 4.], [7., 9., 18.77445997, 6.]]) linkage_X_average = np.array( [[3., 4., 0.36265956, 2.], [1., 5., 1.77045373, 2.], [0., 2., 2.55760419, 2.], [6., 8., 6.55832839, 4.], [7., 9., 15.44089605, 6.]]) n_samples, n_features = np.shape(X) connectivity_X = np.ones((n_samples, n_samples)) out_X_unstructured = ward_tree(X, return_distance=True) out_X_structured = ward_tree(X, connectivity=connectivity_X, return_distance=True) # check that the labels are the same assert_array_equal(linkage_X_ward[:, :2], out_X_unstructured[0]) assert_array_equal(linkage_X_ward[:, :2], out_X_structured[0]) # check that the distances are correct assert_array_almost_equal(linkage_X_ward[:, 2], out_X_unstructured[4]) assert_array_almost_equal(linkage_X_ward[:, 2], out_X_structured[4]) linkage_options = ['complete', 'average'] X_linkage_truth = [linkage_X_complete, linkage_X_average] for (linkage, X_truth) in zip(linkage_options, X_linkage_truth): out_X_unstructured = linkage_tree( X, return_distance=True, linkage=linkage) out_X_structured = linkage_tree( X, connectivity=connectivity_X, linkage=linkage, return_distance=True) # check that the labels are the same assert_array_equal(X_truth[:, :2], out_X_unstructured[0]) assert_array_equal(X_truth[:, :2], out_X_structured[0]) # check that the distances are correct assert_array_almost_equal(X_truth[:, 2], out_X_unstructured[4]) assert_array_almost_equal(X_truth[:, 2], out_X_structured[4]) def test_connectivity_fixing_non_lil(): # Check non regression of a bug if a non item assignable connectivity is # provided with more than one component. # create dummy data x = np.array([[0, 0], [1, 1]]) # create a mask with several components to force connectivity fixing m = np.array([[True, False], [False, True]]) c = grid_to_graph(n_x=2, n_y=2, mask=m) w = AgglomerativeClustering(connectivity=c, linkage='ward') assert_warns(UserWarning, w.fit, x) def test_int_float_dict(): rng = np.random.RandomState(0) keys = np.unique(rng.randint(100, size=10).astype(np.intp)) values = rng.rand(len(keys)) d = IntFloatDict(keys, values) for key, value in zip(keys, values): assert d[key] == value other_keys = np.arange(50).astype(np.intp)[::2] other_values = 0.5 * np.ones(50)[::2] other = IntFloatDict(other_keys, other_values) # Complete smoke test max_merge(d, other, mask=np.ones(100, dtype=np.intp), n_a=1, n_b=1) average_merge(d, other, mask=np.ones(100, dtype=np.intp), n_a=1, n_b=1) def test_connectivity_callable(): rng = np.random.RandomState(0) X = rng.rand(20, 5) connectivity = kneighbors_graph(X, 3, include_self=False) aglc1 = AgglomerativeClustering(connectivity=connectivity) aglc2 = AgglomerativeClustering( connectivity=partial(kneighbors_graph, n_neighbors=3, include_self=False)) aglc1.fit(X) aglc2.fit(X) assert_array_equal(aglc1.labels_, aglc2.labels_) def test_connectivity_ignores_diagonal(): rng = np.random.RandomState(0) X = rng.rand(20, 5) connectivity = kneighbors_graph(X, 3, include_self=False) connectivity_include_self = kneighbors_graph(X, 3, include_self=True) aglc1 = AgglomerativeClustering(connectivity=connectivity) aglc2 = AgglomerativeClustering(connectivity=connectivity_include_self) aglc1.fit(X) aglc2.fit(X) assert_array_equal(aglc1.labels_, aglc2.labels_) def test_compute_full_tree(): # Test that the full tree is computed if n_clusters is small rng = np.random.RandomState(0) X = rng.randn(10, 2) connectivity = kneighbors_graph(X, 5, include_self=False) # When n_clusters is less, the full tree should be built # that is the number of merges should be n_samples - 1 agc = AgglomerativeClustering(n_clusters=2, connectivity=connectivity) agc.fit(X) n_samples = X.shape[0] n_nodes = agc.children_.shape[0] assert_equal(n_nodes, n_samples - 1) # When n_clusters is large, greater than max of 100 and 0.02 * n_samples. # we should stop when there are n_clusters. n_clusters = 101 X = rng.randn(200, 2) connectivity = kneighbors_graph(X, 10, include_self=False) agc = AgglomerativeClustering(n_clusters=n_clusters, connectivity=connectivity) agc.fit(X) n_samples = X.shape[0] n_nodes = agc.children_.shape[0] assert_equal(n_nodes, n_samples - n_clusters) def test_n_components(): # Test n_components returned by linkage, average and ward tree rng = np.random.RandomState(0) X = rng.rand(5, 5) # Connectivity matrix having five components. connectivity = np.eye(5) for linkage_func in _TREE_BUILDERS.values(): assert_equal(ignore_warnings(linkage_func)(X, connectivity)[1], 5) def test_agg_n_clusters(): # Test that an error is raised when n_clusters <= 0 rng = np.random.RandomState(0) X = rng.rand(20, 10) for n_clus in [-1, 0]: agc = AgglomerativeClustering(n_clusters=n_clus) msg = ("n_clusters should be an integer greater than 0." " %s was provided." % str(agc.n_clusters)) assert_raise_message(ValueError, msg, agc.fit, X)
bsd-3-clause
mne-tools/mne-python
mne/viz/circle.py
14
15879
"""Functions to plot on circle as for connectivity.""" # Authors: Alexandre Gramfort <[email protected]> # Denis Engemann <[email protected]> # Martin Luessi <[email protected]> # # License: Simplified BSD from itertools import cycle from functools import partial import numpy as np from .utils import plt_show def circular_layout(node_names, node_order, start_pos=90, start_between=True, group_boundaries=None, group_sep=10): """Create layout arranging nodes on a circle. Parameters ---------- node_names : list of str Node names. node_order : list of str List with node names defining the order in which the nodes are arranged. Must have the elements as node_names but the order can be different. The nodes are arranged clockwise starting at "start_pos" degrees. start_pos : float Angle in degrees that defines where the first node is plotted. start_between : bool If True, the layout starts with the position between the nodes. This is the same as adding "180. / len(node_names)" to start_pos. group_boundaries : None | array-like List of of boundaries between groups at which point a "group_sep" will be inserted. E.g. "[0, len(node_names) / 2]" will create two groups. group_sep : float Group separation angle in degrees. See "group_boundaries". Returns ------- node_angles : array, shape=(n_node_names,) Node angles in degrees. """ n_nodes = len(node_names) if len(node_order) != n_nodes: raise ValueError('node_order has to be the same length as node_names') if group_boundaries is not None: boundaries = np.array(group_boundaries, dtype=np.int64) if np.any(boundaries >= n_nodes) or np.any(boundaries < 0): raise ValueError('"group_boundaries" has to be between 0 and ' 'n_nodes - 1.') if len(boundaries) > 1 and np.any(np.diff(boundaries) <= 0): raise ValueError('"group_boundaries" must have non-decreasing ' 'values.') n_group_sep = len(group_boundaries) else: n_group_sep = 0 boundaries = None # convert it to a list with indices node_order = [node_order.index(name) for name in node_names] node_order = np.array(node_order) if len(np.unique(node_order)) != n_nodes: raise ValueError('node_order has repeated entries') node_sep = (360. - n_group_sep * group_sep) / n_nodes if start_between: start_pos += node_sep / 2 if boundaries is not None and boundaries[0] == 0: # special case when a group separator is at the start start_pos += group_sep / 2 boundaries = boundaries[1:] if n_group_sep > 1 else None node_angles = np.ones(n_nodes, dtype=np.float64) * node_sep node_angles[0] = start_pos if boundaries is not None: node_angles[boundaries] += group_sep node_angles = np.cumsum(node_angles)[node_order] return node_angles def _plot_connectivity_circle_onpick(event, fig=None, axes=None, indices=None, n_nodes=0, node_angles=None, ylim=[9, 10]): """Isolate connections around a single node when user left clicks a node. On right click, resets all connections. """ if event.inaxes != axes: return if event.button == 1: # left click # click must be near node radius if not ylim[0] <= event.ydata <= ylim[1]: return # all angles in range [0, 2*pi] node_angles = node_angles % (np.pi * 2) node = np.argmin(np.abs(event.xdata - node_angles)) patches = event.inaxes.patches for ii, (x, y) in enumerate(zip(indices[0], indices[1])): patches[ii].set_visible(node in [x, y]) fig.canvas.draw() elif event.button == 3: # right click patches = event.inaxes.patches for ii in range(np.size(indices, axis=1)): patches[ii].set_visible(True) fig.canvas.draw() def plot_connectivity_circle(con, node_names, indices=None, n_lines=None, node_angles=None, node_width=None, node_colors=None, facecolor='black', textcolor='white', node_edgecolor='black', linewidth=1.5, colormap='hot', vmin=None, vmax=None, colorbar=True, title=None, colorbar_size=0.2, colorbar_pos=(-0.3, 0.1), fontsize_title=12, fontsize_names=8, fontsize_colorbar=8, padding=6., fig=None, subplot=111, interactive=True, node_linewidth=2., show=True): """Visualize connectivity as a circular graph. Parameters ---------- con : array Connectivity scores. Can be a square matrix, or a 1D array. If a 1D array is provided, "indices" has to be used to define the connection indices. node_names : list of str Node names. The order corresponds to the order in con. indices : tuple of array | None Two arrays with indices of connections for which the connections strengths are defined in con. Only needed if con is a 1D array. n_lines : int | None If not None, only the n_lines strongest connections (strength=abs(con)) are drawn. node_angles : array, shape (n_node_names,) | None Array with node positions in degrees. If None, the nodes are equally spaced on the circle. See mne.viz.circular_layout. node_width : float | None Width of each node in degrees. If None, the minimum angle between any two nodes is used as the width. node_colors : list of tuple | list of str List with the color to use for each node. If fewer colors than nodes are provided, the colors will be repeated. Any color supported by matplotlib can be used, e.g., RGBA tuples, named colors. facecolor : str Color to use for background. See matplotlib.colors. textcolor : str Color to use for text. See matplotlib.colors. node_edgecolor : str Color to use for lines around nodes. See matplotlib.colors. linewidth : float Line width to use for connections. colormap : str | instance of matplotlib.colors.LinearSegmentedColormap Colormap to use for coloring the connections. vmin : float | None Minimum value for colormap. If None, it is determined automatically. vmax : float | None Maximum value for colormap. If None, it is determined automatically. colorbar : bool Display a colorbar or not. title : str The figure title. colorbar_size : float Size of the colorbar. colorbar_pos : tuple, shape (2,) Position of the colorbar. fontsize_title : int Font size to use for title. fontsize_names : int Font size to use for node names. fontsize_colorbar : int Font size to use for colorbar. padding : float Space to add around figure to accommodate long labels. fig : None | instance of matplotlib.figure.Figure The figure to use. If None, a new figure with the specified background color will be created. subplot : int | tuple, shape (3,) Location of the subplot when creating figures with multiple plots. E.g. 121 or (1, 2, 1) for 1 row, 2 columns, plot 1. See matplotlib.pyplot.subplot. interactive : bool When enabled, left-click on a node to show only connections to that node. Right-click shows all connections. node_linewidth : float Line with for nodes. show : bool Show figure if True. Returns ------- fig : instance of matplotlib.figure.Figure The figure handle. axes : instance of matplotlib.projections.polar.PolarAxes The subplot handle. Notes ----- This code is based on a circle graph example by Nicolas P. Rougier By default, :func:`matplotlib.pyplot.savefig` does not take ``facecolor`` into account when saving, even if set when a figure is generated. This can be addressed via, e.g.:: >>> fig.savefig(fname_fig, facecolor='black') # doctest:+SKIP If ``facecolor`` is not set via :func:`matplotlib.pyplot.savefig`, the figure labels, title, and legend may be cut off in the output figure. """ import matplotlib.pyplot as plt import matplotlib.path as m_path import matplotlib.patches as m_patches n_nodes = len(node_names) if node_angles is not None: if len(node_angles) != n_nodes: raise ValueError('node_angles has to be the same length ' 'as node_names') # convert it to radians node_angles = node_angles * np.pi / 180 else: # uniform layout on unit circle node_angles = np.linspace(0, 2 * np.pi, n_nodes, endpoint=False) if node_width is None: # widths correspond to the minimum angle between two nodes dist_mat = node_angles[None, :] - node_angles[:, None] dist_mat[np.diag_indices(n_nodes)] = 1e9 node_width = np.min(np.abs(dist_mat)) else: node_width = node_width * np.pi / 180 if node_colors is not None: if len(node_colors) < n_nodes: node_colors = cycle(node_colors) else: # assign colors using colormap try: spectral = plt.cm.spectral except AttributeError: spectral = plt.cm.Spectral node_colors = [spectral(i / float(n_nodes)) for i in range(n_nodes)] # handle 1D and 2D connectivity information if con.ndim == 1: if indices is None: raise ValueError('indices has to be provided if con.ndim == 1') elif con.ndim == 2: if con.shape[0] != n_nodes or con.shape[1] != n_nodes: raise ValueError('con has to be 1D or a square matrix') # we use the lower-triangular part indices = np.tril_indices(n_nodes, -1) con = con[indices] else: raise ValueError('con has to be 1D or a square matrix') # get the colormap if isinstance(colormap, str): colormap = plt.get_cmap(colormap) # Make figure background the same colors as axes if fig is None: fig = plt.figure(figsize=(8, 8), facecolor=facecolor) # Use a polar axes if not isinstance(subplot, tuple): subplot = (subplot,) axes = plt.subplot(*subplot, polar=True) axes.set_facecolor(facecolor) # No ticks, we'll put our own plt.xticks([]) plt.yticks([]) # Set y axes limit, add additional space if requested plt.ylim(0, 10 + padding) # Remove the black axes border which may obscure the labels axes.spines['polar'].set_visible(False) # Draw lines between connected nodes, only draw the strongest connections if n_lines is not None and len(con) > n_lines: con_thresh = np.sort(np.abs(con).ravel())[-n_lines] else: con_thresh = 0. # get the connections which we are drawing and sort by connection strength # this will allow us to draw the strongest connections first con_abs = np.abs(con) con_draw_idx = np.where(con_abs >= con_thresh)[0] con = con[con_draw_idx] con_abs = con_abs[con_draw_idx] indices = [ind[con_draw_idx] for ind in indices] # now sort them sort_idx = np.argsort(con_abs) del con_abs con = con[sort_idx] indices = [ind[sort_idx] for ind in indices] # Get vmin vmax for color scaling if vmin is None: vmin = np.min(con[np.abs(con) >= con_thresh]) if vmax is None: vmax = np.max(con) vrange = vmax - vmin # We want to add some "noise" to the start and end position of the # edges: We modulate the noise with the number of connections of the # node and the connection strength, such that the strongest connections # are closer to the node center nodes_n_con = np.zeros((n_nodes), dtype=np.int64) for i, j in zip(indices[0], indices[1]): nodes_n_con[i] += 1 nodes_n_con[j] += 1 # initialize random number generator so plot is reproducible rng = np.random.mtrand.RandomState(0) n_con = len(indices[0]) noise_max = 0.25 * node_width start_noise = rng.uniform(-noise_max, noise_max, n_con) end_noise = rng.uniform(-noise_max, noise_max, n_con) nodes_n_con_seen = np.zeros_like(nodes_n_con) for i, (start, end) in enumerate(zip(indices[0], indices[1])): nodes_n_con_seen[start] += 1 nodes_n_con_seen[end] += 1 start_noise[i] *= ((nodes_n_con[start] - nodes_n_con_seen[start]) / float(nodes_n_con[start])) end_noise[i] *= ((nodes_n_con[end] - nodes_n_con_seen[end]) / float(nodes_n_con[end])) # scale connectivity for colormap (vmin<=>0, vmax<=>1) con_val_scaled = (con - vmin) / vrange # Finally, we draw the connections for pos, (i, j) in enumerate(zip(indices[0], indices[1])): # Start point t0, r0 = node_angles[i], 10 # End point t1, r1 = node_angles[j], 10 # Some noise in start and end point t0 += start_noise[pos] t1 += end_noise[pos] verts = [(t0, r0), (t0, 5), (t1, 5), (t1, r1)] codes = [m_path.Path.MOVETO, m_path.Path.CURVE4, m_path.Path.CURVE4, m_path.Path.LINETO] path = m_path.Path(verts, codes) color = colormap(con_val_scaled[pos]) # Actual line patch = m_patches.PathPatch(path, fill=False, edgecolor=color, linewidth=linewidth, alpha=1.) axes.add_patch(patch) # Draw ring with colored nodes height = np.ones(n_nodes) * 1.0 bars = axes.bar(node_angles, height, width=node_width, bottom=9, edgecolor=node_edgecolor, lw=node_linewidth, facecolor='.9', align='center') for bar, color in zip(bars, node_colors): bar.set_facecolor(color) # Draw node labels angles_deg = 180 * node_angles / np.pi for name, angle_rad, angle_deg in zip(node_names, node_angles, angles_deg): if angle_deg >= 270: ha = 'left' else: # Flip the label, so text is always upright angle_deg += 180 ha = 'right' axes.text(angle_rad, 10.4, name, size=fontsize_names, rotation=angle_deg, rotation_mode='anchor', horizontalalignment=ha, verticalalignment='center', color=textcolor) if title is not None: plt.title(title, color=textcolor, fontsize=fontsize_title, axes=axes) if colorbar: sm = plt.cm.ScalarMappable(cmap=colormap, norm=plt.Normalize(vmin, vmax)) sm.set_array(np.linspace(vmin, vmax)) cb = plt.colorbar(sm, ax=axes, use_gridspec=False, shrink=colorbar_size, anchor=colorbar_pos) cb_yticks = plt.getp(cb.ax.axes, 'yticklabels') cb.ax.tick_params(labelsize=fontsize_colorbar) plt.setp(cb_yticks, color=textcolor) # Add callback for interaction if interactive: callback = partial(_plot_connectivity_circle_onpick, fig=fig, axes=axes, indices=indices, n_nodes=n_nodes, node_angles=node_angles) fig.canvas.mpl_connect('button_press_event', callback) plt_show(show) return fig, axes
bsd-3-clause
zorroblue/scikit-learn
examples/model_selection/plot_roc.py
102
5056
""" ======================================= Receiver Operating Characteristic (ROC) ======================================= Example of Receiver Operating Characteristic (ROC) metric to evaluate classifier output quality. ROC curves typically feature true positive rate on the Y axis, and false positive rate on the X axis. This means that the top left corner of the plot is the "ideal" point - a false positive rate of zero, and a true positive rate of one. This is not very realistic, but it does mean that a larger area under the curve (AUC) is usually better. The "steepness" of ROC curves is also important, since it is ideal to maximize the true positive rate while minimizing the false positive rate. Multiclass settings ------------------- ROC curves are typically used in binary classification to study the output of a classifier. In order to extend ROC curve and ROC area to multi-class or multi-label classification, it is necessary to binarize the output. One ROC curve can be drawn per label, but one can also draw a ROC curve by considering each element of the label indicator matrix as a binary prediction (micro-averaging). Another evaluation measure for multi-class classification is macro-averaging, which gives equal weight to the classification of each label. .. note:: See also :func:`sklearn.metrics.roc_auc_score`, :ref:`sphx_glr_auto_examples_model_selection_plot_roc_crossval.py`. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from itertools import cycle from sklearn import svm, datasets from sklearn.metrics import roc_curve, auc from sklearn.model_selection import train_test_split from sklearn.preprocessing import label_binarize from sklearn.multiclass import OneVsRestClassifier from scipy import interp # Import some data to play with iris = datasets.load_iris() X = iris.data y = iris.target # Binarize the output y = label_binarize(y, classes=[0, 1, 2]) n_classes = y.shape[1] # Add noisy features to make the problem harder random_state = np.random.RandomState(0) n_samples, n_features = X.shape X = np.c_[X, random_state.randn(n_samples, 200 * n_features)] # shuffle and split training and test sets X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.5, random_state=0) # Learn to predict each class against the other classifier = OneVsRestClassifier(svm.SVC(kernel='linear', probability=True, random_state=random_state)) y_score = classifier.fit(X_train, y_train).decision_function(X_test) # Compute ROC curve and ROC area for each class fpr = dict() tpr = dict() roc_auc = dict() for i in range(n_classes): fpr[i], tpr[i], _ = roc_curve(y_test[:, i], y_score[:, i]) roc_auc[i] = auc(fpr[i], tpr[i]) # Compute micro-average ROC curve and ROC area fpr["micro"], tpr["micro"], _ = roc_curve(y_test.ravel(), y_score.ravel()) roc_auc["micro"] = auc(fpr["micro"], tpr["micro"]) ############################################################################## # Plot of a ROC curve for a specific class plt.figure() lw = 2 plt.plot(fpr[2], tpr[2], color='darkorange', lw=lw, label='ROC curve (area = %0.2f)' % roc_auc[2]) plt.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--') plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('Receiver operating characteristic example') plt.legend(loc="lower right") plt.show() ############################################################################## # Plot ROC curves for the multiclass problem # Compute macro-average ROC curve and ROC area # First aggregate all false positive rates all_fpr = np.unique(np.concatenate([fpr[i] for i in range(n_classes)])) # Then interpolate all ROC curves at this points mean_tpr = np.zeros_like(all_fpr) for i in range(n_classes): mean_tpr += interp(all_fpr, fpr[i], tpr[i]) # Finally average it and compute AUC mean_tpr /= n_classes fpr["macro"] = all_fpr tpr["macro"] = mean_tpr roc_auc["macro"] = auc(fpr["macro"], tpr["macro"]) # Plot all ROC curves plt.figure() plt.plot(fpr["micro"], tpr["micro"], label='micro-average ROC curve (area = {0:0.2f})' ''.format(roc_auc["micro"]), color='deeppink', linestyle=':', linewidth=4) plt.plot(fpr["macro"], tpr["macro"], label='macro-average ROC curve (area = {0:0.2f})' ''.format(roc_auc["macro"]), color='navy', linestyle=':', linewidth=4) colors = cycle(['aqua', 'darkorange', 'cornflowerblue']) for i, color in zip(range(n_classes), colors): plt.plot(fpr[i], tpr[i], color=color, lw=lw, label='ROC curve of class {0} (area = {1:0.2f})' ''.format(i, roc_auc[i])) plt.plot([0, 1], [0, 1], 'k--', lw=lw) plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('Some extension of Receiver operating characteristic to multi-class') plt.legend(loc="lower right") plt.show()
bsd-3-clause
harshaneelhg/scikit-learn
examples/cluster/plot_lena_compress.py
271
2229
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= Vector Quantization Example ========================================================= The classic image processing example, Lena, an 8-bit grayscale bit-depth, 512 x 512 sized image, is used here to illustrate how `k`-means is used for vector quantization. """ print(__doc__) # Code source: Gaël Varoquaux # Modified for documentation by Jaques Grobler # License: BSD 3 clause import numpy as np import scipy as sp import matplotlib.pyplot as plt from sklearn import cluster n_clusters = 5 np.random.seed(0) try: lena = sp.lena() except AttributeError: # Newer versions of scipy have lena in misc from scipy import misc lena = misc.lena() X = lena.reshape((-1, 1)) # We need an (n_sample, n_feature) array k_means = cluster.KMeans(n_clusters=n_clusters, n_init=4) k_means.fit(X) values = k_means.cluster_centers_.squeeze() labels = k_means.labels_ # create an array from labels and values lena_compressed = np.choose(labels, values) lena_compressed.shape = lena.shape vmin = lena.min() vmax = lena.max() # original lena plt.figure(1, figsize=(3, 2.2)) plt.imshow(lena, cmap=plt.cm.gray, vmin=vmin, vmax=256) # compressed lena plt.figure(2, figsize=(3, 2.2)) plt.imshow(lena_compressed, cmap=plt.cm.gray, vmin=vmin, vmax=vmax) # equal bins lena regular_values = np.linspace(0, 256, n_clusters + 1) regular_labels = np.searchsorted(regular_values, lena) - 1 regular_values = .5 * (regular_values[1:] + regular_values[:-1]) # mean regular_lena = np.choose(regular_labels.ravel(), regular_values) regular_lena.shape = lena.shape plt.figure(3, figsize=(3, 2.2)) plt.imshow(regular_lena, cmap=plt.cm.gray, vmin=vmin, vmax=vmax) # histogram plt.figure(4, figsize=(3, 2.2)) plt.clf() plt.axes([.01, .01, .98, .98]) plt.hist(X, bins=256, color='.5', edgecolor='.5') plt.yticks(()) plt.xticks(regular_values) values = np.sort(values) for center_1, center_2 in zip(values[:-1], values[1:]): plt.axvline(.5 * (center_1 + center_2), color='b') for center_1, center_2 in zip(regular_values[:-1], regular_values[1:]): plt.axvline(.5 * (center_1 + center_2), color='b', linestyle='--') plt.show()
bsd-3-clause
JosmanPS/scikit-learn
examples/cluster/plot_dict_face_patches.py
337
2747
""" Online learning of a dictionary of parts of faces ================================================== This example uses a large dataset of faces to learn a set of 20 x 20 images patches that constitute faces. From the programming standpoint, it is interesting because it shows how to use the online API of the scikit-learn to process a very large dataset by chunks. The way we proceed is that we load an image at a time and extract randomly 50 patches from this image. Once we have accumulated 500 of these patches (using 10 images), we run the `partial_fit` method of the online KMeans object, MiniBatchKMeans. The verbose setting on the MiniBatchKMeans enables us to see that some clusters are reassigned during the successive calls to partial-fit. This is because the number of patches that they represent has become too low, and it is better to choose a random new cluster. """ print(__doc__) import time import matplotlib.pyplot as plt import numpy as np from sklearn import datasets from sklearn.cluster import MiniBatchKMeans from sklearn.feature_extraction.image import extract_patches_2d faces = datasets.fetch_olivetti_faces() ############################################################################### # Learn the dictionary of images print('Learning the dictionary... ') rng = np.random.RandomState(0) kmeans = MiniBatchKMeans(n_clusters=81, random_state=rng, verbose=True) patch_size = (20, 20) buffer = [] index = 1 t0 = time.time() # The online learning part: cycle over the whole dataset 6 times index = 0 for _ in range(6): for img in faces.images: data = extract_patches_2d(img, patch_size, max_patches=50, random_state=rng) data = np.reshape(data, (len(data), -1)) buffer.append(data) index += 1 if index % 10 == 0: data = np.concatenate(buffer, axis=0) data -= np.mean(data, axis=0) data /= np.std(data, axis=0) kmeans.partial_fit(data) buffer = [] if index % 100 == 0: print('Partial fit of %4i out of %i' % (index, 6 * len(faces.images))) dt = time.time() - t0 print('done in %.2fs.' % dt) ############################################################################### # Plot the results plt.figure(figsize=(4.2, 4)) for i, patch in enumerate(kmeans.cluster_centers_): plt.subplot(9, 9, i + 1) plt.imshow(patch.reshape(patch_size), cmap=plt.cm.gray, interpolation='nearest') plt.xticks(()) plt.yticks(()) plt.suptitle('Patches of faces\nTrain time %.1fs on %d patches' % (dt, 8 * len(faces.images)), fontsize=16) plt.subplots_adjust(0.08, 0.02, 0.92, 0.85, 0.08, 0.23) plt.show()
bsd-3-clause
smorante/continuous-goal-directed-actions
demonstration-feature-selection/src/alternatives/main_dtw_mds_norm.py
2
3731
# -*- coding: utf-8 -*- """ Author: Santiago Morante Robotics Lab. Universidad Carlos III de Madrid """ ########################## DTW #################################### import libmddtw import matplotlib.pyplot as plt from dtw import dtw ########################## MDS #################################### import numpy as np from sklearn.metrics import euclidean_distances import libmds ########################## DBSCAN #################################### import libdbscan from sklearn.preprocessing import StandardScaler # to normalize def normalize(X): return StandardScaler().fit_transform(X) def main(): NUMBER_OF_DEMONSTRATIONS=5 ########################################################################## ########################## DTW #################################### ########################################################################## dist=np.zeros((NUMBER_OF_DEMONSTRATIONS,NUMBER_OF_DEMONSTRATIONS)) demons=[] # fill demonstrations for i in range(NUMBER_OF_DEMONSTRATIONS): demons.append(np.matrix([ np.sin(np.arange(15+i)+i) , np.sin(np.arange(15+i)+i)])) # fill distance matrix for i in range(NUMBER_OF_DEMONSTRATIONS): for j in range(NUMBER_OF_DEMONSTRATIONS): mddtw = libmddtw.Mddtw() x,y = mddtw.collapseRows(demons[i],demons[j]) #fig = plt.figure() #plt.plot(x) #plt.plot(y) singleDist, singleCost, singlePath = mddtw.compute(demons[i],demons[j]) dist[i][j]=singleDist # print 'Minimum distance found:', singleDist #fig = plt.figure() # plt.imshow(cost.T, origin='lower', cmap=plt.cm.gray, interpolation='nearest') # plt.plot(path[0], path[1], 'w') # plt.xlim((-0.5, cost.shape[0]-0.5)) # plt.ylim((-0.5, cost.shape[1]-0.5)) # print "dist", dist ########################################################################### ########################### MDS #################################### ########################################################################### md = libmds.Mds() md.create(n_components=1, metric=False, max_iter=3000, eps=1e-9, random_state=None, dissimilarity="precomputed", n_jobs=1) points = md.compute(dist) print "points", points.flatten() # md.plot() ########################################################################## ########################## norm #################################### ########################################################################## from scipy.stats import norm from numpy import linspace from pylab import plot,show,hist,figure,title param = norm.fit(points.flatten()) # distribution fitting x = linspace(np.min(points),np.max(points),NUMBER_OF_DEMONSTRATIONS) pdf_fitted = norm.pdf(x, loc=param[0],scale=param[1]) fig = plt.figure() title('Normal distribution') plot(x,pdf_fitted,'r-') hist(points.flatten(),normed=1,alpha=.3) show() for elem in points: if elem <= np.mean(points): print "probability of point ", str(elem), ": ", norm.cdf(elem, loc=param[0],scale=param[1]) if elem > np.mean(points): print "probability of point ", str(elem), ": ", 1-norm.cdf(elem, loc=param[0],scale=param[1]) ############################################################################## ############################################################################## if __name__ == "__main__": main()
mit
wavycloud/pyboto3
pyboto3/glue.py
1
692979
''' The MIT License (MIT) Copyright (c) 2016 WavyCloud Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ''' def batch_create_partition(CatalogId=None, DatabaseName=None, TableName=None, PartitionInputList=None): """ Creates one or more partitions in a batch operation. See also: AWS API Documentation Exceptions :example: response = client.batch_create_partition( CatalogId='string', DatabaseName='string', TableName='string', PartitionInputList=[ { 'Values': [ 'string', ], 'LastAccessTime': datetime(2015, 1, 1), 'StorageDescriptor': { 'Columns': [ { 'Name': 'string', 'Type': 'string', 'Comment': 'string', 'Parameters': { 'string': 'string' } }, ], 'Location': 'string', 'InputFormat': 'string', 'OutputFormat': 'string', 'Compressed': True|False, 'NumberOfBuckets': 123, 'SerdeInfo': { 'Name': 'string', 'SerializationLibrary': 'string', 'Parameters': { 'string': 'string' } }, 'BucketColumns': [ 'string', ], 'SortColumns': [ { 'Column': 'string', 'SortOrder': 123 }, ], 'Parameters': { 'string': 'string' }, 'SkewedInfo': { 'SkewedColumnNames': [ 'string', ], 'SkewedColumnValues': [ 'string', ], 'SkewedColumnValueLocationMaps': { 'string': 'string' } }, 'StoredAsSubDirectories': True|False }, 'Parameters': { 'string': 'string' }, 'LastAnalyzedTime': datetime(2015, 1, 1) }, ] ) :type CatalogId: string :param CatalogId: The ID of the catalog in which the partition is to be created. Currently, this should be the AWS account ID. :type DatabaseName: string :param DatabaseName: [REQUIRED]\nThe name of the metadata database in which the partition is to be created.\n :type TableName: string :param TableName: [REQUIRED]\nThe name of the metadata table in which the partition is to be created.\n :type PartitionInputList: list :param PartitionInputList: [REQUIRED]\nA list of PartitionInput structures that define the partitions to be created.\n\n(dict) --The structure used to create and update a partition.\n\nValues (list) --The values of the partition. Although this parameter is not required by the SDK, you must specify this parameter for a valid input.\nThe values for the keys for the new partition must be passed as an array of String objects that must be ordered in the same order as the partition keys appearing in the Amazon S3 prefix. Otherwise AWS Glue will add the values to the wrong keys.\n\n(string) --\n\n\nLastAccessTime (datetime) --The last time at which the partition was accessed.\n\nStorageDescriptor (dict) --Provides information about the physical location where the partition is stored.\n\nColumns (list) --A list of the Columns in the table.\n\n(dict) --A column in a Table .\n\nName (string) -- [REQUIRED]The name of the Column .\n\nType (string) --The data type of the Column .\n\nComment (string) --A free-form text comment.\n\nParameters (dict) --These key-value pairs define properties associated with the column.\n\n(string) --\n(string) --\n\n\n\n\n\n\n\n\nLocation (string) --The physical location of the table. By default, this takes the form of the warehouse location, followed by the database location in the warehouse, followed by the table name.\n\nInputFormat (string) --The input format: SequenceFileInputFormat (binary), or TextInputFormat , or a custom format.\n\nOutputFormat (string) --The output format: SequenceFileOutputFormat (binary), or IgnoreKeyTextOutputFormat , or a custom format.\n\nCompressed (boolean) --\nTrue if the data in the table is compressed, or False if not.\n\nNumberOfBuckets (integer) --Must be specified if the table contains any dimension columns.\n\nSerdeInfo (dict) --The serialization/deserialization (SerDe) information.\n\nName (string) --Name of the SerDe.\n\nSerializationLibrary (string) --Usually the class that implements the SerDe. An example is org.apache.hadoop.hive.serde2.columnar.ColumnarSerDe .\n\nParameters (dict) --These key-value pairs define initialization parameters for the SerDe.\n\n(string) --\n(string) --\n\n\n\n\n\n\nBucketColumns (list) --A list of reducer grouping columns, clustering columns, and bucketing columns in the table.\n\n(string) --\n\n\nSortColumns (list) --A list specifying the sort order of each bucket in the table.\n\n(dict) --Specifies the sort order of a sorted column.\n\nColumn (string) -- [REQUIRED]The name of the column.\n\nSortOrder (integer) -- [REQUIRED]Indicates that the column is sorted in ascending order (== 1 ), or in descending order (==0 ).\n\n\n\n\n\nParameters (dict) --The user-supplied properties in key-value form.\n\n(string) --\n(string) --\n\n\n\n\nSkewedInfo (dict) --The information about values that appear frequently in a column (skewed values).\n\nSkewedColumnNames (list) --A list of names of columns that contain skewed values.\n\n(string) --\n\n\nSkewedColumnValues (list) --A list of values that appear so frequently as to be considered skewed.\n\n(string) --\n\n\nSkewedColumnValueLocationMaps (dict) --A mapping of skewed values to the columns that contain them.\n\n(string) --\n(string) --\n\n\n\n\n\n\nStoredAsSubDirectories (boolean) --\nTrue if the table data is stored in subdirectories, or False if not.\n\n\n\nParameters (dict) --These key-value pairs define partition parameters.\n\n(string) --\n(string) --\n\n\n\n\nLastAnalyzedTime (datetime) --The last time at which column statistics were computed for this partition.\n\n\n\n\n :rtype: dict ReturnsResponse Syntax { 'Errors': [ { 'PartitionValues': [ 'string', ], 'ErrorDetail': { 'ErrorCode': 'string', 'ErrorMessage': 'string' } }, ] } Response Structure (dict) -- Errors (list) -- The errors encountered when trying to create the requested partitions. (dict) -- Contains information about a partition error. PartitionValues (list) -- The values that define the partition. (string) -- ErrorDetail (dict) -- The details about the partition error. ErrorCode (string) -- The code associated with this error. ErrorMessage (string) -- A message describing the error. Exceptions Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.AlreadyExistsException Glue.Client.exceptions.ResourceNumberLimitExceededException Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.OperationTimeoutException Glue.Client.exceptions.GlueEncryptionException :return: { 'Errors': [ { 'PartitionValues': [ 'string', ], 'ErrorDetail': { 'ErrorCode': 'string', 'ErrorMessage': 'string' } }, ] } :returns: (string) -- """ pass def batch_delete_connection(CatalogId=None, ConnectionNameList=None): """ Deletes a list of connection definitions from the Data Catalog. See also: AWS API Documentation Exceptions :example: response = client.batch_delete_connection( CatalogId='string', ConnectionNameList=[ 'string', ] ) :type CatalogId: string :param CatalogId: The ID of the Data Catalog in which the connections reside. If none is provided, the AWS account ID is used by default. :type ConnectionNameList: list :param ConnectionNameList: [REQUIRED]\nA list of names of the connections to delete.\n\n(string) --\n\n :rtype: dict ReturnsResponse Syntax { 'Succeeded': [ 'string', ], 'Errors': { 'string': { 'ErrorCode': 'string', 'ErrorMessage': 'string' } } } Response Structure (dict) -- Succeeded (list) -- A list of names of the connection definitions that were successfully deleted. (string) -- Errors (dict) -- A map of the names of connections that were not successfully deleted to error details. (string) -- (dict) -- Contains details about an error. ErrorCode (string) -- The code associated with this error. ErrorMessage (string) -- A message describing the error. Exceptions Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.OperationTimeoutException :return: { 'Succeeded': [ 'string', ], 'Errors': { 'string': { 'ErrorCode': 'string', 'ErrorMessage': 'string' } } } :returns: (string) -- """ pass def batch_delete_partition(CatalogId=None, DatabaseName=None, TableName=None, PartitionsToDelete=None): """ Deletes one or more partitions in a batch operation. See also: AWS API Documentation Exceptions :example: response = client.batch_delete_partition( CatalogId='string', DatabaseName='string', TableName='string', PartitionsToDelete=[ { 'Values': [ 'string', ] }, ] ) :type CatalogId: string :param CatalogId: The ID of the Data Catalog where the partition to be deleted resides. If none is provided, the AWS account ID is used by default. :type DatabaseName: string :param DatabaseName: [REQUIRED]\nThe name of the catalog database in which the table in question resides.\n :type TableName: string :param TableName: [REQUIRED]\nThe name of the table that contains the partitions to be deleted.\n :type PartitionsToDelete: list :param PartitionsToDelete: [REQUIRED]\nA list of PartitionInput structures that define the partitions to be deleted.\n\n(dict) --Contains a list of values defining partitions.\n\nValues (list) -- [REQUIRED]The list of values.\n\n(string) --\n\n\n\n\n\n :rtype: dict ReturnsResponse Syntax { 'Errors': [ { 'PartitionValues': [ 'string', ], 'ErrorDetail': { 'ErrorCode': 'string', 'ErrorMessage': 'string' } }, ] } Response Structure (dict) -- Errors (list) -- The errors encountered when trying to delete the requested partitions. (dict) -- Contains information about a partition error. PartitionValues (list) -- The values that define the partition. (string) -- ErrorDetail (dict) -- The details about the partition error. ErrorCode (string) -- The code associated with this error. ErrorMessage (string) -- A message describing the error. Exceptions Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.OperationTimeoutException :return: { 'Errors': [ { 'PartitionValues': [ 'string', ], 'ErrorDetail': { 'ErrorCode': 'string', 'ErrorMessage': 'string' } }, ] } :returns: (string) -- """ pass def batch_delete_table(CatalogId=None, DatabaseName=None, TablesToDelete=None): """ Deletes multiple tables at once. See also: AWS API Documentation Exceptions :example: response = client.batch_delete_table( CatalogId='string', DatabaseName='string', TablesToDelete=[ 'string', ] ) :type CatalogId: string :param CatalogId: The ID of the Data Catalog where the table resides. If none is provided, the AWS account ID is used by default. :type DatabaseName: string :param DatabaseName: [REQUIRED]\nThe name of the catalog database in which the tables to delete reside. For Hive compatibility, this name is entirely lowercase.\n :type TablesToDelete: list :param TablesToDelete: [REQUIRED]\nA list of the table to delete.\n\n(string) --\n\n :rtype: dict ReturnsResponse Syntax { 'Errors': [ { 'TableName': 'string', 'ErrorDetail': { 'ErrorCode': 'string', 'ErrorMessage': 'string' } }, ] } Response Structure (dict) -- Errors (list) -- A list of errors encountered in attempting to delete the specified tables. (dict) -- An error record for table operations. TableName (string) -- The name of the table. For Hive compatibility, this must be entirely lowercase. ErrorDetail (dict) -- The details about the error. ErrorCode (string) -- The code associated with this error. ErrorMessage (string) -- A message describing the error. Exceptions Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.OperationTimeoutException :return: { 'Errors': [ { 'TableName': 'string', 'ErrorDetail': { 'ErrorCode': 'string', 'ErrorMessage': 'string' } }, ] } :returns: Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.OperationTimeoutException """ pass def batch_delete_table_version(CatalogId=None, DatabaseName=None, TableName=None, VersionIds=None): """ Deletes a specified batch of versions of a table. See also: AWS API Documentation Exceptions :example: response = client.batch_delete_table_version( CatalogId='string', DatabaseName='string', TableName='string', VersionIds=[ 'string', ] ) :type CatalogId: string :param CatalogId: The ID of the Data Catalog where the tables reside. If none is provided, the AWS account ID is used by default. :type DatabaseName: string :param DatabaseName: [REQUIRED]\nThe database in the catalog in which the table resides. For Hive compatibility, this name is entirely lowercase.\n :type TableName: string :param TableName: [REQUIRED]\nThe name of the table. For Hive compatibility, this name is entirely lowercase.\n :type VersionIds: list :param VersionIds: [REQUIRED]\nA list of the IDs of versions to be deleted. A VersionId is a string representation of an integer. Each version is incremented by 1.\n\n(string) --\n\n :rtype: dict ReturnsResponse Syntax { 'Errors': [ { 'TableName': 'string', 'VersionId': 'string', 'ErrorDetail': { 'ErrorCode': 'string', 'ErrorMessage': 'string' } }, ] } Response Structure (dict) -- Errors (list) -- A list of errors encountered while trying to delete the specified table versions. (dict) -- An error record for table-version operations. TableName (string) -- The name of the table in question. VersionId (string) -- The ID value of the version in question. A VersionID is a string representation of an integer. Each version is incremented by 1. ErrorDetail (dict) -- The details about the error. ErrorCode (string) -- The code associated with this error. ErrorMessage (string) -- A message describing the error. Exceptions Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.OperationTimeoutException :return: { 'Errors': [ { 'TableName': 'string', 'VersionId': 'string', 'ErrorDetail': { 'ErrorCode': 'string', 'ErrorMessage': 'string' } }, ] } :returns: Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.OperationTimeoutException """ pass def batch_get_crawlers(CrawlerNames=None): """ Returns a list of resource metadata for a given list of crawler names. After calling the ListCrawlers operation, you can call this operation to access the data to which you have been granted permissions. This operation supports all IAM permissions, including permission conditions that uses tags. See also: AWS API Documentation Exceptions :example: response = client.batch_get_crawlers( CrawlerNames=[ 'string', ] ) :type CrawlerNames: list :param CrawlerNames: [REQUIRED]\nA list of crawler names, which might be the names returned from the ListCrawlers operation.\n\n(string) --\n\n :rtype: dict ReturnsResponse Syntax{ 'Crawlers': [ { 'Name': 'string', 'Role': 'string', 'Targets': { 'S3Targets': [ { 'Path': 'string', 'Exclusions': [ 'string', ] }, ], 'JdbcTargets': [ { 'ConnectionName': 'string', 'Path': 'string', 'Exclusions': [ 'string', ] }, ], 'DynamoDBTargets': [ { 'Path': 'string' }, ], 'CatalogTargets': [ { 'DatabaseName': 'string', 'Tables': [ 'string', ] }, ] }, 'DatabaseName': 'string', 'Description': 'string', 'Classifiers': [ 'string', ], 'SchemaChangePolicy': { 'UpdateBehavior': 'LOG'|'UPDATE_IN_DATABASE', 'DeleteBehavior': 'LOG'|'DELETE_FROM_DATABASE'|'DEPRECATE_IN_DATABASE' }, 'State': 'READY'|'RUNNING'|'STOPPING', 'TablePrefix': 'string', 'Schedule': { 'ScheduleExpression': 'string', 'State': 'SCHEDULED'|'NOT_SCHEDULED'|'TRANSITIONING' }, 'CrawlElapsedTime': 123, 'CreationTime': datetime(2015, 1, 1), 'LastUpdated': datetime(2015, 1, 1), 'LastCrawl': { 'Status': 'SUCCEEDED'|'CANCELLED'|'FAILED', 'ErrorMessage': 'string', 'LogGroup': 'string', 'LogStream': 'string', 'MessagePrefix': 'string', 'StartTime': datetime(2015, 1, 1) }, 'Version': 123, 'Configuration': 'string', 'CrawlerSecurityConfiguration': 'string' }, ], 'CrawlersNotFound': [ 'string', ] } Response Structure (dict) -- Crawlers (list) --A list of crawler definitions. (dict) --Specifies a crawler program that examines a data source and uses classifiers to try to determine its schema. If successful, the crawler records metadata concerning the data source in the AWS Glue Data Catalog. Name (string) --The name of the crawler. Role (string) --The Amazon Resource Name (ARN) of an IAM role that\'s used to access customer resources, such as Amazon Simple Storage Service (Amazon S3) data. Targets (dict) --A collection of targets to crawl. S3Targets (list) --Specifies Amazon Simple Storage Service (Amazon S3) targets. (dict) --Specifies a data store in Amazon Simple Storage Service (Amazon S3). Path (string) --The path to the Amazon S3 target. Exclusions (list) --A list of glob patterns used to exclude from the crawl. For more information, see Catalog Tables with a Crawler . (string) -- JdbcTargets (list) --Specifies JDBC targets. (dict) --Specifies a JDBC data store to crawl. ConnectionName (string) --The name of the connection to use to connect to the JDBC target. Path (string) --The path of the JDBC target. Exclusions (list) --A list of glob patterns used to exclude from the crawl. For more information, see Catalog Tables with a Crawler . (string) -- DynamoDBTargets (list) --Specifies Amazon DynamoDB targets. (dict) --Specifies an Amazon DynamoDB table to crawl. Path (string) --The name of the DynamoDB table to crawl. CatalogTargets (list) --Specifies AWS Glue Data Catalog targets. (dict) --Specifies an AWS Glue Data Catalog target. DatabaseName (string) --The name of the database to be synchronized. Tables (list) --A list of the tables to be synchronized. (string) -- DatabaseName (string) --The name of the database in which the crawler\'s output is stored. Description (string) --A description of the crawler. Classifiers (list) --A list of UTF-8 strings that specify the custom classifiers that are associated with the crawler. (string) -- SchemaChangePolicy (dict) --The policy that specifies update and delete behaviors for the crawler. UpdateBehavior (string) --The update behavior when the crawler finds a changed schema. DeleteBehavior (string) --The deletion behavior when the crawler finds a deleted object. State (string) --Indicates whether the crawler is running, or whether a run is pending. TablePrefix (string) --The prefix added to the names of tables that are created. Schedule (dict) --For scheduled crawlers, the schedule when the crawler runs. ScheduleExpression (string) --A cron expression used to specify the schedule. For more information, see Time-Based Schedules for Jobs and Crawlers . For example, to run something every day at 12:15 UTC, specify cron(15 12 * * ? *) . State (string) --The state of the schedule. CrawlElapsedTime (integer) --If the crawler is running, contains the total time elapsed since the last crawl began. CreationTime (datetime) --The time that the crawler was created. LastUpdated (datetime) --The time that the crawler was last updated. LastCrawl (dict) --The status of the last crawl, and potentially error information if an error occurred. Status (string) --Status of the last crawl. ErrorMessage (string) --If an error occurred, the error information about the last crawl. LogGroup (string) --The log group for the last crawl. LogStream (string) --The log stream for the last crawl. MessagePrefix (string) --The prefix for a message about this crawl. StartTime (datetime) --The time at which the crawl started. Version (integer) --The version of the crawler. Configuration (string) --Crawler configuration information. This versioned JSON string allows users to specify aspects of a crawler\'s behavior. For more information, see Configuring a Crawler . CrawlerSecurityConfiguration (string) --The name of the SecurityConfiguration structure to be used by this crawler. CrawlersNotFound (list) --A list of names of crawlers that were not found. (string) -- Exceptions Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.OperationTimeoutException :return: { 'Crawlers': [ { 'Name': 'string', 'Role': 'string', 'Targets': { 'S3Targets': [ { 'Path': 'string', 'Exclusions': [ 'string', ] }, ], 'JdbcTargets': [ { 'ConnectionName': 'string', 'Path': 'string', 'Exclusions': [ 'string', ] }, ], 'DynamoDBTargets': [ { 'Path': 'string' }, ], 'CatalogTargets': [ { 'DatabaseName': 'string', 'Tables': [ 'string', ] }, ] }, 'DatabaseName': 'string', 'Description': 'string', 'Classifiers': [ 'string', ], 'SchemaChangePolicy': { 'UpdateBehavior': 'LOG'|'UPDATE_IN_DATABASE', 'DeleteBehavior': 'LOG'|'DELETE_FROM_DATABASE'|'DEPRECATE_IN_DATABASE' }, 'State': 'READY'|'RUNNING'|'STOPPING', 'TablePrefix': 'string', 'Schedule': { 'ScheduleExpression': 'string', 'State': 'SCHEDULED'|'NOT_SCHEDULED'|'TRANSITIONING' }, 'CrawlElapsedTime': 123, 'CreationTime': datetime(2015, 1, 1), 'LastUpdated': datetime(2015, 1, 1), 'LastCrawl': { 'Status': 'SUCCEEDED'|'CANCELLED'|'FAILED', 'ErrorMessage': 'string', 'LogGroup': 'string', 'LogStream': 'string', 'MessagePrefix': 'string', 'StartTime': datetime(2015, 1, 1) }, 'Version': 123, 'Configuration': 'string', 'CrawlerSecurityConfiguration': 'string' }, ], 'CrawlersNotFound': [ 'string', ] } :returns: (string) -- """ pass def batch_get_dev_endpoints(DevEndpointNames=None): """ Returns a list of resource metadata for a given list of development endpoint names. After calling the ListDevEndpoints operation, you can call this operation to access the data to which you have been granted permissions. This operation supports all IAM permissions, including permission conditions that uses tags. See also: AWS API Documentation Exceptions :example: response = client.batch_get_dev_endpoints( DevEndpointNames=[ 'string', ] ) :type DevEndpointNames: list :param DevEndpointNames: [REQUIRED]\nThe list of DevEndpoint names, which might be the names returned from the ListDevEndpoint operation.\n\n(string) --\n\n :rtype: dict ReturnsResponse Syntax{ 'DevEndpoints': [ { 'EndpointName': 'string', 'RoleArn': 'string', 'SecurityGroupIds': [ 'string', ], 'SubnetId': 'string', 'YarnEndpointAddress': 'string', 'PrivateAddress': 'string', 'ZeppelinRemoteSparkInterpreterPort': 123, 'PublicAddress': 'string', 'Status': 'string', 'WorkerType': 'Standard'|'G.1X'|'G.2X', 'GlueVersion': 'string', 'NumberOfWorkers': 123, 'NumberOfNodes': 123, 'AvailabilityZone': 'string', 'VpcId': 'string', 'ExtraPythonLibsS3Path': 'string', 'ExtraJarsS3Path': 'string', 'FailureReason': 'string', 'LastUpdateStatus': 'string', 'CreatedTimestamp': datetime(2015, 1, 1), 'LastModifiedTimestamp': datetime(2015, 1, 1), 'PublicKey': 'string', 'PublicKeys': [ 'string', ], 'SecurityConfiguration': 'string', 'Arguments': { 'string': 'string' } }, ], 'DevEndpointsNotFound': [ 'string', ] } Response Structure (dict) -- DevEndpoints (list) --A list of DevEndpoint definitions. (dict) --A development endpoint where a developer can remotely debug extract, transform, and load (ETL) scripts. EndpointName (string) --The name of the DevEndpoint . RoleArn (string) --The Amazon Resource Name (ARN) of the IAM role used in this DevEndpoint . SecurityGroupIds (list) --A list of security group identifiers used in this DevEndpoint . (string) -- SubnetId (string) --The subnet ID for this DevEndpoint . YarnEndpointAddress (string) --The YARN endpoint address used by this DevEndpoint . PrivateAddress (string) --A private IP address to access the DevEndpoint within a VPC if the DevEndpoint is created within one. The PrivateAddress field is present only when you create the DevEndpoint within your VPC. ZeppelinRemoteSparkInterpreterPort (integer) --The Apache Zeppelin port for the remote Apache Spark interpreter. PublicAddress (string) --The public IP address used by this DevEndpoint . The PublicAddress field is present only when you create a non-virtual private cloud (VPC) DevEndpoint . Status (string) --The current status of this DevEndpoint . WorkerType (string) --The type of predefined worker that is allocated to the development endpoint. Accepts a value of Standard, G.1X, or G.2X. For the Standard worker type, each worker provides 4 vCPU, 16 GB of memory and a 50GB disk, and 2 executors per worker. For the G.1X worker type, each worker maps to 1 DPU (4 vCPU, 16 GB of memory, 64 GB disk), and provides 1 executor per worker. We recommend this worker type for memory-intensive jobs. For the G.2X worker type, each worker maps to 2 DPU (8 vCPU, 32 GB of memory, 128 GB disk), and provides 1 executor per worker. We recommend this worker type for memory-intensive jobs. Known issue: when a development endpoint is created with the G.2X WorkerType configuration, the Spark drivers for the development endpoint will run on 4 vCPU, 16 GB of memory, and a 64 GB disk. GlueVersion (string) --Glue version determines the versions of Apache Spark and Python that AWS Glue supports. The Python version indicates the version supported for running your ETL scripts on development endpoints. For more information about the available AWS Glue versions and corresponding Spark and Python versions, see Glue version in the developer guide. Development endpoints that are created without specifying a Glue version default to Glue 0.9. You can specify a version of Python support for development endpoints by using the Arguments parameter in the CreateDevEndpoint or UpdateDevEndpoint APIs. If no arguments are provided, the version defaults to Python 2. NumberOfWorkers (integer) --The number of workers of a defined workerType that are allocated to the development endpoint. The maximum number of workers you can define are 299 for G.1X , and 149 for G.2X . NumberOfNodes (integer) --The number of AWS Glue Data Processing Units (DPUs) allocated to this DevEndpoint . AvailabilityZone (string) --The AWS Availability Zone where this DevEndpoint is located. VpcId (string) --The ID of the virtual private cloud (VPC) used by this DevEndpoint . ExtraPythonLibsS3Path (string) --The paths to one or more Python libraries in an Amazon S3 bucket that should be loaded in your DevEndpoint . Multiple values must be complete paths separated by a comma. Note You can only use pure Python libraries with a DevEndpoint . Libraries that rely on C extensions, such as the pandas Python data analysis library, are not currently supported. ExtraJarsS3Path (string) --The path to one or more Java .jar files in an S3 bucket that should be loaded in your DevEndpoint . Note You can only use pure Java/Scala libraries with a DevEndpoint . FailureReason (string) --The reason for a current failure in this DevEndpoint . LastUpdateStatus (string) --The status of the last update. CreatedTimestamp (datetime) --The point in time at which this DevEndpoint was created. LastModifiedTimestamp (datetime) --The point in time at which this DevEndpoint was last modified. PublicKey (string) --The public key to be used by this DevEndpoint for authentication. This attribute is provided for backward compatibility because the recommended attribute to use is public keys. PublicKeys (list) --A list of public keys to be used by the DevEndpoints for authentication. Using this attribute is preferred over a single public key because the public keys allow you to have a different private key per client. Note If you previously created an endpoint with a public key, you must remove that key to be able to set a list of public keys. Call the UpdateDevEndpoint API operation with the public key content in the deletePublicKeys attribute, and the list of new keys in the addPublicKeys attribute. (string) -- SecurityConfiguration (string) --The name of the SecurityConfiguration structure to be used with this DevEndpoint . Arguments (dict) --A map of arguments used to configure the DevEndpoint . Valid arguments are: "--enable-glue-datacatalog": "" "GLUE_PYTHON_VERSION": "3" "GLUE_PYTHON_VERSION": "2" You can specify a version of Python support for development endpoints by using the Arguments parameter in the CreateDevEndpoint or UpdateDevEndpoint APIs. If no arguments are provided, the version defaults to Python 2. (string) -- (string) -- DevEndpointsNotFound (list) --A list of DevEndpoints not found. (string) -- Exceptions Glue.Client.exceptions.AccessDeniedException Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.OperationTimeoutException Glue.Client.exceptions.InvalidInputException :return: { 'DevEndpoints': [ { 'EndpointName': 'string', 'RoleArn': 'string', 'SecurityGroupIds': [ 'string', ], 'SubnetId': 'string', 'YarnEndpointAddress': 'string', 'PrivateAddress': 'string', 'ZeppelinRemoteSparkInterpreterPort': 123, 'PublicAddress': 'string', 'Status': 'string', 'WorkerType': 'Standard'|'G.1X'|'G.2X', 'GlueVersion': 'string', 'NumberOfWorkers': 123, 'NumberOfNodes': 123, 'AvailabilityZone': 'string', 'VpcId': 'string', 'ExtraPythonLibsS3Path': 'string', 'ExtraJarsS3Path': 'string', 'FailureReason': 'string', 'LastUpdateStatus': 'string', 'CreatedTimestamp': datetime(2015, 1, 1), 'LastModifiedTimestamp': datetime(2015, 1, 1), 'PublicKey': 'string', 'PublicKeys': [ 'string', ], 'SecurityConfiguration': 'string', 'Arguments': { 'string': 'string' } }, ], 'DevEndpointsNotFound': [ 'string', ] } :returns: (string) -- """ pass def batch_get_jobs(JobNames=None): """ Returns a list of resource metadata for a given list of job names. After calling the ListJobs operation, you can call this operation to access the data to which you have been granted permissions. This operation supports all IAM permissions, including permission conditions that uses tags. See also: AWS API Documentation Exceptions :example: response = client.batch_get_jobs( JobNames=[ 'string', ] ) :type JobNames: list :param JobNames: [REQUIRED]\nA list of job names, which might be the names returned from the ListJobs operation.\n\n(string) --\n\n :rtype: dict ReturnsResponse Syntax{ 'Jobs': [ { 'Name': 'string', 'Description': 'string', 'LogUri': 'string', 'Role': 'string', 'CreatedOn': datetime(2015, 1, 1), 'LastModifiedOn': datetime(2015, 1, 1), 'ExecutionProperty': { 'MaxConcurrentRuns': 123 }, 'Command': { 'Name': 'string', 'ScriptLocation': 'string', 'PythonVersion': 'string' }, 'DefaultArguments': { 'string': 'string' }, 'NonOverridableArguments': { 'string': 'string' }, 'Connections': { 'Connections': [ 'string', ] }, 'MaxRetries': 123, 'AllocatedCapacity': 123, 'Timeout': 123, 'MaxCapacity': 123.0, 'WorkerType': 'Standard'|'G.1X'|'G.2X', 'NumberOfWorkers': 123, 'SecurityConfiguration': 'string', 'NotificationProperty': { 'NotifyDelayAfter': 123 }, 'GlueVersion': 'string' }, ], 'JobsNotFound': [ 'string', ] } Response Structure (dict) -- Jobs (list) --A list of job definitions. (dict) --Specifies a job definition. Name (string) --The name you assign to this job definition. Description (string) --A description of the job. LogUri (string) --This field is reserved for future use. Role (string) --The name or Amazon Resource Name (ARN) of the IAM role associated with this job. CreatedOn (datetime) --The time and date that this job definition was created. LastModifiedOn (datetime) --The last point in time when this job definition was modified. ExecutionProperty (dict) --An ExecutionProperty specifying the maximum number of concurrent runs allowed for this job. MaxConcurrentRuns (integer) --The maximum number of concurrent runs allowed for the job. The default is 1. An error is returned when this threshold is reached. The maximum value you can specify is controlled by a service limit. Command (dict) --The JobCommand that executes this job. Name (string) --The name of the job command. For an Apache Spark ETL job, this must be glueetl . For a Python shell job, it must be pythonshell . ScriptLocation (string) --Specifies the Amazon Simple Storage Service (Amazon S3) path to a script that executes a job. PythonVersion (string) --The Python version being used to execute a Python shell job. Allowed values are 2 or 3. DefaultArguments (dict) --The default arguments for this job, specified as name-value pairs. You can specify arguments here that your own job-execution script consumes, as well as arguments that AWS Glue itself consumes. For information about how to specify and consume your own Job arguments, see the Calling AWS Glue APIs in Python topic in the developer guide. For information about the key-value pairs that AWS Glue consumes to set up your job, see the Special Parameters Used by AWS Glue topic in the developer guide. (string) -- (string) -- NonOverridableArguments (dict) --Non-overridable arguments for this job, specified as name-value pairs. (string) -- (string) -- Connections (dict) --The connections used for this job. Connections (list) --A list of connections used by the job. (string) -- MaxRetries (integer) --The maximum number of times to retry this job after a JobRun fails. AllocatedCapacity (integer) --This field is deprecated. Use MaxCapacity instead. The number of AWS Glue data processing units (DPUs) allocated to runs of this job. You can allocate from 2 to 100 DPUs; the default is 10. A DPU is a relative measure of processing power that consists of 4 vCPUs of compute capacity and 16 GB of memory. For more information, see the AWS Glue pricing page . Timeout (integer) --The job timeout in minutes. This is the maximum time that a job run can consume resources before it is terminated and enters TIMEOUT status. The default is 2,880 minutes (48 hours). MaxCapacity (float) --The number of AWS Glue data processing units (DPUs) that can be allocated when this job runs. A DPU is a relative measure of processing power that consists of 4 vCPUs of compute capacity and 16 GB of memory. For more information, see the AWS Glue pricing page . Do not set Max Capacity if using WorkerType and NumberOfWorkers . The value that can be allocated for MaxCapacity depends on whether you are running a Python shell job or an Apache Spark ETL job: When you specify a Python shell job (JobCommand.Name ="pythonshell"), you can allocate either 0.0625 or 1 DPU. The default is 0.0625 DPU. When you specify an Apache Spark ETL job (JobCommand.Name ="glueetl"), you can allocate from 2 to 100 DPUs. The default is 10 DPUs. This job type cannot have a fractional DPU allocation. WorkerType (string) --The type of predefined worker that is allocated when a job runs. Accepts a value of Standard, G.1X, or G.2X. For the Standard worker type, each worker provides 4 vCPU, 16 GB of memory and a 50GB disk, and 2 executors per worker. For the G.1X worker type, each worker maps to 1 DPU (4 vCPU, 16 GB of memory, 64 GB disk), and provides 1 executor per worker. We recommend this worker type for memory-intensive jobs. For the G.2X worker type, each worker maps to 2 DPU (8 vCPU, 32 GB of memory, 128 GB disk), and provides 1 executor per worker. We recommend this worker type for memory-intensive jobs. NumberOfWorkers (integer) --The number of workers of a defined workerType that are allocated when a job runs. The maximum number of workers you can define are 299 for G.1X , and 149 for G.2X . SecurityConfiguration (string) --The name of the SecurityConfiguration structure to be used with this job. NotificationProperty (dict) --Specifies configuration properties of a job notification. NotifyDelayAfter (integer) --After a job run starts, the number of minutes to wait before sending a job run delay notification. GlueVersion (string) --Glue version determines the versions of Apache Spark and Python that AWS Glue supports. The Python version indicates the version supported for jobs of type Spark. For more information about the available AWS Glue versions and corresponding Spark and Python versions, see Glue version in the developer guide. Jobs that are created without specifying a Glue version default to Glue 0.9. JobsNotFound (list) --A list of names of jobs not found. (string) -- Exceptions Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.OperationTimeoutException Glue.Client.exceptions.InvalidInputException :return: { 'Jobs': [ { 'Name': 'string', 'Description': 'string', 'LogUri': 'string', 'Role': 'string', 'CreatedOn': datetime(2015, 1, 1), 'LastModifiedOn': datetime(2015, 1, 1), 'ExecutionProperty': { 'MaxConcurrentRuns': 123 }, 'Command': { 'Name': 'string', 'ScriptLocation': 'string', 'PythonVersion': 'string' }, 'DefaultArguments': { 'string': 'string' }, 'NonOverridableArguments': { 'string': 'string' }, 'Connections': { 'Connections': [ 'string', ] }, 'MaxRetries': 123, 'AllocatedCapacity': 123, 'Timeout': 123, 'MaxCapacity': 123.0, 'WorkerType': 'Standard'|'G.1X'|'G.2X', 'NumberOfWorkers': 123, 'SecurityConfiguration': 'string', 'NotificationProperty': { 'NotifyDelayAfter': 123 }, 'GlueVersion': 'string' }, ], 'JobsNotFound': [ 'string', ] } :returns: (string) -- (string) -- """ pass def batch_get_partition(CatalogId=None, DatabaseName=None, TableName=None, PartitionsToGet=None): """ Retrieves partitions in a batch request. See also: AWS API Documentation Exceptions :example: response = client.batch_get_partition( CatalogId='string', DatabaseName='string', TableName='string', PartitionsToGet=[ { 'Values': [ 'string', ] }, ] ) :type CatalogId: string :param CatalogId: The ID of the Data Catalog where the partitions in question reside. If none is supplied, the AWS account ID is used by default. :type DatabaseName: string :param DatabaseName: [REQUIRED]\nThe name of the catalog database where the partitions reside.\n :type TableName: string :param TableName: [REQUIRED]\nThe name of the partitions\' table.\n :type PartitionsToGet: list :param PartitionsToGet: [REQUIRED]\nA list of partition values identifying the partitions to retrieve.\n\n(dict) --Contains a list of values defining partitions.\n\nValues (list) -- [REQUIRED]The list of values.\n\n(string) --\n\n\n\n\n\n :rtype: dict ReturnsResponse Syntax { 'Partitions': [ { 'Values': [ 'string', ], 'DatabaseName': 'string', 'TableName': 'string', 'CreationTime': datetime(2015, 1, 1), 'LastAccessTime': datetime(2015, 1, 1), 'StorageDescriptor': { 'Columns': [ { 'Name': 'string', 'Type': 'string', 'Comment': 'string', 'Parameters': { 'string': 'string' } }, ], 'Location': 'string', 'InputFormat': 'string', 'OutputFormat': 'string', 'Compressed': True|False, 'NumberOfBuckets': 123, 'SerdeInfo': { 'Name': 'string', 'SerializationLibrary': 'string', 'Parameters': { 'string': 'string' } }, 'BucketColumns': [ 'string', ], 'SortColumns': [ { 'Column': 'string', 'SortOrder': 123 }, ], 'Parameters': { 'string': 'string' }, 'SkewedInfo': { 'SkewedColumnNames': [ 'string', ], 'SkewedColumnValues': [ 'string', ], 'SkewedColumnValueLocationMaps': { 'string': 'string' } }, 'StoredAsSubDirectories': True|False }, 'Parameters': { 'string': 'string' }, 'LastAnalyzedTime': datetime(2015, 1, 1) }, ], 'UnprocessedKeys': [ { 'Values': [ 'string', ] }, ] } Response Structure (dict) -- Partitions (list) -- A list of the requested partitions. (dict) -- Represents a slice of table data. Values (list) -- The values of the partition. (string) -- DatabaseName (string) -- The name of the catalog database in which to create the partition. TableName (string) -- The name of the database table in which to create the partition. CreationTime (datetime) -- The time at which the partition was created. LastAccessTime (datetime) -- The last time at which the partition was accessed. StorageDescriptor (dict) -- Provides information about the physical location where the partition is stored. Columns (list) -- A list of the Columns in the table. (dict) -- A column in a Table . Name (string) -- The name of the Column . Type (string) -- The data type of the Column . Comment (string) -- A free-form text comment. Parameters (dict) -- These key-value pairs define properties associated with the column. (string) -- (string) -- Location (string) -- The physical location of the table. By default, this takes the form of the warehouse location, followed by the database location in the warehouse, followed by the table name. InputFormat (string) -- The input format: SequenceFileInputFormat (binary), or TextInputFormat , or a custom format. OutputFormat (string) -- The output format: SequenceFileOutputFormat (binary), or IgnoreKeyTextOutputFormat , or a custom format. Compressed (boolean) -- True if the data in the table is compressed, or False if not. NumberOfBuckets (integer) -- Must be specified if the table contains any dimension columns. SerdeInfo (dict) -- The serialization/deserialization (SerDe) information. Name (string) -- Name of the SerDe. SerializationLibrary (string) -- Usually the class that implements the SerDe. An example is org.apache.hadoop.hive.serde2.columnar.ColumnarSerDe . Parameters (dict) -- These key-value pairs define initialization parameters for the SerDe. (string) -- (string) -- BucketColumns (list) -- A list of reducer grouping columns, clustering columns, and bucketing columns in the table. (string) -- SortColumns (list) -- A list specifying the sort order of each bucket in the table. (dict) -- Specifies the sort order of a sorted column. Column (string) -- The name of the column. SortOrder (integer) -- Indicates that the column is sorted in ascending order (== 1 ), or in descending order (==0 ). Parameters (dict) -- The user-supplied properties in key-value form. (string) -- (string) -- SkewedInfo (dict) -- The information about values that appear frequently in a column (skewed values). SkewedColumnNames (list) -- A list of names of columns that contain skewed values. (string) -- SkewedColumnValues (list) -- A list of values that appear so frequently as to be considered skewed. (string) -- SkewedColumnValueLocationMaps (dict) -- A mapping of skewed values to the columns that contain them. (string) -- (string) -- StoredAsSubDirectories (boolean) -- True if the table data is stored in subdirectories, or False if not. Parameters (dict) -- These key-value pairs define partition parameters. (string) -- (string) -- LastAnalyzedTime (datetime) -- The last time at which column statistics were computed for this partition. UnprocessedKeys (list) -- A list of the partition values in the request for which partitions were not returned. (dict) -- Contains a list of values defining partitions. Values (list) -- The list of values. (string) -- Exceptions Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.OperationTimeoutException Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.GlueEncryptionException :return: { 'Partitions': [ { 'Values': [ 'string', ], 'DatabaseName': 'string', 'TableName': 'string', 'CreationTime': datetime(2015, 1, 1), 'LastAccessTime': datetime(2015, 1, 1), 'StorageDescriptor': { 'Columns': [ { 'Name': 'string', 'Type': 'string', 'Comment': 'string', 'Parameters': { 'string': 'string' } }, ], 'Location': 'string', 'InputFormat': 'string', 'OutputFormat': 'string', 'Compressed': True|False, 'NumberOfBuckets': 123, 'SerdeInfo': { 'Name': 'string', 'SerializationLibrary': 'string', 'Parameters': { 'string': 'string' } }, 'BucketColumns': [ 'string', ], 'SortColumns': [ { 'Column': 'string', 'SortOrder': 123 }, ], 'Parameters': { 'string': 'string' }, 'SkewedInfo': { 'SkewedColumnNames': [ 'string', ], 'SkewedColumnValues': [ 'string', ], 'SkewedColumnValueLocationMaps': { 'string': 'string' } }, 'StoredAsSubDirectories': True|False }, 'Parameters': { 'string': 'string' }, 'LastAnalyzedTime': datetime(2015, 1, 1) }, ], 'UnprocessedKeys': [ { 'Values': [ 'string', ] }, ] } :returns: (string) -- """ pass def batch_get_triggers(TriggerNames=None): """ Returns a list of resource metadata for a given list of trigger names. After calling the ListTriggers operation, you can call this operation to access the data to which you have been granted permissions. This operation supports all IAM permissions, including permission conditions that uses tags. See also: AWS API Documentation Exceptions :example: response = client.batch_get_triggers( TriggerNames=[ 'string', ] ) :type TriggerNames: list :param TriggerNames: [REQUIRED]\nA list of trigger names, which may be the names returned from the ListTriggers operation.\n\n(string) --\n\n :rtype: dict ReturnsResponse Syntax{ 'Triggers': [ { 'Name': 'string', 'WorkflowName': 'string', 'Id': 'string', 'Type': 'SCHEDULED'|'CONDITIONAL'|'ON_DEMAND', 'State': 'CREATING'|'CREATED'|'ACTIVATING'|'ACTIVATED'|'DEACTIVATING'|'DEACTIVATED'|'DELETING'|'UPDATING', 'Description': 'string', 'Schedule': 'string', 'Actions': [ { 'JobName': 'string', 'Arguments': { 'string': 'string' }, 'Timeout': 123, 'SecurityConfiguration': 'string', 'NotificationProperty': { 'NotifyDelayAfter': 123 }, 'CrawlerName': 'string' }, ], 'Predicate': { 'Logical': 'AND'|'ANY', 'Conditions': [ { 'LogicalOperator': 'EQUALS', 'JobName': 'string', 'State': 'STARTING'|'RUNNING'|'STOPPING'|'STOPPED'|'SUCCEEDED'|'FAILED'|'TIMEOUT', 'CrawlerName': 'string', 'CrawlState': 'RUNNING'|'CANCELLING'|'CANCELLED'|'SUCCEEDED'|'FAILED' }, ] } }, ], 'TriggersNotFound': [ 'string', ] } Response Structure (dict) -- Triggers (list) --A list of trigger definitions. (dict) --Information about a specific trigger. Name (string) --The name of the trigger. WorkflowName (string) --The name of the workflow associated with the trigger. Id (string) --Reserved for future use. Type (string) --The type of trigger that this is. State (string) --The current state of the trigger. Description (string) --A description of this trigger. Schedule (string) --A cron expression used to specify the schedule (see Time-Based Schedules for Jobs and Crawlers . For example, to run something every day at 12:15 UTC, you would specify: cron(15 12 * * ? *) . Actions (list) --The actions initiated by this trigger. (dict) --Defines an action to be initiated by a trigger. JobName (string) --The name of a job to be executed. Arguments (dict) --The job arguments used when this trigger fires. For this job run, they replace the default arguments set in the job definition itself. You can specify arguments here that your own job-execution script consumes, as well as arguments that AWS Glue itself consumes. For information about how to specify and consume your own Job arguments, see the Calling AWS Glue APIs in Python topic in the developer guide. For information about the key-value pairs that AWS Glue consumes to set up your job, see the Special Parameters Used by AWS Glue topic in the developer guide. (string) -- (string) -- Timeout (integer) --The JobRun timeout in minutes. This is the maximum time that a job run can consume resources before it is terminated and enters TIMEOUT status. The default is 2,880 minutes (48 hours). This overrides the timeout value set in the parent job. SecurityConfiguration (string) --The name of the SecurityConfiguration structure to be used with this action. NotificationProperty (dict) --Specifies configuration properties of a job run notification. NotifyDelayAfter (integer) --After a job run starts, the number of minutes to wait before sending a job run delay notification. CrawlerName (string) --The name of the crawler to be used with this action. Predicate (dict) --The predicate of this trigger, which defines when it will fire. Logical (string) --An optional field if only one condition is listed. If multiple conditions are listed, then this field is required. Conditions (list) --A list of the conditions that determine when the trigger will fire. (dict) --Defines a condition under which a trigger fires. LogicalOperator (string) --A logical operator. JobName (string) --The name of the job whose JobRuns this condition applies to, and on which this trigger waits. State (string) --The condition state. Currently, the only job states that a trigger can listen for are SUCCEEDED , STOPPED , FAILED , and TIMEOUT . The only crawler states that a trigger can listen for are SUCCEEDED , FAILED , and CANCELLED . CrawlerName (string) --The name of the crawler to which this condition applies. CrawlState (string) --The state of the crawler to which this condition applies. TriggersNotFound (list) --A list of names of triggers not found. (string) -- Exceptions Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.OperationTimeoutException Glue.Client.exceptions.InvalidInputException :return: { 'Triggers': [ { 'Name': 'string', 'WorkflowName': 'string', 'Id': 'string', 'Type': 'SCHEDULED'|'CONDITIONAL'|'ON_DEMAND', 'State': 'CREATING'|'CREATED'|'ACTIVATING'|'ACTIVATED'|'DEACTIVATING'|'DEACTIVATED'|'DELETING'|'UPDATING', 'Description': 'string', 'Schedule': 'string', 'Actions': [ { 'JobName': 'string', 'Arguments': { 'string': 'string' }, 'Timeout': 123, 'SecurityConfiguration': 'string', 'NotificationProperty': { 'NotifyDelayAfter': 123 }, 'CrawlerName': 'string' }, ], 'Predicate': { 'Logical': 'AND'|'ANY', 'Conditions': [ { 'LogicalOperator': 'EQUALS', 'JobName': 'string', 'State': 'STARTING'|'RUNNING'|'STOPPING'|'STOPPED'|'SUCCEEDED'|'FAILED'|'TIMEOUT', 'CrawlerName': 'string', 'CrawlState': 'RUNNING'|'CANCELLING'|'CANCELLED'|'SUCCEEDED'|'FAILED' }, ] } }, ], 'TriggersNotFound': [ 'string', ] } :returns: (string) -- (string) -- """ pass def batch_get_workflows(Names=None, IncludeGraph=None): """ Returns a list of resource metadata for a given list of workflow names. After calling the ListWorkflows operation, you can call this operation to access the data to which you have been granted permissions. This operation supports all IAM permissions, including permission conditions that uses tags. See also: AWS API Documentation Exceptions :example: response = client.batch_get_workflows( Names=[ 'string', ], IncludeGraph=True|False ) :type Names: list :param Names: [REQUIRED]\nA list of workflow names, which may be the names returned from the ListWorkflows operation.\n\n(string) --\n\n :type IncludeGraph: boolean :param IncludeGraph: Specifies whether to include a graph when returning the workflow resource metadata. :rtype: dict ReturnsResponse Syntax { 'Workflows': [ { 'Name': 'string', 'Description': 'string', 'DefaultRunProperties': { 'string': 'string' }, 'CreatedOn': datetime(2015, 1, 1), 'LastModifiedOn': datetime(2015, 1, 1), 'LastRun': { 'Name': 'string', 'WorkflowRunId': 'string', 'WorkflowRunProperties': { 'string': 'string' }, 'StartedOn': datetime(2015, 1, 1), 'CompletedOn': datetime(2015, 1, 1), 'Status': 'RUNNING'|'COMPLETED'|'STOPPING'|'STOPPED', 'Statistics': { 'TotalActions': 123, 'TimeoutActions': 123, 'FailedActions': 123, 'StoppedActions': 123, 'SucceededActions': 123, 'RunningActions': 123 }, 'Graph': { 'Nodes': [ { 'Type': 'CRAWLER'|'JOB'|'TRIGGER', 'Name': 'string', 'UniqueId': 'string', 'TriggerDetails': { 'Trigger': { 'Name': 'string', 'WorkflowName': 'string', 'Id': 'string', 'Type': 'SCHEDULED'|'CONDITIONAL'|'ON_DEMAND', 'State': 'CREATING'|'CREATED'|'ACTIVATING'|'ACTIVATED'|'DEACTIVATING'|'DEACTIVATED'|'DELETING'|'UPDATING', 'Description': 'string', 'Schedule': 'string', 'Actions': [ { 'JobName': 'string', 'Arguments': { 'string': 'string' }, 'Timeout': 123, 'SecurityConfiguration': 'string', 'NotificationProperty': { 'NotifyDelayAfter': 123 }, 'CrawlerName': 'string' }, ], 'Predicate': { 'Logical': 'AND'|'ANY', 'Conditions': [ { 'LogicalOperator': 'EQUALS', 'JobName': 'string', 'State': 'STARTING'|'RUNNING'|'STOPPING'|'STOPPED'|'SUCCEEDED'|'FAILED'|'TIMEOUT', 'CrawlerName': 'string', 'CrawlState': 'RUNNING'|'CANCELLING'|'CANCELLED'|'SUCCEEDED'|'FAILED' }, ] } } }, 'JobDetails': { 'JobRuns': [ { 'Id': 'string', 'Attempt': 123, 'PreviousRunId': 'string', 'TriggerName': 'string', 'JobName': 'string', 'StartedOn': datetime(2015, 1, 1), 'LastModifiedOn': datetime(2015, 1, 1), 'CompletedOn': datetime(2015, 1, 1), 'JobRunState': 'STARTING'|'RUNNING'|'STOPPING'|'STOPPED'|'SUCCEEDED'|'FAILED'|'TIMEOUT', 'Arguments': { 'string': 'string' }, 'ErrorMessage': 'string', 'PredecessorRuns': [ { 'JobName': 'string', 'RunId': 'string' }, ], 'AllocatedCapacity': 123, 'ExecutionTime': 123, 'Timeout': 123, 'MaxCapacity': 123.0, 'WorkerType': 'Standard'|'G.1X'|'G.2X', 'NumberOfWorkers': 123, 'SecurityConfiguration': 'string', 'LogGroupName': 'string', 'NotificationProperty': { 'NotifyDelayAfter': 123 }, 'GlueVersion': 'string' }, ] }, 'CrawlerDetails': { 'Crawls': [ { 'State': 'RUNNING'|'CANCELLING'|'CANCELLED'|'SUCCEEDED'|'FAILED', 'StartedOn': datetime(2015, 1, 1), 'CompletedOn': datetime(2015, 1, 1), 'ErrorMessage': 'string', 'LogGroup': 'string', 'LogStream': 'string' }, ] } }, ], 'Edges': [ { 'SourceId': 'string', 'DestinationId': 'string' }, ] } }, 'Graph': { 'Nodes': [ { 'Type': 'CRAWLER'|'JOB'|'TRIGGER', 'Name': 'string', 'UniqueId': 'string', 'TriggerDetails': { 'Trigger': { 'Name': 'string', 'WorkflowName': 'string', 'Id': 'string', 'Type': 'SCHEDULED'|'CONDITIONAL'|'ON_DEMAND', 'State': 'CREATING'|'CREATED'|'ACTIVATING'|'ACTIVATED'|'DEACTIVATING'|'DEACTIVATED'|'DELETING'|'UPDATING', 'Description': 'string', 'Schedule': 'string', 'Actions': [ { 'JobName': 'string', 'Arguments': { 'string': 'string' }, 'Timeout': 123, 'SecurityConfiguration': 'string', 'NotificationProperty': { 'NotifyDelayAfter': 123 }, 'CrawlerName': 'string' }, ], 'Predicate': { 'Logical': 'AND'|'ANY', 'Conditions': [ { 'LogicalOperator': 'EQUALS', 'JobName': 'string', 'State': 'STARTING'|'RUNNING'|'STOPPING'|'STOPPED'|'SUCCEEDED'|'FAILED'|'TIMEOUT', 'CrawlerName': 'string', 'CrawlState': 'RUNNING'|'CANCELLING'|'CANCELLED'|'SUCCEEDED'|'FAILED' }, ] } } }, 'JobDetails': { 'JobRuns': [ { 'Id': 'string', 'Attempt': 123, 'PreviousRunId': 'string', 'TriggerName': 'string', 'JobName': 'string', 'StartedOn': datetime(2015, 1, 1), 'LastModifiedOn': datetime(2015, 1, 1), 'CompletedOn': datetime(2015, 1, 1), 'JobRunState': 'STARTING'|'RUNNING'|'STOPPING'|'STOPPED'|'SUCCEEDED'|'FAILED'|'TIMEOUT', 'Arguments': { 'string': 'string' }, 'ErrorMessage': 'string', 'PredecessorRuns': [ { 'JobName': 'string', 'RunId': 'string' }, ], 'AllocatedCapacity': 123, 'ExecutionTime': 123, 'Timeout': 123, 'MaxCapacity': 123.0, 'WorkerType': 'Standard'|'G.1X'|'G.2X', 'NumberOfWorkers': 123, 'SecurityConfiguration': 'string', 'LogGroupName': 'string', 'NotificationProperty': { 'NotifyDelayAfter': 123 }, 'GlueVersion': 'string' }, ] }, 'CrawlerDetails': { 'Crawls': [ { 'State': 'RUNNING'|'CANCELLING'|'CANCELLED'|'SUCCEEDED'|'FAILED', 'StartedOn': datetime(2015, 1, 1), 'CompletedOn': datetime(2015, 1, 1), 'ErrorMessage': 'string', 'LogGroup': 'string', 'LogStream': 'string' }, ] } }, ], 'Edges': [ { 'SourceId': 'string', 'DestinationId': 'string' }, ] } }, ], 'MissingWorkflows': [ 'string', ] } Response Structure (dict) -- Workflows (list) -- A list of workflow resource metadata. (dict) -- A workflow represents a flow in which AWS Glue components should be executed to complete a logical task. Name (string) -- The name of the workflow representing the flow. Description (string) -- A description of the workflow. DefaultRunProperties (dict) -- A collection of properties to be used as part of each execution of the workflow. (string) -- (string) -- CreatedOn (datetime) -- The date and time when the workflow was created. LastModifiedOn (datetime) -- The date and time when the workflow was last modified. LastRun (dict) -- The information about the last execution of the workflow. Name (string) -- Name of the workflow which was executed. WorkflowRunId (string) -- The ID of this workflow run. WorkflowRunProperties (dict) -- The workflow run properties which were set during the run. (string) -- (string) -- StartedOn (datetime) -- The date and time when the workflow run was started. CompletedOn (datetime) -- The date and time when the workflow run completed. Status (string) -- The status of the workflow run. Statistics (dict) -- The statistics of the run. TotalActions (integer) -- Total number of Actions in the workflow run. TimeoutActions (integer) -- Total number of Actions which timed out. FailedActions (integer) -- Total number of Actions which have failed. StoppedActions (integer) -- Total number of Actions which have stopped. SucceededActions (integer) -- Total number of Actions which have succeeded. RunningActions (integer) -- Total number Actions in running state. Graph (dict) -- The graph representing all the AWS Glue components that belong to the workflow as nodes and directed connections between them as edges. Nodes (list) -- A list of the the AWS Glue components belong to the workflow represented as nodes. (dict) -- A node represents an AWS Glue component like Trigger, Job etc. which is part of a workflow. Type (string) -- The type of AWS Glue component represented by the node. Name (string) -- The name of the AWS Glue component represented by the node. UniqueId (string) -- The unique Id assigned to the node within the workflow. TriggerDetails (dict) -- Details of the Trigger when the node represents a Trigger. Trigger (dict) -- The information of the trigger represented by the trigger node. Name (string) -- The name of the trigger. WorkflowName (string) -- The name of the workflow associated with the trigger. Id (string) -- Reserved for future use. Type (string) -- The type of trigger that this is. State (string) -- The current state of the trigger. Description (string) -- A description of this trigger. Schedule (string) -- A cron expression used to specify the schedule (see Time-Based Schedules for Jobs and Crawlers . For example, to run something every day at 12:15 UTC, you would specify: cron(15 12 * * ? *) . Actions (list) -- The actions initiated by this trigger. (dict) -- Defines an action to be initiated by a trigger. JobName (string) -- The name of a job to be executed. Arguments (dict) -- The job arguments used when this trigger fires. For this job run, they replace the default arguments set in the job definition itself. You can specify arguments here that your own job-execution script consumes, as well as arguments that AWS Glue itself consumes. For information about how to specify and consume your own Job arguments, see the Calling AWS Glue APIs in Python topic in the developer guide. For information about the key-value pairs that AWS Glue consumes to set up your job, see the Special Parameters Used by AWS Glue topic in the developer guide. (string) -- (string) -- Timeout (integer) -- The JobRun timeout in minutes. This is the maximum time that a job run can consume resources before it is terminated and enters TIMEOUT status. The default is 2,880 minutes (48 hours). This overrides the timeout value set in the parent job. SecurityConfiguration (string) -- The name of the SecurityConfiguration structure to be used with this action. NotificationProperty (dict) -- Specifies configuration properties of a job run notification. NotifyDelayAfter (integer) -- After a job run starts, the number of minutes to wait before sending a job run delay notification. CrawlerName (string) -- The name of the crawler to be used with this action. Predicate (dict) -- The predicate of this trigger, which defines when it will fire. Logical (string) -- An optional field if only one condition is listed. If multiple conditions are listed, then this field is required. Conditions (list) -- A list of the conditions that determine when the trigger will fire. (dict) -- Defines a condition under which a trigger fires. LogicalOperator (string) -- A logical operator. JobName (string) -- The name of the job whose JobRuns this condition applies to, and on which this trigger waits. State (string) -- The condition state. Currently, the only job states that a trigger can listen for are SUCCEEDED , STOPPED , FAILED , and TIMEOUT . The only crawler states that a trigger can listen for are SUCCEEDED , FAILED , and CANCELLED . CrawlerName (string) -- The name of the crawler to which this condition applies. CrawlState (string) -- The state of the crawler to which this condition applies. JobDetails (dict) -- Details of the Job when the node represents a Job. JobRuns (list) -- The information for the job runs represented by the job node. (dict) -- Contains information about a job run. Id (string) -- The ID of this job run. Attempt (integer) -- The number of the attempt to run this job. PreviousRunId (string) -- The ID of the previous run of this job. For example, the JobRunId specified in the StartJobRun action. TriggerName (string) -- The name of the trigger that started this job run. JobName (string) -- The name of the job definition being used in this run. StartedOn (datetime) -- The date and time at which this job run was started. LastModifiedOn (datetime) -- The last time that this job run was modified. CompletedOn (datetime) -- The date and time that this job run completed. JobRunState (string) -- The current state of the job run. For more information about the statuses of jobs that have terminated abnormally, see AWS Glue Job Run Statuses . Arguments (dict) -- The job arguments associated with this run. For this job run, they replace the default arguments set in the job definition itself. You can specify arguments here that your own job-execution script consumes, as well as arguments that AWS Glue itself consumes. For information about how to specify and consume your own job arguments, see the Calling AWS Glue APIs in Python topic in the developer guide. For information about the key-value pairs that AWS Glue consumes to set up your job, see the Special Parameters Used by AWS Glue topic in the developer guide. (string) -- (string) -- ErrorMessage (string) -- An error message associated with this job run. PredecessorRuns (list) -- A list of predecessors to this job run. (dict) -- A job run that was used in the predicate of a conditional trigger that triggered this job run. JobName (string) -- The name of the job definition used by the predecessor job run. RunId (string) -- The job-run ID of the predecessor job run. AllocatedCapacity (integer) -- This field is deprecated. Use MaxCapacity instead. The number of AWS Glue data processing units (DPUs) allocated to this JobRun. From 2 to 100 DPUs can be allocated; the default is 10. A DPU is a relative measure of processing power that consists of 4 vCPUs of compute capacity and 16 GB of memory. For more information, see the AWS Glue pricing page . ExecutionTime (integer) -- The amount of time (in seconds) that the job run consumed resources. Timeout (integer) -- The JobRun timeout in minutes. This is the maximum time that a job run can consume resources before it is terminated and enters TIMEOUT status. The default is 2,880 minutes (48 hours). This overrides the timeout value set in the parent job. MaxCapacity (float) -- The number of AWS Glue data processing units (DPUs) that can be allocated when this job runs. A DPU is a relative measure of processing power that consists of 4 vCPUs of compute capacity and 16 GB of memory. For more information, see the AWS Glue pricing page . Do not set Max Capacity if using WorkerType and NumberOfWorkers . The value that can be allocated for MaxCapacity depends on whether you are running a Python shell job or an Apache Spark ETL job: When you specify a Python shell job (JobCommand.Name ="pythonshell"), you can allocate either 0.0625 or 1 DPU. The default is 0.0625 DPU. When you specify an Apache Spark ETL job (JobCommand.Name ="glueetl"), you can allocate from 2 to 100 DPUs. The default is 10 DPUs. This job type cannot have a fractional DPU allocation. WorkerType (string) -- The type of predefined worker that is allocated when a job runs. Accepts a value of Standard, G.1X, or G.2X. For the Standard worker type, each worker provides 4 vCPU, 16 GB of memory and a 50GB disk, and 2 executors per worker. For the G.1X worker type, each worker provides 4 vCPU, 16 GB of memory and a 64GB disk, and 1 executor per worker. For the G.2X worker type, each worker provides 8 vCPU, 32 GB of memory and a 128GB disk, and 1 executor per worker. NumberOfWorkers (integer) -- The number of workers of a defined workerType that are allocated when a job runs. The maximum number of workers you can define are 299 for G.1X , and 149 for G.2X . SecurityConfiguration (string) -- The name of the SecurityConfiguration structure to be used with this job run. LogGroupName (string) -- The name of the log group for secure logging that can be server-side encrypted in Amazon CloudWatch using AWS KMS. This name can be /aws-glue/jobs/ , in which case the default encryption is NONE . If you add a role name and SecurityConfiguration name (in other words, /aws-glue/jobs-yourRoleName-yourSecurityConfigurationName/ ), then that security configuration is used to encrypt the log group. NotificationProperty (dict) -- Specifies configuration properties of a job run notification. NotifyDelayAfter (integer) -- After a job run starts, the number of minutes to wait before sending a job run delay notification. GlueVersion (string) -- Glue version determines the versions of Apache Spark and Python that AWS Glue supports. The Python version indicates the version supported for jobs of type Spark. For more information about the available AWS Glue versions and corresponding Spark and Python versions, see Glue version in the developer guide. Jobs that are created without specifying a Glue version default to Glue 0.9. CrawlerDetails (dict) -- Details of the crawler when the node represents a crawler. Crawls (list) -- A list of crawls represented by the crawl node. (dict) -- The details of a crawl in the workflow. State (string) -- The state of the crawler. StartedOn (datetime) -- The date and time on which the crawl started. CompletedOn (datetime) -- The date and time on which the crawl completed. ErrorMessage (string) -- The error message associated with the crawl. LogGroup (string) -- The log group associated with the crawl. LogStream (string) -- The log stream associated with the crawl. Edges (list) -- A list of all the directed connections between the nodes belonging to the workflow. (dict) -- An edge represents a directed connection between two AWS Glue components which are part of the workflow the edge belongs to. SourceId (string) -- The unique of the node within the workflow where the edge starts. DestinationId (string) -- The unique of the node within the workflow where the edge ends. Graph (dict) -- The graph representing all the AWS Glue components that belong to the workflow as nodes and directed connections between them as edges. Nodes (list) -- A list of the the AWS Glue components belong to the workflow represented as nodes. (dict) -- A node represents an AWS Glue component like Trigger, Job etc. which is part of a workflow. Type (string) -- The type of AWS Glue component represented by the node. Name (string) -- The name of the AWS Glue component represented by the node. UniqueId (string) -- The unique Id assigned to the node within the workflow. TriggerDetails (dict) -- Details of the Trigger when the node represents a Trigger. Trigger (dict) -- The information of the trigger represented by the trigger node. Name (string) -- The name of the trigger. WorkflowName (string) -- The name of the workflow associated with the trigger. Id (string) -- Reserved for future use. Type (string) -- The type of trigger that this is. State (string) -- The current state of the trigger. Description (string) -- A description of this trigger. Schedule (string) -- A cron expression used to specify the schedule (see Time-Based Schedules for Jobs and Crawlers . For example, to run something every day at 12:15 UTC, you would specify: cron(15 12 * * ? *) . Actions (list) -- The actions initiated by this trigger. (dict) -- Defines an action to be initiated by a trigger. JobName (string) -- The name of a job to be executed. Arguments (dict) -- The job arguments used when this trigger fires. For this job run, they replace the default arguments set in the job definition itself. You can specify arguments here that your own job-execution script consumes, as well as arguments that AWS Glue itself consumes. For information about how to specify and consume your own Job arguments, see the Calling AWS Glue APIs in Python topic in the developer guide. For information about the key-value pairs that AWS Glue consumes to set up your job, see the Special Parameters Used by AWS Glue topic in the developer guide. (string) -- (string) -- Timeout (integer) -- The JobRun timeout in minutes. This is the maximum time that a job run can consume resources before it is terminated and enters TIMEOUT status. The default is 2,880 minutes (48 hours). This overrides the timeout value set in the parent job. SecurityConfiguration (string) -- The name of the SecurityConfiguration structure to be used with this action. NotificationProperty (dict) -- Specifies configuration properties of a job run notification. NotifyDelayAfter (integer) -- After a job run starts, the number of minutes to wait before sending a job run delay notification. CrawlerName (string) -- The name of the crawler to be used with this action. Predicate (dict) -- The predicate of this trigger, which defines when it will fire. Logical (string) -- An optional field if only one condition is listed. If multiple conditions are listed, then this field is required. Conditions (list) -- A list of the conditions that determine when the trigger will fire. (dict) -- Defines a condition under which a trigger fires. LogicalOperator (string) -- A logical operator. JobName (string) -- The name of the job whose JobRuns this condition applies to, and on which this trigger waits. State (string) -- The condition state. Currently, the only job states that a trigger can listen for are SUCCEEDED , STOPPED , FAILED , and TIMEOUT . The only crawler states that a trigger can listen for are SUCCEEDED , FAILED , and CANCELLED . CrawlerName (string) -- The name of the crawler to which this condition applies. CrawlState (string) -- The state of the crawler to which this condition applies. JobDetails (dict) -- Details of the Job when the node represents a Job. JobRuns (list) -- The information for the job runs represented by the job node. (dict) -- Contains information about a job run. Id (string) -- The ID of this job run. Attempt (integer) -- The number of the attempt to run this job. PreviousRunId (string) -- The ID of the previous run of this job. For example, the JobRunId specified in the StartJobRun action. TriggerName (string) -- The name of the trigger that started this job run. JobName (string) -- The name of the job definition being used in this run. StartedOn (datetime) -- The date and time at which this job run was started. LastModifiedOn (datetime) -- The last time that this job run was modified. CompletedOn (datetime) -- The date and time that this job run completed. JobRunState (string) -- The current state of the job run. For more information about the statuses of jobs that have terminated abnormally, see AWS Glue Job Run Statuses . Arguments (dict) -- The job arguments associated with this run. For this job run, they replace the default arguments set in the job definition itself. You can specify arguments here that your own job-execution script consumes, as well as arguments that AWS Glue itself consumes. For information about how to specify and consume your own job arguments, see the Calling AWS Glue APIs in Python topic in the developer guide. For information about the key-value pairs that AWS Glue consumes to set up your job, see the Special Parameters Used by AWS Glue topic in the developer guide. (string) -- (string) -- ErrorMessage (string) -- An error message associated with this job run. PredecessorRuns (list) -- A list of predecessors to this job run. (dict) -- A job run that was used in the predicate of a conditional trigger that triggered this job run. JobName (string) -- The name of the job definition used by the predecessor job run. RunId (string) -- The job-run ID of the predecessor job run. AllocatedCapacity (integer) -- This field is deprecated. Use MaxCapacity instead. The number of AWS Glue data processing units (DPUs) allocated to this JobRun. From 2 to 100 DPUs can be allocated; the default is 10. A DPU is a relative measure of processing power that consists of 4 vCPUs of compute capacity and 16 GB of memory. For more information, see the AWS Glue pricing page . ExecutionTime (integer) -- The amount of time (in seconds) that the job run consumed resources. Timeout (integer) -- The JobRun timeout in minutes. This is the maximum time that a job run can consume resources before it is terminated and enters TIMEOUT status. The default is 2,880 minutes (48 hours). This overrides the timeout value set in the parent job. MaxCapacity (float) -- The number of AWS Glue data processing units (DPUs) that can be allocated when this job runs. A DPU is a relative measure of processing power that consists of 4 vCPUs of compute capacity and 16 GB of memory. For more information, see the AWS Glue pricing page . Do not set Max Capacity if using WorkerType and NumberOfWorkers . The value that can be allocated for MaxCapacity depends on whether you are running a Python shell job or an Apache Spark ETL job: When you specify a Python shell job (JobCommand.Name ="pythonshell"), you can allocate either 0.0625 or 1 DPU. The default is 0.0625 DPU. When you specify an Apache Spark ETL job (JobCommand.Name ="glueetl"), you can allocate from 2 to 100 DPUs. The default is 10 DPUs. This job type cannot have a fractional DPU allocation. WorkerType (string) -- The type of predefined worker that is allocated when a job runs. Accepts a value of Standard, G.1X, or G.2X. For the Standard worker type, each worker provides 4 vCPU, 16 GB of memory and a 50GB disk, and 2 executors per worker. For the G.1X worker type, each worker provides 4 vCPU, 16 GB of memory and a 64GB disk, and 1 executor per worker. For the G.2X worker type, each worker provides 8 vCPU, 32 GB of memory and a 128GB disk, and 1 executor per worker. NumberOfWorkers (integer) -- The number of workers of a defined workerType that are allocated when a job runs. The maximum number of workers you can define are 299 for G.1X , and 149 for G.2X . SecurityConfiguration (string) -- The name of the SecurityConfiguration structure to be used with this job run. LogGroupName (string) -- The name of the log group for secure logging that can be server-side encrypted in Amazon CloudWatch using AWS KMS. This name can be /aws-glue/jobs/ , in which case the default encryption is NONE . If you add a role name and SecurityConfiguration name (in other words, /aws-glue/jobs-yourRoleName-yourSecurityConfigurationName/ ), then that security configuration is used to encrypt the log group. NotificationProperty (dict) -- Specifies configuration properties of a job run notification. NotifyDelayAfter (integer) -- After a job run starts, the number of minutes to wait before sending a job run delay notification. GlueVersion (string) -- Glue version determines the versions of Apache Spark and Python that AWS Glue supports. The Python version indicates the version supported for jobs of type Spark. For more information about the available AWS Glue versions and corresponding Spark and Python versions, see Glue version in the developer guide. Jobs that are created without specifying a Glue version default to Glue 0.9. CrawlerDetails (dict) -- Details of the crawler when the node represents a crawler. Crawls (list) -- A list of crawls represented by the crawl node. (dict) -- The details of a crawl in the workflow. State (string) -- The state of the crawler. StartedOn (datetime) -- The date and time on which the crawl started. CompletedOn (datetime) -- The date and time on which the crawl completed. ErrorMessage (string) -- The error message associated with the crawl. LogGroup (string) -- The log group associated with the crawl. LogStream (string) -- The log stream associated with the crawl. Edges (list) -- A list of all the directed connections between the nodes belonging to the workflow. (dict) -- An edge represents a directed connection between two AWS Glue components which are part of the workflow the edge belongs to. SourceId (string) -- The unique of the node within the workflow where the edge starts. DestinationId (string) -- The unique of the node within the workflow where the edge ends. MissingWorkflows (list) -- A list of names of workflows not found. (string) -- Exceptions Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.OperationTimeoutException Glue.Client.exceptions.InvalidInputException :return: { 'Workflows': [ { 'Name': 'string', 'Description': 'string', 'DefaultRunProperties': { 'string': 'string' }, 'CreatedOn': datetime(2015, 1, 1), 'LastModifiedOn': datetime(2015, 1, 1), 'LastRun': { 'Name': 'string', 'WorkflowRunId': 'string', 'WorkflowRunProperties': { 'string': 'string' }, 'StartedOn': datetime(2015, 1, 1), 'CompletedOn': datetime(2015, 1, 1), 'Status': 'RUNNING'|'COMPLETED'|'STOPPING'|'STOPPED', 'Statistics': { 'TotalActions': 123, 'TimeoutActions': 123, 'FailedActions': 123, 'StoppedActions': 123, 'SucceededActions': 123, 'RunningActions': 123 }, 'Graph': { 'Nodes': [ { 'Type': 'CRAWLER'|'JOB'|'TRIGGER', 'Name': 'string', 'UniqueId': 'string', 'TriggerDetails': { 'Trigger': { 'Name': 'string', 'WorkflowName': 'string', 'Id': 'string', 'Type': 'SCHEDULED'|'CONDITIONAL'|'ON_DEMAND', 'State': 'CREATING'|'CREATED'|'ACTIVATING'|'ACTIVATED'|'DEACTIVATING'|'DEACTIVATED'|'DELETING'|'UPDATING', 'Description': 'string', 'Schedule': 'string', 'Actions': [ { 'JobName': 'string', 'Arguments': { 'string': 'string' }, 'Timeout': 123, 'SecurityConfiguration': 'string', 'NotificationProperty': { 'NotifyDelayAfter': 123 }, 'CrawlerName': 'string' }, ], 'Predicate': { 'Logical': 'AND'|'ANY', 'Conditions': [ { 'LogicalOperator': 'EQUALS', 'JobName': 'string', 'State': 'STARTING'|'RUNNING'|'STOPPING'|'STOPPED'|'SUCCEEDED'|'FAILED'|'TIMEOUT', 'CrawlerName': 'string', 'CrawlState': 'RUNNING'|'CANCELLING'|'CANCELLED'|'SUCCEEDED'|'FAILED' }, ] } } }, 'JobDetails': { 'JobRuns': [ { 'Id': 'string', 'Attempt': 123, 'PreviousRunId': 'string', 'TriggerName': 'string', 'JobName': 'string', 'StartedOn': datetime(2015, 1, 1), 'LastModifiedOn': datetime(2015, 1, 1), 'CompletedOn': datetime(2015, 1, 1), 'JobRunState': 'STARTING'|'RUNNING'|'STOPPING'|'STOPPED'|'SUCCEEDED'|'FAILED'|'TIMEOUT', 'Arguments': { 'string': 'string' }, 'ErrorMessage': 'string', 'PredecessorRuns': [ { 'JobName': 'string', 'RunId': 'string' }, ], 'AllocatedCapacity': 123, 'ExecutionTime': 123, 'Timeout': 123, 'MaxCapacity': 123.0, 'WorkerType': 'Standard'|'G.1X'|'G.2X', 'NumberOfWorkers': 123, 'SecurityConfiguration': 'string', 'LogGroupName': 'string', 'NotificationProperty': { 'NotifyDelayAfter': 123 }, 'GlueVersion': 'string' }, ] }, 'CrawlerDetails': { 'Crawls': [ { 'State': 'RUNNING'|'CANCELLING'|'CANCELLED'|'SUCCEEDED'|'FAILED', 'StartedOn': datetime(2015, 1, 1), 'CompletedOn': datetime(2015, 1, 1), 'ErrorMessage': 'string', 'LogGroup': 'string', 'LogStream': 'string' }, ] } }, ], 'Edges': [ { 'SourceId': 'string', 'DestinationId': 'string' }, ] } }, 'Graph': { 'Nodes': [ { 'Type': 'CRAWLER'|'JOB'|'TRIGGER', 'Name': 'string', 'UniqueId': 'string', 'TriggerDetails': { 'Trigger': { 'Name': 'string', 'WorkflowName': 'string', 'Id': 'string', 'Type': 'SCHEDULED'|'CONDITIONAL'|'ON_DEMAND', 'State': 'CREATING'|'CREATED'|'ACTIVATING'|'ACTIVATED'|'DEACTIVATING'|'DEACTIVATED'|'DELETING'|'UPDATING', 'Description': 'string', 'Schedule': 'string', 'Actions': [ { 'JobName': 'string', 'Arguments': { 'string': 'string' }, 'Timeout': 123, 'SecurityConfiguration': 'string', 'NotificationProperty': { 'NotifyDelayAfter': 123 }, 'CrawlerName': 'string' }, ], 'Predicate': { 'Logical': 'AND'|'ANY', 'Conditions': [ { 'LogicalOperator': 'EQUALS', 'JobName': 'string', 'State': 'STARTING'|'RUNNING'|'STOPPING'|'STOPPED'|'SUCCEEDED'|'FAILED'|'TIMEOUT', 'CrawlerName': 'string', 'CrawlState': 'RUNNING'|'CANCELLING'|'CANCELLED'|'SUCCEEDED'|'FAILED' }, ] } } }, 'JobDetails': { 'JobRuns': [ { 'Id': 'string', 'Attempt': 123, 'PreviousRunId': 'string', 'TriggerName': 'string', 'JobName': 'string', 'StartedOn': datetime(2015, 1, 1), 'LastModifiedOn': datetime(2015, 1, 1), 'CompletedOn': datetime(2015, 1, 1), 'JobRunState': 'STARTING'|'RUNNING'|'STOPPING'|'STOPPED'|'SUCCEEDED'|'FAILED'|'TIMEOUT', 'Arguments': { 'string': 'string' }, 'ErrorMessage': 'string', 'PredecessorRuns': [ { 'JobName': 'string', 'RunId': 'string' }, ], 'AllocatedCapacity': 123, 'ExecutionTime': 123, 'Timeout': 123, 'MaxCapacity': 123.0, 'WorkerType': 'Standard'|'G.1X'|'G.2X', 'NumberOfWorkers': 123, 'SecurityConfiguration': 'string', 'LogGroupName': 'string', 'NotificationProperty': { 'NotifyDelayAfter': 123 }, 'GlueVersion': 'string' }, ] }, 'CrawlerDetails': { 'Crawls': [ { 'State': 'RUNNING'|'CANCELLING'|'CANCELLED'|'SUCCEEDED'|'FAILED', 'StartedOn': datetime(2015, 1, 1), 'CompletedOn': datetime(2015, 1, 1), 'ErrorMessage': 'string', 'LogGroup': 'string', 'LogStream': 'string' }, ] } }, ], 'Edges': [ { 'SourceId': 'string', 'DestinationId': 'string' }, ] } }, ], 'MissingWorkflows': [ 'string', ] } :returns: (string) -- (string) -- """ pass def batch_stop_job_run(JobName=None, JobRunIds=None): """ Stops one or more job runs for a specified job definition. See also: AWS API Documentation Exceptions :example: response = client.batch_stop_job_run( JobName='string', JobRunIds=[ 'string', ] ) :type JobName: string :param JobName: [REQUIRED]\nThe name of the job definition for which to stop job runs.\n :type JobRunIds: list :param JobRunIds: [REQUIRED]\nA list of the JobRunIds that should be stopped for that job definition.\n\n(string) --\n\n :rtype: dict ReturnsResponse Syntax { 'SuccessfulSubmissions': [ { 'JobName': 'string', 'JobRunId': 'string' }, ], 'Errors': [ { 'JobName': 'string', 'JobRunId': 'string', 'ErrorDetail': { 'ErrorCode': 'string', 'ErrorMessage': 'string' } }, ] } Response Structure (dict) -- SuccessfulSubmissions (list) -- A list of the JobRuns that were successfully submitted for stopping. (dict) -- Records a successful request to stop a specified JobRun . JobName (string) -- The name of the job definition used in the job run that was stopped. JobRunId (string) -- The JobRunId of the job run that was stopped. Errors (list) -- A list of the errors that were encountered in trying to stop JobRuns , including the JobRunId for which each error was encountered and details about the error. (dict) -- Records an error that occurred when attempting to stop a specified job run. JobName (string) -- The name of the job definition that is used in the job run in question. JobRunId (string) -- The JobRunId of the job run in question. ErrorDetail (dict) -- Specifies details about the error that was encountered. ErrorCode (string) -- The code associated with this error. ErrorMessage (string) -- A message describing the error. Exceptions Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.OperationTimeoutException :return: { 'SuccessfulSubmissions': [ { 'JobName': 'string', 'JobRunId': 'string' }, ], 'Errors': [ { 'JobName': 'string', 'JobRunId': 'string', 'ErrorDetail': { 'ErrorCode': 'string', 'ErrorMessage': 'string' } }, ] } :returns: Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.OperationTimeoutException """ pass def can_paginate(operation_name=None): """ Check if an operation can be paginated. :type operation_name: string :param operation_name: The operation name. This is the same name\nas the method name on the client. For example, if the\nmethod name is create_foo, and you\'d normally invoke the\noperation as client.create_foo(**kwargs), if the\ncreate_foo operation can be paginated, you can use the\ncall client.get_paginator('create_foo'). """ pass def cancel_ml_task_run(TransformId=None, TaskRunId=None): """ Cancels (stops) a task run. Machine learning task runs are asynchronous tasks that AWS Glue runs on your behalf as part of various machine learning workflows. You can cancel a machine learning task run at any time by calling CancelMLTaskRun with a task run\'s parent transform\'s TransformID and the task run\'s TaskRunId . See also: AWS API Documentation Exceptions :example: response = client.cancel_ml_task_run( TransformId='string', TaskRunId='string' ) :type TransformId: string :param TransformId: [REQUIRED]\nThe unique identifier of the machine learning transform.\n :type TaskRunId: string :param TaskRunId: [REQUIRED]\nA unique identifier for the task run.\n :rtype: dict ReturnsResponse Syntax { 'TransformId': 'string', 'TaskRunId': 'string', 'Status': 'STARTING'|'RUNNING'|'STOPPING'|'STOPPED'|'SUCCEEDED'|'FAILED'|'TIMEOUT' } Response Structure (dict) -- TransformId (string) -- The unique identifier of the machine learning transform. TaskRunId (string) -- The unique identifier for the task run. Status (string) -- The status for this run. Exceptions Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.OperationTimeoutException Glue.Client.exceptions.InternalServiceException :return: { 'TransformId': 'string', 'TaskRunId': 'string', 'Status': 'STARTING'|'RUNNING'|'STOPPING'|'STOPPED'|'SUCCEEDED'|'FAILED'|'TIMEOUT' } :returns: Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.OperationTimeoutException Glue.Client.exceptions.InternalServiceException """ pass def create_classifier(GrokClassifier=None, XMLClassifier=None, JsonClassifier=None, CsvClassifier=None): """ Creates a classifier in the user\'s account. This can be a GrokClassifier , an XMLClassifier , a JsonClassifier , or a CsvClassifier , depending on which field of the request is present. See also: AWS API Documentation Exceptions :example: response = client.create_classifier( GrokClassifier={ 'Classification': 'string', 'Name': 'string', 'GrokPattern': 'string', 'CustomPatterns': 'string' }, XMLClassifier={ 'Classification': 'string', 'Name': 'string', 'RowTag': 'string' }, JsonClassifier={ 'Name': 'string', 'JsonPath': 'string' }, CsvClassifier={ 'Name': 'string', 'Delimiter': 'string', 'QuoteSymbol': 'string', 'ContainsHeader': 'UNKNOWN'|'PRESENT'|'ABSENT', 'Header': [ 'string', ], 'DisableValueTrimming': True|False, 'AllowSingleColumn': True|False } ) :type GrokClassifier: dict :param GrokClassifier: A GrokClassifier object specifying the classifier to create.\n\nClassification (string) -- [REQUIRED]An identifier of the data format that the classifier matches, such as Twitter, JSON, Omniture logs, Amazon CloudWatch Logs, and so on.\n\nName (string) -- [REQUIRED]The name of the new classifier.\n\nGrokPattern (string) -- [REQUIRED]The grok pattern used by this classifier.\n\nCustomPatterns (string) --Optional custom grok patterns used by this classifier.\n\n\n :type XMLClassifier: dict :param XMLClassifier: An XMLClassifier object specifying the classifier to create.\n\nClassification (string) -- [REQUIRED]An identifier of the data format that the classifier matches.\n\nName (string) -- [REQUIRED]The name of the classifier.\n\nRowTag (string) --The XML tag designating the element that contains each record in an XML document being parsed. This can\'t identify a self-closing element (closed by /> ). An empty row element that contains only attributes can be parsed as long as it ends with a closing tag (for example, <row item_a='A' item_b='B'></row> is okay, but <row item_a='A' item_b='B' /> is not).\n\n\n :type JsonClassifier: dict :param JsonClassifier: A JsonClassifier object specifying the classifier to create.\n\nName (string) -- [REQUIRED]The name of the classifier.\n\nJsonPath (string) -- [REQUIRED]A JsonPath string defining the JSON data for the classifier to classify. AWS Glue supports a subset of JsonPath , as described in Writing JsonPath Custom Classifiers .\n\n\n :type CsvClassifier: dict :param CsvClassifier: A CsvClassifier object specifying the classifier to create.\n\nName (string) -- [REQUIRED]The name of the classifier.\n\nDelimiter (string) --A custom symbol to denote what separates each column entry in the row.\n\nQuoteSymbol (string) --A custom symbol to denote what combines content into a single column value. Must be different from the column delimiter.\n\nContainsHeader (string) --Indicates whether the CSV file contains a header.\n\nHeader (list) --A list of strings representing column names.\n\n(string) --\n\n\nDisableValueTrimming (boolean) --Specifies not to trim values before identifying the type of column values. The default value is true.\n\nAllowSingleColumn (boolean) --Enables the processing of files that contain only one column.\n\n\n :rtype: dict ReturnsResponse Syntax {} Response Structure (dict) -- Exceptions Glue.Client.exceptions.AlreadyExistsException Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.OperationTimeoutException :return: {} :returns: (dict) -- """ pass def create_connection(CatalogId=None, ConnectionInput=None): """ Creates a connection definition in the Data Catalog. See also: AWS API Documentation Exceptions :example: response = client.create_connection( CatalogId='string', ConnectionInput={ 'Name': 'string', 'Description': 'string', 'ConnectionType': 'JDBC'|'SFTP'|'MONGODB'|'KAFKA', 'MatchCriteria': [ 'string', ], 'ConnectionProperties': { 'string': 'string' }, 'PhysicalConnectionRequirements': { 'SubnetId': 'string', 'SecurityGroupIdList': [ 'string', ], 'AvailabilityZone': 'string' } } ) :type CatalogId: string :param CatalogId: The ID of the Data Catalog in which to create the connection. If none is provided, the AWS account ID is used by default. :type ConnectionInput: dict :param ConnectionInput: [REQUIRED]\nA ConnectionInput object defining the connection to create.\n\nName (string) -- [REQUIRED]The name of the connection.\n\nDescription (string) --The description of the connection.\n\nConnectionType (string) -- [REQUIRED]The type of the connection. Currently, these types are supported:\n\nJDBC - Designates a connection to a database through Java Database Connectivity (JDBC).\nKAFKA - Designates a connection to an Apache Kafka streaming platform.\nMONGODB - Designates a connection to a MongoDB document database.\n\nSFTP is not supported.\n\nMatchCriteria (list) --A list of criteria that can be used in selecting this connection.\n\n(string) --\n\n\nConnectionProperties (dict) -- [REQUIRED]These key-value pairs define parameters for the connection.\n\n(string) --\n(string) --\n\n\n\n\nPhysicalConnectionRequirements (dict) --A map of physical connection requirements, such as virtual private cloud (VPC) and SecurityGroup , that are needed to successfully make this connection.\n\nSubnetId (string) --The subnet ID used by the connection.\n\nSecurityGroupIdList (list) --The security group ID list used by the connection.\n\n(string) --\n\n\nAvailabilityZone (string) --The connection\'s Availability Zone. This field is redundant because the specified subnet implies the Availability Zone to be used. Currently the field must be populated, but it will be deprecated in the future.\n\n\n\n\n :rtype: dict ReturnsResponse Syntax {} Response Structure (dict) -- Exceptions Glue.Client.exceptions.AlreadyExistsException Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.OperationTimeoutException Glue.Client.exceptions.ResourceNumberLimitExceededException Glue.Client.exceptions.GlueEncryptionException :return: {} :returns: (dict) -- """ pass def create_crawler(Name=None, Role=None, DatabaseName=None, Description=None, Targets=None, Schedule=None, Classifiers=None, TablePrefix=None, SchemaChangePolicy=None, Configuration=None, CrawlerSecurityConfiguration=None, Tags=None): """ Creates a new crawler with specified targets, role, configuration, and optional schedule. At least one crawl target must be specified, in the s3Targets field, the jdbcTargets field, or the DynamoDBTargets field. See also: AWS API Documentation Exceptions :example: response = client.create_crawler( Name='string', Role='string', DatabaseName='string', Description='string', Targets={ 'S3Targets': [ { 'Path': 'string', 'Exclusions': [ 'string', ] }, ], 'JdbcTargets': [ { 'ConnectionName': 'string', 'Path': 'string', 'Exclusions': [ 'string', ] }, ], 'DynamoDBTargets': [ { 'Path': 'string' }, ], 'CatalogTargets': [ { 'DatabaseName': 'string', 'Tables': [ 'string', ] }, ] }, Schedule='string', Classifiers=[ 'string', ], TablePrefix='string', SchemaChangePolicy={ 'UpdateBehavior': 'LOG'|'UPDATE_IN_DATABASE', 'DeleteBehavior': 'LOG'|'DELETE_FROM_DATABASE'|'DEPRECATE_IN_DATABASE' }, Configuration='string', CrawlerSecurityConfiguration='string', Tags={ 'string': 'string' } ) :type Name: string :param Name: [REQUIRED]\nName of the new crawler.\n :type Role: string :param Role: [REQUIRED]\nThe IAM role or Amazon Resource Name (ARN) of an IAM role used by the new crawler to access customer resources.\n :type DatabaseName: string :param DatabaseName: The AWS Glue database where results are written, such as: arn:aws:daylight:us-east-1::database/sometable/* . :type Description: string :param Description: A description of the new crawler. :type Targets: dict :param Targets: [REQUIRED]\nA list of collection of targets to crawl.\n\nS3Targets (list) --Specifies Amazon Simple Storage Service (Amazon S3) targets.\n\n(dict) --Specifies a data store in Amazon Simple Storage Service (Amazon S3).\n\nPath (string) --The path to the Amazon S3 target.\n\nExclusions (list) --A list of glob patterns used to exclude from the crawl. For more information, see Catalog Tables with a Crawler .\n\n(string) --\n\n\n\n\n\n\nJdbcTargets (list) --Specifies JDBC targets.\n\n(dict) --Specifies a JDBC data store to crawl.\n\nConnectionName (string) --The name of the connection to use to connect to the JDBC target.\n\nPath (string) --The path of the JDBC target.\n\nExclusions (list) --A list of glob patterns used to exclude from the crawl. For more information, see Catalog Tables with a Crawler .\n\n(string) --\n\n\n\n\n\n\nDynamoDBTargets (list) --Specifies Amazon DynamoDB targets.\n\n(dict) --Specifies an Amazon DynamoDB table to crawl.\n\nPath (string) --The name of the DynamoDB table to crawl.\n\n\n\n\n\nCatalogTargets (list) --Specifies AWS Glue Data Catalog targets.\n\n(dict) --Specifies an AWS Glue Data Catalog target.\n\nDatabaseName (string) -- [REQUIRED]The name of the database to be synchronized.\n\nTables (list) -- [REQUIRED]A list of the tables to be synchronized.\n\n(string) --\n\n\n\n\n\n\n\n :type Schedule: string :param Schedule: A cron expression used to specify the schedule. For more information, see Time-Based Schedules for Jobs and Crawlers . For example, to run something every day at 12:15 UTC, specify cron(15 12 * * ? *) . :type Classifiers: list :param Classifiers: A list of custom classifiers that the user has registered. By default, all built-in classifiers are included in a crawl, but these custom classifiers always override the default classifiers for a given classification.\n\n(string) --\n\n :type TablePrefix: string :param TablePrefix: The table prefix used for catalog tables that are created. :type SchemaChangePolicy: dict :param SchemaChangePolicy: The policy for the crawler\'s update and deletion behavior.\n\nUpdateBehavior (string) --The update behavior when the crawler finds a changed schema.\n\nDeleteBehavior (string) --The deletion behavior when the crawler finds a deleted object.\n\n\n :type Configuration: string :param Configuration: The crawler configuration information. This versioned JSON string allows users to specify aspects of a crawler\'s behavior. For more information, see Configuring a Crawler . :type CrawlerSecurityConfiguration: string :param CrawlerSecurityConfiguration: The name of the SecurityConfiguration structure to be used by this crawler. :type Tags: dict :param Tags: The tags to use with this crawler request. You can use tags to limit access to the crawler. For more information, see AWS Tags in AWS Glue .\n\n(string) --\n(string) --\n\n\n\n :rtype: dict ReturnsResponse Syntax {} Response Structure (dict) -- Exceptions Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.AlreadyExistsException Glue.Client.exceptions.OperationTimeoutException Glue.Client.exceptions.ResourceNumberLimitExceededException :return: {} :returns: (dict) -- """ pass def create_database(CatalogId=None, DatabaseInput=None): """ Creates a new database in a Data Catalog. See also: AWS API Documentation Exceptions :example: response = client.create_database( CatalogId='string', DatabaseInput={ 'Name': 'string', 'Description': 'string', 'LocationUri': 'string', 'Parameters': { 'string': 'string' }, 'CreateTableDefaultPermissions': [ { 'Principal': { 'DataLakePrincipalIdentifier': 'string' }, 'Permissions': [ 'ALL'|'SELECT'|'ALTER'|'DROP'|'DELETE'|'INSERT'|'CREATE_DATABASE'|'CREATE_TABLE'|'DATA_LOCATION_ACCESS', ] }, ] } ) :type CatalogId: string :param CatalogId: The ID of the Data Catalog in which to create the database. If none is provided, the AWS account ID is used by default. :type DatabaseInput: dict :param DatabaseInput: [REQUIRED]\nThe metadata for the database.\n\nName (string) -- [REQUIRED]The name of the database. For Hive compatibility, this is folded to lowercase when it is stored.\n\nDescription (string) --A description of the database.\n\nLocationUri (string) --The location of the database (for example, an HDFS path).\n\nParameters (dict) --These key-value pairs define parameters and properties of the database.\nThese key-value pairs define parameters and properties of the database.\n\n(string) --\n(string) --\n\n\n\n\nCreateTableDefaultPermissions (list) --Creates a set of default permissions on the table for principals.\n\n(dict) --Permissions granted to a principal.\n\nPrincipal (dict) --The principal who is granted permissions.\n\nDataLakePrincipalIdentifier (string) --An identifier for the AWS Lake Formation principal.\n\n\n\nPermissions (list) --The permissions that are granted to the principal.\n\n(string) --\n\n\n\n\n\n\n\n :rtype: dict ReturnsResponse Syntax {} Response Structure (dict) -- Exceptions Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.AlreadyExistsException Glue.Client.exceptions.ResourceNumberLimitExceededException Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.OperationTimeoutException Glue.Client.exceptions.GlueEncryptionException :return: {} :returns: (dict) -- """ pass def create_dev_endpoint(EndpointName=None, RoleArn=None, SecurityGroupIds=None, SubnetId=None, PublicKey=None, PublicKeys=None, NumberOfNodes=None, WorkerType=None, GlueVersion=None, NumberOfWorkers=None, ExtraPythonLibsS3Path=None, ExtraJarsS3Path=None, SecurityConfiguration=None, Tags=None, Arguments=None): """ Creates a new development endpoint. See also: AWS API Documentation Exceptions :example: response = client.create_dev_endpoint( EndpointName='string', RoleArn='string', SecurityGroupIds=[ 'string', ], SubnetId='string', PublicKey='string', PublicKeys=[ 'string', ], NumberOfNodes=123, WorkerType='Standard'|'G.1X'|'G.2X', GlueVersion='string', NumberOfWorkers=123, ExtraPythonLibsS3Path='string', ExtraJarsS3Path='string', SecurityConfiguration='string', Tags={ 'string': 'string' }, Arguments={ 'string': 'string' } ) :type EndpointName: string :param EndpointName: [REQUIRED]\nThe name to be assigned to the new DevEndpoint .\n :type RoleArn: string :param RoleArn: [REQUIRED]\nThe IAM role for the DevEndpoint .\n :type SecurityGroupIds: list :param SecurityGroupIds: Security group IDs for the security groups to be used by the new DevEndpoint .\n\n(string) --\n\n :type SubnetId: string :param SubnetId: The subnet ID for the new DevEndpoint to use. :type PublicKey: string :param PublicKey: The public key to be used by this DevEndpoint for authentication. This attribute is provided for backward compatibility because the recommended attribute to use is public keys. :type PublicKeys: list :param PublicKeys: A list of public keys to be used by the development endpoints for authentication. The use of this attribute is preferred over a single public key because the public keys allow you to have a different private key per client.\n\nNote\nIf you previously created an endpoint with a public key, you must remove that key to be able to set a list of public keys. Call the UpdateDevEndpoint API with the public key content in the deletePublicKeys attribute, and the list of new keys in the addPublicKeys attribute.\n\n\n(string) --\n\n :type NumberOfNodes: integer :param NumberOfNodes: The number of AWS Glue Data Processing Units (DPUs) to allocate to this DevEndpoint . :type WorkerType: string :param WorkerType: The type of predefined worker that is allocated to the development endpoint. Accepts a value of Standard, G.1X, or G.2X.\n\nFor the Standard worker type, each worker provides 4 vCPU, 16 GB of memory and a 50GB disk, and 2 executors per worker.\nFor the G.1X worker type, each worker maps to 1 DPU (4 vCPU, 16 GB of memory, 64 GB disk), and provides 1 executor per worker. We recommend this worker type for memory-intensive jobs.\nFor the G.2X worker type, each worker maps to 2 DPU (8 vCPU, 32 GB of memory, 128 GB disk), and provides 1 executor per worker. We recommend this worker type for memory-intensive jobs.\n\nKnown issue: when a development endpoint is created with the G.2X WorkerType configuration, the Spark drivers for the development endpoint will run on 4 vCPU, 16 GB of memory, and a 64 GB disk.\n :type GlueVersion: string :param GlueVersion: Glue version determines the versions of Apache Spark and Python that AWS Glue supports. The Python version indicates the version supported for running your ETL scripts on development endpoints.\nFor more information about the available AWS Glue versions and corresponding Spark and Python versions, see Glue version in the developer guide.\nDevelopment endpoints that are created without specifying a Glue version default to Glue 0.9.\nYou can specify a version of Python support for development endpoints by using the Arguments parameter in the CreateDevEndpoint or UpdateDevEndpoint APIs. If no arguments are provided, the version defaults to Python 2.\n :type NumberOfWorkers: integer :param NumberOfWorkers: The number of workers of a defined workerType that are allocated to the development endpoint.\nThe maximum number of workers you can define are 299 for G.1X , and 149 for G.2X .\n :type ExtraPythonLibsS3Path: string :param ExtraPythonLibsS3Path: The paths to one or more Python libraries in an Amazon S3 bucket that should be loaded in your DevEndpoint . Multiple values must be complete paths separated by a comma.\n\nNote\nYou can only use pure Python libraries with a DevEndpoint . Libraries that rely on C extensions, such as the pandas Python data analysis library, are not yet supported.\n\n :type ExtraJarsS3Path: string :param ExtraJarsS3Path: The path to one or more Java .jar files in an S3 bucket that should be loaded in your DevEndpoint . :type SecurityConfiguration: string :param SecurityConfiguration: The name of the SecurityConfiguration structure to be used with this DevEndpoint . :type Tags: dict :param Tags: The tags to use with this DevEndpoint. You may use tags to limit access to the DevEndpoint. For more information about tags in AWS Glue, see AWS Tags in AWS Glue in the developer guide.\n\n(string) --\n(string) --\n\n\n\n :type Arguments: dict :param Arguments: A map of arguments used to configure the DevEndpoint .\n\n(string) --\n(string) --\n\n\n\n :rtype: dict ReturnsResponse Syntax { 'EndpointName': 'string', 'Status': 'string', 'SecurityGroupIds': [ 'string', ], 'SubnetId': 'string', 'RoleArn': 'string', 'YarnEndpointAddress': 'string', 'ZeppelinRemoteSparkInterpreterPort': 123, 'NumberOfNodes': 123, 'WorkerType': 'Standard'|'G.1X'|'G.2X', 'GlueVersion': 'string', 'NumberOfWorkers': 123, 'AvailabilityZone': 'string', 'VpcId': 'string', 'ExtraPythonLibsS3Path': 'string', 'ExtraJarsS3Path': 'string', 'FailureReason': 'string', 'SecurityConfiguration': 'string', 'CreatedTimestamp': datetime(2015, 1, 1), 'Arguments': { 'string': 'string' } } Response Structure (dict) -- EndpointName (string) -- The name assigned to the new DevEndpoint . Status (string) -- The current status of the new DevEndpoint . SecurityGroupIds (list) -- The security groups assigned to the new DevEndpoint . (string) -- SubnetId (string) -- The subnet ID assigned to the new DevEndpoint . RoleArn (string) -- The Amazon Resource Name (ARN) of the role assigned to the new DevEndpoint . YarnEndpointAddress (string) -- The address of the YARN endpoint used by this DevEndpoint . ZeppelinRemoteSparkInterpreterPort (integer) -- The Apache Zeppelin port for the remote Apache Spark interpreter. NumberOfNodes (integer) -- The number of AWS Glue Data Processing Units (DPUs) allocated to this DevEndpoint. WorkerType (string) -- The type of predefined worker that is allocated to the development endpoint. May be a value of Standard, G.1X, or G.2X. GlueVersion (string) -- Glue version determines the versions of Apache Spark and Python that AWS Glue supports. The Python version indicates the version supported for running your ETL scripts on development endpoints. NumberOfWorkers (integer) -- The number of workers of a defined workerType that are allocated to the development endpoint. AvailabilityZone (string) -- The AWS Availability Zone where this DevEndpoint is located. VpcId (string) -- The ID of the virtual private cloud (VPC) used by this DevEndpoint . ExtraPythonLibsS3Path (string) -- The paths to one or more Python libraries in an S3 bucket that will be loaded in your DevEndpoint . ExtraJarsS3Path (string) -- Path to one or more Java .jar files in an S3 bucket that will be loaded in your DevEndpoint . FailureReason (string) -- The reason for a current failure in this DevEndpoint . SecurityConfiguration (string) -- The name of the SecurityConfiguration structure being used with this DevEndpoint . CreatedTimestamp (datetime) -- The point in time at which this DevEndpoint was created. Arguments (dict) -- The map of arguments used to configure this DevEndpoint . Valid arguments are: "--enable-glue-datacatalog": "" "GLUE_PYTHON_VERSION": "3" "GLUE_PYTHON_VERSION": "2" You can specify a version of Python support for development endpoints by using the Arguments parameter in the CreateDevEndpoint or UpdateDevEndpoint APIs. If no arguments are provided, the version defaults to Python 2. (string) -- (string) -- Exceptions Glue.Client.exceptions.AccessDeniedException Glue.Client.exceptions.AlreadyExistsException Glue.Client.exceptions.IdempotentParameterMismatchException Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.OperationTimeoutException Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.ValidationException Glue.Client.exceptions.ResourceNumberLimitExceededException :return: { 'EndpointName': 'string', 'Status': 'string', 'SecurityGroupIds': [ 'string', ], 'SubnetId': 'string', 'RoleArn': 'string', 'YarnEndpointAddress': 'string', 'ZeppelinRemoteSparkInterpreterPort': 123, 'NumberOfNodes': 123, 'WorkerType': 'Standard'|'G.1X'|'G.2X', 'GlueVersion': 'string', 'NumberOfWorkers': 123, 'AvailabilityZone': 'string', 'VpcId': 'string', 'ExtraPythonLibsS3Path': 'string', 'ExtraJarsS3Path': 'string', 'FailureReason': 'string', 'SecurityConfiguration': 'string', 'CreatedTimestamp': datetime(2015, 1, 1), 'Arguments': { 'string': 'string' } } :returns: (string) -- """ pass def create_job(Name=None, Description=None, LogUri=None, Role=None, ExecutionProperty=None, Command=None, DefaultArguments=None, NonOverridableArguments=None, Connections=None, MaxRetries=None, AllocatedCapacity=None, Timeout=None, MaxCapacity=None, SecurityConfiguration=None, Tags=None, NotificationProperty=None, GlueVersion=None, NumberOfWorkers=None, WorkerType=None): """ Creates a new job definition. See also: AWS API Documentation Exceptions :example: response = client.create_job( Name='string', Description='string', LogUri='string', Role='string', ExecutionProperty={ 'MaxConcurrentRuns': 123 }, Command={ 'Name': 'string', 'ScriptLocation': 'string', 'PythonVersion': 'string' }, DefaultArguments={ 'string': 'string' }, NonOverridableArguments={ 'string': 'string' }, Connections={ 'Connections': [ 'string', ] }, MaxRetries=123, AllocatedCapacity=123, Timeout=123, MaxCapacity=123.0, SecurityConfiguration='string', Tags={ 'string': 'string' }, NotificationProperty={ 'NotifyDelayAfter': 123 }, GlueVersion='string', NumberOfWorkers=123, WorkerType='Standard'|'G.1X'|'G.2X' ) :type Name: string :param Name: [REQUIRED]\nThe name you assign to this job definition. It must be unique in your account.\n :type Description: string :param Description: Description of the job being defined. :type LogUri: string :param LogUri: This field is reserved for future use. :type Role: string :param Role: [REQUIRED]\nThe name or Amazon Resource Name (ARN) of the IAM role associated with this job.\n :type ExecutionProperty: dict :param ExecutionProperty: An ExecutionProperty specifying the maximum number of concurrent runs allowed for this job.\n\nMaxConcurrentRuns (integer) --The maximum number of concurrent runs allowed for the job. The default is 1. An error is returned when this threshold is reached. The maximum value you can specify is controlled by a service limit.\n\n\n :type Command: dict :param Command: [REQUIRED]\nThe JobCommand that executes this job.\n\nName (string) --The name of the job command. For an Apache Spark ETL job, this must be glueetl . For a Python shell job, it must be pythonshell .\n\nScriptLocation (string) --Specifies the Amazon Simple Storage Service (Amazon S3) path to a script that executes a job.\n\nPythonVersion (string) --The Python version being used to execute a Python shell job. Allowed values are 2 or 3.\n\n\n :type DefaultArguments: dict :param DefaultArguments: The default arguments for this job.\nYou can specify arguments here that your own job-execution script consumes, as well as arguments that AWS Glue itself consumes.\nFor information about how to specify and consume your own Job arguments, see the Calling AWS Glue APIs in Python topic in the developer guide.\nFor information about the key-value pairs that AWS Glue consumes to set up your job, see the Special Parameters Used by AWS Glue topic in the developer guide.\n\n(string) --\n(string) --\n\n\n\n :type NonOverridableArguments: dict :param NonOverridableArguments: Non-overridable arguments for this job, specified as name-value pairs.\n\n(string) --\n(string) --\n\n\n\n :type Connections: dict :param Connections: The connections used for this job.\n\nConnections (list) --A list of connections used by the job.\n\n(string) --\n\n\n\n :type MaxRetries: integer :param MaxRetries: The maximum number of times to retry this job if it fails. :type AllocatedCapacity: integer :param AllocatedCapacity: This parameter is deprecated. Use MaxCapacity instead.\nThe number of AWS Glue data processing units (DPUs) to allocate to this Job. You can allocate from 2 to 100 DPUs; the default is 10. A DPU is a relative measure of processing power that consists of 4 vCPUs of compute capacity and 16 GB of memory. For more information, see the AWS Glue pricing page .\n :type Timeout: integer :param Timeout: The job timeout in minutes. This is the maximum time that a job run can consume resources before it is terminated and enters TIMEOUT status. The default is 2,880 minutes (48 hours). :type MaxCapacity: float :param MaxCapacity: The number of AWS Glue data processing units (DPUs) that can be allocated when this job runs. A DPU is a relative measure of processing power that consists of 4 vCPUs of compute capacity and 16 GB of memory. For more information, see the AWS Glue pricing page .\nDo not set Max Capacity if using WorkerType and NumberOfWorkers .\nThe value that can be allocated for MaxCapacity depends on whether you are running a Python shell job or an Apache Spark ETL job:\n\nWhen you specify a Python shell job (JobCommand.Name ='pythonshell'), you can allocate either 0.0625 or 1 DPU. The default is 0.0625 DPU.\nWhen you specify an Apache Spark ETL job (JobCommand.Name ='glueetl'), you can allocate from 2 to 100 DPUs. The default is 10 DPUs. This job type cannot have a fractional DPU allocation.\n\n :type SecurityConfiguration: string :param SecurityConfiguration: The name of the SecurityConfiguration structure to be used with this job. :type Tags: dict :param Tags: The tags to use with this job. You may use tags to limit access to the job. For more information about tags in AWS Glue, see AWS Tags in AWS Glue in the developer guide.\n\n(string) --\n(string) --\n\n\n\n :type NotificationProperty: dict :param NotificationProperty: Specifies configuration properties of a job notification.\n\nNotifyDelayAfter (integer) --After a job run starts, the number of minutes to wait before sending a job run delay notification.\n\n\n :type GlueVersion: string :param GlueVersion: Glue version determines the versions of Apache Spark and Python that AWS Glue supports. The Python version indicates the version supported for jobs of type Spark.\nFor more information about the available AWS Glue versions and corresponding Spark and Python versions, see Glue version in the developer guide.\nJobs that are created without specifying a Glue version default to Glue 0.9.\n :type NumberOfWorkers: integer :param NumberOfWorkers: The number of workers of a defined workerType that are allocated when a job runs.\nThe maximum number of workers you can define are 299 for G.1X , and 149 for G.2X .\n :type WorkerType: string :param WorkerType: The type of predefined worker that is allocated when a job runs. Accepts a value of Standard, G.1X, or G.2X.\n\nFor the Standard worker type, each worker provides 4 vCPU, 16 GB of memory and a 50GB disk, and 2 executors per worker.\nFor the G.1X worker type, each worker maps to 1 DPU (4 vCPU, 16 GB of memory, 64 GB disk), and provides 1 executor per worker. We recommend this worker type for memory-intensive jobs.\nFor the G.2X worker type, each worker maps to 2 DPU (8 vCPU, 32 GB of memory, 128 GB disk), and provides 1 executor per worker. We recommend this worker type for memory-intensive jobs.\n\n :rtype: dict ReturnsResponse Syntax { 'Name': 'string' } Response Structure (dict) -- Name (string) -- The unique name that was provided for this job definition. Exceptions Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.IdempotentParameterMismatchException Glue.Client.exceptions.AlreadyExistsException Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.OperationTimeoutException Glue.Client.exceptions.ResourceNumberLimitExceededException Glue.Client.exceptions.ConcurrentModificationException :return: { 'Name': 'string' } :returns: Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.IdempotentParameterMismatchException Glue.Client.exceptions.AlreadyExistsException Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.OperationTimeoutException Glue.Client.exceptions.ResourceNumberLimitExceededException Glue.Client.exceptions.ConcurrentModificationException """ pass def create_ml_transform(Name=None, Description=None, InputRecordTables=None, Parameters=None, Role=None, GlueVersion=None, MaxCapacity=None, WorkerType=None, NumberOfWorkers=None, Timeout=None, MaxRetries=None, Tags=None): """ Creates an AWS Glue machine learning transform. This operation creates the transform and all the necessary parameters to train it. Call this operation as the first step in the process of using a machine learning transform (such as the FindMatches transform) for deduplicating data. You can provide an optional Description , in addition to the parameters that you want to use for your algorithm. You must also specify certain parameters for the tasks that AWS Glue runs on your behalf as part of learning from your data and creating a high-quality machine learning transform. These parameters include Role , and optionally, AllocatedCapacity , Timeout , and MaxRetries . For more information, see Jobs . See also: AWS API Documentation Exceptions :example: response = client.create_ml_transform( Name='string', Description='string', InputRecordTables=[ { 'DatabaseName': 'string', 'TableName': 'string', 'CatalogId': 'string', 'ConnectionName': 'string' }, ], Parameters={ 'TransformType': 'FIND_MATCHES', 'FindMatchesParameters': { 'PrimaryKeyColumnName': 'string', 'PrecisionRecallTradeoff': 123.0, 'AccuracyCostTradeoff': 123.0, 'EnforceProvidedLabels': True|False } }, Role='string', GlueVersion='string', MaxCapacity=123.0, WorkerType='Standard'|'G.1X'|'G.2X', NumberOfWorkers=123, Timeout=123, MaxRetries=123, Tags={ 'string': 'string' } ) :type Name: string :param Name: [REQUIRED]\nThe unique name that you give the transform when you create it.\n :type Description: string :param Description: A description of the machine learning transform that is being defined. The default is an empty string. :type InputRecordTables: list :param InputRecordTables: [REQUIRED]\nA list of AWS Glue table definitions used by the transform.\n\n(dict) --The database and table in the AWS Glue Data Catalog that is used for input or output data.\n\nDatabaseName (string) -- [REQUIRED]A database name in the AWS Glue Data Catalog.\n\nTableName (string) -- [REQUIRED]A table name in the AWS Glue Data Catalog.\n\nCatalogId (string) --A unique identifier for the AWS Glue Data Catalog.\n\nConnectionName (string) --The name of the connection to the AWS Glue Data Catalog.\n\n\n\n\n :type Parameters: dict :param Parameters: [REQUIRED]\nThe algorithmic parameters that are specific to the transform type used. Conditionally dependent on the transform type.\n\nTransformType (string) -- [REQUIRED]The type of machine learning transform.\nFor information about the types of machine learning transforms, see Creating Machine Learning Transforms .\n\nFindMatchesParameters (dict) --The parameters for the find matches algorithm.\n\nPrimaryKeyColumnName (string) --The name of a column that uniquely identifies rows in the source table. Used to help identify matching records.\n\nPrecisionRecallTradeoff (float) --The value selected when tuning your transform for a balance between precision and recall. A value of 0.5 means no preference; a value of 1.0 means a bias purely for precision, and a value of 0.0 means a bias for recall. Because this is a tradeoff, choosing values close to 1.0 means very low recall, and choosing values close to 0.0 results in very low precision.\nThe precision metric indicates how often your model is correct when it predicts a match.\nThe recall metric indicates that for an actual match, how often your model predicts the match.\n\nAccuracyCostTradeoff (float) --The value that is selected when tuning your transform for a balance between accuracy and cost. A value of 0.5 means that the system balances accuracy and cost concerns. A value of 1.0 means a bias purely for accuracy, which typically results in a higher cost, sometimes substantially higher. A value of 0.0 means a bias purely for cost, which results in a less accurate FindMatches transform, sometimes with unacceptable accuracy.\nAccuracy measures how well the transform finds true positives and true negatives. Increasing accuracy requires more machine resources and cost. But it also results in increased recall.\nCost measures how many compute resources, and thus money, are consumed to run the transform.\n\nEnforceProvidedLabels (boolean) --The value to switch on or off to force the output to match the provided labels from users. If the value is True , the find matches transform forces the output to match the provided labels. The results override the normal conflation results. If the value is False , the find matches transform does not ensure all the labels provided are respected, and the results rely on the trained model.\nNote that setting this value to true may increase the conflation execution time.\n\n\n\n\n :type Role: string :param Role: [REQUIRED]\nThe name or Amazon Resource Name (ARN) of the IAM role with the required permissions. The required permissions include both AWS Glue service role permissions to AWS Glue resources, and Amazon S3 permissions required by the transform.\n\nThis role needs AWS Glue service role permissions to allow access to resources in AWS Glue. See Attach a Policy to IAM Users That Access AWS Glue .\nThis role needs permission to your Amazon Simple Storage Service (Amazon S3) sources, targets, temporary directory, scripts, and any libraries used by the task run for this transform.\n\n :type GlueVersion: string :param GlueVersion: This value determines which version of AWS Glue this machine learning transform is compatible with. Glue 1.0 is recommended for most customers. If the value is not set, the Glue compatibility defaults to Glue 0.9. For more information, see AWS Glue Versions in the developer guide. :type MaxCapacity: float :param MaxCapacity: The number of AWS Glue data processing units (DPUs) that are allocated to task runs for this transform. You can allocate from 2 to 100 DPUs; the default is 10. A DPU is a relative measure of processing power that consists of 4 vCPUs of compute capacity and 16 GB of memory. For more information, see the AWS Glue pricing page .\n\nMaxCapacity is a mutually exclusive option with NumberOfWorkers and WorkerType .\n\nIf either NumberOfWorkers or WorkerType is set, then MaxCapacity cannot be set.\nIf MaxCapacity is set then neither NumberOfWorkers or WorkerType can be set.\nIf WorkerType is set, then NumberOfWorkers is required (and vice versa).\nMaxCapacity and NumberOfWorkers must both be at least 1.\n\nWhen the WorkerType field is set to a value other than Standard , the MaxCapacity field is set automatically and becomes read-only.\nWhen the WorkerType field is set to a value other than Standard , the MaxCapacity field is set automatically and becomes read-only.\n :type WorkerType: string :param WorkerType: The type of predefined worker that is allocated when this task runs. Accepts a value of Standard, G.1X, or G.2X.\n\nFor the Standard worker type, each worker provides 4 vCPU, 16 GB of memory and a 50GB disk, and 2 executors per worker.\nFor the G.1X worker type, each worker provides 4 vCPU, 16 GB of memory and a 64GB disk, and 1 executor per worker.\nFor the G.2X worker type, each worker provides 8 vCPU, 32 GB of memory and a 128GB disk, and 1 executor per worker.\n\n\nMaxCapacity is a mutually exclusive option with NumberOfWorkers and WorkerType .\n\nIf either NumberOfWorkers or WorkerType is set, then MaxCapacity cannot be set.\nIf MaxCapacity is set then neither NumberOfWorkers or WorkerType can be set.\nIf WorkerType is set, then NumberOfWorkers is required (and vice versa).\nMaxCapacity and NumberOfWorkers must both be at least 1.\n\n :type NumberOfWorkers: integer :param NumberOfWorkers: The number of workers of a defined workerType that are allocated when this task runs.\nIf WorkerType is set, then NumberOfWorkers is required (and vice versa).\n :type Timeout: integer :param Timeout: The timeout of the task run for this transform in minutes. This is the maximum time that a task run for this transform can consume resources before it is terminated and enters TIMEOUT status. The default is 2,880 minutes (48 hours). :type MaxRetries: integer :param MaxRetries: The maximum number of times to retry a task for this transform after a task run fails. :type Tags: dict :param Tags: The tags to use with this machine learning transform. You may use tags to limit access to the machine learning transform. For more information about tags in AWS Glue, see AWS Tags in AWS Glue in the developer guide.\n\n(string) --\n(string) --\n\n\n\n :rtype: dict ReturnsResponse Syntax { 'TransformId': 'string' } Response Structure (dict) -- TransformId (string) -- A unique identifier that is generated for the transform. Exceptions Glue.Client.exceptions.AlreadyExistsException Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.OperationTimeoutException Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.AccessDeniedException Glue.Client.exceptions.ResourceNumberLimitExceededException Glue.Client.exceptions.IdempotentParameterMismatchException :return: { 'TransformId': 'string' } :returns: Glue.Client.exceptions.AlreadyExistsException Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.OperationTimeoutException Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.AccessDeniedException Glue.Client.exceptions.ResourceNumberLimitExceededException Glue.Client.exceptions.IdempotentParameterMismatchException """ pass def create_partition(CatalogId=None, DatabaseName=None, TableName=None, PartitionInput=None): """ Creates a new partition. See also: AWS API Documentation Exceptions :example: response = client.create_partition( CatalogId='string', DatabaseName='string', TableName='string', PartitionInput={ 'Values': [ 'string', ], 'LastAccessTime': datetime(2015, 1, 1), 'StorageDescriptor': { 'Columns': [ { 'Name': 'string', 'Type': 'string', 'Comment': 'string', 'Parameters': { 'string': 'string' } }, ], 'Location': 'string', 'InputFormat': 'string', 'OutputFormat': 'string', 'Compressed': True|False, 'NumberOfBuckets': 123, 'SerdeInfo': { 'Name': 'string', 'SerializationLibrary': 'string', 'Parameters': { 'string': 'string' } }, 'BucketColumns': [ 'string', ], 'SortColumns': [ { 'Column': 'string', 'SortOrder': 123 }, ], 'Parameters': { 'string': 'string' }, 'SkewedInfo': { 'SkewedColumnNames': [ 'string', ], 'SkewedColumnValues': [ 'string', ], 'SkewedColumnValueLocationMaps': { 'string': 'string' } }, 'StoredAsSubDirectories': True|False }, 'Parameters': { 'string': 'string' }, 'LastAnalyzedTime': datetime(2015, 1, 1) } ) :type CatalogId: string :param CatalogId: The AWS account ID of the catalog in which the partition is to be created. :type DatabaseName: string :param DatabaseName: [REQUIRED]\nThe name of the metadata database in which the partition is to be created.\n :type TableName: string :param TableName: [REQUIRED]\nThe name of the metadata table in which the partition is to be created.\n :type PartitionInput: dict :param PartitionInput: [REQUIRED]\nA PartitionInput structure defining the partition to be created.\n\nValues (list) --The values of the partition. Although this parameter is not required by the SDK, you must specify this parameter for a valid input.\nThe values for the keys for the new partition must be passed as an array of String objects that must be ordered in the same order as the partition keys appearing in the Amazon S3 prefix. Otherwise AWS Glue will add the values to the wrong keys.\n\n(string) --\n\n\nLastAccessTime (datetime) --The last time at which the partition was accessed.\n\nStorageDescriptor (dict) --Provides information about the physical location where the partition is stored.\n\nColumns (list) --A list of the Columns in the table.\n\n(dict) --A column in a Table .\n\nName (string) -- [REQUIRED]The name of the Column .\n\nType (string) --The data type of the Column .\n\nComment (string) --A free-form text comment.\n\nParameters (dict) --These key-value pairs define properties associated with the column.\n\n(string) --\n(string) --\n\n\n\n\n\n\n\n\nLocation (string) --The physical location of the table. By default, this takes the form of the warehouse location, followed by the database location in the warehouse, followed by the table name.\n\nInputFormat (string) --The input format: SequenceFileInputFormat (binary), or TextInputFormat , or a custom format.\n\nOutputFormat (string) --The output format: SequenceFileOutputFormat (binary), or IgnoreKeyTextOutputFormat , or a custom format.\n\nCompressed (boolean) --\nTrue if the data in the table is compressed, or False if not.\n\nNumberOfBuckets (integer) --Must be specified if the table contains any dimension columns.\n\nSerdeInfo (dict) --The serialization/deserialization (SerDe) information.\n\nName (string) --Name of the SerDe.\n\nSerializationLibrary (string) --Usually the class that implements the SerDe. An example is org.apache.hadoop.hive.serde2.columnar.ColumnarSerDe .\n\nParameters (dict) --These key-value pairs define initialization parameters for the SerDe.\n\n(string) --\n(string) --\n\n\n\n\n\n\nBucketColumns (list) --A list of reducer grouping columns, clustering columns, and bucketing columns in the table.\n\n(string) --\n\n\nSortColumns (list) --A list specifying the sort order of each bucket in the table.\n\n(dict) --Specifies the sort order of a sorted column.\n\nColumn (string) -- [REQUIRED]The name of the column.\n\nSortOrder (integer) -- [REQUIRED]Indicates that the column is sorted in ascending order (== 1 ), or in descending order (==0 ).\n\n\n\n\n\nParameters (dict) --The user-supplied properties in key-value form.\n\n(string) --\n(string) --\n\n\n\n\nSkewedInfo (dict) --The information about values that appear frequently in a column (skewed values).\n\nSkewedColumnNames (list) --A list of names of columns that contain skewed values.\n\n(string) --\n\n\nSkewedColumnValues (list) --A list of values that appear so frequently as to be considered skewed.\n\n(string) --\n\n\nSkewedColumnValueLocationMaps (dict) --A mapping of skewed values to the columns that contain them.\n\n(string) --\n(string) --\n\n\n\n\n\n\nStoredAsSubDirectories (boolean) --\nTrue if the table data is stored in subdirectories, or False if not.\n\n\n\nParameters (dict) --These key-value pairs define partition parameters.\n\n(string) --\n(string) --\n\n\n\n\nLastAnalyzedTime (datetime) --The last time at which column statistics were computed for this partition.\n\n\n :rtype: dict ReturnsResponse Syntax {} Response Structure (dict) -- Exceptions Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.AlreadyExistsException Glue.Client.exceptions.ResourceNumberLimitExceededException Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.OperationTimeoutException Glue.Client.exceptions.GlueEncryptionException :return: {} :returns: (dict) -- """ pass def create_script(DagNodes=None, DagEdges=None, Language=None): """ Transforms a directed acyclic graph (DAG) into code. See also: AWS API Documentation Exceptions :example: response = client.create_script( DagNodes=[ { 'Id': 'string', 'NodeType': 'string', 'Args': [ { 'Name': 'string', 'Value': 'string', 'Param': True|False }, ], 'LineNumber': 123 }, ], DagEdges=[ { 'Source': 'string', 'Target': 'string', 'TargetParameter': 'string' }, ], Language='PYTHON'|'SCALA' ) :type DagNodes: list :param DagNodes: A list of the nodes in the DAG.\n\n(dict) --Represents a node in a directed acyclic graph (DAG)\n\nId (string) -- [REQUIRED]A node identifier that is unique within the node\'s graph.\n\nNodeType (string) -- [REQUIRED]The type of node that this is.\n\nArgs (list) -- [REQUIRED]Properties of the node, in the form of name-value pairs.\n\n(dict) --An argument or property of a node.\n\nName (string) -- [REQUIRED]The name of the argument or property.\n\nValue (string) -- [REQUIRED]The value of the argument or property.\n\nParam (boolean) --True if the value is used as a parameter.\n\n\n\n\n\nLineNumber (integer) --The line number of the node.\n\n\n\n\n :type DagEdges: list :param DagEdges: A list of the edges in the DAG.\n\n(dict) --Represents a directional edge in a directed acyclic graph (DAG).\n\nSource (string) -- [REQUIRED]The ID of the node at which the edge starts.\n\nTarget (string) -- [REQUIRED]The ID of the node at which the edge ends.\n\nTargetParameter (string) --The target of the edge.\n\n\n\n\n :type Language: string :param Language: The programming language of the resulting code from the DAG. :rtype: dict ReturnsResponse Syntax { 'PythonScript': 'string', 'ScalaCode': 'string' } Response Structure (dict) -- PythonScript (string) -- The Python script generated from the DAG. ScalaCode (string) -- The Scala code generated from the DAG. Exceptions Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.OperationTimeoutException :return: { 'PythonScript': 'string', 'ScalaCode': 'string' } :returns: Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.OperationTimeoutException """ pass def create_security_configuration(Name=None, EncryptionConfiguration=None): """ Creates a new security configuration. A security configuration is a set of security properties that can be used by AWS Glue. You can use a security configuration to encrypt data at rest. For information about using security configurations in AWS Glue, see Encrypting Data Written by Crawlers, Jobs, and Development Endpoints . See also: AWS API Documentation Exceptions :example: response = client.create_security_configuration( Name='string', EncryptionConfiguration={ 'S3Encryption': [ { 'S3EncryptionMode': 'DISABLED'|'SSE-KMS'|'SSE-S3', 'KmsKeyArn': 'string' }, ], 'CloudWatchEncryption': { 'CloudWatchEncryptionMode': 'DISABLED'|'SSE-KMS', 'KmsKeyArn': 'string' }, 'JobBookmarksEncryption': { 'JobBookmarksEncryptionMode': 'DISABLED'|'CSE-KMS', 'KmsKeyArn': 'string' } } ) :type Name: string :param Name: [REQUIRED]\nThe name for the new security configuration.\n :type EncryptionConfiguration: dict :param EncryptionConfiguration: [REQUIRED]\nThe encryption configuration for the new security configuration.\n\nS3Encryption (list) --The encryption configuration for Amazon Simple Storage Service (Amazon S3) data.\n\n(dict) --Specifies how Amazon Simple Storage Service (Amazon S3) data should be encrypted.\n\nS3EncryptionMode (string) --The encryption mode to use for Amazon S3 data.\n\nKmsKeyArn (string) --The Amazon Resource Name (ARN) of the KMS key to be used to encrypt the data.\n\n\n\n\n\nCloudWatchEncryption (dict) --The encryption configuration for Amazon CloudWatch.\n\nCloudWatchEncryptionMode (string) --The encryption mode to use for CloudWatch data.\n\nKmsKeyArn (string) --The Amazon Resource Name (ARN) of the KMS key to be used to encrypt the data.\n\n\n\nJobBookmarksEncryption (dict) --The encryption configuration for job bookmarks.\n\nJobBookmarksEncryptionMode (string) --The encryption mode to use for job bookmarks data.\n\nKmsKeyArn (string) --The Amazon Resource Name (ARN) of the KMS key to be used to encrypt the data.\n\n\n\n\n :rtype: dict ReturnsResponse Syntax { 'Name': 'string', 'CreatedTimestamp': datetime(2015, 1, 1) } Response Structure (dict) -- Name (string) -- The name assigned to the new security configuration. CreatedTimestamp (datetime) -- The time at which the new security configuration was created. Exceptions Glue.Client.exceptions.AlreadyExistsException Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.OperationTimeoutException Glue.Client.exceptions.ResourceNumberLimitExceededException :return: { 'Name': 'string', 'CreatedTimestamp': datetime(2015, 1, 1) } :returns: Glue.Client.exceptions.AlreadyExistsException Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.OperationTimeoutException Glue.Client.exceptions.ResourceNumberLimitExceededException """ pass def create_table(CatalogId=None, DatabaseName=None, TableInput=None): """ Creates a new table definition in the Data Catalog. See also: AWS API Documentation Exceptions :example: response = client.create_table( CatalogId='string', DatabaseName='string', TableInput={ 'Name': 'string', 'Description': 'string', 'Owner': 'string', 'LastAccessTime': datetime(2015, 1, 1), 'LastAnalyzedTime': datetime(2015, 1, 1), 'Retention': 123, 'StorageDescriptor': { 'Columns': [ { 'Name': 'string', 'Type': 'string', 'Comment': 'string', 'Parameters': { 'string': 'string' } }, ], 'Location': 'string', 'InputFormat': 'string', 'OutputFormat': 'string', 'Compressed': True|False, 'NumberOfBuckets': 123, 'SerdeInfo': { 'Name': 'string', 'SerializationLibrary': 'string', 'Parameters': { 'string': 'string' } }, 'BucketColumns': [ 'string', ], 'SortColumns': [ { 'Column': 'string', 'SortOrder': 123 }, ], 'Parameters': { 'string': 'string' }, 'SkewedInfo': { 'SkewedColumnNames': [ 'string', ], 'SkewedColumnValues': [ 'string', ], 'SkewedColumnValueLocationMaps': { 'string': 'string' } }, 'StoredAsSubDirectories': True|False }, 'PartitionKeys': [ { 'Name': 'string', 'Type': 'string', 'Comment': 'string', 'Parameters': { 'string': 'string' } }, ], 'ViewOriginalText': 'string', 'ViewExpandedText': 'string', 'TableType': 'string', 'Parameters': { 'string': 'string' } } ) :type CatalogId: string :param CatalogId: The ID of the Data Catalog in which to create the Table . If none is supplied, the AWS account ID is used by default. :type DatabaseName: string :param DatabaseName: [REQUIRED]\nThe catalog database in which to create the new table. For Hive compatibility, this name is entirely lowercase.\n :type TableInput: dict :param TableInput: [REQUIRED]\nThe TableInput object that defines the metadata table to create in the catalog.\n\nName (string) -- [REQUIRED]The table name. For Hive compatibility, this is folded to lowercase when it is stored.\n\nDescription (string) --A description of the table.\n\nOwner (string) --The table owner.\n\nLastAccessTime (datetime) --The last time that the table was accessed.\n\nLastAnalyzedTime (datetime) --The last time that column statistics were computed for this table.\n\nRetention (integer) --The retention time for this table.\n\nStorageDescriptor (dict) --A storage descriptor containing information about the physical storage of this table.\n\nColumns (list) --A list of the Columns in the table.\n\n(dict) --A column in a Table .\n\nName (string) -- [REQUIRED]The name of the Column .\n\nType (string) --The data type of the Column .\n\nComment (string) --A free-form text comment.\n\nParameters (dict) --These key-value pairs define properties associated with the column.\n\n(string) --\n(string) --\n\n\n\n\n\n\n\n\nLocation (string) --The physical location of the table. By default, this takes the form of the warehouse location, followed by the database location in the warehouse, followed by the table name.\n\nInputFormat (string) --The input format: SequenceFileInputFormat (binary), or TextInputFormat , or a custom format.\n\nOutputFormat (string) --The output format: SequenceFileOutputFormat (binary), or IgnoreKeyTextOutputFormat , or a custom format.\n\nCompressed (boolean) --\nTrue if the data in the table is compressed, or False if not.\n\nNumberOfBuckets (integer) --Must be specified if the table contains any dimension columns.\n\nSerdeInfo (dict) --The serialization/deserialization (SerDe) information.\n\nName (string) --Name of the SerDe.\n\nSerializationLibrary (string) --Usually the class that implements the SerDe. An example is org.apache.hadoop.hive.serde2.columnar.ColumnarSerDe .\n\nParameters (dict) --These key-value pairs define initialization parameters for the SerDe.\n\n(string) --\n(string) --\n\n\n\n\n\n\nBucketColumns (list) --A list of reducer grouping columns, clustering columns, and bucketing columns in the table.\n\n(string) --\n\n\nSortColumns (list) --A list specifying the sort order of each bucket in the table.\n\n(dict) --Specifies the sort order of a sorted column.\n\nColumn (string) -- [REQUIRED]The name of the column.\n\nSortOrder (integer) -- [REQUIRED]Indicates that the column is sorted in ascending order (== 1 ), or in descending order (==0 ).\n\n\n\n\n\nParameters (dict) --The user-supplied properties in key-value form.\n\n(string) --\n(string) --\n\n\n\n\nSkewedInfo (dict) --The information about values that appear frequently in a column (skewed values).\n\nSkewedColumnNames (list) --A list of names of columns that contain skewed values.\n\n(string) --\n\n\nSkewedColumnValues (list) --A list of values that appear so frequently as to be considered skewed.\n\n(string) --\n\n\nSkewedColumnValueLocationMaps (dict) --A mapping of skewed values to the columns that contain them.\n\n(string) --\n(string) --\n\n\n\n\n\n\nStoredAsSubDirectories (boolean) --\nTrue if the table data is stored in subdirectories, or False if not.\n\n\n\nPartitionKeys (list) --A list of columns by which the table is partitioned. Only primitive types are supported as partition keys.\nWhen you create a table used by Amazon Athena, and you do not specify any partitionKeys , you must at least set the value of partitionKeys to an empty list. For example:\n\n'PartitionKeys': []\n\n(dict) --A column in a Table .\n\nName (string) -- [REQUIRED]The name of the Column .\n\nType (string) --The data type of the Column .\n\nComment (string) --A free-form text comment.\n\nParameters (dict) --These key-value pairs define properties associated with the column.\n\n(string) --\n(string) --\n\n\n\n\n\n\n\n\nViewOriginalText (string) --If the table is a view, the original text of the view; otherwise null .\n\nViewExpandedText (string) --If the table is a view, the expanded text of the view; otherwise null .\n\nTableType (string) --The type of this table (EXTERNAL_TABLE , VIRTUAL_VIEW , etc.).\n\nParameters (dict) --These key-value pairs define properties associated with the table.\n\n(string) --\n(string) --\n\n\n\n\n\n :rtype: dict ReturnsResponse Syntax {} Response Structure (dict) -- Exceptions Glue.Client.exceptions.AlreadyExistsException Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.ResourceNumberLimitExceededException Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.OperationTimeoutException Glue.Client.exceptions.GlueEncryptionException :return: {} :returns: (dict) -- """ pass def create_trigger(Name=None, WorkflowName=None, Type=None, Schedule=None, Predicate=None, Actions=None, Description=None, StartOnCreation=None, Tags=None): """ Creates a new trigger. See also: AWS API Documentation Exceptions :example: response = client.create_trigger( Name='string', WorkflowName='string', Type='SCHEDULED'|'CONDITIONAL'|'ON_DEMAND', Schedule='string', Predicate={ 'Logical': 'AND'|'ANY', 'Conditions': [ { 'LogicalOperator': 'EQUALS', 'JobName': 'string', 'State': 'STARTING'|'RUNNING'|'STOPPING'|'STOPPED'|'SUCCEEDED'|'FAILED'|'TIMEOUT', 'CrawlerName': 'string', 'CrawlState': 'RUNNING'|'CANCELLING'|'CANCELLED'|'SUCCEEDED'|'FAILED' }, ] }, Actions=[ { 'JobName': 'string', 'Arguments': { 'string': 'string' }, 'Timeout': 123, 'SecurityConfiguration': 'string', 'NotificationProperty': { 'NotifyDelayAfter': 123 }, 'CrawlerName': 'string' }, ], Description='string', StartOnCreation=True|False, Tags={ 'string': 'string' } ) :type Name: string :param Name: [REQUIRED]\nThe name of the trigger.\n :type WorkflowName: string :param WorkflowName: The name of the workflow associated with the trigger. :type Type: string :param Type: [REQUIRED]\nThe type of the new trigger.\n :type Schedule: string :param Schedule: A cron expression used to specify the schedule (see Time-Based Schedules for Jobs and Crawlers . For example, to run something every day at 12:15 UTC, you would specify: cron(15 12 * * ? *) .\nThis field is required when the trigger type is SCHEDULED.\n :type Predicate: dict :param Predicate: A predicate to specify when the new trigger should fire.\nThis field is required when the trigger type is CONDITIONAL .\n\nLogical (string) --An optional field if only one condition is listed. If multiple conditions are listed, then this field is required.\n\nConditions (list) --A list of the conditions that determine when the trigger will fire.\n\n(dict) --Defines a condition under which a trigger fires.\n\nLogicalOperator (string) --A logical operator.\n\nJobName (string) --The name of the job whose JobRuns this condition applies to, and on which this trigger waits.\n\nState (string) --The condition state. Currently, the only job states that a trigger can listen for are SUCCEEDED , STOPPED , FAILED , and TIMEOUT . The only crawler states that a trigger can listen for are SUCCEEDED , FAILED , and CANCELLED .\n\nCrawlerName (string) --The name of the crawler to which this condition applies.\n\nCrawlState (string) --The state of the crawler to which this condition applies.\n\n\n\n\n\n\n :type Actions: list :param Actions: [REQUIRED]\nThe actions initiated by this trigger when it fires.\n\n(dict) --Defines an action to be initiated by a trigger.\n\nJobName (string) --The name of a job to be executed.\n\nArguments (dict) --The job arguments used when this trigger fires. For this job run, they replace the default arguments set in the job definition itself.\nYou can specify arguments here that your own job-execution script consumes, as well as arguments that AWS Glue itself consumes.\nFor information about how to specify and consume your own Job arguments, see the Calling AWS Glue APIs in Python topic in the developer guide.\nFor information about the key-value pairs that AWS Glue consumes to set up your job, see the Special Parameters Used by AWS Glue topic in the developer guide.\n\n(string) --\n(string) --\n\n\n\n\nTimeout (integer) --The JobRun timeout in minutes. This is the maximum time that a job run can consume resources before it is terminated and enters TIMEOUT status. The default is 2,880 minutes (48 hours). This overrides the timeout value set in the parent job.\n\nSecurityConfiguration (string) --The name of the SecurityConfiguration structure to be used with this action.\n\nNotificationProperty (dict) --Specifies configuration properties of a job run notification.\n\nNotifyDelayAfter (integer) --After a job run starts, the number of minutes to wait before sending a job run delay notification.\n\n\n\nCrawlerName (string) --The name of the crawler to be used with this action.\n\n\n\n\n :type Description: string :param Description: A description of the new trigger. :type StartOnCreation: boolean :param StartOnCreation: Set to true to start SCHEDULED and CONDITIONAL triggers when created. True is not supported for ON_DEMAND triggers. :type Tags: dict :param Tags: The tags to use with this trigger. You may use tags to limit access to the trigger. For more information about tags in AWS Glue, see AWS Tags in AWS Glue in the developer guide.\n\n(string) --\n(string) --\n\n\n\n :rtype: dict ReturnsResponse Syntax { 'Name': 'string' } Response Structure (dict) -- Name (string) -- The name of the trigger. Exceptions Glue.Client.exceptions.AlreadyExistsException Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.IdempotentParameterMismatchException Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.OperationTimeoutException Glue.Client.exceptions.ResourceNumberLimitExceededException Glue.Client.exceptions.ConcurrentModificationException :return: { 'Name': 'string' } :returns: Glue.Client.exceptions.AlreadyExistsException Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.IdempotentParameterMismatchException Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.OperationTimeoutException Glue.Client.exceptions.ResourceNumberLimitExceededException Glue.Client.exceptions.ConcurrentModificationException """ pass def create_user_defined_function(CatalogId=None, DatabaseName=None, FunctionInput=None): """ Creates a new function definition in the Data Catalog. See also: AWS API Documentation Exceptions :example: response = client.create_user_defined_function( CatalogId='string', DatabaseName='string', FunctionInput={ 'FunctionName': 'string', 'ClassName': 'string', 'OwnerName': 'string', 'OwnerType': 'USER'|'ROLE'|'GROUP', 'ResourceUris': [ { 'ResourceType': 'JAR'|'FILE'|'ARCHIVE', 'Uri': 'string' }, ] } ) :type CatalogId: string :param CatalogId: The ID of the Data Catalog in which to create the function. If none is provided, the AWS account ID is used by default. :type DatabaseName: string :param DatabaseName: [REQUIRED]\nThe name of the catalog database in which to create the function.\n :type FunctionInput: dict :param FunctionInput: [REQUIRED]\nA FunctionInput object that defines the function to create in the Data Catalog.\n\nFunctionName (string) --The name of the function.\n\nClassName (string) --The Java class that contains the function code.\n\nOwnerName (string) --The owner of the function.\n\nOwnerType (string) --The owner type.\n\nResourceUris (list) --The resource URIs for the function.\n\n(dict) --The URIs for function resources.\n\nResourceType (string) --The type of the resource.\n\nUri (string) --The URI for accessing the resource.\n\n\n\n\n\n\n :rtype: dict ReturnsResponse Syntax {} Response Structure (dict) -- Exceptions Glue.Client.exceptions.AlreadyExistsException Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.OperationTimeoutException Glue.Client.exceptions.ResourceNumberLimitExceededException Glue.Client.exceptions.GlueEncryptionException :return: {} :returns: (dict) -- """ pass def create_workflow(Name=None, Description=None, DefaultRunProperties=None, Tags=None): """ Creates a new workflow. See also: AWS API Documentation Exceptions :example: response = client.create_workflow( Name='string', Description='string', DefaultRunProperties={ 'string': 'string' }, Tags={ 'string': 'string' } ) :type Name: string :param Name: [REQUIRED]\nThe name to be assigned to the workflow. It should be unique within your account.\n :type Description: string :param Description: A description of the workflow. :type DefaultRunProperties: dict :param DefaultRunProperties: A collection of properties to be used as part of each execution of the workflow.\n\n(string) --\n(string) --\n\n\n\n :type Tags: dict :param Tags: The tags to be used with this workflow.\n\n(string) --\n(string) --\n\n\n\n :rtype: dict ReturnsResponse Syntax { 'Name': 'string' } Response Structure (dict) -- Name (string) -- The name of the workflow which was provided as part of the request. Exceptions Glue.Client.exceptions.AlreadyExistsException Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.OperationTimeoutException Glue.Client.exceptions.ResourceNumberLimitExceededException Glue.Client.exceptions.ConcurrentModificationException :return: { 'Name': 'string' } :returns: Glue.Client.exceptions.AlreadyExistsException Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.OperationTimeoutException Glue.Client.exceptions.ResourceNumberLimitExceededException Glue.Client.exceptions.ConcurrentModificationException """ pass def delete_classifier(Name=None): """ Removes a classifier from the Data Catalog. See also: AWS API Documentation Exceptions :example: response = client.delete_classifier( Name='string' ) :type Name: string :param Name: [REQUIRED]\nName of the classifier to remove.\n :rtype: dict ReturnsResponse Syntax{} Response Structure (dict) -- Exceptions Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.OperationTimeoutException :return: {} :returns: Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.OperationTimeoutException """ pass def delete_connection(CatalogId=None, ConnectionName=None): """ Deletes a connection from the Data Catalog. See also: AWS API Documentation Exceptions :example: response = client.delete_connection( CatalogId='string', ConnectionName='string' ) :type CatalogId: string :param CatalogId: The ID of the Data Catalog in which the connection resides. If none is provided, the AWS account ID is used by default. :type ConnectionName: string :param ConnectionName: [REQUIRED]\nThe name of the connection to delete.\n :rtype: dict ReturnsResponse Syntax {} Response Structure (dict) -- Exceptions Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.OperationTimeoutException :return: {} :returns: (dict) -- """ pass def delete_crawler(Name=None): """ Removes a specified crawler from the AWS Glue Data Catalog, unless the crawler state is RUNNING . See also: AWS API Documentation Exceptions :example: response = client.delete_crawler( Name='string' ) :type Name: string :param Name: [REQUIRED]\nThe name of the crawler to remove.\n :rtype: dict ReturnsResponse Syntax{} Response Structure (dict) -- Exceptions Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.CrawlerRunningException Glue.Client.exceptions.SchedulerTransitioningException Glue.Client.exceptions.OperationTimeoutException :return: {} :returns: Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.CrawlerRunningException Glue.Client.exceptions.SchedulerTransitioningException Glue.Client.exceptions.OperationTimeoutException """ pass def delete_database(CatalogId=None, Name=None): """ Removes a specified database from a Data Catalog. See also: AWS API Documentation Exceptions :example: response = client.delete_database( CatalogId='string', Name='string' ) :type CatalogId: string :param CatalogId: The ID of the Data Catalog in which the database resides. If none is provided, the AWS account ID is used by default. :type Name: string :param Name: [REQUIRED]\nThe name of the database to delete. For Hive compatibility, this must be all lowercase.\n :rtype: dict ReturnsResponse Syntax {} Response Structure (dict) -- Exceptions Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.OperationTimeoutException :return: {} :returns: (dict) -- """ pass def delete_dev_endpoint(EndpointName=None): """ Deletes a specified development endpoint. See also: AWS API Documentation Exceptions :example: response = client.delete_dev_endpoint( EndpointName='string' ) :type EndpointName: string :param EndpointName: [REQUIRED]\nThe name of the DevEndpoint .\n :rtype: dict ReturnsResponse Syntax{} Response Structure (dict) -- Exceptions Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.OperationTimeoutException Glue.Client.exceptions.InvalidInputException :return: {} :returns: Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.OperationTimeoutException Glue.Client.exceptions.InvalidInputException """ pass def delete_job(JobName=None): """ Deletes a specified job definition. If the job definition is not found, no exception is thrown. See also: AWS API Documentation Exceptions :example: response = client.delete_job( JobName='string' ) :type JobName: string :param JobName: [REQUIRED]\nThe name of the job definition to delete.\n :rtype: dict ReturnsResponse Syntax{ 'JobName': 'string' } Response Structure (dict) -- JobName (string) --The name of the job definition that was deleted. Exceptions Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.OperationTimeoutException :return: { 'JobName': 'string' } """ pass def delete_ml_transform(TransformId=None): """ Deletes an AWS Glue machine learning transform. Machine learning transforms are a special type of transform that use machine learning to learn the details of the transformation to be performed by learning from examples provided by humans. These transformations are then saved by AWS Glue. If you no longer need a transform, you can delete it by calling DeleteMLTransforms . However, any AWS Glue jobs that still reference the deleted transform will no longer succeed. See also: AWS API Documentation Exceptions :example: response = client.delete_ml_transform( TransformId='string' ) :type TransformId: string :param TransformId: [REQUIRED]\nThe unique identifier of the transform to delete.\n :rtype: dict ReturnsResponse Syntax{ 'TransformId': 'string' } Response Structure (dict) -- TransformId (string) --The unique identifier of the transform that was deleted. Exceptions Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.OperationTimeoutException Glue.Client.exceptions.InternalServiceException :return: { 'TransformId': 'string' } """ pass def delete_partition(CatalogId=None, DatabaseName=None, TableName=None, PartitionValues=None): """ Deletes a specified partition. See also: AWS API Documentation Exceptions :example: response = client.delete_partition( CatalogId='string', DatabaseName='string', TableName='string', PartitionValues=[ 'string', ] ) :type CatalogId: string :param CatalogId: The ID of the Data Catalog where the partition to be deleted resides. If none is provided, the AWS account ID is used by default. :type DatabaseName: string :param DatabaseName: [REQUIRED]\nThe name of the catalog database in which the table in question resides.\n :type TableName: string :param TableName: [REQUIRED]\nThe name of the table that contains the partition to be deleted.\n :type PartitionValues: list :param PartitionValues: [REQUIRED]\nThe values that define the partition.\n\n(string) --\n\n :rtype: dict ReturnsResponse Syntax {} Response Structure (dict) -- Exceptions Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.OperationTimeoutException :return: {} :returns: (dict) -- """ pass def delete_resource_policy(PolicyHashCondition=None): """ Deletes a specified policy. See also: AWS API Documentation Exceptions :example: response = client.delete_resource_policy( PolicyHashCondition='string' ) :type PolicyHashCondition: string :param PolicyHashCondition: The hash value returned when this policy was set. :rtype: dict ReturnsResponse Syntax{} Response Structure (dict) -- Exceptions Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.OperationTimeoutException Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.ConditionCheckFailureException :return: {} :returns: Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.OperationTimeoutException Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.ConditionCheckFailureException """ pass def delete_security_configuration(Name=None): """ Deletes a specified security configuration. See also: AWS API Documentation Exceptions :example: response = client.delete_security_configuration( Name='string' ) :type Name: string :param Name: [REQUIRED]\nThe name of the security configuration to delete.\n :rtype: dict ReturnsResponse Syntax{} Response Structure (dict) -- Exceptions Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.OperationTimeoutException :return: {} :returns: Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.OperationTimeoutException """ pass def delete_table(CatalogId=None, DatabaseName=None, Name=None): """ Removes a table definition from the Data Catalog. See also: AWS API Documentation Exceptions :example: response = client.delete_table( CatalogId='string', DatabaseName='string', Name='string' ) :type CatalogId: string :param CatalogId: The ID of the Data Catalog where the table resides. If none is provided, the AWS account ID is used by default. :type DatabaseName: string :param DatabaseName: [REQUIRED]\nThe name of the catalog database in which the table resides. For Hive compatibility, this name is entirely lowercase.\n :type Name: string :param Name: [REQUIRED]\nThe name of the table to be deleted. For Hive compatibility, this name is entirely lowercase.\n :rtype: dict ReturnsResponse Syntax {} Response Structure (dict) -- Exceptions Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.OperationTimeoutException :return: {} :returns: (dict) -- """ pass def delete_table_version(CatalogId=None, DatabaseName=None, TableName=None, VersionId=None): """ Deletes a specified version of a table. See also: AWS API Documentation Exceptions :example: response = client.delete_table_version( CatalogId='string', DatabaseName='string', TableName='string', VersionId='string' ) :type CatalogId: string :param CatalogId: The ID of the Data Catalog where the tables reside. If none is provided, the AWS account ID is used by default. :type DatabaseName: string :param DatabaseName: [REQUIRED]\nThe database in the catalog in which the table resides. For Hive compatibility, this name is entirely lowercase.\n :type TableName: string :param TableName: [REQUIRED]\nThe name of the table. For Hive compatibility, this name is entirely lowercase.\n :type VersionId: string :param VersionId: [REQUIRED]\nThe ID of the table version to be deleted. A VersionID is a string representation of an integer. Each version is incremented by 1.\n :rtype: dict ReturnsResponse Syntax {} Response Structure (dict) -- Exceptions Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.OperationTimeoutException :return: {} :returns: (dict) -- """ pass def delete_trigger(Name=None): """ Deletes a specified trigger. If the trigger is not found, no exception is thrown. See also: AWS API Documentation Exceptions :example: response = client.delete_trigger( Name='string' ) :type Name: string :param Name: [REQUIRED]\nThe name of the trigger to delete.\n :rtype: dict ReturnsResponse Syntax{ 'Name': 'string' } Response Structure (dict) -- Name (string) --The name of the trigger that was deleted. Exceptions Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.OperationTimeoutException Glue.Client.exceptions.ConcurrentModificationException :return: { 'Name': 'string' } """ pass def delete_user_defined_function(CatalogId=None, DatabaseName=None, FunctionName=None): """ Deletes an existing function definition from the Data Catalog. See also: AWS API Documentation Exceptions :example: response = client.delete_user_defined_function( CatalogId='string', DatabaseName='string', FunctionName='string' ) :type CatalogId: string :param CatalogId: The ID of the Data Catalog where the function to be deleted is located. If none is supplied, the AWS account ID is used by default. :type DatabaseName: string :param DatabaseName: [REQUIRED]\nThe name of the catalog database where the function is located.\n :type FunctionName: string :param FunctionName: [REQUIRED]\nThe name of the function definition to be deleted.\n :rtype: dict ReturnsResponse Syntax {} Response Structure (dict) -- Exceptions Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.OperationTimeoutException :return: {} :returns: (dict) -- """ pass def delete_workflow(Name=None): """ Deletes a workflow. See also: AWS API Documentation Exceptions :example: response = client.delete_workflow( Name='string' ) :type Name: string :param Name: [REQUIRED]\nName of the workflow to be deleted.\n :rtype: dict ReturnsResponse Syntax{ 'Name': 'string' } Response Structure (dict) -- Name (string) --Name of the workflow specified in input. Exceptions Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.OperationTimeoutException Glue.Client.exceptions.ConcurrentModificationException :return: { 'Name': 'string' } """ pass def generate_presigned_url(ClientMethod=None, Params=None, ExpiresIn=None, HttpMethod=None): """ Generate a presigned url given a client, its method, and arguments :type ClientMethod: string :param ClientMethod: The client method to presign for :type Params: dict :param Params: The parameters normally passed to\nClientMethod. :type ExpiresIn: int :param ExpiresIn: The number of seconds the presigned url is valid\nfor. By default it expires in an hour (3600 seconds) :type HttpMethod: string :param HttpMethod: The http method to use on the generated url. By\ndefault, the http method is whatever is used in the method\'s model. """ pass def get_catalog_import_status(CatalogId=None): """ Retrieves the status of a migration operation. See also: AWS API Documentation Exceptions :example: response = client.get_catalog_import_status( CatalogId='string' ) :type CatalogId: string :param CatalogId: The ID of the catalog to migrate. Currently, this should be the AWS account ID. :rtype: dict ReturnsResponse Syntax{ 'ImportStatus': { 'ImportCompleted': True|False, 'ImportTime': datetime(2015, 1, 1), 'ImportedBy': 'string' } } Response Structure (dict) -- ImportStatus (dict) --The status of the specified catalog migration. ImportCompleted (boolean) -- True if the migration has completed, or False otherwise. ImportTime (datetime) --The time that the migration was started. ImportedBy (string) --The name of the person who initiated the migration. Exceptions Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.OperationTimeoutException :return: { 'ImportStatus': { 'ImportCompleted': True|False, 'ImportTime': datetime(2015, 1, 1), 'ImportedBy': 'string' } } """ pass def get_classifier(Name=None): """ Retrieve a classifier by name. See also: AWS API Documentation Exceptions :example: response = client.get_classifier( Name='string' ) :type Name: string :param Name: [REQUIRED]\nName of the classifier to retrieve.\n :rtype: dict ReturnsResponse Syntax{ 'Classifier': { 'GrokClassifier': { 'Name': 'string', 'Classification': 'string', 'CreationTime': datetime(2015, 1, 1), 'LastUpdated': datetime(2015, 1, 1), 'Version': 123, 'GrokPattern': 'string', 'CustomPatterns': 'string' }, 'XMLClassifier': { 'Name': 'string', 'Classification': 'string', 'CreationTime': datetime(2015, 1, 1), 'LastUpdated': datetime(2015, 1, 1), 'Version': 123, 'RowTag': 'string' }, 'JsonClassifier': { 'Name': 'string', 'CreationTime': datetime(2015, 1, 1), 'LastUpdated': datetime(2015, 1, 1), 'Version': 123, 'JsonPath': 'string' }, 'CsvClassifier': { 'Name': 'string', 'CreationTime': datetime(2015, 1, 1), 'LastUpdated': datetime(2015, 1, 1), 'Version': 123, 'Delimiter': 'string', 'QuoteSymbol': 'string', 'ContainsHeader': 'UNKNOWN'|'PRESENT'|'ABSENT', 'Header': [ 'string', ], 'DisableValueTrimming': True|False, 'AllowSingleColumn': True|False } } } Response Structure (dict) -- Classifier (dict) --The requested classifier. GrokClassifier (dict) --A classifier that uses grok . Name (string) --The name of the classifier. Classification (string) --An identifier of the data format that the classifier matches, such as Twitter, JSON, Omniture logs, and so on. CreationTime (datetime) --The time that this classifier was registered. LastUpdated (datetime) --The time that this classifier was last updated. Version (integer) --The version of this classifier. GrokPattern (string) --The grok pattern applied to a data store by this classifier. For more information, see built-in patterns in Writing Custom Classifiers . CustomPatterns (string) --Optional custom grok patterns defined by this classifier. For more information, see custom patterns in Writing Custom Classifiers . XMLClassifier (dict) --A classifier for XML content. Name (string) --The name of the classifier. Classification (string) --An identifier of the data format that the classifier matches. CreationTime (datetime) --The time that this classifier was registered. LastUpdated (datetime) --The time that this classifier was last updated. Version (integer) --The version of this classifier. RowTag (string) --The XML tag designating the element that contains each record in an XML document being parsed. This can\'t identify a self-closing element (closed by /> ). An empty row element that contains only attributes can be parsed as long as it ends with a closing tag (for example, <row item_a="A" item_b="B"></row> is okay, but <row item_a="A" item_b="B" /> is not). JsonClassifier (dict) --A classifier for JSON content. Name (string) --The name of the classifier. CreationTime (datetime) --The time that this classifier was registered. LastUpdated (datetime) --The time that this classifier was last updated. Version (integer) --The version of this classifier. JsonPath (string) --A JsonPath string defining the JSON data for the classifier to classify. AWS Glue supports a subset of JsonPath , as described in Writing JsonPath Custom Classifiers . CsvClassifier (dict) --A classifier for comma-separated values (CSV). Name (string) --The name of the classifier. CreationTime (datetime) --The time that this classifier was registered. LastUpdated (datetime) --The time that this classifier was last updated. Version (integer) --The version of this classifier. Delimiter (string) --A custom symbol to denote what separates each column entry in the row. QuoteSymbol (string) --A custom symbol to denote what combines content into a single column value. It must be different from the column delimiter. ContainsHeader (string) --Indicates whether the CSV file contains a header. Header (list) --A list of strings representing column names. (string) -- DisableValueTrimming (boolean) --Specifies not to trim values before identifying the type of column values. The default value is true . AllowSingleColumn (boolean) --Enables the processing of files that contain only one column. Exceptions Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.OperationTimeoutException :return: { 'Classifier': { 'GrokClassifier': { 'Name': 'string', 'Classification': 'string', 'CreationTime': datetime(2015, 1, 1), 'LastUpdated': datetime(2015, 1, 1), 'Version': 123, 'GrokPattern': 'string', 'CustomPatterns': 'string' }, 'XMLClassifier': { 'Name': 'string', 'Classification': 'string', 'CreationTime': datetime(2015, 1, 1), 'LastUpdated': datetime(2015, 1, 1), 'Version': 123, 'RowTag': 'string' }, 'JsonClassifier': { 'Name': 'string', 'CreationTime': datetime(2015, 1, 1), 'LastUpdated': datetime(2015, 1, 1), 'Version': 123, 'JsonPath': 'string' }, 'CsvClassifier': { 'Name': 'string', 'CreationTime': datetime(2015, 1, 1), 'LastUpdated': datetime(2015, 1, 1), 'Version': 123, 'Delimiter': 'string', 'QuoteSymbol': 'string', 'ContainsHeader': 'UNKNOWN'|'PRESENT'|'ABSENT', 'Header': [ 'string', ], 'DisableValueTrimming': True|False, 'AllowSingleColumn': True|False } } } :returns: Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.OperationTimeoutException """ pass def get_classifiers(MaxResults=None, NextToken=None): """ Lists all classifier objects in the Data Catalog. See also: AWS API Documentation Exceptions :example: response = client.get_classifiers( MaxResults=123, NextToken='string' ) :type MaxResults: integer :param MaxResults: The size of the list to return (optional). :type NextToken: string :param NextToken: An optional continuation token. :rtype: dict ReturnsResponse Syntax { 'Classifiers': [ { 'GrokClassifier': { 'Name': 'string', 'Classification': 'string', 'CreationTime': datetime(2015, 1, 1), 'LastUpdated': datetime(2015, 1, 1), 'Version': 123, 'GrokPattern': 'string', 'CustomPatterns': 'string' }, 'XMLClassifier': { 'Name': 'string', 'Classification': 'string', 'CreationTime': datetime(2015, 1, 1), 'LastUpdated': datetime(2015, 1, 1), 'Version': 123, 'RowTag': 'string' }, 'JsonClassifier': { 'Name': 'string', 'CreationTime': datetime(2015, 1, 1), 'LastUpdated': datetime(2015, 1, 1), 'Version': 123, 'JsonPath': 'string' }, 'CsvClassifier': { 'Name': 'string', 'CreationTime': datetime(2015, 1, 1), 'LastUpdated': datetime(2015, 1, 1), 'Version': 123, 'Delimiter': 'string', 'QuoteSymbol': 'string', 'ContainsHeader': 'UNKNOWN'|'PRESENT'|'ABSENT', 'Header': [ 'string', ], 'DisableValueTrimming': True|False, 'AllowSingleColumn': True|False } }, ], 'NextToken': 'string' } Response Structure (dict) -- Classifiers (list) -- The requested list of classifier objects. (dict) -- Classifiers are triggered during a crawl task. A classifier checks whether a given file is in a format it can handle. If it is, the classifier creates a schema in the form of a StructType object that matches that data format. You can use the standard classifiers that AWS Glue provides, or you can write your own classifiers to best categorize your data sources and specify the appropriate schemas to use for them. A classifier can be a grok classifier, an XML classifier, a JSON classifier, or a custom CSV classifier, as specified in one of the fields in the Classifier object. GrokClassifier (dict) -- A classifier that uses grok . Name (string) -- The name of the classifier. Classification (string) -- An identifier of the data format that the classifier matches, such as Twitter, JSON, Omniture logs, and so on. CreationTime (datetime) -- The time that this classifier was registered. LastUpdated (datetime) -- The time that this classifier was last updated. Version (integer) -- The version of this classifier. GrokPattern (string) -- The grok pattern applied to a data store by this classifier. For more information, see built-in patterns in Writing Custom Classifiers . CustomPatterns (string) -- Optional custom grok patterns defined by this classifier. For more information, see custom patterns in Writing Custom Classifiers . XMLClassifier (dict) -- A classifier for XML content. Name (string) -- The name of the classifier. Classification (string) -- An identifier of the data format that the classifier matches. CreationTime (datetime) -- The time that this classifier was registered. LastUpdated (datetime) -- The time that this classifier was last updated. Version (integer) -- The version of this classifier. RowTag (string) -- The XML tag designating the element that contains each record in an XML document being parsed. This can\'t identify a self-closing element (closed by /> ). An empty row element that contains only attributes can be parsed as long as it ends with a closing tag (for example, <row item_a="A" item_b="B"></row> is okay, but <row item_a="A" item_b="B" /> is not). JsonClassifier (dict) -- A classifier for JSON content. Name (string) -- The name of the classifier. CreationTime (datetime) -- The time that this classifier was registered. LastUpdated (datetime) -- The time that this classifier was last updated. Version (integer) -- The version of this classifier. JsonPath (string) -- A JsonPath string defining the JSON data for the classifier to classify. AWS Glue supports a subset of JsonPath , as described in Writing JsonPath Custom Classifiers . CsvClassifier (dict) -- A classifier for comma-separated values (CSV). Name (string) -- The name of the classifier. CreationTime (datetime) -- The time that this classifier was registered. LastUpdated (datetime) -- The time that this classifier was last updated. Version (integer) -- The version of this classifier. Delimiter (string) -- A custom symbol to denote what separates each column entry in the row. QuoteSymbol (string) -- A custom symbol to denote what combines content into a single column value. It must be different from the column delimiter. ContainsHeader (string) -- Indicates whether the CSV file contains a header. Header (list) -- A list of strings representing column names. (string) -- DisableValueTrimming (boolean) -- Specifies not to trim values before identifying the type of column values. The default value is true . AllowSingleColumn (boolean) -- Enables the processing of files that contain only one column. NextToken (string) -- A continuation token. Exceptions Glue.Client.exceptions.OperationTimeoutException :return: { 'Classifiers': [ { 'GrokClassifier': { 'Name': 'string', 'Classification': 'string', 'CreationTime': datetime(2015, 1, 1), 'LastUpdated': datetime(2015, 1, 1), 'Version': 123, 'GrokPattern': 'string', 'CustomPatterns': 'string' }, 'XMLClassifier': { 'Name': 'string', 'Classification': 'string', 'CreationTime': datetime(2015, 1, 1), 'LastUpdated': datetime(2015, 1, 1), 'Version': 123, 'RowTag': 'string' }, 'JsonClassifier': { 'Name': 'string', 'CreationTime': datetime(2015, 1, 1), 'LastUpdated': datetime(2015, 1, 1), 'Version': 123, 'JsonPath': 'string' }, 'CsvClassifier': { 'Name': 'string', 'CreationTime': datetime(2015, 1, 1), 'LastUpdated': datetime(2015, 1, 1), 'Version': 123, 'Delimiter': 'string', 'QuoteSymbol': 'string', 'ContainsHeader': 'UNKNOWN'|'PRESENT'|'ABSENT', 'Header': [ 'string', ], 'DisableValueTrimming': True|False, 'AllowSingleColumn': True|False } }, ], 'NextToken': 'string' } :returns: (string) -- """ pass def get_connection(CatalogId=None, Name=None, HidePassword=None): """ Retrieves a connection definition from the Data Catalog. See also: AWS API Documentation Exceptions :example: response = client.get_connection( CatalogId='string', Name='string', HidePassword=True|False ) :type CatalogId: string :param CatalogId: The ID of the Data Catalog in which the connection resides. If none is provided, the AWS account ID is used by default. :type Name: string :param Name: [REQUIRED]\nThe name of the connection definition to retrieve.\n :type HidePassword: boolean :param HidePassword: Allows you to retrieve the connection metadata without returning the password. For instance, the AWS Glue console uses this flag to retrieve the connection, and does not display the password. Set this parameter when the caller might not have permission to use the AWS KMS key to decrypt the password, but it does have permission to access the rest of the connection properties. :rtype: dict ReturnsResponse Syntax { 'Connection': { 'Name': 'string', 'Description': 'string', 'ConnectionType': 'JDBC'|'SFTP'|'MONGODB'|'KAFKA', 'MatchCriteria': [ 'string', ], 'ConnectionProperties': { 'string': 'string' }, 'PhysicalConnectionRequirements': { 'SubnetId': 'string', 'SecurityGroupIdList': [ 'string', ], 'AvailabilityZone': 'string' }, 'CreationTime': datetime(2015, 1, 1), 'LastUpdatedTime': datetime(2015, 1, 1), 'LastUpdatedBy': 'string' } } Response Structure (dict) -- Connection (dict) -- The requested connection definition. Name (string) -- The name of the connection definition. Description (string) -- The description of the connection. ConnectionType (string) -- The type of the connection. Currently, only JDBC is supported; SFTP is not supported. MatchCriteria (list) -- A list of criteria that can be used in selecting this connection. (string) -- ConnectionProperties (dict) -- These key-value pairs define parameters for the connection: HOST - The host URI: either the fully qualified domain name (FQDN) or the IPv4 address of the database host. PORT - The port number, between 1024 and 65535, of the port on which the database host is listening for database connections. USER_NAME - The name under which to log in to the database. The value string for USER_NAME is "USERNAME ". PASSWORD - A password, if one is used, for the user name. ENCRYPTED_PASSWORD - When you enable connection password protection by setting ConnectionPasswordEncryption in the Data Catalog encryption settings, this field stores the encrypted password. JDBC_DRIVER_JAR_URI - The Amazon Simple Storage Service (Amazon S3) path of the JAR file that contains the JDBC driver to use. JDBC_DRIVER_CLASS_NAME - The class name of the JDBC driver to use. JDBC_ENGINE - The name of the JDBC engine to use. JDBC_ENGINE_VERSION - The version of the JDBC engine to use. CONFIG_FILES - (Reserved for future use.) INSTANCE_ID - The instance ID to use. JDBC_CONNECTION_URL - The URL for connecting to a JDBC data source. JDBC_ENFORCE_SSL - A Boolean string (true, false) specifying whether Secure Sockets Layer (SSL) with hostname matching is enforced for the JDBC connection on the client. The default is false. CUSTOM_JDBC_CERT - An Amazon S3 location specifying the customer\'s root certificate. AWS Glue uses this root certificate to validate the customer\xe2\x80\x99s certificate when connecting to the customer database. AWS Glue only handles X.509 certificates. The certificate provided must be DER-encoded and supplied in Base64 encoding PEM format. SKIP_CUSTOM_JDBC_CERT_VALIDATION - By default, this is false . AWS Glue validates the Signature algorithm and Subject Public Key Algorithm for the customer certificate. The only permitted algorithms for the Signature algorithm are SHA256withRSA, SHA384withRSA or SHA512withRSA. For the Subject Public Key Algorithm, the key length must be at least 2048. You can set the value of this property to true to skip AWS Glue\xe2\x80\x99s validation of the customer certificate. CUSTOM_JDBC_CERT_STRING - A custom JDBC certificate string which is used for domain match or distinguished name match to prevent a man-in-the-middle attack. In Oracle database, this is used as the SSL_SERVER_CERT_DN ; in Microsoft SQL Server, this is used as the hostNameInCertificate . CONNECTION_URL - The URL for connecting to a general (non-JDBC) data source. KAFKA_BOOTSTRAP_SERVERS - A comma-separated list of host and port pairs that are the addresses of the Apache Kafka brokers in a Kafka cluster to which a Kafka client will connect to and bootstrap itself. (string) -- (string) -- PhysicalConnectionRequirements (dict) -- A map of physical connection requirements, such as virtual private cloud (VPC) and SecurityGroup , that are needed to make this connection successfully. SubnetId (string) -- The subnet ID used by the connection. SecurityGroupIdList (list) -- The security group ID list used by the connection. (string) -- AvailabilityZone (string) -- The connection\'s Availability Zone. This field is redundant because the specified subnet implies the Availability Zone to be used. Currently the field must be populated, but it will be deprecated in the future. CreationTime (datetime) -- The time that this connection definition was created. LastUpdatedTime (datetime) -- The last time that this connection definition was updated. LastUpdatedBy (string) -- The user, group, or role that last updated this connection definition. Exceptions Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.OperationTimeoutException Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.GlueEncryptionException :return: { 'Connection': { 'Name': 'string', 'Description': 'string', 'ConnectionType': 'JDBC'|'SFTP'|'MONGODB'|'KAFKA', 'MatchCriteria': [ 'string', ], 'ConnectionProperties': { 'string': 'string' }, 'PhysicalConnectionRequirements': { 'SubnetId': 'string', 'SecurityGroupIdList': [ 'string', ], 'AvailabilityZone': 'string' }, 'CreationTime': datetime(2015, 1, 1), 'LastUpdatedTime': datetime(2015, 1, 1), 'LastUpdatedBy': 'string' } } :returns: (string) -- """ pass def get_connections(CatalogId=None, Filter=None, HidePassword=None, NextToken=None, MaxResults=None): """ Retrieves a list of connection definitions from the Data Catalog. See also: AWS API Documentation Exceptions :example: response = client.get_connections( CatalogId='string', Filter={ 'MatchCriteria': [ 'string', ], 'ConnectionType': 'JDBC'|'SFTP'|'MONGODB'|'KAFKA' }, HidePassword=True|False, NextToken='string', MaxResults=123 ) :type CatalogId: string :param CatalogId: The ID of the Data Catalog in which the connections reside. If none is provided, the AWS account ID is used by default. :type Filter: dict :param Filter: A filter that controls which connections are returned.\n\nMatchCriteria (list) --A criteria string that must match the criteria recorded in the connection definition for that connection definition to be returned.\n\n(string) --\n\n\nConnectionType (string) --The type of connections to return. Currently, only JDBC is supported; SFTP is not supported.\n\n\n :type HidePassword: boolean :param HidePassword: Allows you to retrieve the connection metadata without returning the password. For instance, the AWS Glue console uses this flag to retrieve the connection, and does not display the password. Set this parameter when the caller might not have permission to use the AWS KMS key to decrypt the password, but it does have permission to access the rest of the connection properties. :type NextToken: string :param NextToken: A continuation token, if this is a continuation call. :type MaxResults: integer :param MaxResults: The maximum number of connections to return in one response. :rtype: dict ReturnsResponse Syntax { 'ConnectionList': [ { 'Name': 'string', 'Description': 'string', 'ConnectionType': 'JDBC'|'SFTP'|'MONGODB'|'KAFKA', 'MatchCriteria': [ 'string', ], 'ConnectionProperties': { 'string': 'string' }, 'PhysicalConnectionRequirements': { 'SubnetId': 'string', 'SecurityGroupIdList': [ 'string', ], 'AvailabilityZone': 'string' }, 'CreationTime': datetime(2015, 1, 1), 'LastUpdatedTime': datetime(2015, 1, 1), 'LastUpdatedBy': 'string' }, ], 'NextToken': 'string' } Response Structure (dict) -- ConnectionList (list) -- A list of requested connection definitions. (dict) -- Defines a connection to a data source. Name (string) -- The name of the connection definition. Description (string) -- The description of the connection. ConnectionType (string) -- The type of the connection. Currently, only JDBC is supported; SFTP is not supported. MatchCriteria (list) -- A list of criteria that can be used in selecting this connection. (string) -- ConnectionProperties (dict) -- These key-value pairs define parameters for the connection: HOST - The host URI: either the fully qualified domain name (FQDN) or the IPv4 address of the database host. PORT - The port number, between 1024 and 65535, of the port on which the database host is listening for database connections. USER_NAME - The name under which to log in to the database. The value string for USER_NAME is "USERNAME ". PASSWORD - A password, if one is used, for the user name. ENCRYPTED_PASSWORD - When you enable connection password protection by setting ConnectionPasswordEncryption in the Data Catalog encryption settings, this field stores the encrypted password. JDBC_DRIVER_JAR_URI - The Amazon Simple Storage Service (Amazon S3) path of the JAR file that contains the JDBC driver to use. JDBC_DRIVER_CLASS_NAME - The class name of the JDBC driver to use. JDBC_ENGINE - The name of the JDBC engine to use. JDBC_ENGINE_VERSION - The version of the JDBC engine to use. CONFIG_FILES - (Reserved for future use.) INSTANCE_ID - The instance ID to use. JDBC_CONNECTION_URL - The URL for connecting to a JDBC data source. JDBC_ENFORCE_SSL - A Boolean string (true, false) specifying whether Secure Sockets Layer (SSL) with hostname matching is enforced for the JDBC connection on the client. The default is false. CUSTOM_JDBC_CERT - An Amazon S3 location specifying the customer\'s root certificate. AWS Glue uses this root certificate to validate the customer\xe2\x80\x99s certificate when connecting to the customer database. AWS Glue only handles X.509 certificates. The certificate provided must be DER-encoded and supplied in Base64 encoding PEM format. SKIP_CUSTOM_JDBC_CERT_VALIDATION - By default, this is false . AWS Glue validates the Signature algorithm and Subject Public Key Algorithm for the customer certificate. The only permitted algorithms for the Signature algorithm are SHA256withRSA, SHA384withRSA or SHA512withRSA. For the Subject Public Key Algorithm, the key length must be at least 2048. You can set the value of this property to true to skip AWS Glue\xe2\x80\x99s validation of the customer certificate. CUSTOM_JDBC_CERT_STRING - A custom JDBC certificate string which is used for domain match or distinguished name match to prevent a man-in-the-middle attack. In Oracle database, this is used as the SSL_SERVER_CERT_DN ; in Microsoft SQL Server, this is used as the hostNameInCertificate . CONNECTION_URL - The URL for connecting to a general (non-JDBC) data source. KAFKA_BOOTSTRAP_SERVERS - A comma-separated list of host and port pairs that are the addresses of the Apache Kafka brokers in a Kafka cluster to which a Kafka client will connect to and bootstrap itself. (string) -- (string) -- PhysicalConnectionRequirements (dict) -- A map of physical connection requirements, such as virtual private cloud (VPC) and SecurityGroup , that are needed to make this connection successfully. SubnetId (string) -- The subnet ID used by the connection. SecurityGroupIdList (list) -- The security group ID list used by the connection. (string) -- AvailabilityZone (string) -- The connection\'s Availability Zone. This field is redundant because the specified subnet implies the Availability Zone to be used. Currently the field must be populated, but it will be deprecated in the future. CreationTime (datetime) -- The time that this connection definition was created. LastUpdatedTime (datetime) -- The last time that this connection definition was updated. LastUpdatedBy (string) -- The user, group, or role that last updated this connection definition. NextToken (string) -- A continuation token, if the list of connections returned does not include the last of the filtered connections. Exceptions Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.OperationTimeoutException Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.GlueEncryptionException :return: { 'ConnectionList': [ { 'Name': 'string', 'Description': 'string', 'ConnectionType': 'JDBC'|'SFTP'|'MONGODB'|'KAFKA', 'MatchCriteria': [ 'string', ], 'ConnectionProperties': { 'string': 'string' }, 'PhysicalConnectionRequirements': { 'SubnetId': 'string', 'SecurityGroupIdList': [ 'string', ], 'AvailabilityZone': 'string' }, 'CreationTime': datetime(2015, 1, 1), 'LastUpdatedTime': datetime(2015, 1, 1), 'LastUpdatedBy': 'string' }, ], 'NextToken': 'string' } :returns: (string) -- """ pass def get_crawler(Name=None): """ Retrieves metadata for a specified crawler. See also: AWS API Documentation Exceptions :example: response = client.get_crawler( Name='string' ) :type Name: string :param Name: [REQUIRED]\nThe name of the crawler to retrieve metadata for.\n :rtype: dict ReturnsResponse Syntax{ 'Crawler': { 'Name': 'string', 'Role': 'string', 'Targets': { 'S3Targets': [ { 'Path': 'string', 'Exclusions': [ 'string', ] }, ], 'JdbcTargets': [ { 'ConnectionName': 'string', 'Path': 'string', 'Exclusions': [ 'string', ] }, ], 'DynamoDBTargets': [ { 'Path': 'string' }, ], 'CatalogTargets': [ { 'DatabaseName': 'string', 'Tables': [ 'string', ] }, ] }, 'DatabaseName': 'string', 'Description': 'string', 'Classifiers': [ 'string', ], 'SchemaChangePolicy': { 'UpdateBehavior': 'LOG'|'UPDATE_IN_DATABASE', 'DeleteBehavior': 'LOG'|'DELETE_FROM_DATABASE'|'DEPRECATE_IN_DATABASE' }, 'State': 'READY'|'RUNNING'|'STOPPING', 'TablePrefix': 'string', 'Schedule': { 'ScheduleExpression': 'string', 'State': 'SCHEDULED'|'NOT_SCHEDULED'|'TRANSITIONING' }, 'CrawlElapsedTime': 123, 'CreationTime': datetime(2015, 1, 1), 'LastUpdated': datetime(2015, 1, 1), 'LastCrawl': { 'Status': 'SUCCEEDED'|'CANCELLED'|'FAILED', 'ErrorMessage': 'string', 'LogGroup': 'string', 'LogStream': 'string', 'MessagePrefix': 'string', 'StartTime': datetime(2015, 1, 1) }, 'Version': 123, 'Configuration': 'string', 'CrawlerSecurityConfiguration': 'string' } } Response Structure (dict) -- Crawler (dict) --The metadata for the specified crawler. Name (string) --The name of the crawler. Role (string) --The Amazon Resource Name (ARN) of an IAM role that\'s used to access customer resources, such as Amazon Simple Storage Service (Amazon S3) data. Targets (dict) --A collection of targets to crawl. S3Targets (list) --Specifies Amazon Simple Storage Service (Amazon S3) targets. (dict) --Specifies a data store in Amazon Simple Storage Service (Amazon S3). Path (string) --The path to the Amazon S3 target. Exclusions (list) --A list of glob patterns used to exclude from the crawl. For more information, see Catalog Tables with a Crawler . (string) -- JdbcTargets (list) --Specifies JDBC targets. (dict) --Specifies a JDBC data store to crawl. ConnectionName (string) --The name of the connection to use to connect to the JDBC target. Path (string) --The path of the JDBC target. Exclusions (list) --A list of glob patterns used to exclude from the crawl. For more information, see Catalog Tables with a Crawler . (string) -- DynamoDBTargets (list) --Specifies Amazon DynamoDB targets. (dict) --Specifies an Amazon DynamoDB table to crawl. Path (string) --The name of the DynamoDB table to crawl. CatalogTargets (list) --Specifies AWS Glue Data Catalog targets. (dict) --Specifies an AWS Glue Data Catalog target. DatabaseName (string) --The name of the database to be synchronized. Tables (list) --A list of the tables to be synchronized. (string) -- DatabaseName (string) --The name of the database in which the crawler\'s output is stored. Description (string) --A description of the crawler. Classifiers (list) --A list of UTF-8 strings that specify the custom classifiers that are associated with the crawler. (string) -- SchemaChangePolicy (dict) --The policy that specifies update and delete behaviors for the crawler. UpdateBehavior (string) --The update behavior when the crawler finds a changed schema. DeleteBehavior (string) --The deletion behavior when the crawler finds a deleted object. State (string) --Indicates whether the crawler is running, or whether a run is pending. TablePrefix (string) --The prefix added to the names of tables that are created. Schedule (dict) --For scheduled crawlers, the schedule when the crawler runs. ScheduleExpression (string) --A cron expression used to specify the schedule. For more information, see Time-Based Schedules for Jobs and Crawlers . For example, to run something every day at 12:15 UTC, specify cron(15 12 * * ? *) . State (string) --The state of the schedule. CrawlElapsedTime (integer) --If the crawler is running, contains the total time elapsed since the last crawl began. CreationTime (datetime) --The time that the crawler was created. LastUpdated (datetime) --The time that the crawler was last updated. LastCrawl (dict) --The status of the last crawl, and potentially error information if an error occurred. Status (string) --Status of the last crawl. ErrorMessage (string) --If an error occurred, the error information about the last crawl. LogGroup (string) --The log group for the last crawl. LogStream (string) --The log stream for the last crawl. MessagePrefix (string) --The prefix for a message about this crawl. StartTime (datetime) --The time at which the crawl started. Version (integer) --The version of the crawler. Configuration (string) --Crawler configuration information. This versioned JSON string allows users to specify aspects of a crawler\'s behavior. For more information, see Configuring a Crawler . CrawlerSecurityConfiguration (string) --The name of the SecurityConfiguration structure to be used by this crawler. Exceptions Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.OperationTimeoutException :return: { 'Crawler': { 'Name': 'string', 'Role': 'string', 'Targets': { 'S3Targets': [ { 'Path': 'string', 'Exclusions': [ 'string', ] }, ], 'JdbcTargets': [ { 'ConnectionName': 'string', 'Path': 'string', 'Exclusions': [ 'string', ] }, ], 'DynamoDBTargets': [ { 'Path': 'string' }, ], 'CatalogTargets': [ { 'DatabaseName': 'string', 'Tables': [ 'string', ] }, ] }, 'DatabaseName': 'string', 'Description': 'string', 'Classifiers': [ 'string', ], 'SchemaChangePolicy': { 'UpdateBehavior': 'LOG'|'UPDATE_IN_DATABASE', 'DeleteBehavior': 'LOG'|'DELETE_FROM_DATABASE'|'DEPRECATE_IN_DATABASE' }, 'State': 'READY'|'RUNNING'|'STOPPING', 'TablePrefix': 'string', 'Schedule': { 'ScheduleExpression': 'string', 'State': 'SCHEDULED'|'NOT_SCHEDULED'|'TRANSITIONING' }, 'CrawlElapsedTime': 123, 'CreationTime': datetime(2015, 1, 1), 'LastUpdated': datetime(2015, 1, 1), 'LastCrawl': { 'Status': 'SUCCEEDED'|'CANCELLED'|'FAILED', 'ErrorMessage': 'string', 'LogGroup': 'string', 'LogStream': 'string', 'MessagePrefix': 'string', 'StartTime': datetime(2015, 1, 1) }, 'Version': 123, 'Configuration': 'string', 'CrawlerSecurityConfiguration': 'string' } } :returns: (string) -- """ pass def get_crawler_metrics(CrawlerNameList=None, MaxResults=None, NextToken=None): """ Retrieves metrics about specified crawlers. See also: AWS API Documentation Exceptions :example: response = client.get_crawler_metrics( CrawlerNameList=[ 'string', ], MaxResults=123, NextToken='string' ) :type CrawlerNameList: list :param CrawlerNameList: A list of the names of crawlers about which to retrieve metrics.\n\n(string) --\n\n :type MaxResults: integer :param MaxResults: The maximum size of a list to return. :type NextToken: string :param NextToken: A continuation token, if this is a continuation call. :rtype: dict ReturnsResponse Syntax { 'CrawlerMetricsList': [ { 'CrawlerName': 'string', 'TimeLeftSeconds': 123.0, 'StillEstimating': True|False, 'LastRuntimeSeconds': 123.0, 'MedianRuntimeSeconds': 123.0, 'TablesCreated': 123, 'TablesUpdated': 123, 'TablesDeleted': 123 }, ], 'NextToken': 'string' } Response Structure (dict) -- CrawlerMetricsList (list) -- A list of metrics for the specified crawler. (dict) -- Metrics for a specified crawler. CrawlerName (string) -- The name of the crawler. TimeLeftSeconds (float) -- The estimated time left to complete a running crawl. StillEstimating (boolean) -- True if the crawler is still estimating how long it will take to complete this run. LastRuntimeSeconds (float) -- The duration of the crawler\'s most recent run, in seconds. MedianRuntimeSeconds (float) -- The median duration of this crawler\'s runs, in seconds. TablesCreated (integer) -- The number of tables created by this crawler. TablesUpdated (integer) -- The number of tables updated by this crawler. TablesDeleted (integer) -- The number of tables deleted by this crawler. NextToken (string) -- A continuation token, if the returned list does not contain the last metric available. Exceptions Glue.Client.exceptions.OperationTimeoutException :return: { 'CrawlerMetricsList': [ { 'CrawlerName': 'string', 'TimeLeftSeconds': 123.0, 'StillEstimating': True|False, 'LastRuntimeSeconds': 123.0, 'MedianRuntimeSeconds': 123.0, 'TablesCreated': 123, 'TablesUpdated': 123, 'TablesDeleted': 123 }, ], 'NextToken': 'string' } :returns: Glue.Client.exceptions.OperationTimeoutException """ pass def get_crawlers(MaxResults=None, NextToken=None): """ Retrieves metadata for all crawlers defined in the customer account. See also: AWS API Documentation Exceptions :example: response = client.get_crawlers( MaxResults=123, NextToken='string' ) :type MaxResults: integer :param MaxResults: The number of crawlers to return on each call. :type NextToken: string :param NextToken: A continuation token, if this is a continuation request. :rtype: dict ReturnsResponse Syntax { 'Crawlers': [ { 'Name': 'string', 'Role': 'string', 'Targets': { 'S3Targets': [ { 'Path': 'string', 'Exclusions': [ 'string', ] }, ], 'JdbcTargets': [ { 'ConnectionName': 'string', 'Path': 'string', 'Exclusions': [ 'string', ] }, ], 'DynamoDBTargets': [ { 'Path': 'string' }, ], 'CatalogTargets': [ { 'DatabaseName': 'string', 'Tables': [ 'string', ] }, ] }, 'DatabaseName': 'string', 'Description': 'string', 'Classifiers': [ 'string', ], 'SchemaChangePolicy': { 'UpdateBehavior': 'LOG'|'UPDATE_IN_DATABASE', 'DeleteBehavior': 'LOG'|'DELETE_FROM_DATABASE'|'DEPRECATE_IN_DATABASE' }, 'State': 'READY'|'RUNNING'|'STOPPING', 'TablePrefix': 'string', 'Schedule': { 'ScheduleExpression': 'string', 'State': 'SCHEDULED'|'NOT_SCHEDULED'|'TRANSITIONING' }, 'CrawlElapsedTime': 123, 'CreationTime': datetime(2015, 1, 1), 'LastUpdated': datetime(2015, 1, 1), 'LastCrawl': { 'Status': 'SUCCEEDED'|'CANCELLED'|'FAILED', 'ErrorMessage': 'string', 'LogGroup': 'string', 'LogStream': 'string', 'MessagePrefix': 'string', 'StartTime': datetime(2015, 1, 1) }, 'Version': 123, 'Configuration': 'string', 'CrawlerSecurityConfiguration': 'string' }, ], 'NextToken': 'string' } Response Structure (dict) -- Crawlers (list) -- A list of crawler metadata. (dict) -- Specifies a crawler program that examines a data source and uses classifiers to try to determine its schema. If successful, the crawler records metadata concerning the data source in the AWS Glue Data Catalog. Name (string) -- The name of the crawler. Role (string) -- The Amazon Resource Name (ARN) of an IAM role that\'s used to access customer resources, such as Amazon Simple Storage Service (Amazon S3) data. Targets (dict) -- A collection of targets to crawl. S3Targets (list) -- Specifies Amazon Simple Storage Service (Amazon S3) targets. (dict) -- Specifies a data store in Amazon Simple Storage Service (Amazon S3). Path (string) -- The path to the Amazon S3 target. Exclusions (list) -- A list of glob patterns used to exclude from the crawl. For more information, see Catalog Tables with a Crawler . (string) -- JdbcTargets (list) -- Specifies JDBC targets. (dict) -- Specifies a JDBC data store to crawl. ConnectionName (string) -- The name of the connection to use to connect to the JDBC target. Path (string) -- The path of the JDBC target. Exclusions (list) -- A list of glob patterns used to exclude from the crawl. For more information, see Catalog Tables with a Crawler . (string) -- DynamoDBTargets (list) -- Specifies Amazon DynamoDB targets. (dict) -- Specifies an Amazon DynamoDB table to crawl. Path (string) -- The name of the DynamoDB table to crawl. CatalogTargets (list) -- Specifies AWS Glue Data Catalog targets. (dict) -- Specifies an AWS Glue Data Catalog target. DatabaseName (string) -- The name of the database to be synchronized. Tables (list) -- A list of the tables to be synchronized. (string) -- DatabaseName (string) -- The name of the database in which the crawler\'s output is stored. Description (string) -- A description of the crawler. Classifiers (list) -- A list of UTF-8 strings that specify the custom classifiers that are associated with the crawler. (string) -- SchemaChangePolicy (dict) -- The policy that specifies update and delete behaviors for the crawler. UpdateBehavior (string) -- The update behavior when the crawler finds a changed schema. DeleteBehavior (string) -- The deletion behavior when the crawler finds a deleted object. State (string) -- Indicates whether the crawler is running, or whether a run is pending. TablePrefix (string) -- The prefix added to the names of tables that are created. Schedule (dict) -- For scheduled crawlers, the schedule when the crawler runs. ScheduleExpression (string) -- A cron expression used to specify the schedule. For more information, see Time-Based Schedules for Jobs and Crawlers . For example, to run something every day at 12:15 UTC, specify cron(15 12 * * ? *) . State (string) -- The state of the schedule. CrawlElapsedTime (integer) -- If the crawler is running, contains the total time elapsed since the last crawl began. CreationTime (datetime) -- The time that the crawler was created. LastUpdated (datetime) -- The time that the crawler was last updated. LastCrawl (dict) -- The status of the last crawl, and potentially error information if an error occurred. Status (string) -- Status of the last crawl. ErrorMessage (string) -- If an error occurred, the error information about the last crawl. LogGroup (string) -- The log group for the last crawl. LogStream (string) -- The log stream for the last crawl. MessagePrefix (string) -- The prefix for a message about this crawl. StartTime (datetime) -- The time at which the crawl started. Version (integer) -- The version of the crawler. Configuration (string) -- Crawler configuration information. This versioned JSON string allows users to specify aspects of a crawler\'s behavior. For more information, see Configuring a Crawler . CrawlerSecurityConfiguration (string) -- The name of the SecurityConfiguration structure to be used by this crawler. NextToken (string) -- A continuation token, if the returned list has not reached the end of those defined in this customer account. Exceptions Glue.Client.exceptions.OperationTimeoutException :return: { 'Crawlers': [ { 'Name': 'string', 'Role': 'string', 'Targets': { 'S3Targets': [ { 'Path': 'string', 'Exclusions': [ 'string', ] }, ], 'JdbcTargets': [ { 'ConnectionName': 'string', 'Path': 'string', 'Exclusions': [ 'string', ] }, ], 'DynamoDBTargets': [ { 'Path': 'string' }, ], 'CatalogTargets': [ { 'DatabaseName': 'string', 'Tables': [ 'string', ] }, ] }, 'DatabaseName': 'string', 'Description': 'string', 'Classifiers': [ 'string', ], 'SchemaChangePolicy': { 'UpdateBehavior': 'LOG'|'UPDATE_IN_DATABASE', 'DeleteBehavior': 'LOG'|'DELETE_FROM_DATABASE'|'DEPRECATE_IN_DATABASE' }, 'State': 'READY'|'RUNNING'|'STOPPING', 'TablePrefix': 'string', 'Schedule': { 'ScheduleExpression': 'string', 'State': 'SCHEDULED'|'NOT_SCHEDULED'|'TRANSITIONING' }, 'CrawlElapsedTime': 123, 'CreationTime': datetime(2015, 1, 1), 'LastUpdated': datetime(2015, 1, 1), 'LastCrawl': { 'Status': 'SUCCEEDED'|'CANCELLED'|'FAILED', 'ErrorMessage': 'string', 'LogGroup': 'string', 'LogStream': 'string', 'MessagePrefix': 'string', 'StartTime': datetime(2015, 1, 1) }, 'Version': 123, 'Configuration': 'string', 'CrawlerSecurityConfiguration': 'string' }, ], 'NextToken': 'string' } :returns: (string) -- """ pass def get_data_catalog_encryption_settings(CatalogId=None): """ Retrieves the security configuration for a specified catalog. See also: AWS API Documentation Exceptions :example: response = client.get_data_catalog_encryption_settings( CatalogId='string' ) :type CatalogId: string :param CatalogId: The ID of the Data Catalog to retrieve the security configuration for. If none is provided, the AWS account ID is used by default. :rtype: dict ReturnsResponse Syntax{ 'DataCatalogEncryptionSettings': { 'EncryptionAtRest': { 'CatalogEncryptionMode': 'DISABLED'|'SSE-KMS', 'SseAwsKmsKeyId': 'string' }, 'ConnectionPasswordEncryption': { 'ReturnConnectionPasswordEncrypted': True|False, 'AwsKmsKeyId': 'string' } } } Response Structure (dict) -- DataCatalogEncryptionSettings (dict) --The requested security configuration. EncryptionAtRest (dict) --Specifies the encryption-at-rest configuration for the Data Catalog. CatalogEncryptionMode (string) --The encryption-at-rest mode for encrypting Data Catalog data. SseAwsKmsKeyId (string) --The ID of the AWS KMS key to use for encryption at rest. ConnectionPasswordEncryption (dict) --When connection password protection is enabled, the Data Catalog uses a customer-provided key to encrypt the password as part of CreateConnection or UpdateConnection and store it in the ENCRYPTED_PASSWORD field in the connection properties. You can enable catalog encryption or only password encryption. ReturnConnectionPasswordEncrypted (boolean) --When the ReturnConnectionPasswordEncrypted flag is set to "true", passwords remain encrypted in the responses of GetConnection and GetConnections . This encryption takes effect independently from catalog encryption. AwsKmsKeyId (string) --An AWS KMS key that is used to encrypt the connection password. If connection password protection is enabled, the caller of CreateConnection and UpdateConnection needs at least kms:Encrypt permission on the specified AWS KMS key, to encrypt passwords before storing them in the Data Catalog. You can set the decrypt permission to enable or restrict access on the password key according to your security requirements. Exceptions Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.OperationTimeoutException :return: { 'DataCatalogEncryptionSettings': { 'EncryptionAtRest': { 'CatalogEncryptionMode': 'DISABLED'|'SSE-KMS', 'SseAwsKmsKeyId': 'string' }, 'ConnectionPasswordEncryption': { 'ReturnConnectionPasswordEncrypted': True|False, 'AwsKmsKeyId': 'string' } } } """ pass def get_database(CatalogId=None, Name=None): """ Retrieves the definition of a specified database. See also: AWS API Documentation Exceptions :example: response = client.get_database( CatalogId='string', Name='string' ) :type CatalogId: string :param CatalogId: The ID of the Data Catalog in which the database resides. If none is provided, the AWS account ID is used by default. :type Name: string :param Name: [REQUIRED]\nThe name of the database to retrieve. For Hive compatibility, this should be all lowercase.\n :rtype: dict ReturnsResponse Syntax { 'Database': { 'Name': 'string', 'Description': 'string', 'LocationUri': 'string', 'Parameters': { 'string': 'string' }, 'CreateTime': datetime(2015, 1, 1), 'CreateTableDefaultPermissions': [ { 'Principal': { 'DataLakePrincipalIdentifier': 'string' }, 'Permissions': [ 'ALL'|'SELECT'|'ALTER'|'DROP'|'DELETE'|'INSERT'|'CREATE_DATABASE'|'CREATE_TABLE'|'DATA_LOCATION_ACCESS', ] }, ] } } Response Structure (dict) -- Database (dict) -- The definition of the specified database in the Data Catalog. Name (string) -- The name of the database. For Hive compatibility, this is folded to lowercase when it is stored. Description (string) -- A description of the database. LocationUri (string) -- The location of the database (for example, an HDFS path). Parameters (dict) -- These key-value pairs define parameters and properties of the database. (string) -- (string) -- CreateTime (datetime) -- The time at which the metadata database was created in the catalog. CreateTableDefaultPermissions (list) -- Creates a set of default permissions on the table for principals. (dict) -- Permissions granted to a principal. Principal (dict) -- The principal who is granted permissions. DataLakePrincipalIdentifier (string) -- An identifier for the AWS Lake Formation principal. Permissions (list) -- The permissions that are granted to the principal. (string) -- Exceptions Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.OperationTimeoutException Glue.Client.exceptions.GlueEncryptionException :return: { 'Database': { 'Name': 'string', 'Description': 'string', 'LocationUri': 'string', 'Parameters': { 'string': 'string' }, 'CreateTime': datetime(2015, 1, 1), 'CreateTableDefaultPermissions': [ { 'Principal': { 'DataLakePrincipalIdentifier': 'string' }, 'Permissions': [ 'ALL'|'SELECT'|'ALTER'|'DROP'|'DELETE'|'INSERT'|'CREATE_DATABASE'|'CREATE_TABLE'|'DATA_LOCATION_ACCESS', ] }, ] } } :returns: (string) -- (string) -- """ pass def get_databases(CatalogId=None, NextToken=None, MaxResults=None): """ Retrieves all databases defined in a given Data Catalog. See also: AWS API Documentation Exceptions :example: response = client.get_databases( CatalogId='string', NextToken='string', MaxResults=123 ) :type CatalogId: string :param CatalogId: The ID of the Data Catalog from which to retrieve Databases . If none is provided, the AWS account ID is used by default. :type NextToken: string :param NextToken: A continuation token, if this is a continuation call. :type MaxResults: integer :param MaxResults: The maximum number of databases to return in one response. :rtype: dict ReturnsResponse Syntax { 'DatabaseList': [ { 'Name': 'string', 'Description': 'string', 'LocationUri': 'string', 'Parameters': { 'string': 'string' }, 'CreateTime': datetime(2015, 1, 1), 'CreateTableDefaultPermissions': [ { 'Principal': { 'DataLakePrincipalIdentifier': 'string' }, 'Permissions': [ 'ALL'|'SELECT'|'ALTER'|'DROP'|'DELETE'|'INSERT'|'CREATE_DATABASE'|'CREATE_TABLE'|'DATA_LOCATION_ACCESS', ] }, ] }, ], 'NextToken': 'string' } Response Structure (dict) -- DatabaseList (list) -- A list of Database objects from the specified catalog. (dict) -- The Database object represents a logical grouping of tables that might reside in a Hive metastore or an RDBMS. Name (string) -- The name of the database. For Hive compatibility, this is folded to lowercase when it is stored. Description (string) -- A description of the database. LocationUri (string) -- The location of the database (for example, an HDFS path). Parameters (dict) -- These key-value pairs define parameters and properties of the database. (string) -- (string) -- CreateTime (datetime) -- The time at which the metadata database was created in the catalog. CreateTableDefaultPermissions (list) -- Creates a set of default permissions on the table for principals. (dict) -- Permissions granted to a principal. Principal (dict) -- The principal who is granted permissions. DataLakePrincipalIdentifier (string) -- An identifier for the AWS Lake Formation principal. Permissions (list) -- The permissions that are granted to the principal. (string) -- NextToken (string) -- A continuation token for paginating the returned list of tokens, returned if the current segment of the list is not the last. Exceptions Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.OperationTimeoutException Glue.Client.exceptions.GlueEncryptionException :return: { 'DatabaseList': [ { 'Name': 'string', 'Description': 'string', 'LocationUri': 'string', 'Parameters': { 'string': 'string' }, 'CreateTime': datetime(2015, 1, 1), 'CreateTableDefaultPermissions': [ { 'Principal': { 'DataLakePrincipalIdentifier': 'string' }, 'Permissions': [ 'ALL'|'SELECT'|'ALTER'|'DROP'|'DELETE'|'INSERT'|'CREATE_DATABASE'|'CREATE_TABLE'|'DATA_LOCATION_ACCESS', ] }, ] }, ], 'NextToken': 'string' } :returns: (string) -- (string) -- """ pass def get_dataflow_graph(PythonScript=None): """ Transforms a Python script into a directed acyclic graph (DAG). See also: AWS API Documentation Exceptions :example: response = client.get_dataflow_graph( PythonScript='string' ) :type PythonScript: string :param PythonScript: The Python script to transform. :rtype: dict ReturnsResponse Syntax{ 'DagNodes': [ { 'Id': 'string', 'NodeType': 'string', 'Args': [ { 'Name': 'string', 'Value': 'string', 'Param': True|False }, ], 'LineNumber': 123 }, ], 'DagEdges': [ { 'Source': 'string', 'Target': 'string', 'TargetParameter': 'string' }, ] } Response Structure (dict) -- DagNodes (list) --A list of the nodes in the resulting DAG. (dict) --Represents a node in a directed acyclic graph (DAG) Id (string) --A node identifier that is unique within the node\'s graph. NodeType (string) --The type of node that this is. Args (list) --Properties of the node, in the form of name-value pairs. (dict) --An argument or property of a node. Name (string) --The name of the argument or property. Value (string) --The value of the argument or property. Param (boolean) --True if the value is used as a parameter. LineNumber (integer) --The line number of the node. DagEdges (list) --A list of the edges in the resulting DAG. (dict) --Represents a directional edge in a directed acyclic graph (DAG). Source (string) --The ID of the node at which the edge starts. Target (string) --The ID of the node at which the edge ends. TargetParameter (string) --The target of the edge. Exceptions Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.OperationTimeoutException :return: { 'DagNodes': [ { 'Id': 'string', 'NodeType': 'string', 'Args': [ { 'Name': 'string', 'Value': 'string', 'Param': True|False }, ], 'LineNumber': 123 }, ], 'DagEdges': [ { 'Source': 'string', 'Target': 'string', 'TargetParameter': 'string' }, ] } """ pass def get_dev_endpoint(EndpointName=None): """ Retrieves information about a specified development endpoint. See also: AWS API Documentation Exceptions :example: response = client.get_dev_endpoint( EndpointName='string' ) :type EndpointName: string :param EndpointName: [REQUIRED]\nName of the DevEndpoint to retrieve information for.\n :rtype: dict ReturnsResponse Syntax{ 'DevEndpoint': { 'EndpointName': 'string', 'RoleArn': 'string', 'SecurityGroupIds': [ 'string', ], 'SubnetId': 'string', 'YarnEndpointAddress': 'string', 'PrivateAddress': 'string', 'ZeppelinRemoteSparkInterpreterPort': 123, 'PublicAddress': 'string', 'Status': 'string', 'WorkerType': 'Standard'|'G.1X'|'G.2X', 'GlueVersion': 'string', 'NumberOfWorkers': 123, 'NumberOfNodes': 123, 'AvailabilityZone': 'string', 'VpcId': 'string', 'ExtraPythonLibsS3Path': 'string', 'ExtraJarsS3Path': 'string', 'FailureReason': 'string', 'LastUpdateStatus': 'string', 'CreatedTimestamp': datetime(2015, 1, 1), 'LastModifiedTimestamp': datetime(2015, 1, 1), 'PublicKey': 'string', 'PublicKeys': [ 'string', ], 'SecurityConfiguration': 'string', 'Arguments': { 'string': 'string' } } } Response Structure (dict) -- DevEndpoint (dict) --A DevEndpoint definition. EndpointName (string) --The name of the DevEndpoint . RoleArn (string) --The Amazon Resource Name (ARN) of the IAM role used in this DevEndpoint . SecurityGroupIds (list) --A list of security group identifiers used in this DevEndpoint . (string) -- SubnetId (string) --The subnet ID for this DevEndpoint . YarnEndpointAddress (string) --The YARN endpoint address used by this DevEndpoint . PrivateAddress (string) --A private IP address to access the DevEndpoint within a VPC if the DevEndpoint is created within one. The PrivateAddress field is present only when you create the DevEndpoint within your VPC. ZeppelinRemoteSparkInterpreterPort (integer) --The Apache Zeppelin port for the remote Apache Spark interpreter. PublicAddress (string) --The public IP address used by this DevEndpoint . The PublicAddress field is present only when you create a non-virtual private cloud (VPC) DevEndpoint . Status (string) --The current status of this DevEndpoint . WorkerType (string) --The type of predefined worker that is allocated to the development endpoint. Accepts a value of Standard, G.1X, or G.2X. For the Standard worker type, each worker provides 4 vCPU, 16 GB of memory and a 50GB disk, and 2 executors per worker. For the G.1X worker type, each worker maps to 1 DPU (4 vCPU, 16 GB of memory, 64 GB disk), and provides 1 executor per worker. We recommend this worker type for memory-intensive jobs. For the G.2X worker type, each worker maps to 2 DPU (8 vCPU, 32 GB of memory, 128 GB disk), and provides 1 executor per worker. We recommend this worker type for memory-intensive jobs. Known issue: when a development endpoint is created with the G.2X WorkerType configuration, the Spark drivers for the development endpoint will run on 4 vCPU, 16 GB of memory, and a 64 GB disk. GlueVersion (string) --Glue version determines the versions of Apache Spark and Python that AWS Glue supports. The Python version indicates the version supported for running your ETL scripts on development endpoints. For more information about the available AWS Glue versions and corresponding Spark and Python versions, see Glue version in the developer guide. Development endpoints that are created without specifying a Glue version default to Glue 0.9. You can specify a version of Python support for development endpoints by using the Arguments parameter in the CreateDevEndpoint or UpdateDevEndpoint APIs. If no arguments are provided, the version defaults to Python 2. NumberOfWorkers (integer) --The number of workers of a defined workerType that are allocated to the development endpoint. The maximum number of workers you can define are 299 for G.1X , and 149 for G.2X . NumberOfNodes (integer) --The number of AWS Glue Data Processing Units (DPUs) allocated to this DevEndpoint . AvailabilityZone (string) --The AWS Availability Zone where this DevEndpoint is located. VpcId (string) --The ID of the virtual private cloud (VPC) used by this DevEndpoint . ExtraPythonLibsS3Path (string) --The paths to one or more Python libraries in an Amazon S3 bucket that should be loaded in your DevEndpoint . Multiple values must be complete paths separated by a comma. Note You can only use pure Python libraries with a DevEndpoint . Libraries that rely on C extensions, such as the pandas Python data analysis library, are not currently supported. ExtraJarsS3Path (string) --The path to one or more Java .jar files in an S3 bucket that should be loaded in your DevEndpoint . Note You can only use pure Java/Scala libraries with a DevEndpoint . FailureReason (string) --The reason for a current failure in this DevEndpoint . LastUpdateStatus (string) --The status of the last update. CreatedTimestamp (datetime) --The point in time at which this DevEndpoint was created. LastModifiedTimestamp (datetime) --The point in time at which this DevEndpoint was last modified. PublicKey (string) --The public key to be used by this DevEndpoint for authentication. This attribute is provided for backward compatibility because the recommended attribute to use is public keys. PublicKeys (list) --A list of public keys to be used by the DevEndpoints for authentication. Using this attribute is preferred over a single public key because the public keys allow you to have a different private key per client. Note If you previously created an endpoint with a public key, you must remove that key to be able to set a list of public keys. Call the UpdateDevEndpoint API operation with the public key content in the deletePublicKeys attribute, and the list of new keys in the addPublicKeys attribute. (string) -- SecurityConfiguration (string) --The name of the SecurityConfiguration structure to be used with this DevEndpoint . Arguments (dict) --A map of arguments used to configure the DevEndpoint . Valid arguments are: "--enable-glue-datacatalog": "" "GLUE_PYTHON_VERSION": "3" "GLUE_PYTHON_VERSION": "2" You can specify a version of Python support for development endpoints by using the Arguments parameter in the CreateDevEndpoint or UpdateDevEndpoint APIs. If no arguments are provided, the version defaults to Python 2. (string) -- (string) -- Exceptions Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.OperationTimeoutException Glue.Client.exceptions.InvalidInputException :return: { 'DevEndpoint': { 'EndpointName': 'string', 'RoleArn': 'string', 'SecurityGroupIds': [ 'string', ], 'SubnetId': 'string', 'YarnEndpointAddress': 'string', 'PrivateAddress': 'string', 'ZeppelinRemoteSparkInterpreterPort': 123, 'PublicAddress': 'string', 'Status': 'string', 'WorkerType': 'Standard'|'G.1X'|'G.2X', 'GlueVersion': 'string', 'NumberOfWorkers': 123, 'NumberOfNodes': 123, 'AvailabilityZone': 'string', 'VpcId': 'string', 'ExtraPythonLibsS3Path': 'string', 'ExtraJarsS3Path': 'string', 'FailureReason': 'string', 'LastUpdateStatus': 'string', 'CreatedTimestamp': datetime(2015, 1, 1), 'LastModifiedTimestamp': datetime(2015, 1, 1), 'PublicKey': 'string', 'PublicKeys': [ 'string', ], 'SecurityConfiguration': 'string', 'Arguments': { 'string': 'string' } } } :returns: For the Standard worker type, each worker provides 4 vCPU, 16 GB of memory and a 50GB disk, and 2 executors per worker. For the G.1X worker type, each worker maps to 1 DPU (4 vCPU, 16 GB of memory, 64 GB disk), and provides 1 executor per worker. We recommend this worker type for memory-intensive jobs. For the G.2X worker type, each worker maps to 2 DPU (8 vCPU, 32 GB of memory, 128 GB disk), and provides 1 executor per worker. We recommend this worker type for memory-intensive jobs. """ pass def get_dev_endpoints(MaxResults=None, NextToken=None): """ Retrieves all the development endpoints in this AWS account. See also: AWS API Documentation Exceptions :example: response = client.get_dev_endpoints( MaxResults=123, NextToken='string' ) :type MaxResults: integer :param MaxResults: The maximum size of information to return. :type NextToken: string :param NextToken: A continuation token, if this is a continuation call. :rtype: dict ReturnsResponse Syntax { 'DevEndpoints': [ { 'EndpointName': 'string', 'RoleArn': 'string', 'SecurityGroupIds': [ 'string', ], 'SubnetId': 'string', 'YarnEndpointAddress': 'string', 'PrivateAddress': 'string', 'ZeppelinRemoteSparkInterpreterPort': 123, 'PublicAddress': 'string', 'Status': 'string', 'WorkerType': 'Standard'|'G.1X'|'G.2X', 'GlueVersion': 'string', 'NumberOfWorkers': 123, 'NumberOfNodes': 123, 'AvailabilityZone': 'string', 'VpcId': 'string', 'ExtraPythonLibsS3Path': 'string', 'ExtraJarsS3Path': 'string', 'FailureReason': 'string', 'LastUpdateStatus': 'string', 'CreatedTimestamp': datetime(2015, 1, 1), 'LastModifiedTimestamp': datetime(2015, 1, 1), 'PublicKey': 'string', 'PublicKeys': [ 'string', ], 'SecurityConfiguration': 'string', 'Arguments': { 'string': 'string' } }, ], 'NextToken': 'string' } Response Structure (dict) -- DevEndpoints (list) -- A list of DevEndpoint definitions. (dict) -- A development endpoint where a developer can remotely debug extract, transform, and load (ETL) scripts. EndpointName (string) -- The name of the DevEndpoint . RoleArn (string) -- The Amazon Resource Name (ARN) of the IAM role used in this DevEndpoint . SecurityGroupIds (list) -- A list of security group identifiers used in this DevEndpoint . (string) -- SubnetId (string) -- The subnet ID for this DevEndpoint . YarnEndpointAddress (string) -- The YARN endpoint address used by this DevEndpoint . PrivateAddress (string) -- A private IP address to access the DevEndpoint within a VPC if the DevEndpoint is created within one. The PrivateAddress field is present only when you create the DevEndpoint within your VPC. ZeppelinRemoteSparkInterpreterPort (integer) -- The Apache Zeppelin port for the remote Apache Spark interpreter. PublicAddress (string) -- The public IP address used by this DevEndpoint . The PublicAddress field is present only when you create a non-virtual private cloud (VPC) DevEndpoint . Status (string) -- The current status of this DevEndpoint . WorkerType (string) -- The type of predefined worker that is allocated to the development endpoint. Accepts a value of Standard, G.1X, or G.2X. For the Standard worker type, each worker provides 4 vCPU, 16 GB of memory and a 50GB disk, and 2 executors per worker. For the G.1X worker type, each worker maps to 1 DPU (4 vCPU, 16 GB of memory, 64 GB disk), and provides 1 executor per worker. We recommend this worker type for memory-intensive jobs. For the G.2X worker type, each worker maps to 2 DPU (8 vCPU, 32 GB of memory, 128 GB disk), and provides 1 executor per worker. We recommend this worker type for memory-intensive jobs. Known issue: when a development endpoint is created with the G.2X WorkerType configuration, the Spark drivers for the development endpoint will run on 4 vCPU, 16 GB of memory, and a 64 GB disk. GlueVersion (string) -- Glue version determines the versions of Apache Spark and Python that AWS Glue supports. The Python version indicates the version supported for running your ETL scripts on development endpoints. For more information about the available AWS Glue versions and corresponding Spark and Python versions, see Glue version in the developer guide. Development endpoints that are created without specifying a Glue version default to Glue 0.9. You can specify a version of Python support for development endpoints by using the Arguments parameter in the CreateDevEndpoint or UpdateDevEndpoint APIs. If no arguments are provided, the version defaults to Python 2. NumberOfWorkers (integer) -- The number of workers of a defined workerType that are allocated to the development endpoint. The maximum number of workers you can define are 299 for G.1X , and 149 for G.2X . NumberOfNodes (integer) -- The number of AWS Glue Data Processing Units (DPUs) allocated to this DevEndpoint . AvailabilityZone (string) -- The AWS Availability Zone where this DevEndpoint is located. VpcId (string) -- The ID of the virtual private cloud (VPC) used by this DevEndpoint . ExtraPythonLibsS3Path (string) -- The paths to one or more Python libraries in an Amazon S3 bucket that should be loaded in your DevEndpoint . Multiple values must be complete paths separated by a comma. Note You can only use pure Python libraries with a DevEndpoint . Libraries that rely on C extensions, such as the pandas Python data analysis library, are not currently supported. ExtraJarsS3Path (string) -- The path to one or more Java .jar files in an S3 bucket that should be loaded in your DevEndpoint . Note You can only use pure Java/Scala libraries with a DevEndpoint . FailureReason (string) -- The reason for a current failure in this DevEndpoint . LastUpdateStatus (string) -- The status of the last update. CreatedTimestamp (datetime) -- The point in time at which this DevEndpoint was created. LastModifiedTimestamp (datetime) -- The point in time at which this DevEndpoint was last modified. PublicKey (string) -- The public key to be used by this DevEndpoint for authentication. This attribute is provided for backward compatibility because the recommended attribute to use is public keys. PublicKeys (list) -- A list of public keys to be used by the DevEndpoints for authentication. Using this attribute is preferred over a single public key because the public keys allow you to have a different private key per client. Note If you previously created an endpoint with a public key, you must remove that key to be able to set a list of public keys. Call the UpdateDevEndpoint API operation with the public key content in the deletePublicKeys attribute, and the list of new keys in the addPublicKeys attribute. (string) -- SecurityConfiguration (string) -- The name of the SecurityConfiguration structure to be used with this DevEndpoint . Arguments (dict) -- A map of arguments used to configure the DevEndpoint . Valid arguments are: "--enable-glue-datacatalog": "" "GLUE_PYTHON_VERSION": "3" "GLUE_PYTHON_VERSION": "2" You can specify a version of Python support for development endpoints by using the Arguments parameter in the CreateDevEndpoint or UpdateDevEndpoint APIs. If no arguments are provided, the version defaults to Python 2. (string) -- (string) -- NextToken (string) -- A continuation token, if not all DevEndpoint definitions have yet been returned. Exceptions Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.OperationTimeoutException Glue.Client.exceptions.InvalidInputException :return: { 'DevEndpoints': [ { 'EndpointName': 'string', 'RoleArn': 'string', 'SecurityGroupIds': [ 'string', ], 'SubnetId': 'string', 'YarnEndpointAddress': 'string', 'PrivateAddress': 'string', 'ZeppelinRemoteSparkInterpreterPort': 123, 'PublicAddress': 'string', 'Status': 'string', 'WorkerType': 'Standard'|'G.1X'|'G.2X', 'GlueVersion': 'string', 'NumberOfWorkers': 123, 'NumberOfNodes': 123, 'AvailabilityZone': 'string', 'VpcId': 'string', 'ExtraPythonLibsS3Path': 'string', 'ExtraJarsS3Path': 'string', 'FailureReason': 'string', 'LastUpdateStatus': 'string', 'CreatedTimestamp': datetime(2015, 1, 1), 'LastModifiedTimestamp': datetime(2015, 1, 1), 'PublicKey': 'string', 'PublicKeys': [ 'string', ], 'SecurityConfiguration': 'string', 'Arguments': { 'string': 'string' } }, ], 'NextToken': 'string' } :returns: (string) -- """ pass def get_job(JobName=None): """ Retrieves an existing job definition. See also: AWS API Documentation Exceptions :example: response = client.get_job( JobName='string' ) :type JobName: string :param JobName: [REQUIRED]\nThe name of the job definition to retrieve.\n :rtype: dict ReturnsResponse Syntax{ 'Job': { 'Name': 'string', 'Description': 'string', 'LogUri': 'string', 'Role': 'string', 'CreatedOn': datetime(2015, 1, 1), 'LastModifiedOn': datetime(2015, 1, 1), 'ExecutionProperty': { 'MaxConcurrentRuns': 123 }, 'Command': { 'Name': 'string', 'ScriptLocation': 'string', 'PythonVersion': 'string' }, 'DefaultArguments': { 'string': 'string' }, 'NonOverridableArguments': { 'string': 'string' }, 'Connections': { 'Connections': [ 'string', ] }, 'MaxRetries': 123, 'AllocatedCapacity': 123, 'Timeout': 123, 'MaxCapacity': 123.0, 'WorkerType': 'Standard'|'G.1X'|'G.2X', 'NumberOfWorkers': 123, 'SecurityConfiguration': 'string', 'NotificationProperty': { 'NotifyDelayAfter': 123 }, 'GlueVersion': 'string' } } Response Structure (dict) -- Job (dict) --The requested job definition. Name (string) --The name you assign to this job definition. Description (string) --A description of the job. LogUri (string) --This field is reserved for future use. Role (string) --The name or Amazon Resource Name (ARN) of the IAM role associated with this job. CreatedOn (datetime) --The time and date that this job definition was created. LastModifiedOn (datetime) --The last point in time when this job definition was modified. ExecutionProperty (dict) --An ExecutionProperty specifying the maximum number of concurrent runs allowed for this job. MaxConcurrentRuns (integer) --The maximum number of concurrent runs allowed for the job. The default is 1. An error is returned when this threshold is reached. The maximum value you can specify is controlled by a service limit. Command (dict) --The JobCommand that executes this job. Name (string) --The name of the job command. For an Apache Spark ETL job, this must be glueetl . For a Python shell job, it must be pythonshell . ScriptLocation (string) --Specifies the Amazon Simple Storage Service (Amazon S3) path to a script that executes a job. PythonVersion (string) --The Python version being used to execute a Python shell job. Allowed values are 2 or 3. DefaultArguments (dict) --The default arguments for this job, specified as name-value pairs. You can specify arguments here that your own job-execution script consumes, as well as arguments that AWS Glue itself consumes. For information about how to specify and consume your own Job arguments, see the Calling AWS Glue APIs in Python topic in the developer guide. For information about the key-value pairs that AWS Glue consumes to set up your job, see the Special Parameters Used by AWS Glue topic in the developer guide. (string) -- (string) -- NonOverridableArguments (dict) --Non-overridable arguments for this job, specified as name-value pairs. (string) -- (string) -- Connections (dict) --The connections used for this job. Connections (list) --A list of connections used by the job. (string) -- MaxRetries (integer) --The maximum number of times to retry this job after a JobRun fails. AllocatedCapacity (integer) --This field is deprecated. Use MaxCapacity instead. The number of AWS Glue data processing units (DPUs) allocated to runs of this job. You can allocate from 2 to 100 DPUs; the default is 10. A DPU is a relative measure of processing power that consists of 4 vCPUs of compute capacity and 16 GB of memory. For more information, see the AWS Glue pricing page . Timeout (integer) --The job timeout in minutes. This is the maximum time that a job run can consume resources before it is terminated and enters TIMEOUT status. The default is 2,880 minutes (48 hours). MaxCapacity (float) --The number of AWS Glue data processing units (DPUs) that can be allocated when this job runs. A DPU is a relative measure of processing power that consists of 4 vCPUs of compute capacity and 16 GB of memory. For more information, see the AWS Glue pricing page . Do not set Max Capacity if using WorkerType and NumberOfWorkers . The value that can be allocated for MaxCapacity depends on whether you are running a Python shell job or an Apache Spark ETL job: When you specify a Python shell job (JobCommand.Name ="pythonshell"), you can allocate either 0.0625 or 1 DPU. The default is 0.0625 DPU. When you specify an Apache Spark ETL job (JobCommand.Name ="glueetl"), you can allocate from 2 to 100 DPUs. The default is 10 DPUs. This job type cannot have a fractional DPU allocation. WorkerType (string) --The type of predefined worker that is allocated when a job runs. Accepts a value of Standard, G.1X, or G.2X. For the Standard worker type, each worker provides 4 vCPU, 16 GB of memory and a 50GB disk, and 2 executors per worker. For the G.1X worker type, each worker maps to 1 DPU (4 vCPU, 16 GB of memory, 64 GB disk), and provides 1 executor per worker. We recommend this worker type for memory-intensive jobs. For the G.2X worker type, each worker maps to 2 DPU (8 vCPU, 32 GB of memory, 128 GB disk), and provides 1 executor per worker. We recommend this worker type for memory-intensive jobs. NumberOfWorkers (integer) --The number of workers of a defined workerType that are allocated when a job runs. The maximum number of workers you can define are 299 for G.1X , and 149 for G.2X . SecurityConfiguration (string) --The name of the SecurityConfiguration structure to be used with this job. NotificationProperty (dict) --Specifies configuration properties of a job notification. NotifyDelayAfter (integer) --After a job run starts, the number of minutes to wait before sending a job run delay notification. GlueVersion (string) --Glue version determines the versions of Apache Spark and Python that AWS Glue supports. The Python version indicates the version supported for jobs of type Spark. For more information about the available AWS Glue versions and corresponding Spark and Python versions, see Glue version in the developer guide. Jobs that are created without specifying a Glue version default to Glue 0.9. Exceptions Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.OperationTimeoutException :return: { 'Job': { 'Name': 'string', 'Description': 'string', 'LogUri': 'string', 'Role': 'string', 'CreatedOn': datetime(2015, 1, 1), 'LastModifiedOn': datetime(2015, 1, 1), 'ExecutionProperty': { 'MaxConcurrentRuns': 123 }, 'Command': { 'Name': 'string', 'ScriptLocation': 'string', 'PythonVersion': 'string' }, 'DefaultArguments': { 'string': 'string' }, 'NonOverridableArguments': { 'string': 'string' }, 'Connections': { 'Connections': [ 'string', ] }, 'MaxRetries': 123, 'AllocatedCapacity': 123, 'Timeout': 123, 'MaxCapacity': 123.0, 'WorkerType': 'Standard'|'G.1X'|'G.2X', 'NumberOfWorkers': 123, 'SecurityConfiguration': 'string', 'NotificationProperty': { 'NotifyDelayAfter': 123 }, 'GlueVersion': 'string' } } :returns: (string) -- (string) -- """ pass def get_job_bookmark(JobName=None, RunId=None): """ Returns information on a job bookmark entry. See also: AWS API Documentation Exceptions :example: response = client.get_job_bookmark( JobName='string', RunId='string' ) :type JobName: string :param JobName: [REQUIRED]\nThe name of the job in question.\n :type RunId: string :param RunId: The unique run identifier associated with this job run. :rtype: dict ReturnsResponse Syntax { 'JobBookmarkEntry': { 'JobName': 'string', 'Version': 123, 'Run': 123, 'Attempt': 123, 'PreviousRunId': 'string', 'RunId': 'string', 'JobBookmark': 'string' } } Response Structure (dict) -- JobBookmarkEntry (dict) -- A structure that defines a point that a job can resume processing. JobName (string) -- The name of the job in question. Version (integer) -- The version of the job. Run (integer) -- The run ID number. Attempt (integer) -- The attempt ID number. PreviousRunId (string) -- The unique run identifier associated with the previous job run. RunId (string) -- The run ID number. JobBookmark (string) -- The bookmark itself. Exceptions Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.OperationTimeoutException Glue.Client.exceptions.ValidationException :return: { 'JobBookmarkEntry': { 'JobName': 'string', 'Version': 123, 'Run': 123, 'Attempt': 123, 'PreviousRunId': 'string', 'RunId': 'string', 'JobBookmark': 'string' } } :returns: Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.OperationTimeoutException Glue.Client.exceptions.ValidationException """ pass def get_job_run(JobName=None, RunId=None, PredecessorsIncluded=None): """ Retrieves the metadata for a given job run. See also: AWS API Documentation Exceptions :example: response = client.get_job_run( JobName='string', RunId='string', PredecessorsIncluded=True|False ) :type JobName: string :param JobName: [REQUIRED]\nName of the job definition being run.\n :type RunId: string :param RunId: [REQUIRED]\nThe ID of the job run.\n :type PredecessorsIncluded: boolean :param PredecessorsIncluded: True if a list of predecessor runs should be returned. :rtype: dict ReturnsResponse Syntax { 'JobRun': { 'Id': 'string', 'Attempt': 123, 'PreviousRunId': 'string', 'TriggerName': 'string', 'JobName': 'string', 'StartedOn': datetime(2015, 1, 1), 'LastModifiedOn': datetime(2015, 1, 1), 'CompletedOn': datetime(2015, 1, 1), 'JobRunState': 'STARTING'|'RUNNING'|'STOPPING'|'STOPPED'|'SUCCEEDED'|'FAILED'|'TIMEOUT', 'Arguments': { 'string': 'string' }, 'ErrorMessage': 'string', 'PredecessorRuns': [ { 'JobName': 'string', 'RunId': 'string' }, ], 'AllocatedCapacity': 123, 'ExecutionTime': 123, 'Timeout': 123, 'MaxCapacity': 123.0, 'WorkerType': 'Standard'|'G.1X'|'G.2X', 'NumberOfWorkers': 123, 'SecurityConfiguration': 'string', 'LogGroupName': 'string', 'NotificationProperty': { 'NotifyDelayAfter': 123 }, 'GlueVersion': 'string' } } Response Structure (dict) -- JobRun (dict) -- The requested job-run metadata. Id (string) -- The ID of this job run. Attempt (integer) -- The number of the attempt to run this job. PreviousRunId (string) -- The ID of the previous run of this job. For example, the JobRunId specified in the StartJobRun action. TriggerName (string) -- The name of the trigger that started this job run. JobName (string) -- The name of the job definition being used in this run. StartedOn (datetime) -- The date and time at which this job run was started. LastModifiedOn (datetime) -- The last time that this job run was modified. CompletedOn (datetime) -- The date and time that this job run completed. JobRunState (string) -- The current state of the job run. For more information about the statuses of jobs that have terminated abnormally, see AWS Glue Job Run Statuses . Arguments (dict) -- The job arguments associated with this run. For this job run, they replace the default arguments set in the job definition itself. You can specify arguments here that your own job-execution script consumes, as well as arguments that AWS Glue itself consumes. For information about how to specify and consume your own job arguments, see the Calling AWS Glue APIs in Python topic in the developer guide. For information about the key-value pairs that AWS Glue consumes to set up your job, see the Special Parameters Used by AWS Glue topic in the developer guide. (string) -- (string) -- ErrorMessage (string) -- An error message associated with this job run. PredecessorRuns (list) -- A list of predecessors to this job run. (dict) -- A job run that was used in the predicate of a conditional trigger that triggered this job run. JobName (string) -- The name of the job definition used by the predecessor job run. RunId (string) -- The job-run ID of the predecessor job run. AllocatedCapacity (integer) -- This field is deprecated. Use MaxCapacity instead. The number of AWS Glue data processing units (DPUs) allocated to this JobRun. From 2 to 100 DPUs can be allocated; the default is 10. A DPU is a relative measure of processing power that consists of 4 vCPUs of compute capacity and 16 GB of memory. For more information, see the AWS Glue pricing page . ExecutionTime (integer) -- The amount of time (in seconds) that the job run consumed resources. Timeout (integer) -- The JobRun timeout in minutes. This is the maximum time that a job run can consume resources before it is terminated and enters TIMEOUT status. The default is 2,880 minutes (48 hours). This overrides the timeout value set in the parent job. MaxCapacity (float) -- The number of AWS Glue data processing units (DPUs) that can be allocated when this job runs. A DPU is a relative measure of processing power that consists of 4 vCPUs of compute capacity and 16 GB of memory. For more information, see the AWS Glue pricing page . Do not set Max Capacity if using WorkerType and NumberOfWorkers . The value that can be allocated for MaxCapacity depends on whether you are running a Python shell job or an Apache Spark ETL job: When you specify a Python shell job (JobCommand.Name ="pythonshell"), you can allocate either 0.0625 or 1 DPU. The default is 0.0625 DPU. When you specify an Apache Spark ETL job (JobCommand.Name ="glueetl"), you can allocate from 2 to 100 DPUs. The default is 10 DPUs. This job type cannot have a fractional DPU allocation. WorkerType (string) -- The type of predefined worker that is allocated when a job runs. Accepts a value of Standard, G.1X, or G.2X. For the Standard worker type, each worker provides 4 vCPU, 16 GB of memory and a 50GB disk, and 2 executors per worker. For the G.1X worker type, each worker provides 4 vCPU, 16 GB of memory and a 64GB disk, and 1 executor per worker. For the G.2X worker type, each worker provides 8 vCPU, 32 GB of memory and a 128GB disk, and 1 executor per worker. NumberOfWorkers (integer) -- The number of workers of a defined workerType that are allocated when a job runs. The maximum number of workers you can define are 299 for G.1X , and 149 for G.2X . SecurityConfiguration (string) -- The name of the SecurityConfiguration structure to be used with this job run. LogGroupName (string) -- The name of the log group for secure logging that can be server-side encrypted in Amazon CloudWatch using AWS KMS. This name can be /aws-glue/jobs/ , in which case the default encryption is NONE . If you add a role name and SecurityConfiguration name (in other words, /aws-glue/jobs-yourRoleName-yourSecurityConfigurationName/ ), then that security configuration is used to encrypt the log group. NotificationProperty (dict) -- Specifies configuration properties of a job run notification. NotifyDelayAfter (integer) -- After a job run starts, the number of minutes to wait before sending a job run delay notification. GlueVersion (string) -- Glue version determines the versions of Apache Spark and Python that AWS Glue supports. The Python version indicates the version supported for jobs of type Spark. For more information about the available AWS Glue versions and corresponding Spark and Python versions, see Glue version in the developer guide. Jobs that are created without specifying a Glue version default to Glue 0.9. Exceptions Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.OperationTimeoutException :return: { 'JobRun': { 'Id': 'string', 'Attempt': 123, 'PreviousRunId': 'string', 'TriggerName': 'string', 'JobName': 'string', 'StartedOn': datetime(2015, 1, 1), 'LastModifiedOn': datetime(2015, 1, 1), 'CompletedOn': datetime(2015, 1, 1), 'JobRunState': 'STARTING'|'RUNNING'|'STOPPING'|'STOPPED'|'SUCCEEDED'|'FAILED'|'TIMEOUT', 'Arguments': { 'string': 'string' }, 'ErrorMessage': 'string', 'PredecessorRuns': [ { 'JobName': 'string', 'RunId': 'string' }, ], 'AllocatedCapacity': 123, 'ExecutionTime': 123, 'Timeout': 123, 'MaxCapacity': 123.0, 'WorkerType': 'Standard'|'G.1X'|'G.2X', 'NumberOfWorkers': 123, 'SecurityConfiguration': 'string', 'LogGroupName': 'string', 'NotificationProperty': { 'NotifyDelayAfter': 123 }, 'GlueVersion': 'string' } } :returns: (string) -- (string) -- """ pass def get_job_runs(JobName=None, NextToken=None, MaxResults=None): """ Retrieves metadata for all runs of a given job definition. See also: AWS API Documentation Exceptions :example: response = client.get_job_runs( JobName='string', NextToken='string', MaxResults=123 ) :type JobName: string :param JobName: [REQUIRED]\nThe name of the job definition for which to retrieve all job runs.\n :type NextToken: string :param NextToken: A continuation token, if this is a continuation call. :type MaxResults: integer :param MaxResults: The maximum size of the response. :rtype: dict ReturnsResponse Syntax { 'JobRuns': [ { 'Id': 'string', 'Attempt': 123, 'PreviousRunId': 'string', 'TriggerName': 'string', 'JobName': 'string', 'StartedOn': datetime(2015, 1, 1), 'LastModifiedOn': datetime(2015, 1, 1), 'CompletedOn': datetime(2015, 1, 1), 'JobRunState': 'STARTING'|'RUNNING'|'STOPPING'|'STOPPED'|'SUCCEEDED'|'FAILED'|'TIMEOUT', 'Arguments': { 'string': 'string' }, 'ErrorMessage': 'string', 'PredecessorRuns': [ { 'JobName': 'string', 'RunId': 'string' }, ], 'AllocatedCapacity': 123, 'ExecutionTime': 123, 'Timeout': 123, 'MaxCapacity': 123.0, 'WorkerType': 'Standard'|'G.1X'|'G.2X', 'NumberOfWorkers': 123, 'SecurityConfiguration': 'string', 'LogGroupName': 'string', 'NotificationProperty': { 'NotifyDelayAfter': 123 }, 'GlueVersion': 'string' }, ], 'NextToken': 'string' } Response Structure (dict) -- JobRuns (list) -- A list of job-run metadata objects. (dict) -- Contains information about a job run. Id (string) -- The ID of this job run. Attempt (integer) -- The number of the attempt to run this job. PreviousRunId (string) -- The ID of the previous run of this job. For example, the JobRunId specified in the StartJobRun action. TriggerName (string) -- The name of the trigger that started this job run. JobName (string) -- The name of the job definition being used in this run. StartedOn (datetime) -- The date and time at which this job run was started. LastModifiedOn (datetime) -- The last time that this job run was modified. CompletedOn (datetime) -- The date and time that this job run completed. JobRunState (string) -- The current state of the job run. For more information about the statuses of jobs that have terminated abnormally, see AWS Glue Job Run Statuses . Arguments (dict) -- The job arguments associated with this run. For this job run, they replace the default arguments set in the job definition itself. You can specify arguments here that your own job-execution script consumes, as well as arguments that AWS Glue itself consumes. For information about how to specify and consume your own job arguments, see the Calling AWS Glue APIs in Python topic in the developer guide. For information about the key-value pairs that AWS Glue consumes to set up your job, see the Special Parameters Used by AWS Glue topic in the developer guide. (string) -- (string) -- ErrorMessage (string) -- An error message associated with this job run. PredecessorRuns (list) -- A list of predecessors to this job run. (dict) -- A job run that was used in the predicate of a conditional trigger that triggered this job run. JobName (string) -- The name of the job definition used by the predecessor job run. RunId (string) -- The job-run ID of the predecessor job run. AllocatedCapacity (integer) -- This field is deprecated. Use MaxCapacity instead. The number of AWS Glue data processing units (DPUs) allocated to this JobRun. From 2 to 100 DPUs can be allocated; the default is 10. A DPU is a relative measure of processing power that consists of 4 vCPUs of compute capacity and 16 GB of memory. For more information, see the AWS Glue pricing page . ExecutionTime (integer) -- The amount of time (in seconds) that the job run consumed resources. Timeout (integer) -- The JobRun timeout in minutes. This is the maximum time that a job run can consume resources before it is terminated and enters TIMEOUT status. The default is 2,880 minutes (48 hours). This overrides the timeout value set in the parent job. MaxCapacity (float) -- The number of AWS Glue data processing units (DPUs) that can be allocated when this job runs. A DPU is a relative measure of processing power that consists of 4 vCPUs of compute capacity and 16 GB of memory. For more information, see the AWS Glue pricing page . Do not set Max Capacity if using WorkerType and NumberOfWorkers . The value that can be allocated for MaxCapacity depends on whether you are running a Python shell job or an Apache Spark ETL job: When you specify a Python shell job (JobCommand.Name ="pythonshell"), you can allocate either 0.0625 or 1 DPU. The default is 0.0625 DPU. When you specify an Apache Spark ETL job (JobCommand.Name ="glueetl"), you can allocate from 2 to 100 DPUs. The default is 10 DPUs. This job type cannot have a fractional DPU allocation. WorkerType (string) -- The type of predefined worker that is allocated when a job runs. Accepts a value of Standard, G.1X, or G.2X. For the Standard worker type, each worker provides 4 vCPU, 16 GB of memory and a 50GB disk, and 2 executors per worker. For the G.1X worker type, each worker provides 4 vCPU, 16 GB of memory and a 64GB disk, and 1 executor per worker. For the G.2X worker type, each worker provides 8 vCPU, 32 GB of memory and a 128GB disk, and 1 executor per worker. NumberOfWorkers (integer) -- The number of workers of a defined workerType that are allocated when a job runs. The maximum number of workers you can define are 299 for G.1X , and 149 for G.2X . SecurityConfiguration (string) -- The name of the SecurityConfiguration structure to be used with this job run. LogGroupName (string) -- The name of the log group for secure logging that can be server-side encrypted in Amazon CloudWatch using AWS KMS. This name can be /aws-glue/jobs/ , in which case the default encryption is NONE . If you add a role name and SecurityConfiguration name (in other words, /aws-glue/jobs-yourRoleName-yourSecurityConfigurationName/ ), then that security configuration is used to encrypt the log group. NotificationProperty (dict) -- Specifies configuration properties of a job run notification. NotifyDelayAfter (integer) -- After a job run starts, the number of minutes to wait before sending a job run delay notification. GlueVersion (string) -- Glue version determines the versions of Apache Spark and Python that AWS Glue supports. The Python version indicates the version supported for jobs of type Spark. For more information about the available AWS Glue versions and corresponding Spark and Python versions, see Glue version in the developer guide. Jobs that are created without specifying a Glue version default to Glue 0.9. NextToken (string) -- A continuation token, if not all requested job runs have been returned. Exceptions Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.OperationTimeoutException :return: { 'JobRuns': [ { 'Id': 'string', 'Attempt': 123, 'PreviousRunId': 'string', 'TriggerName': 'string', 'JobName': 'string', 'StartedOn': datetime(2015, 1, 1), 'LastModifiedOn': datetime(2015, 1, 1), 'CompletedOn': datetime(2015, 1, 1), 'JobRunState': 'STARTING'|'RUNNING'|'STOPPING'|'STOPPED'|'SUCCEEDED'|'FAILED'|'TIMEOUT', 'Arguments': { 'string': 'string' }, 'ErrorMessage': 'string', 'PredecessorRuns': [ { 'JobName': 'string', 'RunId': 'string' }, ], 'AllocatedCapacity': 123, 'ExecutionTime': 123, 'Timeout': 123, 'MaxCapacity': 123.0, 'WorkerType': 'Standard'|'G.1X'|'G.2X', 'NumberOfWorkers': 123, 'SecurityConfiguration': 'string', 'LogGroupName': 'string', 'NotificationProperty': { 'NotifyDelayAfter': 123 }, 'GlueVersion': 'string' }, ], 'NextToken': 'string' } :returns: (string) -- (string) -- """ pass def get_jobs(NextToken=None, MaxResults=None): """ Retrieves all current job definitions. See also: AWS API Documentation Exceptions :example: response = client.get_jobs( NextToken='string', MaxResults=123 ) :type NextToken: string :param NextToken: A continuation token, if this is a continuation call. :type MaxResults: integer :param MaxResults: The maximum size of the response. :rtype: dict ReturnsResponse Syntax { 'Jobs': [ { 'Name': 'string', 'Description': 'string', 'LogUri': 'string', 'Role': 'string', 'CreatedOn': datetime(2015, 1, 1), 'LastModifiedOn': datetime(2015, 1, 1), 'ExecutionProperty': { 'MaxConcurrentRuns': 123 }, 'Command': { 'Name': 'string', 'ScriptLocation': 'string', 'PythonVersion': 'string' }, 'DefaultArguments': { 'string': 'string' }, 'NonOverridableArguments': { 'string': 'string' }, 'Connections': { 'Connections': [ 'string', ] }, 'MaxRetries': 123, 'AllocatedCapacity': 123, 'Timeout': 123, 'MaxCapacity': 123.0, 'WorkerType': 'Standard'|'G.1X'|'G.2X', 'NumberOfWorkers': 123, 'SecurityConfiguration': 'string', 'NotificationProperty': { 'NotifyDelayAfter': 123 }, 'GlueVersion': 'string' }, ], 'NextToken': 'string' } Response Structure (dict) -- Jobs (list) -- A list of job definitions. (dict) -- Specifies a job definition. Name (string) -- The name you assign to this job definition. Description (string) -- A description of the job. LogUri (string) -- This field is reserved for future use. Role (string) -- The name or Amazon Resource Name (ARN) of the IAM role associated with this job. CreatedOn (datetime) -- The time and date that this job definition was created. LastModifiedOn (datetime) -- The last point in time when this job definition was modified. ExecutionProperty (dict) -- An ExecutionProperty specifying the maximum number of concurrent runs allowed for this job. MaxConcurrentRuns (integer) -- The maximum number of concurrent runs allowed for the job. The default is 1. An error is returned when this threshold is reached. The maximum value you can specify is controlled by a service limit. Command (dict) -- The JobCommand that executes this job. Name (string) -- The name of the job command. For an Apache Spark ETL job, this must be glueetl . For a Python shell job, it must be pythonshell . ScriptLocation (string) -- Specifies the Amazon Simple Storage Service (Amazon S3) path to a script that executes a job. PythonVersion (string) -- The Python version being used to execute a Python shell job. Allowed values are 2 or 3. DefaultArguments (dict) -- The default arguments for this job, specified as name-value pairs. You can specify arguments here that your own job-execution script consumes, as well as arguments that AWS Glue itself consumes. For information about how to specify and consume your own Job arguments, see the Calling AWS Glue APIs in Python topic in the developer guide. For information about the key-value pairs that AWS Glue consumes to set up your job, see the Special Parameters Used by AWS Glue topic in the developer guide. (string) -- (string) -- NonOverridableArguments (dict) -- Non-overridable arguments for this job, specified as name-value pairs. (string) -- (string) -- Connections (dict) -- The connections used for this job. Connections (list) -- A list of connections used by the job. (string) -- MaxRetries (integer) -- The maximum number of times to retry this job after a JobRun fails. AllocatedCapacity (integer) -- This field is deprecated. Use MaxCapacity instead. The number of AWS Glue data processing units (DPUs) allocated to runs of this job. You can allocate from 2 to 100 DPUs; the default is 10. A DPU is a relative measure of processing power that consists of 4 vCPUs of compute capacity and 16 GB of memory. For more information, see the AWS Glue pricing page . Timeout (integer) -- The job timeout in minutes. This is the maximum time that a job run can consume resources before it is terminated and enters TIMEOUT status. The default is 2,880 minutes (48 hours). MaxCapacity (float) -- The number of AWS Glue data processing units (DPUs) that can be allocated when this job runs. A DPU is a relative measure of processing power that consists of 4 vCPUs of compute capacity and 16 GB of memory. For more information, see the AWS Glue pricing page . Do not set Max Capacity if using WorkerType and NumberOfWorkers . The value that can be allocated for MaxCapacity depends on whether you are running a Python shell job or an Apache Spark ETL job: When you specify a Python shell job (JobCommand.Name ="pythonshell"), you can allocate either 0.0625 or 1 DPU. The default is 0.0625 DPU. When you specify an Apache Spark ETL job (JobCommand.Name ="glueetl"), you can allocate from 2 to 100 DPUs. The default is 10 DPUs. This job type cannot have a fractional DPU allocation. WorkerType (string) -- The type of predefined worker that is allocated when a job runs. Accepts a value of Standard, G.1X, or G.2X. For the Standard worker type, each worker provides 4 vCPU, 16 GB of memory and a 50GB disk, and 2 executors per worker. For the G.1X worker type, each worker maps to 1 DPU (4 vCPU, 16 GB of memory, 64 GB disk), and provides 1 executor per worker. We recommend this worker type for memory-intensive jobs. For the G.2X worker type, each worker maps to 2 DPU (8 vCPU, 32 GB of memory, 128 GB disk), and provides 1 executor per worker. We recommend this worker type for memory-intensive jobs. NumberOfWorkers (integer) -- The number of workers of a defined workerType that are allocated when a job runs. The maximum number of workers you can define are 299 for G.1X , and 149 for G.2X . SecurityConfiguration (string) -- The name of the SecurityConfiguration structure to be used with this job. NotificationProperty (dict) -- Specifies configuration properties of a job notification. NotifyDelayAfter (integer) -- After a job run starts, the number of minutes to wait before sending a job run delay notification. GlueVersion (string) -- Glue version determines the versions of Apache Spark and Python that AWS Glue supports. The Python version indicates the version supported for jobs of type Spark. For more information about the available AWS Glue versions and corresponding Spark and Python versions, see Glue version in the developer guide. Jobs that are created without specifying a Glue version default to Glue 0.9. NextToken (string) -- A continuation token, if not all job definitions have yet been returned. Exceptions Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.OperationTimeoutException :return: { 'Jobs': [ { 'Name': 'string', 'Description': 'string', 'LogUri': 'string', 'Role': 'string', 'CreatedOn': datetime(2015, 1, 1), 'LastModifiedOn': datetime(2015, 1, 1), 'ExecutionProperty': { 'MaxConcurrentRuns': 123 }, 'Command': { 'Name': 'string', 'ScriptLocation': 'string', 'PythonVersion': 'string' }, 'DefaultArguments': { 'string': 'string' }, 'NonOverridableArguments': { 'string': 'string' }, 'Connections': { 'Connections': [ 'string', ] }, 'MaxRetries': 123, 'AllocatedCapacity': 123, 'Timeout': 123, 'MaxCapacity': 123.0, 'WorkerType': 'Standard'|'G.1X'|'G.2X', 'NumberOfWorkers': 123, 'SecurityConfiguration': 'string', 'NotificationProperty': { 'NotifyDelayAfter': 123 }, 'GlueVersion': 'string' }, ], 'NextToken': 'string' } :returns: (string) -- (string) -- """ pass def get_mapping(Source=None, Sinks=None, Location=None): """ Creates mappings. See also: AWS API Documentation Exceptions :example: response = client.get_mapping( Source={ 'DatabaseName': 'string', 'TableName': 'string' }, Sinks=[ { 'DatabaseName': 'string', 'TableName': 'string' }, ], Location={ 'Jdbc': [ { 'Name': 'string', 'Value': 'string', 'Param': True|False }, ], 'S3': [ { 'Name': 'string', 'Value': 'string', 'Param': True|False }, ], 'DynamoDB': [ { 'Name': 'string', 'Value': 'string', 'Param': True|False }, ] } ) :type Source: dict :param Source: [REQUIRED]\nSpecifies the source table.\n\nDatabaseName (string) -- [REQUIRED]The database in which the table metadata resides.\n\nTableName (string) -- [REQUIRED]The name of the table in question.\n\n\n :type Sinks: list :param Sinks: A list of target tables.\n\n(dict) --Specifies a table definition in the AWS Glue Data Catalog.\n\nDatabaseName (string) -- [REQUIRED]The database in which the table metadata resides.\n\nTableName (string) -- [REQUIRED]The name of the table in question.\n\n\n\n\n :type Location: dict :param Location: Parameters for the mapping.\n\nJdbc (list) --A JDBC location.\n\n(dict) --An argument or property of a node.\n\nName (string) -- [REQUIRED]The name of the argument or property.\n\nValue (string) -- [REQUIRED]The value of the argument or property.\n\nParam (boolean) --True if the value is used as a parameter.\n\n\n\n\n\nS3 (list) --An Amazon Simple Storage Service (Amazon S3) location.\n\n(dict) --An argument or property of a node.\n\nName (string) -- [REQUIRED]The name of the argument or property.\n\nValue (string) -- [REQUIRED]The value of the argument or property.\n\nParam (boolean) --True if the value is used as a parameter.\n\n\n\n\n\nDynamoDB (list) --An Amazon DynamoDB table location.\n\n(dict) --An argument or property of a node.\n\nName (string) -- [REQUIRED]The name of the argument or property.\n\nValue (string) -- [REQUIRED]The value of the argument or property.\n\nParam (boolean) --True if the value is used as a parameter.\n\n\n\n\n\n\n :rtype: dict ReturnsResponse Syntax { 'Mapping': [ { 'SourceTable': 'string', 'SourcePath': 'string', 'SourceType': 'string', 'TargetTable': 'string', 'TargetPath': 'string', 'TargetType': 'string' }, ] } Response Structure (dict) -- Mapping (list) -- A list of mappings to the specified targets. (dict) -- Defines a mapping. SourceTable (string) -- The name of the source table. SourcePath (string) -- The source path. SourceType (string) -- The source type. TargetTable (string) -- The target table. TargetPath (string) -- The target path. TargetType (string) -- The target type. Exceptions Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.OperationTimeoutException Glue.Client.exceptions.EntityNotFoundException :return: { 'Mapping': [ { 'SourceTable': 'string', 'SourcePath': 'string', 'SourceType': 'string', 'TargetTable': 'string', 'TargetPath': 'string', 'TargetType': 'string' }, ] } :returns: Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.OperationTimeoutException Glue.Client.exceptions.EntityNotFoundException """ pass def get_ml_task_run(TransformId=None, TaskRunId=None): """ Gets details for a specific task run on a machine learning transform. Machine learning task runs are asynchronous tasks that AWS Glue runs on your behalf as part of various machine learning workflows. You can check the stats of any task run by calling GetMLTaskRun with the TaskRunID and its parent transform\'s TransformID . See also: AWS API Documentation Exceptions :example: response = client.get_ml_task_run( TransformId='string', TaskRunId='string' ) :type TransformId: string :param TransformId: [REQUIRED]\nThe unique identifier of the machine learning transform.\n :type TaskRunId: string :param TaskRunId: [REQUIRED]\nThe unique identifier of the task run.\n :rtype: dict ReturnsResponse Syntax { 'TransformId': 'string', 'TaskRunId': 'string', 'Status': 'STARTING'|'RUNNING'|'STOPPING'|'STOPPED'|'SUCCEEDED'|'FAILED'|'TIMEOUT', 'LogGroupName': 'string', 'Properties': { 'TaskType': 'EVALUATION'|'LABELING_SET_GENERATION'|'IMPORT_LABELS'|'EXPORT_LABELS'|'FIND_MATCHES', 'ImportLabelsTaskRunProperties': { 'InputS3Path': 'string', 'Replace': True|False }, 'ExportLabelsTaskRunProperties': { 'OutputS3Path': 'string' }, 'LabelingSetGenerationTaskRunProperties': { 'OutputS3Path': 'string' }, 'FindMatchesTaskRunProperties': { 'JobId': 'string', 'JobName': 'string', 'JobRunId': 'string' } }, 'ErrorString': 'string', 'StartedOn': datetime(2015, 1, 1), 'LastModifiedOn': datetime(2015, 1, 1), 'CompletedOn': datetime(2015, 1, 1), 'ExecutionTime': 123 } Response Structure (dict) -- TransformId (string) -- The unique identifier of the task run. TaskRunId (string) -- The unique run identifier associated with this run. Status (string) -- The status for this task run. LogGroupName (string) -- The names of the log groups that are associated with the task run. Properties (dict) -- The list of properties that are associated with the task run. TaskType (string) -- The type of task run. ImportLabelsTaskRunProperties (dict) -- The configuration properties for an importing labels task run. InputS3Path (string) -- The Amazon Simple Storage Service (Amazon S3) path from where you will import the labels. Replace (boolean) -- Indicates whether to overwrite your existing labels. ExportLabelsTaskRunProperties (dict) -- The configuration properties for an exporting labels task run. OutputS3Path (string) -- The Amazon Simple Storage Service (Amazon S3) path where you will export the labels. LabelingSetGenerationTaskRunProperties (dict) -- The configuration properties for a labeling set generation task run. OutputS3Path (string) -- The Amazon Simple Storage Service (Amazon S3) path where you will generate the labeling set. FindMatchesTaskRunProperties (dict) -- The configuration properties for a find matches task run. JobId (string) -- The job ID for the Find Matches task run. JobName (string) -- The name assigned to the job for the Find Matches task run. JobRunId (string) -- The job run ID for the Find Matches task run. ErrorString (string) -- The error strings that are associated with the task run. StartedOn (datetime) -- The date and time when this task run started. LastModifiedOn (datetime) -- The date and time when this task run was last modified. CompletedOn (datetime) -- The date and time when this task run was completed. ExecutionTime (integer) -- The amount of time (in seconds) that the task run consumed resources. Exceptions Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.OperationTimeoutException Glue.Client.exceptions.InternalServiceException :return: { 'TransformId': 'string', 'TaskRunId': 'string', 'Status': 'STARTING'|'RUNNING'|'STOPPING'|'STOPPED'|'SUCCEEDED'|'FAILED'|'TIMEOUT', 'LogGroupName': 'string', 'Properties': { 'TaskType': 'EVALUATION'|'LABELING_SET_GENERATION'|'IMPORT_LABELS'|'EXPORT_LABELS'|'FIND_MATCHES', 'ImportLabelsTaskRunProperties': { 'InputS3Path': 'string', 'Replace': True|False }, 'ExportLabelsTaskRunProperties': { 'OutputS3Path': 'string' }, 'LabelingSetGenerationTaskRunProperties': { 'OutputS3Path': 'string' }, 'FindMatchesTaskRunProperties': { 'JobId': 'string', 'JobName': 'string', 'JobRunId': 'string' } }, 'ErrorString': 'string', 'StartedOn': datetime(2015, 1, 1), 'LastModifiedOn': datetime(2015, 1, 1), 'CompletedOn': datetime(2015, 1, 1), 'ExecutionTime': 123 } :returns: Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.OperationTimeoutException Glue.Client.exceptions.InternalServiceException """ pass def get_ml_task_runs(TransformId=None, NextToken=None, MaxResults=None, Filter=None, Sort=None): """ Gets a list of runs for a machine learning transform. Machine learning task runs are asynchronous tasks that AWS Glue runs on your behalf as part of various machine learning workflows. You can get a sortable, filterable list of machine learning task runs by calling GetMLTaskRuns with their parent transform\'s TransformID and other optional parameters as documented in this section. This operation returns a list of historic runs and must be paginated. See also: AWS API Documentation Exceptions :example: response = client.get_ml_task_runs( TransformId='string', NextToken='string', MaxResults=123, Filter={ 'TaskRunType': 'EVALUATION'|'LABELING_SET_GENERATION'|'IMPORT_LABELS'|'EXPORT_LABELS'|'FIND_MATCHES', 'Status': 'STARTING'|'RUNNING'|'STOPPING'|'STOPPED'|'SUCCEEDED'|'FAILED'|'TIMEOUT', 'StartedBefore': datetime(2015, 1, 1), 'StartedAfter': datetime(2015, 1, 1) }, Sort={ 'Column': 'TASK_RUN_TYPE'|'STATUS'|'STARTED', 'SortDirection': 'DESCENDING'|'ASCENDING' } ) :type TransformId: string :param TransformId: [REQUIRED]\nThe unique identifier of the machine learning transform.\n :type NextToken: string :param NextToken: A token for pagination of the results. The default is empty. :type MaxResults: integer :param MaxResults: The maximum number of results to return. :type Filter: dict :param Filter: The filter criteria, in the TaskRunFilterCriteria structure, for the task run.\n\nTaskRunType (string) --The type of task run.\n\nStatus (string) --The current status of the task run.\n\nStartedBefore (datetime) --Filter on task runs started before this date.\n\nStartedAfter (datetime) --Filter on task runs started after this date.\n\n\n :type Sort: dict :param Sort: The sorting criteria, in the TaskRunSortCriteria structure, for the task run.\n\nColumn (string) -- [REQUIRED]The column to be used to sort the list of task runs for the machine learning transform.\n\nSortDirection (string) -- [REQUIRED]The sort direction to be used to sort the list of task runs for the machine learning transform.\n\n\n :rtype: dict ReturnsResponse Syntax { 'TaskRuns': [ { 'TransformId': 'string', 'TaskRunId': 'string', 'Status': 'STARTING'|'RUNNING'|'STOPPING'|'STOPPED'|'SUCCEEDED'|'FAILED'|'TIMEOUT', 'LogGroupName': 'string', 'Properties': { 'TaskType': 'EVALUATION'|'LABELING_SET_GENERATION'|'IMPORT_LABELS'|'EXPORT_LABELS'|'FIND_MATCHES', 'ImportLabelsTaskRunProperties': { 'InputS3Path': 'string', 'Replace': True|False }, 'ExportLabelsTaskRunProperties': { 'OutputS3Path': 'string' }, 'LabelingSetGenerationTaskRunProperties': { 'OutputS3Path': 'string' }, 'FindMatchesTaskRunProperties': { 'JobId': 'string', 'JobName': 'string', 'JobRunId': 'string' } }, 'ErrorString': 'string', 'StartedOn': datetime(2015, 1, 1), 'LastModifiedOn': datetime(2015, 1, 1), 'CompletedOn': datetime(2015, 1, 1), 'ExecutionTime': 123 }, ], 'NextToken': 'string' } Response Structure (dict) -- TaskRuns (list) -- A list of task runs that are associated with the transform. (dict) -- The sampling parameters that are associated with the machine learning transform. TransformId (string) -- The unique identifier for the transform. TaskRunId (string) -- The unique identifier for this task run. Status (string) -- The current status of the requested task run. LogGroupName (string) -- The names of the log group for secure logging, associated with this task run. Properties (dict) -- Specifies configuration properties associated with this task run. TaskType (string) -- The type of task run. ImportLabelsTaskRunProperties (dict) -- The configuration properties for an importing labels task run. InputS3Path (string) -- The Amazon Simple Storage Service (Amazon S3) path from where you will import the labels. Replace (boolean) -- Indicates whether to overwrite your existing labels. ExportLabelsTaskRunProperties (dict) -- The configuration properties for an exporting labels task run. OutputS3Path (string) -- The Amazon Simple Storage Service (Amazon S3) path where you will export the labels. LabelingSetGenerationTaskRunProperties (dict) -- The configuration properties for a labeling set generation task run. OutputS3Path (string) -- The Amazon Simple Storage Service (Amazon S3) path where you will generate the labeling set. FindMatchesTaskRunProperties (dict) -- The configuration properties for a find matches task run. JobId (string) -- The job ID for the Find Matches task run. JobName (string) -- The name assigned to the job for the Find Matches task run. JobRunId (string) -- The job run ID for the Find Matches task run. ErrorString (string) -- The list of error strings associated with this task run. StartedOn (datetime) -- The date and time that this task run started. LastModifiedOn (datetime) -- The last point in time that the requested task run was updated. CompletedOn (datetime) -- The last point in time that the requested task run was completed. ExecutionTime (integer) -- The amount of time (in seconds) that the task run consumed resources. NextToken (string) -- A pagination token, if more results are available. Exceptions Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.OperationTimeoutException Glue.Client.exceptions.InternalServiceException :return: { 'TaskRuns': [ { 'TransformId': 'string', 'TaskRunId': 'string', 'Status': 'STARTING'|'RUNNING'|'STOPPING'|'STOPPED'|'SUCCEEDED'|'FAILED'|'TIMEOUT', 'LogGroupName': 'string', 'Properties': { 'TaskType': 'EVALUATION'|'LABELING_SET_GENERATION'|'IMPORT_LABELS'|'EXPORT_LABELS'|'FIND_MATCHES', 'ImportLabelsTaskRunProperties': { 'InputS3Path': 'string', 'Replace': True|False }, 'ExportLabelsTaskRunProperties': { 'OutputS3Path': 'string' }, 'LabelingSetGenerationTaskRunProperties': { 'OutputS3Path': 'string' }, 'FindMatchesTaskRunProperties': { 'JobId': 'string', 'JobName': 'string', 'JobRunId': 'string' } }, 'ErrorString': 'string', 'StartedOn': datetime(2015, 1, 1), 'LastModifiedOn': datetime(2015, 1, 1), 'CompletedOn': datetime(2015, 1, 1), 'ExecutionTime': 123 }, ], 'NextToken': 'string' } :returns: Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.OperationTimeoutException Glue.Client.exceptions.InternalServiceException """ pass def get_ml_transform(TransformId=None): """ Gets an AWS Glue machine learning transform artifact and all its corresponding metadata. Machine learning transforms are a special type of transform that use machine learning to learn the details of the transformation to be performed by learning from examples provided by humans. These transformations are then saved by AWS Glue. You can retrieve their metadata by calling GetMLTransform . See also: AWS API Documentation Exceptions :example: response = client.get_ml_transform( TransformId='string' ) :type TransformId: string :param TransformId: [REQUIRED]\nThe unique identifier of the transform, generated at the time that the transform was created.\n :rtype: dict ReturnsResponse Syntax{ 'TransformId': 'string', 'Name': 'string', 'Description': 'string', 'Status': 'NOT_READY'|'READY'|'DELETING', 'CreatedOn': datetime(2015, 1, 1), 'LastModifiedOn': datetime(2015, 1, 1), 'InputRecordTables': [ { 'DatabaseName': 'string', 'TableName': 'string', 'CatalogId': 'string', 'ConnectionName': 'string' }, ], 'Parameters': { 'TransformType': 'FIND_MATCHES', 'FindMatchesParameters': { 'PrimaryKeyColumnName': 'string', 'PrecisionRecallTradeoff': 123.0, 'AccuracyCostTradeoff': 123.0, 'EnforceProvidedLabels': True|False } }, 'EvaluationMetrics': { 'TransformType': 'FIND_MATCHES', 'FindMatchesMetrics': { 'AreaUnderPRCurve': 123.0, 'Precision': 123.0, 'Recall': 123.0, 'F1': 123.0, 'ConfusionMatrix': { 'NumTruePositives': 123, 'NumFalsePositives': 123, 'NumTrueNegatives': 123, 'NumFalseNegatives': 123 } } }, 'LabelCount': 123, 'Schema': [ { 'Name': 'string', 'DataType': 'string' }, ], 'Role': 'string', 'GlueVersion': 'string', 'MaxCapacity': 123.0, 'WorkerType': 'Standard'|'G.1X'|'G.2X', 'NumberOfWorkers': 123, 'Timeout': 123, 'MaxRetries': 123 } Response Structure (dict) -- TransformId (string) --The unique identifier of the transform, generated at the time that the transform was created. Name (string) --The unique name given to the transform when it was created. Description (string) --A description of the transform. Status (string) --The last known status of the transform (to indicate whether it can be used or not). One of "NOT_READY", "READY", or "DELETING". CreatedOn (datetime) --The date and time when the transform was created. LastModifiedOn (datetime) --The date and time when the transform was last modified. InputRecordTables (list) --A list of AWS Glue table definitions used by the transform. (dict) --The database and table in the AWS Glue Data Catalog that is used for input or output data. DatabaseName (string) --A database name in the AWS Glue Data Catalog. TableName (string) --A table name in the AWS Glue Data Catalog. CatalogId (string) --A unique identifier for the AWS Glue Data Catalog. ConnectionName (string) --The name of the connection to the AWS Glue Data Catalog. Parameters (dict) --The configuration parameters that are specific to the algorithm used. TransformType (string) --The type of machine learning transform. For information about the types of machine learning transforms, see Creating Machine Learning Transforms . FindMatchesParameters (dict) --The parameters for the find matches algorithm. PrimaryKeyColumnName (string) --The name of a column that uniquely identifies rows in the source table. Used to help identify matching records. PrecisionRecallTradeoff (float) --The value selected when tuning your transform for a balance between precision and recall. A value of 0.5 means no preference; a value of 1.0 means a bias purely for precision, and a value of 0.0 means a bias for recall. Because this is a tradeoff, choosing values close to 1.0 means very low recall, and choosing values close to 0.0 results in very low precision. The precision metric indicates how often your model is correct when it predicts a match. The recall metric indicates that for an actual match, how often your model predicts the match. AccuracyCostTradeoff (float) --The value that is selected when tuning your transform for a balance between accuracy and cost. A value of 0.5 means that the system balances accuracy and cost concerns. A value of 1.0 means a bias purely for accuracy, which typically results in a higher cost, sometimes substantially higher. A value of 0.0 means a bias purely for cost, which results in a less accurate FindMatches transform, sometimes with unacceptable accuracy. Accuracy measures how well the transform finds true positives and true negatives. Increasing accuracy requires more machine resources and cost. But it also results in increased recall. Cost measures how many compute resources, and thus money, are consumed to run the transform. EnforceProvidedLabels (boolean) --The value to switch on or off to force the output to match the provided labels from users. If the value is True , the find matches transform forces the output to match the provided labels. The results override the normal conflation results. If the value is False , the find matches transform does not ensure all the labels provided are respected, and the results rely on the trained model. Note that setting this value to true may increase the conflation execution time. EvaluationMetrics (dict) --The latest evaluation metrics. TransformType (string) --The type of machine learning transform. FindMatchesMetrics (dict) --The evaluation metrics for the find matches algorithm. AreaUnderPRCurve (float) --The area under the precision/recall curve (AUPRC) is a single number measuring the overall quality of the transform, that is independent of the choice made for precision vs. recall. Higher values indicate that you have a more attractive precision vs. recall tradeoff. For more information, see Precision and recall in Wikipedia. Precision (float) --The precision metric indicates when often your transform is correct when it predicts a match. Specifically, it measures how well the transform finds true positives from the total true positives possible. For more information, see Precision and recall in Wikipedia. Recall (float) --The recall metric indicates that for an actual match, how often your transform predicts the match. Specifically, it measures how well the transform finds true positives from the total records in the source data. For more information, see Precision and recall in Wikipedia. F1 (float) --The maximum F1 metric indicates the transform\'s accuracy between 0 and 1, where 1 is the best accuracy. For more information, see F1 score in Wikipedia. ConfusionMatrix (dict) --The confusion matrix shows you what your transform is predicting accurately and what types of errors it is making. For more information, see Confusion matrix in Wikipedia. NumTruePositives (integer) --The number of matches in the data that the transform correctly found, in the confusion matrix for your transform. NumFalsePositives (integer) --The number of nonmatches in the data that the transform incorrectly classified as a match, in the confusion matrix for your transform. NumTrueNegatives (integer) --The number of nonmatches in the data that the transform correctly rejected, in the confusion matrix for your transform. NumFalseNegatives (integer) --The number of matches in the data that the transform didn\'t find, in the confusion matrix for your transform. LabelCount (integer) --The number of labels available for this transform. Schema (list) --The Map<Column, Type> object that represents the schema that this transform accepts. Has an upper bound of 100 columns. (dict) --A key-value pair representing a column and data type that this transform can run against. The Schema parameter of the MLTransform may contain up to 100 of these structures. Name (string) --The name of the column. DataType (string) --The type of data in the column. Role (string) --The name or Amazon Resource Name (ARN) of the IAM role with the required permissions. GlueVersion (string) --This value determines which version of AWS Glue this machine learning transform is compatible with. Glue 1.0 is recommended for most customers. If the value is not set, the Glue compatibility defaults to Glue 0.9. For more information, see AWS Glue Versions in the developer guide. MaxCapacity (float) --The number of AWS Glue data processing units (DPUs) that are allocated to task runs for this transform. You can allocate from 2 to 100 DPUs; the default is 10. A DPU is a relative measure of processing power that consists of 4 vCPUs of compute capacity and 16 GB of memory. For more information, see the AWS Glue pricing page . When the WorkerType field is set to a value other than Standard , the MaxCapacity field is set automatically and becomes read-only. WorkerType (string) --The type of predefined worker that is allocated when this task runs. Accepts a value of Standard, G.1X, or G.2X. For the Standard worker type, each worker provides 4 vCPU, 16 GB of memory and a 50GB disk, and 2 executors per worker. For the G.1X worker type, each worker provides 4 vCPU, 16 GB of memory and a 64GB disk, and 1 executor per worker. For the G.2X worker type, each worker provides 8 vCPU, 32 GB of memory and a 128GB disk, and 1 executor per worker. NumberOfWorkers (integer) --The number of workers of a defined workerType that are allocated when this task runs. Timeout (integer) --The timeout for a task run for this transform in minutes. This is the maximum time that a task run for this transform can consume resources before it is terminated and enters TIMEOUT status. The default is 2,880 minutes (48 hours). MaxRetries (integer) --The maximum number of times to retry a task for this transform after a task run fails. Exceptions Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.OperationTimeoutException Glue.Client.exceptions.InternalServiceException :return: { 'TransformId': 'string', 'Name': 'string', 'Description': 'string', 'Status': 'NOT_READY'|'READY'|'DELETING', 'CreatedOn': datetime(2015, 1, 1), 'LastModifiedOn': datetime(2015, 1, 1), 'InputRecordTables': [ { 'DatabaseName': 'string', 'TableName': 'string', 'CatalogId': 'string', 'ConnectionName': 'string' }, ], 'Parameters': { 'TransformType': 'FIND_MATCHES', 'FindMatchesParameters': { 'PrimaryKeyColumnName': 'string', 'PrecisionRecallTradeoff': 123.0, 'AccuracyCostTradeoff': 123.0, 'EnforceProvidedLabels': True|False } }, 'EvaluationMetrics': { 'TransformType': 'FIND_MATCHES', 'FindMatchesMetrics': { 'AreaUnderPRCurve': 123.0, 'Precision': 123.0, 'Recall': 123.0, 'F1': 123.0, 'ConfusionMatrix': { 'NumTruePositives': 123, 'NumFalsePositives': 123, 'NumTrueNegatives': 123, 'NumFalseNegatives': 123 } } }, 'LabelCount': 123, 'Schema': [ { 'Name': 'string', 'DataType': 'string' }, ], 'Role': 'string', 'GlueVersion': 'string', 'MaxCapacity': 123.0, 'WorkerType': 'Standard'|'G.1X'|'G.2X', 'NumberOfWorkers': 123, 'Timeout': 123, 'MaxRetries': 123 } :returns: Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.OperationTimeoutException Glue.Client.exceptions.InternalServiceException """ pass def get_ml_transforms(NextToken=None, MaxResults=None, Filter=None, Sort=None): """ Gets a sortable, filterable list of existing AWS Glue machine learning transforms. Machine learning transforms are a special type of transform that use machine learning to learn the details of the transformation to be performed by learning from examples provided by humans. These transformations are then saved by AWS Glue, and you can retrieve their metadata by calling GetMLTransforms . See also: AWS API Documentation Exceptions :example: response = client.get_ml_transforms( NextToken='string', MaxResults=123, Filter={ 'Name': 'string', 'TransformType': 'FIND_MATCHES', 'Status': 'NOT_READY'|'READY'|'DELETING', 'GlueVersion': 'string', 'CreatedBefore': datetime(2015, 1, 1), 'CreatedAfter': datetime(2015, 1, 1), 'LastModifiedBefore': datetime(2015, 1, 1), 'LastModifiedAfter': datetime(2015, 1, 1), 'Schema': [ { 'Name': 'string', 'DataType': 'string' }, ] }, Sort={ 'Column': 'NAME'|'TRANSFORM_TYPE'|'STATUS'|'CREATED'|'LAST_MODIFIED', 'SortDirection': 'DESCENDING'|'ASCENDING' } ) :type NextToken: string :param NextToken: A paginated token to offset the results. :type MaxResults: integer :param MaxResults: The maximum number of results to return. :type Filter: dict :param Filter: The filter transformation criteria.\n\nName (string) --A unique transform name that is used to filter the machine learning transforms.\n\nTransformType (string) --The type of machine learning transform that is used to filter the machine learning transforms.\n\nStatus (string) --Filters the list of machine learning transforms by the last known status of the transforms (to indicate whether a transform can be used or not). One of 'NOT_READY', 'READY', or 'DELETING'.\n\nGlueVersion (string) --This value determines which version of AWS Glue this machine learning transform is compatible with. Glue 1.0 is recommended for most customers. If the value is not set, the Glue compatibility defaults to Glue 0.9. For more information, see AWS Glue Versions in the developer guide.\n\nCreatedBefore (datetime) --The time and date before which the transforms were created.\n\nCreatedAfter (datetime) --The time and date after which the transforms were created.\n\nLastModifiedBefore (datetime) --Filter on transforms last modified before this date.\n\nLastModifiedAfter (datetime) --Filter on transforms last modified after this date.\n\nSchema (list) --Filters on datasets with a specific schema. The Map<Column, Type> object is an array of key-value pairs representing the schema this transform accepts, where Column is the name of a column, and Type is the type of the data such as an integer or string. Has an upper bound of 100 columns.\n\n(dict) --A key-value pair representing a column and data type that this transform can run against. The Schema parameter of the MLTransform may contain up to 100 of these structures.\n\nName (string) --The name of the column.\n\nDataType (string) --The type of data in the column.\n\n\n\n\n\n\n :type Sort: dict :param Sort: The sorting criteria.\n\nColumn (string) -- [REQUIRED]The column to be used in the sorting criteria that are associated with the machine learning transform.\n\nSortDirection (string) -- [REQUIRED]The sort direction to be used in the sorting criteria that are associated with the machine learning transform.\n\n\n :rtype: dict ReturnsResponse Syntax { 'Transforms': [ { 'TransformId': 'string', 'Name': 'string', 'Description': 'string', 'Status': 'NOT_READY'|'READY'|'DELETING', 'CreatedOn': datetime(2015, 1, 1), 'LastModifiedOn': datetime(2015, 1, 1), 'InputRecordTables': [ { 'DatabaseName': 'string', 'TableName': 'string', 'CatalogId': 'string', 'ConnectionName': 'string' }, ], 'Parameters': { 'TransformType': 'FIND_MATCHES', 'FindMatchesParameters': { 'PrimaryKeyColumnName': 'string', 'PrecisionRecallTradeoff': 123.0, 'AccuracyCostTradeoff': 123.0, 'EnforceProvidedLabels': True|False } }, 'EvaluationMetrics': { 'TransformType': 'FIND_MATCHES', 'FindMatchesMetrics': { 'AreaUnderPRCurve': 123.0, 'Precision': 123.0, 'Recall': 123.0, 'F1': 123.0, 'ConfusionMatrix': { 'NumTruePositives': 123, 'NumFalsePositives': 123, 'NumTrueNegatives': 123, 'NumFalseNegatives': 123 } } }, 'LabelCount': 123, 'Schema': [ { 'Name': 'string', 'DataType': 'string' }, ], 'Role': 'string', 'GlueVersion': 'string', 'MaxCapacity': 123.0, 'WorkerType': 'Standard'|'G.1X'|'G.2X', 'NumberOfWorkers': 123, 'Timeout': 123, 'MaxRetries': 123 }, ], 'NextToken': 'string' } Response Structure (dict) -- Transforms (list) -- A list of machine learning transforms. (dict) -- A structure for a machine learning transform. TransformId (string) -- The unique transform ID that is generated for the machine learning transform. The ID is guaranteed to be unique and does not change. Name (string) -- A user-defined name for the machine learning transform. Names are not guaranteed unique and can be changed at any time. Description (string) -- A user-defined, long-form description text for the machine learning transform. Descriptions are not guaranteed to be unique and can be changed at any time. Status (string) -- The current status of the machine learning transform. CreatedOn (datetime) -- A timestamp. The time and date that this machine learning transform was created. LastModifiedOn (datetime) -- A timestamp. The last point in time when this machine learning transform was modified. InputRecordTables (list) -- A list of AWS Glue table definitions used by the transform. (dict) -- The database and table in the AWS Glue Data Catalog that is used for input or output data. DatabaseName (string) -- A database name in the AWS Glue Data Catalog. TableName (string) -- A table name in the AWS Glue Data Catalog. CatalogId (string) -- A unique identifier for the AWS Glue Data Catalog. ConnectionName (string) -- The name of the connection to the AWS Glue Data Catalog. Parameters (dict) -- A TransformParameters object. You can use parameters to tune (customize) the behavior of the machine learning transform by specifying what data it learns from and your preference on various tradeoffs (such as precious vs. recall, or accuracy vs. cost). TransformType (string) -- The type of machine learning transform. For information about the types of machine learning transforms, see Creating Machine Learning Transforms . FindMatchesParameters (dict) -- The parameters for the find matches algorithm. PrimaryKeyColumnName (string) -- The name of a column that uniquely identifies rows in the source table. Used to help identify matching records. PrecisionRecallTradeoff (float) -- The value selected when tuning your transform for a balance between precision and recall. A value of 0.5 means no preference; a value of 1.0 means a bias purely for precision, and a value of 0.0 means a bias for recall. Because this is a tradeoff, choosing values close to 1.0 means very low recall, and choosing values close to 0.0 results in very low precision. The precision metric indicates how often your model is correct when it predicts a match. The recall metric indicates that for an actual match, how often your model predicts the match. AccuracyCostTradeoff (float) -- The value that is selected when tuning your transform for a balance between accuracy and cost. A value of 0.5 means that the system balances accuracy and cost concerns. A value of 1.0 means a bias purely for accuracy, which typically results in a higher cost, sometimes substantially higher. A value of 0.0 means a bias purely for cost, which results in a less accurate FindMatches transform, sometimes with unacceptable accuracy. Accuracy measures how well the transform finds true positives and true negatives. Increasing accuracy requires more machine resources and cost. But it also results in increased recall. Cost measures how many compute resources, and thus money, are consumed to run the transform. EnforceProvidedLabels (boolean) -- The value to switch on or off to force the output to match the provided labels from users. If the value is True , the find matches transform forces the output to match the provided labels. The results override the normal conflation results. If the value is False , the find matches transform does not ensure all the labels provided are respected, and the results rely on the trained model. Note that setting this value to true may increase the conflation execution time. EvaluationMetrics (dict) -- An EvaluationMetrics object. Evaluation metrics provide an estimate of the quality of your machine learning transform. TransformType (string) -- The type of machine learning transform. FindMatchesMetrics (dict) -- The evaluation metrics for the find matches algorithm. AreaUnderPRCurve (float) -- The area under the precision/recall curve (AUPRC) is a single number measuring the overall quality of the transform, that is independent of the choice made for precision vs. recall. Higher values indicate that you have a more attractive precision vs. recall tradeoff. For more information, see Precision and recall in Wikipedia. Precision (float) -- The precision metric indicates when often your transform is correct when it predicts a match. Specifically, it measures how well the transform finds true positives from the total true positives possible. For more information, see Precision and recall in Wikipedia. Recall (float) -- The recall metric indicates that for an actual match, how often your transform predicts the match. Specifically, it measures how well the transform finds true positives from the total records in the source data. For more information, see Precision and recall in Wikipedia. F1 (float) -- The maximum F1 metric indicates the transform\'s accuracy between 0 and 1, where 1 is the best accuracy. For more information, see F1 score in Wikipedia. ConfusionMatrix (dict) -- The confusion matrix shows you what your transform is predicting accurately and what types of errors it is making. For more information, see Confusion matrix in Wikipedia. NumTruePositives (integer) -- The number of matches in the data that the transform correctly found, in the confusion matrix for your transform. NumFalsePositives (integer) -- The number of nonmatches in the data that the transform incorrectly classified as a match, in the confusion matrix for your transform. NumTrueNegatives (integer) -- The number of nonmatches in the data that the transform correctly rejected, in the confusion matrix for your transform. NumFalseNegatives (integer) -- The number of matches in the data that the transform didn\'t find, in the confusion matrix for your transform. LabelCount (integer) -- A count identifier for the labeling files generated by AWS Glue for this transform. As you create a better transform, you can iteratively download, label, and upload the labeling file. Schema (list) -- A map of key-value pairs representing the columns and data types that this transform can run against. Has an upper bound of 100 columns. (dict) -- A key-value pair representing a column and data type that this transform can run against. The Schema parameter of the MLTransform may contain up to 100 of these structures. Name (string) -- The name of the column. DataType (string) -- The type of data in the column. Role (string) -- The name or Amazon Resource Name (ARN) of the IAM role with the required permissions. The required permissions include both AWS Glue service role permissions to AWS Glue resources, and Amazon S3 permissions required by the transform. This role needs AWS Glue service role permissions to allow access to resources in AWS Glue. See Attach a Policy to IAM Users That Access AWS Glue . This role needs permission to your Amazon Simple Storage Service (Amazon S3) sources, targets, temporary directory, scripts, and any libraries used by the task run for this transform. GlueVersion (string) -- This value determines which version of AWS Glue this machine learning transform is compatible with. Glue 1.0 is recommended for most customers. If the value is not set, the Glue compatibility defaults to Glue 0.9. For more information, see AWS Glue Versions in the developer guide. MaxCapacity (float) -- The number of AWS Glue data processing units (DPUs) that are allocated to task runs for this transform. You can allocate from 2 to 100 DPUs; the default is 10. A DPU is a relative measure of processing power that consists of 4 vCPUs of compute capacity and 16 GB of memory. For more information, see the AWS Glue pricing page . MaxCapacity is a mutually exclusive option with NumberOfWorkers and WorkerType . If either NumberOfWorkers or WorkerType is set, then MaxCapacity cannot be set. If MaxCapacity is set then neither NumberOfWorkers or WorkerType can be set. If WorkerType is set, then NumberOfWorkers is required (and vice versa). MaxCapacity and NumberOfWorkers must both be at least 1. When the WorkerType field is set to a value other than Standard , the MaxCapacity field is set automatically and becomes read-only. WorkerType (string) -- The type of predefined worker that is allocated when a task of this transform runs. Accepts a value of Standard, G.1X, or G.2X. For the Standard worker type, each worker provides 4 vCPU, 16 GB of memory and a 50GB disk, and 2 executors per worker. For the G.1X worker type, each worker provides 4 vCPU, 16 GB of memory and a 64GB disk, and 1 executor per worker. For the G.2X worker type, each worker provides 8 vCPU, 32 GB of memory and a 128GB disk, and 1 executor per worker. MaxCapacity is a mutually exclusive option with NumberOfWorkers and WorkerType . If either NumberOfWorkers or WorkerType is set, then MaxCapacity cannot be set. If MaxCapacity is set then neither NumberOfWorkers or WorkerType can be set. If WorkerType is set, then NumberOfWorkers is required (and vice versa). MaxCapacity and NumberOfWorkers must both be at least 1. NumberOfWorkers (integer) -- The number of workers of a defined workerType that are allocated when a task of the transform runs. If WorkerType is set, then NumberOfWorkers is required (and vice versa). Timeout (integer) -- The timeout in minutes of the machine learning transform. MaxRetries (integer) -- The maximum number of times to retry after an MLTaskRun of the machine learning transform fails. NextToken (string) -- A pagination token, if more results are available. Exceptions Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.OperationTimeoutException Glue.Client.exceptions.InternalServiceException :return: { 'Transforms': [ { 'TransformId': 'string', 'Name': 'string', 'Description': 'string', 'Status': 'NOT_READY'|'READY'|'DELETING', 'CreatedOn': datetime(2015, 1, 1), 'LastModifiedOn': datetime(2015, 1, 1), 'InputRecordTables': [ { 'DatabaseName': 'string', 'TableName': 'string', 'CatalogId': 'string', 'ConnectionName': 'string' }, ], 'Parameters': { 'TransformType': 'FIND_MATCHES', 'FindMatchesParameters': { 'PrimaryKeyColumnName': 'string', 'PrecisionRecallTradeoff': 123.0, 'AccuracyCostTradeoff': 123.0, 'EnforceProvidedLabels': True|False } }, 'EvaluationMetrics': { 'TransformType': 'FIND_MATCHES', 'FindMatchesMetrics': { 'AreaUnderPRCurve': 123.0, 'Precision': 123.0, 'Recall': 123.0, 'F1': 123.0, 'ConfusionMatrix': { 'NumTruePositives': 123, 'NumFalsePositives': 123, 'NumTrueNegatives': 123, 'NumFalseNegatives': 123 } } }, 'LabelCount': 123, 'Schema': [ { 'Name': 'string', 'DataType': 'string' }, ], 'Role': 'string', 'GlueVersion': 'string', 'MaxCapacity': 123.0, 'WorkerType': 'Standard'|'G.1X'|'G.2X', 'NumberOfWorkers': 123, 'Timeout': 123, 'MaxRetries': 123 }, ], 'NextToken': 'string' } :returns: This role needs AWS Glue service role permissions to allow access to resources in AWS Glue. See Attach a Policy to IAM Users That Access AWS Glue . This role needs permission to your Amazon Simple Storage Service (Amazon S3) sources, targets, temporary directory, scripts, and any libraries used by the task run for this transform. """ pass def get_paginator(operation_name=None): """ Create a paginator for an operation. :type operation_name: string :param operation_name: The operation name. This is the same name\nas the method name on the client. For example, if the\nmethod name is create_foo, and you\'d normally invoke the\noperation as client.create_foo(**kwargs), if the\ncreate_foo operation can be paginated, you can use the\ncall client.get_paginator('create_foo'). :rtype: L{botocore.paginate.Paginator} ReturnsA paginator object. """ pass def get_partition(CatalogId=None, DatabaseName=None, TableName=None, PartitionValues=None): """ Retrieves information about a specified partition. See also: AWS API Documentation Exceptions :example: response = client.get_partition( CatalogId='string', DatabaseName='string', TableName='string', PartitionValues=[ 'string', ] ) :type CatalogId: string :param CatalogId: The ID of the Data Catalog where the partition in question resides. If none is provided, the AWS account ID is used by default. :type DatabaseName: string :param DatabaseName: [REQUIRED]\nThe name of the catalog database where the partition resides.\n :type TableName: string :param TableName: [REQUIRED]\nThe name of the partition\'s table.\n :type PartitionValues: list :param PartitionValues: [REQUIRED]\nThe values that define the partition.\n\n(string) --\n\n :rtype: dict ReturnsResponse Syntax { 'Partition': { 'Values': [ 'string', ], 'DatabaseName': 'string', 'TableName': 'string', 'CreationTime': datetime(2015, 1, 1), 'LastAccessTime': datetime(2015, 1, 1), 'StorageDescriptor': { 'Columns': [ { 'Name': 'string', 'Type': 'string', 'Comment': 'string', 'Parameters': { 'string': 'string' } }, ], 'Location': 'string', 'InputFormat': 'string', 'OutputFormat': 'string', 'Compressed': True|False, 'NumberOfBuckets': 123, 'SerdeInfo': { 'Name': 'string', 'SerializationLibrary': 'string', 'Parameters': { 'string': 'string' } }, 'BucketColumns': [ 'string', ], 'SortColumns': [ { 'Column': 'string', 'SortOrder': 123 }, ], 'Parameters': { 'string': 'string' }, 'SkewedInfo': { 'SkewedColumnNames': [ 'string', ], 'SkewedColumnValues': [ 'string', ], 'SkewedColumnValueLocationMaps': { 'string': 'string' } }, 'StoredAsSubDirectories': True|False }, 'Parameters': { 'string': 'string' }, 'LastAnalyzedTime': datetime(2015, 1, 1) } } Response Structure (dict) -- Partition (dict) -- The requested information, in the form of a Partition object. Values (list) -- The values of the partition. (string) -- DatabaseName (string) -- The name of the catalog database in which to create the partition. TableName (string) -- The name of the database table in which to create the partition. CreationTime (datetime) -- The time at which the partition was created. LastAccessTime (datetime) -- The last time at which the partition was accessed. StorageDescriptor (dict) -- Provides information about the physical location where the partition is stored. Columns (list) -- A list of the Columns in the table. (dict) -- A column in a Table . Name (string) -- The name of the Column . Type (string) -- The data type of the Column . Comment (string) -- A free-form text comment. Parameters (dict) -- These key-value pairs define properties associated with the column. (string) -- (string) -- Location (string) -- The physical location of the table. By default, this takes the form of the warehouse location, followed by the database location in the warehouse, followed by the table name. InputFormat (string) -- The input format: SequenceFileInputFormat (binary), or TextInputFormat , or a custom format. OutputFormat (string) -- The output format: SequenceFileOutputFormat (binary), or IgnoreKeyTextOutputFormat , or a custom format. Compressed (boolean) -- True if the data in the table is compressed, or False if not. NumberOfBuckets (integer) -- Must be specified if the table contains any dimension columns. SerdeInfo (dict) -- The serialization/deserialization (SerDe) information. Name (string) -- Name of the SerDe. SerializationLibrary (string) -- Usually the class that implements the SerDe. An example is org.apache.hadoop.hive.serde2.columnar.ColumnarSerDe . Parameters (dict) -- These key-value pairs define initialization parameters for the SerDe. (string) -- (string) -- BucketColumns (list) -- A list of reducer grouping columns, clustering columns, and bucketing columns in the table. (string) -- SortColumns (list) -- A list specifying the sort order of each bucket in the table. (dict) -- Specifies the sort order of a sorted column. Column (string) -- The name of the column. SortOrder (integer) -- Indicates that the column is sorted in ascending order (== 1 ), or in descending order (==0 ). Parameters (dict) -- The user-supplied properties in key-value form. (string) -- (string) -- SkewedInfo (dict) -- The information about values that appear frequently in a column (skewed values). SkewedColumnNames (list) -- A list of names of columns that contain skewed values. (string) -- SkewedColumnValues (list) -- A list of values that appear so frequently as to be considered skewed. (string) -- SkewedColumnValueLocationMaps (dict) -- A mapping of skewed values to the columns that contain them. (string) -- (string) -- StoredAsSubDirectories (boolean) -- True if the table data is stored in subdirectories, or False if not. Parameters (dict) -- These key-value pairs define partition parameters. (string) -- (string) -- LastAnalyzedTime (datetime) -- The last time at which column statistics were computed for this partition. Exceptions Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.OperationTimeoutException Glue.Client.exceptions.GlueEncryptionException :return: { 'Partition': { 'Values': [ 'string', ], 'DatabaseName': 'string', 'TableName': 'string', 'CreationTime': datetime(2015, 1, 1), 'LastAccessTime': datetime(2015, 1, 1), 'StorageDescriptor': { 'Columns': [ { 'Name': 'string', 'Type': 'string', 'Comment': 'string', 'Parameters': { 'string': 'string' } }, ], 'Location': 'string', 'InputFormat': 'string', 'OutputFormat': 'string', 'Compressed': True|False, 'NumberOfBuckets': 123, 'SerdeInfo': { 'Name': 'string', 'SerializationLibrary': 'string', 'Parameters': { 'string': 'string' } }, 'BucketColumns': [ 'string', ], 'SortColumns': [ { 'Column': 'string', 'SortOrder': 123 }, ], 'Parameters': { 'string': 'string' }, 'SkewedInfo': { 'SkewedColumnNames': [ 'string', ], 'SkewedColumnValues': [ 'string', ], 'SkewedColumnValueLocationMaps': { 'string': 'string' } }, 'StoredAsSubDirectories': True|False }, 'Parameters': { 'string': 'string' }, 'LastAnalyzedTime': datetime(2015, 1, 1) } } :returns: (string) -- """ pass def get_partitions(CatalogId=None, DatabaseName=None, TableName=None, Expression=None, NextToken=None, Segment=None, MaxResults=None): """ Retrieves information about the partitions in a table. See also: AWS API Documentation Exceptions :example: response = client.get_partitions( CatalogId='string', DatabaseName='string', TableName='string', Expression='string', NextToken='string', Segment={ 'SegmentNumber': 123, 'TotalSegments': 123 }, MaxResults=123 ) :type CatalogId: string :param CatalogId: The ID of the Data Catalog where the partitions in question reside. If none is provided, the AWS account ID is used by default. :type DatabaseName: string :param DatabaseName: [REQUIRED]\nThe name of the catalog database where the partitions reside.\n :type TableName: string :param TableName: [REQUIRED]\nThe name of the partitions\' table.\n :type Expression: string :param Expression: An expression that filters the partitions to be returned.\nThe expression uses SQL syntax similar to the SQL WHERE filter clause. The SQL statement parser JSQLParser parses the expression.\n\nOperators : The following are the operators that you can use in the Expression API call:\n=\n\nChecks whether the values of the two operands are equal; if yes, then the condition becomes true.\nExample: Assume \'variable a\' holds 10 and \'variable b\' holds 20.\n(a = b) is not true.\n\n< >\nChecks whether the values of two operands are equal; if the values are not equal, then the condition becomes true.\nExample: (a < > b) is true.\n\n>\nChecks whether the value of the left operand is greater than the value of the right operand; if yes, then the condition becomes true.\nExample: (a > b) is not true.\n\n<\nChecks whether the value of the left operand is less than the value of the right operand; if yes, then the condition becomes true.\nExample: (a < b) is true.\n\n>=\nChecks whether the value of the left operand is greater than or equal to the value of the right operand; if yes, then the condition becomes true.\nExample: (a >= b) is not true.\n\n<=\nChecks whether the value of the left operand is less than or equal to the value of the right operand; if yes, then the condition becomes true.\nExample: (a <= b) is true.\n\nAND, OR, IN, BETWEEN, LIKE, NOT, IS NULL\nLogical operators.\n\nSupported Partition Key Types : The following are the supported partition keys.\n\nstring\ndate\ntimestamp\nint\nbigint\nlong\ntinyint\nsmallint\ndecimal\n\nIf an invalid type is encountered, an exception is thrown.\nThe following list shows the valid operators on each type. When you define a crawler, the partitionKey type is created as a STRING , to be compatible with the catalog partitions.\n\nSample API Call :\n :type NextToken: string :param NextToken: A continuation token, if this is not the first call to retrieve these partitions. :type Segment: dict :param Segment: The segment of the table\'s partitions to scan in this request.\n\nSegmentNumber (integer) -- [REQUIRED]The zero-based index number of the segment. For example, if the total number of segments is 4, SegmentNumber values range from 0 through 3.\n\nTotalSegments (integer) -- [REQUIRED]The total number of segments.\n\n\n :type MaxResults: integer :param MaxResults: The maximum number of partitions to return in a single response. :rtype: dict ReturnsResponse Syntax { 'Partitions': [ { 'Values': [ 'string', ], 'DatabaseName': 'string', 'TableName': 'string', 'CreationTime': datetime(2015, 1, 1), 'LastAccessTime': datetime(2015, 1, 1), 'StorageDescriptor': { 'Columns': [ { 'Name': 'string', 'Type': 'string', 'Comment': 'string', 'Parameters': { 'string': 'string' } }, ], 'Location': 'string', 'InputFormat': 'string', 'OutputFormat': 'string', 'Compressed': True|False, 'NumberOfBuckets': 123, 'SerdeInfo': { 'Name': 'string', 'SerializationLibrary': 'string', 'Parameters': { 'string': 'string' } }, 'BucketColumns': [ 'string', ], 'SortColumns': [ { 'Column': 'string', 'SortOrder': 123 }, ], 'Parameters': { 'string': 'string' }, 'SkewedInfo': { 'SkewedColumnNames': [ 'string', ], 'SkewedColumnValues': [ 'string', ], 'SkewedColumnValueLocationMaps': { 'string': 'string' } }, 'StoredAsSubDirectories': True|False }, 'Parameters': { 'string': 'string' }, 'LastAnalyzedTime': datetime(2015, 1, 1) }, ], 'NextToken': 'string' } Response Structure (dict) -- Partitions (list) -- A list of requested partitions. (dict) -- Represents a slice of table data. Values (list) -- The values of the partition. (string) -- DatabaseName (string) -- The name of the catalog database in which to create the partition. TableName (string) -- The name of the database table in which to create the partition. CreationTime (datetime) -- The time at which the partition was created. LastAccessTime (datetime) -- The last time at which the partition was accessed. StorageDescriptor (dict) -- Provides information about the physical location where the partition is stored. Columns (list) -- A list of the Columns in the table. (dict) -- A column in a Table . Name (string) -- The name of the Column . Type (string) -- The data type of the Column . Comment (string) -- A free-form text comment. Parameters (dict) -- These key-value pairs define properties associated with the column. (string) -- (string) -- Location (string) -- The physical location of the table. By default, this takes the form of the warehouse location, followed by the database location in the warehouse, followed by the table name. InputFormat (string) -- The input format: SequenceFileInputFormat (binary), or TextInputFormat , or a custom format. OutputFormat (string) -- The output format: SequenceFileOutputFormat (binary), or IgnoreKeyTextOutputFormat , or a custom format. Compressed (boolean) -- True if the data in the table is compressed, or False if not. NumberOfBuckets (integer) -- Must be specified if the table contains any dimension columns. SerdeInfo (dict) -- The serialization/deserialization (SerDe) information. Name (string) -- Name of the SerDe. SerializationLibrary (string) -- Usually the class that implements the SerDe. An example is org.apache.hadoop.hive.serde2.columnar.ColumnarSerDe . Parameters (dict) -- These key-value pairs define initialization parameters for the SerDe. (string) -- (string) -- BucketColumns (list) -- A list of reducer grouping columns, clustering columns, and bucketing columns in the table. (string) -- SortColumns (list) -- A list specifying the sort order of each bucket in the table. (dict) -- Specifies the sort order of a sorted column. Column (string) -- The name of the column. SortOrder (integer) -- Indicates that the column is sorted in ascending order (== 1 ), or in descending order (==0 ). Parameters (dict) -- The user-supplied properties in key-value form. (string) -- (string) -- SkewedInfo (dict) -- The information about values that appear frequently in a column (skewed values). SkewedColumnNames (list) -- A list of names of columns that contain skewed values. (string) -- SkewedColumnValues (list) -- A list of values that appear so frequently as to be considered skewed. (string) -- SkewedColumnValueLocationMaps (dict) -- A mapping of skewed values to the columns that contain them. (string) -- (string) -- StoredAsSubDirectories (boolean) -- True if the table data is stored in subdirectories, or False if not. Parameters (dict) -- These key-value pairs define partition parameters. (string) -- (string) -- LastAnalyzedTime (datetime) -- The last time at which column statistics were computed for this partition. NextToken (string) -- A continuation token, if the returned list of partitions does not include the last one. Exceptions Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.OperationTimeoutException Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.GlueEncryptionException :return: { 'Partitions': [ { 'Values': [ 'string', ], 'DatabaseName': 'string', 'TableName': 'string', 'CreationTime': datetime(2015, 1, 1), 'LastAccessTime': datetime(2015, 1, 1), 'StorageDescriptor': { 'Columns': [ { 'Name': 'string', 'Type': 'string', 'Comment': 'string', 'Parameters': { 'string': 'string' } }, ], 'Location': 'string', 'InputFormat': 'string', 'OutputFormat': 'string', 'Compressed': True|False, 'NumberOfBuckets': 123, 'SerdeInfo': { 'Name': 'string', 'SerializationLibrary': 'string', 'Parameters': { 'string': 'string' } }, 'BucketColumns': [ 'string', ], 'SortColumns': [ { 'Column': 'string', 'SortOrder': 123 }, ], 'Parameters': { 'string': 'string' }, 'SkewedInfo': { 'SkewedColumnNames': [ 'string', ], 'SkewedColumnValues': [ 'string', ], 'SkewedColumnValueLocationMaps': { 'string': 'string' } }, 'StoredAsSubDirectories': True|False }, 'Parameters': { 'string': 'string' }, 'LastAnalyzedTime': datetime(2015, 1, 1) }, ], 'NextToken': 'string' } :returns: (string) -- """ pass def get_plan(Mapping=None, Source=None, Sinks=None, Location=None, Language=None): """ Gets code to perform a specified mapping. See also: AWS API Documentation Exceptions :example: response = client.get_plan( Mapping=[ { 'SourceTable': 'string', 'SourcePath': 'string', 'SourceType': 'string', 'TargetTable': 'string', 'TargetPath': 'string', 'TargetType': 'string' }, ], Source={ 'DatabaseName': 'string', 'TableName': 'string' }, Sinks=[ { 'DatabaseName': 'string', 'TableName': 'string' }, ], Location={ 'Jdbc': [ { 'Name': 'string', 'Value': 'string', 'Param': True|False }, ], 'S3': [ { 'Name': 'string', 'Value': 'string', 'Param': True|False }, ], 'DynamoDB': [ { 'Name': 'string', 'Value': 'string', 'Param': True|False }, ] }, Language='PYTHON'|'SCALA' ) :type Mapping: list :param Mapping: [REQUIRED]\nThe list of mappings from a source table to target tables.\n\n(dict) --Defines a mapping.\n\nSourceTable (string) --The name of the source table.\n\nSourcePath (string) --The source path.\n\nSourceType (string) --The source type.\n\nTargetTable (string) --The target table.\n\nTargetPath (string) --The target path.\n\nTargetType (string) --The target type.\n\n\n\n\n :type Source: dict :param Source: [REQUIRED]\nThe source table.\n\nDatabaseName (string) -- [REQUIRED]The database in which the table metadata resides.\n\nTableName (string) -- [REQUIRED]The name of the table in question.\n\n\n :type Sinks: list :param Sinks: The target tables.\n\n(dict) --Specifies a table definition in the AWS Glue Data Catalog.\n\nDatabaseName (string) -- [REQUIRED]The database in which the table metadata resides.\n\nTableName (string) -- [REQUIRED]The name of the table in question.\n\n\n\n\n :type Location: dict :param Location: The parameters for the mapping.\n\nJdbc (list) --A JDBC location.\n\n(dict) --An argument or property of a node.\n\nName (string) -- [REQUIRED]The name of the argument or property.\n\nValue (string) -- [REQUIRED]The value of the argument or property.\n\nParam (boolean) --True if the value is used as a parameter.\n\n\n\n\n\nS3 (list) --An Amazon Simple Storage Service (Amazon S3) location.\n\n(dict) --An argument or property of a node.\n\nName (string) -- [REQUIRED]The name of the argument or property.\n\nValue (string) -- [REQUIRED]The value of the argument or property.\n\nParam (boolean) --True if the value is used as a parameter.\n\n\n\n\n\nDynamoDB (list) --An Amazon DynamoDB table location.\n\n(dict) --An argument or property of a node.\n\nName (string) -- [REQUIRED]The name of the argument or property.\n\nValue (string) -- [REQUIRED]The value of the argument or property.\n\nParam (boolean) --True if the value is used as a parameter.\n\n\n\n\n\n\n :type Language: string :param Language: The programming language of the code to perform the mapping. :rtype: dict ReturnsResponse Syntax { 'PythonScript': 'string', 'ScalaCode': 'string' } Response Structure (dict) -- PythonScript (string) -- A Python script to perform the mapping. ScalaCode (string) -- The Scala code to perform the mapping. Exceptions Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.OperationTimeoutException :return: { 'PythonScript': 'string', 'ScalaCode': 'string' } :returns: Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.OperationTimeoutException """ pass def get_resource_policy(): """ Retrieves a specified resource policy. See also: AWS API Documentation Exceptions :example: response = client.get_resource_policy() :rtype: dict ReturnsResponse Syntax{ 'PolicyInJson': 'string', 'PolicyHash': 'string', 'CreateTime': datetime(2015, 1, 1), 'UpdateTime': datetime(2015, 1, 1) } Response Structure (dict) -- PolicyInJson (string) --Contains the requested policy document, in JSON format. PolicyHash (string) --Contains the hash value associated with this policy. CreateTime (datetime) --The date and time at which the policy was created. UpdateTime (datetime) --The date and time at which the policy was last updated. Exceptions Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.OperationTimeoutException Glue.Client.exceptions.InvalidInputException :return: { 'PolicyInJson': 'string', 'PolicyHash': 'string', 'CreateTime': datetime(2015, 1, 1), 'UpdateTime': datetime(2015, 1, 1) } """ pass def get_security_configuration(Name=None): """ Retrieves a specified security configuration. See also: AWS API Documentation Exceptions :example: response = client.get_security_configuration( Name='string' ) :type Name: string :param Name: [REQUIRED]\nThe name of the security configuration to retrieve.\n :rtype: dict ReturnsResponse Syntax{ 'SecurityConfiguration': { 'Name': 'string', 'CreatedTimeStamp': datetime(2015, 1, 1), 'EncryptionConfiguration': { 'S3Encryption': [ { 'S3EncryptionMode': 'DISABLED'|'SSE-KMS'|'SSE-S3', 'KmsKeyArn': 'string' }, ], 'CloudWatchEncryption': { 'CloudWatchEncryptionMode': 'DISABLED'|'SSE-KMS', 'KmsKeyArn': 'string' }, 'JobBookmarksEncryption': { 'JobBookmarksEncryptionMode': 'DISABLED'|'CSE-KMS', 'KmsKeyArn': 'string' } } } } Response Structure (dict) -- SecurityConfiguration (dict) --The requested security configuration. Name (string) --The name of the security configuration. CreatedTimeStamp (datetime) --The time at which this security configuration was created. EncryptionConfiguration (dict) --The encryption configuration associated with this security configuration. S3Encryption (list) --The encryption configuration for Amazon Simple Storage Service (Amazon S3) data. (dict) --Specifies how Amazon Simple Storage Service (Amazon S3) data should be encrypted. S3EncryptionMode (string) --The encryption mode to use for Amazon S3 data. KmsKeyArn (string) --The Amazon Resource Name (ARN) of the KMS key to be used to encrypt the data. CloudWatchEncryption (dict) --The encryption configuration for Amazon CloudWatch. CloudWatchEncryptionMode (string) --The encryption mode to use for CloudWatch data. KmsKeyArn (string) --The Amazon Resource Name (ARN) of the KMS key to be used to encrypt the data. JobBookmarksEncryption (dict) --The encryption configuration for job bookmarks. JobBookmarksEncryptionMode (string) --The encryption mode to use for job bookmarks data. KmsKeyArn (string) --The Amazon Resource Name (ARN) of the KMS key to be used to encrypt the data. Exceptions Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.OperationTimeoutException :return: { 'SecurityConfiguration': { 'Name': 'string', 'CreatedTimeStamp': datetime(2015, 1, 1), 'EncryptionConfiguration': { 'S3Encryption': [ { 'S3EncryptionMode': 'DISABLED'|'SSE-KMS'|'SSE-S3', 'KmsKeyArn': 'string' }, ], 'CloudWatchEncryption': { 'CloudWatchEncryptionMode': 'DISABLED'|'SSE-KMS', 'KmsKeyArn': 'string' }, 'JobBookmarksEncryption': { 'JobBookmarksEncryptionMode': 'DISABLED'|'CSE-KMS', 'KmsKeyArn': 'string' } } } } """ pass def get_security_configurations(MaxResults=None, NextToken=None): """ Retrieves a list of all security configurations. See also: AWS API Documentation Exceptions :example: response = client.get_security_configurations( MaxResults=123, NextToken='string' ) :type MaxResults: integer :param MaxResults: The maximum number of results to return. :type NextToken: string :param NextToken: A continuation token, if this is a continuation call. :rtype: dict ReturnsResponse Syntax { 'SecurityConfigurations': [ { 'Name': 'string', 'CreatedTimeStamp': datetime(2015, 1, 1), 'EncryptionConfiguration': { 'S3Encryption': [ { 'S3EncryptionMode': 'DISABLED'|'SSE-KMS'|'SSE-S3', 'KmsKeyArn': 'string' }, ], 'CloudWatchEncryption': { 'CloudWatchEncryptionMode': 'DISABLED'|'SSE-KMS', 'KmsKeyArn': 'string' }, 'JobBookmarksEncryption': { 'JobBookmarksEncryptionMode': 'DISABLED'|'CSE-KMS', 'KmsKeyArn': 'string' } } }, ], 'NextToken': 'string' } Response Structure (dict) -- SecurityConfigurations (list) -- A list of security configurations. (dict) -- Specifies a security configuration. Name (string) -- The name of the security configuration. CreatedTimeStamp (datetime) -- The time at which this security configuration was created. EncryptionConfiguration (dict) -- The encryption configuration associated with this security configuration. S3Encryption (list) -- The encryption configuration for Amazon Simple Storage Service (Amazon S3) data. (dict) -- Specifies how Amazon Simple Storage Service (Amazon S3) data should be encrypted. S3EncryptionMode (string) -- The encryption mode to use for Amazon S3 data. KmsKeyArn (string) -- The Amazon Resource Name (ARN) of the KMS key to be used to encrypt the data. CloudWatchEncryption (dict) -- The encryption configuration for Amazon CloudWatch. CloudWatchEncryptionMode (string) -- The encryption mode to use for CloudWatch data. KmsKeyArn (string) -- The Amazon Resource Name (ARN) of the KMS key to be used to encrypt the data. JobBookmarksEncryption (dict) -- The encryption configuration for job bookmarks. JobBookmarksEncryptionMode (string) -- The encryption mode to use for job bookmarks data. KmsKeyArn (string) -- The Amazon Resource Name (ARN) of the KMS key to be used to encrypt the data. NextToken (string) -- A continuation token, if there are more security configurations to return. Exceptions Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.OperationTimeoutException :return: { 'SecurityConfigurations': [ { 'Name': 'string', 'CreatedTimeStamp': datetime(2015, 1, 1), 'EncryptionConfiguration': { 'S3Encryption': [ { 'S3EncryptionMode': 'DISABLED'|'SSE-KMS'|'SSE-S3', 'KmsKeyArn': 'string' }, ], 'CloudWatchEncryption': { 'CloudWatchEncryptionMode': 'DISABLED'|'SSE-KMS', 'KmsKeyArn': 'string' }, 'JobBookmarksEncryption': { 'JobBookmarksEncryptionMode': 'DISABLED'|'CSE-KMS', 'KmsKeyArn': 'string' } } }, ], 'NextToken': 'string' } :returns: Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.OperationTimeoutException """ pass def get_table(CatalogId=None, DatabaseName=None, Name=None): """ Retrieves the Table definition in a Data Catalog for a specified table. See also: AWS API Documentation Exceptions :example: response = client.get_table( CatalogId='string', DatabaseName='string', Name='string' ) :type CatalogId: string :param CatalogId: The ID of the Data Catalog where the table resides. If none is provided, the AWS account ID is used by default. :type DatabaseName: string :param DatabaseName: [REQUIRED]\nThe name of the database in the catalog in which the table resides. For Hive compatibility, this name is entirely lowercase.\n :type Name: string :param Name: [REQUIRED]\nThe name of the table for which to retrieve the definition. For Hive compatibility, this name is entirely lowercase.\n :rtype: dict ReturnsResponse Syntax { 'Table': { 'Name': 'string', 'DatabaseName': 'string', 'Description': 'string', 'Owner': 'string', 'CreateTime': datetime(2015, 1, 1), 'UpdateTime': datetime(2015, 1, 1), 'LastAccessTime': datetime(2015, 1, 1), 'LastAnalyzedTime': datetime(2015, 1, 1), 'Retention': 123, 'StorageDescriptor': { 'Columns': [ { 'Name': 'string', 'Type': 'string', 'Comment': 'string', 'Parameters': { 'string': 'string' } }, ], 'Location': 'string', 'InputFormat': 'string', 'OutputFormat': 'string', 'Compressed': True|False, 'NumberOfBuckets': 123, 'SerdeInfo': { 'Name': 'string', 'SerializationLibrary': 'string', 'Parameters': { 'string': 'string' } }, 'BucketColumns': [ 'string', ], 'SortColumns': [ { 'Column': 'string', 'SortOrder': 123 }, ], 'Parameters': { 'string': 'string' }, 'SkewedInfo': { 'SkewedColumnNames': [ 'string', ], 'SkewedColumnValues': [ 'string', ], 'SkewedColumnValueLocationMaps': { 'string': 'string' } }, 'StoredAsSubDirectories': True|False }, 'PartitionKeys': [ { 'Name': 'string', 'Type': 'string', 'Comment': 'string', 'Parameters': { 'string': 'string' } }, ], 'ViewOriginalText': 'string', 'ViewExpandedText': 'string', 'TableType': 'string', 'Parameters': { 'string': 'string' }, 'CreatedBy': 'string', 'IsRegisteredWithLakeFormation': True|False } } Response Structure (dict) -- Table (dict) -- The Table object that defines the specified table. Name (string) -- The table name. For Hive compatibility, this must be entirely lowercase. DatabaseName (string) -- The name of the database where the table metadata resides. For Hive compatibility, this must be all lowercase. Description (string) -- A description of the table. Owner (string) -- The owner of the table. CreateTime (datetime) -- The time when the table definition was created in the Data Catalog. UpdateTime (datetime) -- The last time that the table was updated. LastAccessTime (datetime) -- The last time that the table was accessed. This is usually taken from HDFS, and might not be reliable. LastAnalyzedTime (datetime) -- The last time that column statistics were computed for this table. Retention (integer) -- The retention time for this table. StorageDescriptor (dict) -- A storage descriptor containing information about the physical storage of this table. Columns (list) -- A list of the Columns in the table. (dict) -- A column in a Table . Name (string) -- The name of the Column . Type (string) -- The data type of the Column . Comment (string) -- A free-form text comment. Parameters (dict) -- These key-value pairs define properties associated with the column. (string) -- (string) -- Location (string) -- The physical location of the table. By default, this takes the form of the warehouse location, followed by the database location in the warehouse, followed by the table name. InputFormat (string) -- The input format: SequenceFileInputFormat (binary), or TextInputFormat , or a custom format. OutputFormat (string) -- The output format: SequenceFileOutputFormat (binary), or IgnoreKeyTextOutputFormat , or a custom format. Compressed (boolean) -- True if the data in the table is compressed, or False if not. NumberOfBuckets (integer) -- Must be specified if the table contains any dimension columns. SerdeInfo (dict) -- The serialization/deserialization (SerDe) information. Name (string) -- Name of the SerDe. SerializationLibrary (string) -- Usually the class that implements the SerDe. An example is org.apache.hadoop.hive.serde2.columnar.ColumnarSerDe . Parameters (dict) -- These key-value pairs define initialization parameters for the SerDe. (string) -- (string) -- BucketColumns (list) -- A list of reducer grouping columns, clustering columns, and bucketing columns in the table. (string) -- SortColumns (list) -- A list specifying the sort order of each bucket in the table. (dict) -- Specifies the sort order of a sorted column. Column (string) -- The name of the column. SortOrder (integer) -- Indicates that the column is sorted in ascending order (== 1 ), or in descending order (==0 ). Parameters (dict) -- The user-supplied properties in key-value form. (string) -- (string) -- SkewedInfo (dict) -- The information about values that appear frequently in a column (skewed values). SkewedColumnNames (list) -- A list of names of columns that contain skewed values. (string) -- SkewedColumnValues (list) -- A list of values that appear so frequently as to be considered skewed. (string) -- SkewedColumnValueLocationMaps (dict) -- A mapping of skewed values to the columns that contain them. (string) -- (string) -- StoredAsSubDirectories (boolean) -- True if the table data is stored in subdirectories, or False if not. PartitionKeys (list) -- A list of columns by which the table is partitioned. Only primitive types are supported as partition keys. When you create a table used by Amazon Athena, and you do not specify any partitionKeys , you must at least set the value of partitionKeys to an empty list. For example: "PartitionKeys": [] (dict) -- A column in a Table . Name (string) -- The name of the Column . Type (string) -- The data type of the Column . Comment (string) -- A free-form text comment. Parameters (dict) -- These key-value pairs define properties associated with the column. (string) -- (string) -- ViewOriginalText (string) -- If the table is a view, the original text of the view; otherwise null . ViewExpandedText (string) -- If the table is a view, the expanded text of the view; otherwise null . TableType (string) -- The type of this table (EXTERNAL_TABLE , VIRTUAL_VIEW , etc.). Parameters (dict) -- These key-value pairs define properties associated with the table. (string) -- (string) -- CreatedBy (string) -- The person or entity who created the table. IsRegisteredWithLakeFormation (boolean) -- Indicates whether the table has been registered with AWS Lake Formation. Exceptions Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.OperationTimeoutException Glue.Client.exceptions.GlueEncryptionException :return: { 'Table': { 'Name': 'string', 'DatabaseName': 'string', 'Description': 'string', 'Owner': 'string', 'CreateTime': datetime(2015, 1, 1), 'UpdateTime': datetime(2015, 1, 1), 'LastAccessTime': datetime(2015, 1, 1), 'LastAnalyzedTime': datetime(2015, 1, 1), 'Retention': 123, 'StorageDescriptor': { 'Columns': [ { 'Name': 'string', 'Type': 'string', 'Comment': 'string', 'Parameters': { 'string': 'string' } }, ], 'Location': 'string', 'InputFormat': 'string', 'OutputFormat': 'string', 'Compressed': True|False, 'NumberOfBuckets': 123, 'SerdeInfo': { 'Name': 'string', 'SerializationLibrary': 'string', 'Parameters': { 'string': 'string' } }, 'BucketColumns': [ 'string', ], 'SortColumns': [ { 'Column': 'string', 'SortOrder': 123 }, ], 'Parameters': { 'string': 'string' }, 'SkewedInfo': { 'SkewedColumnNames': [ 'string', ], 'SkewedColumnValues': [ 'string', ], 'SkewedColumnValueLocationMaps': { 'string': 'string' } }, 'StoredAsSubDirectories': True|False }, 'PartitionKeys': [ { 'Name': 'string', 'Type': 'string', 'Comment': 'string', 'Parameters': { 'string': 'string' } }, ], 'ViewOriginalText': 'string', 'ViewExpandedText': 'string', 'TableType': 'string', 'Parameters': { 'string': 'string' }, 'CreatedBy': 'string', 'IsRegisteredWithLakeFormation': True|False } } :returns: (string) -- (string) -- """ pass def get_table_version(CatalogId=None, DatabaseName=None, TableName=None, VersionId=None): """ Retrieves a specified version of a table. See also: AWS API Documentation Exceptions :example: response = client.get_table_version( CatalogId='string', DatabaseName='string', TableName='string', VersionId='string' ) :type CatalogId: string :param CatalogId: The ID of the Data Catalog where the tables reside. If none is provided, the AWS account ID is used by default. :type DatabaseName: string :param DatabaseName: [REQUIRED]\nThe database in the catalog in which the table resides. For Hive compatibility, this name is entirely lowercase.\n :type TableName: string :param TableName: [REQUIRED]\nThe name of the table. For Hive compatibility, this name is entirely lowercase.\n :type VersionId: string :param VersionId: The ID value of the table version to be retrieved. A VersionID is a string representation of an integer. Each version is incremented by 1. :rtype: dict ReturnsResponse Syntax { 'TableVersion': { 'Table': { 'Name': 'string', 'DatabaseName': 'string', 'Description': 'string', 'Owner': 'string', 'CreateTime': datetime(2015, 1, 1), 'UpdateTime': datetime(2015, 1, 1), 'LastAccessTime': datetime(2015, 1, 1), 'LastAnalyzedTime': datetime(2015, 1, 1), 'Retention': 123, 'StorageDescriptor': { 'Columns': [ { 'Name': 'string', 'Type': 'string', 'Comment': 'string', 'Parameters': { 'string': 'string' } }, ], 'Location': 'string', 'InputFormat': 'string', 'OutputFormat': 'string', 'Compressed': True|False, 'NumberOfBuckets': 123, 'SerdeInfo': { 'Name': 'string', 'SerializationLibrary': 'string', 'Parameters': { 'string': 'string' } }, 'BucketColumns': [ 'string', ], 'SortColumns': [ { 'Column': 'string', 'SortOrder': 123 }, ], 'Parameters': { 'string': 'string' }, 'SkewedInfo': { 'SkewedColumnNames': [ 'string', ], 'SkewedColumnValues': [ 'string', ], 'SkewedColumnValueLocationMaps': { 'string': 'string' } }, 'StoredAsSubDirectories': True|False }, 'PartitionKeys': [ { 'Name': 'string', 'Type': 'string', 'Comment': 'string', 'Parameters': { 'string': 'string' } }, ], 'ViewOriginalText': 'string', 'ViewExpandedText': 'string', 'TableType': 'string', 'Parameters': { 'string': 'string' }, 'CreatedBy': 'string', 'IsRegisteredWithLakeFormation': True|False }, 'VersionId': 'string' } } Response Structure (dict) -- TableVersion (dict) -- The requested table version. Table (dict) -- The table in question. Name (string) -- The table name. For Hive compatibility, this must be entirely lowercase. DatabaseName (string) -- The name of the database where the table metadata resides. For Hive compatibility, this must be all lowercase. Description (string) -- A description of the table. Owner (string) -- The owner of the table. CreateTime (datetime) -- The time when the table definition was created in the Data Catalog. UpdateTime (datetime) -- The last time that the table was updated. LastAccessTime (datetime) -- The last time that the table was accessed. This is usually taken from HDFS, and might not be reliable. LastAnalyzedTime (datetime) -- The last time that column statistics were computed for this table. Retention (integer) -- The retention time for this table. StorageDescriptor (dict) -- A storage descriptor containing information about the physical storage of this table. Columns (list) -- A list of the Columns in the table. (dict) -- A column in a Table . Name (string) -- The name of the Column . Type (string) -- The data type of the Column . Comment (string) -- A free-form text comment. Parameters (dict) -- These key-value pairs define properties associated with the column. (string) -- (string) -- Location (string) -- The physical location of the table. By default, this takes the form of the warehouse location, followed by the database location in the warehouse, followed by the table name. InputFormat (string) -- The input format: SequenceFileInputFormat (binary), or TextInputFormat , or a custom format. OutputFormat (string) -- The output format: SequenceFileOutputFormat (binary), or IgnoreKeyTextOutputFormat , or a custom format. Compressed (boolean) -- True if the data in the table is compressed, or False if not. NumberOfBuckets (integer) -- Must be specified if the table contains any dimension columns. SerdeInfo (dict) -- The serialization/deserialization (SerDe) information. Name (string) -- Name of the SerDe. SerializationLibrary (string) -- Usually the class that implements the SerDe. An example is org.apache.hadoop.hive.serde2.columnar.ColumnarSerDe . Parameters (dict) -- These key-value pairs define initialization parameters for the SerDe. (string) -- (string) -- BucketColumns (list) -- A list of reducer grouping columns, clustering columns, and bucketing columns in the table. (string) -- SortColumns (list) -- A list specifying the sort order of each bucket in the table. (dict) -- Specifies the sort order of a sorted column. Column (string) -- The name of the column. SortOrder (integer) -- Indicates that the column is sorted in ascending order (== 1 ), or in descending order (==0 ). Parameters (dict) -- The user-supplied properties in key-value form. (string) -- (string) -- SkewedInfo (dict) -- The information about values that appear frequently in a column (skewed values). SkewedColumnNames (list) -- A list of names of columns that contain skewed values. (string) -- SkewedColumnValues (list) -- A list of values that appear so frequently as to be considered skewed. (string) -- SkewedColumnValueLocationMaps (dict) -- A mapping of skewed values to the columns that contain them. (string) -- (string) -- StoredAsSubDirectories (boolean) -- True if the table data is stored in subdirectories, or False if not. PartitionKeys (list) -- A list of columns by which the table is partitioned. Only primitive types are supported as partition keys. When you create a table used by Amazon Athena, and you do not specify any partitionKeys , you must at least set the value of partitionKeys to an empty list. For example: "PartitionKeys": [] (dict) -- A column in a Table . Name (string) -- The name of the Column . Type (string) -- The data type of the Column . Comment (string) -- A free-form text comment. Parameters (dict) -- These key-value pairs define properties associated with the column. (string) -- (string) -- ViewOriginalText (string) -- If the table is a view, the original text of the view; otherwise null . ViewExpandedText (string) -- If the table is a view, the expanded text of the view; otherwise null . TableType (string) -- The type of this table (EXTERNAL_TABLE , VIRTUAL_VIEW , etc.). Parameters (dict) -- These key-value pairs define properties associated with the table. (string) -- (string) -- CreatedBy (string) -- The person or entity who created the table. IsRegisteredWithLakeFormation (boolean) -- Indicates whether the table has been registered with AWS Lake Formation. VersionId (string) -- The ID value that identifies this table version. A VersionId is a string representation of an integer. Each version is incremented by 1. Exceptions Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.OperationTimeoutException Glue.Client.exceptions.GlueEncryptionException :return: { 'TableVersion': { 'Table': { 'Name': 'string', 'DatabaseName': 'string', 'Description': 'string', 'Owner': 'string', 'CreateTime': datetime(2015, 1, 1), 'UpdateTime': datetime(2015, 1, 1), 'LastAccessTime': datetime(2015, 1, 1), 'LastAnalyzedTime': datetime(2015, 1, 1), 'Retention': 123, 'StorageDescriptor': { 'Columns': [ { 'Name': 'string', 'Type': 'string', 'Comment': 'string', 'Parameters': { 'string': 'string' } }, ], 'Location': 'string', 'InputFormat': 'string', 'OutputFormat': 'string', 'Compressed': True|False, 'NumberOfBuckets': 123, 'SerdeInfo': { 'Name': 'string', 'SerializationLibrary': 'string', 'Parameters': { 'string': 'string' } }, 'BucketColumns': [ 'string', ], 'SortColumns': [ { 'Column': 'string', 'SortOrder': 123 }, ], 'Parameters': { 'string': 'string' }, 'SkewedInfo': { 'SkewedColumnNames': [ 'string', ], 'SkewedColumnValues': [ 'string', ], 'SkewedColumnValueLocationMaps': { 'string': 'string' } }, 'StoredAsSubDirectories': True|False }, 'PartitionKeys': [ { 'Name': 'string', 'Type': 'string', 'Comment': 'string', 'Parameters': { 'string': 'string' } }, ], 'ViewOriginalText': 'string', 'ViewExpandedText': 'string', 'TableType': 'string', 'Parameters': { 'string': 'string' }, 'CreatedBy': 'string', 'IsRegisteredWithLakeFormation': True|False }, 'VersionId': 'string' } } :returns: (string) -- (string) -- """ pass def get_table_versions(CatalogId=None, DatabaseName=None, TableName=None, NextToken=None, MaxResults=None): """ Retrieves a list of strings that identify available versions of a specified table. See also: AWS API Documentation Exceptions :example: response = client.get_table_versions( CatalogId='string', DatabaseName='string', TableName='string', NextToken='string', MaxResults=123 ) :type CatalogId: string :param CatalogId: The ID of the Data Catalog where the tables reside. If none is provided, the AWS account ID is used by default. :type DatabaseName: string :param DatabaseName: [REQUIRED]\nThe database in the catalog in which the table resides. For Hive compatibility, this name is entirely lowercase.\n :type TableName: string :param TableName: [REQUIRED]\nThe name of the table. For Hive compatibility, this name is entirely lowercase.\n :type NextToken: string :param NextToken: A continuation token, if this is not the first call. :type MaxResults: integer :param MaxResults: The maximum number of table versions to return in one response. :rtype: dict ReturnsResponse Syntax { 'TableVersions': [ { 'Table': { 'Name': 'string', 'DatabaseName': 'string', 'Description': 'string', 'Owner': 'string', 'CreateTime': datetime(2015, 1, 1), 'UpdateTime': datetime(2015, 1, 1), 'LastAccessTime': datetime(2015, 1, 1), 'LastAnalyzedTime': datetime(2015, 1, 1), 'Retention': 123, 'StorageDescriptor': { 'Columns': [ { 'Name': 'string', 'Type': 'string', 'Comment': 'string', 'Parameters': { 'string': 'string' } }, ], 'Location': 'string', 'InputFormat': 'string', 'OutputFormat': 'string', 'Compressed': True|False, 'NumberOfBuckets': 123, 'SerdeInfo': { 'Name': 'string', 'SerializationLibrary': 'string', 'Parameters': { 'string': 'string' } }, 'BucketColumns': [ 'string', ], 'SortColumns': [ { 'Column': 'string', 'SortOrder': 123 }, ], 'Parameters': { 'string': 'string' }, 'SkewedInfo': { 'SkewedColumnNames': [ 'string', ], 'SkewedColumnValues': [ 'string', ], 'SkewedColumnValueLocationMaps': { 'string': 'string' } }, 'StoredAsSubDirectories': True|False }, 'PartitionKeys': [ { 'Name': 'string', 'Type': 'string', 'Comment': 'string', 'Parameters': { 'string': 'string' } }, ], 'ViewOriginalText': 'string', 'ViewExpandedText': 'string', 'TableType': 'string', 'Parameters': { 'string': 'string' }, 'CreatedBy': 'string', 'IsRegisteredWithLakeFormation': True|False }, 'VersionId': 'string' }, ], 'NextToken': 'string' } Response Structure (dict) -- TableVersions (list) -- A list of strings identifying available versions of the specified table. (dict) -- Specifies a version of a table. Table (dict) -- The table in question. Name (string) -- The table name. For Hive compatibility, this must be entirely lowercase. DatabaseName (string) -- The name of the database where the table metadata resides. For Hive compatibility, this must be all lowercase. Description (string) -- A description of the table. Owner (string) -- The owner of the table. CreateTime (datetime) -- The time when the table definition was created in the Data Catalog. UpdateTime (datetime) -- The last time that the table was updated. LastAccessTime (datetime) -- The last time that the table was accessed. This is usually taken from HDFS, and might not be reliable. LastAnalyzedTime (datetime) -- The last time that column statistics were computed for this table. Retention (integer) -- The retention time for this table. StorageDescriptor (dict) -- A storage descriptor containing information about the physical storage of this table. Columns (list) -- A list of the Columns in the table. (dict) -- A column in a Table . Name (string) -- The name of the Column . Type (string) -- The data type of the Column . Comment (string) -- A free-form text comment. Parameters (dict) -- These key-value pairs define properties associated with the column. (string) -- (string) -- Location (string) -- The physical location of the table. By default, this takes the form of the warehouse location, followed by the database location in the warehouse, followed by the table name. InputFormat (string) -- The input format: SequenceFileInputFormat (binary), or TextInputFormat , or a custom format. OutputFormat (string) -- The output format: SequenceFileOutputFormat (binary), or IgnoreKeyTextOutputFormat , or a custom format. Compressed (boolean) -- True if the data in the table is compressed, or False if not. NumberOfBuckets (integer) -- Must be specified if the table contains any dimension columns. SerdeInfo (dict) -- The serialization/deserialization (SerDe) information. Name (string) -- Name of the SerDe. SerializationLibrary (string) -- Usually the class that implements the SerDe. An example is org.apache.hadoop.hive.serde2.columnar.ColumnarSerDe . Parameters (dict) -- These key-value pairs define initialization parameters for the SerDe. (string) -- (string) -- BucketColumns (list) -- A list of reducer grouping columns, clustering columns, and bucketing columns in the table. (string) -- SortColumns (list) -- A list specifying the sort order of each bucket in the table. (dict) -- Specifies the sort order of a sorted column. Column (string) -- The name of the column. SortOrder (integer) -- Indicates that the column is sorted in ascending order (== 1 ), or in descending order (==0 ). Parameters (dict) -- The user-supplied properties in key-value form. (string) -- (string) -- SkewedInfo (dict) -- The information about values that appear frequently in a column (skewed values). SkewedColumnNames (list) -- A list of names of columns that contain skewed values. (string) -- SkewedColumnValues (list) -- A list of values that appear so frequently as to be considered skewed. (string) -- SkewedColumnValueLocationMaps (dict) -- A mapping of skewed values to the columns that contain them. (string) -- (string) -- StoredAsSubDirectories (boolean) -- True if the table data is stored in subdirectories, or False if not. PartitionKeys (list) -- A list of columns by which the table is partitioned. Only primitive types are supported as partition keys. When you create a table used by Amazon Athena, and you do not specify any partitionKeys , you must at least set the value of partitionKeys to an empty list. For example: "PartitionKeys": [] (dict) -- A column in a Table . Name (string) -- The name of the Column . Type (string) -- The data type of the Column . Comment (string) -- A free-form text comment. Parameters (dict) -- These key-value pairs define properties associated with the column. (string) -- (string) -- ViewOriginalText (string) -- If the table is a view, the original text of the view; otherwise null . ViewExpandedText (string) -- If the table is a view, the expanded text of the view; otherwise null . TableType (string) -- The type of this table (EXTERNAL_TABLE , VIRTUAL_VIEW , etc.). Parameters (dict) -- These key-value pairs define properties associated with the table. (string) -- (string) -- CreatedBy (string) -- The person or entity who created the table. IsRegisteredWithLakeFormation (boolean) -- Indicates whether the table has been registered with AWS Lake Formation. VersionId (string) -- The ID value that identifies this table version. A VersionId is a string representation of an integer. Each version is incremented by 1. NextToken (string) -- A continuation token, if the list of available versions does not include the last one. Exceptions Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.OperationTimeoutException Glue.Client.exceptions.GlueEncryptionException :return: { 'TableVersions': [ { 'Table': { 'Name': 'string', 'DatabaseName': 'string', 'Description': 'string', 'Owner': 'string', 'CreateTime': datetime(2015, 1, 1), 'UpdateTime': datetime(2015, 1, 1), 'LastAccessTime': datetime(2015, 1, 1), 'LastAnalyzedTime': datetime(2015, 1, 1), 'Retention': 123, 'StorageDescriptor': { 'Columns': [ { 'Name': 'string', 'Type': 'string', 'Comment': 'string', 'Parameters': { 'string': 'string' } }, ], 'Location': 'string', 'InputFormat': 'string', 'OutputFormat': 'string', 'Compressed': True|False, 'NumberOfBuckets': 123, 'SerdeInfo': { 'Name': 'string', 'SerializationLibrary': 'string', 'Parameters': { 'string': 'string' } }, 'BucketColumns': [ 'string', ], 'SortColumns': [ { 'Column': 'string', 'SortOrder': 123 }, ], 'Parameters': { 'string': 'string' }, 'SkewedInfo': { 'SkewedColumnNames': [ 'string', ], 'SkewedColumnValues': [ 'string', ], 'SkewedColumnValueLocationMaps': { 'string': 'string' } }, 'StoredAsSubDirectories': True|False }, 'PartitionKeys': [ { 'Name': 'string', 'Type': 'string', 'Comment': 'string', 'Parameters': { 'string': 'string' } }, ], 'ViewOriginalText': 'string', 'ViewExpandedText': 'string', 'TableType': 'string', 'Parameters': { 'string': 'string' }, 'CreatedBy': 'string', 'IsRegisteredWithLakeFormation': True|False }, 'VersionId': 'string' }, ], 'NextToken': 'string' } :returns: (string) -- (string) -- """ pass def get_tables(CatalogId=None, DatabaseName=None, Expression=None, NextToken=None, MaxResults=None): """ Retrieves the definitions of some or all of the tables in a given Database . See also: AWS API Documentation Exceptions :example: response = client.get_tables( CatalogId='string', DatabaseName='string', Expression='string', NextToken='string', MaxResults=123 ) :type CatalogId: string :param CatalogId: The ID of the Data Catalog where the tables reside. If none is provided, the AWS account ID is used by default. :type DatabaseName: string :param DatabaseName: [REQUIRED]\nThe database in the catalog whose tables to list. For Hive compatibility, this name is entirely lowercase.\n :type Expression: string :param Expression: A regular expression pattern. If present, only those tables whose names match the pattern are returned. :type NextToken: string :param NextToken: A continuation token, included if this is a continuation call. :type MaxResults: integer :param MaxResults: The maximum number of tables to return in a single response. :rtype: dict ReturnsResponse Syntax { 'TableList': [ { 'Name': 'string', 'DatabaseName': 'string', 'Description': 'string', 'Owner': 'string', 'CreateTime': datetime(2015, 1, 1), 'UpdateTime': datetime(2015, 1, 1), 'LastAccessTime': datetime(2015, 1, 1), 'LastAnalyzedTime': datetime(2015, 1, 1), 'Retention': 123, 'StorageDescriptor': { 'Columns': [ { 'Name': 'string', 'Type': 'string', 'Comment': 'string', 'Parameters': { 'string': 'string' } }, ], 'Location': 'string', 'InputFormat': 'string', 'OutputFormat': 'string', 'Compressed': True|False, 'NumberOfBuckets': 123, 'SerdeInfo': { 'Name': 'string', 'SerializationLibrary': 'string', 'Parameters': { 'string': 'string' } }, 'BucketColumns': [ 'string', ], 'SortColumns': [ { 'Column': 'string', 'SortOrder': 123 }, ], 'Parameters': { 'string': 'string' }, 'SkewedInfo': { 'SkewedColumnNames': [ 'string', ], 'SkewedColumnValues': [ 'string', ], 'SkewedColumnValueLocationMaps': { 'string': 'string' } }, 'StoredAsSubDirectories': True|False }, 'PartitionKeys': [ { 'Name': 'string', 'Type': 'string', 'Comment': 'string', 'Parameters': { 'string': 'string' } }, ], 'ViewOriginalText': 'string', 'ViewExpandedText': 'string', 'TableType': 'string', 'Parameters': { 'string': 'string' }, 'CreatedBy': 'string', 'IsRegisteredWithLakeFormation': True|False }, ], 'NextToken': 'string' } Response Structure (dict) -- TableList (list) -- A list of the requested Table objects. (dict) -- Represents a collection of related data organized in columns and rows. Name (string) -- The table name. For Hive compatibility, this must be entirely lowercase. DatabaseName (string) -- The name of the database where the table metadata resides. For Hive compatibility, this must be all lowercase. Description (string) -- A description of the table. Owner (string) -- The owner of the table. CreateTime (datetime) -- The time when the table definition was created in the Data Catalog. UpdateTime (datetime) -- The last time that the table was updated. LastAccessTime (datetime) -- The last time that the table was accessed. This is usually taken from HDFS, and might not be reliable. LastAnalyzedTime (datetime) -- The last time that column statistics were computed for this table. Retention (integer) -- The retention time for this table. StorageDescriptor (dict) -- A storage descriptor containing information about the physical storage of this table. Columns (list) -- A list of the Columns in the table. (dict) -- A column in a Table . Name (string) -- The name of the Column . Type (string) -- The data type of the Column . Comment (string) -- A free-form text comment. Parameters (dict) -- These key-value pairs define properties associated with the column. (string) -- (string) -- Location (string) -- The physical location of the table. By default, this takes the form of the warehouse location, followed by the database location in the warehouse, followed by the table name. InputFormat (string) -- The input format: SequenceFileInputFormat (binary), or TextInputFormat , or a custom format. OutputFormat (string) -- The output format: SequenceFileOutputFormat (binary), or IgnoreKeyTextOutputFormat , or a custom format. Compressed (boolean) -- True if the data in the table is compressed, or False if not. NumberOfBuckets (integer) -- Must be specified if the table contains any dimension columns. SerdeInfo (dict) -- The serialization/deserialization (SerDe) information. Name (string) -- Name of the SerDe. SerializationLibrary (string) -- Usually the class that implements the SerDe. An example is org.apache.hadoop.hive.serde2.columnar.ColumnarSerDe . Parameters (dict) -- These key-value pairs define initialization parameters for the SerDe. (string) -- (string) -- BucketColumns (list) -- A list of reducer grouping columns, clustering columns, and bucketing columns in the table. (string) -- SortColumns (list) -- A list specifying the sort order of each bucket in the table. (dict) -- Specifies the sort order of a sorted column. Column (string) -- The name of the column. SortOrder (integer) -- Indicates that the column is sorted in ascending order (== 1 ), or in descending order (==0 ). Parameters (dict) -- The user-supplied properties in key-value form. (string) -- (string) -- SkewedInfo (dict) -- The information about values that appear frequently in a column (skewed values). SkewedColumnNames (list) -- A list of names of columns that contain skewed values. (string) -- SkewedColumnValues (list) -- A list of values that appear so frequently as to be considered skewed. (string) -- SkewedColumnValueLocationMaps (dict) -- A mapping of skewed values to the columns that contain them. (string) -- (string) -- StoredAsSubDirectories (boolean) -- True if the table data is stored in subdirectories, or False if not. PartitionKeys (list) -- A list of columns by which the table is partitioned. Only primitive types are supported as partition keys. When you create a table used by Amazon Athena, and you do not specify any partitionKeys , you must at least set the value of partitionKeys to an empty list. For example: "PartitionKeys": [] (dict) -- A column in a Table . Name (string) -- The name of the Column . Type (string) -- The data type of the Column . Comment (string) -- A free-form text comment. Parameters (dict) -- These key-value pairs define properties associated with the column. (string) -- (string) -- ViewOriginalText (string) -- If the table is a view, the original text of the view; otherwise null . ViewExpandedText (string) -- If the table is a view, the expanded text of the view; otherwise null . TableType (string) -- The type of this table (EXTERNAL_TABLE , VIRTUAL_VIEW , etc.). Parameters (dict) -- These key-value pairs define properties associated with the table. (string) -- (string) -- CreatedBy (string) -- The person or entity who created the table. IsRegisteredWithLakeFormation (boolean) -- Indicates whether the table has been registered with AWS Lake Formation. NextToken (string) -- A continuation token, present if the current list segment is not the last. Exceptions Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.OperationTimeoutException Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.GlueEncryptionException :return: { 'TableList': [ { 'Name': 'string', 'DatabaseName': 'string', 'Description': 'string', 'Owner': 'string', 'CreateTime': datetime(2015, 1, 1), 'UpdateTime': datetime(2015, 1, 1), 'LastAccessTime': datetime(2015, 1, 1), 'LastAnalyzedTime': datetime(2015, 1, 1), 'Retention': 123, 'StorageDescriptor': { 'Columns': [ { 'Name': 'string', 'Type': 'string', 'Comment': 'string', 'Parameters': { 'string': 'string' } }, ], 'Location': 'string', 'InputFormat': 'string', 'OutputFormat': 'string', 'Compressed': True|False, 'NumberOfBuckets': 123, 'SerdeInfo': { 'Name': 'string', 'SerializationLibrary': 'string', 'Parameters': { 'string': 'string' } }, 'BucketColumns': [ 'string', ], 'SortColumns': [ { 'Column': 'string', 'SortOrder': 123 }, ], 'Parameters': { 'string': 'string' }, 'SkewedInfo': { 'SkewedColumnNames': [ 'string', ], 'SkewedColumnValues': [ 'string', ], 'SkewedColumnValueLocationMaps': { 'string': 'string' } }, 'StoredAsSubDirectories': True|False }, 'PartitionKeys': [ { 'Name': 'string', 'Type': 'string', 'Comment': 'string', 'Parameters': { 'string': 'string' } }, ], 'ViewOriginalText': 'string', 'ViewExpandedText': 'string', 'TableType': 'string', 'Parameters': { 'string': 'string' }, 'CreatedBy': 'string', 'IsRegisteredWithLakeFormation': True|False }, ], 'NextToken': 'string' } :returns: (string) -- (string) -- """ pass def get_tags(ResourceArn=None): """ Retrieves a list of tags associated with a resource. See also: AWS API Documentation Exceptions :example: response = client.get_tags( ResourceArn='string' ) :type ResourceArn: string :param ResourceArn: [REQUIRED]\nThe Amazon Resource Name (ARN) of the resource for which to retrieve tags.\n :rtype: dict ReturnsResponse Syntax{ 'Tags': { 'string': 'string' } } Response Structure (dict) -- Tags (dict) --The requested tags. (string) -- (string) -- Exceptions Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.OperationTimeoutException Glue.Client.exceptions.EntityNotFoundException :return: { 'Tags': { 'string': 'string' } } :returns: Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.OperationTimeoutException Glue.Client.exceptions.EntityNotFoundException """ pass def get_trigger(Name=None): """ Retrieves the definition of a trigger. See also: AWS API Documentation Exceptions :example: response = client.get_trigger( Name='string' ) :type Name: string :param Name: [REQUIRED]\nThe name of the trigger to retrieve.\n :rtype: dict ReturnsResponse Syntax{ 'Trigger': { 'Name': 'string', 'WorkflowName': 'string', 'Id': 'string', 'Type': 'SCHEDULED'|'CONDITIONAL'|'ON_DEMAND', 'State': 'CREATING'|'CREATED'|'ACTIVATING'|'ACTIVATED'|'DEACTIVATING'|'DEACTIVATED'|'DELETING'|'UPDATING', 'Description': 'string', 'Schedule': 'string', 'Actions': [ { 'JobName': 'string', 'Arguments': { 'string': 'string' }, 'Timeout': 123, 'SecurityConfiguration': 'string', 'NotificationProperty': { 'NotifyDelayAfter': 123 }, 'CrawlerName': 'string' }, ], 'Predicate': { 'Logical': 'AND'|'ANY', 'Conditions': [ { 'LogicalOperator': 'EQUALS', 'JobName': 'string', 'State': 'STARTING'|'RUNNING'|'STOPPING'|'STOPPED'|'SUCCEEDED'|'FAILED'|'TIMEOUT', 'CrawlerName': 'string', 'CrawlState': 'RUNNING'|'CANCELLING'|'CANCELLED'|'SUCCEEDED'|'FAILED' }, ] } } } Response Structure (dict) -- Trigger (dict) --The requested trigger definition. Name (string) --The name of the trigger. WorkflowName (string) --The name of the workflow associated with the trigger. Id (string) --Reserved for future use. Type (string) --The type of trigger that this is. State (string) --The current state of the trigger. Description (string) --A description of this trigger. Schedule (string) --A cron expression used to specify the schedule (see Time-Based Schedules for Jobs and Crawlers . For example, to run something every day at 12:15 UTC, you would specify: cron(15 12 * * ? *) . Actions (list) --The actions initiated by this trigger. (dict) --Defines an action to be initiated by a trigger. JobName (string) --The name of a job to be executed. Arguments (dict) --The job arguments used when this trigger fires. For this job run, they replace the default arguments set in the job definition itself. You can specify arguments here that your own job-execution script consumes, as well as arguments that AWS Glue itself consumes. For information about how to specify and consume your own Job arguments, see the Calling AWS Glue APIs in Python topic in the developer guide. For information about the key-value pairs that AWS Glue consumes to set up your job, see the Special Parameters Used by AWS Glue topic in the developer guide. (string) -- (string) -- Timeout (integer) --The JobRun timeout in minutes. This is the maximum time that a job run can consume resources before it is terminated and enters TIMEOUT status. The default is 2,880 minutes (48 hours). This overrides the timeout value set in the parent job. SecurityConfiguration (string) --The name of the SecurityConfiguration structure to be used with this action. NotificationProperty (dict) --Specifies configuration properties of a job run notification. NotifyDelayAfter (integer) --After a job run starts, the number of minutes to wait before sending a job run delay notification. CrawlerName (string) --The name of the crawler to be used with this action. Predicate (dict) --The predicate of this trigger, which defines when it will fire. Logical (string) --An optional field if only one condition is listed. If multiple conditions are listed, then this field is required. Conditions (list) --A list of the conditions that determine when the trigger will fire. (dict) --Defines a condition under which a trigger fires. LogicalOperator (string) --A logical operator. JobName (string) --The name of the job whose JobRuns this condition applies to, and on which this trigger waits. State (string) --The condition state. Currently, the only job states that a trigger can listen for are SUCCEEDED , STOPPED , FAILED , and TIMEOUT . The only crawler states that a trigger can listen for are SUCCEEDED , FAILED , and CANCELLED . CrawlerName (string) --The name of the crawler to which this condition applies. CrawlState (string) --The state of the crawler to which this condition applies. Exceptions Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.OperationTimeoutException :return: { 'Trigger': { 'Name': 'string', 'WorkflowName': 'string', 'Id': 'string', 'Type': 'SCHEDULED'|'CONDITIONAL'|'ON_DEMAND', 'State': 'CREATING'|'CREATED'|'ACTIVATING'|'ACTIVATED'|'DEACTIVATING'|'DEACTIVATED'|'DELETING'|'UPDATING', 'Description': 'string', 'Schedule': 'string', 'Actions': [ { 'JobName': 'string', 'Arguments': { 'string': 'string' }, 'Timeout': 123, 'SecurityConfiguration': 'string', 'NotificationProperty': { 'NotifyDelayAfter': 123 }, 'CrawlerName': 'string' }, ], 'Predicate': { 'Logical': 'AND'|'ANY', 'Conditions': [ { 'LogicalOperator': 'EQUALS', 'JobName': 'string', 'State': 'STARTING'|'RUNNING'|'STOPPING'|'STOPPED'|'SUCCEEDED'|'FAILED'|'TIMEOUT', 'CrawlerName': 'string', 'CrawlState': 'RUNNING'|'CANCELLING'|'CANCELLED'|'SUCCEEDED'|'FAILED' }, ] } } } :returns: Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.OperationTimeoutException """ pass def get_triggers(NextToken=None, DependentJobName=None, MaxResults=None): """ Gets all the triggers associated with a job. See also: AWS API Documentation Exceptions :example: response = client.get_triggers( NextToken='string', DependentJobName='string', MaxResults=123 ) :type NextToken: string :param NextToken: A continuation token, if this is a continuation call. :type DependentJobName: string :param DependentJobName: The name of the job to retrieve triggers for. The trigger that can start this job is returned, and if there is no such trigger, all triggers are returned. :type MaxResults: integer :param MaxResults: The maximum size of the response. :rtype: dict ReturnsResponse Syntax { 'Triggers': [ { 'Name': 'string', 'WorkflowName': 'string', 'Id': 'string', 'Type': 'SCHEDULED'|'CONDITIONAL'|'ON_DEMAND', 'State': 'CREATING'|'CREATED'|'ACTIVATING'|'ACTIVATED'|'DEACTIVATING'|'DEACTIVATED'|'DELETING'|'UPDATING', 'Description': 'string', 'Schedule': 'string', 'Actions': [ { 'JobName': 'string', 'Arguments': { 'string': 'string' }, 'Timeout': 123, 'SecurityConfiguration': 'string', 'NotificationProperty': { 'NotifyDelayAfter': 123 }, 'CrawlerName': 'string' }, ], 'Predicate': { 'Logical': 'AND'|'ANY', 'Conditions': [ { 'LogicalOperator': 'EQUALS', 'JobName': 'string', 'State': 'STARTING'|'RUNNING'|'STOPPING'|'STOPPED'|'SUCCEEDED'|'FAILED'|'TIMEOUT', 'CrawlerName': 'string', 'CrawlState': 'RUNNING'|'CANCELLING'|'CANCELLED'|'SUCCEEDED'|'FAILED' }, ] } }, ], 'NextToken': 'string' } Response Structure (dict) -- Triggers (list) -- A list of triggers for the specified job. (dict) -- Information about a specific trigger. Name (string) -- The name of the trigger. WorkflowName (string) -- The name of the workflow associated with the trigger. Id (string) -- Reserved for future use. Type (string) -- The type of trigger that this is. State (string) -- The current state of the trigger. Description (string) -- A description of this trigger. Schedule (string) -- A cron expression used to specify the schedule (see Time-Based Schedules for Jobs and Crawlers . For example, to run something every day at 12:15 UTC, you would specify: cron(15 12 * * ? *) . Actions (list) -- The actions initiated by this trigger. (dict) -- Defines an action to be initiated by a trigger. JobName (string) -- The name of a job to be executed. Arguments (dict) -- The job arguments used when this trigger fires. For this job run, they replace the default arguments set in the job definition itself. You can specify arguments here that your own job-execution script consumes, as well as arguments that AWS Glue itself consumes. For information about how to specify and consume your own Job arguments, see the Calling AWS Glue APIs in Python topic in the developer guide. For information about the key-value pairs that AWS Glue consumes to set up your job, see the Special Parameters Used by AWS Glue topic in the developer guide. (string) -- (string) -- Timeout (integer) -- The JobRun timeout in minutes. This is the maximum time that a job run can consume resources before it is terminated and enters TIMEOUT status. The default is 2,880 minutes (48 hours). This overrides the timeout value set in the parent job. SecurityConfiguration (string) -- The name of the SecurityConfiguration structure to be used with this action. NotificationProperty (dict) -- Specifies configuration properties of a job run notification. NotifyDelayAfter (integer) -- After a job run starts, the number of minutes to wait before sending a job run delay notification. CrawlerName (string) -- The name of the crawler to be used with this action. Predicate (dict) -- The predicate of this trigger, which defines when it will fire. Logical (string) -- An optional field if only one condition is listed. If multiple conditions are listed, then this field is required. Conditions (list) -- A list of the conditions that determine when the trigger will fire. (dict) -- Defines a condition under which a trigger fires. LogicalOperator (string) -- A logical operator. JobName (string) -- The name of the job whose JobRuns this condition applies to, and on which this trigger waits. State (string) -- The condition state. Currently, the only job states that a trigger can listen for are SUCCEEDED , STOPPED , FAILED , and TIMEOUT . The only crawler states that a trigger can listen for are SUCCEEDED , FAILED , and CANCELLED . CrawlerName (string) -- The name of the crawler to which this condition applies. CrawlState (string) -- The state of the crawler to which this condition applies. NextToken (string) -- A continuation token, if not all the requested triggers have yet been returned. Exceptions Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.OperationTimeoutException :return: { 'Triggers': [ { 'Name': 'string', 'WorkflowName': 'string', 'Id': 'string', 'Type': 'SCHEDULED'|'CONDITIONAL'|'ON_DEMAND', 'State': 'CREATING'|'CREATED'|'ACTIVATING'|'ACTIVATED'|'DEACTIVATING'|'DEACTIVATED'|'DELETING'|'UPDATING', 'Description': 'string', 'Schedule': 'string', 'Actions': [ { 'JobName': 'string', 'Arguments': { 'string': 'string' }, 'Timeout': 123, 'SecurityConfiguration': 'string', 'NotificationProperty': { 'NotifyDelayAfter': 123 }, 'CrawlerName': 'string' }, ], 'Predicate': { 'Logical': 'AND'|'ANY', 'Conditions': [ { 'LogicalOperator': 'EQUALS', 'JobName': 'string', 'State': 'STARTING'|'RUNNING'|'STOPPING'|'STOPPED'|'SUCCEEDED'|'FAILED'|'TIMEOUT', 'CrawlerName': 'string', 'CrawlState': 'RUNNING'|'CANCELLING'|'CANCELLED'|'SUCCEEDED'|'FAILED' }, ] } }, ], 'NextToken': 'string' } :returns: (string) -- (string) -- """ pass def get_user_defined_function(CatalogId=None, DatabaseName=None, FunctionName=None): """ Retrieves a specified function definition from the Data Catalog. See also: AWS API Documentation Exceptions :example: response = client.get_user_defined_function( CatalogId='string', DatabaseName='string', FunctionName='string' ) :type CatalogId: string :param CatalogId: The ID of the Data Catalog where the function to be retrieved is located. If none is provided, the AWS account ID is used by default. :type DatabaseName: string :param DatabaseName: [REQUIRED]\nThe name of the catalog database where the function is located.\n :type FunctionName: string :param FunctionName: [REQUIRED]\nThe name of the function.\n :rtype: dict ReturnsResponse Syntax { 'UserDefinedFunction': { 'FunctionName': 'string', 'ClassName': 'string', 'OwnerName': 'string', 'OwnerType': 'USER'|'ROLE'|'GROUP', 'CreateTime': datetime(2015, 1, 1), 'ResourceUris': [ { 'ResourceType': 'JAR'|'FILE'|'ARCHIVE', 'Uri': 'string' }, ] } } Response Structure (dict) -- UserDefinedFunction (dict) -- The requested function definition. FunctionName (string) -- The name of the function. ClassName (string) -- The Java class that contains the function code. OwnerName (string) -- The owner of the function. OwnerType (string) -- The owner type. CreateTime (datetime) -- The time at which the function was created. ResourceUris (list) -- The resource URIs for the function. (dict) -- The URIs for function resources. ResourceType (string) -- The type of the resource. Uri (string) -- The URI for accessing the resource. Exceptions Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.OperationTimeoutException Glue.Client.exceptions.GlueEncryptionException :return: { 'UserDefinedFunction': { 'FunctionName': 'string', 'ClassName': 'string', 'OwnerName': 'string', 'OwnerType': 'USER'|'ROLE'|'GROUP', 'CreateTime': datetime(2015, 1, 1), 'ResourceUris': [ { 'ResourceType': 'JAR'|'FILE'|'ARCHIVE', 'Uri': 'string' }, ] } } :returns: Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.OperationTimeoutException Glue.Client.exceptions.GlueEncryptionException """ pass def get_user_defined_functions(CatalogId=None, DatabaseName=None, Pattern=None, NextToken=None, MaxResults=None): """ Retrieves multiple function definitions from the Data Catalog. See also: AWS API Documentation Exceptions :example: response = client.get_user_defined_functions( CatalogId='string', DatabaseName='string', Pattern='string', NextToken='string', MaxResults=123 ) :type CatalogId: string :param CatalogId: The ID of the Data Catalog where the functions to be retrieved are located. If none is provided, the AWS account ID is used by default. :type DatabaseName: string :param DatabaseName: The name of the catalog database where the functions are located. :type Pattern: string :param Pattern: [REQUIRED]\nAn optional function-name pattern string that filters the function definitions returned.\n :type NextToken: string :param NextToken: A continuation token, if this is a continuation call. :type MaxResults: integer :param MaxResults: The maximum number of functions to return in one response. :rtype: dict ReturnsResponse Syntax { 'UserDefinedFunctions': [ { 'FunctionName': 'string', 'ClassName': 'string', 'OwnerName': 'string', 'OwnerType': 'USER'|'ROLE'|'GROUP', 'CreateTime': datetime(2015, 1, 1), 'ResourceUris': [ { 'ResourceType': 'JAR'|'FILE'|'ARCHIVE', 'Uri': 'string' }, ] }, ], 'NextToken': 'string' } Response Structure (dict) -- UserDefinedFunctions (list) -- A list of requested function definitions. (dict) -- Represents the equivalent of a Hive user-defined function (UDF ) definition. FunctionName (string) -- The name of the function. ClassName (string) -- The Java class that contains the function code. OwnerName (string) -- The owner of the function. OwnerType (string) -- The owner type. CreateTime (datetime) -- The time at which the function was created. ResourceUris (list) -- The resource URIs for the function. (dict) -- The URIs for function resources. ResourceType (string) -- The type of the resource. Uri (string) -- The URI for accessing the resource. NextToken (string) -- A continuation token, if the list of functions returned does not include the last requested function. Exceptions Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.OperationTimeoutException Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.GlueEncryptionException :return: { 'UserDefinedFunctions': [ { 'FunctionName': 'string', 'ClassName': 'string', 'OwnerName': 'string', 'OwnerType': 'USER'|'ROLE'|'GROUP', 'CreateTime': datetime(2015, 1, 1), 'ResourceUris': [ { 'ResourceType': 'JAR'|'FILE'|'ARCHIVE', 'Uri': 'string' }, ] }, ], 'NextToken': 'string' } :returns: Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.OperationTimeoutException Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.GlueEncryptionException """ pass def get_waiter(waiter_name=None): """ Returns an object that can wait for some condition. :type waiter_name: str :param waiter_name: The name of the waiter to get. See the waiters\nsection of the service docs for a list of available waiters. :rtype: botocore.waiter.Waiter """ pass def get_workflow(Name=None, IncludeGraph=None): """ Retrieves resource metadata for a workflow. See also: AWS API Documentation Exceptions :example: response = client.get_workflow( Name='string', IncludeGraph=True|False ) :type Name: string :param Name: [REQUIRED]\nThe name of the workflow to retrieve.\n :type IncludeGraph: boolean :param IncludeGraph: Specifies whether to include a graph when returning the workflow resource metadata. :rtype: dict ReturnsResponse Syntax { 'Workflow': { 'Name': 'string', 'Description': 'string', 'DefaultRunProperties': { 'string': 'string' }, 'CreatedOn': datetime(2015, 1, 1), 'LastModifiedOn': datetime(2015, 1, 1), 'LastRun': { 'Name': 'string', 'WorkflowRunId': 'string', 'WorkflowRunProperties': { 'string': 'string' }, 'StartedOn': datetime(2015, 1, 1), 'CompletedOn': datetime(2015, 1, 1), 'Status': 'RUNNING'|'COMPLETED'|'STOPPING'|'STOPPED', 'Statistics': { 'TotalActions': 123, 'TimeoutActions': 123, 'FailedActions': 123, 'StoppedActions': 123, 'SucceededActions': 123, 'RunningActions': 123 }, 'Graph': { 'Nodes': [ { 'Type': 'CRAWLER'|'JOB'|'TRIGGER', 'Name': 'string', 'UniqueId': 'string', 'TriggerDetails': { 'Trigger': { 'Name': 'string', 'WorkflowName': 'string', 'Id': 'string', 'Type': 'SCHEDULED'|'CONDITIONAL'|'ON_DEMAND', 'State': 'CREATING'|'CREATED'|'ACTIVATING'|'ACTIVATED'|'DEACTIVATING'|'DEACTIVATED'|'DELETING'|'UPDATING', 'Description': 'string', 'Schedule': 'string', 'Actions': [ { 'JobName': 'string', 'Arguments': { 'string': 'string' }, 'Timeout': 123, 'SecurityConfiguration': 'string', 'NotificationProperty': { 'NotifyDelayAfter': 123 }, 'CrawlerName': 'string' }, ], 'Predicate': { 'Logical': 'AND'|'ANY', 'Conditions': [ { 'LogicalOperator': 'EQUALS', 'JobName': 'string', 'State': 'STARTING'|'RUNNING'|'STOPPING'|'STOPPED'|'SUCCEEDED'|'FAILED'|'TIMEOUT', 'CrawlerName': 'string', 'CrawlState': 'RUNNING'|'CANCELLING'|'CANCELLED'|'SUCCEEDED'|'FAILED' }, ] } } }, 'JobDetails': { 'JobRuns': [ { 'Id': 'string', 'Attempt': 123, 'PreviousRunId': 'string', 'TriggerName': 'string', 'JobName': 'string', 'StartedOn': datetime(2015, 1, 1), 'LastModifiedOn': datetime(2015, 1, 1), 'CompletedOn': datetime(2015, 1, 1), 'JobRunState': 'STARTING'|'RUNNING'|'STOPPING'|'STOPPED'|'SUCCEEDED'|'FAILED'|'TIMEOUT', 'Arguments': { 'string': 'string' }, 'ErrorMessage': 'string', 'PredecessorRuns': [ { 'JobName': 'string', 'RunId': 'string' }, ], 'AllocatedCapacity': 123, 'ExecutionTime': 123, 'Timeout': 123, 'MaxCapacity': 123.0, 'WorkerType': 'Standard'|'G.1X'|'G.2X', 'NumberOfWorkers': 123, 'SecurityConfiguration': 'string', 'LogGroupName': 'string', 'NotificationProperty': { 'NotifyDelayAfter': 123 }, 'GlueVersion': 'string' }, ] }, 'CrawlerDetails': { 'Crawls': [ { 'State': 'RUNNING'|'CANCELLING'|'CANCELLED'|'SUCCEEDED'|'FAILED', 'StartedOn': datetime(2015, 1, 1), 'CompletedOn': datetime(2015, 1, 1), 'ErrorMessage': 'string', 'LogGroup': 'string', 'LogStream': 'string' }, ] } }, ], 'Edges': [ { 'SourceId': 'string', 'DestinationId': 'string' }, ] } }, 'Graph': { 'Nodes': [ { 'Type': 'CRAWLER'|'JOB'|'TRIGGER', 'Name': 'string', 'UniqueId': 'string', 'TriggerDetails': { 'Trigger': { 'Name': 'string', 'WorkflowName': 'string', 'Id': 'string', 'Type': 'SCHEDULED'|'CONDITIONAL'|'ON_DEMAND', 'State': 'CREATING'|'CREATED'|'ACTIVATING'|'ACTIVATED'|'DEACTIVATING'|'DEACTIVATED'|'DELETING'|'UPDATING', 'Description': 'string', 'Schedule': 'string', 'Actions': [ { 'JobName': 'string', 'Arguments': { 'string': 'string' }, 'Timeout': 123, 'SecurityConfiguration': 'string', 'NotificationProperty': { 'NotifyDelayAfter': 123 }, 'CrawlerName': 'string' }, ], 'Predicate': { 'Logical': 'AND'|'ANY', 'Conditions': [ { 'LogicalOperator': 'EQUALS', 'JobName': 'string', 'State': 'STARTING'|'RUNNING'|'STOPPING'|'STOPPED'|'SUCCEEDED'|'FAILED'|'TIMEOUT', 'CrawlerName': 'string', 'CrawlState': 'RUNNING'|'CANCELLING'|'CANCELLED'|'SUCCEEDED'|'FAILED' }, ] } } }, 'JobDetails': { 'JobRuns': [ { 'Id': 'string', 'Attempt': 123, 'PreviousRunId': 'string', 'TriggerName': 'string', 'JobName': 'string', 'StartedOn': datetime(2015, 1, 1), 'LastModifiedOn': datetime(2015, 1, 1), 'CompletedOn': datetime(2015, 1, 1), 'JobRunState': 'STARTING'|'RUNNING'|'STOPPING'|'STOPPED'|'SUCCEEDED'|'FAILED'|'TIMEOUT', 'Arguments': { 'string': 'string' }, 'ErrorMessage': 'string', 'PredecessorRuns': [ { 'JobName': 'string', 'RunId': 'string' }, ], 'AllocatedCapacity': 123, 'ExecutionTime': 123, 'Timeout': 123, 'MaxCapacity': 123.0, 'WorkerType': 'Standard'|'G.1X'|'G.2X', 'NumberOfWorkers': 123, 'SecurityConfiguration': 'string', 'LogGroupName': 'string', 'NotificationProperty': { 'NotifyDelayAfter': 123 }, 'GlueVersion': 'string' }, ] }, 'CrawlerDetails': { 'Crawls': [ { 'State': 'RUNNING'|'CANCELLING'|'CANCELLED'|'SUCCEEDED'|'FAILED', 'StartedOn': datetime(2015, 1, 1), 'CompletedOn': datetime(2015, 1, 1), 'ErrorMessage': 'string', 'LogGroup': 'string', 'LogStream': 'string' }, ] } }, ], 'Edges': [ { 'SourceId': 'string', 'DestinationId': 'string' }, ] } } } Response Structure (dict) -- Workflow (dict) -- The resource metadata for the workflow. Name (string) -- The name of the workflow representing the flow. Description (string) -- A description of the workflow. DefaultRunProperties (dict) -- A collection of properties to be used as part of each execution of the workflow. (string) -- (string) -- CreatedOn (datetime) -- The date and time when the workflow was created. LastModifiedOn (datetime) -- The date and time when the workflow was last modified. LastRun (dict) -- The information about the last execution of the workflow. Name (string) -- Name of the workflow which was executed. WorkflowRunId (string) -- The ID of this workflow run. WorkflowRunProperties (dict) -- The workflow run properties which were set during the run. (string) -- (string) -- StartedOn (datetime) -- The date and time when the workflow run was started. CompletedOn (datetime) -- The date and time when the workflow run completed. Status (string) -- The status of the workflow run. Statistics (dict) -- The statistics of the run. TotalActions (integer) -- Total number of Actions in the workflow run. TimeoutActions (integer) -- Total number of Actions which timed out. FailedActions (integer) -- Total number of Actions which have failed. StoppedActions (integer) -- Total number of Actions which have stopped. SucceededActions (integer) -- Total number of Actions which have succeeded. RunningActions (integer) -- Total number Actions in running state. Graph (dict) -- The graph representing all the AWS Glue components that belong to the workflow as nodes and directed connections between them as edges. Nodes (list) -- A list of the the AWS Glue components belong to the workflow represented as nodes. (dict) -- A node represents an AWS Glue component like Trigger, Job etc. which is part of a workflow. Type (string) -- The type of AWS Glue component represented by the node. Name (string) -- The name of the AWS Glue component represented by the node. UniqueId (string) -- The unique Id assigned to the node within the workflow. TriggerDetails (dict) -- Details of the Trigger when the node represents a Trigger. Trigger (dict) -- The information of the trigger represented by the trigger node. Name (string) -- The name of the trigger. WorkflowName (string) -- The name of the workflow associated with the trigger. Id (string) -- Reserved for future use. Type (string) -- The type of trigger that this is. State (string) -- The current state of the trigger. Description (string) -- A description of this trigger. Schedule (string) -- A cron expression used to specify the schedule (see Time-Based Schedules for Jobs and Crawlers . For example, to run something every day at 12:15 UTC, you would specify: cron(15 12 * * ? *) . Actions (list) -- The actions initiated by this trigger. (dict) -- Defines an action to be initiated by a trigger. JobName (string) -- The name of a job to be executed. Arguments (dict) -- The job arguments used when this trigger fires. For this job run, they replace the default arguments set in the job definition itself. You can specify arguments here that your own job-execution script consumes, as well as arguments that AWS Glue itself consumes. For information about how to specify and consume your own Job arguments, see the Calling AWS Glue APIs in Python topic in the developer guide. For information about the key-value pairs that AWS Glue consumes to set up your job, see the Special Parameters Used by AWS Glue topic in the developer guide. (string) -- (string) -- Timeout (integer) -- The JobRun timeout in minutes. This is the maximum time that a job run can consume resources before it is terminated and enters TIMEOUT status. The default is 2,880 minutes (48 hours). This overrides the timeout value set in the parent job. SecurityConfiguration (string) -- The name of the SecurityConfiguration structure to be used with this action. NotificationProperty (dict) -- Specifies configuration properties of a job run notification. NotifyDelayAfter (integer) -- After a job run starts, the number of minutes to wait before sending a job run delay notification. CrawlerName (string) -- The name of the crawler to be used with this action. Predicate (dict) -- The predicate of this trigger, which defines when it will fire. Logical (string) -- An optional field if only one condition is listed. If multiple conditions are listed, then this field is required. Conditions (list) -- A list of the conditions that determine when the trigger will fire. (dict) -- Defines a condition under which a trigger fires. LogicalOperator (string) -- A logical operator. JobName (string) -- The name of the job whose JobRuns this condition applies to, and on which this trigger waits. State (string) -- The condition state. Currently, the only job states that a trigger can listen for are SUCCEEDED , STOPPED , FAILED , and TIMEOUT . The only crawler states that a trigger can listen for are SUCCEEDED , FAILED , and CANCELLED . CrawlerName (string) -- The name of the crawler to which this condition applies. CrawlState (string) -- The state of the crawler to which this condition applies. JobDetails (dict) -- Details of the Job when the node represents a Job. JobRuns (list) -- The information for the job runs represented by the job node. (dict) -- Contains information about a job run. Id (string) -- The ID of this job run. Attempt (integer) -- The number of the attempt to run this job. PreviousRunId (string) -- The ID of the previous run of this job. For example, the JobRunId specified in the StartJobRun action. TriggerName (string) -- The name of the trigger that started this job run. JobName (string) -- The name of the job definition being used in this run. StartedOn (datetime) -- The date and time at which this job run was started. LastModifiedOn (datetime) -- The last time that this job run was modified. CompletedOn (datetime) -- The date and time that this job run completed. JobRunState (string) -- The current state of the job run. For more information about the statuses of jobs that have terminated abnormally, see AWS Glue Job Run Statuses . Arguments (dict) -- The job arguments associated with this run. For this job run, they replace the default arguments set in the job definition itself. You can specify arguments here that your own job-execution script consumes, as well as arguments that AWS Glue itself consumes. For information about how to specify and consume your own job arguments, see the Calling AWS Glue APIs in Python topic in the developer guide. For information about the key-value pairs that AWS Glue consumes to set up your job, see the Special Parameters Used by AWS Glue topic in the developer guide. (string) -- (string) -- ErrorMessage (string) -- An error message associated with this job run. PredecessorRuns (list) -- A list of predecessors to this job run. (dict) -- A job run that was used in the predicate of a conditional trigger that triggered this job run. JobName (string) -- The name of the job definition used by the predecessor job run. RunId (string) -- The job-run ID of the predecessor job run. AllocatedCapacity (integer) -- This field is deprecated. Use MaxCapacity instead. The number of AWS Glue data processing units (DPUs) allocated to this JobRun. From 2 to 100 DPUs can be allocated; the default is 10. A DPU is a relative measure of processing power that consists of 4 vCPUs of compute capacity and 16 GB of memory. For more information, see the AWS Glue pricing page . ExecutionTime (integer) -- The amount of time (in seconds) that the job run consumed resources. Timeout (integer) -- The JobRun timeout in minutes. This is the maximum time that a job run can consume resources before it is terminated and enters TIMEOUT status. The default is 2,880 minutes (48 hours). This overrides the timeout value set in the parent job. MaxCapacity (float) -- The number of AWS Glue data processing units (DPUs) that can be allocated when this job runs. A DPU is a relative measure of processing power that consists of 4 vCPUs of compute capacity and 16 GB of memory. For more information, see the AWS Glue pricing page . Do not set Max Capacity if using WorkerType and NumberOfWorkers . The value that can be allocated for MaxCapacity depends on whether you are running a Python shell job or an Apache Spark ETL job: When you specify a Python shell job (JobCommand.Name ="pythonshell"), you can allocate either 0.0625 or 1 DPU. The default is 0.0625 DPU. When you specify an Apache Spark ETL job (JobCommand.Name ="glueetl"), you can allocate from 2 to 100 DPUs. The default is 10 DPUs. This job type cannot have a fractional DPU allocation. WorkerType (string) -- The type of predefined worker that is allocated when a job runs. Accepts a value of Standard, G.1X, or G.2X. For the Standard worker type, each worker provides 4 vCPU, 16 GB of memory and a 50GB disk, and 2 executors per worker. For the G.1X worker type, each worker provides 4 vCPU, 16 GB of memory and a 64GB disk, and 1 executor per worker. For the G.2X worker type, each worker provides 8 vCPU, 32 GB of memory and a 128GB disk, and 1 executor per worker. NumberOfWorkers (integer) -- The number of workers of a defined workerType that are allocated when a job runs. The maximum number of workers you can define are 299 for G.1X , and 149 for G.2X . SecurityConfiguration (string) -- The name of the SecurityConfiguration structure to be used with this job run. LogGroupName (string) -- The name of the log group for secure logging that can be server-side encrypted in Amazon CloudWatch using AWS KMS. This name can be /aws-glue/jobs/ , in which case the default encryption is NONE . If you add a role name and SecurityConfiguration name (in other words, /aws-glue/jobs-yourRoleName-yourSecurityConfigurationName/ ), then that security configuration is used to encrypt the log group. NotificationProperty (dict) -- Specifies configuration properties of a job run notification. NotifyDelayAfter (integer) -- After a job run starts, the number of minutes to wait before sending a job run delay notification. GlueVersion (string) -- Glue version determines the versions of Apache Spark and Python that AWS Glue supports. The Python version indicates the version supported for jobs of type Spark. For more information about the available AWS Glue versions and corresponding Spark and Python versions, see Glue version in the developer guide. Jobs that are created without specifying a Glue version default to Glue 0.9. CrawlerDetails (dict) -- Details of the crawler when the node represents a crawler. Crawls (list) -- A list of crawls represented by the crawl node. (dict) -- The details of a crawl in the workflow. State (string) -- The state of the crawler. StartedOn (datetime) -- The date and time on which the crawl started. CompletedOn (datetime) -- The date and time on which the crawl completed. ErrorMessage (string) -- The error message associated with the crawl. LogGroup (string) -- The log group associated with the crawl. LogStream (string) -- The log stream associated with the crawl. Edges (list) -- A list of all the directed connections between the nodes belonging to the workflow. (dict) -- An edge represents a directed connection between two AWS Glue components which are part of the workflow the edge belongs to. SourceId (string) -- The unique of the node within the workflow where the edge starts. DestinationId (string) -- The unique of the node within the workflow where the edge ends. Graph (dict) -- The graph representing all the AWS Glue components that belong to the workflow as nodes and directed connections between them as edges. Nodes (list) -- A list of the the AWS Glue components belong to the workflow represented as nodes. (dict) -- A node represents an AWS Glue component like Trigger, Job etc. which is part of a workflow. Type (string) -- The type of AWS Glue component represented by the node. Name (string) -- The name of the AWS Glue component represented by the node. UniqueId (string) -- The unique Id assigned to the node within the workflow. TriggerDetails (dict) -- Details of the Trigger when the node represents a Trigger. Trigger (dict) -- The information of the trigger represented by the trigger node. Name (string) -- The name of the trigger. WorkflowName (string) -- The name of the workflow associated with the trigger. Id (string) -- Reserved for future use. Type (string) -- The type of trigger that this is. State (string) -- The current state of the trigger. Description (string) -- A description of this trigger. Schedule (string) -- A cron expression used to specify the schedule (see Time-Based Schedules for Jobs and Crawlers . For example, to run something every day at 12:15 UTC, you would specify: cron(15 12 * * ? *) . Actions (list) -- The actions initiated by this trigger. (dict) -- Defines an action to be initiated by a trigger. JobName (string) -- The name of a job to be executed. Arguments (dict) -- The job arguments used when this trigger fires. For this job run, they replace the default arguments set in the job definition itself. You can specify arguments here that your own job-execution script consumes, as well as arguments that AWS Glue itself consumes. For information about how to specify and consume your own Job arguments, see the Calling AWS Glue APIs in Python topic in the developer guide. For information about the key-value pairs that AWS Glue consumes to set up your job, see the Special Parameters Used by AWS Glue topic in the developer guide. (string) -- (string) -- Timeout (integer) -- The JobRun timeout in minutes. This is the maximum time that a job run can consume resources before it is terminated and enters TIMEOUT status. The default is 2,880 minutes (48 hours). This overrides the timeout value set in the parent job. SecurityConfiguration (string) -- The name of the SecurityConfiguration structure to be used with this action. NotificationProperty (dict) -- Specifies configuration properties of a job run notification. NotifyDelayAfter (integer) -- After a job run starts, the number of minutes to wait before sending a job run delay notification. CrawlerName (string) -- The name of the crawler to be used with this action. Predicate (dict) -- The predicate of this trigger, which defines when it will fire. Logical (string) -- An optional field if only one condition is listed. If multiple conditions are listed, then this field is required. Conditions (list) -- A list of the conditions that determine when the trigger will fire. (dict) -- Defines a condition under which a trigger fires. LogicalOperator (string) -- A logical operator. JobName (string) -- The name of the job whose JobRuns this condition applies to, and on which this trigger waits. State (string) -- The condition state. Currently, the only job states that a trigger can listen for are SUCCEEDED , STOPPED , FAILED , and TIMEOUT . The only crawler states that a trigger can listen for are SUCCEEDED , FAILED , and CANCELLED . CrawlerName (string) -- The name of the crawler to which this condition applies. CrawlState (string) -- The state of the crawler to which this condition applies. JobDetails (dict) -- Details of the Job when the node represents a Job. JobRuns (list) -- The information for the job runs represented by the job node. (dict) -- Contains information about a job run. Id (string) -- The ID of this job run. Attempt (integer) -- The number of the attempt to run this job. PreviousRunId (string) -- The ID of the previous run of this job. For example, the JobRunId specified in the StartJobRun action. TriggerName (string) -- The name of the trigger that started this job run. JobName (string) -- The name of the job definition being used in this run. StartedOn (datetime) -- The date and time at which this job run was started. LastModifiedOn (datetime) -- The last time that this job run was modified. CompletedOn (datetime) -- The date and time that this job run completed. JobRunState (string) -- The current state of the job run. For more information about the statuses of jobs that have terminated abnormally, see AWS Glue Job Run Statuses . Arguments (dict) -- The job arguments associated with this run. For this job run, they replace the default arguments set in the job definition itself. You can specify arguments here that your own job-execution script consumes, as well as arguments that AWS Glue itself consumes. For information about how to specify and consume your own job arguments, see the Calling AWS Glue APIs in Python topic in the developer guide. For information about the key-value pairs that AWS Glue consumes to set up your job, see the Special Parameters Used by AWS Glue topic in the developer guide. (string) -- (string) -- ErrorMessage (string) -- An error message associated with this job run. PredecessorRuns (list) -- A list of predecessors to this job run. (dict) -- A job run that was used in the predicate of a conditional trigger that triggered this job run. JobName (string) -- The name of the job definition used by the predecessor job run. RunId (string) -- The job-run ID of the predecessor job run. AllocatedCapacity (integer) -- This field is deprecated. Use MaxCapacity instead. The number of AWS Glue data processing units (DPUs) allocated to this JobRun. From 2 to 100 DPUs can be allocated; the default is 10. A DPU is a relative measure of processing power that consists of 4 vCPUs of compute capacity and 16 GB of memory. For more information, see the AWS Glue pricing page . ExecutionTime (integer) -- The amount of time (in seconds) that the job run consumed resources. Timeout (integer) -- The JobRun timeout in minutes. This is the maximum time that a job run can consume resources before it is terminated and enters TIMEOUT status. The default is 2,880 minutes (48 hours). This overrides the timeout value set in the parent job. MaxCapacity (float) -- The number of AWS Glue data processing units (DPUs) that can be allocated when this job runs. A DPU is a relative measure of processing power that consists of 4 vCPUs of compute capacity and 16 GB of memory. For more information, see the AWS Glue pricing page . Do not set Max Capacity if using WorkerType and NumberOfWorkers . The value that can be allocated for MaxCapacity depends on whether you are running a Python shell job or an Apache Spark ETL job: When you specify a Python shell job (JobCommand.Name ="pythonshell"), you can allocate either 0.0625 or 1 DPU. The default is 0.0625 DPU. When you specify an Apache Spark ETL job (JobCommand.Name ="glueetl"), you can allocate from 2 to 100 DPUs. The default is 10 DPUs. This job type cannot have a fractional DPU allocation. WorkerType (string) -- The type of predefined worker that is allocated when a job runs. Accepts a value of Standard, G.1X, or G.2X. For the Standard worker type, each worker provides 4 vCPU, 16 GB of memory and a 50GB disk, and 2 executors per worker. For the G.1X worker type, each worker provides 4 vCPU, 16 GB of memory and a 64GB disk, and 1 executor per worker. For the G.2X worker type, each worker provides 8 vCPU, 32 GB of memory and a 128GB disk, and 1 executor per worker. NumberOfWorkers (integer) -- The number of workers of a defined workerType that are allocated when a job runs. The maximum number of workers you can define are 299 for G.1X , and 149 for G.2X . SecurityConfiguration (string) -- The name of the SecurityConfiguration structure to be used with this job run. LogGroupName (string) -- The name of the log group for secure logging that can be server-side encrypted in Amazon CloudWatch using AWS KMS. This name can be /aws-glue/jobs/ , in which case the default encryption is NONE . If you add a role name and SecurityConfiguration name (in other words, /aws-glue/jobs-yourRoleName-yourSecurityConfigurationName/ ), then that security configuration is used to encrypt the log group. NotificationProperty (dict) -- Specifies configuration properties of a job run notification. NotifyDelayAfter (integer) -- After a job run starts, the number of minutes to wait before sending a job run delay notification. GlueVersion (string) -- Glue version determines the versions of Apache Spark and Python that AWS Glue supports. The Python version indicates the version supported for jobs of type Spark. For more information about the available AWS Glue versions and corresponding Spark and Python versions, see Glue version in the developer guide. Jobs that are created without specifying a Glue version default to Glue 0.9. CrawlerDetails (dict) -- Details of the crawler when the node represents a crawler. Crawls (list) -- A list of crawls represented by the crawl node. (dict) -- The details of a crawl in the workflow. State (string) -- The state of the crawler. StartedOn (datetime) -- The date and time on which the crawl started. CompletedOn (datetime) -- The date and time on which the crawl completed. ErrorMessage (string) -- The error message associated with the crawl. LogGroup (string) -- The log group associated with the crawl. LogStream (string) -- The log stream associated with the crawl. Edges (list) -- A list of all the directed connections between the nodes belonging to the workflow. (dict) -- An edge represents a directed connection between two AWS Glue components which are part of the workflow the edge belongs to. SourceId (string) -- The unique of the node within the workflow where the edge starts. DestinationId (string) -- The unique of the node within the workflow where the edge ends. Exceptions Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.OperationTimeoutException :return: { 'Workflow': { 'Name': 'string', 'Description': 'string', 'DefaultRunProperties': { 'string': 'string' }, 'CreatedOn': datetime(2015, 1, 1), 'LastModifiedOn': datetime(2015, 1, 1), 'LastRun': { 'Name': 'string', 'WorkflowRunId': 'string', 'WorkflowRunProperties': { 'string': 'string' }, 'StartedOn': datetime(2015, 1, 1), 'CompletedOn': datetime(2015, 1, 1), 'Status': 'RUNNING'|'COMPLETED'|'STOPPING'|'STOPPED', 'Statistics': { 'TotalActions': 123, 'TimeoutActions': 123, 'FailedActions': 123, 'StoppedActions': 123, 'SucceededActions': 123, 'RunningActions': 123 }, 'Graph': { 'Nodes': [ { 'Type': 'CRAWLER'|'JOB'|'TRIGGER', 'Name': 'string', 'UniqueId': 'string', 'TriggerDetails': { 'Trigger': { 'Name': 'string', 'WorkflowName': 'string', 'Id': 'string', 'Type': 'SCHEDULED'|'CONDITIONAL'|'ON_DEMAND', 'State': 'CREATING'|'CREATED'|'ACTIVATING'|'ACTIVATED'|'DEACTIVATING'|'DEACTIVATED'|'DELETING'|'UPDATING', 'Description': 'string', 'Schedule': 'string', 'Actions': [ { 'JobName': 'string', 'Arguments': { 'string': 'string' }, 'Timeout': 123, 'SecurityConfiguration': 'string', 'NotificationProperty': { 'NotifyDelayAfter': 123 }, 'CrawlerName': 'string' }, ], 'Predicate': { 'Logical': 'AND'|'ANY', 'Conditions': [ { 'LogicalOperator': 'EQUALS', 'JobName': 'string', 'State': 'STARTING'|'RUNNING'|'STOPPING'|'STOPPED'|'SUCCEEDED'|'FAILED'|'TIMEOUT', 'CrawlerName': 'string', 'CrawlState': 'RUNNING'|'CANCELLING'|'CANCELLED'|'SUCCEEDED'|'FAILED' }, ] } } }, 'JobDetails': { 'JobRuns': [ { 'Id': 'string', 'Attempt': 123, 'PreviousRunId': 'string', 'TriggerName': 'string', 'JobName': 'string', 'StartedOn': datetime(2015, 1, 1), 'LastModifiedOn': datetime(2015, 1, 1), 'CompletedOn': datetime(2015, 1, 1), 'JobRunState': 'STARTING'|'RUNNING'|'STOPPING'|'STOPPED'|'SUCCEEDED'|'FAILED'|'TIMEOUT', 'Arguments': { 'string': 'string' }, 'ErrorMessage': 'string', 'PredecessorRuns': [ { 'JobName': 'string', 'RunId': 'string' }, ], 'AllocatedCapacity': 123, 'ExecutionTime': 123, 'Timeout': 123, 'MaxCapacity': 123.0, 'WorkerType': 'Standard'|'G.1X'|'G.2X', 'NumberOfWorkers': 123, 'SecurityConfiguration': 'string', 'LogGroupName': 'string', 'NotificationProperty': { 'NotifyDelayAfter': 123 }, 'GlueVersion': 'string' }, ] }, 'CrawlerDetails': { 'Crawls': [ { 'State': 'RUNNING'|'CANCELLING'|'CANCELLED'|'SUCCEEDED'|'FAILED', 'StartedOn': datetime(2015, 1, 1), 'CompletedOn': datetime(2015, 1, 1), 'ErrorMessage': 'string', 'LogGroup': 'string', 'LogStream': 'string' }, ] } }, ], 'Edges': [ { 'SourceId': 'string', 'DestinationId': 'string' }, ] } }, 'Graph': { 'Nodes': [ { 'Type': 'CRAWLER'|'JOB'|'TRIGGER', 'Name': 'string', 'UniqueId': 'string', 'TriggerDetails': { 'Trigger': { 'Name': 'string', 'WorkflowName': 'string', 'Id': 'string', 'Type': 'SCHEDULED'|'CONDITIONAL'|'ON_DEMAND', 'State': 'CREATING'|'CREATED'|'ACTIVATING'|'ACTIVATED'|'DEACTIVATING'|'DEACTIVATED'|'DELETING'|'UPDATING', 'Description': 'string', 'Schedule': 'string', 'Actions': [ { 'JobName': 'string', 'Arguments': { 'string': 'string' }, 'Timeout': 123, 'SecurityConfiguration': 'string', 'NotificationProperty': { 'NotifyDelayAfter': 123 }, 'CrawlerName': 'string' }, ], 'Predicate': { 'Logical': 'AND'|'ANY', 'Conditions': [ { 'LogicalOperator': 'EQUALS', 'JobName': 'string', 'State': 'STARTING'|'RUNNING'|'STOPPING'|'STOPPED'|'SUCCEEDED'|'FAILED'|'TIMEOUT', 'CrawlerName': 'string', 'CrawlState': 'RUNNING'|'CANCELLING'|'CANCELLED'|'SUCCEEDED'|'FAILED' }, ] } } }, 'JobDetails': { 'JobRuns': [ { 'Id': 'string', 'Attempt': 123, 'PreviousRunId': 'string', 'TriggerName': 'string', 'JobName': 'string', 'StartedOn': datetime(2015, 1, 1), 'LastModifiedOn': datetime(2015, 1, 1), 'CompletedOn': datetime(2015, 1, 1), 'JobRunState': 'STARTING'|'RUNNING'|'STOPPING'|'STOPPED'|'SUCCEEDED'|'FAILED'|'TIMEOUT', 'Arguments': { 'string': 'string' }, 'ErrorMessage': 'string', 'PredecessorRuns': [ { 'JobName': 'string', 'RunId': 'string' }, ], 'AllocatedCapacity': 123, 'ExecutionTime': 123, 'Timeout': 123, 'MaxCapacity': 123.0, 'WorkerType': 'Standard'|'G.1X'|'G.2X', 'NumberOfWorkers': 123, 'SecurityConfiguration': 'string', 'LogGroupName': 'string', 'NotificationProperty': { 'NotifyDelayAfter': 123 }, 'GlueVersion': 'string' }, ] }, 'CrawlerDetails': { 'Crawls': [ { 'State': 'RUNNING'|'CANCELLING'|'CANCELLED'|'SUCCEEDED'|'FAILED', 'StartedOn': datetime(2015, 1, 1), 'CompletedOn': datetime(2015, 1, 1), 'ErrorMessage': 'string', 'LogGroup': 'string', 'LogStream': 'string' }, ] } }, ], 'Edges': [ { 'SourceId': 'string', 'DestinationId': 'string' }, ] } } } :returns: (string) -- (string) -- """ pass def get_workflow_run(Name=None, RunId=None, IncludeGraph=None): """ Retrieves the metadata for a given workflow run. See also: AWS API Documentation Exceptions :example: response = client.get_workflow_run( Name='string', RunId='string', IncludeGraph=True|False ) :type Name: string :param Name: [REQUIRED]\nName of the workflow being run.\n :type RunId: string :param RunId: [REQUIRED]\nThe ID of the workflow run.\n :type IncludeGraph: boolean :param IncludeGraph: Specifies whether to include the workflow graph in response or not. :rtype: dict ReturnsResponse Syntax { 'Run': { 'Name': 'string', 'WorkflowRunId': 'string', 'WorkflowRunProperties': { 'string': 'string' }, 'StartedOn': datetime(2015, 1, 1), 'CompletedOn': datetime(2015, 1, 1), 'Status': 'RUNNING'|'COMPLETED'|'STOPPING'|'STOPPED', 'Statistics': { 'TotalActions': 123, 'TimeoutActions': 123, 'FailedActions': 123, 'StoppedActions': 123, 'SucceededActions': 123, 'RunningActions': 123 }, 'Graph': { 'Nodes': [ { 'Type': 'CRAWLER'|'JOB'|'TRIGGER', 'Name': 'string', 'UniqueId': 'string', 'TriggerDetails': { 'Trigger': { 'Name': 'string', 'WorkflowName': 'string', 'Id': 'string', 'Type': 'SCHEDULED'|'CONDITIONAL'|'ON_DEMAND', 'State': 'CREATING'|'CREATED'|'ACTIVATING'|'ACTIVATED'|'DEACTIVATING'|'DEACTIVATED'|'DELETING'|'UPDATING', 'Description': 'string', 'Schedule': 'string', 'Actions': [ { 'JobName': 'string', 'Arguments': { 'string': 'string' }, 'Timeout': 123, 'SecurityConfiguration': 'string', 'NotificationProperty': { 'NotifyDelayAfter': 123 }, 'CrawlerName': 'string' }, ], 'Predicate': { 'Logical': 'AND'|'ANY', 'Conditions': [ { 'LogicalOperator': 'EQUALS', 'JobName': 'string', 'State': 'STARTING'|'RUNNING'|'STOPPING'|'STOPPED'|'SUCCEEDED'|'FAILED'|'TIMEOUT', 'CrawlerName': 'string', 'CrawlState': 'RUNNING'|'CANCELLING'|'CANCELLED'|'SUCCEEDED'|'FAILED' }, ] } } }, 'JobDetails': { 'JobRuns': [ { 'Id': 'string', 'Attempt': 123, 'PreviousRunId': 'string', 'TriggerName': 'string', 'JobName': 'string', 'StartedOn': datetime(2015, 1, 1), 'LastModifiedOn': datetime(2015, 1, 1), 'CompletedOn': datetime(2015, 1, 1), 'JobRunState': 'STARTING'|'RUNNING'|'STOPPING'|'STOPPED'|'SUCCEEDED'|'FAILED'|'TIMEOUT', 'Arguments': { 'string': 'string' }, 'ErrorMessage': 'string', 'PredecessorRuns': [ { 'JobName': 'string', 'RunId': 'string' }, ], 'AllocatedCapacity': 123, 'ExecutionTime': 123, 'Timeout': 123, 'MaxCapacity': 123.0, 'WorkerType': 'Standard'|'G.1X'|'G.2X', 'NumberOfWorkers': 123, 'SecurityConfiguration': 'string', 'LogGroupName': 'string', 'NotificationProperty': { 'NotifyDelayAfter': 123 }, 'GlueVersion': 'string' }, ] }, 'CrawlerDetails': { 'Crawls': [ { 'State': 'RUNNING'|'CANCELLING'|'CANCELLED'|'SUCCEEDED'|'FAILED', 'StartedOn': datetime(2015, 1, 1), 'CompletedOn': datetime(2015, 1, 1), 'ErrorMessage': 'string', 'LogGroup': 'string', 'LogStream': 'string' }, ] } }, ], 'Edges': [ { 'SourceId': 'string', 'DestinationId': 'string' }, ] } } } Response Structure (dict) -- Run (dict) -- The requested workflow run metadata. Name (string) -- Name of the workflow which was executed. WorkflowRunId (string) -- The ID of this workflow run. WorkflowRunProperties (dict) -- The workflow run properties which were set during the run. (string) -- (string) -- StartedOn (datetime) -- The date and time when the workflow run was started. CompletedOn (datetime) -- The date and time when the workflow run completed. Status (string) -- The status of the workflow run. Statistics (dict) -- The statistics of the run. TotalActions (integer) -- Total number of Actions in the workflow run. TimeoutActions (integer) -- Total number of Actions which timed out. FailedActions (integer) -- Total number of Actions which have failed. StoppedActions (integer) -- Total number of Actions which have stopped. SucceededActions (integer) -- Total number of Actions which have succeeded. RunningActions (integer) -- Total number Actions in running state. Graph (dict) -- The graph representing all the AWS Glue components that belong to the workflow as nodes and directed connections between them as edges. Nodes (list) -- A list of the the AWS Glue components belong to the workflow represented as nodes. (dict) -- A node represents an AWS Glue component like Trigger, Job etc. which is part of a workflow. Type (string) -- The type of AWS Glue component represented by the node. Name (string) -- The name of the AWS Glue component represented by the node. UniqueId (string) -- The unique Id assigned to the node within the workflow. TriggerDetails (dict) -- Details of the Trigger when the node represents a Trigger. Trigger (dict) -- The information of the trigger represented by the trigger node. Name (string) -- The name of the trigger. WorkflowName (string) -- The name of the workflow associated with the trigger. Id (string) -- Reserved for future use. Type (string) -- The type of trigger that this is. State (string) -- The current state of the trigger. Description (string) -- A description of this trigger. Schedule (string) -- A cron expression used to specify the schedule (see Time-Based Schedules for Jobs and Crawlers . For example, to run something every day at 12:15 UTC, you would specify: cron(15 12 * * ? *) . Actions (list) -- The actions initiated by this trigger. (dict) -- Defines an action to be initiated by a trigger. JobName (string) -- The name of a job to be executed. Arguments (dict) -- The job arguments used when this trigger fires. For this job run, they replace the default arguments set in the job definition itself. You can specify arguments here that your own job-execution script consumes, as well as arguments that AWS Glue itself consumes. For information about how to specify and consume your own Job arguments, see the Calling AWS Glue APIs in Python topic in the developer guide. For information about the key-value pairs that AWS Glue consumes to set up your job, see the Special Parameters Used by AWS Glue topic in the developer guide. (string) -- (string) -- Timeout (integer) -- The JobRun timeout in minutes. This is the maximum time that a job run can consume resources before it is terminated and enters TIMEOUT status. The default is 2,880 minutes (48 hours). This overrides the timeout value set in the parent job. SecurityConfiguration (string) -- The name of the SecurityConfiguration structure to be used with this action. NotificationProperty (dict) -- Specifies configuration properties of a job run notification. NotifyDelayAfter (integer) -- After a job run starts, the number of minutes to wait before sending a job run delay notification. CrawlerName (string) -- The name of the crawler to be used with this action. Predicate (dict) -- The predicate of this trigger, which defines when it will fire. Logical (string) -- An optional field if only one condition is listed. If multiple conditions are listed, then this field is required. Conditions (list) -- A list of the conditions that determine when the trigger will fire. (dict) -- Defines a condition under which a trigger fires. LogicalOperator (string) -- A logical operator. JobName (string) -- The name of the job whose JobRuns this condition applies to, and on which this trigger waits. State (string) -- The condition state. Currently, the only job states that a trigger can listen for are SUCCEEDED , STOPPED , FAILED , and TIMEOUT . The only crawler states that a trigger can listen for are SUCCEEDED , FAILED , and CANCELLED . CrawlerName (string) -- The name of the crawler to which this condition applies. CrawlState (string) -- The state of the crawler to which this condition applies. JobDetails (dict) -- Details of the Job when the node represents a Job. JobRuns (list) -- The information for the job runs represented by the job node. (dict) -- Contains information about a job run. Id (string) -- The ID of this job run. Attempt (integer) -- The number of the attempt to run this job. PreviousRunId (string) -- The ID of the previous run of this job. For example, the JobRunId specified in the StartJobRun action. TriggerName (string) -- The name of the trigger that started this job run. JobName (string) -- The name of the job definition being used in this run. StartedOn (datetime) -- The date and time at which this job run was started. LastModifiedOn (datetime) -- The last time that this job run was modified. CompletedOn (datetime) -- The date and time that this job run completed. JobRunState (string) -- The current state of the job run. For more information about the statuses of jobs that have terminated abnormally, see AWS Glue Job Run Statuses . Arguments (dict) -- The job arguments associated with this run. For this job run, they replace the default arguments set in the job definition itself. You can specify arguments here that your own job-execution script consumes, as well as arguments that AWS Glue itself consumes. For information about how to specify and consume your own job arguments, see the Calling AWS Glue APIs in Python topic in the developer guide. For information about the key-value pairs that AWS Glue consumes to set up your job, see the Special Parameters Used by AWS Glue topic in the developer guide. (string) -- (string) -- ErrorMessage (string) -- An error message associated with this job run. PredecessorRuns (list) -- A list of predecessors to this job run. (dict) -- A job run that was used in the predicate of a conditional trigger that triggered this job run. JobName (string) -- The name of the job definition used by the predecessor job run. RunId (string) -- The job-run ID of the predecessor job run. AllocatedCapacity (integer) -- This field is deprecated. Use MaxCapacity instead. The number of AWS Glue data processing units (DPUs) allocated to this JobRun. From 2 to 100 DPUs can be allocated; the default is 10. A DPU is a relative measure of processing power that consists of 4 vCPUs of compute capacity and 16 GB of memory. For more information, see the AWS Glue pricing page . ExecutionTime (integer) -- The amount of time (in seconds) that the job run consumed resources. Timeout (integer) -- The JobRun timeout in minutes. This is the maximum time that a job run can consume resources before it is terminated and enters TIMEOUT status. The default is 2,880 minutes (48 hours). This overrides the timeout value set in the parent job. MaxCapacity (float) -- The number of AWS Glue data processing units (DPUs) that can be allocated when this job runs. A DPU is a relative measure of processing power that consists of 4 vCPUs of compute capacity and 16 GB of memory. For more information, see the AWS Glue pricing page . Do not set Max Capacity if using WorkerType and NumberOfWorkers . The value that can be allocated for MaxCapacity depends on whether you are running a Python shell job or an Apache Spark ETL job: When you specify a Python shell job (JobCommand.Name ="pythonshell"), you can allocate either 0.0625 or 1 DPU. The default is 0.0625 DPU. When you specify an Apache Spark ETL job (JobCommand.Name ="glueetl"), you can allocate from 2 to 100 DPUs. The default is 10 DPUs. This job type cannot have a fractional DPU allocation. WorkerType (string) -- The type of predefined worker that is allocated when a job runs. Accepts a value of Standard, G.1X, or G.2X. For the Standard worker type, each worker provides 4 vCPU, 16 GB of memory and a 50GB disk, and 2 executors per worker. For the G.1X worker type, each worker provides 4 vCPU, 16 GB of memory and a 64GB disk, and 1 executor per worker. For the G.2X worker type, each worker provides 8 vCPU, 32 GB of memory and a 128GB disk, and 1 executor per worker. NumberOfWorkers (integer) -- The number of workers of a defined workerType that are allocated when a job runs. The maximum number of workers you can define are 299 for G.1X , and 149 for G.2X . SecurityConfiguration (string) -- The name of the SecurityConfiguration structure to be used with this job run. LogGroupName (string) -- The name of the log group for secure logging that can be server-side encrypted in Amazon CloudWatch using AWS KMS. This name can be /aws-glue/jobs/ , in which case the default encryption is NONE . If you add a role name and SecurityConfiguration name (in other words, /aws-glue/jobs-yourRoleName-yourSecurityConfigurationName/ ), then that security configuration is used to encrypt the log group. NotificationProperty (dict) -- Specifies configuration properties of a job run notification. NotifyDelayAfter (integer) -- After a job run starts, the number of minutes to wait before sending a job run delay notification. GlueVersion (string) -- Glue version determines the versions of Apache Spark and Python that AWS Glue supports. The Python version indicates the version supported for jobs of type Spark. For more information about the available AWS Glue versions and corresponding Spark and Python versions, see Glue version in the developer guide. Jobs that are created without specifying a Glue version default to Glue 0.9. CrawlerDetails (dict) -- Details of the crawler when the node represents a crawler. Crawls (list) -- A list of crawls represented by the crawl node. (dict) -- The details of a crawl in the workflow. State (string) -- The state of the crawler. StartedOn (datetime) -- The date and time on which the crawl started. CompletedOn (datetime) -- The date and time on which the crawl completed. ErrorMessage (string) -- The error message associated with the crawl. LogGroup (string) -- The log group associated with the crawl. LogStream (string) -- The log stream associated with the crawl. Edges (list) -- A list of all the directed connections between the nodes belonging to the workflow. (dict) -- An edge represents a directed connection between two AWS Glue components which are part of the workflow the edge belongs to. SourceId (string) -- The unique of the node within the workflow where the edge starts. DestinationId (string) -- The unique of the node within the workflow where the edge ends. Exceptions Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.OperationTimeoutException :return: { 'Run': { 'Name': 'string', 'WorkflowRunId': 'string', 'WorkflowRunProperties': { 'string': 'string' }, 'StartedOn': datetime(2015, 1, 1), 'CompletedOn': datetime(2015, 1, 1), 'Status': 'RUNNING'|'COMPLETED'|'STOPPING'|'STOPPED', 'Statistics': { 'TotalActions': 123, 'TimeoutActions': 123, 'FailedActions': 123, 'StoppedActions': 123, 'SucceededActions': 123, 'RunningActions': 123 }, 'Graph': { 'Nodes': [ { 'Type': 'CRAWLER'|'JOB'|'TRIGGER', 'Name': 'string', 'UniqueId': 'string', 'TriggerDetails': { 'Trigger': { 'Name': 'string', 'WorkflowName': 'string', 'Id': 'string', 'Type': 'SCHEDULED'|'CONDITIONAL'|'ON_DEMAND', 'State': 'CREATING'|'CREATED'|'ACTIVATING'|'ACTIVATED'|'DEACTIVATING'|'DEACTIVATED'|'DELETING'|'UPDATING', 'Description': 'string', 'Schedule': 'string', 'Actions': [ { 'JobName': 'string', 'Arguments': { 'string': 'string' }, 'Timeout': 123, 'SecurityConfiguration': 'string', 'NotificationProperty': { 'NotifyDelayAfter': 123 }, 'CrawlerName': 'string' }, ], 'Predicate': { 'Logical': 'AND'|'ANY', 'Conditions': [ { 'LogicalOperator': 'EQUALS', 'JobName': 'string', 'State': 'STARTING'|'RUNNING'|'STOPPING'|'STOPPED'|'SUCCEEDED'|'FAILED'|'TIMEOUT', 'CrawlerName': 'string', 'CrawlState': 'RUNNING'|'CANCELLING'|'CANCELLED'|'SUCCEEDED'|'FAILED' }, ] } } }, 'JobDetails': { 'JobRuns': [ { 'Id': 'string', 'Attempt': 123, 'PreviousRunId': 'string', 'TriggerName': 'string', 'JobName': 'string', 'StartedOn': datetime(2015, 1, 1), 'LastModifiedOn': datetime(2015, 1, 1), 'CompletedOn': datetime(2015, 1, 1), 'JobRunState': 'STARTING'|'RUNNING'|'STOPPING'|'STOPPED'|'SUCCEEDED'|'FAILED'|'TIMEOUT', 'Arguments': { 'string': 'string' }, 'ErrorMessage': 'string', 'PredecessorRuns': [ { 'JobName': 'string', 'RunId': 'string' }, ], 'AllocatedCapacity': 123, 'ExecutionTime': 123, 'Timeout': 123, 'MaxCapacity': 123.0, 'WorkerType': 'Standard'|'G.1X'|'G.2X', 'NumberOfWorkers': 123, 'SecurityConfiguration': 'string', 'LogGroupName': 'string', 'NotificationProperty': { 'NotifyDelayAfter': 123 }, 'GlueVersion': 'string' }, ] }, 'CrawlerDetails': { 'Crawls': [ { 'State': 'RUNNING'|'CANCELLING'|'CANCELLED'|'SUCCEEDED'|'FAILED', 'StartedOn': datetime(2015, 1, 1), 'CompletedOn': datetime(2015, 1, 1), 'ErrorMessage': 'string', 'LogGroup': 'string', 'LogStream': 'string' }, ] } }, ], 'Edges': [ { 'SourceId': 'string', 'DestinationId': 'string' }, ] } } } :returns: (string) -- (string) -- """ pass def get_workflow_run_properties(Name=None, RunId=None): """ Retrieves the workflow run properties which were set during the run. See also: AWS API Documentation Exceptions :example: response = client.get_workflow_run_properties( Name='string', RunId='string' ) :type Name: string :param Name: [REQUIRED]\nName of the workflow which was run.\n :type RunId: string :param RunId: [REQUIRED]\nThe ID of the workflow run whose run properties should be returned.\n :rtype: dict ReturnsResponse Syntax { 'RunProperties': { 'string': 'string' } } Response Structure (dict) -- RunProperties (dict) -- The workflow run properties which were set during the specified run. (string) -- (string) -- Exceptions Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.OperationTimeoutException :return: { 'RunProperties': { 'string': 'string' } } :returns: (string) -- (string) -- """ pass def get_workflow_runs(Name=None, IncludeGraph=None, NextToken=None, MaxResults=None): """ Retrieves metadata for all runs of a given workflow. See also: AWS API Documentation Exceptions :example: response = client.get_workflow_runs( Name='string', IncludeGraph=True|False, NextToken='string', MaxResults=123 ) :type Name: string :param Name: [REQUIRED]\nName of the workflow whose metadata of runs should be returned.\n :type IncludeGraph: boolean :param IncludeGraph: Specifies whether to include the workflow graph in response or not. :type NextToken: string :param NextToken: The maximum size of the response. :type MaxResults: integer :param MaxResults: The maximum number of workflow runs to be included in the response. :rtype: dict ReturnsResponse Syntax { 'Runs': [ { 'Name': 'string', 'WorkflowRunId': 'string', 'WorkflowRunProperties': { 'string': 'string' }, 'StartedOn': datetime(2015, 1, 1), 'CompletedOn': datetime(2015, 1, 1), 'Status': 'RUNNING'|'COMPLETED'|'STOPPING'|'STOPPED', 'Statistics': { 'TotalActions': 123, 'TimeoutActions': 123, 'FailedActions': 123, 'StoppedActions': 123, 'SucceededActions': 123, 'RunningActions': 123 }, 'Graph': { 'Nodes': [ { 'Type': 'CRAWLER'|'JOB'|'TRIGGER', 'Name': 'string', 'UniqueId': 'string', 'TriggerDetails': { 'Trigger': { 'Name': 'string', 'WorkflowName': 'string', 'Id': 'string', 'Type': 'SCHEDULED'|'CONDITIONAL'|'ON_DEMAND', 'State': 'CREATING'|'CREATED'|'ACTIVATING'|'ACTIVATED'|'DEACTIVATING'|'DEACTIVATED'|'DELETING'|'UPDATING', 'Description': 'string', 'Schedule': 'string', 'Actions': [ { 'JobName': 'string', 'Arguments': { 'string': 'string' }, 'Timeout': 123, 'SecurityConfiguration': 'string', 'NotificationProperty': { 'NotifyDelayAfter': 123 }, 'CrawlerName': 'string' }, ], 'Predicate': { 'Logical': 'AND'|'ANY', 'Conditions': [ { 'LogicalOperator': 'EQUALS', 'JobName': 'string', 'State': 'STARTING'|'RUNNING'|'STOPPING'|'STOPPED'|'SUCCEEDED'|'FAILED'|'TIMEOUT', 'CrawlerName': 'string', 'CrawlState': 'RUNNING'|'CANCELLING'|'CANCELLED'|'SUCCEEDED'|'FAILED' }, ] } } }, 'JobDetails': { 'JobRuns': [ { 'Id': 'string', 'Attempt': 123, 'PreviousRunId': 'string', 'TriggerName': 'string', 'JobName': 'string', 'StartedOn': datetime(2015, 1, 1), 'LastModifiedOn': datetime(2015, 1, 1), 'CompletedOn': datetime(2015, 1, 1), 'JobRunState': 'STARTING'|'RUNNING'|'STOPPING'|'STOPPED'|'SUCCEEDED'|'FAILED'|'TIMEOUT', 'Arguments': { 'string': 'string' }, 'ErrorMessage': 'string', 'PredecessorRuns': [ { 'JobName': 'string', 'RunId': 'string' }, ], 'AllocatedCapacity': 123, 'ExecutionTime': 123, 'Timeout': 123, 'MaxCapacity': 123.0, 'WorkerType': 'Standard'|'G.1X'|'G.2X', 'NumberOfWorkers': 123, 'SecurityConfiguration': 'string', 'LogGroupName': 'string', 'NotificationProperty': { 'NotifyDelayAfter': 123 }, 'GlueVersion': 'string' }, ] }, 'CrawlerDetails': { 'Crawls': [ { 'State': 'RUNNING'|'CANCELLING'|'CANCELLED'|'SUCCEEDED'|'FAILED', 'StartedOn': datetime(2015, 1, 1), 'CompletedOn': datetime(2015, 1, 1), 'ErrorMessage': 'string', 'LogGroup': 'string', 'LogStream': 'string' }, ] } }, ], 'Edges': [ { 'SourceId': 'string', 'DestinationId': 'string' }, ] } }, ], 'NextToken': 'string' } Response Structure (dict) -- Runs (list) -- A list of workflow run metadata objects. (dict) -- A workflow run is an execution of a workflow providing all the runtime information. Name (string) -- Name of the workflow which was executed. WorkflowRunId (string) -- The ID of this workflow run. WorkflowRunProperties (dict) -- The workflow run properties which were set during the run. (string) -- (string) -- StartedOn (datetime) -- The date and time when the workflow run was started. CompletedOn (datetime) -- The date and time when the workflow run completed. Status (string) -- The status of the workflow run. Statistics (dict) -- The statistics of the run. TotalActions (integer) -- Total number of Actions in the workflow run. TimeoutActions (integer) -- Total number of Actions which timed out. FailedActions (integer) -- Total number of Actions which have failed. StoppedActions (integer) -- Total number of Actions which have stopped. SucceededActions (integer) -- Total number of Actions which have succeeded. RunningActions (integer) -- Total number Actions in running state. Graph (dict) -- The graph representing all the AWS Glue components that belong to the workflow as nodes and directed connections between them as edges. Nodes (list) -- A list of the the AWS Glue components belong to the workflow represented as nodes. (dict) -- A node represents an AWS Glue component like Trigger, Job etc. which is part of a workflow. Type (string) -- The type of AWS Glue component represented by the node. Name (string) -- The name of the AWS Glue component represented by the node. UniqueId (string) -- The unique Id assigned to the node within the workflow. TriggerDetails (dict) -- Details of the Trigger when the node represents a Trigger. Trigger (dict) -- The information of the trigger represented by the trigger node. Name (string) -- The name of the trigger. WorkflowName (string) -- The name of the workflow associated with the trigger. Id (string) -- Reserved for future use. Type (string) -- The type of trigger that this is. State (string) -- The current state of the trigger. Description (string) -- A description of this trigger. Schedule (string) -- A cron expression used to specify the schedule (see Time-Based Schedules for Jobs and Crawlers . For example, to run something every day at 12:15 UTC, you would specify: cron(15 12 * * ? *) . Actions (list) -- The actions initiated by this trigger. (dict) -- Defines an action to be initiated by a trigger. JobName (string) -- The name of a job to be executed. Arguments (dict) -- The job arguments used when this trigger fires. For this job run, they replace the default arguments set in the job definition itself. You can specify arguments here that your own job-execution script consumes, as well as arguments that AWS Glue itself consumes. For information about how to specify and consume your own Job arguments, see the Calling AWS Glue APIs in Python topic in the developer guide. For information about the key-value pairs that AWS Glue consumes to set up your job, see the Special Parameters Used by AWS Glue topic in the developer guide. (string) -- (string) -- Timeout (integer) -- The JobRun timeout in minutes. This is the maximum time that a job run can consume resources before it is terminated and enters TIMEOUT status. The default is 2,880 minutes (48 hours). This overrides the timeout value set in the parent job. SecurityConfiguration (string) -- The name of the SecurityConfiguration structure to be used with this action. NotificationProperty (dict) -- Specifies configuration properties of a job run notification. NotifyDelayAfter (integer) -- After a job run starts, the number of minutes to wait before sending a job run delay notification. CrawlerName (string) -- The name of the crawler to be used with this action. Predicate (dict) -- The predicate of this trigger, which defines when it will fire. Logical (string) -- An optional field if only one condition is listed. If multiple conditions are listed, then this field is required. Conditions (list) -- A list of the conditions that determine when the trigger will fire. (dict) -- Defines a condition under which a trigger fires. LogicalOperator (string) -- A logical operator. JobName (string) -- The name of the job whose JobRuns this condition applies to, and on which this trigger waits. State (string) -- The condition state. Currently, the only job states that a trigger can listen for are SUCCEEDED , STOPPED , FAILED , and TIMEOUT . The only crawler states that a trigger can listen for are SUCCEEDED , FAILED , and CANCELLED . CrawlerName (string) -- The name of the crawler to which this condition applies. CrawlState (string) -- The state of the crawler to which this condition applies. JobDetails (dict) -- Details of the Job when the node represents a Job. JobRuns (list) -- The information for the job runs represented by the job node. (dict) -- Contains information about a job run. Id (string) -- The ID of this job run. Attempt (integer) -- The number of the attempt to run this job. PreviousRunId (string) -- The ID of the previous run of this job. For example, the JobRunId specified in the StartJobRun action. TriggerName (string) -- The name of the trigger that started this job run. JobName (string) -- The name of the job definition being used in this run. StartedOn (datetime) -- The date and time at which this job run was started. LastModifiedOn (datetime) -- The last time that this job run was modified. CompletedOn (datetime) -- The date and time that this job run completed. JobRunState (string) -- The current state of the job run. For more information about the statuses of jobs that have terminated abnormally, see AWS Glue Job Run Statuses . Arguments (dict) -- The job arguments associated with this run. For this job run, they replace the default arguments set in the job definition itself. You can specify arguments here that your own job-execution script consumes, as well as arguments that AWS Glue itself consumes. For information about how to specify and consume your own job arguments, see the Calling AWS Glue APIs in Python topic in the developer guide. For information about the key-value pairs that AWS Glue consumes to set up your job, see the Special Parameters Used by AWS Glue topic in the developer guide. (string) -- (string) -- ErrorMessage (string) -- An error message associated with this job run. PredecessorRuns (list) -- A list of predecessors to this job run. (dict) -- A job run that was used in the predicate of a conditional trigger that triggered this job run. JobName (string) -- The name of the job definition used by the predecessor job run. RunId (string) -- The job-run ID of the predecessor job run. AllocatedCapacity (integer) -- This field is deprecated. Use MaxCapacity instead. The number of AWS Glue data processing units (DPUs) allocated to this JobRun. From 2 to 100 DPUs can be allocated; the default is 10. A DPU is a relative measure of processing power that consists of 4 vCPUs of compute capacity and 16 GB of memory. For more information, see the AWS Glue pricing page . ExecutionTime (integer) -- The amount of time (in seconds) that the job run consumed resources. Timeout (integer) -- The JobRun timeout in minutes. This is the maximum time that a job run can consume resources before it is terminated and enters TIMEOUT status. The default is 2,880 minutes (48 hours). This overrides the timeout value set in the parent job. MaxCapacity (float) -- The number of AWS Glue data processing units (DPUs) that can be allocated when this job runs. A DPU is a relative measure of processing power that consists of 4 vCPUs of compute capacity and 16 GB of memory. For more information, see the AWS Glue pricing page . Do not set Max Capacity if using WorkerType and NumberOfWorkers . The value that can be allocated for MaxCapacity depends on whether you are running a Python shell job or an Apache Spark ETL job: When you specify a Python shell job (JobCommand.Name ="pythonshell"), you can allocate either 0.0625 or 1 DPU. The default is 0.0625 DPU. When you specify an Apache Spark ETL job (JobCommand.Name ="glueetl"), you can allocate from 2 to 100 DPUs. The default is 10 DPUs. This job type cannot have a fractional DPU allocation. WorkerType (string) -- The type of predefined worker that is allocated when a job runs. Accepts a value of Standard, G.1X, or G.2X. For the Standard worker type, each worker provides 4 vCPU, 16 GB of memory and a 50GB disk, and 2 executors per worker. For the G.1X worker type, each worker provides 4 vCPU, 16 GB of memory and a 64GB disk, and 1 executor per worker. For the G.2X worker type, each worker provides 8 vCPU, 32 GB of memory and a 128GB disk, and 1 executor per worker. NumberOfWorkers (integer) -- The number of workers of a defined workerType that are allocated when a job runs. The maximum number of workers you can define are 299 for G.1X , and 149 for G.2X . SecurityConfiguration (string) -- The name of the SecurityConfiguration structure to be used with this job run. LogGroupName (string) -- The name of the log group for secure logging that can be server-side encrypted in Amazon CloudWatch using AWS KMS. This name can be /aws-glue/jobs/ , in which case the default encryption is NONE . If you add a role name and SecurityConfiguration name (in other words, /aws-glue/jobs-yourRoleName-yourSecurityConfigurationName/ ), then that security configuration is used to encrypt the log group. NotificationProperty (dict) -- Specifies configuration properties of a job run notification. NotifyDelayAfter (integer) -- After a job run starts, the number of minutes to wait before sending a job run delay notification. GlueVersion (string) -- Glue version determines the versions of Apache Spark and Python that AWS Glue supports. The Python version indicates the version supported for jobs of type Spark. For more information about the available AWS Glue versions and corresponding Spark and Python versions, see Glue version in the developer guide. Jobs that are created without specifying a Glue version default to Glue 0.9. CrawlerDetails (dict) -- Details of the crawler when the node represents a crawler. Crawls (list) -- A list of crawls represented by the crawl node. (dict) -- The details of a crawl in the workflow. State (string) -- The state of the crawler. StartedOn (datetime) -- The date and time on which the crawl started. CompletedOn (datetime) -- The date and time on which the crawl completed. ErrorMessage (string) -- The error message associated with the crawl. LogGroup (string) -- The log group associated with the crawl. LogStream (string) -- The log stream associated with the crawl. Edges (list) -- A list of all the directed connections between the nodes belonging to the workflow. (dict) -- An edge represents a directed connection between two AWS Glue components which are part of the workflow the edge belongs to. SourceId (string) -- The unique of the node within the workflow where the edge starts. DestinationId (string) -- The unique of the node within the workflow where the edge ends. NextToken (string) -- A continuation token, if not all requested workflow runs have been returned. Exceptions Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.OperationTimeoutException :return: { 'Runs': [ { 'Name': 'string', 'WorkflowRunId': 'string', 'WorkflowRunProperties': { 'string': 'string' }, 'StartedOn': datetime(2015, 1, 1), 'CompletedOn': datetime(2015, 1, 1), 'Status': 'RUNNING'|'COMPLETED'|'STOPPING'|'STOPPED', 'Statistics': { 'TotalActions': 123, 'TimeoutActions': 123, 'FailedActions': 123, 'StoppedActions': 123, 'SucceededActions': 123, 'RunningActions': 123 }, 'Graph': { 'Nodes': [ { 'Type': 'CRAWLER'|'JOB'|'TRIGGER', 'Name': 'string', 'UniqueId': 'string', 'TriggerDetails': { 'Trigger': { 'Name': 'string', 'WorkflowName': 'string', 'Id': 'string', 'Type': 'SCHEDULED'|'CONDITIONAL'|'ON_DEMAND', 'State': 'CREATING'|'CREATED'|'ACTIVATING'|'ACTIVATED'|'DEACTIVATING'|'DEACTIVATED'|'DELETING'|'UPDATING', 'Description': 'string', 'Schedule': 'string', 'Actions': [ { 'JobName': 'string', 'Arguments': { 'string': 'string' }, 'Timeout': 123, 'SecurityConfiguration': 'string', 'NotificationProperty': { 'NotifyDelayAfter': 123 }, 'CrawlerName': 'string' }, ], 'Predicate': { 'Logical': 'AND'|'ANY', 'Conditions': [ { 'LogicalOperator': 'EQUALS', 'JobName': 'string', 'State': 'STARTING'|'RUNNING'|'STOPPING'|'STOPPED'|'SUCCEEDED'|'FAILED'|'TIMEOUT', 'CrawlerName': 'string', 'CrawlState': 'RUNNING'|'CANCELLING'|'CANCELLED'|'SUCCEEDED'|'FAILED' }, ] } } }, 'JobDetails': { 'JobRuns': [ { 'Id': 'string', 'Attempt': 123, 'PreviousRunId': 'string', 'TriggerName': 'string', 'JobName': 'string', 'StartedOn': datetime(2015, 1, 1), 'LastModifiedOn': datetime(2015, 1, 1), 'CompletedOn': datetime(2015, 1, 1), 'JobRunState': 'STARTING'|'RUNNING'|'STOPPING'|'STOPPED'|'SUCCEEDED'|'FAILED'|'TIMEOUT', 'Arguments': { 'string': 'string' }, 'ErrorMessage': 'string', 'PredecessorRuns': [ { 'JobName': 'string', 'RunId': 'string' }, ], 'AllocatedCapacity': 123, 'ExecutionTime': 123, 'Timeout': 123, 'MaxCapacity': 123.0, 'WorkerType': 'Standard'|'G.1X'|'G.2X', 'NumberOfWorkers': 123, 'SecurityConfiguration': 'string', 'LogGroupName': 'string', 'NotificationProperty': { 'NotifyDelayAfter': 123 }, 'GlueVersion': 'string' }, ] }, 'CrawlerDetails': { 'Crawls': [ { 'State': 'RUNNING'|'CANCELLING'|'CANCELLED'|'SUCCEEDED'|'FAILED', 'StartedOn': datetime(2015, 1, 1), 'CompletedOn': datetime(2015, 1, 1), 'ErrorMessage': 'string', 'LogGroup': 'string', 'LogStream': 'string' }, ] } }, ], 'Edges': [ { 'SourceId': 'string', 'DestinationId': 'string' }, ] } }, ], 'NextToken': 'string' } :returns: (string) -- (string) -- """ pass def import_catalog_to_glue(CatalogId=None): """ Imports an existing Amazon Athena Data Catalog to AWS Glue See also: AWS API Documentation Exceptions :example: response = client.import_catalog_to_glue( CatalogId='string' ) :type CatalogId: string :param CatalogId: The ID of the catalog to import. Currently, this should be the AWS account ID. :rtype: dict ReturnsResponse Syntax{} Response Structure (dict) -- Exceptions Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.OperationTimeoutException :return: {} :returns: Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.OperationTimeoutException """ pass def list_crawlers(MaxResults=None, NextToken=None, Tags=None): """ Retrieves the names of all crawler resources in this AWS account, or the resources with the specified tag. This operation allows you to see which resources are available in your account, and their names. This operation takes the optional Tags field, which you can use as a filter on the response so that tagged resources can be retrieved as a group. If you choose to use tags filtering, only resources with the tag are retrieved. See also: AWS API Documentation Exceptions :example: response = client.list_crawlers( MaxResults=123, NextToken='string', Tags={ 'string': 'string' } ) :type MaxResults: integer :param MaxResults: The maximum size of a list to return. :type NextToken: string :param NextToken: A continuation token, if this is a continuation request. :type Tags: dict :param Tags: Specifies to return only these tagged resources.\n\n(string) --\n(string) --\n\n\n\n :rtype: dict ReturnsResponse Syntax { 'CrawlerNames': [ 'string', ], 'NextToken': 'string' } Response Structure (dict) -- CrawlerNames (list) -- The names of all crawlers in the account, or the crawlers with the specified tags. (string) -- NextToken (string) -- A continuation token, if the returned list does not contain the last metric available. Exceptions Glue.Client.exceptions.OperationTimeoutException :return: { 'CrawlerNames': [ 'string', ], 'NextToken': 'string' } :returns: (string) -- """ pass def list_dev_endpoints(NextToken=None, MaxResults=None, Tags=None): """ Retrieves the names of all DevEndpoint resources in this AWS account, or the resources with the specified tag. This operation allows you to see which resources are available in your account, and their names. This operation takes the optional Tags field, which you can use as a filter on the response so that tagged resources can be retrieved as a group. If you choose to use tags filtering, only resources with the tag are retrieved. See also: AWS API Documentation Exceptions :example: response = client.list_dev_endpoints( NextToken='string', MaxResults=123, Tags={ 'string': 'string' } ) :type NextToken: string :param NextToken: A continuation token, if this is a continuation request. :type MaxResults: integer :param MaxResults: The maximum size of a list to return. :type Tags: dict :param Tags: Specifies to return only these tagged resources.\n\n(string) --\n(string) --\n\n\n\n :rtype: dict ReturnsResponse Syntax { 'DevEndpointNames': [ 'string', ], 'NextToken': 'string' } Response Structure (dict) -- DevEndpointNames (list) -- The names of all the DevEndpoint s in the account, or the DevEndpoint s with the specified tags. (string) -- NextToken (string) -- A continuation token, if the returned list does not contain the last metric available. Exceptions Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.OperationTimeoutException :return: { 'DevEndpointNames': [ 'string', ], 'NextToken': 'string' } :returns: (string) -- """ pass def list_jobs(NextToken=None, MaxResults=None, Tags=None): """ Retrieves the names of all job resources in this AWS account, or the resources with the specified tag. This operation allows you to see which resources are available in your account, and their names. This operation takes the optional Tags field, which you can use as a filter on the response so that tagged resources can be retrieved as a group. If you choose to use tags filtering, only resources with the tag are retrieved. See also: AWS API Documentation Exceptions :example: response = client.list_jobs( NextToken='string', MaxResults=123, Tags={ 'string': 'string' } ) :type NextToken: string :param NextToken: A continuation token, if this is a continuation request. :type MaxResults: integer :param MaxResults: The maximum size of a list to return. :type Tags: dict :param Tags: Specifies to return only these tagged resources.\n\n(string) --\n(string) --\n\n\n\n :rtype: dict ReturnsResponse Syntax { 'JobNames': [ 'string', ], 'NextToken': 'string' } Response Structure (dict) -- JobNames (list) -- The names of all jobs in the account, or the jobs with the specified tags. (string) -- NextToken (string) -- A continuation token, if the returned list does not contain the last metric available. Exceptions Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.OperationTimeoutException :return: { 'JobNames': [ 'string', ], 'NextToken': 'string' } :returns: (string) -- """ pass def list_ml_transforms(NextToken=None, MaxResults=None, Filter=None, Sort=None, Tags=None): """ Retrieves a sortable, filterable list of existing AWS Glue machine learning transforms in this AWS account, or the resources with the specified tag. This operation takes the optional Tags field, which you can use as a filter of the responses so that tagged resources can be retrieved as a group. If you choose to use tag filtering, only resources with the tags are retrieved. See also: AWS API Documentation Exceptions :example: response = client.list_ml_transforms( NextToken='string', MaxResults=123, Filter={ 'Name': 'string', 'TransformType': 'FIND_MATCHES', 'Status': 'NOT_READY'|'READY'|'DELETING', 'GlueVersion': 'string', 'CreatedBefore': datetime(2015, 1, 1), 'CreatedAfter': datetime(2015, 1, 1), 'LastModifiedBefore': datetime(2015, 1, 1), 'LastModifiedAfter': datetime(2015, 1, 1), 'Schema': [ { 'Name': 'string', 'DataType': 'string' }, ] }, Sort={ 'Column': 'NAME'|'TRANSFORM_TYPE'|'STATUS'|'CREATED'|'LAST_MODIFIED', 'SortDirection': 'DESCENDING'|'ASCENDING' }, Tags={ 'string': 'string' } ) :type NextToken: string :param NextToken: A continuation token, if this is a continuation request. :type MaxResults: integer :param MaxResults: The maximum size of a list to return. :type Filter: dict :param Filter: A TransformFilterCriteria used to filter the machine learning transforms.\n\nName (string) --A unique transform name that is used to filter the machine learning transforms.\n\nTransformType (string) --The type of machine learning transform that is used to filter the machine learning transforms.\n\nStatus (string) --Filters the list of machine learning transforms by the last known status of the transforms (to indicate whether a transform can be used or not). One of 'NOT_READY', 'READY', or 'DELETING'.\n\nGlueVersion (string) --This value determines which version of AWS Glue this machine learning transform is compatible with. Glue 1.0 is recommended for most customers. If the value is not set, the Glue compatibility defaults to Glue 0.9. For more information, see AWS Glue Versions in the developer guide.\n\nCreatedBefore (datetime) --The time and date before which the transforms were created.\n\nCreatedAfter (datetime) --The time and date after which the transforms were created.\n\nLastModifiedBefore (datetime) --Filter on transforms last modified before this date.\n\nLastModifiedAfter (datetime) --Filter on transforms last modified after this date.\n\nSchema (list) --Filters on datasets with a specific schema. The Map<Column, Type> object is an array of key-value pairs representing the schema this transform accepts, where Column is the name of a column, and Type is the type of the data such as an integer or string. Has an upper bound of 100 columns.\n\n(dict) --A key-value pair representing a column and data type that this transform can run against. The Schema parameter of the MLTransform may contain up to 100 of these structures.\n\nName (string) --The name of the column.\n\nDataType (string) --The type of data in the column.\n\n\n\n\n\n\n :type Sort: dict :param Sort: A TransformSortCriteria used to sort the machine learning transforms.\n\nColumn (string) -- [REQUIRED]The column to be used in the sorting criteria that are associated with the machine learning transform.\n\nSortDirection (string) -- [REQUIRED]The sort direction to be used in the sorting criteria that are associated with the machine learning transform.\n\n\n :type Tags: dict :param Tags: Specifies to return only these tagged resources.\n\n(string) --\n(string) --\n\n\n\n :rtype: dict ReturnsResponse Syntax { 'TransformIds': [ 'string', ], 'NextToken': 'string' } Response Structure (dict) -- TransformIds (list) -- The identifiers of all the machine learning transforms in the account, or the machine learning transforms with the specified tags. (string) -- NextToken (string) -- A continuation token, if the returned list does not contain the last metric available. Exceptions Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.OperationTimeoutException Glue.Client.exceptions.InternalServiceException :return: { 'TransformIds': [ 'string', ], 'NextToken': 'string' } :returns: (string) -- """ pass def list_triggers(NextToken=None, DependentJobName=None, MaxResults=None, Tags=None): """ Retrieves the names of all trigger resources in this AWS account, or the resources with the specified tag. This operation allows you to see which resources are available in your account, and their names. This operation takes the optional Tags field, which you can use as a filter on the response so that tagged resources can be retrieved as a group. If you choose to use tags filtering, only resources with the tag are retrieved. See also: AWS API Documentation Exceptions :example: response = client.list_triggers( NextToken='string', DependentJobName='string', MaxResults=123, Tags={ 'string': 'string' } ) :type NextToken: string :param NextToken: A continuation token, if this is a continuation request. :type DependentJobName: string :param DependentJobName: The name of the job for which to retrieve triggers. The trigger that can start this job is returned. If there is no such trigger, all triggers are returned. :type MaxResults: integer :param MaxResults: The maximum size of a list to return. :type Tags: dict :param Tags: Specifies to return only these tagged resources.\n\n(string) --\n(string) --\n\n\n\n :rtype: dict ReturnsResponse Syntax { 'TriggerNames': [ 'string', ], 'NextToken': 'string' } Response Structure (dict) -- TriggerNames (list) -- The names of all triggers in the account, or the triggers with the specified tags. (string) -- NextToken (string) -- A continuation token, if the returned list does not contain the last metric available. Exceptions Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.OperationTimeoutException :return: { 'TriggerNames': [ 'string', ], 'NextToken': 'string' } :returns: (string) -- """ pass def list_workflows(NextToken=None, MaxResults=None): """ Lists names of workflows created in the account. See also: AWS API Documentation Exceptions :example: response = client.list_workflows( NextToken='string', MaxResults=123 ) :type NextToken: string :param NextToken: A continuation token, if this is a continuation request. :type MaxResults: integer :param MaxResults: The maximum size of a list to return. :rtype: dict ReturnsResponse Syntax { 'Workflows': [ 'string', ], 'NextToken': 'string' } Response Structure (dict) -- Workflows (list) -- List of names of workflows in the account. (string) -- NextToken (string) -- A continuation token, if not all workflow names have been returned. Exceptions Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.OperationTimeoutException :return: { 'Workflows': [ 'string', ], 'NextToken': 'string' } :returns: (string) -- """ pass def put_data_catalog_encryption_settings(CatalogId=None, DataCatalogEncryptionSettings=None): """ Sets the security configuration for a specified catalog. After the configuration has been set, the specified encryption is applied to every catalog write thereafter. See also: AWS API Documentation Exceptions :example: response = client.put_data_catalog_encryption_settings( CatalogId='string', DataCatalogEncryptionSettings={ 'EncryptionAtRest': { 'CatalogEncryptionMode': 'DISABLED'|'SSE-KMS', 'SseAwsKmsKeyId': 'string' }, 'ConnectionPasswordEncryption': { 'ReturnConnectionPasswordEncrypted': True|False, 'AwsKmsKeyId': 'string' } } ) :type CatalogId: string :param CatalogId: The ID of the Data Catalog to set the security configuration for. If none is provided, the AWS account ID is used by default. :type DataCatalogEncryptionSettings: dict :param DataCatalogEncryptionSettings: [REQUIRED]\nThe security configuration to set.\n\nEncryptionAtRest (dict) --Specifies the encryption-at-rest configuration for the Data Catalog.\n\nCatalogEncryptionMode (string) -- [REQUIRED]The encryption-at-rest mode for encrypting Data Catalog data.\n\nSseAwsKmsKeyId (string) --The ID of the AWS KMS key to use for encryption at rest.\n\n\n\nConnectionPasswordEncryption (dict) --When connection password protection is enabled, the Data Catalog uses a customer-provided key to encrypt the password as part of CreateConnection or UpdateConnection and store it in the ENCRYPTED_PASSWORD field in the connection properties. You can enable catalog encryption or only password encryption.\n\nReturnConnectionPasswordEncrypted (boolean) -- [REQUIRED]When the ReturnConnectionPasswordEncrypted flag is set to 'true', passwords remain encrypted in the responses of GetConnection and GetConnections . This encryption takes effect independently from catalog encryption.\n\nAwsKmsKeyId (string) --An AWS KMS key that is used to encrypt the connection password.\nIf connection password protection is enabled, the caller of CreateConnection and UpdateConnection needs at least kms:Encrypt permission on the specified AWS KMS key, to encrypt passwords before storing them in the Data Catalog.\nYou can set the decrypt permission to enable or restrict access on the password key according to your security requirements.\n\n\n\n\n :rtype: dict ReturnsResponse Syntax {} Response Structure (dict) -- Exceptions Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.OperationTimeoutException :return: {} :returns: (dict) -- """ pass def put_resource_policy(PolicyInJson=None, PolicyHashCondition=None, PolicyExistsCondition=None): """ Sets the Data Catalog resource policy for access control. See also: AWS API Documentation Exceptions :example: response = client.put_resource_policy( PolicyInJson='string', PolicyHashCondition='string', PolicyExistsCondition='MUST_EXIST'|'NOT_EXIST'|'NONE' ) :type PolicyInJson: string :param PolicyInJson: [REQUIRED]\nContains the policy document to set, in JSON format.\n :type PolicyHashCondition: string :param PolicyHashCondition: The hash value returned when the previous policy was set using PutResourcePolicy . Its purpose is to prevent concurrent modifications of a policy. Do not use this parameter if no previous policy has been set. :type PolicyExistsCondition: string :param PolicyExistsCondition: A value of MUST_EXIST is used to update a policy. A value of NOT_EXIST is used to create a new policy. If a value of NONE or a null value is used, the call will not depend on the existence of a policy. :rtype: dict ReturnsResponse Syntax { 'PolicyHash': 'string' } Response Structure (dict) -- PolicyHash (string) -- A hash of the policy that has just been set. This must be included in a subsequent call that overwrites or updates this policy. Exceptions Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.OperationTimeoutException Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.ConditionCheckFailureException :return: { 'PolicyHash': 'string' } :returns: Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.OperationTimeoutException Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.ConditionCheckFailureException """ pass def put_workflow_run_properties(Name=None, RunId=None, RunProperties=None): """ Puts the specified workflow run properties for the given workflow run. If a property already exists for the specified run, then it overrides the value otherwise adds the property to existing properties. See also: AWS API Documentation Exceptions :example: response = client.put_workflow_run_properties( Name='string', RunId='string', RunProperties={ 'string': 'string' } ) :type Name: string :param Name: [REQUIRED]\nName of the workflow which was run.\n :type RunId: string :param RunId: [REQUIRED]\nThe ID of the workflow run for which the run properties should be updated.\n :type RunProperties: dict :param RunProperties: [REQUIRED]\nThe properties to put for the specified run.\n\n(string) --\n(string) --\n\n\n\n :rtype: dict ReturnsResponse Syntax {} Response Structure (dict) -- Exceptions Glue.Client.exceptions.AlreadyExistsException Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.OperationTimeoutException Glue.Client.exceptions.ResourceNumberLimitExceededException Glue.Client.exceptions.ConcurrentModificationException :return: {} :returns: (dict) -- """ pass def reset_job_bookmark(JobName=None, RunId=None): """ Resets a bookmark entry. See also: AWS API Documentation Exceptions :example: response = client.reset_job_bookmark( JobName='string', RunId='string' ) :type JobName: string :param JobName: [REQUIRED]\nThe name of the job in question.\n :type RunId: string :param RunId: The unique run identifier associated with this job run. :rtype: dict ReturnsResponse Syntax { 'JobBookmarkEntry': { 'JobName': 'string', 'Version': 123, 'Run': 123, 'Attempt': 123, 'PreviousRunId': 'string', 'RunId': 'string', 'JobBookmark': 'string' } } Response Structure (dict) -- JobBookmarkEntry (dict) -- The reset bookmark entry. JobName (string) -- The name of the job in question. Version (integer) -- The version of the job. Run (integer) -- The run ID number. Attempt (integer) -- The attempt ID number. PreviousRunId (string) -- The unique run identifier associated with the previous job run. RunId (string) -- The run ID number. JobBookmark (string) -- The bookmark itself. Exceptions Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.OperationTimeoutException :return: { 'JobBookmarkEntry': { 'JobName': 'string', 'Version': 123, 'Run': 123, 'Attempt': 123, 'PreviousRunId': 'string', 'RunId': 'string', 'JobBookmark': 'string' } } :returns: Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.OperationTimeoutException """ pass def search_tables(CatalogId=None, NextToken=None, Filters=None, SearchText=None, SortCriteria=None, MaxResults=None): """ Searches a set of tables based on properties in the table metadata as well as on the parent database. You can search against text or filter conditions. You can only get tables that you have access to based on the security policies defined in Lake Formation. You need at least a read-only access to the table for it to be returned. If you do not have access to all the columns in the table, these columns will not be searched against when returning the list of tables back to you. If you have access to the columns but not the data in the columns, those columns and the associated metadata for those columns will be included in the search. See also: AWS API Documentation Exceptions :example: response = client.search_tables( CatalogId='string', NextToken='string', Filters=[ { 'Key': 'string', 'Value': 'string', 'Comparator': 'EQUALS'|'GREATER_THAN'|'LESS_THAN'|'GREATER_THAN_EQUALS'|'LESS_THAN_EQUALS' }, ], SearchText='string', SortCriteria=[ { 'FieldName': 'string', 'Sort': 'ASC'|'DESC' }, ], MaxResults=123 ) :type CatalogId: string :param CatalogId: A unique identifier, consisting of `` account_id /datalake`` . :type NextToken: string :param NextToken: A continuation token, included if this is a continuation call. :type Filters: list :param Filters: A list of key-value pairs, and a comparator used to filter the search results. Returns all entities matching the predicate.\n\n(dict) --Defines a property predicate.\n\nKey (string) --The key of the property.\n\nValue (string) --The value of the property.\n\nComparator (string) --The comparator used to compare this property to others.\n\n\n\n\n :type SearchText: string :param SearchText: A string used for a text search.\nSpecifying a value in quotes filters based on an exact match to the value.\n :type SortCriteria: list :param SortCriteria: A list of criteria for sorting the results by a field name, in an ascending or descending order.\n\n(dict) --Specifies a field to sort by and a sort order.\n\nFieldName (string) --The name of the field on which to sort.\n\nSort (string) --An ascending or descending sort.\n\n\n\n\n :type MaxResults: integer :param MaxResults: The maximum number of tables to return in a single response. :rtype: dict ReturnsResponse Syntax { 'NextToken': 'string', 'TableList': [ { 'Name': 'string', 'DatabaseName': 'string', 'Description': 'string', 'Owner': 'string', 'CreateTime': datetime(2015, 1, 1), 'UpdateTime': datetime(2015, 1, 1), 'LastAccessTime': datetime(2015, 1, 1), 'LastAnalyzedTime': datetime(2015, 1, 1), 'Retention': 123, 'StorageDescriptor': { 'Columns': [ { 'Name': 'string', 'Type': 'string', 'Comment': 'string', 'Parameters': { 'string': 'string' } }, ], 'Location': 'string', 'InputFormat': 'string', 'OutputFormat': 'string', 'Compressed': True|False, 'NumberOfBuckets': 123, 'SerdeInfo': { 'Name': 'string', 'SerializationLibrary': 'string', 'Parameters': { 'string': 'string' } }, 'BucketColumns': [ 'string', ], 'SortColumns': [ { 'Column': 'string', 'SortOrder': 123 }, ], 'Parameters': { 'string': 'string' }, 'SkewedInfo': { 'SkewedColumnNames': [ 'string', ], 'SkewedColumnValues': [ 'string', ], 'SkewedColumnValueLocationMaps': { 'string': 'string' } }, 'StoredAsSubDirectories': True|False }, 'PartitionKeys': [ { 'Name': 'string', 'Type': 'string', 'Comment': 'string', 'Parameters': { 'string': 'string' } }, ], 'ViewOriginalText': 'string', 'ViewExpandedText': 'string', 'TableType': 'string', 'Parameters': { 'string': 'string' }, 'CreatedBy': 'string', 'IsRegisteredWithLakeFormation': True|False }, ] } Response Structure (dict) -- NextToken (string) -- A continuation token, present if the current list segment is not the last. TableList (list) -- A list of the requested Table objects. The SearchTables response returns only the tables that you have access to. (dict) -- Represents a collection of related data organized in columns and rows. Name (string) -- The table name. For Hive compatibility, this must be entirely lowercase. DatabaseName (string) -- The name of the database where the table metadata resides. For Hive compatibility, this must be all lowercase. Description (string) -- A description of the table. Owner (string) -- The owner of the table. CreateTime (datetime) -- The time when the table definition was created in the Data Catalog. UpdateTime (datetime) -- The last time that the table was updated. LastAccessTime (datetime) -- The last time that the table was accessed. This is usually taken from HDFS, and might not be reliable. LastAnalyzedTime (datetime) -- The last time that column statistics were computed for this table. Retention (integer) -- The retention time for this table. StorageDescriptor (dict) -- A storage descriptor containing information about the physical storage of this table. Columns (list) -- A list of the Columns in the table. (dict) -- A column in a Table . Name (string) -- The name of the Column . Type (string) -- The data type of the Column . Comment (string) -- A free-form text comment. Parameters (dict) -- These key-value pairs define properties associated with the column. (string) -- (string) -- Location (string) -- The physical location of the table. By default, this takes the form of the warehouse location, followed by the database location in the warehouse, followed by the table name. InputFormat (string) -- The input format: SequenceFileInputFormat (binary), or TextInputFormat , or a custom format. OutputFormat (string) -- The output format: SequenceFileOutputFormat (binary), or IgnoreKeyTextOutputFormat , or a custom format. Compressed (boolean) -- True if the data in the table is compressed, or False if not. NumberOfBuckets (integer) -- Must be specified if the table contains any dimension columns. SerdeInfo (dict) -- The serialization/deserialization (SerDe) information. Name (string) -- Name of the SerDe. SerializationLibrary (string) -- Usually the class that implements the SerDe. An example is org.apache.hadoop.hive.serde2.columnar.ColumnarSerDe . Parameters (dict) -- These key-value pairs define initialization parameters for the SerDe. (string) -- (string) -- BucketColumns (list) -- A list of reducer grouping columns, clustering columns, and bucketing columns in the table. (string) -- SortColumns (list) -- A list specifying the sort order of each bucket in the table. (dict) -- Specifies the sort order of a sorted column. Column (string) -- The name of the column. SortOrder (integer) -- Indicates that the column is sorted in ascending order (== 1 ), or in descending order (==0 ). Parameters (dict) -- The user-supplied properties in key-value form. (string) -- (string) -- SkewedInfo (dict) -- The information about values that appear frequently in a column (skewed values). SkewedColumnNames (list) -- A list of names of columns that contain skewed values. (string) -- SkewedColumnValues (list) -- A list of values that appear so frequently as to be considered skewed. (string) -- SkewedColumnValueLocationMaps (dict) -- A mapping of skewed values to the columns that contain them. (string) -- (string) -- StoredAsSubDirectories (boolean) -- True if the table data is stored in subdirectories, or False if not. PartitionKeys (list) -- A list of columns by which the table is partitioned. Only primitive types are supported as partition keys. When you create a table used by Amazon Athena, and you do not specify any partitionKeys , you must at least set the value of partitionKeys to an empty list. For example: "PartitionKeys": [] (dict) -- A column in a Table . Name (string) -- The name of the Column . Type (string) -- The data type of the Column . Comment (string) -- A free-form text comment. Parameters (dict) -- These key-value pairs define properties associated with the column. (string) -- (string) -- ViewOriginalText (string) -- If the table is a view, the original text of the view; otherwise null . ViewExpandedText (string) -- If the table is a view, the expanded text of the view; otherwise null . TableType (string) -- The type of this table (EXTERNAL_TABLE , VIRTUAL_VIEW , etc.). Parameters (dict) -- These key-value pairs define properties associated with the table. (string) -- (string) -- CreatedBy (string) -- The person or entity who created the table. IsRegisteredWithLakeFormation (boolean) -- Indicates whether the table has been registered with AWS Lake Formation. Exceptions Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.OperationTimeoutException :return: { 'NextToken': 'string', 'TableList': [ { 'Name': 'string', 'DatabaseName': 'string', 'Description': 'string', 'Owner': 'string', 'CreateTime': datetime(2015, 1, 1), 'UpdateTime': datetime(2015, 1, 1), 'LastAccessTime': datetime(2015, 1, 1), 'LastAnalyzedTime': datetime(2015, 1, 1), 'Retention': 123, 'StorageDescriptor': { 'Columns': [ { 'Name': 'string', 'Type': 'string', 'Comment': 'string', 'Parameters': { 'string': 'string' } }, ], 'Location': 'string', 'InputFormat': 'string', 'OutputFormat': 'string', 'Compressed': True|False, 'NumberOfBuckets': 123, 'SerdeInfo': { 'Name': 'string', 'SerializationLibrary': 'string', 'Parameters': { 'string': 'string' } }, 'BucketColumns': [ 'string', ], 'SortColumns': [ { 'Column': 'string', 'SortOrder': 123 }, ], 'Parameters': { 'string': 'string' }, 'SkewedInfo': { 'SkewedColumnNames': [ 'string', ], 'SkewedColumnValues': [ 'string', ], 'SkewedColumnValueLocationMaps': { 'string': 'string' } }, 'StoredAsSubDirectories': True|False }, 'PartitionKeys': [ { 'Name': 'string', 'Type': 'string', 'Comment': 'string', 'Parameters': { 'string': 'string' } }, ], 'ViewOriginalText': 'string', 'ViewExpandedText': 'string', 'TableType': 'string', 'Parameters': { 'string': 'string' }, 'CreatedBy': 'string', 'IsRegisteredWithLakeFormation': True|False }, ] } :returns: (string) -- (string) -- """ pass def start_crawler(Name=None): """ Starts a crawl using the specified crawler, regardless of what is scheduled. If the crawler is already running, returns a CrawlerRunningException . See also: AWS API Documentation Exceptions :example: response = client.start_crawler( Name='string' ) :type Name: string :param Name: [REQUIRED]\nName of the crawler to start.\n :rtype: dict ReturnsResponse Syntax{} Response Structure (dict) -- Exceptions Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.CrawlerRunningException Glue.Client.exceptions.OperationTimeoutException :return: {} :returns: Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.CrawlerRunningException Glue.Client.exceptions.OperationTimeoutException """ pass def start_crawler_schedule(CrawlerName=None): """ Changes the schedule state of the specified crawler to SCHEDULED , unless the crawler is already running or the schedule state is already SCHEDULED . See also: AWS API Documentation Exceptions :example: response = client.start_crawler_schedule( CrawlerName='string' ) :type CrawlerName: string :param CrawlerName: [REQUIRED]\nName of the crawler to schedule.\n :rtype: dict ReturnsResponse Syntax{} Response Structure (dict) -- Exceptions Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.SchedulerRunningException Glue.Client.exceptions.SchedulerTransitioningException Glue.Client.exceptions.NoScheduleException Glue.Client.exceptions.OperationTimeoutException :return: {} :returns: Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.SchedulerRunningException Glue.Client.exceptions.SchedulerTransitioningException Glue.Client.exceptions.NoScheduleException Glue.Client.exceptions.OperationTimeoutException """ pass def start_export_labels_task_run(TransformId=None, OutputS3Path=None): """ Begins an asynchronous task to export all labeled data for a particular transform. This task is the only label-related API call that is not part of the typical active learning workflow. You typically use StartExportLabelsTaskRun when you want to work with all of your existing labels at the same time, such as when you want to remove or change labels that were previously submitted as truth. This API operation accepts the TransformId whose labels you want to export and an Amazon Simple Storage Service (Amazon S3) path to export the labels to. The operation returns a TaskRunId . You can check on the status of your task run by calling the GetMLTaskRun API. See also: AWS API Documentation Exceptions :example: response = client.start_export_labels_task_run( TransformId='string', OutputS3Path='string' ) :type TransformId: string :param TransformId: [REQUIRED]\nThe unique identifier of the machine learning transform.\n :type OutputS3Path: string :param OutputS3Path: [REQUIRED]\nThe Amazon S3 path where you export the labels.\n :rtype: dict ReturnsResponse Syntax { 'TaskRunId': 'string' } Response Structure (dict) -- TaskRunId (string) -- The unique identifier for the task run. Exceptions Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.OperationTimeoutException Glue.Client.exceptions.InternalServiceException :return: { 'TaskRunId': 'string' } :returns: Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.OperationTimeoutException Glue.Client.exceptions.InternalServiceException """ pass def start_import_labels_task_run(TransformId=None, InputS3Path=None, ReplaceAllLabels=None): """ Enables you to provide additional labels (examples of truth) to be used to teach the machine learning transform and improve its quality. This API operation is generally used as part of the active learning workflow that starts with the StartMLLabelingSetGenerationTaskRun call and that ultimately results in improving the quality of your machine learning transform. After the StartMLLabelingSetGenerationTaskRun finishes, AWS Glue machine learning will have generated a series of questions for humans to answer. (Answering these questions is often called \'labeling\' in the machine learning workflows). In the case of the FindMatches transform, these questions are of the form, \xe2\x80\x9cWhat is the correct way to group these rows together into groups composed entirely of matching records?\xe2\x80\x9d After the labeling process is finished, users upload their answers/labels with a call to StartImportLabelsTaskRun . After StartImportLabelsTaskRun finishes, all future runs of the machine learning transform use the new and improved labels and perform a higher-quality transformation. By default, StartMLLabelingSetGenerationTaskRun continually learns from and combines all labels that you upload unless you set Replace to true. If you set Replace to true, StartImportLabelsTaskRun deletes and forgets all previously uploaded labels and learns only from the exact set that you upload. Replacing labels can be helpful if you realize that you previously uploaded incorrect labels, and you believe that they are having a negative effect on your transform quality. You can check on the status of your task run by calling the GetMLTaskRun operation. See also: AWS API Documentation Exceptions :example: response = client.start_import_labels_task_run( TransformId='string', InputS3Path='string', ReplaceAllLabels=True|False ) :type TransformId: string :param TransformId: [REQUIRED]\nThe unique identifier of the machine learning transform.\n :type InputS3Path: string :param InputS3Path: [REQUIRED]\nThe Amazon Simple Storage Service (Amazon S3) path from where you import the labels.\n :type ReplaceAllLabels: boolean :param ReplaceAllLabels: Indicates whether to overwrite your existing labels. :rtype: dict ReturnsResponse Syntax { 'TaskRunId': 'string' } Response Structure (dict) -- TaskRunId (string) -- The unique identifier for the task run. Exceptions Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.OperationTimeoutException Glue.Client.exceptions.ResourceNumberLimitExceededException Glue.Client.exceptions.InternalServiceException :return: { 'TaskRunId': 'string' } :returns: Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.OperationTimeoutException Glue.Client.exceptions.ResourceNumberLimitExceededException Glue.Client.exceptions.InternalServiceException """ pass def start_job_run(JobName=None, JobRunId=None, Arguments=None, AllocatedCapacity=None, Timeout=None, MaxCapacity=None, SecurityConfiguration=None, NotificationProperty=None, WorkerType=None, NumberOfWorkers=None): """ Starts a job run using a job definition. See also: AWS API Documentation Exceptions :example: response = client.start_job_run( JobName='string', JobRunId='string', Arguments={ 'string': 'string' }, AllocatedCapacity=123, Timeout=123, MaxCapacity=123.0, SecurityConfiguration='string', NotificationProperty={ 'NotifyDelayAfter': 123 }, WorkerType='Standard'|'G.1X'|'G.2X', NumberOfWorkers=123 ) :type JobName: string :param JobName: [REQUIRED]\nThe name of the job definition to use.\n :type JobRunId: string :param JobRunId: The ID of a previous JobRun to retry. :type Arguments: dict :param Arguments: The job arguments specifically for this run. For this job run, they replace the default arguments set in the job definition itself.\nYou can specify arguments here that your own job-execution script consumes, as well as arguments that AWS Glue itself consumes.\nFor information about how to specify and consume your own Job arguments, see the Calling AWS Glue APIs in Python topic in the developer guide.\nFor information about the key-value pairs that AWS Glue consumes to set up your job, see the Special Parameters Used by AWS Glue topic in the developer guide.\n\n(string) --\n(string) --\n\n\n\n :type AllocatedCapacity: integer :param AllocatedCapacity: This field is deprecated. Use MaxCapacity instead.\nThe number of AWS Glue data processing units (DPUs) to allocate to this JobRun. From 2 to 100 DPUs can be allocated; the default is 10. A DPU is a relative measure of processing power that consists of 4 vCPUs of compute capacity and 16 GB of memory. For more information, see the AWS Glue pricing page .\n :type Timeout: integer :param Timeout: The JobRun timeout in minutes. This is the maximum time that a job run can consume resources before it is terminated and enters TIMEOUT status. The default is 2,880 minutes (48 hours). This overrides the timeout value set in the parent job. :type MaxCapacity: float :param MaxCapacity: The number of AWS Glue data processing units (DPUs) that can be allocated when this job runs. A DPU is a relative measure of processing power that consists of 4 vCPUs of compute capacity and 16 GB of memory. For more information, see the AWS Glue pricing page .\nDo not set Max Capacity if using WorkerType and NumberOfWorkers .\nThe value that can be allocated for MaxCapacity depends on whether you are running a Python shell job, or an Apache Spark ETL job:\n\nWhen you specify a Python shell job (JobCommand.Name ='pythonshell'), you can allocate either 0.0625 or 1 DPU. The default is 0.0625 DPU.\nWhen you specify an Apache Spark ETL job (JobCommand.Name ='glueetl'), you can allocate from 2 to 100 DPUs. The default is 10 DPUs. This job type cannot have a fractional DPU allocation.\n\n :type SecurityConfiguration: string :param SecurityConfiguration: The name of the SecurityConfiguration structure to be used with this job run. :type NotificationProperty: dict :param NotificationProperty: Specifies configuration properties of a job run notification.\n\nNotifyDelayAfter (integer) --After a job run starts, the number of minutes to wait before sending a job run delay notification.\n\n\n :type WorkerType: string :param WorkerType: The type of predefined worker that is allocated when a job runs. Accepts a value of Standard, G.1X, or G.2X.\n\nFor the Standard worker type, each worker provides 4 vCPU, 16 GB of memory and a 50GB disk, and 2 executors per worker.\nFor the G.1X worker type, each worker provides 4 vCPU, 16 GB of memory and a 64GB disk, and 1 executor per worker.\nFor the G.2X worker type, each worker provides 8 vCPU, 32 GB of memory and a 128GB disk, and 1 executor per worker.\n\n :type NumberOfWorkers: integer :param NumberOfWorkers: The number of workers of a defined workerType that are allocated when a job runs.\nThe maximum number of workers you can define are 299 for G.1X , and 149 for G.2X .\n :rtype: dict ReturnsResponse Syntax { 'JobRunId': 'string' } Response Structure (dict) -- JobRunId (string) -- The ID assigned to this job run. Exceptions Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.OperationTimeoutException Glue.Client.exceptions.ResourceNumberLimitExceededException Glue.Client.exceptions.ConcurrentRunsExceededException :return: { 'JobRunId': 'string' } :returns: Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.OperationTimeoutException Glue.Client.exceptions.ResourceNumberLimitExceededException Glue.Client.exceptions.ConcurrentRunsExceededException """ pass def start_ml_evaluation_task_run(TransformId=None): """ Starts a task to estimate the quality of the transform. When you provide label sets as examples of truth, AWS Glue machine learning uses some of those examples to learn from them. The rest of the labels are used as a test to estimate quality. Returns a unique identifier for the run. You can call GetMLTaskRun to get more information about the stats of the EvaluationTaskRun . See also: AWS API Documentation Exceptions :example: response = client.start_ml_evaluation_task_run( TransformId='string' ) :type TransformId: string :param TransformId: [REQUIRED]\nThe unique identifier of the machine learning transform.\n :rtype: dict ReturnsResponse Syntax{ 'TaskRunId': 'string' } Response Structure (dict) -- TaskRunId (string) --The unique identifier associated with this run. Exceptions Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.OperationTimeoutException Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.ConcurrentRunsExceededException Glue.Client.exceptions.MLTransformNotReadyException :return: { 'TaskRunId': 'string' } """ pass def start_ml_labeling_set_generation_task_run(TransformId=None, OutputS3Path=None): """ Starts the active learning workflow for your machine learning transform to improve the transform\'s quality by generating label sets and adding labels. When the StartMLLabelingSetGenerationTaskRun finishes, AWS Glue will have generated a "labeling set" or a set of questions for humans to answer. In the case of the FindMatches transform, these questions are of the form, \xe2\x80\x9cWhat is the correct way to group these rows together into groups composed entirely of matching records?\xe2\x80\x9d After the labeling process is finished, you can upload your labels with a call to StartImportLabelsTaskRun . After StartImportLabelsTaskRun finishes, all future runs of the machine learning transform will use the new and improved labels and perform a higher-quality transformation. See also: AWS API Documentation Exceptions :example: response = client.start_ml_labeling_set_generation_task_run( TransformId='string', OutputS3Path='string' ) :type TransformId: string :param TransformId: [REQUIRED]\nThe unique identifier of the machine learning transform.\n :type OutputS3Path: string :param OutputS3Path: [REQUIRED]\nThe Amazon Simple Storage Service (Amazon S3) path where you generate the labeling set.\n :rtype: dict ReturnsResponse Syntax { 'TaskRunId': 'string' } Response Structure (dict) -- TaskRunId (string) -- The unique run identifier that is associated with this task run. Exceptions Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.OperationTimeoutException Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.ConcurrentRunsExceededException :return: { 'TaskRunId': 'string' } :returns: Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.OperationTimeoutException Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.ConcurrentRunsExceededException """ pass def start_trigger(Name=None): """ Starts an existing trigger. See Triggering Jobs for information about how different types of trigger are started. See also: AWS API Documentation Exceptions :example: response = client.start_trigger( Name='string' ) :type Name: string :param Name: [REQUIRED]\nThe name of the trigger to start.\n :rtype: dict ReturnsResponse Syntax{ 'Name': 'string' } Response Structure (dict) -- Name (string) --The name of the trigger that was started. Exceptions Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.OperationTimeoutException Glue.Client.exceptions.ResourceNumberLimitExceededException Glue.Client.exceptions.ConcurrentRunsExceededException :return: { 'Name': 'string' } """ pass def start_workflow_run(Name=None): """ Starts a new run of the specified workflow. See also: AWS API Documentation Exceptions :example: response = client.start_workflow_run( Name='string' ) :type Name: string :param Name: [REQUIRED]\nThe name of the workflow to start.\n :rtype: dict ReturnsResponse Syntax{ 'RunId': 'string' } Response Structure (dict) -- RunId (string) --An Id for the new run. Exceptions Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.OperationTimeoutException Glue.Client.exceptions.ResourceNumberLimitExceededException Glue.Client.exceptions.ConcurrentRunsExceededException :return: { 'RunId': 'string' } """ pass def stop_crawler(Name=None): """ If the specified crawler is running, stops the crawl. See also: AWS API Documentation Exceptions :example: response = client.stop_crawler( Name='string' ) :type Name: string :param Name: [REQUIRED]\nName of the crawler to stop.\n :rtype: dict ReturnsResponse Syntax{} Response Structure (dict) -- Exceptions Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.CrawlerNotRunningException Glue.Client.exceptions.CrawlerStoppingException Glue.Client.exceptions.OperationTimeoutException :return: {} :returns: Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.CrawlerNotRunningException Glue.Client.exceptions.CrawlerStoppingException Glue.Client.exceptions.OperationTimeoutException """ pass def stop_crawler_schedule(CrawlerName=None): """ Sets the schedule state of the specified crawler to NOT_SCHEDULED , but does not stop the crawler if it is already running. See also: AWS API Documentation Exceptions :example: response = client.stop_crawler_schedule( CrawlerName='string' ) :type CrawlerName: string :param CrawlerName: [REQUIRED]\nName of the crawler whose schedule state to set.\n :rtype: dict ReturnsResponse Syntax{} Response Structure (dict) -- Exceptions Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.SchedulerNotRunningException Glue.Client.exceptions.SchedulerTransitioningException Glue.Client.exceptions.OperationTimeoutException :return: {} :returns: Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.SchedulerNotRunningException Glue.Client.exceptions.SchedulerTransitioningException Glue.Client.exceptions.OperationTimeoutException """ pass def stop_trigger(Name=None): """ Stops a specified trigger. See also: AWS API Documentation Exceptions :example: response = client.stop_trigger( Name='string' ) :type Name: string :param Name: [REQUIRED]\nThe name of the trigger to stop.\n :rtype: dict ReturnsResponse Syntax{ 'Name': 'string' } Response Structure (dict) -- Name (string) --The name of the trigger that was stopped. Exceptions Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.OperationTimeoutException Glue.Client.exceptions.ConcurrentModificationException :return: { 'Name': 'string' } """ pass def stop_workflow_run(Name=None, RunId=None): """ Stops the execution of the specified workflow run. See also: AWS API Documentation Exceptions :example: response = client.stop_workflow_run( Name='string', RunId='string' ) :type Name: string :param Name: [REQUIRED]\nThe name of the workflow to stop.\n :type RunId: string :param RunId: [REQUIRED]\nThe ID of the workflow run to stop.\n :rtype: dict ReturnsResponse Syntax {} Response Structure (dict) -- Exceptions Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.OperationTimeoutException Glue.Client.exceptions.IllegalWorkflowStateException :return: {} :returns: (dict) -- """ pass def tag_resource(ResourceArn=None, TagsToAdd=None): """ Adds tags to a resource. A tag is a label you can assign to an AWS resource. In AWS Glue, you can tag only certain resources. For information about what resources you can tag, see AWS Tags in AWS Glue . See also: AWS API Documentation Exceptions :example: response = client.tag_resource( ResourceArn='string', TagsToAdd={ 'string': 'string' } ) :type ResourceArn: string :param ResourceArn: [REQUIRED]\nThe ARN of the AWS Glue resource to which to add the tags. For more information about AWS Glue resource ARNs, see the AWS Glue ARN string pattern .\n :type TagsToAdd: dict :param TagsToAdd: [REQUIRED]\nTags to add to this resource.\n\n(string) --\n(string) --\n\n\n\n :rtype: dict ReturnsResponse Syntax {} Response Structure (dict) -- Exceptions Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.OperationTimeoutException Glue.Client.exceptions.EntityNotFoundException :return: {} :returns: (dict) -- """ pass def untag_resource(ResourceArn=None, TagsToRemove=None): """ Removes tags from a resource. See also: AWS API Documentation Exceptions :example: response = client.untag_resource( ResourceArn='string', TagsToRemove=[ 'string', ] ) :type ResourceArn: string :param ResourceArn: [REQUIRED]\nThe Amazon Resource Name (ARN) of the resource from which to remove the tags.\n :type TagsToRemove: list :param TagsToRemove: [REQUIRED]\nTags to remove from this resource.\n\n(string) --\n\n :rtype: dict ReturnsResponse Syntax {} Response Structure (dict) -- Exceptions Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.OperationTimeoutException Glue.Client.exceptions.EntityNotFoundException :return: {} :returns: (dict) -- """ pass def update_classifier(GrokClassifier=None, XMLClassifier=None, JsonClassifier=None, CsvClassifier=None): """ Modifies an existing classifier (a GrokClassifier , an XMLClassifier , a JsonClassifier , or a CsvClassifier , depending on which field is present). See also: AWS API Documentation Exceptions :example: response = client.update_classifier( GrokClassifier={ 'Name': 'string', 'Classification': 'string', 'GrokPattern': 'string', 'CustomPatterns': 'string' }, XMLClassifier={ 'Name': 'string', 'Classification': 'string', 'RowTag': 'string' }, JsonClassifier={ 'Name': 'string', 'JsonPath': 'string' }, CsvClassifier={ 'Name': 'string', 'Delimiter': 'string', 'QuoteSymbol': 'string', 'ContainsHeader': 'UNKNOWN'|'PRESENT'|'ABSENT', 'Header': [ 'string', ], 'DisableValueTrimming': True|False, 'AllowSingleColumn': True|False } ) :type GrokClassifier: dict :param GrokClassifier: A GrokClassifier object with updated fields.\n\nName (string) -- [REQUIRED]The name of the GrokClassifier .\n\nClassification (string) --An identifier of the data format that the classifier matches, such as Twitter, JSON, Omniture logs, Amazon CloudWatch Logs, and so on.\n\nGrokPattern (string) --The grok pattern used by this classifier.\n\nCustomPatterns (string) --Optional custom grok patterns used by this classifier.\n\n\n :type XMLClassifier: dict :param XMLClassifier: An XMLClassifier object with updated fields.\n\nName (string) -- [REQUIRED]The name of the classifier.\n\nClassification (string) --An identifier of the data format that the classifier matches.\n\nRowTag (string) --The XML tag designating the element that contains each record in an XML document being parsed. This cannot identify a self-closing element (closed by /> ). An empty row element that contains only attributes can be parsed as long as it ends with a closing tag (for example, <row item_a='A' item_b='B'></row> is okay, but <row item_a='A' item_b='B' /> is not).\n\n\n :type JsonClassifier: dict :param JsonClassifier: A JsonClassifier object with updated fields.\n\nName (string) -- [REQUIRED]The name of the classifier.\n\nJsonPath (string) --A JsonPath string defining the JSON data for the classifier to classify. AWS Glue supports a subset of JsonPath , as described in Writing JsonPath Custom Classifiers .\n\n\n :type CsvClassifier: dict :param CsvClassifier: A CsvClassifier object with updated fields.\n\nName (string) -- [REQUIRED]The name of the classifier.\n\nDelimiter (string) --A custom symbol to denote what separates each column entry in the row.\n\nQuoteSymbol (string) --A custom symbol to denote what combines content into a single column value. It must be different from the column delimiter.\n\nContainsHeader (string) --Indicates whether the CSV file contains a header.\n\nHeader (list) --A list of strings representing column names.\n\n(string) --\n\n\nDisableValueTrimming (boolean) --Specifies not to trim values before identifying the type of column values. The default value is true.\n\nAllowSingleColumn (boolean) --Enables the processing of files that contain only one column.\n\n\n :rtype: dict ReturnsResponse Syntax {} Response Structure (dict) -- Exceptions Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.VersionMismatchException Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.OperationTimeoutException :return: {} :returns: (dict) -- """ pass def update_connection(CatalogId=None, Name=None, ConnectionInput=None): """ Updates a connection definition in the Data Catalog. See also: AWS API Documentation Exceptions :example: response = client.update_connection( CatalogId='string', Name='string', ConnectionInput={ 'Name': 'string', 'Description': 'string', 'ConnectionType': 'JDBC'|'SFTP'|'MONGODB'|'KAFKA', 'MatchCriteria': [ 'string', ], 'ConnectionProperties': { 'string': 'string' }, 'PhysicalConnectionRequirements': { 'SubnetId': 'string', 'SecurityGroupIdList': [ 'string', ], 'AvailabilityZone': 'string' } } ) :type CatalogId: string :param CatalogId: The ID of the Data Catalog in which the connection resides. If none is provided, the AWS account ID is used by default. :type Name: string :param Name: [REQUIRED]\nThe name of the connection definition to update.\n :type ConnectionInput: dict :param ConnectionInput: [REQUIRED]\nA ConnectionInput object that redefines the connection in question.\n\nName (string) -- [REQUIRED]The name of the connection.\n\nDescription (string) --The description of the connection.\n\nConnectionType (string) -- [REQUIRED]The type of the connection. Currently, these types are supported:\n\nJDBC - Designates a connection to a database through Java Database Connectivity (JDBC).\nKAFKA - Designates a connection to an Apache Kafka streaming platform.\nMONGODB - Designates a connection to a MongoDB document database.\n\nSFTP is not supported.\n\nMatchCriteria (list) --A list of criteria that can be used in selecting this connection.\n\n(string) --\n\n\nConnectionProperties (dict) -- [REQUIRED]These key-value pairs define parameters for the connection.\n\n(string) --\n(string) --\n\n\n\n\nPhysicalConnectionRequirements (dict) --A map of physical connection requirements, such as virtual private cloud (VPC) and SecurityGroup , that are needed to successfully make this connection.\n\nSubnetId (string) --The subnet ID used by the connection.\n\nSecurityGroupIdList (list) --The security group ID list used by the connection.\n\n(string) --\n\n\nAvailabilityZone (string) --The connection\'s Availability Zone. This field is redundant because the specified subnet implies the Availability Zone to be used. Currently the field must be populated, but it will be deprecated in the future.\n\n\n\n\n :rtype: dict ReturnsResponse Syntax {} Response Structure (dict) -- Exceptions Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.OperationTimeoutException Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.GlueEncryptionException :return: {} :returns: (dict) -- """ pass def update_crawler(Name=None, Role=None, DatabaseName=None, Description=None, Targets=None, Schedule=None, Classifiers=None, TablePrefix=None, SchemaChangePolicy=None, Configuration=None, CrawlerSecurityConfiguration=None): """ Updates a crawler. If a crawler is running, you must stop it using StopCrawler before updating it. See also: AWS API Documentation Exceptions :example: response = client.update_crawler( Name='string', Role='string', DatabaseName='string', Description='string', Targets={ 'S3Targets': [ { 'Path': 'string', 'Exclusions': [ 'string', ] }, ], 'JdbcTargets': [ { 'ConnectionName': 'string', 'Path': 'string', 'Exclusions': [ 'string', ] }, ], 'DynamoDBTargets': [ { 'Path': 'string' }, ], 'CatalogTargets': [ { 'DatabaseName': 'string', 'Tables': [ 'string', ] }, ] }, Schedule='string', Classifiers=[ 'string', ], TablePrefix='string', SchemaChangePolicy={ 'UpdateBehavior': 'LOG'|'UPDATE_IN_DATABASE', 'DeleteBehavior': 'LOG'|'DELETE_FROM_DATABASE'|'DEPRECATE_IN_DATABASE' }, Configuration='string', CrawlerSecurityConfiguration='string' ) :type Name: string :param Name: [REQUIRED]\nName of the new crawler.\n :type Role: string :param Role: The IAM role or Amazon Resource Name (ARN) of an IAM role that is used by the new crawler to access customer resources. :type DatabaseName: string :param DatabaseName: The AWS Glue database where results are stored, such as: arn:aws:daylight:us-east-1::database/sometable/* . :type Description: string :param Description: A description of the new crawler. :type Targets: dict :param Targets: A list of targets to crawl.\n\nS3Targets (list) --Specifies Amazon Simple Storage Service (Amazon S3) targets.\n\n(dict) --Specifies a data store in Amazon Simple Storage Service (Amazon S3).\n\nPath (string) --The path to the Amazon S3 target.\n\nExclusions (list) --A list of glob patterns used to exclude from the crawl. For more information, see Catalog Tables with a Crawler .\n\n(string) --\n\n\n\n\n\n\nJdbcTargets (list) --Specifies JDBC targets.\n\n(dict) --Specifies a JDBC data store to crawl.\n\nConnectionName (string) --The name of the connection to use to connect to the JDBC target.\n\nPath (string) --The path of the JDBC target.\n\nExclusions (list) --A list of glob patterns used to exclude from the crawl. For more information, see Catalog Tables with a Crawler .\n\n(string) --\n\n\n\n\n\n\nDynamoDBTargets (list) --Specifies Amazon DynamoDB targets.\n\n(dict) --Specifies an Amazon DynamoDB table to crawl.\n\nPath (string) --The name of the DynamoDB table to crawl.\n\n\n\n\n\nCatalogTargets (list) --Specifies AWS Glue Data Catalog targets.\n\n(dict) --Specifies an AWS Glue Data Catalog target.\n\nDatabaseName (string) -- [REQUIRED]The name of the database to be synchronized.\n\nTables (list) -- [REQUIRED]A list of the tables to be synchronized.\n\n(string) --\n\n\n\n\n\n\n\n :type Schedule: string :param Schedule: A cron expression used to specify the schedule. For more information, see Time-Based Schedules for Jobs and Crawlers . For example, to run something every day at 12:15 UTC, specify cron(15 12 * * ? *) . :type Classifiers: list :param Classifiers: A list of custom classifiers that the user has registered. By default, all built-in classifiers are included in a crawl, but these custom classifiers always override the default classifiers for a given classification.\n\n(string) --\n\n :type TablePrefix: string :param TablePrefix: The table prefix used for catalog tables that are created. :type SchemaChangePolicy: dict :param SchemaChangePolicy: The policy for the crawler\'s update and deletion behavior.\n\nUpdateBehavior (string) --The update behavior when the crawler finds a changed schema.\n\nDeleteBehavior (string) --The deletion behavior when the crawler finds a deleted object.\n\n\n :type Configuration: string :param Configuration: The crawler configuration information. This versioned JSON string allows users to specify aspects of a crawler\'s behavior. For more information, see Configuring a Crawler . :type CrawlerSecurityConfiguration: string :param CrawlerSecurityConfiguration: The name of the SecurityConfiguration structure to be used by this crawler. :rtype: dict ReturnsResponse Syntax {} Response Structure (dict) -- Exceptions Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.VersionMismatchException Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.CrawlerRunningException Glue.Client.exceptions.OperationTimeoutException :return: {} :returns: (dict) -- """ pass def update_crawler_schedule(CrawlerName=None, Schedule=None): """ Updates the schedule of a crawler using a cron expression. See also: AWS API Documentation Exceptions :example: response = client.update_crawler_schedule( CrawlerName='string', Schedule='string' ) :type CrawlerName: string :param CrawlerName: [REQUIRED]\nThe name of the crawler whose schedule to update.\n :type Schedule: string :param Schedule: The updated cron expression used to specify the schedule. For more information, see Time-Based Schedules for Jobs and Crawlers . For example, to run something every day at 12:15 UTC, specify cron(15 12 * * ? *) . :rtype: dict ReturnsResponse Syntax {} Response Structure (dict) -- Exceptions Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.VersionMismatchException Glue.Client.exceptions.SchedulerTransitioningException Glue.Client.exceptions.OperationTimeoutException :return: {} :returns: (dict) -- """ pass def update_database(CatalogId=None, Name=None, DatabaseInput=None): """ Updates an existing database definition in a Data Catalog. See also: AWS API Documentation Exceptions :example: response = client.update_database( CatalogId='string', Name='string', DatabaseInput={ 'Name': 'string', 'Description': 'string', 'LocationUri': 'string', 'Parameters': { 'string': 'string' }, 'CreateTableDefaultPermissions': [ { 'Principal': { 'DataLakePrincipalIdentifier': 'string' }, 'Permissions': [ 'ALL'|'SELECT'|'ALTER'|'DROP'|'DELETE'|'INSERT'|'CREATE_DATABASE'|'CREATE_TABLE'|'DATA_LOCATION_ACCESS', ] }, ] } ) :type CatalogId: string :param CatalogId: The ID of the Data Catalog in which the metadata database resides. If none is provided, the AWS account ID is used by default. :type Name: string :param Name: [REQUIRED]\nThe name of the database to update in the catalog. For Hive compatibility, this is folded to lowercase.\n :type DatabaseInput: dict :param DatabaseInput: [REQUIRED]\nA DatabaseInput object specifying the new definition of the metadata database in the catalog.\n\nName (string) -- [REQUIRED]The name of the database. For Hive compatibility, this is folded to lowercase when it is stored.\n\nDescription (string) --A description of the database.\n\nLocationUri (string) --The location of the database (for example, an HDFS path).\n\nParameters (dict) --These key-value pairs define parameters and properties of the database.\nThese key-value pairs define parameters and properties of the database.\n\n(string) --\n(string) --\n\n\n\n\nCreateTableDefaultPermissions (list) --Creates a set of default permissions on the table for principals.\n\n(dict) --Permissions granted to a principal.\n\nPrincipal (dict) --The principal who is granted permissions.\n\nDataLakePrincipalIdentifier (string) --An identifier for the AWS Lake Formation principal.\n\n\n\nPermissions (list) --The permissions that are granted to the principal.\n\n(string) --\n\n\n\n\n\n\n\n :rtype: dict ReturnsResponse Syntax {} Response Structure (dict) -- Exceptions Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.OperationTimeoutException Glue.Client.exceptions.GlueEncryptionException :return: {} :returns: (dict) -- """ pass def update_dev_endpoint(EndpointName=None, PublicKey=None, AddPublicKeys=None, DeletePublicKeys=None, CustomLibraries=None, UpdateEtlLibraries=None, DeleteArguments=None, AddArguments=None): """ Updates a specified development endpoint. See also: AWS API Documentation Exceptions :example: response = client.update_dev_endpoint( EndpointName='string', PublicKey='string', AddPublicKeys=[ 'string', ], DeletePublicKeys=[ 'string', ], CustomLibraries={ 'ExtraPythonLibsS3Path': 'string', 'ExtraJarsS3Path': 'string' }, UpdateEtlLibraries=True|False, DeleteArguments=[ 'string', ], AddArguments={ 'string': 'string' } ) :type EndpointName: string :param EndpointName: [REQUIRED]\nThe name of the DevEndpoint to be updated.\n :type PublicKey: string :param PublicKey: The public key for the DevEndpoint to use. :type AddPublicKeys: list :param AddPublicKeys: The list of public keys for the DevEndpoint to use.\n\n(string) --\n\n :type DeletePublicKeys: list :param DeletePublicKeys: The list of public keys to be deleted from the DevEndpoint .\n\n(string) --\n\n :type CustomLibraries: dict :param CustomLibraries: Custom Python or Java libraries to be loaded in the DevEndpoint .\n\nExtraPythonLibsS3Path (string) --The paths to one or more Python libraries in an Amazon Simple Storage Service (Amazon S3) bucket that should be loaded in your DevEndpoint . Multiple values must be complete paths separated by a comma.\n\nNote\nYou can only use pure Python libraries with a DevEndpoint . Libraries that rely on C extensions, such as the pandas Python data analysis library, are not currently supported.\n\n\nExtraJarsS3Path (string) --The path to one or more Java .jar files in an S3 bucket that should be loaded in your DevEndpoint .\n\nNote\nYou can only use pure Java/Scala libraries with a DevEndpoint .\n\n\n\n :type UpdateEtlLibraries: boolean :param UpdateEtlLibraries: True if the list of custom libraries to be loaded in the development endpoint needs to be updated, or False if otherwise. :type DeleteArguments: list :param DeleteArguments: The list of argument keys to be deleted from the map of arguments used to configure the DevEndpoint .\n\n(string) --\n\n :type AddArguments: dict :param AddArguments: The map of arguments to add the map of arguments used to configure the DevEndpoint .\nValid arguments are:\n\n'--enable-glue-datacatalog': ''\n'GLUE_PYTHON_VERSION': '3'\n'GLUE_PYTHON_VERSION': '2'\n\nYou can specify a version of Python support for development endpoints by using the Arguments parameter in the CreateDevEndpoint or UpdateDevEndpoint APIs. If no arguments are provided, the version defaults to Python 2.\n\n(string) --\n(string) --\n\n\n\n :rtype: dict ReturnsResponse Syntax {} Response Structure (dict) -- Exceptions Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.OperationTimeoutException Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.ValidationException :return: {} :returns: (dict) -- """ pass def update_job(JobName=None, JobUpdate=None): """ Updates an existing job definition. See also: AWS API Documentation Exceptions :example: response = client.update_job( JobName='string', JobUpdate={ 'Description': 'string', 'LogUri': 'string', 'Role': 'string', 'ExecutionProperty': { 'MaxConcurrentRuns': 123 }, 'Command': { 'Name': 'string', 'ScriptLocation': 'string', 'PythonVersion': 'string' }, 'DefaultArguments': { 'string': 'string' }, 'NonOverridableArguments': { 'string': 'string' }, 'Connections': { 'Connections': [ 'string', ] }, 'MaxRetries': 123, 'AllocatedCapacity': 123, 'Timeout': 123, 'MaxCapacity': 123.0, 'WorkerType': 'Standard'|'G.1X'|'G.2X', 'NumberOfWorkers': 123, 'SecurityConfiguration': 'string', 'NotificationProperty': { 'NotifyDelayAfter': 123 }, 'GlueVersion': 'string' } ) :type JobName: string :param JobName: [REQUIRED]\nThe name of the job definition to update.\n :type JobUpdate: dict :param JobUpdate: [REQUIRED]\nSpecifies the values with which to update the job definition.\n\nDescription (string) --Description of the job being defined.\n\nLogUri (string) --This field is reserved for future use.\n\nRole (string) --The name or Amazon Resource Name (ARN) of the IAM role associated with this job (required).\n\nExecutionProperty (dict) --An ExecutionProperty specifying the maximum number of concurrent runs allowed for this job.\n\nMaxConcurrentRuns (integer) --The maximum number of concurrent runs allowed for the job. The default is 1. An error is returned when this threshold is reached. The maximum value you can specify is controlled by a service limit.\n\n\n\nCommand (dict) --The JobCommand that executes this job (required).\n\nName (string) --The name of the job command. For an Apache Spark ETL job, this must be glueetl . For a Python shell job, it must be pythonshell .\n\nScriptLocation (string) --Specifies the Amazon Simple Storage Service (Amazon S3) path to a script that executes a job.\n\nPythonVersion (string) --The Python version being used to execute a Python shell job. Allowed values are 2 or 3.\n\n\n\nDefaultArguments (dict) --The default arguments for this job.\nYou can specify arguments here that your own job-execution script consumes, as well as arguments that AWS Glue itself consumes.\nFor information about how to specify and consume your own Job arguments, see the Calling AWS Glue APIs in Python topic in the developer guide.\nFor information about the key-value pairs that AWS Glue consumes to set up your job, see the Special Parameters Used by AWS Glue topic in the developer guide.\n\n(string) --\n(string) --\n\n\n\n\nNonOverridableArguments (dict) --Non-overridable arguments for this job, specified as name-value pairs.\n\n(string) --\n(string) --\n\n\n\n\nConnections (dict) --The connections used for this job.\n\nConnections (list) --A list of connections used by the job.\n\n(string) --\n\n\n\n\nMaxRetries (integer) --The maximum number of times to retry this job if it fails.\n\nAllocatedCapacity (integer) --This field is deprecated. Use MaxCapacity instead.\nThe number of AWS Glue data processing units (DPUs) to allocate to this job. You can allocate from 2 to 100 DPUs; the default is 10. A DPU is a relative measure of processing power that consists of 4 vCPUs of compute capacity and 16 GB of memory. For more information, see the AWS Glue pricing page .\n\nTimeout (integer) --The job timeout in minutes. This is the maximum time that a job run can consume resources before it is terminated and enters TIMEOUT status. The default is 2,880 minutes (48 hours).\n\nMaxCapacity (float) --The number of AWS Glue data processing units (DPUs) that can be allocated when this job runs. A DPU is a relative measure of processing power that consists of 4 vCPUs of compute capacity and 16 GB of memory. For more information, see the AWS Glue pricing page .\nDo not set Max Capacity if using WorkerType and NumberOfWorkers .\nThe value that can be allocated for MaxCapacity depends on whether you are running a Python shell job or an Apache Spark ETL job:\n\nWhen you specify a Python shell job (JobCommand.Name ='pythonshell'), you can allocate either 0.0625 or 1 DPU. The default is 0.0625 DPU.\nWhen you specify an Apache Spark ETL job (JobCommand.Name ='glueetl'), you can allocate from 2 to 100 DPUs. The default is 10 DPUs. This job type cannot have a fractional DPU allocation.\n\n\nWorkerType (string) --The type of predefined worker that is allocated when a job runs. Accepts a value of Standard, G.1X, or G.2X.\n\nFor the Standard worker type, each worker provides 4 vCPU, 16 GB of memory and a 50GB disk, and 2 executors per worker.\nFor the G.1X worker type, each worker maps to 1 DPU (4 vCPU, 16 GB of memory, 64 GB disk), and provides 1 executor per worker. We recommend this worker type for memory-intensive jobs.\nFor the G.2X worker type, each worker maps to 2 DPU (8 vCPU, 32 GB of memory, 128 GB disk), and provides 1 executor per worker. We recommend this worker type for memory-intensive jobs.\n\n\nNumberOfWorkers (integer) --The number of workers of a defined workerType that are allocated when a job runs.\nThe maximum number of workers you can define are 299 for G.1X , and 149 for G.2X .\n\nSecurityConfiguration (string) --The name of the SecurityConfiguration structure to be used with this job.\n\nNotificationProperty (dict) --Specifies the configuration properties of a job notification.\n\nNotifyDelayAfter (integer) --After a job run starts, the number of minutes to wait before sending a job run delay notification.\n\n\n\nGlueVersion (string) --Glue version determines the versions of Apache Spark and Python that AWS Glue supports. The Python version indicates the version supported for jobs of type Spark.\nFor more information about the available AWS Glue versions and corresponding Spark and Python versions, see Glue version in the developer guide.\n\n\n :rtype: dict ReturnsResponse Syntax { 'JobName': 'string' } Response Structure (dict) -- JobName (string) -- Returns the name of the updated job definition. Exceptions Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.OperationTimeoutException Glue.Client.exceptions.ConcurrentModificationException :return: { 'JobName': 'string' } :returns: Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.OperationTimeoutException Glue.Client.exceptions.ConcurrentModificationException """ pass def update_ml_transform(TransformId=None, Name=None, Description=None, Parameters=None, Role=None, GlueVersion=None, MaxCapacity=None, WorkerType=None, NumberOfWorkers=None, Timeout=None, MaxRetries=None): """ Updates an existing machine learning transform. Call this operation to tune the algorithm parameters to achieve better results. After calling this operation, you can call the StartMLEvaluationTaskRun operation to assess how well your new parameters achieved your goals (such as improving the quality of your machine learning transform, or making it more cost-effective). See also: AWS API Documentation Exceptions :example: response = client.update_ml_transform( TransformId='string', Name='string', Description='string', Parameters={ 'TransformType': 'FIND_MATCHES', 'FindMatchesParameters': { 'PrimaryKeyColumnName': 'string', 'PrecisionRecallTradeoff': 123.0, 'AccuracyCostTradeoff': 123.0, 'EnforceProvidedLabels': True|False } }, Role='string', GlueVersion='string', MaxCapacity=123.0, WorkerType='Standard'|'G.1X'|'G.2X', NumberOfWorkers=123, Timeout=123, MaxRetries=123 ) :type TransformId: string :param TransformId: [REQUIRED]\nA unique identifier that was generated when the transform was created.\n :type Name: string :param Name: The unique name that you gave the transform when you created it. :type Description: string :param Description: A description of the transform. The default is an empty string. :type Parameters: dict :param Parameters: The configuration parameters that are specific to the transform type (algorithm) used. Conditionally dependent on the transform type.\n\nTransformType (string) -- [REQUIRED]The type of machine learning transform.\nFor information about the types of machine learning transforms, see Creating Machine Learning Transforms .\n\nFindMatchesParameters (dict) --The parameters for the find matches algorithm.\n\nPrimaryKeyColumnName (string) --The name of a column that uniquely identifies rows in the source table. Used to help identify matching records.\n\nPrecisionRecallTradeoff (float) --The value selected when tuning your transform for a balance between precision and recall. A value of 0.5 means no preference; a value of 1.0 means a bias purely for precision, and a value of 0.0 means a bias for recall. Because this is a tradeoff, choosing values close to 1.0 means very low recall, and choosing values close to 0.0 results in very low precision.\nThe precision metric indicates how often your model is correct when it predicts a match.\nThe recall metric indicates that for an actual match, how often your model predicts the match.\n\nAccuracyCostTradeoff (float) --The value that is selected when tuning your transform for a balance between accuracy and cost. A value of 0.5 means that the system balances accuracy and cost concerns. A value of 1.0 means a bias purely for accuracy, which typically results in a higher cost, sometimes substantially higher. A value of 0.0 means a bias purely for cost, which results in a less accurate FindMatches transform, sometimes with unacceptable accuracy.\nAccuracy measures how well the transform finds true positives and true negatives. Increasing accuracy requires more machine resources and cost. But it also results in increased recall.\nCost measures how many compute resources, and thus money, are consumed to run the transform.\n\nEnforceProvidedLabels (boolean) --The value to switch on or off to force the output to match the provided labels from users. If the value is True , the find matches transform forces the output to match the provided labels. The results override the normal conflation results. If the value is False , the find matches transform does not ensure all the labels provided are respected, and the results rely on the trained model.\nNote that setting this value to true may increase the conflation execution time.\n\n\n\n\n :type Role: string :param Role: The name or Amazon Resource Name (ARN) of the IAM role with the required permissions. :type GlueVersion: string :param GlueVersion: This value determines which version of AWS Glue this machine learning transform is compatible with. Glue 1.0 is recommended for most customers. If the value is not set, the Glue compatibility defaults to Glue 0.9. For more information, see AWS Glue Versions in the developer guide. :type MaxCapacity: float :param MaxCapacity: The number of AWS Glue data processing units (DPUs) that are allocated to task runs for this transform. You can allocate from 2 to 100 DPUs; the default is 10. A DPU is a relative measure of processing power that consists of 4 vCPUs of compute capacity and 16 GB of memory. For more information, see the AWS Glue pricing page .\nWhen the WorkerType field is set to a value other than Standard , the MaxCapacity field is set automatically and becomes read-only.\n :type WorkerType: string :param WorkerType: The type of predefined worker that is allocated when this task runs. Accepts a value of Standard, G.1X, or G.2X.\n\nFor the Standard worker type, each worker provides 4 vCPU, 16 GB of memory and a 50GB disk, and 2 executors per worker.\nFor the G.1X worker type, each worker provides 4 vCPU, 16 GB of memory and a 64GB disk, and 1 executor per worker.\nFor the G.2X worker type, each worker provides 8 vCPU, 32 GB of memory and a 128GB disk, and 1 executor per worker.\n\n :type NumberOfWorkers: integer :param NumberOfWorkers: The number of workers of a defined workerType that are allocated when this task runs. :type Timeout: integer :param Timeout: The timeout for a task run for this transform in minutes. This is the maximum time that a task run for this transform can consume resources before it is terminated and enters TIMEOUT status. The default is 2,880 minutes (48 hours). :type MaxRetries: integer :param MaxRetries: The maximum number of times to retry a task for this transform after a task run fails. :rtype: dict ReturnsResponse Syntax { 'TransformId': 'string' } Response Structure (dict) -- TransformId (string) -- The unique identifier for the transform that was updated. Exceptions Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.OperationTimeoutException Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.AccessDeniedException :return: { 'TransformId': 'string' } :returns: Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.OperationTimeoutException Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.AccessDeniedException """ pass def update_partition(CatalogId=None, DatabaseName=None, TableName=None, PartitionValueList=None, PartitionInput=None): """ Updates a partition. See also: AWS API Documentation Exceptions :example: response = client.update_partition( CatalogId='string', DatabaseName='string', TableName='string', PartitionValueList=[ 'string', ], PartitionInput={ 'Values': [ 'string', ], 'LastAccessTime': datetime(2015, 1, 1), 'StorageDescriptor': { 'Columns': [ { 'Name': 'string', 'Type': 'string', 'Comment': 'string', 'Parameters': { 'string': 'string' } }, ], 'Location': 'string', 'InputFormat': 'string', 'OutputFormat': 'string', 'Compressed': True|False, 'NumberOfBuckets': 123, 'SerdeInfo': { 'Name': 'string', 'SerializationLibrary': 'string', 'Parameters': { 'string': 'string' } }, 'BucketColumns': [ 'string', ], 'SortColumns': [ { 'Column': 'string', 'SortOrder': 123 }, ], 'Parameters': { 'string': 'string' }, 'SkewedInfo': { 'SkewedColumnNames': [ 'string', ], 'SkewedColumnValues': [ 'string', ], 'SkewedColumnValueLocationMaps': { 'string': 'string' } }, 'StoredAsSubDirectories': True|False }, 'Parameters': { 'string': 'string' }, 'LastAnalyzedTime': datetime(2015, 1, 1) } ) :type CatalogId: string :param CatalogId: The ID of the Data Catalog where the partition to be updated resides. If none is provided, the AWS account ID is used by default. :type DatabaseName: string :param DatabaseName: [REQUIRED]\nThe name of the catalog database in which the table in question resides.\n :type TableName: string :param TableName: [REQUIRED]\nThe name of the table in which the partition to be updated is located.\n :type PartitionValueList: list :param PartitionValueList: [REQUIRED]\nA list of the values defining the partition.\n\n(string) --\n\n :type PartitionInput: dict :param PartitionInput: [REQUIRED]\nThe new partition object to update the partition to.\n\nValues (list) --The values of the partition. Although this parameter is not required by the SDK, you must specify this parameter for a valid input.\nThe values for the keys for the new partition must be passed as an array of String objects that must be ordered in the same order as the partition keys appearing in the Amazon S3 prefix. Otherwise AWS Glue will add the values to the wrong keys.\n\n(string) --\n\n\nLastAccessTime (datetime) --The last time at which the partition was accessed.\n\nStorageDescriptor (dict) --Provides information about the physical location where the partition is stored.\n\nColumns (list) --A list of the Columns in the table.\n\n(dict) --A column in a Table .\n\nName (string) -- [REQUIRED]The name of the Column .\n\nType (string) --The data type of the Column .\n\nComment (string) --A free-form text comment.\n\nParameters (dict) --These key-value pairs define properties associated with the column.\n\n(string) --\n(string) --\n\n\n\n\n\n\n\n\nLocation (string) --The physical location of the table. By default, this takes the form of the warehouse location, followed by the database location in the warehouse, followed by the table name.\n\nInputFormat (string) --The input format: SequenceFileInputFormat (binary), or TextInputFormat , or a custom format.\n\nOutputFormat (string) --The output format: SequenceFileOutputFormat (binary), or IgnoreKeyTextOutputFormat , or a custom format.\n\nCompressed (boolean) --\nTrue if the data in the table is compressed, or False if not.\n\nNumberOfBuckets (integer) --Must be specified if the table contains any dimension columns.\n\nSerdeInfo (dict) --The serialization/deserialization (SerDe) information.\n\nName (string) --Name of the SerDe.\n\nSerializationLibrary (string) --Usually the class that implements the SerDe. An example is org.apache.hadoop.hive.serde2.columnar.ColumnarSerDe .\n\nParameters (dict) --These key-value pairs define initialization parameters for the SerDe.\n\n(string) --\n(string) --\n\n\n\n\n\n\nBucketColumns (list) --A list of reducer grouping columns, clustering columns, and bucketing columns in the table.\n\n(string) --\n\n\nSortColumns (list) --A list specifying the sort order of each bucket in the table.\n\n(dict) --Specifies the sort order of a sorted column.\n\nColumn (string) -- [REQUIRED]The name of the column.\n\nSortOrder (integer) -- [REQUIRED]Indicates that the column is sorted in ascending order (== 1 ), or in descending order (==0 ).\n\n\n\n\n\nParameters (dict) --The user-supplied properties in key-value form.\n\n(string) --\n(string) --\n\n\n\n\nSkewedInfo (dict) --The information about values that appear frequently in a column (skewed values).\n\nSkewedColumnNames (list) --A list of names of columns that contain skewed values.\n\n(string) --\n\n\nSkewedColumnValues (list) --A list of values that appear so frequently as to be considered skewed.\n\n(string) --\n\n\nSkewedColumnValueLocationMaps (dict) --A mapping of skewed values to the columns that contain them.\n\n(string) --\n(string) --\n\n\n\n\n\n\nStoredAsSubDirectories (boolean) --\nTrue if the table data is stored in subdirectories, or False if not.\n\n\n\nParameters (dict) --These key-value pairs define partition parameters.\n\n(string) --\n(string) --\n\n\n\n\nLastAnalyzedTime (datetime) --The last time at which column statistics were computed for this partition.\n\n\n :rtype: dict ReturnsResponse Syntax {} Response Structure (dict) -- Exceptions Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.OperationTimeoutException Glue.Client.exceptions.GlueEncryptionException :return: {} :returns: (dict) -- """ pass def update_table(CatalogId=None, DatabaseName=None, TableInput=None, SkipArchive=None): """ Updates a metadata table in the Data Catalog. See also: AWS API Documentation Exceptions :example: response = client.update_table( CatalogId='string', DatabaseName='string', TableInput={ 'Name': 'string', 'Description': 'string', 'Owner': 'string', 'LastAccessTime': datetime(2015, 1, 1), 'LastAnalyzedTime': datetime(2015, 1, 1), 'Retention': 123, 'StorageDescriptor': { 'Columns': [ { 'Name': 'string', 'Type': 'string', 'Comment': 'string', 'Parameters': { 'string': 'string' } }, ], 'Location': 'string', 'InputFormat': 'string', 'OutputFormat': 'string', 'Compressed': True|False, 'NumberOfBuckets': 123, 'SerdeInfo': { 'Name': 'string', 'SerializationLibrary': 'string', 'Parameters': { 'string': 'string' } }, 'BucketColumns': [ 'string', ], 'SortColumns': [ { 'Column': 'string', 'SortOrder': 123 }, ], 'Parameters': { 'string': 'string' }, 'SkewedInfo': { 'SkewedColumnNames': [ 'string', ], 'SkewedColumnValues': [ 'string', ], 'SkewedColumnValueLocationMaps': { 'string': 'string' } }, 'StoredAsSubDirectories': True|False }, 'PartitionKeys': [ { 'Name': 'string', 'Type': 'string', 'Comment': 'string', 'Parameters': { 'string': 'string' } }, ], 'ViewOriginalText': 'string', 'ViewExpandedText': 'string', 'TableType': 'string', 'Parameters': { 'string': 'string' } }, SkipArchive=True|False ) :type CatalogId: string :param CatalogId: The ID of the Data Catalog where the table resides. If none is provided, the AWS account ID is used by default. :type DatabaseName: string :param DatabaseName: [REQUIRED]\nThe name of the catalog database in which the table resides. For Hive compatibility, this name is entirely lowercase.\n :type TableInput: dict :param TableInput: [REQUIRED]\nAn updated TableInput object to define the metadata table in the catalog.\n\nName (string) -- [REQUIRED]The table name. For Hive compatibility, this is folded to lowercase when it is stored.\n\nDescription (string) --A description of the table.\n\nOwner (string) --The table owner.\n\nLastAccessTime (datetime) --The last time that the table was accessed.\n\nLastAnalyzedTime (datetime) --The last time that column statistics were computed for this table.\n\nRetention (integer) --The retention time for this table.\n\nStorageDescriptor (dict) --A storage descriptor containing information about the physical storage of this table.\n\nColumns (list) --A list of the Columns in the table.\n\n(dict) --A column in a Table .\n\nName (string) -- [REQUIRED]The name of the Column .\n\nType (string) --The data type of the Column .\n\nComment (string) --A free-form text comment.\n\nParameters (dict) --These key-value pairs define properties associated with the column.\n\n(string) --\n(string) --\n\n\n\n\n\n\n\n\nLocation (string) --The physical location of the table. By default, this takes the form of the warehouse location, followed by the database location in the warehouse, followed by the table name.\n\nInputFormat (string) --The input format: SequenceFileInputFormat (binary), or TextInputFormat , or a custom format.\n\nOutputFormat (string) --The output format: SequenceFileOutputFormat (binary), or IgnoreKeyTextOutputFormat , or a custom format.\n\nCompressed (boolean) --\nTrue if the data in the table is compressed, or False if not.\n\nNumberOfBuckets (integer) --Must be specified if the table contains any dimension columns.\n\nSerdeInfo (dict) --The serialization/deserialization (SerDe) information.\n\nName (string) --Name of the SerDe.\n\nSerializationLibrary (string) --Usually the class that implements the SerDe. An example is org.apache.hadoop.hive.serde2.columnar.ColumnarSerDe .\n\nParameters (dict) --These key-value pairs define initialization parameters for the SerDe.\n\n(string) --\n(string) --\n\n\n\n\n\n\nBucketColumns (list) --A list of reducer grouping columns, clustering columns, and bucketing columns in the table.\n\n(string) --\n\n\nSortColumns (list) --A list specifying the sort order of each bucket in the table.\n\n(dict) --Specifies the sort order of a sorted column.\n\nColumn (string) -- [REQUIRED]The name of the column.\n\nSortOrder (integer) -- [REQUIRED]Indicates that the column is sorted in ascending order (== 1 ), or in descending order (==0 ).\n\n\n\n\n\nParameters (dict) --The user-supplied properties in key-value form.\n\n(string) --\n(string) --\n\n\n\n\nSkewedInfo (dict) --The information about values that appear frequently in a column (skewed values).\n\nSkewedColumnNames (list) --A list of names of columns that contain skewed values.\n\n(string) --\n\n\nSkewedColumnValues (list) --A list of values that appear so frequently as to be considered skewed.\n\n(string) --\n\n\nSkewedColumnValueLocationMaps (dict) --A mapping of skewed values to the columns that contain them.\n\n(string) --\n(string) --\n\n\n\n\n\n\nStoredAsSubDirectories (boolean) --\nTrue if the table data is stored in subdirectories, or False if not.\n\n\n\nPartitionKeys (list) --A list of columns by which the table is partitioned. Only primitive types are supported as partition keys.\nWhen you create a table used by Amazon Athena, and you do not specify any partitionKeys , you must at least set the value of partitionKeys to an empty list. For example:\n\n'PartitionKeys': []\n\n(dict) --A column in a Table .\n\nName (string) -- [REQUIRED]The name of the Column .\n\nType (string) --The data type of the Column .\n\nComment (string) --A free-form text comment.\n\nParameters (dict) --These key-value pairs define properties associated with the column.\n\n(string) --\n(string) --\n\n\n\n\n\n\n\n\nViewOriginalText (string) --If the table is a view, the original text of the view; otherwise null .\n\nViewExpandedText (string) --If the table is a view, the expanded text of the view; otherwise null .\n\nTableType (string) --The type of this table (EXTERNAL_TABLE , VIRTUAL_VIEW , etc.).\n\nParameters (dict) --These key-value pairs define properties associated with the table.\n\n(string) --\n(string) --\n\n\n\n\n\n :type SkipArchive: boolean :param SkipArchive: By default, UpdateTable always creates an archived version of the table before updating it. However, if skipArchive is set to true, UpdateTable does not create the archived version. :rtype: dict ReturnsResponse Syntax {} Response Structure (dict) -- Exceptions Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.OperationTimeoutException Glue.Client.exceptions.ConcurrentModificationException Glue.Client.exceptions.ResourceNumberLimitExceededException Glue.Client.exceptions.GlueEncryptionException :return: {} :returns: (dict) -- """ pass def update_trigger(Name=None, TriggerUpdate=None): """ Updates a trigger definition. See also: AWS API Documentation Exceptions :example: response = client.update_trigger( Name='string', TriggerUpdate={ 'Name': 'string', 'Description': 'string', 'Schedule': 'string', 'Actions': [ { 'JobName': 'string', 'Arguments': { 'string': 'string' }, 'Timeout': 123, 'SecurityConfiguration': 'string', 'NotificationProperty': { 'NotifyDelayAfter': 123 }, 'CrawlerName': 'string' }, ], 'Predicate': { 'Logical': 'AND'|'ANY', 'Conditions': [ { 'LogicalOperator': 'EQUALS', 'JobName': 'string', 'State': 'STARTING'|'RUNNING'|'STOPPING'|'STOPPED'|'SUCCEEDED'|'FAILED'|'TIMEOUT', 'CrawlerName': 'string', 'CrawlState': 'RUNNING'|'CANCELLING'|'CANCELLED'|'SUCCEEDED'|'FAILED' }, ] } } ) :type Name: string :param Name: [REQUIRED]\nThe name of the trigger to update.\n :type TriggerUpdate: dict :param TriggerUpdate: [REQUIRED]\nThe new values with which to update the trigger.\n\nName (string) --Reserved for future use.\n\nDescription (string) --A description of this trigger.\n\nSchedule (string) --A cron expression used to specify the schedule (see Time-Based Schedules for Jobs and Crawlers . For example, to run something every day at 12:15 UTC, you would specify: cron(15 12 * * ? *) .\n\nActions (list) --The actions initiated by this trigger.\n\n(dict) --Defines an action to be initiated by a trigger.\n\nJobName (string) --The name of a job to be executed.\n\nArguments (dict) --The job arguments used when this trigger fires. For this job run, they replace the default arguments set in the job definition itself.\nYou can specify arguments here that your own job-execution script consumes, as well as arguments that AWS Glue itself consumes.\nFor information about how to specify and consume your own Job arguments, see the Calling AWS Glue APIs in Python topic in the developer guide.\nFor information about the key-value pairs that AWS Glue consumes to set up your job, see the Special Parameters Used by AWS Glue topic in the developer guide.\n\n(string) --\n(string) --\n\n\n\n\nTimeout (integer) --The JobRun timeout in minutes. This is the maximum time that a job run can consume resources before it is terminated and enters TIMEOUT status. The default is 2,880 minutes (48 hours). This overrides the timeout value set in the parent job.\n\nSecurityConfiguration (string) --The name of the SecurityConfiguration structure to be used with this action.\n\nNotificationProperty (dict) --Specifies configuration properties of a job run notification.\n\nNotifyDelayAfter (integer) --After a job run starts, the number of minutes to wait before sending a job run delay notification.\n\n\n\nCrawlerName (string) --The name of the crawler to be used with this action.\n\n\n\n\n\nPredicate (dict) --The predicate of this trigger, which defines when it will fire.\n\nLogical (string) --An optional field if only one condition is listed. If multiple conditions are listed, then this field is required.\n\nConditions (list) --A list of the conditions that determine when the trigger will fire.\n\n(dict) --Defines a condition under which a trigger fires.\n\nLogicalOperator (string) --A logical operator.\n\nJobName (string) --The name of the job whose JobRuns this condition applies to, and on which this trigger waits.\n\nState (string) --The condition state. Currently, the only job states that a trigger can listen for are SUCCEEDED , STOPPED , FAILED , and TIMEOUT . The only crawler states that a trigger can listen for are SUCCEEDED , FAILED , and CANCELLED .\n\nCrawlerName (string) --The name of the crawler to which this condition applies.\n\nCrawlState (string) --The state of the crawler to which this condition applies.\n\n\n\n\n\n\n\n\n :rtype: dict ReturnsResponse Syntax { 'Trigger': { 'Name': 'string', 'WorkflowName': 'string', 'Id': 'string', 'Type': 'SCHEDULED'|'CONDITIONAL'|'ON_DEMAND', 'State': 'CREATING'|'CREATED'|'ACTIVATING'|'ACTIVATED'|'DEACTIVATING'|'DEACTIVATED'|'DELETING'|'UPDATING', 'Description': 'string', 'Schedule': 'string', 'Actions': [ { 'JobName': 'string', 'Arguments': { 'string': 'string' }, 'Timeout': 123, 'SecurityConfiguration': 'string', 'NotificationProperty': { 'NotifyDelayAfter': 123 }, 'CrawlerName': 'string' }, ], 'Predicate': { 'Logical': 'AND'|'ANY', 'Conditions': [ { 'LogicalOperator': 'EQUALS', 'JobName': 'string', 'State': 'STARTING'|'RUNNING'|'STOPPING'|'STOPPED'|'SUCCEEDED'|'FAILED'|'TIMEOUT', 'CrawlerName': 'string', 'CrawlState': 'RUNNING'|'CANCELLING'|'CANCELLED'|'SUCCEEDED'|'FAILED' }, ] } } } Response Structure (dict) -- Trigger (dict) -- The resulting trigger definition. Name (string) -- The name of the trigger. WorkflowName (string) -- The name of the workflow associated with the trigger. Id (string) -- Reserved for future use. Type (string) -- The type of trigger that this is. State (string) -- The current state of the trigger. Description (string) -- A description of this trigger. Schedule (string) -- A cron expression used to specify the schedule (see Time-Based Schedules for Jobs and Crawlers . For example, to run something every day at 12:15 UTC, you would specify: cron(15 12 * * ? *) . Actions (list) -- The actions initiated by this trigger. (dict) -- Defines an action to be initiated by a trigger. JobName (string) -- The name of a job to be executed. Arguments (dict) -- The job arguments used when this trigger fires. For this job run, they replace the default arguments set in the job definition itself. You can specify arguments here that your own job-execution script consumes, as well as arguments that AWS Glue itself consumes. For information about how to specify and consume your own Job arguments, see the Calling AWS Glue APIs in Python topic in the developer guide. For information about the key-value pairs that AWS Glue consumes to set up your job, see the Special Parameters Used by AWS Glue topic in the developer guide. (string) -- (string) -- Timeout (integer) -- The JobRun timeout in minutes. This is the maximum time that a job run can consume resources before it is terminated and enters TIMEOUT status. The default is 2,880 minutes (48 hours). This overrides the timeout value set in the parent job. SecurityConfiguration (string) -- The name of the SecurityConfiguration structure to be used with this action. NotificationProperty (dict) -- Specifies configuration properties of a job run notification. NotifyDelayAfter (integer) -- After a job run starts, the number of minutes to wait before sending a job run delay notification. CrawlerName (string) -- The name of the crawler to be used with this action. Predicate (dict) -- The predicate of this trigger, which defines when it will fire. Logical (string) -- An optional field if only one condition is listed. If multiple conditions are listed, then this field is required. Conditions (list) -- A list of the conditions that determine when the trigger will fire. (dict) -- Defines a condition under which a trigger fires. LogicalOperator (string) -- A logical operator. JobName (string) -- The name of the job whose JobRuns this condition applies to, and on which this trigger waits. State (string) -- The condition state. Currently, the only job states that a trigger can listen for are SUCCEEDED , STOPPED , FAILED , and TIMEOUT . The only crawler states that a trigger can listen for are SUCCEEDED , FAILED , and CANCELLED . CrawlerName (string) -- The name of the crawler to which this condition applies. CrawlState (string) -- The state of the crawler to which this condition applies. Exceptions Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.OperationTimeoutException Glue.Client.exceptions.ConcurrentModificationException :return: { 'Trigger': { 'Name': 'string', 'WorkflowName': 'string', 'Id': 'string', 'Type': 'SCHEDULED'|'CONDITIONAL'|'ON_DEMAND', 'State': 'CREATING'|'CREATED'|'ACTIVATING'|'ACTIVATED'|'DEACTIVATING'|'DEACTIVATED'|'DELETING'|'UPDATING', 'Description': 'string', 'Schedule': 'string', 'Actions': [ { 'JobName': 'string', 'Arguments': { 'string': 'string' }, 'Timeout': 123, 'SecurityConfiguration': 'string', 'NotificationProperty': { 'NotifyDelayAfter': 123 }, 'CrawlerName': 'string' }, ], 'Predicate': { 'Logical': 'AND'|'ANY', 'Conditions': [ { 'LogicalOperator': 'EQUALS', 'JobName': 'string', 'State': 'STARTING'|'RUNNING'|'STOPPING'|'STOPPED'|'SUCCEEDED'|'FAILED'|'TIMEOUT', 'CrawlerName': 'string', 'CrawlState': 'RUNNING'|'CANCELLING'|'CANCELLED'|'SUCCEEDED'|'FAILED' }, ] } } } :returns: (string) -- (string) -- """ pass def update_user_defined_function(CatalogId=None, DatabaseName=None, FunctionName=None, FunctionInput=None): """ Updates an existing function definition in the Data Catalog. See also: AWS API Documentation Exceptions :example: response = client.update_user_defined_function( CatalogId='string', DatabaseName='string', FunctionName='string', FunctionInput={ 'FunctionName': 'string', 'ClassName': 'string', 'OwnerName': 'string', 'OwnerType': 'USER'|'ROLE'|'GROUP', 'ResourceUris': [ { 'ResourceType': 'JAR'|'FILE'|'ARCHIVE', 'Uri': 'string' }, ] } ) :type CatalogId: string :param CatalogId: The ID of the Data Catalog where the function to be updated is located. If none is provided, the AWS account ID is used by default. :type DatabaseName: string :param DatabaseName: [REQUIRED]\nThe name of the catalog database where the function to be updated is located.\n :type FunctionName: string :param FunctionName: [REQUIRED]\nThe name of the function.\n :type FunctionInput: dict :param FunctionInput: [REQUIRED]\nA FunctionInput object that redefines the function in the Data Catalog.\n\nFunctionName (string) --The name of the function.\n\nClassName (string) --The Java class that contains the function code.\n\nOwnerName (string) --The owner of the function.\n\nOwnerType (string) --The owner type.\n\nResourceUris (list) --The resource URIs for the function.\n\n(dict) --The URIs for function resources.\n\nResourceType (string) --The type of the resource.\n\nUri (string) --The URI for accessing the resource.\n\n\n\n\n\n\n :rtype: dict ReturnsResponse Syntax {} Response Structure (dict) -- Exceptions Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.OperationTimeoutException Glue.Client.exceptions.GlueEncryptionException :return: {} :returns: (dict) -- """ pass def update_workflow(Name=None, Description=None, DefaultRunProperties=None): """ Updates an existing workflow. See also: AWS API Documentation Exceptions :example: response = client.update_workflow( Name='string', Description='string', DefaultRunProperties={ 'string': 'string' } ) :type Name: string :param Name: [REQUIRED]\nName of the workflow to be updated.\n :type Description: string :param Description: The description of the workflow. :type DefaultRunProperties: dict :param DefaultRunProperties: A collection of properties to be used as part of each execution of the workflow.\n\n(string) --\n(string) --\n\n\n\n :rtype: dict ReturnsResponse Syntax { 'Name': 'string' } Response Structure (dict) -- Name (string) -- The name of the workflow which was specified in input. Exceptions Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.OperationTimeoutException Glue.Client.exceptions.ConcurrentModificationException :return: { 'Name': 'string' } :returns: Glue.Client.exceptions.InvalidInputException Glue.Client.exceptions.EntityNotFoundException Glue.Client.exceptions.InternalServiceException Glue.Client.exceptions.OperationTimeoutException Glue.Client.exceptions.ConcurrentModificationException """ pass
mit
alekz112/statsmodels
statsmodels/datasets/tests/test_utils.py
26
1697
import os import sys from statsmodels.datasets import get_rdataset, webuse, check_internet from numpy.testing import assert_, assert_array_equal, dec cur_dir = os.path.dirname(os.path.abspath(__file__)) def test_get_rdataset(): # smoke test if sys.version_info[0] >= 3: #NOTE: there's no way to test both since the cached files were #created with Python 2.x, they're strings, but Python 3 expects #bytes and the index file path is hard-coded so both can't live #side by side pass #duncan = get_rdataset("Duncan-py3", "car", cache=cur_dir) else: duncan = get_rdataset("Duncan", "car", cache=cur_dir) assert_(duncan.from_cache) #internet_available = check_internet() #@dec.skipif(not internet_available) def t_est_webuse(): # test copied and adjusted from iolib/tests/test_foreign from statsmodels.iolib.tests.results.macrodata import macrodata_result as res2 #base_gh = "http://github.com/statsmodels/statsmodels/raw/master/statsmodels/datasets/macrodata/" base_gh = "http://statsmodels.sourceforge.net/devel/_static/" res1 = webuse('macrodata', baseurl=base_gh, as_df=False) assert_array_equal(res1 == res2, True) #@dec.skipif(not internet_available) def t_est_webuse_pandas(): # test copied and adjusted from iolib/tests/test_foreign from pandas.util.testing import assert_frame_equal from statsmodels.datasets import macrodata dta = macrodata.load_pandas().data base_gh = "http://github.com/statsmodels/statsmodels/raw/master/statsmodels/datasets/macrodata/" res1 = webuse('macrodata', baseurl=base_gh) res1 = res1.astype(float) assert_frame_equal(res1, dta)
bsd-3-clause
vene/ambra
ambra/cross_validation.py
1
9371
import numbers import time import numpy as np from sklearn.utils import safe_indexing from sklearn.base import is_classifier, clone from sklearn.metrics.scorer import check_scoring from sklearn.externals.joblib import Parallel, delayed, logger from ambra.backports import _num_samples, indexable from sklearn.cross_validation import check_cv def _safe_split(estimator, X, y, indices, train_indices=None): """Create subset of dataset and properly handle kernels.""" if hasattr(estimator, 'kernel') and callable(estimator.kernel): # cannot compute the kernel values with custom function raise ValueError("Cannot use a custom kernel function. " "Precompute the kernel matrix instead.") if not hasattr(X, "shape"): if getattr(estimator, "_pairwise", False): raise ValueError("Precomputed kernels or affinity matrices have " "to be passed as arrays or sparse matrices.") X_subset = [X[idx] for idx in indices] else: if getattr(estimator, "_pairwise", False): # X is a precomputed square kernel matrix if X.shape[0] != X.shape[1]: raise ValueError("X should be a square kernel matrix") if train_indices is None: X_subset = X[np.ix_(indices, indices)] else: X_subset = X[np.ix_(indices, train_indices)] else: X_subset = safe_indexing(X, indices) if y is not None: y_subset = safe_indexing(y, indices) else: y_subset = None return X_subset, y_subset def _score(estimator, X_test, y_test, scorer, **params): """Compute the score of an estimator on a given test set.""" if y_test is None: score = scorer(estimator, X_test, **params) else: score = scorer(estimator, X_test, y_test, **params) if not isinstance(score, numbers.Number): raise ValueError("scoring must return a number, got %s (%s) instead." % (str(score), type(score))) return score def cross_val_score(estimator, X, y=None, scoring=None, cv=None, n_jobs=1, verbose=0, fit_params=None, pre_dispatch='2*n_jobs', scorer_params=None): """Evaluate a score by cross-validation Parameters ---------- estimator : estimator object implementing 'fit' The object to use to fit the data. X : array-like The data to fit. Can be, for example a list, or an array at least 2d. y : array-like, optional, default: None The target variable to try to predict in the case of supervised learning. scoring : string, callable or None, optional, default: None A string (see model evaluation documentation) or a scorer callable object / function with signature ``scorer(estimator, X, y)``. cv : cross-validation generator or int, optional, default: None A cross-validation generator to use. If int, determines the number of folds in StratifiedKFold if y is binary or multiclass and estimator is a classifier, or the number of folds in KFold otherwise. If None, it is equivalent to cv=3. n_jobs : integer, optional The number of CPUs to use to do the computation. -1 means 'all CPUs'. verbose : integer, optional The verbosity level. fit_params : dict, optional Parameters to pass to the fit method of the estimator. pre_dispatch : int, or string, optional Controls the number of jobs that get dispatched during parallel execution. Reducing this number can be useful to avoid an explosion of memory consumption when more jobs get dispatched than CPUs can process. This parameter can be: - None, in which case all the jobs are immediately created and spawned. Use this for lightweight and fast-running jobs, to avoid delays due to on-demand spawning of the jobs - An int, giving the exact number of total jobs that are spawned - A string, giving an expression as a function of n_jobs, as in '2*n_jobs' scorer_params : dict, optional Parameters to pass to the scorer. Can be used for sample weights and sample groups. Returns ------- scores : array of float, shape=(len(list(cv)),) Array of scores of the estimator for each run of the cross validation. """ X, y = indexable(X, y) cv = check_cv(cv, X, y, classifier=is_classifier(estimator)) scorer = check_scoring(estimator, scoring=scoring) # We clone the estimator to make sure that all the folds are # independent, and that it is pickle-able. parallel = Parallel(n_jobs=n_jobs, verbose=verbose, pre_dispatch=pre_dispatch) scores = parallel(delayed(_fit_and_score)(clone(estimator), X, y, scorer, train, test, verbose, None, fit_params, scorer_params) for train, test in cv) return np.array(scores)[:, 0] def _fit_and_score(estimator, X, y, scorer, train, test, verbose, parameters, fit_params, scorer_params, return_train_score=False, return_parameters=False): """Fit estimator and compute scores for a given dataset split. Parameters ---------- estimator : estimator object implementing 'fit' The object to use to fit the data. X : array-like of shape at least 2D The data to fit. y : array-like or None The target variable to try to predict in the case of supervised learning. scoring : callable A scorer callable object / function with signature ``scorer(estimator, X, y)``. train : array-like, shape = (n_train_samples,) Indices of training samples. test : array-like, shape = (n_test_samples,) Indices of test samples. verbose : integer The verbosity level. parameters : dict or None Parameters to be set on the estimator. fit_params : dict or None Parameters that will be passed to ``estimator.fit``. scorer_params : dict or None Parameters that will be passed to the scorer. return_train_score : boolean, optional, default: False Compute and return score on training set. return_parameters : boolean, optional, default: False Return parameters that has been used for the estimator. Returns ------- train_score : float, optional Score on training set, returned only if `return_train_score` is `True`. test_score : float Score on test set. n_test_samples : int Number of test samples. scoring_time : float Time spent for fitting and scoring in seconds. parameters : dict or None, optional The parameters that have been evaluated. """ if verbose > 1: if parameters is None: msg = "no parameters to be set" else: msg = '%s' % (', '.join('%s=%s' % (k, v) for k, v in parameters.items())) print("[CV] %s %s" % (msg, (64 - len(msg)) * '.')) # Adjust lenght of sample weights n_samples = _num_samples(X) fit_params = fit_params if fit_params is not None else {} fit_params = dict([(k, np.asarray(v)[train] if hasattr(v, '__len__') and len(v) == n_samples else v) for k, v in fit_params.items()]) # Same, but take both slices scorer_params = scorer_params if scorer_params is not None else {} train_scorer_params = dict([(k, np.asarray(v)[train] if hasattr(v, '__len__') and len(v) == n_samples else v) for k, v in scorer_params.items()]) test_scorer_params = dict([(k, np.asarray(v)[test] if hasattr(v, '__len__') and len(v) == n_samples else v) for k, v in scorer_params.items()]) if parameters is not None: estimator.set_params(**parameters) start_time = time.time() X_train, y_train = _safe_split(estimator, X, y, train) X_test, y_test = _safe_split(estimator, X, y, test, train) if y_train is None: estimator.fit(X_train, **fit_params) else: estimator.fit(X_train, y_train, **fit_params) test_score = _score(estimator, X_test, y_test, scorer, **test_scorer_params) if return_train_score: train_score = _score(estimator, X_train, y_train, scorer, **train_scorer_params) scoring_time = time.time() - start_time if verbose > 2: msg += ", score=%f" % test_score if verbose > 1: end_msg = "%s -%s" % (msg, logger.short_format_time(scoring_time)) print("[CV] %s %s" % ((64 - len(end_msg)) * '.', end_msg)) ret = [train_score] if return_train_score else [] ret.extend([test_score, _num_samples(X_test), scoring_time]) if return_parameters: ret.append(parameters) return ret
bsd-2-clause
jlegendary/scikit-learn
sklearn/decomposition/tests/test_dict_learning.py
47
8095
import numpy as np from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_raises from sklearn.utils.testing import ignore_warnings from sklearn.decomposition import DictionaryLearning from sklearn.decomposition import MiniBatchDictionaryLearning from sklearn.decomposition import SparseCoder from sklearn.decomposition import dict_learning_online from sklearn.decomposition import sparse_encode rng_global = np.random.RandomState(0) n_samples, n_features = 10, 8 X = rng_global.randn(n_samples, n_features) def test_dict_learning_shapes(): n_components = 5 dico = DictionaryLearning(n_components, random_state=0).fit(X) assert_true(dico.components_.shape == (n_components, n_features)) def test_dict_learning_overcomplete(): n_components = 12 dico = DictionaryLearning(n_components, random_state=0).fit(X) assert_true(dico.components_.shape == (n_components, n_features)) def test_dict_learning_reconstruction(): n_components = 12 dico = DictionaryLearning(n_components, transform_algorithm='omp', transform_alpha=0.001, random_state=0) code = dico.fit(X).transform(X) assert_array_almost_equal(np.dot(code, dico.components_), X) dico.set_params(transform_algorithm='lasso_lars') code = dico.transform(X) assert_array_almost_equal(np.dot(code, dico.components_), X, decimal=2) # used to test lars here too, but there's no guarantee the number of # nonzero atoms is right. def test_dict_learning_reconstruction_parallel(): # regression test that parallel reconstruction works with n_jobs=-1 n_components = 12 dico = DictionaryLearning(n_components, transform_algorithm='omp', transform_alpha=0.001, random_state=0, n_jobs=-1) code = dico.fit(X).transform(X) assert_array_almost_equal(np.dot(code, dico.components_), X) dico.set_params(transform_algorithm='lasso_lars') code = dico.transform(X) assert_array_almost_equal(np.dot(code, dico.components_), X, decimal=2) def test_dict_learning_nonzero_coefs(): n_components = 4 dico = DictionaryLearning(n_components, transform_algorithm='lars', transform_n_nonzero_coefs=3, random_state=0) code = dico.fit(X).transform(X[1]) assert_true(len(np.flatnonzero(code)) == 3) dico.set_params(transform_algorithm='omp') code = dico.transform(X[1]) assert_equal(len(np.flatnonzero(code)), 3) def test_dict_learning_unknown_fit_algorithm(): n_components = 5 dico = DictionaryLearning(n_components, fit_algorithm='<unknown>') assert_raises(ValueError, dico.fit, X) def test_dict_learning_split(): n_components = 5 dico = DictionaryLearning(n_components, transform_algorithm='threshold', random_state=0) code = dico.fit(X).transform(X) dico.split_sign = True split_code = dico.transform(X) assert_array_equal(split_code[:, :n_components] - split_code[:, n_components:], code) def test_dict_learning_online_shapes(): rng = np.random.RandomState(0) n_components = 8 code, dictionary = dict_learning_online(X, n_components=n_components, alpha=1, random_state=rng) assert_equal(code.shape, (n_samples, n_components)) assert_equal(dictionary.shape, (n_components, n_features)) assert_equal(np.dot(code, dictionary).shape, X.shape) def test_dict_learning_online_verbosity(): n_components = 5 # test verbosity from sklearn.externals.six.moves import cStringIO as StringIO import sys old_stdout = sys.stdout try: sys.stdout = StringIO() dico = MiniBatchDictionaryLearning(n_components, n_iter=20, verbose=1, random_state=0) dico.fit(X) dico = MiniBatchDictionaryLearning(n_components, n_iter=20, verbose=2, random_state=0) dico.fit(X) dict_learning_online(X, n_components=n_components, alpha=1, verbose=1, random_state=0) dict_learning_online(X, n_components=n_components, alpha=1, verbose=2, random_state=0) finally: sys.stdout = old_stdout assert_true(dico.components_.shape == (n_components, n_features)) def test_dict_learning_online_estimator_shapes(): n_components = 5 dico = MiniBatchDictionaryLearning(n_components, n_iter=20, random_state=0) dico.fit(X) assert_true(dico.components_.shape == (n_components, n_features)) def test_dict_learning_online_overcomplete(): n_components = 12 dico = MiniBatchDictionaryLearning(n_components, n_iter=20, random_state=0).fit(X) assert_true(dico.components_.shape == (n_components, n_features)) def test_dict_learning_online_initialization(): n_components = 12 rng = np.random.RandomState(0) V = rng.randn(n_components, n_features) dico = MiniBatchDictionaryLearning(n_components, n_iter=0, dict_init=V, random_state=0).fit(X) assert_array_equal(dico.components_, V) def test_dict_learning_online_partial_fit(): n_components = 12 rng = np.random.RandomState(0) V = rng.randn(n_components, n_features) # random init V /= np.sum(V ** 2, axis=1)[:, np.newaxis] dict1 = MiniBatchDictionaryLearning(n_components, n_iter=10 * len(X), batch_size=1, alpha=1, shuffle=False, dict_init=V, random_state=0).fit(X) dict2 = MiniBatchDictionaryLearning(n_components, alpha=1, n_iter=1, dict_init=V, random_state=0) for i in range(10): for sample in X: dict2.partial_fit(sample) assert_true(not np.all(sparse_encode(X, dict1.components_, alpha=1) == 0)) assert_array_almost_equal(dict1.components_, dict2.components_, decimal=2) def test_sparse_encode_shapes(): n_components = 12 rng = np.random.RandomState(0) V = rng.randn(n_components, n_features) # random init V /= np.sum(V ** 2, axis=1)[:, np.newaxis] for algo in ('lasso_lars', 'lasso_cd', 'lars', 'omp', 'threshold'): code = sparse_encode(X, V, algorithm=algo) assert_equal(code.shape, (n_samples, n_components)) def test_sparse_encode_error(): n_components = 12 rng = np.random.RandomState(0) V = rng.randn(n_components, n_features) # random init V /= np.sum(V ** 2, axis=1)[:, np.newaxis] code = sparse_encode(X, V, alpha=0.001) assert_true(not np.all(code == 0)) assert_less(np.sqrt(np.sum((np.dot(code, V) - X) ** 2)), 0.1) def test_sparse_encode_error_default_sparsity(): rng = np.random.RandomState(0) X = rng.randn(100, 64) D = rng.randn(2, 64) code = ignore_warnings(sparse_encode)(X, D, algorithm='omp', n_nonzero_coefs=None) assert_equal(code.shape, (100, 2)) def test_unknown_method(): n_components = 12 rng = np.random.RandomState(0) V = rng.randn(n_components, n_features) # random init assert_raises(ValueError, sparse_encode, X, V, algorithm="<unknown>") def test_sparse_coder_estimator(): n_components = 12 rng = np.random.RandomState(0) V = rng.randn(n_components, n_features) # random init V /= np.sum(V ** 2, axis=1)[:, np.newaxis] code = SparseCoder(dictionary=V, transform_algorithm='lasso_lars', transform_alpha=0.001).transform(X) assert_true(not np.all(code == 0)) assert_less(np.sqrt(np.sum((np.dot(code, V) - X) ** 2)), 0.1)
bsd-3-clause
glouppe/scikit-learn
examples/model_selection/plot_roc.py
49
5041
""" ======================================= Receiver Operating Characteristic (ROC) ======================================= Example of Receiver Operating Characteristic (ROC) metric to evaluate classifier output quality. ROC curves typically feature true positive rate on the Y axis, and false positive rate on the X axis. This means that the top left corner of the plot is the "ideal" point - a false positive rate of zero, and a true positive rate of one. This is not very realistic, but it does mean that a larger area under the curve (AUC) is usually better. The "steepness" of ROC curves is also important, since it is ideal to maximize the true positive rate while minimizing the false positive rate. Multiclass settings ------------------- ROC curves are typically used in binary classification to study the output of a classifier. In order to extend ROC curve and ROC area to multi-class or multi-label classification, it is necessary to binarize the output. One ROC curve can be drawn per label, but one can also draw a ROC curve by considering each element of the label indicator matrix as a binary prediction (micro-averaging). Another evaluation measure for multi-class classification is macro-averaging, which gives equal weight to the classification of each label. .. note:: See also :func:`sklearn.metrics.roc_auc_score`, :ref:`example_model_selection_plot_roc_crossval.py`. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from itertools import cycle from sklearn import svm, datasets from sklearn.metrics import roc_curve, auc from sklearn.model_selection import train_test_split from sklearn.preprocessing import label_binarize from sklearn.multiclass import OneVsRestClassifier from scipy import interp # Import some data to play with iris = datasets.load_iris() X = iris.data y = iris.target # Binarize the output y = label_binarize(y, classes=[0, 1, 2]) n_classes = y.shape[1] # Add noisy features to make the problem harder random_state = np.random.RandomState(0) n_samples, n_features = X.shape X = np.c_[X, random_state.randn(n_samples, 200 * n_features)] # shuffle and split training and test sets X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.5, random_state=0) # Learn to predict each class against the other classifier = OneVsRestClassifier(svm.SVC(kernel='linear', probability=True, random_state=random_state)) y_score = classifier.fit(X_train, y_train).decision_function(X_test) # Compute ROC curve and ROC area for each class fpr = dict() tpr = dict() roc_auc = dict() for i in range(n_classes): fpr[i], tpr[i], _ = roc_curve(y_test[:, i], y_score[:, i]) roc_auc[i] = auc(fpr[i], tpr[i]) # Compute micro-average ROC curve and ROC area fpr["micro"], tpr["micro"], _ = roc_curve(y_test.ravel(), y_score.ravel()) roc_auc["micro"] = auc(fpr["micro"], tpr["micro"]) ############################################################################## # Plot of a ROC curve for a specific class plt.figure() lw = 2 plt.plot(fpr[2], tpr[2], color='darkorange', lw=lw, label='ROC curve (area = %0.2f)' % roc_auc[2]) plt.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--') plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('Receiver operating characteristic example') plt.legend(loc="lower right") plt.show() ############################################################################## # Plot ROC curves for the multiclass problem # Compute macro-average ROC curve and ROC area # First aggregate all false positive rates all_fpr = np.unique(np.concatenate([fpr[i] for i in range(n_classes)])) # Then interpolate all ROC curves at this points mean_tpr = np.zeros_like(all_fpr) for i in range(n_classes): mean_tpr += interp(all_fpr, fpr[i], tpr[i]) # Finally average it and compute AUC mean_tpr /= n_classes fpr["macro"] = all_fpr tpr["macro"] = mean_tpr roc_auc["macro"] = auc(fpr["macro"], tpr["macro"]) # Plot all ROC curves plt.figure() plt.plot(fpr["micro"], tpr["micro"], label='micro-average ROC curve (area = {0:0.2f})' ''.format(roc_auc["micro"]), color='deeppink', linestyle=':', linewidth=4) plt.plot(fpr["macro"], tpr["macro"], label='macro-average ROC curve (area = {0:0.2f})' ''.format(roc_auc["macro"]), color='navy', linestyle=':', linewidth=4) colors = cycle(['aqua', 'darkorange', 'cornflowerblue']) for i, color in zip(range(n_classes), colors): plt.plot(fpr[i], tpr[i], color=color, lw=lw, label='ROC curve of class {0} (area = {1:0.2f})' ''.format(i, roc_auc[i])) plt.plot([0, 1], [0, 1], 'k--', lw=lw) plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('Some extension of Receiver operating characteristic to multi-class') plt.legend(loc="lower right") plt.show()
bsd-3-clause
dahlstrom-g/intellij-community
python/helpers/pydev/_pydevd_bundle/pydevd_vars.py
7
26282
""" pydevd_vars deals with variables: resolution/conversion to XML. """ import math import pickle from _pydev_bundle.pydev_imports import quote from _pydev_imps._pydev_saved_modules import thread from _pydevd_bundle.pydevd_constants import get_frame, get_current_thread_id, xrange, NUMPY_NUMERIC_TYPES, NUMPY_FLOATING_POINT_TYPES from _pydevd_bundle.pydevd_custom_frames import get_custom_frame from _pydevd_bundle.pydevd_xml import ExceptionOnEvaluate, get_type, var_to_xml try: from StringIO import StringIO except ImportError: from io import StringIO import sys # @Reimport try: from collections import OrderedDict except: OrderedDict = dict from _pydev_imps._pydev_saved_modules import threading import traceback from _pydevd_bundle import pydevd_save_locals from _pydev_bundle.pydev_imports import Exec, execfile from _pydevd_bundle.pydevd_utils import VariableWithOffset SENTINEL_VALUE = [] DEFAULT_DF_FORMAT = "s" # ------------------------------------------------------------------------------------------------------ class for errors class VariableError(RuntimeError): pass class FrameNotFoundError(RuntimeError): pass def _iter_frames(initialFrame): '''NO-YIELD VERSION: Iterates through all the frames starting at the specified frame (which will be the first returned item)''' # cannot use yield frames = [] while initialFrame is not None: frames.append(initialFrame) initialFrame = initialFrame.f_back return frames def dump_frames(thread_id): sys.stdout.write('dumping frames\n') if thread_id != get_current_thread_id(threading.currentThread()): raise VariableError("find_frame: must execute on same thread") curFrame = get_frame() for frame in _iter_frames(curFrame): sys.stdout.write('%s\n' % pickle.dumps(frame)) # =============================================================================== # AdditionalFramesContainer # =============================================================================== class AdditionalFramesContainer: lock = thread.allocate_lock() additional_frames = {} # dict of dicts def add_additional_frame_by_id(thread_id, frames_by_id): AdditionalFramesContainer.additional_frames[thread_id] = frames_by_id addAdditionalFrameById = add_additional_frame_by_id # Backward compatibility def remove_additional_frame_by_id(thread_id): del AdditionalFramesContainer.additional_frames[thread_id] removeAdditionalFrameById = remove_additional_frame_by_id # Backward compatibility def has_additional_frames_by_id(thread_id): return thread_id in AdditionalFramesContainer.additional_frames def get_additional_frames_by_id(thread_id): return AdditionalFramesContainer.additional_frames.get(thread_id) def find_frame(thread_id, frame_id): """ returns a frame on the thread that has a given frame_id """ try: curr_thread_id = get_current_thread_id(threading.currentThread()) if thread_id != curr_thread_id: try: return get_custom_frame(thread_id, frame_id) # I.e.: thread_id could be a stackless frame id + thread_id. except: pass raise VariableError("find_frame: must execute on same thread (%s != %s)" % (thread_id, curr_thread_id)) lookingFor = int(frame_id) if AdditionalFramesContainer.additional_frames: if thread_id in AdditionalFramesContainer.additional_frames: frame = AdditionalFramesContainer.additional_frames[thread_id].get(lookingFor) if frame is not None: return frame curFrame = get_frame() if frame_id == "*": return curFrame # any frame is specified with "*" frameFound = None for frame in _iter_frames(curFrame): if lookingFor == id(frame): frameFound = frame del frame break del frame # Important: python can hold a reference to the frame from the current context # if an exception is raised, so, if we don't explicitly add those deletes # we might have those variables living much more than we'd want to. # I.e.: sys.exc_info holding reference to frame that raises exception (so, other places # need to call sys.exc_clear()) del curFrame if frameFound is None: msgFrames = '' i = 0 for frame in _iter_frames(get_frame()): i += 1 msgFrames += str(id(frame)) if i % 5 == 0: msgFrames += '\n' else: msgFrames += ' - ' # Note: commented this error message out (it may commonly happen # if a message asking for a frame is issued while a thread is paused # but the thread starts running before the message is actually # handled). # Leaving code to uncomment during tests. # err_msg = '''find_frame: frame not found. # Looking for thread_id:%s, frame_id:%s # Current thread_id:%s, available frames: # %s\n # ''' % (thread_id, lookingFor, curr_thread_id, msgFrames) # # sys.stderr.write(err_msg) return None return frameFound except: import traceback traceback.print_exc() return None def getVariable(thread_id, frame_id, scope, attrs): """ returns the value of a variable :scope: can be BY_ID, EXPRESSION, GLOBAL, LOCAL, FRAME BY_ID means we'll traverse the list of all objects alive to get the object. :attrs: after reaching the proper scope, we have to get the attributes until we find the proper location (i.e.: obj\tattr1\tattr2). :note: when BY_ID is used, the frame_id is considered the id of the object to find and not the frame (as we don't care about the frame in this case). """ if scope == 'BY_ID': if thread_id != get_current_thread_id(threading.currentThread()): raise VariableError("getVariable: must execute on same thread") try: import gc objects = gc.get_objects() except: pass # Not all python variants have it. else: frame_id = int(frame_id) for var in objects: if id(var) == frame_id: if attrs is not None: attrList = attrs.split('\t') for k in attrList: _type, _typeName, resolver = get_type(var) var = resolver.resolve(var, k) return var # If it didn't return previously, we coudn't find it by id (i.e.: alrceady garbage collected). sys.stderr.write('Unable to find object with id: %s\n' % (frame_id,)) return None frame = find_frame(thread_id, frame_id) if frame is None: return {} if attrs is not None: attrList = attrs.split('\t') else: attrList = [] for attr in attrList: attr.replace("@_@TAB_CHAR@_@", '\t') if scope == 'EXPRESSION': for count in xrange(len(attrList)): if count == 0: # An Expression can be in any scope (globals/locals), therefore it needs to evaluated as an expression var = evaluate_expression(thread_id, frame_id, attrList[count], False) else: _type, _typeName, resolver = get_type(var) var = resolver.resolve(var, attrList[count]) else: if scope == "GLOBAL": var = frame.f_globals del attrList[0] # globals are special, and they get a single dummy unused attribute else: # in a frame access both locals and globals as Python does var = {} var.update(frame.f_globals) var.update(frame.f_locals) for k in attrList: _type, _typeName, resolver = get_type(var) var = resolver.resolve(var, k) return var def get_offset(attrs): """ Extract offset from the given attributes. :param attrs: The string of a compound variable fields split by tabs. If an offset is given, it must go the first element. :return: The value of offset if given or 0. """ offset = 0 if attrs is not None: try: offset = int(attrs.split('\t')[0]) except ValueError: pass return offset def resolve_compound_variable_fields(thread_id, frame_id, scope, attrs): """ Resolve compound variable in debugger scopes by its name and attributes :param thread_id: id of the variable's thread :param frame_id: id of the variable's frame :param scope: can be BY_ID, EXPRESSION, GLOBAL, LOCAL, FRAME :param attrs: after reaching the proper scope, we have to get the attributes until we find the proper location (i.e.: obj\tattr1\tattr2) :return: a dictionary of variables's fields :note: PyCharm supports progressive loading of large collections and uses the `attrs` parameter to pass the offset, e.g. 300\t\\obj\tattr1\tattr2 should return the value of attr2 starting from the 300th element. This hack makes it possible to add the support of progressive loading without extending of the protocol. """ offset = get_offset(attrs) orig_attrs, attrs = attrs, attrs.split('\t', 1)[1] if offset else attrs var = getVariable(thread_id, frame_id, scope, attrs) try: _type, _typeName, resolver = get_type(var) return _typeName, resolver.get_dictionary(VariableWithOffset(var, offset) if offset else var) except: sys.stderr.write('Error evaluating: thread_id: %s\nframe_id: %s\nscope: %s\nattrs: %s\n' % ( thread_id, frame_id, scope, orig_attrs,)) traceback.print_exc() def resolve_var_object(var, attrs): """ Resolve variable's attribute :param var: an object of variable :param attrs: a sequence of variable's attributes separated by \t (i.e.: obj\tattr1\tattr2) :return: a value of resolved variable's attribute """ if attrs is not None: attr_list = attrs.split('\t') else: attr_list = [] for k in attr_list: type, _typeName, resolver = get_type(var) var = resolver.resolve(var, k) return var def resolve_compound_var_object_fields(var, attrs): """ Resolve compound variable by its object and attributes :param var: an object of variable :param attrs: a sequence of variable's attributes separated by \t (i.e.: obj\tattr1\tattr2) :return: a dictionary of variables's fields """ offset = get_offset(attrs) attrs = attrs.split('\t', 1)[1] if offset else attrs attr_list = attrs.split('\t') for k in attr_list: type, _typeName, resolver = get_type(var) var = resolver.resolve(var, k) try: type, _typeName, resolver = get_type(var) return resolver.get_dictionary(VariableWithOffset(var, offset) if offset else var) except: traceback.print_exc() def custom_operation(thread_id, frame_id, scope, attrs, style, code_or_file, operation_fn_name): """ We'll execute the code_or_file and then search in the namespace the operation_fn_name to execute with the given var. code_or_file: either some code (i.e.: from pprint import pprint) or a file to be executed. operation_fn_name: the name of the operation to execute after the exec (i.e.: pprint) """ expressionValue = getVariable(thread_id, frame_id, scope, attrs) try: namespace = {'__name__': '<custom_operation>'} if style == "EXECFILE": namespace['__file__'] = code_or_file execfile(code_or_file, namespace, namespace) else: # style == EXEC namespace['__file__'] = '<customOperationCode>' Exec(code_or_file, namespace, namespace) return str(namespace[operation_fn_name](expressionValue)) except: traceback.print_exc() def eval_in_context(expression, globals, locals): result = None try: result = eval(expression, globals, locals) except Exception: s = StringIO() traceback.print_exc(file=s) result = s.getvalue() try: try: etype, value, tb = sys.exc_info() result = value finally: etype = value = tb = None except: pass result = ExceptionOnEvaluate(result) # Ok, we have the initial error message, but let's see if we're dealing with a name mangling error... try: if '__' in expression: # Try to handle '__' name mangling... split = expression.split('.') curr = locals.get(split[0]) for entry in split[1:]: if entry.startswith('__') and not hasattr(curr, entry): entry = '_%s%s' % (curr.__class__.__name__, entry) curr = getattr(curr, entry) result = curr except: pass return result def evaluate_expression(thread_id, frame_id, expression, doExec): '''returns the result of the evaluated expression @param doExec: determines if we should do an exec or an eval ''' frame = find_frame(thread_id, frame_id) if frame is None: return # Not using frame.f_globals because of https://sourceforge.net/tracker2/?func=detail&aid=2541355&group_id=85796&atid=577329 # (Names not resolved in generator expression in method) # See message: http://mail.python.org/pipermail/python-list/2009-January/526522.html updated_globals = {} updated_globals.update(frame.f_globals) updated_globals.update(frame.f_locals) # locals later because it has precedence over the actual globals try: expression = str(expression.replace('@LINE@', '\n')) if doExec: try: # try to make it an eval (if it is an eval we can print it, otherwise we'll exec it and # it will have whatever the user actually did) compiled = compile(expression, '<string>', 'eval') except: Exec(expression, updated_globals, frame.f_locals) pydevd_save_locals.save_locals(frame) else: result = eval(compiled, updated_globals, frame.f_locals) if result is not None: # Only print if it's not None (as python does) sys.stdout.write('%s\n' % (result,)) return else: return eval_in_context(expression, updated_globals, frame.f_locals) finally: # Should not be kept alive if an exception happens and this frame is kept in the stack. del updated_globals del frame def change_attr_expression(thread_id, frame_id, attr, expression, dbg, value=SENTINEL_VALUE): '''Changes some attribute in a given frame. ''' frame = find_frame(thread_id, frame_id) if frame is None: return try: expression = expression.replace('@LINE@', '\n') if dbg.plugin and value is SENTINEL_VALUE: result = dbg.plugin.change_variable(frame, attr, expression) if result: return result if value is SENTINEL_VALUE: # It is possible to have variables with names like '.0', ',,,foo', etc in scope by setting them with # `sys._getframe().f_locals`. In particular, the '.0' variable name is used to denote the list iterator when we stop in # list comprehension expressions. This variable evaluates to 0. by `eval`, which is not what we want and this is the main # reason we have to check if the expression exists in the global and local scopes before trying to evaluate it. value = frame.f_locals.get(expression) or frame.f_globals.get(expression) or eval(expression, frame.f_globals, frame.f_locals) if attr[:7] == "Globals": attr = attr[8:] if attr in frame.f_globals: frame.f_globals[attr] = value return frame.f_globals[attr] else: if pydevd_save_locals.is_save_locals_available(): frame.f_locals[attr] = value pydevd_save_locals.save_locals(frame) return frame.f_locals[attr] # default way (only works for changing it in the topmost frame) result = value Exec('%s=%s' % (attr, expression), frame.f_globals, frame.f_locals) return result except Exception: traceback.print_exc() MAXIMUM_ARRAY_SIZE = float('inf') def array_to_xml(array, name, roffset, coffset, rows, cols, format): array, xml, r, c, f = array_to_meta_xml(array, name, format) format = '%' + f if rows == -1 and cols == -1: rows = r cols = c rows = min(rows, MAXIMUM_ARRAY_SIZE) cols = min(cols, MAXIMUM_ARRAY_SIZE) # there is no obvious rule for slicing (at least 5 choices) if len(array) == 1 and (rows > 1 or cols > 1): array = array[0] if array.size > len(array): array = array[roffset:, coffset:] rows = min(rows, len(array)) cols = min(cols, len(array[0])) if len(array) == 1: array = array[0] elif array.size == len(array): if roffset == 0 and rows == 1: array = array[coffset:] cols = min(cols, len(array)) elif coffset == 0 and cols == 1: array = array[roffset:] rows = min(rows, len(array)) def get_value(row, col): value = array if rows == 1 or cols == 1: if rows == 1 and cols == 1: value = array[0] else: value = array[(col if rows == 1 else row)] if "ndarray" in str(type(value)): value = value[0] else: value = array[row][col] return value xml += array_data_to_xml(rows, cols, lambda r: (get_value(r, c) for c in range(cols)), format) return xml class ExceedingArrayDimensionsException(Exception): pass def array_to_meta_xml(array, name, format): type = array.dtype.kind slice = name l = len(array.shape) # initial load, compute slice if format == '%': if l > 2: slice += '[0]' * (l - 2) for r in range(l - 2): array = array[0] if type == 'f': format = '.5f' elif type == 'i' or type == 'u': format = 'd' else: format = 's' else: format = format.replace('%', '') l = len(array.shape) reslice = "" if l > 2: raise ExceedingArrayDimensionsException() elif l == 1: # special case with 1D arrays arr[i, :] - row, but arr[:, i] - column with equal shape and ndim # http://stackoverflow.com/questions/16837946/numpy-a-2-rows-1-column-file-loadtxt-returns-1row-2-columns # explanation: http://stackoverflow.com/questions/15165170/how-do-i-maintain-row-column-orientation-of-vectors-in-numpy?rq=1 # we use kind of a hack - get information about memory from C_CONTIGUOUS is_row = array.flags['C_CONTIGUOUS'] if is_row: rows = 1 cols = len(array) if cols < len(array): reslice = '[0:%s]' % (cols) array = array[0:cols] else: cols = 1 rows = len(array) if rows < len(array): reslice = '[0:%s]' % (rows) array = array[0:rows] elif l == 2: rows = array.shape[-2] cols = array.shape[-1] if cols < array.shape[-1] or rows < array.shape[-2]: reslice = '[0:%s, 0:%s]' % (rows, cols) array = array[0:rows, 0:cols] # avoid slice duplication if not slice.endswith(reslice): slice += reslice bounds = (0, 0) if type in NUMPY_NUMERIC_TYPES and array.size != 0: bounds = (array.min(), array.max()) return array, slice_to_xml(slice, rows, cols, format, type, bounds), rows, cols, format def get_column_formatter_by_type(initial_format, column_type): if column_type in NUMPY_NUMERIC_TYPES and initial_format: if column_type in NUMPY_FLOATING_POINT_TYPES and initial_format.strip() == DEFAULT_DF_FORMAT: # use custom formatting for floats when default formatting is set return array_default_format(column_type) return initial_format else: return array_default_format(column_type) def get_formatted_row_elements(row, iat, dim, cols, format, dtypes): for c in range(cols): val = iat[row, c] if dim > 1 else iat[row] col_formatter = get_column_formatter_by_type(format, dtypes[c]) try: yield ("%" + col_formatter) % (val,) except TypeError: yield ("%" + DEFAULT_DF_FORMAT) % (val,) def array_default_format(type): if type == 'f': return '.5f' elif type == 'i' or type == 'u': return 'd' else: return 's' def get_label(label): return str(label) if not isinstance(label, tuple) else '/'.join(map(str, label)) DATAFRAME_HEADER_LOAD_MAX_SIZE = 100 def dataframe_to_xml(df, name, roffset, coffset, rows, cols, format): """ :type df: pandas.core.frame.DataFrame :type name: str :type coffset: int :type roffset: int :type rows: int :type cols: int :type format: str """ original_df = df dim = len(df.axes) num_rows = df.shape[0] num_cols = df.shape[1] if dim > 1 else 1 format = format.replace('%', '') if not format: if num_rows > 0 and num_cols == 1: # series or data frame with one column try: kind = df.dtype.kind except AttributeError: try: kind = df.dtypes[0].kind except (IndexError, KeyError): kind = 'O' format = array_default_format(kind) else: format = array_default_format(DEFAULT_DF_FORMAT) xml = slice_to_xml(name, num_rows, num_cols, format, "", (0, 0)) if (rows, cols) == (-1, -1): rows, cols = num_rows, num_cols elif (rows, cols) == (0, 0): # return header only r = min(num_rows, DATAFRAME_HEADER_LOAD_MAX_SIZE) c = min(num_cols, DATAFRAME_HEADER_LOAD_MAX_SIZE) xml += header_data_to_xml(r, c, [""] * num_cols, [(0, 0)] * num_cols, lambda x: DEFAULT_DF_FORMAT, original_df, dim) return xml rows = min(rows, MAXIMUM_ARRAY_SIZE) cols = min(cols, MAXIMUM_ARRAY_SIZE, num_cols) # need to precompute column bounds here before slicing! col_bounds = [None] * cols dtypes = [None] * cols if dim > 1: for col in range(cols): dtype = df.dtypes.iloc[coffset + col].kind dtypes[col] = dtype if dtype in NUMPY_NUMERIC_TYPES and df.size != 0: cvalues = df.iloc[:, coffset + col] bounds = (cvalues.min(), cvalues.max()) else: bounds = (0, 0) col_bounds[col] = bounds else: dtype = df.dtype.kind dtypes[0] = dtype col_bounds[0] = (df.min(), df.max()) if dtype in NUMPY_NUMERIC_TYPES and df.size != 0 else (0, 0) df = df.iloc[roffset: roffset + rows, coffset: coffset + cols] if dim > 1 else df.iloc[roffset: roffset + rows] rows = df.shape[0] cols = df.shape[1] if dim > 1 else 1 def col_to_format(column_type): return get_column_formatter_by_type(format, column_type) iat = df.iat if dim == 1 or len(df.columns.unique()) == len(df.columns) else df.iloc def formatted_row_elements(row): return get_formatted_row_elements(row, iat, dim, cols, format, dtypes) xml += header_data_to_xml(rows, cols, dtypes, col_bounds, col_to_format, df, dim) xml += array_data_to_xml(rows, cols, formatted_row_elements, format) return xml def array_data_to_xml(rows, cols, get_row, format): xml = "<arraydata rows=\"%s\" cols=\"%s\"/>\n" % (rows, cols) for row in range(rows): xml += "<row index=\"%s\"/>\n" % row for value in get_row(row): xml += var_to_xml(value, '', format=format) return xml def slice_to_xml(slice, rows, cols, format, type, bounds): return '<array slice=\"%s\" rows=\"%s\" cols=\"%s\" format=\"%s\" type=\"%s\" max=\"%s\" min=\"%s\"/>' % \ (slice, rows, cols, quote(format), type, bounds[1], bounds[0]) def header_data_to_xml(rows, cols, dtypes, col_bounds, col_to_format, df, dim): xml = "<headerdata rows=\"%s\" cols=\"%s\">\n" % (rows, cols) for col in range(cols): col_label = quote(get_label(df.axes[1].values[col]) if dim > 1 else str(col)) bounds = col_bounds[col] col_format = "%" + col_to_format(dtypes[col]) xml += '<colheader index=\"%s\" label=\"%s\" type=\"%s\" format=\"%s\" max=\"%s\" min=\"%s\" />\n' % \ (str(col), col_label, dtypes[col], col_to_format(dtypes[col]), col_format % bounds[1], col_format % bounds[0]) for row in range(rows): xml += "<rowheader index=\"%s\" label = \"%s\"/>\n" % (str(row), get_label(df.axes[0].values[row])) xml += "</headerdata>\n" return xml def is_able_to_format_number(format): try: format % math.pi except Exception: return False return True TYPE_TO_XML_CONVERTERS = { "ndarray": array_to_xml, "DataFrame": dataframe_to_xml, "Series": dataframe_to_xml, "GeoDataFrame": dataframe_to_xml, "GeoSeries": dataframe_to_xml } def table_like_struct_to_xml(array, name, roffset, coffset, rows, cols, format): _, type_name, _ = get_type(array) format = format if is_able_to_format_number(format) else '%' if type_name in TYPE_TO_XML_CONVERTERS: return "<xml>%s</xml>" % TYPE_TO_XML_CONVERTERS[type_name](array, name, roffset, coffset, rows, cols, format) else: raise VariableError("type %s not supported" % type_name)
apache-2.0
rmm-fcul/workshops
2015_graz/binary_choice/two_arenas_real_real/casu_utils.py
5
8116
#!/usr/bin/env python # -*- coding: utf-8 -*- ''' a library of functions used in CASU controller dynamics. Got a lot of messy code that would be neater like this RM, Feb 2015 ''' import numpy as np from assisipy import casu #import matplotlib.cm as cm from datetime import datetime import parsing import time ### ============= maths ============= ### #{{{ rolling_avg def rolling_avg(x, n): ''' given the sample x, provide a rolling average taking n samples per data point. NOT a quick solution, but easy... ''' y = np.zeros((len(x),)) for ctr in range(len(x)): y[ctr] = np.sum(x[ctr:(ctr+n)]) return y/n #}}} ### ============= general behaviour ============= ### #{{{ measure_ir_sensors def measure_ir_sensors(mycasu, detect_data): ''' count up sensors that detect a bee, plus rotate history array ''' # don't discriminate between specific directions, so just accumulate all count = 0 for (val,t) in zip(mycasu.get_ir_raw_value(casu.ARRAY), mycasu.threshold): if (val > t): count += 1 #print "raw:", #print ",".join(["{:.2f}".format(x) for x in mycasu.get_ir_raw_value(casu.ARRAY)]) #mycasu.total_count += count # historical count over all time detect_data = np.roll(detect_data, 1) # step all positions back detect_data[0] = count # and overwrite the first entry (this was rolled # around, so is the oldest entry -- and to become the newest now) # allow ext usage to apply window -- remain agnostic here during collection. return detect_data, count #}}} #{{{ heater_one_step def heater_one_step(h): '''legacy function''' return detect_bee_proximity_saturated(h) def detect_bee_proximity_saturated(h): # measure proximity detect_data, count = measure_ir_sensors(h, h.detect_data) h.detect_data = detect_data # overall bee count for this casu sat_count = min(h.sat_lim, count) # saturates return sat_count #}}} #{{{ find_mean_ext_temp def find_mean_ext_temp(h): r = [] for sensor in [casu.TEMP_F, casu.TEMP_B, casu.TEMP_L, casu.TEMP_R ]: r.append(h.get_temp(sensor)) if len(r): mean = sum(r) / float(len(r)) else: mean = 0.0 return mean #}}} ### ============= inter-casu comms ============= ### #{{{ comms functions def transmit_my_count(h, sat_count, dest='accomplice'): s = "{}".format(sat_count) if h.verb > 1: print "\t[i]==> {} send msg ({} by): '{}' bees, to {}".format( h._thename, len(s), s, dest) h.send_message(dest, s) #TODO: this is non-specific, i.e., any message from anyone is assumed to have # the right form. For heterogeneous neighbours, we need to check identity as # well def recv_all_msgs(h, retry_cnt=0, max_recv=None): ''' continue to read message bffer until no more messages. as list of parsed messages parsed into (src, float) pairs ''' msgs = [] try_cnt = 0 while(True): msg = h.read_message() #print msg if msg: txt = msg['data'].strip() src = msg['sender'] bee_cnt = float(txt.split()[0]) msgs.append((src, bee_cnt)) if h.verb >1: print "\t[i]<== {3} recv msg ({2} by): '{1}' bees, {4} from {0} {5}".format( msg['sender'], bee_cnt, len(msg['data']), h._thename, BLU, ENDC) if h.verb > 1: #print dir(msg) print msg.items() if(max_recv is not None and len(msgs) >= max_recv): break else: # buffer emptied, return try_cnt += 1 if try_cnt > retry_cnt: break return msgs def recv_neighbour_msg(h): bee_cnt = 0 msg = h.read_message() #print msg if msg: txt = msg['data'].strip() bee_cnt = int(txt.split()[0]) if h.verb >1: print "\t[i]<== {3} recv msg ({2} by): '{1}' bees, from {0}".format( msg['sender'], bee_cnt, len(msg['data']), h._thename) return bee_cnt; def recv_neighbour_msg_w_src(h): ''' provide the source of a message as well as the message count''' bee_cnt = 0 src = None msg = h.read_message() #print msg if msg: txt = msg['data'].strip() src = msg['sender'] bee_cnt = float(txt.split()[0]) if h.verb >1: print "\t[i]<== {3} recv msg ({2} by): '{1}' bees, from {0}".format( msg['sender'], bee_cnt, len(msg['data']), h._thename) if h.verb > 1: #print dir(msg) print msg.items() return bee_cnt, src def recv_neighbour_msg_flt(h): bee_cnt = 0 msg = h.read_message() #print msg if msg: txt = msg['data'].strip() bee_cnt = float(txt.split()[0]) if h.verb > 1: print "\t[i]<== {3} recv msg ({2} by): '{1}' bees, from {0}".format( msg['sender'], bee_cnt, len(msg['data']), h._thename) return bee_cnt; #}}} def find_comms_mapping(name, rtc_path, suffix='-sim', verb=True): links = parsing.find_comm_link_mapping( name, rtc_path=rtc_path, suffix=suffix, verb=verb) if verb: print "[I] for {}, found the following nodes/edges".format(name) print "\t", links.items() print "\n===================================\n\n" return links ### ============= display ============= ### #{{{ term codes for colored text ERR = '\033[41m' BLU = '\033[34m' ENDC = '\033[0m' #}}} #{{{ color funcs #def gen_cmap(m='hot', n=32) : # return cm.get_cmap(m, n) # get LUT with 32 values -- some gradation but see steps def gen_clr_tgt(new_temp, cmap, tgt=None, min_temp=28.0, max_temp=38.0): t_rng = float(max_temp - min_temp) fr = (new_temp - min_temp) / t_rng i = int(fr * len(cmap)) # compute basic color, if on target #r,g,b,a = cmap(i) g = 0.0; b = 0.0; a = 1.0; i = sorted([0, i, len(cmap)-1])[1] r = cmap[i] # now adjust according to distance from target if tgt is None: tgt=new_temp dt = np.abs(new_temp - tgt) dt_r = dt / t_rng h2 = np.array([r,g,b]) h2 *= (1-dt_r) return h2 # a colormap with 8 settings, taht doesn't depend on the presence of # matplotlib (hard-coded though.) -- depricating _clrs = [ (0.2, 0.2, 0.2), (0.041, 0, 0), (0.412, 0, 0), (0.793, 0, 0), (1, 0.174, 0), (1, 0.555, 0), (1, 0.936, 0), (1, 1, 0.475), (1, 1, 1), ] _dflt_clr = (0.2, 0.2, 0.2) # can access other gradations of colour using M = cm.hot(n) for n steps, then # either extract them once (`clrs = M(arange(n)`) or each time ( `clr_x = M(x)`) # BT here we're going to use 8 steps for all CASUs so no bother. #}}} def sep_with_nowtime(): print "# =================== t={} =================== #\n".format( datetime.now().strftime("%H:%M:%S")) ### ============= more generic ============= ### #{{{ a struct constructor # some handy python utilities, from Kier Dugan class Struct: def __init__ (self, **kwargs): self.__dict__.update (kwargs) def get(self, key, default=None): return self.__dict__.get(key, default) def addFields(self, **kwargs): # add other fields (basically variables) after initialisation self.__dict__.update (kwargs) #}}} ### calibraiont def _calibrate(h, calib_steps, calib_gain=1.1, interval=0.1): ''' read the sensors several times, and take the highest reading seen as the threshold. ''' h._raw_thresh = [0] * 7 # default cases for threshold for stp in xrange(calib_steps): for i, v in enumerate(h.get_ir_raw_value(casu.ARRAY)): if v > h._raw_thresh[i]: h._raw_thresh[i] = v time.sleep(interval) h.thresh = [x*calib_gain for x in h._raw_thresh] h.threshold = [x*calib_gain for x in h._raw_thresh] if h.verb: _ts =", ".join(["{:.2f}".format(x) for x in h.thresh]) print "[I] post-calibration, we have thresh: ", _ts
lgpl-3.0
zooniverse/aggregation
docs/source/conf.py
1
9778
# -*- coding: utf-8 -*- # # Zooniverse Aggregation Engine documentation build configuration file, created by # sphinx-quickstart on Mon Mar 14 11:15:07 2016. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys import os from mock import Mock as MagicMock # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. sys.path.insert(0, os.path.abspath('../..')) # -- General configuration ------------------------------------------------ # If your documentation needs a minimal Sphinx version, state it here. #needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.todo', 'sphinx.ext.coverage', 'sphinx.ext.mathjax', 'sphinx.ext.napoleon' ] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # source_suffix = ['.rst', '.md'] source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = u'Zooniverse Aggregation Engine' copyright = u'2016, Zooniverse' author = u'Greg Hines' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = u'0.9' # The full version, including alpha/beta/rc tags. release = u'0.9' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = [] # The reST default role (used for this markup: `text`) to use for all # documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # If true, keep warnings as "system message" paragraphs in the built documents. #keep_warnings = False # If true, `todo` and `todoList` produce output, else they produce nothing. todo_include_todos = True # -- Options for HTML output ---------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'alabaster' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. #html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. #html_theme_path = [] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. #html_logo = None # The name of an image file (relative to this directory) to use as a favicon of # the docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. #html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # Add any extra paths that contain custom files (such as robots.txt or # .htaccess) here, relative to this directory. These files are copied # directly to the root of the documentation. #html_extra_path = [] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. #html_domain_indices = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. #html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. #html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = None # Language to be used for generating the HTML full-text search index. # Sphinx supports the following languages: # 'da', 'de', 'en', 'es', 'fi', 'fr', 'hu', 'it', 'ja' # 'nl', 'no', 'pt', 'ro', 'ru', 'sv', 'tr' #html_search_language = 'en' # A dictionary with options for the search language support, empty by default. # Now only 'ja' uses this config value #html_search_options = {'type': 'default'} # The name of a javascript file (relative to the configuration directory) that # implements a search results scorer. If empty, the default will be used. #html_search_scorer = 'scorer.js' # Output file base name for HTML help builder. htmlhelp_basename = 'ZooniverseAggregationEnginedoc' # -- Options for LaTeX output --------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). #'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). #'pointsize': '10pt', # Additional stuff for the LaTeX preamble. #'preamble': '', # Latex figure (float) alignment #'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, 'ZooniverseAggregationEngine.tex', u'Zooniverse Aggregation Engine Documentation', u'Greg Hines', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # If true, show page references after internal links. #latex_show_pagerefs = False # If true, show URL addresses after external links. #latex_show_urls = False # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_domain_indices = True # -- Options for manual page output --------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ (master_doc, 'zooniverseaggregationengine', u'Zooniverse Aggregation Engine Documentation', [author], 1) ] # If true, show URL addresses after external links. #man_show_urls = False # -- Options for Texinfo output ------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, 'ZooniverseAggregationEngine', u'Zooniverse Aggregation Engine Documentation', author, 'ZooniverseAggregationEngine', 'One line description of project.', 'Miscellaneous'), ] # Documents to append as an appendix to all manuals. #texinfo_appendices = [] # If false, no module index is generated. #texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. #texinfo_show_urls = 'footnote' # If true, do not generate a @detailmenu in the "Top" node's menu. #texinfo_no_detailmenu = False class Mock(MagicMock): @classmethod def __getattr__(cls, name): return Mock() MOCK_MODULES = ['shapely','pandas','numpy','scipy','cassandra-driver',"sklearn"] sys.modules.update((mod_name, Mock()) for mod_name in MOCK_MODULES)
apache-2.0
akloster/bokeh
bokeh/properties.py
20
42601
""" Properties are objects that can be assigned as class level attributes on Bokeh models, to provide automatic serialization and validation. For example, the following defines a model that has integer, string, and list[float] properties:: class Model(HasProps): foo = Int bar = String baz = List(Float) The properties of this class can be initialized by specifying keyword arguments to the initializer:: m = Model(foo=10, bar="a str", baz=[1,2,3,4]) But also by setting the attributes on an instance:: m.foo = 20 Attempts to set a property to a value of the wrong type will result in a ``ValueError`` exception:: >>> m.foo = 2.3 Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/Users/bryan/work/bokeh/bokeh/properties.py", line 585, in __setattr__ super(HasProps, self).__setattr__(name, value) File "/Users/bryan/work/bokeh/bokeh/properties.py", line 159, in __set__ raise e File "/Users/bryan/work/bokeh/bokeh/properties.py", line 152, in __set__ self.validate(value) File "/Users/bryan/work/bokeh/bokeh/properties.py", line 707, in validate (nice_join([ cls.__name__ for cls in self._underlying_type ]), value, type(value).__name__)) ValueError: expected a value of type int8, int16, int32, int64 or int, got 2.3 of type float Additionally, properties know how to serialize themselves, to be understood by BokehJS. """ from __future__ import absolute_import, print_function import re import types import difflib import datetime import dateutil.parser import collections from importlib import import_module from copy import copy from warnings import warn import inspect import logging logger = logging.getLogger(__name__) from six import integer_types, string_types, add_metaclass, iteritems import numpy as np from . import enums from .util.string import nice_join def field(name): ''' Convenience function do explicitly mark a field specification for a Bokeh model property. Args: name (str) : name of a data source field to reference for a property. Returns: dict : `{"field": name}` Note: This function is included for completeness. String values for property specifications are by default interpreted as field names. ''' return dict(field=name) def value(val): ''' Convenience function do explicitly mark a value specification for a Bokeh model property. Args: val (any) : a fixed value to specify for a property. Returns: dict : `{"value": name}` Note: String values for property specifications are by default interpreted as field names. This function is especially useful when you want to specify a fixed value with text properties. Example: .. code-block:: python # The following will take text values to render from a data source # column "text_column", but use a fixed value "12pt" for font size p.text("x", "y", text="text_column", text_font_size=value("12pt"), source=source) ''' return dict(value=val) bokeh_integer_types = (np.int8, np.int16, np.int32, np.int64) + integer_types # used to indicate properties that are not set (vs null, None, etc) class _NotSet(object): pass class DeserializationError(Exception): pass class Property(object): """ Base class for all type properties. """ def __init__(self, default=None, help=None): """ This is how the descriptor is created in the class declaration """ if isinstance(default, types.FunctionType): # aka. lazy value self.validate(default()) else: self.validate(default) self._default = default self.__doc__ = help self.alternatives = [] # This gets set by the class decorator at class creation time self.name = "unnamed" def __str__(self): return self.__class__.__name__ @property def _name(self): return "_" + self.name @property def default(self): if not isinstance(self._default, types.FunctionType): return copy(self._default) else: value = self._default() self.validate(value) return value @classmethod def autocreate(cls, name=None): """ Called by the metaclass to create a new instance of this descriptor if the user just assigned it to a property without trailing parentheses. """ return cls() def matches(self, new, old): # XXX: originally this code warned about not being able to compare values, but that # doesn't make sense, because most comparisons involving numpy arrays will fail with # ValueError exception, thus warning about inevitable. try: if new is None or old is None: return new is old # XXX: silence FutureWarning from NumPy else: return new == old except (KeyboardInterrupt, SystemExit): raise except Exception as e: logger.debug("could not compare %s and %s for property %s (Reason: %s)", new, old, self.name, e) return False def from_json(self, json, models=None): return json def transform(self, value): return value def validate(self, value): pass def is_valid(self, value): try: self.validate(value) except ValueError: return False else: return True def _get(self, obj): if not hasattr(obj, self._name): setattr(obj, self._name, self.default) return getattr(obj, self._name) def __get__(self, obj, owner=None): if obj is not None: return self._get(obj) elif owner is not None: return self else: raise ValueError("both 'obj' and 'owner' are None, don't know what to do") def __set__(self, obj, value): try: self.validate(value) except ValueError as e: for tp, converter in self.alternatives: if tp.is_valid(value): value = converter(value) break else: raise e else: value = self.transform(value) old = self.__get__(obj) obj._changed_vars.add(self.name) if self._name in obj.__dict__ and self.matches(value, old): return setattr(obj, self._name, value) obj._dirty = True if hasattr(obj, '_trigger'): if hasattr(obj, '_block_callbacks') and obj._block_callbacks: obj._callback_queue.append((self.name, old, value)) else: obj._trigger(self.name, old, value) def __delete__(self, obj): if hasattr(obj, self._name): delattr(obj, self._name) @property def has_ref(self): return False def accepts(self, tp, converter): tp = ParameterizedProperty._validate_type_param(tp) self.alternatives.append((tp, converter)) return self def __or__(self, other): return Either(self, other) class Include(object): """ Include other properties from mixin Models, with a given prefix. """ def __init__(self, delegate, help="", use_prefix=True): if not (isinstance(delegate, type) and issubclass(delegate, HasProps)): raise ValueError("expected a subclass of HasProps, got %r" % delegate) self.delegate = delegate self.help = help self.use_prefix = use_prefix class MetaHasProps(type): def __new__(cls, class_name, bases, class_dict): names = set() names_with_refs = set() container_names = set() # First pre-process to handle all the Includes includes = {} removes = set() for name, prop in class_dict.items(): if not isinstance(prop, Include): continue delegate = prop.delegate if prop.use_prefix: prefix = re.sub("_props$", "", name) + "_" else: prefix = "" for subpropname in delegate.class_properties(withbases=False): fullpropname = prefix + subpropname subprop = delegate.lookup(subpropname) if isinstance(subprop, Property): # If it's an actual instance, then we need to make a copy # so two properties don't write to the same hidden variable # inside the instance. subprop = copy(subprop) if "%s" in prop.help: doc = prop.help % subpropname.replace('_', ' ') else: doc = prop.help try: includes[fullpropname] = subprop(help=doc) except TypeError: includes[fullpropname] = subprop subprop.__doc__ = doc # Remove the name of the Include attribute itself removes.add(name) # Update the class dictionary, taking care not to overwrite values # from the delegates that the subclass may have explicitly defined for key, val in includes.items(): if key not in class_dict: class_dict[key] = val for tmp in removes: del class_dict[tmp] dataspecs = {} units_to_add = {} for name, prop in class_dict.items(): if isinstance(prop, Property): prop.name = name if prop.has_ref: names_with_refs.add(name) elif isinstance(prop, ContainerProperty): container_names.add(name) names.add(name) if isinstance(prop, DataSpec): dataspecs[name] = prop if hasattr(prop, '_units_type'): units_to_add[name+"_units"] = prop._units_type elif isinstance(prop, type) and issubclass(prop, Property): # Support the user adding a property without using parens, # i.e. using just the Property subclass instead of an # instance of the subclass newprop = prop.autocreate(name=name) class_dict[name] = newprop newprop.name = name names.add(name) # Process dataspecs if issubclass(prop, DataSpec): dataspecs[name] = newprop for name, prop in units_to_add.items(): prop.name = name names.add(name) class_dict[name] = prop class_dict["__properties__"] = names class_dict["__properties_with_refs__"] = names_with_refs class_dict["__container_props__"] = container_names if dataspecs: class_dict["_dataspecs"] = dataspecs return type.__new__(cls, class_name, bases, class_dict) def accumulate_from_subclasses(cls, propname): s = set() for c in inspect.getmro(cls): if issubclass(c, HasProps): s.update(getattr(c, propname)) return s @add_metaclass(MetaHasProps) class HasProps(object): def __init__(self, **properties): super(HasProps, self).__init__() self._changed_vars = set() for name, value in properties.items(): setattr(self, name, value) def __setattr__(self, name, value): props = sorted(self.properties()) if name.startswith("_") or name in props: super(HasProps, self).__setattr__(name, value) else: matches, text = difflib.get_close_matches(name.lower(), props), "similar" if not matches: matches, text = props, "possible" raise AttributeError("unexpected attribute '%s' to %s, %s attributes are %s" % (name, self.__class__.__name__, text, nice_join(matches))) def clone(self): """ Returns a duplicate of this object with all its properties set appropriately. Values which are containers are shallow-copied. """ return self.__class__(**self.changed_properties_with_values()) @classmethod def lookup(cls, name): return getattr(cls, name) @classmethod def properties_with_refs(cls): """ Returns a set of the names of this object's properties that have references. We traverse the class hierarchy and pull together the full list of properties. """ if not hasattr(cls, "__cached_allprops_with_refs"): s = accumulate_from_subclasses(cls, "__properties_with_refs__") cls.__cached_allprops_with_refs = s return cls.__cached_allprops_with_refs @classmethod def properties_containers(cls): """ Returns a list of properties that are containers """ if not hasattr(cls, "__cached_allprops_containers"): s = accumulate_from_subclasses(cls, "__container_props__") cls.__cached_allprops_containers = s return cls.__cached_allprops_containers @classmethod def properties(cls): """ Returns a set of the names of this object's properties. We traverse the class hierarchy and pull together the full list of properties. """ if not hasattr(cls, "__cached_allprops"): s = cls.class_properties() cls.__cached_allprops = s return cls.__cached_allprops @classmethod def dataspecs(cls): """ Returns a set of the names of this object's dataspecs (and dataspec subclasses). Traverses the class hierarchy. """ if not hasattr(cls, "__cached_dataspecs"): dataspecs = set() for c in reversed(inspect.getmro(cls)): if hasattr(c, "_dataspecs"): dataspecs.update(c._dataspecs.keys()) cls.__cached_dataspecs = dataspecs return cls.__cached_dataspecs @classmethod def dataspecs_with_refs(cls): dataspecs = {} for c in reversed(inspect.getmro(cls)): if hasattr(c, "_dataspecs"): dataspecs.update(c._dataspecs) return dataspecs def changed_vars(self): """ Returns which variables changed since the creation of the object, or the last called to reset_changed_vars(). """ return set.union(self._changed_vars, self.properties_with_refs(), self.properties_containers()) def reset_changed_vars(self): self._changed_vars = set() def properties_with_values(self): return dict([ (attr, getattr(self, attr)) for attr in self.properties() ]) def changed_properties(self): return self.changed_vars() def changed_properties_with_values(self): return dict([ (attr, getattr(self, attr)) for attr in self.changed_properties() ]) @classmethod def class_properties(cls, withbases=True): if withbases: return accumulate_from_subclasses(cls, "__properties__") else: return set(cls.__properties__) def set(self, **kwargs): """ Sets a number of properties at once """ for kw in kwargs: setattr(self, kw, kwargs[kw]) def pprint_props(self, indent=0): """ Prints the properties of this object, nicely formatted """ for key, value in self.properties_with_values().items(): print("%s%s: %r" % (" "*indent, key, value)) class PrimitiveProperty(Property): """ A base class for simple property types. Subclasses should define a class attribute ``_underlying_type`` that is a tuple of acceptable type values for the property. """ _underlying_type = None def validate(self, value): super(PrimitiveProperty, self).validate(value) if not (value is None or isinstance(value, self._underlying_type)): raise ValueError("expected a value of type %s, got %s of type %s" % (nice_join([ cls.__name__ for cls in self._underlying_type ]), value, type(value).__name__)) def from_json(self, json, models=None): if json is None or isinstance(json, self._underlying_type): return json else: expected = nice_join([ cls.__name__ for cls in self._underlying_type ]) raise DeserializationError("%s expected %s, got %s" % (self, expected, json)) class Bool(PrimitiveProperty): """ Boolean type property. """ _underlying_type = (bool,) class Int(PrimitiveProperty): """ Signed integer type property. """ _underlying_type = bokeh_integer_types class Float(PrimitiveProperty): """ Floating point type property. """ _underlying_type = (float, ) + bokeh_integer_types class Complex(PrimitiveProperty): """ Complex floating point type property. """ _underlying_type = (complex, float) + bokeh_integer_types class String(PrimitiveProperty): """ String type property. """ _underlying_type = string_types class Regex(String): """ Regex type property validates that text values match the given regular expression. """ def __init__(self, regex, default=None, help=None): self.regex = re.compile(regex) super(Regex, self).__init__(default=default, help=help) def validate(self, value): super(Regex, self).validate(value) if not (value is None or self.regex.match(value) is not None): raise ValueError("expected a string matching %r pattern, got %r" % (self.regex.pattern, value)) def __str__(self): return "%s(%r)" % (self.__class__.__name__, self.regex.pattern) class JSON(String): """ JSON type property validates that text values are valid JSON. .. note:: The string is transmitted and received by BokehJS as a *string* containing JSON content. i.e., you must use ``JSON.parse`` to unpack the value into a JavaScript hash. """ def validate(self, value): super(JSON, self).validate(value) if value is None: return try: import json json.loads(value) except ValueError: raise ValueError("expected JSON text, got %r" % value) class ParameterizedProperty(Property): """ Base class for Properties that have type parameters, e.g. ``List(String)``. """ @staticmethod def _validate_type_param(type_param): if isinstance(type_param, type): if issubclass(type_param, Property): return type_param() else: type_param = type_param.__name__ elif isinstance(type_param, Property): return type_param raise ValueError("expected a property as type parameter, got %s" % type_param) @property def type_params(self): raise NotImplementedError("abstract method") @property def has_ref(self): return any(type_param.has_ref for type_param in self.type_params) class ContainerProperty(ParameterizedProperty): """ Base class for Container-like type properties. """ pass class Seq(ContainerProperty): """ Sequence (list, tuple) type property. """ def _is_seq(self, value): return isinstance(value, collections.Container) and not isinstance(value, collections.Mapping) def _new_instance(self, value): return value def __init__(self, item_type, default=None, help=None): self.item_type = self._validate_type_param(item_type) super(Seq, self).__init__(default=default, help=help) @property def type_params(self): return [self.item_type] def validate(self, value): super(Seq, self).validate(value) if value is not None: if not (self._is_seq(value) and all(self.item_type.is_valid(item) for item in value)): raise ValueError("expected an element of %s, got %r" % (self, value)) def __str__(self): return "%s(%s)" % (self.__class__.__name__, self.item_type) def from_json(self, json, models=None): if json is None: return None elif isinstance(json, list): return self._new_instance([ self.item_type.from_json(item, models) for item in json ]) else: raise DeserializationError("%s expected a list or None, got %s" % (self, json)) class List(Seq): """ Python list type property. """ def __init__(self, item_type, default=[], help=None): # todo: refactor to not use mutable objects as default values. # Left in place for now because we want to allow None to express # opional values. Also in Dict. super(List, self).__init__(item_type, default=default, help=help) def _is_seq(self, value): return isinstance(value, list) class Array(Seq): """ NumPy array type property. """ def _is_seq(self, value): import numpy as np return isinstance(value, np.ndarray) def _new_instance(self, value): return np.array(value) class Dict(ContainerProperty): """ Python dict type property. If a default value is passed in, then a shallow copy of it will be used for each new use of this property. """ def __init__(self, keys_type, values_type, default={}, help=None): self.keys_type = self._validate_type_param(keys_type) self.values_type = self._validate_type_param(values_type) super(Dict, self).__init__(default=default, help=help) @property def type_params(self): return [self.keys_type, self.values_type] def validate(self, value): super(Dict, self).validate(value) if value is not None: if not (isinstance(value, dict) and \ all(self.keys_type.is_valid(key) and self.values_type.is_valid(val) for key, val in iteritems(value))): raise ValueError("expected an element of %s, got %r" % (self, value)) def __str__(self): return "%s(%s, %s)" % (self.__class__.__name__, self.keys_type, self.values_type) def from_json(self, json, models=None): if json is None: return None elif isinstance(json, dict): return { self.keys_type.from_json(key, models): self.values_type.from_json(value, models) for key, value in iteritems(json) } else: raise DeserializationError("%s expected a dict or None, got %s" % (self, json)) class Tuple(ContainerProperty): """ Tuple type property. """ def __init__(self, tp1, tp2, *type_params, **kwargs): self._type_params = list(map(self._validate_type_param, (tp1, tp2) + type_params)) super(Tuple, self).__init__(default=kwargs.get("default"), help=kwargs.get("help")) @property def type_params(self): return self._type_params def validate(self, value): super(Tuple, self).validate(value) if value is not None: if not (isinstance(value, (tuple, list)) and len(self.type_params) == len(value) and \ all(type_param.is_valid(item) for type_param, item in zip(self.type_params, value))): raise ValueError("expected an element of %s, got %r" % (self, value)) def __str__(self): return "%s(%s)" % (self.__class__.__name__, ", ".join(map(str, self.type_params))) def from_json(self, json, models=None): if json is None: return None elif isinstance(json, list): return tuple(type_param.from_json(item, models) for type_param, item in zip(self.type_params, json)) else: raise DeserializationError("%s expected a list or None, got %s" % (self, json)) class Instance(Property): """ Instance type property, for references to other Models in the object graph. """ def __init__(self, instance_type, default=None, help=None): if not isinstance(instance_type, (type,) + string_types): raise ValueError("expected a type or string, got %s" % instance_type) if isinstance(instance_type, type) and not issubclass(instance_type, HasProps): raise ValueError("expected a subclass of HasProps, got %s" % instance_type) self._instance_type = instance_type super(Instance, self).__init__(default=default, help=help) @property def instance_type(self): if isinstance(self._instance_type, str): module, name = self._instance_type.rsplit(".", 1) self._instance_type = getattr(import_module(module, "bokeh"), name) return self._instance_type @property def has_ref(self): return True def validate(self, value): super(Instance, self).validate(value) if value is not None: if not isinstance(value, self.instance_type): raise ValueError("expected an instance of type %s, got %s of type %s" % (self.instance_type.__name__, value, type(value).__name__)) def __str__(self): return "%s(%s)" % (self.__class__.__name__, self.instance_type.__name__) def from_json(self, json, models=None): if json is None: return None elif isinstance(json, dict): from .plot_object import PlotObject if issubclass(self.instance_type, PlotObject): if models is None: raise DeserializationError("%s can't deserialize without models" % self) else: model = models.get(json["id"]) if model is not None: return model else: raise DeserializationError("%s failed to deserilize reference to %s" % (self, json)) else: attrs = {} for name, value in iteritems(json): prop = self.instance_type.lookup(name) attrs[name] = prop.from_json(value, models) # XXX: this doesn't work when Instance(Superclass) := Subclass() # Serialization dict must carry type information to resolve this. return self.instance_type(**attrs) else: raise DeserializationError("%s expected a dict or None, got %s" % (self, json)) class This(Property): """ A reference to an instance of the class being defined. """ pass # Fake types, ABCs class Any(Property): """ Any type property accepts any values. """ pass class Function(Property): """ Function type property. """ pass class Event(Property): """ Event type property. """ pass class Interval(ParameterizedProperty): ''' Range type property ensures values are contained inside a given interval. ''' def __init__(self, interval_type, start, end, default=None, help=None): self.interval_type = self._validate_type_param(interval_type) self.interval_type.validate(start) self.interval_type.validate(end) self.start = start self.end = end super(Interval, self).__init__(default=default, help=help) @property def type_params(self): return [self.interval_type] def validate(self, value): super(Interval, self).validate(value) if not (value is None or self.interval_type.is_valid(value) and value >= self.start and value <= self.end): raise ValueError("expected a value of type %s in range [%s, %s], got %r" % (self.interval_type, self.start, self.end, value)) def __str__(self): return "%s(%s, %r, %r)" % (self.__class__.__name__, self.interval_type, self.start, self.end) class Byte(Interval): ''' Byte type property. ''' def __init__(self, default=0, help=None): super(Byte, self).__init__(Int, 0, 255, default=default, help=help) class Either(ParameterizedProperty): """ Takes a list of valid properties and validates against them in succession. """ def __init__(self, tp1, tp2, *type_params, **kwargs): self._type_params = list(map(self._validate_type_param, (tp1, tp2) + type_params)) default = kwargs.get("default", self._type_params[0].default) help = kwargs.get("help") super(Either, self).__init__(default=default, help=help) @property def type_params(self): return self._type_params def validate(self, value): super(Either, self).validate(value) if not (value is None or any(param.is_valid(value) for param in self.type_params)): raise ValueError("expected an element of either %s, got %r" % (nice_join(self.type_params), value)) def transform(self, value): for param in self.type_params: try: return param.transform(value) except ValueError: pass raise ValueError("Could not transform %r" % value) def from_json(self, json, models=None): for tp in self.type_params: try: return tp.from_json(json, models) except DeserializationError: pass else: raise DeserializationError("%s couldn't deserialize %s" % (self, json)) def __str__(self): return "%s(%s)" % (self.__class__.__name__, ", ".join(map(str, self.type_params))) def __or__(self, other): return self.__class__(*(self.type_params + [other]), default=self._default, help=self.help) class Enum(Property): """ An Enum with a list of allowed values. The first value in the list is the default value, unless a default is provided with the "default" keyword argument. """ def __init__(self, enum, *values, **kwargs): if not (not values and isinstance(enum, enums.Enumeration)): enum = enums.enumeration(enum, *values) self.allowed_values = enum._values default = kwargs.get("default", enum._default) help = kwargs.get("help") super(Enum, self).__init__(default=default, help=help) def validate(self, value): super(Enum, self).validate(value) if not (value is None or value in self.allowed_values): raise ValueError("invalid value for %s: %r; allowed values are %s" % (self.name, value, nice_join(self.allowed_values))) def __str__(self): return "%s(%s)" % (self.__class__.__name__, ", ".join(map(repr, self.allowed_values))) class Auto(Enum): def __init__(self): super(Auto, self).__init__("auto") def __str__(self): return self.__class__.__name__ # Properties useful for defining visual attributes class Color(Either): """ Accepts color definition in a variety of ways, and produces an appropriate serialization of its value for whatever backend. For colors, because we support named colors and hex values prefaced with a "#", when we are handed a string value, there is a little interpretation: if the value is one of the 147 SVG named colors or it starts with a "#", then it is interpreted as a value. If a 3-tuple is provided, then it is treated as an RGB (0..255). If a 4-tuple is provided, then it is treated as an RGBa (0..255), with alpha as a float between 0 and 1. (This follows the HTML5 Canvas API.) """ def __init__(self, default=None, help=None): types = (Enum(enums.NamedColor), Regex("^#[0-9a-fA-F]{6}$"), Tuple(Byte, Byte, Byte), Tuple(Byte, Byte, Byte, Percent)) super(Color, self).__init__(*types, default=default, help=help) def __str__(self): return self.__class__.__name__ class Align(Property): pass class DashPattern(Either): """ Dash type property. Express patterns that describe line dashes. ``DashPattern`` values can be specified in a variety of ways: * An enum: "solid", "dashed", "dotted", "dotdash", "dashdot" * a tuple or list of integers in the `HTML5 Canvas dash specification style`_. Note that if the list of integers has an odd number of elements, then it is duplicated, and that duplicated list becomes the new dash list. To indicate that dashing is turned off (solid lines), specify the empty list []. .. _HTML5 Canvas dash specification style: http://www.w3.org/html/wg/drafts/2dcontext/html5_canvas/#dash-list """ _dash_patterns = { "solid": [], "dashed": [6], "dotted": [2,4], "dotdash": [2,4,6,4], "dashdot": [6,4,2,4], } def __init__(self, default=[], help=None): types = Enum(enums.DashPattern), Regex(r"^(\d+(\s+\d+)*)?$"), Seq(Int) super(DashPattern, self).__init__(*types, default=default, help=help) def transform(self, value): value = super(DashPattern, self).transform(value) if isinstance(value, string_types): try: return self._dash_patterns[value] except KeyError: return [int(x) for x in value.split()] else: return value def __str__(self): return self.__class__.__name__ class Size(Float): """ Size type property. .. note:: ``Size`` is equivalent to an unsigned int. """ def validate(self, value): super(Size, self).validate(value) if not (value is None or 0.0 <= value): raise ValueError("expected a non-negative number, got %r" % value) class Percent(Float): """ Percentage type property. Percents are useful for specifying alphas and coverage and extents; more semantically meaningful than Float(0..1). """ def validate(self, value): super(Percent, self).validate(value) if not (value is None or 0.0 <= value <= 1.0): raise ValueError("expected a value in range [0, 1], got %r" % value) class Angle(Float): """ Angle type property. """ pass class Date(Property): """ Date (not datetime) type property. """ def __init__(self, default=datetime.date.today(), help=None): super(Date, self).__init__(default=default, help=help) def validate(self, value): super(Date, self).validate(value) if not (value is None or isinstance(value, (datetime.date,) + string_types + (float,) + bokeh_integer_types)): raise ValueError("expected a date, string or timestamp, got %r" % value) def transform(self, value): value = super(Date, self).transform(value) if isinstance(value, (float,) + bokeh_integer_types): try: value = datetime.date.fromtimestamp(value) except ValueError: value = datetime.date.fromtimestamp(value/1000) elif isinstance(value, string_types): value = dateutil.parser.parse(value).date() return value class Datetime(Property): """ Datetime type property. """ def __init__(self, default=datetime.date.today(), help=None): super(Datetime, self).__init__(default=default, help=help) def validate(self, value): super(Datetime, self).validate(value) if (isinstance(value, (datetime.datetime, datetime.date, np.datetime64))): return try: import pandas if isinstance(value, (pandas.Timestamp)): return except ImportError: pass raise ValueError("Expected a datetime instance, got %r" % value) def transform(self, value): value = super(Datetime, self).transform(value) return value # Handled by serialization in protocol.py for now class RelativeDelta(Dict): """ RelativeDelta type property for time deltas. """ def __init__(self, default={}, help=None): keys = Enum("years", "months", "days", "hours", "minutes", "seconds", "microseconds") values = Int super(RelativeDelta, self).__init__(keys, values, default=default, help=help) def __str__(self): return self.__class__.__name__ class DataSpec(Either): def __init__(self, typ, default, help=None): super(DataSpec, self).__init__(String, Dict(String, Either(String, typ)), typ, default=default, help=help) self._type = self._validate_type_param(typ) def to_dict(self, obj): val = getattr(obj, self._name, self.default) # Check for None value if val is None: return dict(value=None) # Check for spec type value try: self._type.validate(val) return dict(value=val) except ValueError: pass # Check for data source field name if isinstance(val, string_types): return dict(field=val) # Must be dict, return as-is return val def __str__(self): val = getattr(self, self._name, self.default) return "%s(%r)" % (self.__class__.__name__, val) class NumberSpec(DataSpec): def __init__(self, default, help=None): super(NumberSpec, self).__init__(Float, default=default, help=help) class StringSpec(DataSpec): def __init__(self, default, help=None): super(StringSpec, self).__init__(List(String), default=default, help=help) def __set__(self, obj, value): if isinstance(value, list): if len(value) != 1: raise TypeError("StringSpec convenience list values must have length 1") value = dict(value=value[0]) super(StringSpec, self).__set__(obj, value) class FontSizeSpec(DataSpec): def __init__(self, default, help=None): super(FontSizeSpec, self).__init__(List(String), default=default, help=help) def __set__(self, obj, value): if isinstance(value, string_types): warn('Setting a fixed font size value as a string %r is deprecated, ' 'set with value(%r) or [%r] instead' % (value, value, value), DeprecationWarning, stacklevel=2) if len(value) > 0 and value[0].isdigit(): value = dict(value=value) super(FontSizeSpec, self).__set__(obj, value) class UnitsSpec(NumberSpec): def __init__(self, default, units_type, units_default, help=None): super(UnitsSpec, self).__init__(default=default, help=help) self._units_type = self._validate_type_param(units_type) self._units_type.validate(units_default) self._units_type._default = units_default def to_dict(self, obj): d = super(UnitsSpec, self).to_dict(obj) d["units"] = getattr(obj, self.name+"_units") return d def __set__(self, obj, value): if isinstance(value, dict): units = value.pop("units", None) if units: setattr(obj, self.name+"_units", units) super(UnitsSpec, self).__set__(obj, value) def __str__(self): val = getattr(self, self._name, self.default) return "%s(%r, units_default=%r)" % (self.__class__.__name__, val, self._units_type._default) class AngleSpec(UnitsSpec): def __init__(self, default, units_default="rad", help=None): super(AngleSpec, self).__init__(default=default, units_type=Enum(enums.AngleUnits), units_default=units_default, help=help) class DistanceSpec(UnitsSpec): def __init__(self, default, units_default="data", help=None): super(DistanceSpec, self).__init__(default=default, units_type=Enum(enums.SpatialUnits), units_default=units_default, help=help) def __set__(self, obj, value): try: if value < 0: raise ValueError("Distances must be non-negative") except TypeError: pass super(DistanceSpec, self).__set__(obj, value) class ScreenDistanceSpec(NumberSpec): def to_dict(self, obj): d = super(ScreenDistanceSpec, self).to_dict(obj) d["units"] = "screen" return d def __set__(self, obj, value): try: if value < 0: raise ValueError("Distances must be non-negative") except TypeError: pass super(ScreenDistanceSpec, self).__set__(obj, value) class DataDistanceSpec(NumberSpec): def to_dict(self, obj): d = super(ScreenDistanceSpec, self).to_dict(obj) d["units"] = "data" return d def __set__(self, obj, value): try: if value < 0: raise ValueError("Distances must be non-negative") except TypeError: pass super(DataDistanceSpec, self).__set__(obj, value) class ColorSpec(DataSpec): def __init__(self, default, help=None): super(ColorSpec, self).__init__(Color, default=default, help=help) @classmethod def isconst(cls, arg): """ Returns True if the argument is a literal color. Check for a well-formed hexadecimal color value. """ return isinstance(arg, string_types) and \ ((len(arg) == 7 and arg[0] == "#") or arg in enums.NamedColor._values) @classmethod def is_color_tuple(cls, val): return isinstance(val, tuple) and len(val) in (3, 4) @classmethod def format_tuple(cls, colortuple): if len(colortuple) == 3: return "rgb%r" % (colortuple,) else: return "rgba%r" % (colortuple,) def to_dict(self, obj): val = getattr(obj, self._name, self.default) if val is None: return dict(value=None) # Check for hexadecimal or named color if self.isconst(val): return dict(value=val) # Check for RGB or RGBa tuple if isinstance(val, tuple): return dict(value=self.format_tuple(val)) # Check for data source field name if isinstance(val, string_types): return dict(field=val) # Must be dict, return as-is return val def validate(self, value): try: return super(ColorSpec, self).validate(value) except ValueError as e: # Check for tuple input if not yet a valid input type if self.is_color_tuple(value): return True else: raise e def transform(self, value): # Make sure that any tuple has either three integers, or three integers and one float if isinstance(value, tuple): value = tuple(int(v) if i < 3 else v for i, v in enumerate(value)) return value
bsd-3-clause
trustedanalytics/spark-tk
regression-tests/sparktkregtests/testcases/frames/boxcox_test.py
12
5074
# vim: set encoding=utf-8 # Copyright (c) 2016 Intel Corporation  # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # #       http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ Test frame.box_cox() and frame.reverse_box_cox()""" import unittest from sparktkregtests.lib import sparktk_test class BoxCoxTest(sparktk_test.SparkTKTestCase): def setUp(self): """Build test frame""" super(BoxCoxTest, self).setUp() dataset =\ [[5.8813080107727425], [8.9771372790941797], [8.9153072947470804], [8.1583747730768401], [0.35889585616853292]] schema = [("y", float)] self.frame = self.context.frame.create(dataset, schema=schema) def test_wt_default(self): """ Test behaviour for default params, lambda = 0 """ self.frame.box_cox("y") actual = self.frame.to_pandas()["y_lambda_0.0"].tolist() expected =\ [1.7717791879837133, 2.1946810429706676, 2.1877697201262163, 2.0990449791729704, -1.0247230268174008] self.assertItemsEqual(actual, expected) def test_lambda(self): """ Test wt for lambda = 0.3 """ self.frame.box_cox("y", 0.3) actual = self.frame.to_pandas()["y_lambda_0.3"].tolist() expected =\ [2.3384668540844573, 3.1056915770236082, 3.0923547540771801, 2.9235756971904037, -0.88218677941017198] self.assertItemsEqual(actual, expected) def test_reverse_default(self): """ Test reverse transform for default lambda = 0 """ self.frame.box_cox("y") self.frame.reverse_box_cox("y_lambda_0.0", reverse_box_cox_column_name="reverse") actual = self.frame.to_pandas()["reverse"].tolist() expected =\ [5.8813080107727425, 8.9771372790941815, 8.9153072947470804, 8.1583747730768401, 0.35889585616853298] self.assertItemsEqual(actual, expected) def test_reverse_lambda(self): """ Test reverse transform for lambda = 0.3 """ self.frame.box_cox("y", 0.3) self.frame.reverse_box_cox("y_lambda_0.3", 0.3, reverse_box_cox_column_name="reverse") actual = self.frame.to_pandas()["reverse"].tolist() expected =\ [5.8813080107727442, 8.9771372790941797, 8.9153072947470822, 8.1583747730768419, 0.35889585616853298] self.assertItemsEqual(actual, expected) @unittest.skip("req not clear") def test_lambda_negative(self): """ Test box cox for lambda -1 """ self.frame.box_cox("y", -1) actual = self.frame.to_pandas()["y_lambda_-1.0"].tolist() expected =\ [0.82996979614597488, 0.88860591423406388, 0.88783336715839256, 0.87742656744575354, -1.7863236167608822] self.assertItemsEqual(actual, expected) def test_existing_boxcox_column(self): """ Test behavior for existing boxcox column """ self.frame.box_cox("y", 0.3) with self.assertRaisesRegexp( Exception, "duplicate column name"): self.frame.box_cox("y", 0.3) def test_existing_reverse_column(self): """ Test behavior for existing reverse boxcox column """ self.frame.reverse_box_cox("y", 0.3) with self.assertRaisesRegexp( Exception, "duplicate column name"): self.frame.reverse_box_cox("y", 0.3) @unittest.skip("Req not clear") def test_negative_col_positive_lambda(self): """Test behaviour for negative input column and positive lambda""" frame = self.context.frame.create([[-1], [-2], [1]], [("y", float)]) frame.box_cox("y", 1) actual = frame.to_pandas()["y_lambda_1.0"].tolist() expected = [-2.0, -3.0, 0] self.assertItemsEqual(actual, expected) @unittest.skip("Req not clear") def test_negative_col_frational_lambda(self): """Test behaviour for negative input column and negative lambda""" frame = self.context.frame.create([[-1], [-2], [1]], [("y", float)]) with self.assertRaises(Exception): frame.box_cox("y", 0.1) @unittest.skip("Req not clear") def test_negative_col_zero_lambda(self): """Test behaviour for negative input column and positive lambda""" frame = self.context.frame.create([[-1], [-2], [1]], [("y", float)]) with self.assertRaises(Exception): frame.box_cox("y") if __name__ == "__main__": unittest.main()
apache-2.0
yonglehou/scikit-learn
examples/applications/plot_stock_market.py
227
8284
""" ======================================= Visualizing the stock market structure ======================================= This example employs several unsupervised learning techniques to extract the stock market structure from variations in historical quotes. The quantity that we use is the daily variation in quote price: quotes that are linked tend to cofluctuate during a day. .. _stock_market: Learning a graph structure -------------------------- We use sparse inverse covariance estimation to find which quotes are correlated conditionally on the others. Specifically, sparse inverse covariance gives us a graph, that is a list of connection. For each symbol, the symbols that it is connected too are those useful to explain its fluctuations. Clustering ---------- We use clustering to group together quotes that behave similarly. Here, amongst the :ref:`various clustering techniques <clustering>` available in the scikit-learn, we use :ref:`affinity_propagation` as it does not enforce equal-size clusters, and it can choose automatically the number of clusters from the data. Note that this gives us a different indication than the graph, as the graph reflects conditional relations between variables, while the clustering reflects marginal properties: variables clustered together can be considered as having a similar impact at the level of the full stock market. Embedding in 2D space --------------------- For visualization purposes, we need to lay out the different symbols on a 2D canvas. For this we use :ref:`manifold` techniques to retrieve 2D embedding. Visualization ------------- The output of the 3 models are combined in a 2D graph where nodes represents the stocks and edges the: - cluster labels are used to define the color of the nodes - the sparse covariance model is used to display the strength of the edges - the 2D embedding is used to position the nodes in the plan This example has a fair amount of visualization-related code, as visualization is crucial here to display the graph. One of the challenge is to position the labels minimizing overlap. For this we use an heuristic based on the direction of the nearest neighbor along each axis. """ print(__doc__) # Author: Gael Varoquaux [email protected] # License: BSD 3 clause import datetime import numpy as np import matplotlib.pyplot as plt from matplotlib import finance from matplotlib.collections import LineCollection from sklearn import cluster, covariance, manifold ############################################################################### # Retrieve the data from Internet # Choose a time period reasonnably calm (not too long ago so that we get # high-tech firms, and before the 2008 crash) d1 = datetime.datetime(2003, 1, 1) d2 = datetime.datetime(2008, 1, 1) # kraft symbol has now changed from KFT to MDLZ in yahoo symbol_dict = { 'TOT': 'Total', 'XOM': 'Exxon', 'CVX': 'Chevron', 'COP': 'ConocoPhillips', 'VLO': 'Valero Energy', 'MSFT': 'Microsoft', 'IBM': 'IBM', 'TWX': 'Time Warner', 'CMCSA': 'Comcast', 'CVC': 'Cablevision', 'YHOO': 'Yahoo', 'DELL': 'Dell', 'HPQ': 'HP', 'AMZN': 'Amazon', 'TM': 'Toyota', 'CAJ': 'Canon', 'MTU': 'Mitsubishi', 'SNE': 'Sony', 'F': 'Ford', 'HMC': 'Honda', 'NAV': 'Navistar', 'NOC': 'Northrop Grumman', 'BA': 'Boeing', 'KO': 'Coca Cola', 'MMM': '3M', 'MCD': 'Mc Donalds', 'PEP': 'Pepsi', 'MDLZ': 'Kraft Foods', 'K': 'Kellogg', 'UN': 'Unilever', 'MAR': 'Marriott', 'PG': 'Procter Gamble', 'CL': 'Colgate-Palmolive', 'GE': 'General Electrics', 'WFC': 'Wells Fargo', 'JPM': 'JPMorgan Chase', 'AIG': 'AIG', 'AXP': 'American express', 'BAC': 'Bank of America', 'GS': 'Goldman Sachs', 'AAPL': 'Apple', 'SAP': 'SAP', 'CSCO': 'Cisco', 'TXN': 'Texas instruments', 'XRX': 'Xerox', 'LMT': 'Lookheed Martin', 'WMT': 'Wal-Mart', 'WBA': 'Walgreen', 'HD': 'Home Depot', 'GSK': 'GlaxoSmithKline', 'PFE': 'Pfizer', 'SNY': 'Sanofi-Aventis', 'NVS': 'Novartis', 'KMB': 'Kimberly-Clark', 'R': 'Ryder', 'GD': 'General Dynamics', 'RTN': 'Raytheon', 'CVS': 'CVS', 'CAT': 'Caterpillar', 'DD': 'DuPont de Nemours'} symbols, names = np.array(list(symbol_dict.items())).T quotes = [finance.quotes_historical_yahoo(symbol, d1, d2, asobject=True) for symbol in symbols] open = np.array([q.open for q in quotes]).astype(np.float) close = np.array([q.close for q in quotes]).astype(np.float) # The daily variations of the quotes are what carry most information variation = close - open ############################################################################### # Learn a graphical structure from the correlations edge_model = covariance.GraphLassoCV() # standardize the time series: using correlations rather than covariance # is more efficient for structure recovery X = variation.copy().T X /= X.std(axis=0) edge_model.fit(X) ############################################################################### # Cluster using affinity propagation _, labels = cluster.affinity_propagation(edge_model.covariance_) n_labels = labels.max() for i in range(n_labels + 1): print('Cluster %i: %s' % ((i + 1), ', '.join(names[labels == i]))) ############################################################################### # Find a low-dimension embedding for visualization: find the best position of # the nodes (the stocks) on a 2D plane # We use a dense eigen_solver to achieve reproducibility (arpack is # initiated with random vectors that we don't control). In addition, we # use a large number of neighbors to capture the large-scale structure. node_position_model = manifold.LocallyLinearEmbedding( n_components=2, eigen_solver='dense', n_neighbors=6) embedding = node_position_model.fit_transform(X.T).T ############################################################################### # Visualization plt.figure(1, facecolor='w', figsize=(10, 8)) plt.clf() ax = plt.axes([0., 0., 1., 1.]) plt.axis('off') # Display a graph of the partial correlations partial_correlations = edge_model.precision_.copy() d = 1 / np.sqrt(np.diag(partial_correlations)) partial_correlations *= d partial_correlations *= d[:, np.newaxis] non_zero = (np.abs(np.triu(partial_correlations, k=1)) > 0.02) # Plot the nodes using the coordinates of our embedding plt.scatter(embedding[0], embedding[1], s=100 * d ** 2, c=labels, cmap=plt.cm.spectral) # Plot the edges start_idx, end_idx = np.where(non_zero) #a sequence of (*line0*, *line1*, *line2*), where:: # linen = (x0, y0), (x1, y1), ... (xm, ym) segments = [[embedding[:, start], embedding[:, stop]] for start, stop in zip(start_idx, end_idx)] values = np.abs(partial_correlations[non_zero]) lc = LineCollection(segments, zorder=0, cmap=plt.cm.hot_r, norm=plt.Normalize(0, .7 * values.max())) lc.set_array(values) lc.set_linewidths(15 * values) ax.add_collection(lc) # Add a label to each node. The challenge here is that we want to # position the labels to avoid overlap with other labels for index, (name, label, (x, y)) in enumerate( zip(names, labels, embedding.T)): dx = x - embedding[0] dx[index] = 1 dy = y - embedding[1] dy[index] = 1 this_dx = dx[np.argmin(np.abs(dy))] this_dy = dy[np.argmin(np.abs(dx))] if this_dx > 0: horizontalalignment = 'left' x = x + .002 else: horizontalalignment = 'right' x = x - .002 if this_dy > 0: verticalalignment = 'bottom' y = y + .002 else: verticalalignment = 'top' y = y - .002 plt.text(x, y, name, size=10, horizontalalignment=horizontalalignment, verticalalignment=verticalalignment, bbox=dict(facecolor='w', edgecolor=plt.cm.spectral(label / float(n_labels)), alpha=.6)) plt.xlim(embedding[0].min() - .15 * embedding[0].ptp(), embedding[0].max() + .10 * embedding[0].ptp(),) plt.ylim(embedding[1].min() - .03 * embedding[1].ptp(), embedding[1].max() + .03 * embedding[1].ptp()) plt.show()
bsd-3-clause
phoebe-project/phoebe2-docs
2.1/examples/minimal_contact_binary.py
1
5694
#!/usr/bin/env python # coding: utf-8 # Minimal Contact Binary System # ============================ # # Setup # ----------------------------- # Let's first make sure we have the latest version of PHOEBE 2.1 installed. (You can comment out this line if you don't use pip for your installation or don't want to update to the latest release). # In[ ]: get_ipython().system('pip install -I "phoebe>=2.1,<2.2"') # As always, let's do imports and initialize a logger and a new bundle. See [Building a System](../tutorials/building_a_system.html) for more details. # In[1]: get_ipython().run_line_magic('matplotlib', 'inline') # In[2]: import phoebe from phoebe import u # units import numpy as np import matplotlib.pyplot as plt logger = phoebe.logger() # Here we'll initialize a default binary, but ask for it to be created as a contact system. # In[3]: b_cb = phoebe.default_binary(contact_binary=True) # We'll compare this to the default detached binary # In[4]: b_detached = phoebe.default_binary() # Hierarchy # ------------- # Let's first look at the hierarchy of the default detached binary, and then compare that to the hierarchy of the overcontact system # In[5]: print b_detached.hierarchy # In[6]: print b_cb.hierarchy # As you can see, the overcontact system has an additional "component" with method "envelope" and component label "contact_envelope". # # Next let's look at the parameters in the envelope and star components. You can see that most of parameters in the envelope class are constrained, while the equivalent radius of the primary is unconstrained. The value of primary equivalent radius constrains the potential and fillout factor of the envelope, as well as the equivalent radius of the secondary. # In[7]: print b_cb.filter(component='contact_envelope', kind='envelope', context='component') # In[8]: print b_cb.filter(component='primary', kind='star', context='component') # In[9]: b_cb['requiv@primary'] = 1.5 # In[10]: b_cb['pot@contact_envelope@component'] # In[11]: b_cb['fillout_factor@contact_envelope@component'] # In[12]: b_cb['requiv@secondary@component'] # Now, of course, if we didn't originally know we wanted a contact binary and built the default detached system, we could still turn it into an contact binary just by changing the hierarchy. # In[13]: b_detached.add_component('envelope', component='contact_envelope') # In[14]: hier = phoebe.hierarchy.binaryorbit(b_detached['binary'], b_detached['primary'], b_detached['secondary'], b_detached['contact_envelope']) print hier # In[15]: b_detached.set_hierarchy(hier) # In[16]: print b_detached.hierarchy # However, since our system was detached, the system is not overflowing, and therefore doesn't pass system checks # In[17]: b_detached.run_checks() # And because of this, the potential and requiv@secondary constraints cannot be computed # In[18]: b_detached['pot@component'] # In[19]: b_detached['requiv@secondary@component'] # Likewise, we can make a contact system detached again simply by removing the envelope from the hierarchy. The parameters themselves will still exist (unless you remove them), so you can always just change the hierarchy again to change back to an overcontact system. # In[20]: hier = phoebe.hierarchy.binaryorbit(b_detached['binary'], b_detached['primary'], b_detached['secondary']) print hier # In[21]: b_detached.set_hierarchy(hier) # In[22]: print b_detached.hierarchy # Although the constraints have been removed, PHOEBE has lost the original value of the secondary radius (because of the failed contact constraints), so we'll have to reset that here as well. # In[23]: b_detached['requiv@secondary'] = 1.0 # Adding Datasets # --------------------- # In[24]: b_cb.add_dataset('mesh', times=[0], dataset='mesh01') # In[25]: b_cb.add_dataset('orb', times=np.linspace(0,1,201), dataset='orb01') # In[26]: b_cb.add_dataset('lc', times=np.linspace(0,1,21), dataset='lc01') # In[27]: b_cb.add_dataset('rv', times=np.linspace(0,1,21), dataset='rv01') # For comparison, we'll do the same to our detached system # In[28]: b_detached.add_dataset('mesh', times=[0], dataset='mesh01') # In[29]: b_detached.add_dataset('orb', times=np.linspace(0,1,201), dataset='orb01') # In[30]: b_detached.add_dataset('lc', times=np.linspace(0,1,21), dataset='lc01') # In[31]: b_detached.add_dataset('rv', times=np.linspace(0,1,21), dataset='rv01') # Running Compute # -------------------- # In[32]: b_cb.run_compute(irrad_method='none') # In[33]: b_detached.run_compute(irrad_method='none') # Synthetics # ------------------ # To ensure compatibility with computing synthetics in detached and semi-detached systems in Phoebe, the synthetic meshes for our overcontact system are attached to each component separetely, instead of the contact envelope. # In[34]: print b_cb['mesh01@model'].components # In[35]: print b_detached['mesh01@model'].components # Plotting # --------------- # ### Meshes # In[36]: afig, mplfig = b_cb['mesh01@model'].plot(x='ws', show=True) # In[37]: afig, mplfig = b_detached['mesh01@model'].plot(x='ws', show=True) # ### Orbits # In[38]: afig, mplfig = b_cb['orb01@model'].plot(x='ws',show=True) # In[39]: afig, mplfig = b_detached['orb01@model'].plot(x='ws',show=True) # ### Light Curves # In[40]: afig, mplfig = b_cb['lc01@model'].plot(show=True) # In[41]: afig, mplfig = b_detached['lc01@model'].plot(show=True) # ### RVs # In[42]: afig, mplfig = b_cb['rv01@model'].plot(show=True) # In[43]: afig, mplfig = b_detached['rv01@model'].plot(show=True) # In[ ]:
gpl-3.0
jereze/scikit-learn
examples/cluster/plot_feature_agglomeration_vs_univariate_selection.py
218
3893
""" ============================================== Feature agglomeration vs. univariate selection ============================================== This example compares 2 dimensionality reduction strategies: - univariate feature selection with Anova - feature agglomeration with Ward hierarchical clustering Both methods are compared in a regression problem using a BayesianRidge as supervised estimator. """ # Author: Alexandre Gramfort <[email protected]> # License: BSD 3 clause print(__doc__) import shutil import tempfile import numpy as np import matplotlib.pyplot as plt from scipy import linalg, ndimage from sklearn.feature_extraction.image import grid_to_graph from sklearn import feature_selection from sklearn.cluster import FeatureAgglomeration from sklearn.linear_model import BayesianRidge from sklearn.pipeline import Pipeline from sklearn.grid_search import GridSearchCV from sklearn.externals.joblib import Memory from sklearn.cross_validation import KFold ############################################################################### # Generate data n_samples = 200 size = 40 # image size roi_size = 15 snr = 5. np.random.seed(0) mask = np.ones([size, size], dtype=np.bool) coef = np.zeros((size, size)) coef[0:roi_size, 0:roi_size] = -1. coef[-roi_size:, -roi_size:] = 1. X = np.random.randn(n_samples, size ** 2) for x in X: # smooth data x[:] = ndimage.gaussian_filter(x.reshape(size, size), sigma=1.0).ravel() X -= X.mean(axis=0) X /= X.std(axis=0) y = np.dot(X, coef.ravel()) noise = np.random.randn(y.shape[0]) noise_coef = (linalg.norm(y, 2) / np.exp(snr / 20.)) / linalg.norm(noise, 2) y += noise_coef * noise # add noise ############################################################################### # Compute the coefs of a Bayesian Ridge with GridSearch cv = KFold(len(y), 2) # cross-validation generator for model selection ridge = BayesianRidge() cachedir = tempfile.mkdtemp() mem = Memory(cachedir=cachedir, verbose=1) # Ward agglomeration followed by BayesianRidge connectivity = grid_to_graph(n_x=size, n_y=size) ward = FeatureAgglomeration(n_clusters=10, connectivity=connectivity, memory=mem) clf = Pipeline([('ward', ward), ('ridge', ridge)]) # Select the optimal number of parcels with grid search clf = GridSearchCV(clf, {'ward__n_clusters': [10, 20, 30]}, n_jobs=1, cv=cv) clf.fit(X, y) # set the best parameters coef_ = clf.best_estimator_.steps[-1][1].coef_ coef_ = clf.best_estimator_.steps[0][1].inverse_transform(coef_) coef_agglomeration_ = coef_.reshape(size, size) # Anova univariate feature selection followed by BayesianRidge f_regression = mem.cache(feature_selection.f_regression) # caching function anova = feature_selection.SelectPercentile(f_regression) clf = Pipeline([('anova', anova), ('ridge', ridge)]) # Select the optimal percentage of features with grid search clf = GridSearchCV(clf, {'anova__percentile': [5, 10, 20]}, cv=cv) clf.fit(X, y) # set the best parameters coef_ = clf.best_estimator_.steps[-1][1].coef_ coef_ = clf.best_estimator_.steps[0][1].inverse_transform(coef_) coef_selection_ = coef_.reshape(size, size) ############################################################################### # Inverse the transformation to plot the results on an image plt.close('all') plt.figure(figsize=(7.3, 2.7)) plt.subplot(1, 3, 1) plt.imshow(coef, interpolation="nearest", cmap=plt.cm.RdBu_r) plt.title("True weights") plt.subplot(1, 3, 2) plt.imshow(coef_selection_, interpolation="nearest", cmap=plt.cm.RdBu_r) plt.title("Feature Selection") plt.subplot(1, 3, 3) plt.imshow(coef_agglomeration_, interpolation="nearest", cmap=plt.cm.RdBu_r) plt.title("Feature Agglomeration") plt.subplots_adjust(0.04, 0.0, 0.98, 0.94, 0.16, 0.26) plt.show() # Attempt to remove the temporary cachedir, but don't worry if it fails shutil.rmtree(cachedir, ignore_errors=True)
bsd-3-clause
jeremiedecock/snippets
python/matplotlib/hist_logscale_x.py
1
1804
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Make a histogram using a logarithmic scale on X axis See: - http://stackoverflow.com/questions/6855710/how-to-have-logarithmic-bins-in-a-python-histogram """ import numpy as np import matplotlib.pyplot as plt # SETUP ####################################################################### # histtype : [‘bar’ | ‘barstacked’ | ‘step’ | ‘stepfilled’] HIST_TYPE='bar' ALPHA=0.5 # MAKE DATA ################################################################### data = np.random.exponential(size=1000000) #data = np.abs(np.random.normal(size=1000000) * 10000.) #data = np.random.chisquare(10, size=1000000) # INIT FIGURE ################################################################# fig = plt.figure(figsize=(8.0, 6.0)) # AX1 ######################################################################### ax1 = fig.add_subplot(211) res_tuple = ax1.hist(data, bins=50, histtype=HIST_TYPE, alpha=ALPHA) ax1.set_title("Normal scale") ax1.set_xlabel("Value") ax1.set_ylabel("Count") # AX2 ######################################################################### ax2 = fig.add_subplot(212) vmin = np.log10(data.min()) vmax = np.log10(data.max()) bins = np.logspace(vmin, vmax, 50) # <- make a range from 10**vmin to 10**vmax print(bins) res_tuple = ax2.hist(data, bins=bins, histtype=HIST_TYPE, alpha=ALPHA) ax2.set_xscale("log") # <- Activate log scale on X axis ax2.set_title("Log scale") ax2.set_xlabel("Value") ax2.set_ylabel("Count") # SHOW AND SAVE FILE ########################################################## plt.tight_layout() plt.savefig("hist_logscale_x.png") plt.show()
mit
daodaoliang/bokeh
bokeh/charts/builder/tests/test_line_builder.py
33
2376
""" This is the Bokeh charts testing interface. """ #----------------------------------------------------------------------------- # Copyright (c) 2012 - 2014, Continuum Analytics, Inc. All rights reserved. # # Powered by the Bokeh Development Team. # # The full license is in the file LICENSE.txt, distributed with this software. #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Imports #----------------------------------------------------------------------------- from __future__ import absolute_import from collections import OrderedDict import unittest import numpy as np from numpy.testing import assert_array_equal import pandas as pd from bokeh.charts import Line from bokeh.charts.builder.tests._utils import create_chart #----------------------------------------------------------------------------- # Classes and functions #----------------------------------------------------------------------------- class TestLine(unittest.TestCase): def test_supported_input(self): xyvalues = OrderedDict() y_python = xyvalues['python'] = [2, 3, 7, 5, 26] y_pypy = xyvalues['pypy'] = [12, 33, 47, 15, 126] y_jython = xyvalues['jython'] = [22, 43, 10, 25, 26] xyvaluesdf = pd.DataFrame(xyvalues) for i, _xy in enumerate([xyvalues, xyvaluesdf]): hm = create_chart(Line, _xy) builder = hm._builders[0] self.assertEqual(sorted(builder._groups), sorted(list(xyvalues.keys()))) assert_array_equal(builder._data['x'], [0, 1, 2, 3, 4]) assert_array_equal(builder._data['y_python'], y_python) assert_array_equal(builder._data['y_pypy'], y_pypy) assert_array_equal(builder._data['y_jython'], y_jython) lvalues = [[2, 3, 7, 5, 26], [12, 33, 47, 15, 126], [22, 43, 10, 25, 26]] for _xy in [lvalues, np.array(lvalues)]: hm = create_chart(Line, _xy) builder = hm._builders[0] self.assertEqual(builder._groups, ['0', '1', '2']) assert_array_equal(builder._data['x'], [0, 1, 2, 3, 4]) assert_array_equal(builder._data['y_0'], y_python) assert_array_equal(builder._data['y_1'], y_pypy) assert_array_equal(builder._data['y_2'], y_jython)
bsd-3-clause
pypot/scikit-learn
examples/decomposition/plot_pca_vs_lda.py
182
1743
""" ======================================================= Comparison of LDA and PCA 2D projection of Iris dataset ======================================================= The Iris dataset represents 3 kind of Iris flowers (Setosa, Versicolour and Virginica) with 4 attributes: sepal length, sepal width, petal length and petal width. Principal Component Analysis (PCA) applied to this data identifies the combination of attributes (principal components, or directions in the feature space) that account for the most variance in the data. Here we plot the different samples on the 2 first principal components. Linear Discriminant Analysis (LDA) tries to identify attributes that account for the most variance *between classes*. In particular, LDA, in contrast to PCA, is a supervised method, using known class labels. """ print(__doc__) import matplotlib.pyplot as plt from sklearn import datasets from sklearn.decomposition import PCA from sklearn.lda import LDA iris = datasets.load_iris() X = iris.data y = iris.target target_names = iris.target_names pca = PCA(n_components=2) X_r = pca.fit(X).transform(X) lda = LDA(n_components=2) X_r2 = lda.fit(X, y).transform(X) # Percentage of variance explained for each components print('explained variance ratio (first two components): %s' % str(pca.explained_variance_ratio_)) plt.figure() for c, i, target_name in zip("rgb", [0, 1, 2], target_names): plt.scatter(X_r[y == i, 0], X_r[y == i, 1], c=c, label=target_name) plt.legend() plt.title('PCA of IRIS dataset') plt.figure() for c, i, target_name in zip("rgb", [0, 1, 2], target_names): plt.scatter(X_r2[y == i, 0], X_r2[y == i, 1], c=c, label=target_name) plt.legend() plt.title('LDA of IRIS dataset') plt.show()
bsd-3-clause
JackKelly/neuralnilm_prototype
scripts/experiment029.py
2
3262
from __future__ import division import matplotlib.pyplot as plt import numpy as np import theano import theano.tensor as T import lasagne from gen_data_029 import gen_data, N_BATCH, LENGTH theano.config.compute_test_value = 'raise' # Number of units in the hidden (recurrent) layer N_HIDDEN = 5 # SGD learning rate LEARNING_RATE = 1e-1 # Number of iterations to train the net N_ITERATIONS = 200 # Generate a "validation" sequence whose cost we will periodically compute X_val, y_val = gen_data() n_features = X_val.shape[-1] n_output = y_val.shape[-1] assert X_val.shape == (N_BATCH, LENGTH, n_features) assert y_val.shape == (N_BATCH, LENGTH, n_output) # Construct LSTM RNN: One LSTM layer and one dense output layer l_in = lasagne.layers.InputLayer(shape=(N_BATCH, LENGTH, n_features)) # setup fwd and bck LSTM layer. l_fwd = lasagne.layers.LSTMLayer( l_in, N_HIDDEN, backwards=False, learn_init=True, peepholes=True) l_bck = lasagne.layers.LSTMLayer( l_in, N_HIDDEN, backwards=True, learn_init=True, peepholes=True) # concatenate forward and backward LSTM layers l_fwd_reshape = lasagne.layers.ReshapeLayer(l_fwd, (N_BATCH*LENGTH, N_HIDDEN)) l_bck_reshape = lasagne.layers.ReshapeLayer(l_bck, (N_BATCH*LENGTH, N_HIDDEN)) l_concat = lasagne.layers.ConcatLayer([l_fwd_reshape, l_bck_reshape], axis=1) l_recurrent_out = lasagne.layers.DenseLayer( l_concat, num_units=n_output, nonlinearity=None) l_out = lasagne.layers.ReshapeLayer( l_recurrent_out, (N_BATCH, LENGTH, n_output)) input = T.tensor3('input') target_output = T.tensor3('target_output') # add test values input.tag.test_value = np.random.rand( *X_val.shape).astype(theano.config.floatX) target_output.tag.test_value = np.random.rand( *y_val.shape).astype(theano.config.floatX) # Cost = mean squared error cost = T.mean((l_out.get_output(input) - target_output)**2) # Use NAG for training all_params = lasagne.layers.get_all_params(l_out) updates = lasagne.updates.nesterov_momentum(cost, all_params, LEARNING_RATE) # Theano functions for training, getting output, and computing cost train = theano.function([input, target_output], cost, updates=updates, on_unused_input='warn', allow_input_downcast=True) y_pred = theano.function( [input], l_out.get_output(input), on_unused_input='warn', allow_input_downcast=True) compute_cost = theano.function( [input, target_output], cost, on_unused_input='warn', allow_input_downcast=True) # Train the net def run_training(): costs = np.zeros(N_ITERATIONS) for n in range(N_ITERATIONS): X, y = gen_data() # you should use your own training data mask instead of mask_val costs[n] = train(X, y) if not n % 10: cost_val = compute_cost(X_val, y_val) print "Iteration {} validation cost = {}".format(n, cost_val) plt.plot(costs) plt.xlabel('Iteration') plt.ylabel('Cost') plt.show() def plot_estimates(): X, y = gen_data() y_predictions = y_pred(X) ax = plt.gca() ax.plot(y_predictions[0,:,0], label='estimate') ax.plot(y[0,:,0], label='ground truth') # ax.plot(X[0,:,0], label='aggregate') ax.legend() plt.show() run_training() plot_estimates()
mit
zmr/namsel
accuracy_test.py
1
2139
#encoding: utf-8 import cPickle as pickle from classify import load_cls, label_chars from cv2 import GaussianBlur from feature_extraction import get_zernike_moments, get_hu_moments, \ extract_features, normalize_and_extract_features from functools import partial import glob from multiprocessing.pool import Pool import numpy as np import os from sklearn.externals import joblib from sobel_features import sobel_features from transitions import transition_features from fast_utils import fnormalize, ftrim cls = load_cls('logistic-cls') # Load testing sets print 'Loading test data' tsets = pickle.load(open('datasets/testing/training_sets.pkl', 'rb')) scaler = joblib.load('zernike_scaler-latest') print 'importing classifier' print cls.get_params() print 'scoring ...' keys = tsets.keys() keys.sort() all_samples = [] ## Baseline accuracies for the data in tsets baseline = [0.608, 0.5785123966942148, 0.4782608695652174, 0.7522123893805309, 0.6884057971014492, 0.5447154471544715, 0.9752066115702479, 0.9830508474576272] def test_accuracy(t, clsf=None): '''Get accuracy score for a testset t''' if clsf: cls = clsf else: global cls y = tsets[t][:,0] x = tsets[t][:,1:] x3 = [] for j in x: j = ftrim(j.reshape((32,16)).astype(np.uint8)) x3.append(normalize_and_extract_features(j)) pred = cls.predict(x3) s = 0 for i, p in enumerate(pred): if float(p) == y[i]: s += 1.0 else: pass print 'correct', label_chars[y[i]], '||', label_chars[p], t #, max(cls.predict_proba(x3[i])[0]) score = s / len(y) return score def test_all(clsf=None): '''Run accuracy tests for all testsets''' print 'starting tests. this will take a moment' test_accuracy(keys[0], clsf) test_all = partial(test_accuracy, clsf=clsf) p = Pool() all_samples = p.map(test_all, keys) for t, s in zip(keys, all_samples): print t, s return np.mean(all_samples) if __name__ == '__main__': print test_all()
mit
ephes/scikit-learn
examples/decomposition/plot_pca_vs_lda.py
182
1743
""" ======================================================= Comparison of LDA and PCA 2D projection of Iris dataset ======================================================= The Iris dataset represents 3 kind of Iris flowers (Setosa, Versicolour and Virginica) with 4 attributes: sepal length, sepal width, petal length and petal width. Principal Component Analysis (PCA) applied to this data identifies the combination of attributes (principal components, or directions in the feature space) that account for the most variance in the data. Here we plot the different samples on the 2 first principal components. Linear Discriminant Analysis (LDA) tries to identify attributes that account for the most variance *between classes*. In particular, LDA, in contrast to PCA, is a supervised method, using known class labels. """ print(__doc__) import matplotlib.pyplot as plt from sklearn import datasets from sklearn.decomposition import PCA from sklearn.lda import LDA iris = datasets.load_iris() X = iris.data y = iris.target target_names = iris.target_names pca = PCA(n_components=2) X_r = pca.fit(X).transform(X) lda = LDA(n_components=2) X_r2 = lda.fit(X, y).transform(X) # Percentage of variance explained for each components print('explained variance ratio (first two components): %s' % str(pca.explained_variance_ratio_)) plt.figure() for c, i, target_name in zip("rgb", [0, 1, 2], target_names): plt.scatter(X_r[y == i, 0], X_r[y == i, 1], c=c, label=target_name) plt.legend() plt.title('PCA of IRIS dataset') plt.figure() for c, i, target_name in zip("rgb", [0, 1, 2], target_names): plt.scatter(X_r2[y == i, 0], X_r2[y == i, 1], c=c, label=target_name) plt.legend() plt.title('LDA of IRIS dataset') plt.show()
bsd-3-clause
aguirrea/lucy
tests/lfootGraph.py
1
6007
#! /usr/bin/env python # -*- coding: utf-8 -*- # Andrés Aguirre Dorelo # # MINA/INCO/UDELAR # # module for finding the steps in the tutors # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA import os import glob import ntpath from parser.BvhImport import BvhImport import matplotlib.pyplot as plt from configuration.LoadSystemConfiguration import LoadSystemConfiguration import numpy as np from scipy.signal import argrelextrema from collections import Counter sysConf = LoadSystemConfiguration() BVHDir = os.getcwd() + sysConf.getDirectory("CMU mocap Files") Y_THREADHOLD = 11 #TODO calculate this as the average of the steps_highs X_THREADHOLD = 36 def firstMax(values1, values2): res=0 for i in range(len(values1)-2): if values1[i] < values1[i+1] and values1[i+1] > values1[i+2]: #i+1 is a local maximun if (values1[i] - values2[i]) > THREADHOLD: res=i+1 elif values1[i] < values1[i+1] < values1[i+2]: #i is a local maximun if (values1[i] - values2[i]) > THREADHOLD: res=i return res def find_nearest(a, a0): "Element in nd array `a` closest to the scalar value `a0`" idx = np.abs(a - a0).argmin() return a.flat[idx] for filename in glob.glob(os.path.join(BVHDir, '*.bvh')): print "transforming: " + filename + " ..." parser = BvhImport(filename) x_,y_,z_ = parser.getNodePositionsFromName("lFoot") y1 = [] y2 = [] x1 = [] x2 = [] for key, value in y_.iteritems(): y1.append(value) x1.append(key) x_,y_,z_ = parser.getNodePositionsFromName("rFoot") for key, value in y_.iteritems(): y2.append(value) x2.append(key) maxLfootIndexes = [x for x in argrelextrema(np.array(y1), np.greater)[0]] maxRfootIndexes = [x for x in argrelextrema(np.array(y2), np.greater)[0]] stepsLfootIndexes = [] for i in range(len(maxLfootIndexes)): index = maxLfootIndexes[i] if y1[index] - y2[index] > Y_THREADHOLD: #one foot is up and the other is in the floor if len(stepsLfootIndexes)>0: if abs(index - find_nearest(np.array(stepsLfootIndexes), index) > X_THREADHOLD): #avoid max near an existing point stepsLfootIndexes.append(index) print "appeend L" else: if y1[find_nearest(np.array(stepsLfootIndexes), index)] < y1[index]: #check if the exiting near max is a local maximun print "remove L", find_nearest(np.array(stepsLfootIndexes), index), "from: ", stepsLfootIndexes stepsLfootIndexes.remove(find_nearest(np.array(stepsLfootIndexes), index)) print "remove L" stepsLfootIndexes.append(index) print "appeend L" else: stepsLfootIndexes.append(index) print "appeend L" stepsRfootIndexes = [] for i in range(len(maxRfootIndexes)): index = maxRfootIndexes[i] if y2[index] - y1[index] > Y_THREADHOLD: #one foot is up and the other is in the floor if len(stepsRfootIndexes)>0: if abs(index - find_nearest(np.array(stepsRfootIndexes),index) > X_THREADHOLD): #avoid max near an existing point stepsRfootIndexes.append(index) print "appeend R" else: if y2[find_nearest(np.array(stepsRfootIndexes), index)] < y2[index]: #check if the exiting near max is a local maximun print "remove R", find_nearest(np.array(stepsRfootIndexes), index), "from: ", stepsRfootIndexes, "index: ", index stepsRfootIndexes.remove(find_nearest(np.array(stepsRfootIndexes), index)) print "remove R" stepsRfootIndexes.append(index) print "appeend R" else: stepsRfootIndexes.append(index) print "appeend R" if stepsLfootIndexes[0] < stepsRfootIndexes[0]: if len(stepsLfootIndexes) > 2: testPoint = stepsLfootIndexes[1] while(y1[testPoint]>y2[testPoint]): testPoint = testPoint + 1 end = testPoint + 5 print "red over green| ", "red: ", stepsLfootIndexes[0], "green: ", stepsRfootIndexes[0], "second red: ", stepsLfootIndexes[1], "end: ", end else: end = len(y1) print "red over green| ", "red: ", stepsLfootIndexes[0], "green: ", stepsRfootIndexes[0], "second red: -----", "end: ", end else: if len(stepsRfootIndexes) > 2: testPoint = stepsRfootIndexes[1] while(y2[testPoint]>y1[testPoint]): testPoint = testPoint + 1 end = testPoint + 5 print "green over red| ", "green: ", stepsRfootIndexes[0], "red: ", stepsLfootIndexes[0], "second green: ", stepsRfootIndexes[1], "end: ", end else: end = len(y2) print "green over red| ", "green: ", stepsRfootIndexes[0], "red: ", stepsLfootIndexes[0], "second green: -----", "end: ", end plt.plot(x1, y1,'ro') plt.plot(x1, y2,'g') plt.show()
gpl-3.0
otmaneJai/Zipline
zipline/utils/tradingcalendar_bmf.py
17
7576
# # Copyright 2014 Quantopian, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pandas as pd import pytz from datetime import datetime from dateutil import rrule from zipline.utils.tradingcalendar import end, canonicalize_datetime, \ get_open_and_closes start = pd.Timestamp('1994-01-01', tz='UTC') def get_non_trading_days(start, end): non_trading_rules = [] start = canonicalize_datetime(start) end = canonicalize_datetime(end) weekends = rrule.rrule( rrule.YEARLY, byweekday=(rrule.SA, rrule.SU), cache=True, dtstart=start, until=end ) non_trading_rules.append(weekends) # Universal confraternization conf_universal = rrule.rrule( rrule.MONTHLY, byyearday=1, cache=True, dtstart=start, until=end ) non_trading_rules.append(conf_universal) # Sao Paulo city birthday aniversario_sao_paulo = rrule.rrule( rrule.MONTHLY, bymonth=1, bymonthday=25, cache=True, dtstart=start, until=end ) non_trading_rules.append(aniversario_sao_paulo) # Carnival Monday carnaval_segunda = rrule.rrule( rrule.MONTHLY, byeaster=-48, cache=True, dtstart=start, until=end ) non_trading_rules.append(carnaval_segunda) # Carnival Tuesday carnaval_terca = rrule.rrule( rrule.MONTHLY, byeaster=-47, cache=True, dtstart=start, until=end ) non_trading_rules.append(carnaval_terca) # Passion of the Christ sexta_paixao = rrule.rrule( rrule.MONTHLY, byeaster=-2, cache=True, dtstart=start, until=end ) non_trading_rules.append(sexta_paixao) # Corpus Christi corpus_christi = rrule.rrule( rrule.MONTHLY, byeaster=60, cache=True, dtstart=start, until=end ) non_trading_rules.append(corpus_christi) tiradentes = rrule.rrule( rrule.MONTHLY, bymonth=4, bymonthday=21, cache=True, dtstart=start, until=end ) non_trading_rules.append(tiradentes) # Labor day dia_trabalho = rrule.rrule( rrule.MONTHLY, bymonth=5, bymonthday=1, cache=True, dtstart=start, until=end ) non_trading_rules.append(dia_trabalho) # Constitutionalist Revolution constitucionalista = rrule.rrule( rrule.MONTHLY, bymonth=7, bymonthday=9, cache=True, dtstart=datetime(1997, 1, 1, tzinfo=pytz.utc), until=end ) non_trading_rules.append(constitucionalista) # Independency day independencia = rrule.rrule( rrule.MONTHLY, bymonth=9, bymonthday=7, cache=True, dtstart=start, until=end ) non_trading_rules.append(independencia) # Our Lady of Aparecida aparecida = rrule.rrule( rrule.MONTHLY, bymonth=10, bymonthday=12, cache=True, dtstart=start, until=end ) non_trading_rules.append(aparecida) # All Souls' day finados = rrule.rrule( rrule.MONTHLY, bymonth=11, bymonthday=2, cache=True, dtstart=start, until=end ) non_trading_rules.append(finados) # Proclamation of the Republic proclamacao_republica = rrule.rrule( rrule.MONTHLY, bymonth=11, bymonthday=15, cache=True, dtstart=start, until=end ) non_trading_rules.append(proclamacao_republica) # Day of Black Awareness consciencia_negra = rrule.rrule( rrule.MONTHLY, bymonth=11, bymonthday=20, cache=True, dtstart=datetime(2004, 1, 1, tzinfo=pytz.utc), until=end ) non_trading_rules.append(consciencia_negra) # Christmas Eve vespera_natal = rrule.rrule( rrule.MONTHLY, bymonth=12, bymonthday=24, cache=True, dtstart=start, until=end ) non_trading_rules.append(vespera_natal) # Christmas natal = rrule.rrule( rrule.MONTHLY, bymonth=12, bymonthday=25, cache=True, dtstart=start, until=end ) non_trading_rules.append(natal) # New Year Eve ano_novo = rrule.rrule( rrule.MONTHLY, bymonth=12, bymonthday=31, cache=True, dtstart=start, until=end ) non_trading_rules.append(ano_novo) # New Year Eve on saturday ano_novo_sab = rrule.rrule( rrule.MONTHLY, bymonth=12, bymonthday=30, byweekday=rrule.FR, cache=True, dtstart=start, until=end ) non_trading_rules.append(ano_novo_sab) non_trading_ruleset = rrule.rruleset() for rule in non_trading_rules: non_trading_ruleset.rrule(rule) non_trading_days = non_trading_ruleset.between(start, end, inc=True) # World Cup 2014 Opening non_trading_days.append(datetime(2014, 6, 12, tzinfo=pytz.utc)) non_trading_days.sort() return pd.DatetimeIndex(non_trading_days) non_trading_days = get_non_trading_days(start, end) trading_day = pd.tseries.offsets.CDay(holidays=non_trading_days) def get_trading_days(start, end, trading_day=trading_day): return pd.date_range(start=start.date(), end=end.date(), freq=trading_day).tz_localize('UTC') trading_days = get_trading_days(start, end) # Ash Wednesday quarta_cinzas = rrule.rrule( rrule.MONTHLY, byeaster=-46, cache=True, dtstart=start, until=end ) def get_early_closes(start, end): # TSX closed at 1:00 PM on december 24th. start = canonicalize_datetime(start) end = canonicalize_datetime(end) early_close_rules = [] early_close_rules.append(quarta_cinzas) early_close_ruleset = rrule.rruleset() for rule in early_close_rules: early_close_ruleset.rrule(rule) early_closes = early_close_ruleset.between(start, end, inc=True) early_closes.sort() return pd.DatetimeIndex(early_closes) early_closes = get_early_closes(start, end) def get_open_and_close(day, early_closes): # only "early close" event in Bovespa actually is a late start # as the market only opens at 1pm open_hour = 13 if day in quarta_cinzas else 10 market_open = pd.Timestamp( datetime( year=day.year, month=day.month, day=day.day, hour=open_hour, minute=00), tz='America/Sao_Paulo').tz_convert('UTC') market_close = pd.Timestamp( datetime( year=day.year, month=day.month, day=day.day, hour=16), tz='America/Sao_Paulo').tz_convert('UTC') return market_open, market_close open_and_closes = get_open_and_closes(trading_days, early_closes, get_open_and_close)
apache-2.0
kylerbrown/scikit-learn
examples/feature_selection/plot_rfe_with_cross_validation.py
226
1384
""" =================================================== Recursive feature elimination with cross-validation =================================================== A recursive feature elimination example with automatic tuning of the number of features selected with cross-validation. """ print(__doc__) import matplotlib.pyplot as plt from sklearn.svm import SVC from sklearn.cross_validation import StratifiedKFold from sklearn.feature_selection import RFECV from sklearn.datasets import make_classification # Build a classification task using 3 informative features X, y = make_classification(n_samples=1000, n_features=25, n_informative=3, n_redundant=2, n_repeated=0, n_classes=8, n_clusters_per_class=1, random_state=0) # Create the RFE object and compute a cross-validated score. svc = SVC(kernel="linear") # The "accuracy" scoring is proportional to the number of correct # classifications rfecv = RFECV(estimator=svc, step=1, cv=StratifiedKFold(y, 2), scoring='accuracy') rfecv.fit(X, y) print("Optimal number of features : %d" % rfecv.n_features_) # Plot number of features VS. cross-validation scores plt.figure() plt.xlabel("Number of features selected") plt.ylabel("Cross validation score (nb of correct classifications)") plt.plot(range(1, len(rfecv.grid_scores_) + 1), rfecv.grid_scores_) plt.show()
bsd-3-clause
nasseralkmim/SaPy
sapy/plotter.py
1
4743
import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from mpl_toolkits.mplot3d.art3d import Line3D from matplotlib.lines import Line2D import numpy as np def window(name): return plt.figure(name) def show(): plt.show() return None def undeformed(model): """Plot the undeformed structure according to the dimension """ if model.ndm == 2: undeformed = window('Undeformed') axes = undeformed.add_subplot(111, aspect='equal') geo2d(model.XYZ, model.CON, axes, color='black') label2d(model.XYZ, model.CON, axes) undeformed.tight_layout() if model.ndm == 3: undeformed = window('Undeformed') axes = undeformed.add_subplot(111, projection='3d', aspect='equal') geo3d(model.XYZ, model.CON, axes, 'black') label3d(model.XYZ, model.CON, axes) undeformed.tight_layout() def deformed(model, U): """Plot the deformed structure according to the dimension """ CON = model.CON XYZ = np.copy(model.XYZ) for n in range(model.nn): for d in range(model.ndf[n]): dof = model.DOF[n, d] XYZ[n, d] += U[dof] if model.ndm == 2: deformed = window('Deformed') axes = deformed.add_subplot(111, aspect='equal') geo2d(XYZ, CON, axes, 'tomato') geo2d(model.XYZ, model.CON, axes, 'black') label2d(XYZ, CON, axes) deformed.tight_layout() if model.ndm == 3: deformed = window('Deformed') axes = deformed.add_subplot(111, projection='3d', aspect='equal') geo3d(model.XYZ, model.CON, axes, 'black') geo3d(XYZ, CON, axes, 'tomato') label3d(XYZ, CON, axes) deformed.tight_layout() def geo3d(XYZ, CON, axes, color): """Plot the 3d model """ axes.set_xlabel('x') axes.set_ylabel('y') axes.set_zlabel('z') # draw nodes for node, xyz in enumerate(XYZ): axes.scatter(xyz[0], xyz[1], xyz[2], c='k', alpha=1, marker='s') # draw edges for ele, con in enumerate(CON): xs = [XYZ[con[0]][0], XYZ[con[1]][0]] ys = [XYZ[con[0]][1], XYZ[con[1]][1]] zs = [XYZ[con[0]][2], XYZ[con[1]][2]] line = Line3D(xs, ys, zs, linewidth=1.0, color=color) axes.add_line(line) def label3d(XYZ, CON, axes): """Plot the nodes and element label """ for node, xyz in enumerate(XYZ): axes.text(xyz[0], xyz[1], xyz[2], str(node), color='b', size=10) for ele, con in enumerate(CON): xm = (XYZ[con[0]][0] + XYZ[con[1]][0])/2 ym = (XYZ[con[0]][1] + XYZ[con[1]][1])/2 zm = (XYZ[con[0]][2] + XYZ[con[1]][2])/2 axes.text(xm, ym, zm, str(ele), color='g', size=10) def geo2d(XYZ, CON, axes, color): """Plot the 2d model """ axes.set_xlabel('x') axes.set_ylabel('y') # draw nodes for xyz in XYZ: axes.scatter(xyz[0], xyz[1], c='k', alpha=1, marker='s') # draw edges for con in CON: xs = [XYZ[con[0]][0], XYZ[con[1]][0]] ys = [XYZ[con[0]][1], XYZ[con[1]][1]] line = Line2D(xs, ys, linewidth=1.0, color=color) axes.add_line(line) def label2d(XYZ, CON, axes): """Plot the nodes and element label """ for node, xyz in enumerate(XYZ): axes.text(xyz[0], xyz[1], str(node), color='b', size=10) for ele, con in enumerate(CON): xm = (XYZ[con[0]][0] + XYZ[con[1]][0])/2 ym = (XYZ[con[0]][1] + XYZ[con[1]][1])/2 axes.text(xm, ym, str(ele), color='g', size=10) def axialforce(model, Q): """Plot axial force """ if model.ndm == 2: axial = window('Axial') axes = axial.add_subplot(111, aspect='equal') geo2d(model.XYZ, model.CON, axes, color='black') axial2d(model.XYZ, model.CON, Q, axes) axial.tight_layout() if model.ndm == 3: axial = window('Axial') axes = axial.add_subplot(111, projection='3d', aspect='equal') geo3d(model.XYZ, model.CON, axes, 'black') axial3d(model.XYZ, model.CON, Q, axes) axial.tight_layout() def axial2d(XYZ, CON, Q, axes): """Plot text with axial force value """ for ele, con in enumerate(CON): xm = (XYZ[con[0]][0] + XYZ[con[1]][0])/2 ym = (XYZ[con[0]][1] + XYZ[con[1]][1])/2 axes.text(xm, ym, str(np.round_(Q[ele], 1)), color='g', size=10) def axial3d(XYZ, CON, Q, axes): """Plot text with axial force value for 3d plot """ for ele, con in enumerate(CON): xm = (XYZ[con[0]][0] + XYZ[con[1]][0])/2 ym = (XYZ[con[0]][1] + XYZ[con[1]][1])/2 zm = (XYZ[con[0]][2] + XYZ[con[1]][2])/2 axes.text(xm, ym, zm, str(np.round_(Q[ele], 1)), color='g', size=10)
gpl-3.0
hennersz/pySpace
basemap/doc/users/figures/omerc.py
6
1065
from mpl_toolkits.basemap import Basemap import numpy as np import matplotlib.pyplot as plt # setup oblique mercator basemap. # width is width of map projection region in km (xmax-xmin_ # height is height of map projection region in km (ymax-ymin) # lon_0, lat_0 are the central longitude and latitude of the projection. # lat_1,lon_1 and lat_2,lon_2 are two pairs of points that define # the projection centerline. # Map projection coordinates are automatically rotated to true north. # To avoid this, set no_rot=True. # area_thresh=1000 means don't plot coastline features less # than 1000 km^2 in area. m = Basemap(height=16700000,width=12000000, resolution='l',area_thresh=1000.,projection='omerc',\ lon_0=-100,lat_0=15,lon_2=-120,lat_2=65,lon_1=-50,lat_1=-55) m.drawcoastlines() m.fillcontinents(color='coral',lake_color='aqua') # draw parallels and meridians. m.drawparallels(np.arange(-80.,81.,20.)) m.drawmeridians(np.arange(-180.,181.,20.)) m.drawmapboundary(fill_color='aqua') plt.title("Oblique Mercator Projection") plt.show()
gpl-3.0
jlegendary/scikit-learn
examples/plot_multilabel.py
87
4279
# Authors: Vlad Niculae, Mathieu Blondel # License: BSD 3 clause """ ========================= Multilabel classification ========================= This example simulates a multi-label document classification problem. The dataset is generated randomly based on the following process: - pick the number of labels: n ~ Poisson(n_labels) - n times, choose a class c: c ~ Multinomial(theta) - pick the document length: k ~ Poisson(length) - k times, choose a word: w ~ Multinomial(theta_c) In the above process, rejection sampling is used to make sure that n is more than 2, and that the document length is never zero. Likewise, we reject classes which have already been chosen. The documents that are assigned to both classes are plotted surrounded by two colored circles. The classification is performed by projecting to the first two principal components found by PCA and CCA for visualisation purposes, followed by using the :class:`sklearn.multiclass.OneVsRestClassifier` metaclassifier using two SVCs with linear kernels to learn a discriminative model for each class. Note that PCA is used to perform an unsupervised dimensionality reduction, while CCA is used to perform a supervised one. Note: in the plot, "unlabeled samples" does not mean that we don't know the labels (as in semi-supervised learning) but that the samples simply do *not* have a label. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import make_multilabel_classification from sklearn.multiclass import OneVsRestClassifier from sklearn.svm import SVC from sklearn.preprocessing import LabelBinarizer from sklearn.decomposition import PCA from sklearn.cross_decomposition import CCA def plot_hyperplane(clf, min_x, max_x, linestyle, label): # get the separating hyperplane w = clf.coef_[0] a = -w[0] / w[1] xx = np.linspace(min_x - 5, max_x + 5) # make sure the line is long enough yy = a * xx - (clf.intercept_[0]) / w[1] plt.plot(xx, yy, linestyle, label=label) def plot_subfigure(X, Y, subplot, title, transform): if transform == "pca": X = PCA(n_components=2).fit_transform(X) elif transform == "cca": X = CCA(n_components=2).fit(X, Y).transform(X) else: raise ValueError min_x = np.min(X[:, 0]) max_x = np.max(X[:, 0]) min_y = np.min(X[:, 1]) max_y = np.max(X[:, 1]) classif = OneVsRestClassifier(SVC(kernel='linear')) classif.fit(X, Y) plt.subplot(2, 2, subplot) plt.title(title) zero_class = np.where(Y[:, 0]) one_class = np.where(Y[:, 1]) plt.scatter(X[:, 0], X[:, 1], s=40, c='gray') plt.scatter(X[zero_class, 0], X[zero_class, 1], s=160, edgecolors='b', facecolors='none', linewidths=2, label='Class 1') plt.scatter(X[one_class, 0], X[one_class, 1], s=80, edgecolors='orange', facecolors='none', linewidths=2, label='Class 2') plot_hyperplane(classif.estimators_[0], min_x, max_x, 'k--', 'Boundary\nfor class 1') plot_hyperplane(classif.estimators_[1], min_x, max_x, 'k-.', 'Boundary\nfor class 2') plt.xticks(()) plt.yticks(()) plt.xlim(min_x - .5 * max_x, max_x + .5 * max_x) plt.ylim(min_y - .5 * max_y, max_y + .5 * max_y) if subplot == 2: plt.xlabel('First principal component') plt.ylabel('Second principal component') plt.legend(loc="upper left") plt.figure(figsize=(8, 6)) X, Y = make_multilabel_classification(n_classes=2, n_labels=1, allow_unlabeled=True, return_indicator=True, random_state=1) plot_subfigure(X, Y, 1, "With unlabeled samples + CCA", "cca") plot_subfigure(X, Y, 2, "With unlabeled samples + PCA", "pca") X, Y = make_multilabel_classification(n_classes=2, n_labels=1, allow_unlabeled=False, return_indicator=True, random_state=1) plot_subfigure(X, Y, 3, "Without unlabeled samples + CCA", "cca") plot_subfigure(X, Y, 4, "Without unlabeled samples + PCA", "pca") plt.subplots_adjust(.04, .02, .97, .94, .09, .2) plt.show()
bsd-3-clause
ephes/scikit-learn
sklearn/decomposition/dict_learning.py
83
44062
""" Dictionary learning """ from __future__ import print_function # Author: Vlad Niculae, Gael Varoquaux, Alexandre Gramfort # License: BSD 3 clause import time import sys import itertools from math import sqrt, ceil import numpy as np from scipy import linalg from numpy.lib.stride_tricks import as_strided from ..base import BaseEstimator, TransformerMixin from ..externals.joblib import Parallel, delayed, cpu_count from ..externals.six.moves import zip from ..utils import (check_array, check_random_state, gen_even_slices, gen_batches, _get_n_jobs) from ..utils.extmath import randomized_svd, row_norms from ..utils.validation import check_is_fitted from ..linear_model import Lasso, orthogonal_mp_gram, LassoLars, Lars def _sparse_encode(X, dictionary, gram, cov=None, algorithm='lasso_lars', regularization=None, copy_cov=True, init=None, max_iter=1000): """Generic sparse coding Each column of the result is the solution to a Lasso problem. Parameters ---------- X: array of shape (n_samples, n_features) Data matrix. dictionary: array of shape (n_components, n_features) The dictionary matrix against which to solve the sparse coding of the data. Some of the algorithms assume normalized rows. gram: None | array, shape=(n_components, n_components) Precomputed Gram matrix, dictionary * dictionary' gram can be None if method is 'threshold'. cov: array, shape=(n_components, n_samples) Precomputed covariance, dictionary * X' algorithm: {'lasso_lars', 'lasso_cd', 'lars', 'omp', 'threshold'} lars: uses the least angle regression method (linear_model.lars_path) lasso_lars: uses Lars to compute the Lasso solution lasso_cd: uses the coordinate descent method to compute the Lasso solution (linear_model.Lasso). lasso_lars will be faster if the estimated components are sparse. omp: uses orthogonal matching pursuit to estimate the sparse solution threshold: squashes to zero all coefficients less than regularization from the projection dictionary * data' regularization : int | float The regularization parameter. It corresponds to alpha when algorithm is 'lasso_lars', 'lasso_cd' or 'threshold'. Otherwise it corresponds to n_nonzero_coefs. init: array of shape (n_samples, n_components) Initialization value of the sparse code. Only used if `algorithm='lasso_cd'`. max_iter: int, 1000 by default Maximum number of iterations to perform if `algorithm='lasso_cd'`. copy_cov: boolean, optional Whether to copy the precomputed covariance matrix; if False, it may be overwritten. Returns ------- code: array of shape (n_components, n_features) The sparse codes See also -------- sklearn.linear_model.lars_path sklearn.linear_model.orthogonal_mp sklearn.linear_model.Lasso SparseCoder """ if X.ndim == 1: X = X[:, np.newaxis] n_samples, n_features = X.shape if cov is None and algorithm != 'lasso_cd': # overwriting cov is safe copy_cov = False cov = np.dot(dictionary, X.T) if algorithm == 'lasso_lars': alpha = float(regularization) / n_features # account for scaling try: err_mgt = np.seterr(all='ignore') lasso_lars = LassoLars(alpha=alpha, fit_intercept=False, verbose=False, normalize=False, precompute=gram, fit_path=False) lasso_lars.fit(dictionary.T, X.T, Xy=cov) new_code = lasso_lars.coef_ finally: np.seterr(**err_mgt) elif algorithm == 'lasso_cd': alpha = float(regularization) / n_features # account for scaling clf = Lasso(alpha=alpha, fit_intercept=False, precompute=gram, max_iter=max_iter, warm_start=True) clf.coef_ = init clf.fit(dictionary.T, X.T) new_code = clf.coef_ elif algorithm == 'lars': try: err_mgt = np.seterr(all='ignore') lars = Lars(fit_intercept=False, verbose=False, normalize=False, precompute=gram, n_nonzero_coefs=int(regularization), fit_path=False) lars.fit(dictionary.T, X.T, Xy=cov) new_code = lars.coef_ finally: np.seterr(**err_mgt) elif algorithm == 'threshold': new_code = ((np.sign(cov) * np.maximum(np.abs(cov) - regularization, 0)).T) elif algorithm == 'omp': new_code = orthogonal_mp_gram(gram, cov, regularization, None, row_norms(X, squared=True), copy_Xy=copy_cov).T else: raise ValueError('Sparse coding method must be "lasso_lars" ' '"lasso_cd", "lasso", "threshold" or "omp", got %s.' % algorithm) return new_code # XXX : could be moved to the linear_model module def sparse_encode(X, dictionary, gram=None, cov=None, algorithm='lasso_lars', n_nonzero_coefs=None, alpha=None, copy_cov=True, init=None, max_iter=1000, n_jobs=1): """Sparse coding Each row of the result is the solution to a sparse coding problem. The goal is to find a sparse array `code` such that:: X ~= code * dictionary Read more in the :ref:`User Guide <SparseCoder>`. Parameters ---------- X: array of shape (n_samples, n_features) Data matrix dictionary: array of shape (n_components, n_features) The dictionary matrix against which to solve the sparse coding of the data. Some of the algorithms assume normalized rows for meaningful output. gram: array, shape=(n_components, n_components) Precomputed Gram matrix, dictionary * dictionary' cov: array, shape=(n_components, n_samples) Precomputed covariance, dictionary' * X algorithm: {'lasso_lars', 'lasso_cd', 'lars', 'omp', 'threshold'} lars: uses the least angle regression method (linear_model.lars_path) lasso_lars: uses Lars to compute the Lasso solution lasso_cd: uses the coordinate descent method to compute the Lasso solution (linear_model.Lasso). lasso_lars will be faster if the estimated components are sparse. omp: uses orthogonal matching pursuit to estimate the sparse solution threshold: squashes to zero all coefficients less than alpha from the projection dictionary * X' n_nonzero_coefs: int, 0.1 * n_features by default Number of nonzero coefficients to target in each column of the solution. This is only used by `algorithm='lars'` and `algorithm='omp'` and is overridden by `alpha` in the `omp` case. alpha: float, 1. by default If `algorithm='lasso_lars'` or `algorithm='lasso_cd'`, `alpha` is the penalty applied to the L1 norm. If `algorithm='threhold'`, `alpha` is the absolute value of the threshold below which coefficients will be squashed to zero. If `algorithm='omp'`, `alpha` is the tolerance parameter: the value of the reconstruction error targeted. In this case, it overrides `n_nonzero_coefs`. init: array of shape (n_samples, n_components) Initialization value of the sparse codes. Only used if `algorithm='lasso_cd'`. max_iter: int, 1000 by default Maximum number of iterations to perform if `algorithm='lasso_cd'`. copy_cov: boolean, optional Whether to copy the precomputed covariance matrix; if False, it may be overwritten. n_jobs: int, optional Number of parallel jobs to run. Returns ------- code: array of shape (n_samples, n_components) The sparse codes See also -------- sklearn.linear_model.lars_path sklearn.linear_model.orthogonal_mp sklearn.linear_model.Lasso SparseCoder """ dictionary = check_array(dictionary) X = check_array(X) n_samples, n_features = X.shape n_components = dictionary.shape[0] if gram is None and algorithm != 'threshold': gram = np.dot(dictionary, dictionary.T) if cov is None: copy_cov = False cov = np.dot(dictionary, X.T) if algorithm in ('lars', 'omp'): regularization = n_nonzero_coefs if regularization is None: regularization = min(max(n_features / 10, 1), n_components) else: regularization = alpha if regularization is None: regularization = 1. if n_jobs == 1 or algorithm == 'threshold': return _sparse_encode(X, dictionary, gram, cov=cov, algorithm=algorithm, regularization=regularization, copy_cov=copy_cov, init=init, max_iter=max_iter) # Enter parallel code block code = np.empty((n_samples, n_components)) slices = list(gen_even_slices(n_samples, _get_n_jobs(n_jobs))) code_views = Parallel(n_jobs=n_jobs)( delayed(_sparse_encode)( X[this_slice], dictionary, gram, cov[:, this_slice], algorithm, regularization=regularization, copy_cov=copy_cov, init=init[this_slice] if init is not None else None, max_iter=max_iter) for this_slice in slices) for this_slice, this_view in zip(slices, code_views): code[this_slice] = this_view return code def _update_dict(dictionary, Y, code, verbose=False, return_r2=False, random_state=None): """Update the dense dictionary factor in place. Parameters ---------- dictionary: array of shape (n_features, n_components) Value of the dictionary at the previous iteration. Y: array of shape (n_features, n_samples) Data matrix. code: array of shape (n_components, n_samples) Sparse coding of the data against which to optimize the dictionary. verbose: Degree of output the procedure will print. return_r2: bool Whether to compute and return the residual sum of squares corresponding to the computed solution. random_state: int or RandomState Pseudo number generator state used for random sampling. Returns ------- dictionary: array of shape (n_features, n_components) Updated dictionary. """ n_components = len(code) n_samples = Y.shape[0] random_state = check_random_state(random_state) # Residuals, computed 'in-place' for efficiency R = -np.dot(dictionary, code) R += Y R = np.asfortranarray(R) ger, = linalg.get_blas_funcs(('ger',), (dictionary, code)) for k in range(n_components): # R <- 1.0 * U_k * V_k^T + R R = ger(1.0, dictionary[:, k], code[k, :], a=R, overwrite_a=True) dictionary[:, k] = np.dot(R, code[k, :].T) # Scale k'th atom atom_norm_square = np.dot(dictionary[:, k], dictionary[:, k]) if atom_norm_square < 1e-20: if verbose == 1: sys.stdout.write("+") sys.stdout.flush() elif verbose: print("Adding new random atom") dictionary[:, k] = random_state.randn(n_samples) # Setting corresponding coefs to 0 code[k, :] = 0.0 dictionary[:, k] /= sqrt(np.dot(dictionary[:, k], dictionary[:, k])) else: dictionary[:, k] /= sqrt(atom_norm_square) # R <- -1.0 * U_k * V_k^T + R R = ger(-1.0, dictionary[:, k], code[k, :], a=R, overwrite_a=True) if return_r2: R **= 2 # R is fortran-ordered. For numpy version < 1.6, sum does not # follow the quick striding first, and is thus inefficient on # fortran ordered data. We take a flat view of the data with no # striding R = as_strided(R, shape=(R.size, ), strides=(R.dtype.itemsize,)) R = np.sum(R) return dictionary, R return dictionary def dict_learning(X, n_components, alpha, max_iter=100, tol=1e-8, method='lars', n_jobs=1, dict_init=None, code_init=None, callback=None, verbose=False, random_state=None, return_n_iter=False): """Solves a dictionary learning matrix factorization problem. Finds the best dictionary and the corresponding sparse code for approximating the data matrix X by solving:: (U^*, V^*) = argmin 0.5 || X - U V ||_2^2 + alpha * || U ||_1 (U,V) with || V_k ||_2 = 1 for all 0 <= k < n_components where V is the dictionary and U is the sparse code. Read more in the :ref:`User Guide <DictionaryLearning>`. Parameters ---------- X: array of shape (n_samples, n_features) Data matrix. n_components: int, Number of dictionary atoms to extract. alpha: int, Sparsity controlling parameter. max_iter: int, Maximum number of iterations to perform. tol: float, Tolerance for the stopping condition. method: {'lars', 'cd'} lars: uses the least angle regression method to solve the lasso problem (linear_model.lars_path) cd: uses the coordinate descent method to compute the Lasso solution (linear_model.Lasso). Lars will be faster if the estimated components are sparse. n_jobs: int, Number of parallel jobs to run, or -1 to autodetect. dict_init: array of shape (n_components, n_features), Initial value for the dictionary for warm restart scenarios. code_init: array of shape (n_samples, n_components), Initial value for the sparse code for warm restart scenarios. callback: Callable that gets invoked every five iterations. verbose: Degree of output the procedure will print. random_state: int or RandomState Pseudo number generator state used for random sampling. return_n_iter : bool Whether or not to return the number of iterations. Returns ------- code: array of shape (n_samples, n_components) The sparse code factor in the matrix factorization. dictionary: array of shape (n_components, n_features), The dictionary factor in the matrix factorization. errors: array Vector of errors at each iteration. n_iter : int Number of iterations run. Returned only if `return_n_iter` is set to True. See also -------- dict_learning_online DictionaryLearning MiniBatchDictionaryLearning SparsePCA MiniBatchSparsePCA """ if method not in ('lars', 'cd'): raise ValueError('Coding method %r not supported as a fit algorithm.' % method) method = 'lasso_' + method t0 = time.time() # Avoid integer division problems alpha = float(alpha) random_state = check_random_state(random_state) if n_jobs == -1: n_jobs = cpu_count() # Init the code and the dictionary with SVD of Y if code_init is not None and dict_init is not None: code = np.array(code_init, order='F') # Don't copy V, it will happen below dictionary = dict_init else: code, S, dictionary = linalg.svd(X, full_matrices=False) dictionary = S[:, np.newaxis] * dictionary r = len(dictionary) if n_components <= r: # True even if n_components=None code = code[:, :n_components] dictionary = dictionary[:n_components, :] else: code = np.c_[code, np.zeros((len(code), n_components - r))] dictionary = np.r_[dictionary, np.zeros((n_components - r, dictionary.shape[1]))] # Fortran-order dict, as we are going to access its row vectors dictionary = np.array(dictionary, order='F') residuals = 0 errors = [] current_cost = np.nan if verbose == 1: print('[dict_learning]', end=' ') # If max_iter is 0, number of iterations returned should be zero ii = -1 for ii in range(max_iter): dt = (time.time() - t0) if verbose == 1: sys.stdout.write(".") sys.stdout.flush() elif verbose: print ("Iteration % 3i " "(elapsed time: % 3is, % 4.1fmn, current cost % 7.3f)" % (ii, dt, dt / 60, current_cost)) # Update code code = sparse_encode(X, dictionary, algorithm=method, alpha=alpha, init=code, n_jobs=n_jobs) # Update dictionary dictionary, residuals = _update_dict(dictionary.T, X.T, code.T, verbose=verbose, return_r2=True, random_state=random_state) dictionary = dictionary.T # Cost function current_cost = 0.5 * residuals + alpha * np.sum(np.abs(code)) errors.append(current_cost) if ii > 0: dE = errors[-2] - errors[-1] # assert(dE >= -tol * errors[-1]) if dE < tol * errors[-1]: if verbose == 1: # A line return print("") elif verbose: print("--- Convergence reached after %d iterations" % ii) break if ii % 5 == 0 and callback is not None: callback(locals()) if return_n_iter: return code, dictionary, errors, ii + 1 else: return code, dictionary, errors def dict_learning_online(X, n_components=2, alpha=1, n_iter=100, return_code=True, dict_init=None, callback=None, batch_size=3, verbose=False, shuffle=True, n_jobs=1, method='lars', iter_offset=0, random_state=None, return_inner_stats=False, inner_stats=None, return_n_iter=False): """Solves a dictionary learning matrix factorization problem online. Finds the best dictionary and the corresponding sparse code for approximating the data matrix X by solving:: (U^*, V^*) = argmin 0.5 || X - U V ||_2^2 + alpha * || U ||_1 (U,V) with || V_k ||_2 = 1 for all 0 <= k < n_components where V is the dictionary and U is the sparse code. This is accomplished by repeatedly iterating over mini-batches by slicing the input data. Read more in the :ref:`User Guide <DictionaryLearning>`. Parameters ---------- X: array of shape (n_samples, n_features) Data matrix. n_components : int, Number of dictionary atoms to extract. alpha : float, Sparsity controlling parameter. n_iter : int, Number of iterations to perform. return_code : boolean, Whether to also return the code U or just the dictionary V. dict_init : array of shape (n_components, n_features), Initial value for the dictionary for warm restart scenarios. callback : Callable that gets invoked every five iterations. batch_size : int, The number of samples to take in each batch. verbose : Degree of output the procedure will print. shuffle : boolean, Whether to shuffle the data before splitting it in batches. n_jobs : int, Number of parallel jobs to run, or -1 to autodetect. method : {'lars', 'cd'} lars: uses the least angle regression method to solve the lasso problem (linear_model.lars_path) cd: uses the coordinate descent method to compute the Lasso solution (linear_model.Lasso). Lars will be faster if the estimated components are sparse. iter_offset : int, default 0 Number of previous iterations completed on the dictionary used for initialization. random_state : int or RandomState Pseudo number generator state used for random sampling. return_inner_stats : boolean, optional Return the inner statistics A (dictionary covariance) and B (data approximation). Useful to restart the algorithm in an online setting. If return_inner_stats is True, return_code is ignored inner_stats : tuple of (A, B) ndarrays Inner sufficient statistics that are kept by the algorithm. Passing them at initialization is useful in online settings, to avoid loosing the history of the evolution. A (n_components, n_components) is the dictionary covariance matrix. B (n_features, n_components) is the data approximation matrix return_n_iter : bool Whether or not to return the number of iterations. Returns ------- code : array of shape (n_samples, n_components), the sparse code (only returned if `return_code=True`) dictionary : array of shape (n_components, n_features), the solutions to the dictionary learning problem n_iter : int Number of iterations run. Returned only if `return_n_iter` is set to `True`. See also -------- dict_learning DictionaryLearning MiniBatchDictionaryLearning SparsePCA MiniBatchSparsePCA """ if n_components is None: n_components = X.shape[1] if method not in ('lars', 'cd'): raise ValueError('Coding method not supported as a fit algorithm.') method = 'lasso_' + method t0 = time.time() n_samples, n_features = X.shape # Avoid integer division problems alpha = float(alpha) random_state = check_random_state(random_state) if n_jobs == -1: n_jobs = cpu_count() # Init V with SVD of X if dict_init is not None: dictionary = dict_init else: _, S, dictionary = randomized_svd(X, n_components, random_state=random_state) dictionary = S[:, np.newaxis] * dictionary r = len(dictionary) if n_components <= r: dictionary = dictionary[:n_components, :] else: dictionary = np.r_[dictionary, np.zeros((n_components - r, dictionary.shape[1]))] dictionary = np.ascontiguousarray(dictionary.T) if verbose == 1: print('[dict_learning]', end=' ') if shuffle: X_train = X.copy() random_state.shuffle(X_train) else: X_train = X batches = gen_batches(n_samples, batch_size) batches = itertools.cycle(batches) # The covariance of the dictionary if inner_stats is None: A = np.zeros((n_components, n_components)) # The data approximation B = np.zeros((n_features, n_components)) else: A = inner_stats[0].copy() B = inner_stats[1].copy() # If n_iter is zero, we need to return zero. ii = iter_offset - 1 for ii, batch in zip(range(iter_offset, iter_offset + n_iter), batches): this_X = X_train[batch] dt = (time.time() - t0) if verbose == 1: sys.stdout.write(".") sys.stdout.flush() elif verbose: if verbose > 10 or ii % ceil(100. / verbose) == 0: print ("Iteration % 3i (elapsed time: % 3is, % 4.1fmn)" % (ii, dt, dt / 60)) this_code = sparse_encode(this_X, dictionary.T, algorithm=method, alpha=alpha, n_jobs=n_jobs).T # Update the auxiliary variables if ii < batch_size - 1: theta = float((ii + 1) * batch_size) else: theta = float(batch_size ** 2 + ii + 1 - batch_size) beta = (theta + 1 - batch_size) / (theta + 1) A *= beta A += np.dot(this_code, this_code.T) B *= beta B += np.dot(this_X.T, this_code.T) # Update dictionary dictionary = _update_dict(dictionary, B, A, verbose=verbose, random_state=random_state) # XXX: Can the residuals be of any use? # Maybe we need a stopping criteria based on the amount of # modification in the dictionary if callback is not None: callback(locals()) if return_inner_stats: if return_n_iter: return dictionary.T, (A, B), ii - iter_offset + 1 else: return dictionary.T, (A, B) if return_code: if verbose > 1: print('Learning code...', end=' ') elif verbose == 1: print('|', end=' ') code = sparse_encode(X, dictionary.T, algorithm=method, alpha=alpha, n_jobs=n_jobs) if verbose > 1: dt = (time.time() - t0) print('done (total time: % 3is, % 4.1fmn)' % (dt, dt / 60)) if return_n_iter: return code, dictionary.T, ii - iter_offset + 1 else: return code, dictionary.T if return_n_iter: return dictionary.T, ii - iter_offset + 1 else: return dictionary.T class SparseCodingMixin(TransformerMixin): """Sparse coding mixin""" def _set_sparse_coding_params(self, n_components, transform_algorithm='omp', transform_n_nonzero_coefs=None, transform_alpha=None, split_sign=False, n_jobs=1): self.n_components = n_components self.transform_algorithm = transform_algorithm self.transform_n_nonzero_coefs = transform_n_nonzero_coefs self.transform_alpha = transform_alpha self.split_sign = split_sign self.n_jobs = n_jobs def transform(self, X, y=None): """Encode the data as a sparse combination of the dictionary atoms. Coding method is determined by the object parameter `transform_algorithm`. Parameters ---------- X : array of shape (n_samples, n_features) Test data to be transformed, must have the same number of features as the data used to train the model. Returns ------- X_new : array, shape (n_samples, n_components) Transformed data """ check_is_fitted(self, 'components_') # XXX : kwargs is not documented X = check_array(X) n_samples, n_features = X.shape code = sparse_encode( X, self.components_, algorithm=self.transform_algorithm, n_nonzero_coefs=self.transform_n_nonzero_coefs, alpha=self.transform_alpha, n_jobs=self.n_jobs) if self.split_sign: # feature vector is split into a positive and negative side n_samples, n_features = code.shape split_code = np.empty((n_samples, 2 * n_features)) split_code[:, :n_features] = np.maximum(code, 0) split_code[:, n_features:] = -np.minimum(code, 0) code = split_code return code class SparseCoder(BaseEstimator, SparseCodingMixin): """Sparse coding Finds a sparse representation of data against a fixed, precomputed dictionary. Each row of the result is the solution to a sparse coding problem. The goal is to find a sparse array `code` such that:: X ~= code * dictionary Read more in the :ref:`User Guide <SparseCoder>`. Parameters ---------- dictionary : array, [n_components, n_features] The dictionary atoms used for sparse coding. Lines are assumed to be normalized to unit norm. transform_algorithm : {'lasso_lars', 'lasso_cd', 'lars', 'omp', \ 'threshold'} Algorithm used to transform the data: lars: uses the least angle regression method (linear_model.lars_path) lasso_lars: uses Lars to compute the Lasso solution lasso_cd: uses the coordinate descent method to compute the Lasso solution (linear_model.Lasso). lasso_lars will be faster if the estimated components are sparse. omp: uses orthogonal matching pursuit to estimate the sparse solution threshold: squashes to zero all coefficients less than alpha from the projection ``dictionary * X'`` transform_n_nonzero_coefs : int, ``0.1 * n_features`` by default Number of nonzero coefficients to target in each column of the solution. This is only used by `algorithm='lars'` and `algorithm='omp'` and is overridden by `alpha` in the `omp` case. transform_alpha : float, 1. by default If `algorithm='lasso_lars'` or `algorithm='lasso_cd'`, `alpha` is the penalty applied to the L1 norm. If `algorithm='threshold'`, `alpha` is the absolute value of the threshold below which coefficients will be squashed to zero. If `algorithm='omp'`, `alpha` is the tolerance parameter: the value of the reconstruction error targeted. In this case, it overrides `n_nonzero_coefs`. split_sign : bool, False by default Whether to split the sparse feature vector into the concatenation of its negative part and its positive part. This can improve the performance of downstream classifiers. n_jobs : int, number of parallel jobs to run Attributes ---------- components_ : array, [n_components, n_features] The unchanged dictionary atoms See also -------- DictionaryLearning MiniBatchDictionaryLearning SparsePCA MiniBatchSparsePCA sparse_encode """ def __init__(self, dictionary, transform_algorithm='omp', transform_n_nonzero_coefs=None, transform_alpha=None, split_sign=False, n_jobs=1): self._set_sparse_coding_params(dictionary.shape[0], transform_algorithm, transform_n_nonzero_coefs, transform_alpha, split_sign, n_jobs) self.components_ = dictionary def fit(self, X, y=None): """Do nothing and return the estimator unchanged This method is just there to implement the usual API and hence work in pipelines. """ return self class DictionaryLearning(BaseEstimator, SparseCodingMixin): """Dictionary learning Finds a dictionary (a set of atoms) that can best be used to represent data using a sparse code. Solves the optimization problem:: (U^*,V^*) = argmin 0.5 || Y - U V ||_2^2 + alpha * || U ||_1 (U,V) with || V_k ||_2 = 1 for all 0 <= k < n_components Read more in the :ref:`User Guide <DictionaryLearning>`. Parameters ---------- n_components : int, number of dictionary elements to extract alpha : float, sparsity controlling parameter max_iter : int, maximum number of iterations to perform tol : float, tolerance for numerical error fit_algorithm : {'lars', 'cd'} lars: uses the least angle regression method to solve the lasso problem (linear_model.lars_path) cd: uses the coordinate descent method to compute the Lasso solution (linear_model.Lasso). Lars will be faster if the estimated components are sparse. transform_algorithm : {'lasso_lars', 'lasso_cd', 'lars', 'omp', \ 'threshold'} Algorithm used to transform the data lars: uses the least angle regression method (linear_model.lars_path) lasso_lars: uses Lars to compute the Lasso solution lasso_cd: uses the coordinate descent method to compute the Lasso solution (linear_model.Lasso). lasso_lars will be faster if the estimated components are sparse. omp: uses orthogonal matching pursuit to estimate the sparse solution threshold: squashes to zero all coefficients less than alpha from the projection ``dictionary * X'`` transform_n_nonzero_coefs : int, ``0.1 * n_features`` by default Number of nonzero coefficients to target in each column of the solution. This is only used by `algorithm='lars'` and `algorithm='omp'` and is overridden by `alpha` in the `omp` case. transform_alpha : float, 1. by default If `algorithm='lasso_lars'` or `algorithm='lasso_cd'`, `alpha` is the penalty applied to the L1 norm. If `algorithm='threshold'`, `alpha` is the absolute value of the threshold below which coefficients will be squashed to zero. If `algorithm='omp'`, `alpha` is the tolerance parameter: the value of the reconstruction error targeted. In this case, it overrides `n_nonzero_coefs`. split_sign : bool, False by default Whether to split the sparse feature vector into the concatenation of its negative part and its positive part. This can improve the performance of downstream classifiers. n_jobs : int, number of parallel jobs to run code_init : array of shape (n_samples, n_components), initial value for the code, for warm restart dict_init : array of shape (n_components, n_features), initial values for the dictionary, for warm restart verbose : degree of verbosity of the printed output random_state : int or RandomState Pseudo number generator state used for random sampling. Attributes ---------- components_ : array, [n_components, n_features] dictionary atoms extracted from the data error_ : array vector of errors at each iteration n_iter_ : int Number of iterations run. Notes ----- **References:** J. Mairal, F. Bach, J. Ponce, G. Sapiro, 2009: Online dictionary learning for sparse coding (http://www.di.ens.fr/sierra/pdfs/icml09.pdf) See also -------- SparseCoder MiniBatchDictionaryLearning SparsePCA MiniBatchSparsePCA """ def __init__(self, n_components=None, alpha=1, max_iter=1000, tol=1e-8, fit_algorithm='lars', transform_algorithm='omp', transform_n_nonzero_coefs=None, transform_alpha=None, n_jobs=1, code_init=None, dict_init=None, verbose=False, split_sign=False, random_state=None): self._set_sparse_coding_params(n_components, transform_algorithm, transform_n_nonzero_coefs, transform_alpha, split_sign, n_jobs) self.alpha = alpha self.max_iter = max_iter self.tol = tol self.fit_algorithm = fit_algorithm self.code_init = code_init self.dict_init = dict_init self.verbose = verbose self.random_state = random_state def fit(self, X, y=None): """Fit the model from data in X. Parameters ---------- X: array-like, shape (n_samples, n_features) Training vector, where n_samples in the number of samples and n_features is the number of features. Returns ------- self: object Returns the object itself """ random_state = check_random_state(self.random_state) X = check_array(X) if self.n_components is None: n_components = X.shape[1] else: n_components = self.n_components V, U, E, self.n_iter_ = dict_learning( X, n_components, self.alpha, tol=self.tol, max_iter=self.max_iter, method=self.fit_algorithm, n_jobs=self.n_jobs, code_init=self.code_init, dict_init=self.dict_init, verbose=self.verbose, random_state=random_state, return_n_iter=True) self.components_ = U self.error_ = E return self class MiniBatchDictionaryLearning(BaseEstimator, SparseCodingMixin): """Mini-batch dictionary learning Finds a dictionary (a set of atoms) that can best be used to represent data using a sparse code. Solves the optimization problem:: (U^*,V^*) = argmin 0.5 || Y - U V ||_2^2 + alpha * || U ||_1 (U,V) with || V_k ||_2 = 1 for all 0 <= k < n_components Read more in the :ref:`User Guide <DictionaryLearning>`. Parameters ---------- n_components : int, number of dictionary elements to extract alpha : float, sparsity controlling parameter n_iter : int, total number of iterations to perform fit_algorithm : {'lars', 'cd'} lars: uses the least angle regression method to solve the lasso problem (linear_model.lars_path) cd: uses the coordinate descent method to compute the Lasso solution (linear_model.Lasso). Lars will be faster if the estimated components are sparse. transform_algorithm : {'lasso_lars', 'lasso_cd', 'lars', 'omp', \ 'threshold'} Algorithm used to transform the data. lars: uses the least angle regression method (linear_model.lars_path) lasso_lars: uses Lars to compute the Lasso solution lasso_cd: uses the coordinate descent method to compute the Lasso solution (linear_model.Lasso). lasso_lars will be faster if the estimated components are sparse. omp: uses orthogonal matching pursuit to estimate the sparse solution threshold: squashes to zero all coefficients less than alpha from the projection dictionary * X' transform_n_nonzero_coefs : int, ``0.1 * n_features`` by default Number of nonzero coefficients to target in each column of the solution. This is only used by `algorithm='lars'` and `algorithm='omp'` and is overridden by `alpha` in the `omp` case. transform_alpha : float, 1. by default If `algorithm='lasso_lars'` or `algorithm='lasso_cd'`, `alpha` is the penalty applied to the L1 norm. If `algorithm='threshold'`, `alpha` is the absolute value of the threshold below which coefficients will be squashed to zero. If `algorithm='omp'`, `alpha` is the tolerance parameter: the value of the reconstruction error targeted. In this case, it overrides `n_nonzero_coefs`. split_sign : bool, False by default Whether to split the sparse feature vector into the concatenation of its negative part and its positive part. This can improve the performance of downstream classifiers. n_jobs : int, number of parallel jobs to run dict_init : array of shape (n_components, n_features), initial value of the dictionary for warm restart scenarios verbose : degree of verbosity of the printed output batch_size : int, number of samples in each mini-batch shuffle : bool, whether to shuffle the samples before forming batches random_state : int or RandomState Pseudo number generator state used for random sampling. Attributes ---------- components_ : array, [n_components, n_features] components extracted from the data inner_stats_ : tuple of (A, B) ndarrays Internal sufficient statistics that are kept by the algorithm. Keeping them is useful in online settings, to avoid loosing the history of the evolution, but they shouldn't have any use for the end user. A (n_components, n_components) is the dictionary covariance matrix. B (n_features, n_components) is the data approximation matrix n_iter_ : int Number of iterations run. Notes ----- **References:** J. Mairal, F. Bach, J. Ponce, G. Sapiro, 2009: Online dictionary learning for sparse coding (http://www.di.ens.fr/sierra/pdfs/icml09.pdf) See also -------- SparseCoder DictionaryLearning SparsePCA MiniBatchSparsePCA """ def __init__(self, n_components=None, alpha=1, n_iter=1000, fit_algorithm='lars', n_jobs=1, batch_size=3, shuffle=True, dict_init=None, transform_algorithm='omp', transform_n_nonzero_coefs=None, transform_alpha=None, verbose=False, split_sign=False, random_state=None): self._set_sparse_coding_params(n_components, transform_algorithm, transform_n_nonzero_coefs, transform_alpha, split_sign, n_jobs) self.alpha = alpha self.n_iter = n_iter self.fit_algorithm = fit_algorithm self.dict_init = dict_init self.verbose = verbose self.shuffle = shuffle self.batch_size = batch_size self.split_sign = split_sign self.random_state = random_state def fit(self, X, y=None): """Fit the model from data in X. Parameters ---------- X: array-like, shape (n_samples, n_features) Training vector, where n_samples in the number of samples and n_features is the number of features. Returns ------- self : object Returns the instance itself. """ random_state = check_random_state(self.random_state) X = check_array(X) U, (A, B), self.n_iter_ = dict_learning_online( X, self.n_components, self.alpha, n_iter=self.n_iter, return_code=False, method=self.fit_algorithm, n_jobs=self.n_jobs, dict_init=self.dict_init, batch_size=self.batch_size, shuffle=self.shuffle, verbose=self.verbose, random_state=random_state, return_inner_stats=True, return_n_iter=True) self.components_ = U # Keep track of the state of the algorithm to be able to do # some online fitting (partial_fit) self.inner_stats_ = (A, B) self.iter_offset_ = self.n_iter return self def partial_fit(self, X, y=None, iter_offset=None): """Updates the model using the data in X as a mini-batch. Parameters ---------- X: array-like, shape (n_samples, n_features) Training vector, where n_samples in the number of samples and n_features is the number of features. iter_offset: integer, optional The number of iteration on data batches that has been performed before this call to partial_fit. This is optional: if no number is passed, the memory of the object is used. Returns ------- self : object Returns the instance itself. """ if not hasattr(self, 'random_state_'): self.random_state_ = check_random_state(self.random_state) X = check_array(X) if hasattr(self, 'components_'): dict_init = self.components_ else: dict_init = self.dict_init inner_stats = getattr(self, 'inner_stats_', None) if iter_offset is None: iter_offset = getattr(self, 'iter_offset_', 0) U, (A, B) = dict_learning_online( X, self.n_components, self.alpha, n_iter=self.n_iter, method=self.fit_algorithm, n_jobs=self.n_jobs, dict_init=dict_init, batch_size=len(X), shuffle=False, verbose=self.verbose, return_code=False, iter_offset=iter_offset, random_state=self.random_state_, return_inner_stats=True, inner_stats=inner_stats) self.components_ = U # Keep track of the state of the algorithm to be able to do # some online fitting (partial_fit) self.inner_stats_ = (A, B) self.iter_offset_ = iter_offset + self.n_iter return self
bsd-3-clause
melqkiades/yelp
source/python/topicmodeling/external/topicensemble/unsupervised/nmf.py
2
1622
import numpy as np from sklearn import decomposition import logging as log # -------------------------------------------------------------- class SklNMF: """ Wrapper class backed by the scikit-learn package NMF implementation. """ def __init__( self, max_iters = 100, init_strategy = "random" ): self.max_iters = 100 self.init_strategy = init_strategy self.W = None self.H = None def apply( self, X, k = 2, init_W = None, init_H = None ): """ Apply NMF to the specified document-term matrix X. """ self.W = None self.H = None random_seed = np.random.randint( 1, 100000 ) if not (init_W is None or init_H is None): model = decomposition.NMF( init="custom", n_components=k, max_iter=self.max_iters, random_state = random_seed ) self.W = model.fit_transform( X, W=init_W, H=init_H ) else: model = decomposition.NMF( init=self.init_strategy, n_components=k, max_iter=self.max_iters, random_state = random_seed ) self.W = model.fit_transform( X ) self.H = model.components_ def rank_terms( self, topic_index, top = -1 ): """ Return the top ranked terms for the specified topic, generated during the last NMF run. """ if self.H is None: raise ValueError("No results for previous run available") # NB: reverse top_indices = np.argsort( self.H[topic_index,:] )[::-1] # truncate if necessary if top < 1 or top > len(top_indices): return top_indices return top_indices[0:top] def generate_partition( self ): if self.W is None: raise ValueError("No results for previous run available") return np.argmax( self.W, axis = 1 ).flatten().tolist()
lgpl-2.1
zrhans/pythonanywhere
.virtualenvs/django19/lib/python3.4/site-packages/matplotlib/tri/triplot.py
8
3150
from __future__ import (absolute_import, division, print_function, unicode_literals) from matplotlib.externals import six import numpy as np from matplotlib.tri.triangulation import Triangulation def triplot(ax, *args, **kwargs): """ Draw a unstructured triangular grid as lines and/or markers. The triangulation to plot can be specified in one of two ways; either:: triplot(triangulation, ...) where triangulation is a :class:`matplotlib.tri.Triangulation` object, or :: triplot(x, y, ...) triplot(x, y, triangles, ...) triplot(x, y, triangles=triangles, ...) triplot(x, y, mask=mask, ...) triplot(x, y, triangles, mask=mask, ...) in which case a Triangulation object will be created. See :class:`~matplotlib.tri.Triangulation` for a explanation of these possibilities. The remaining args and kwargs are the same as for :meth:`~matplotlib.axes.Axes.plot`. Return a list of 2 :class:`~matplotlib.lines.Line2D` containing respectively: - the lines plotted for triangles edges - the markers plotted for triangles nodes **Example:** .. plot:: mpl_examples/pylab_examples/triplot_demo.py """ import matplotlib.axes tri, args, kwargs = Triangulation.get_from_args_and_kwargs(*args, **kwargs) x, y, edges = (tri.x, tri.y, tri.edges) # Decode plot format string, e.g., 'ro-' fmt = "" if len(args) > 0: fmt = args[0] linestyle, marker, color = matplotlib.axes._base._process_plot_format(fmt) # Insert plot format string into a copy of kwargs (kwargs values prevail). kw = kwargs.copy() for key, val in zip(('linestyle', 'marker', 'color'), (linestyle, marker, color)): if val is not None: kw[key] = kwargs.get(key, val) # Draw lines without markers. # Note 1: If we drew markers here, most markers would be drawn more than # once as they belong to several edges. # Note 2: We insert nan values in the flattened edges arrays rather than # plotting directly (triang.x[edges].T, triang.y[edges].T) # as it considerably speeds-up code execution. linestyle = kw['linestyle'] kw_lines = kw.copy() kw_lines['marker'] = 'None' # No marker to draw. kw_lines['zorder'] = kw.get('zorder', 1) # Path default zorder is used. if (linestyle is not None) and (linestyle not in ['None', '', ' ']): tri_lines_x = np.insert(x[edges], 2, np.nan, axis=1) tri_lines_y = np.insert(y[edges], 2, np.nan, axis=1) tri_lines = ax.plot(tri_lines_x.ravel(), tri_lines_y.ravel(), **kw_lines) else: tri_lines = ax.plot([], [], **kw_lines) # Draw markers separately. marker = kw['marker'] kw_markers = kw.copy() kw_markers['linestyle'] = 'None' # No line to draw. if (marker is not None) and (marker not in ['None', '', ' ']): tri_markers = ax.plot(x, y, **kw_markers) else: tri_markers = ax.plot([], [], **kw_markers) return tri_lines + tri_markers
apache-2.0
joshgabriel/dft-crossfilter
CompleteApp/crossfilter_app/old_mains/old_main.py
3
10263
# main.py that controls the whole app # to run: just run bokeh serve --show crossfilter_app in the benchmark-view repo from random import random import os from bokeh.layouts import column from bokeh.models import Button from bokeh.models.widgets import Select, MultiSelect, Slider from bokeh.palettes import RdYlBu3 from bokeh.plotting import figure, curdoc #### CROSSFILTER PART ##### >>> Module load errors throwing up how to do a relative import ? from crossview.crossfilter.models import CrossFilter #from benchmark.loader import load #### DATA INPUT FROM REST API ###### #from benchmark.loader import load #### DATA INPUT STRAIGHT FROM PANDAS for test purposes #### import pandas as pd ##### PLOTTING PART -- GLOBAL FIGURE CREATION ######## # create a plot and style its properties ## gloabl data interface to come from REST API vasp_data = pd.read_csv('../benchmark/data/francesca_data_head.csv') p = figure(x_range=(0, 100), y_range=(0, 100), toolbar_location='below') #p.border_fill_color = 'black' #p.background_fill_color = 'black' p.outline_line_color = None p.grid.grid_line_color = None #### FORMAT OF DATA SENT TO WIDGET ####### # add a text renderer to out plot (no data yet) r = p.text(x=[], y=[], text=[], text_color=[], text_font_size="20pt", text_baseline="middle", text_align="center") r2 = p.circle(x=[], y=[]) i = 0 ds = r.data_source ds2 = r2.data_source ##### WIDGET RESPONSES IN THE FORM OF CALLBACKS ###### # create a callback that will add a number in a random location def callback(): global i # BEST PRACTICE --- update .data in one step with a new dict new_data = dict() new_data['x'] = ds.data['x'] + [random()*70 + 15] new_data['y'] = ds.data['y'] + [random()*70 + 15] new_data['text_color'] = ds.data['text_color'] + [RdYlBu3[i%3]] new_data['text'] = ds.data['text'] + [str(i)] ds.data = new_data i = i + 1 #### The make crossfilter callback #### make data loading as easy as possible for now straight from #### the benchmark data csv file not from the API with the decorators #### TO DO after we see that the crossfilter and new bokeh play nicely ##########: integrate with API and uncomment the decorators and data loader #@bokeh_app.route("/bokeh/benchmark/") #@object_page("benchmark") #### RENDERERS OF WIDGETS ##### def make_bokeh_crossfilter(axis='k-point'): """The root crossfilter controller""" # Loading the dft data head as a # pandas dataframe new_data = dict() # new_data = load("./benchmark/data/francesca_data_head") # use a straight pandas dataframe for now instead and follow the # BEST PRACTICE described above basically clean up the data object on each callback. # data that will be given back on the callback new_data = vasp_data # our data that will be replaced by the API global p p = CrossFilter.create(df=new_data) print (type(p)) # dont know what Crossfilter class really returns in terms of data but for testnig purposes lets # return something that is compatible with the new_data dictionary return in the # vanilla example through the global object ds.data # for example the x - y coordinates on the plots correspond to mins on the data set in k-point and value fields # new_data['x'] = ds2.data['x'] + list(data[axis]) # new_data['y'] = ds2.data['y'] + list(data['value']) # other stuff default as in vanilla callback() # for test purposes to see actually what coordinate is getting plotted # it is always going to be the same duh beccause only one min exist in the dataset # its at x = 6, y = -12 , # SUCESS learnt how to create a custom callback !!! that loads a CSV file and does something with it # print ("New data from crossfilter", new_data) # finally assign to ds.data # ds2.data = new_data def make_wflow_crossfilter(tags={'element_widget':['Cu', 'Pd', 'Mo'], 'code_widget':['VASP'], 'ExchCorr':['PBE']}): """ demo crossfilter based on pure pandas dataframes that serves a data processing workflow that selects inputs from widgets args: tags: dict of selections by upto 3 widgets returns: dictionary of crossfiltered dataframes that can further be processed down the workflow """ ## Actual widget controlled inputs ## # elements = tags['element'] # exchanges = tags['ExchCorr'] # propys = tags['code_widget'] ## Demo user inputs for testing selects everything in the test csv : max data load ## elements = np.unique(vasp_data['element']) exchanges = np.unique(vasp_data['exchange']) propys = ['B','dB','a0'] # final dictionary of crossfiltered dataframes crossfilts = {} # crossfiltering part - playing the role of the "Crossfilter class in bokeh.models" for pr in propys: for el in elements: for ex in exchanges: # crossfilter down to exchange and element elems = vasp_data[vasp_data['element']==el] exchs = elems[elems['exchange']==ex] # separate into properties, energy, kpoints p = exchs[exchs['property']==pr] e = exchs[exchs['property']=='e0'] ##### *** Accuracy calculation based on default standards *** ##### # choose reference from dict ref_e = expt_ref_prb[el][pr] ref_w = wien_ref[el][pr] # calculate percent errors on property - ACCURACY CALCULATION based on default standards props = [v for v in p['value'] ] percs_wien = [ (v - ref_w) / ref_w * 100 for v in p['value']] percs_prb = [ (v - ref_e) / ref_e * 100 for v in p['value']] kpts = [ k for k in p['k-point']] kpts_atom = [ k**3 for k in p['k-point'] ] ##### *** Accuracy calculation based on default standards *** ##### ##### *** Calculate prec_sigma of energy *** ##### energy = [ v for v in e['value']] end= len(energy) - 1 prec_sigma = [ v - energy[end] for v in energy] # make data frame of kpoints, energy, percent errors on property if kpts and energy and props: NAME = '_'.join([el,ex,pr]) Rdata =\ pd.DataFrame({'Kpoints_size':kpts, 'Kpoints_atom_density':kpts_atom, 'Energy':energy, 'Prec_Sigma':prec_sigma , pr:props, 'percent_error_wien':percs_wien, 'percent_error_expt':percs_prb }) crossfilts[NAME] = Rdata def calculate_prec(cross_df, automate= False): """ function that calculates the prec_inf using R and returns a fully contructed plottable dataframe Args: cross_df: pandas dataframe containing the data automate: bool, a To do feature to automatically calculate the best fit Returns: dataframe contining the R added precision values to be received most always by the plotting commander. """ import rpy2.robjects as ro from rpy2.robjects import pandas2ri from rpy2.robjects.packages import importr import rpy2.robjects.numpy2ri import rpy2.rinterface as rin stats = importr('stats') base = importr('base') # activate R environemnt in python rpy2.robjects.numpy2ri.activate() pandas2ri.activate() # read in necessary elements ofmenu = [("Item 1", "item_1_value"), ("Item 2", "item_2_value"), ("Item 3", "item_3_value")] df = pd.DataFrame({'x': cross_df['Kpoints_atom_density'], 'y': cross_df['Energy']}) ro.globalenv['dataframe']=df ### *** R used to obtain the fit on the data to calculate prec_inf *** ### # perform regression - bokeh widgets can be used here to provide the inputs to the nls regression # some python to R translation of object names via the pandas - R dataframes y = df['y'] x = df['x'] l = len(y) - 1 # needed because R indexes list from 1 to len(list) # ***WIDGET inputs*** # OR AUTOMATE # the slider inputs on starting point or can be automated also l1 = 3 l2 = 0 fitover = rin.SexpVector(list(range(l1,l-l2)), rin.INTSXP) # numeric entry widget for 'b' is plausible for user to choose best starting guess start_guess = {'a': y[l], 'b': 5} start=pandas2ri.py2ri(pd.DataFrame(start_guess,index=start_guess)) # drop down list selection of model model = 'y~a*x/(b+x)' # Minimize function with weights and selection m = \ stats.nls(model, start = start, algorithm = "port", subset = fitover, weights = x^2, data=base.as_symbol('dataframe')) # Estimation of goodness of fit g = stats.cor(y[l1:l-l2],stats.predict(m)) # Report summary of fit, values and error bars print( base.summary(m).rx2('coefficients') ) # Extrapolation value is given by a a = stats.coef(m)[1] # Calculation of precision prec = abs(y-a) # test print outs of the data ? how to render onto html like Shiny if necesary ? print("We learn that the converged value is: {0} and best precision achieved in the measurement is {1}".format(a, min(abs(prec)))) cross_df['Energy_Prec_Inf'] = prec # close the R environments rpy2.robjects.numpy2ri.deactivate() pandas2ri.deactivate() return (cross_df) def make_widgets(): """ main function that will control the rendering of UI widgets """ pass #### WIDGET CREATIONS #### # OLD VANILLA # add a button widget and configure with the call back # button_basic = Button(label="Press Me") # button_basic.on_click(callback) #make_bokeh_crossfilter() # create a button for Select button for input #menu = [("Bulk Modulus", "B"), ("B'", "dB"), ("Lattice Constant", "a0")] #select_property = Select(name="Selection", options=menu, value="B") #select_property.on_click(make_bokeh_crossfilter(axis=value)) # create a button for make crossfilter app button_crossfilter = Button(label="Make Crossfilter") button_crossfilter.on_click(make_bokeh_crossfilter) #create a button for crossfilter_workflwo button_w_crossfilter = Button(label="Make Crossfilter Workflow") button_w_crossfilter.on_click(make_wflow_crossfilter) # put the button and plot in a layout and add to the document curdoc().add_root(column(button_crossfilter, button_w_crossfilter, p))
mit
Tuyki/TT_RNN
MNISTSeq.py
1
14227
__author__ = "Yinchong Yang" __copyright__ = "Siemens AG, 2018" __licencse__ = "MIT" __version__ = "0.1" """ MIT License Copyright (c) 2018 Siemens AG Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ """ We first sample MNIST digits to form sequences of random lengths. The sequence is labeled as one if it contains a zero, and is labeled zero otherwise. This simulates a high dimensional sequence classification task, such as predicting therapy decision and survival of patients based on their historical clinical event information. We train plain LSTM and Tensor-Train LSTM for this task. After the training, we apply Layer-wise Relevance Propagation to identify the digit(s) that have influenced the classification. Apparently, we would expect the LRP algorithm would assign high relevance value to the zero(s) in the sequence. These experiments turn out to be successful, which demonstrates that i) the LSTM and TT-LSTM can indeed learn the mapping from a zero to the sequence class, and that ii) both LSTMs have no problem in storing the zero pattern over a period of time, because the classifier is deployed only at the last hidden state, and that iii) the implementation of the LRP algorithm, complex as it is, is also correct, in that the zeros are assigned high relevance scores. Especially the experiments with the plain LSTM serve as simulation study supporting our submission of “Yinchong Yang, Volker Tresp, Marius Wunderle, Peter A. Fasching, Explaining Therapy Predictions with Layer-wise Relevance Propagation in Neural Networks, at IEEE ICHI 2018”. The original LRP for LSTM from the repository: https://github.com/ArrasL/LRP_for_LSTM which we modified and adjusted for keras models. Feel free to experiment with the hyper parameters and suggest other sequence classification tasks. Have fun ;) """ import pickle import sys import numpy as np from numpy import newaxis as na import keras from keras.layers.recurrent import Recurrent from keras import backend as K from keras.engine import InputSpec from keras import activations from keras import initializers from keras import regularizers from keras import constraints from keras.engine.topology import Layer from TTLayer import * from TTRNN import TT_LSTM def make_seq(n, x, y, maxlen=32, seed=123): np.random.seed(seed) lens = np.random.choice(range(2, maxlen), n) seqs = np.zeros((n, maxlen, 28**2)) labels = np.zeros(n) digits_label = np.zeros((n, maxlen), dtype='int32')-1 ids = np.zeros((n, maxlen), dtype='int64')-1 for i in range(n): digits_inds = np.random.choice(range(x.shape[0]), lens[i]) ids[i, -lens[i]::] = digits_inds seqs[i, -lens[i]::, :] = x[digits_inds] digits_label[i, -lens[i]::] = y[digits_inds] class_inds = y[digits_inds] if True: # option 1: is there any 0 in the sequence? labels[i] = (0 in class_inds) else: # option 2: even number of 0 -> label=0, odd number of 0 -> label=1 labels[i] = len(np.where(class_inds == 0)[0]) % 2 == 1 return [seqs, labels, digits_label, ids] # From: https://github.com/ArrasL/LRP_for_LSTM def lrp_linear(hin, w, b, hout, Rout, bias_nb_units, eps, bias_factor, debug=False): """ LRP for a linear layer with input dim D and output dim M. Args: - hin: forward pass input, of shape (D,) - w: connection weights, of shape (D, M) - b: biases, of shape (M,) - hout: forward pass output, of shape (M,) (unequal to np.dot(w.T,hin)+b if more than one incoming layer!) - Rout: relevance at layer output, of shape (M,) - bias_nb_units: number of lower-layer units onto which the bias/stabilizer contribution is redistributed - eps: stabilizer (small positive number) - bias_factor: for global relevance conservation set to 1.0, otherwise 0.0 to ignore bias redistribution Returns: - Rin: relevance at layer input, of shape (D,) """ sign_out = np.where(hout[na, :] >= 0, 1., -1.) # shape (1, M) numer = (w * hin[:, na]) + \ ((bias_factor * b[na, :] * 1. + eps * sign_out * 1.) * 1. / bias_nb_units) # shape (D, M) denom = hout[na, :] + (eps * sign_out * 1.) # shape (1, M) message = (numer / denom) * Rout[na, :] # shape (D, M) Rin = message.sum(axis=1) # shape (D,) # Note: local layer relevance conservation if bias_factor==1.0 and bias_nb_units==D # global network relevance conservation if bias_factor==1.0 (can be used for sanity check) if debug: print("local diff: ", Rout.sum() - Rin.sum()) return Rin def sigmoid(x): x = x.astype('float128') return 1. / (1. + np.exp(-x)) # Modified from https://github.com/ArrasL/LRP_for_LSTM def lstm_lrp(l, d, train_data = True): if train_data: x_l = X_tr[l] y_l = Y_tr[l] z_l = Z_tr[l] # d_l = d_tr[l] else: x_l = X_te[l] y_l = Y_te[l] z_l = Z_te[l] # d_l = d_te[l] # calculate the FF pass in LSTM for every time step pre_gates = np.zeros((MAXLEN, d*4)) gates = np.zeros((MAXLEN, d * 4)) h = np.zeros((MAXLEN, d)) c = np.zeros((MAXLEN, d)) for t in range(MAXLEN): z = np.dot(x_l[t], Ws) if t > 0: z += np.dot(h[t-1], Us) z += b pre_gates[t] = z z0 = z[0:d] z1 = z[d:2*d] z2 = z[2*d:3*d] z3 = z[3 * d::] i = sigmoid(z0) f = sigmoid(z1) c[t] = f * c[t-1] + i * np.tanh(z2) o = sigmoid(z3) h[t] = o * np.tanh(c[t]) gates[t] = np.concatenate([i, f, np.tanh(z2), o]) # check: z_l[12] / h[-1][12] Rh = np.zeros((MAXLEN, d)) Rc = np.zeros((MAXLEN, d)) Rg = np.zeros((MAXLEN, d)) Rx = np.zeros((MAXLEN, 28**2)) bias_factor = 0 Rh[MAXLEN-1] = lrp_linear(hin=z_l, w=Dense_w, b=np.array(Dense_b), hout=np.dot(z_l, Dense_w)+Dense_b, Rout=np.array([y_l]), bias_nb_units=len(z_l), eps=eps, bias_factor=bias_factor) for t in reversed(range(MAXLEN)): # t = MAXLEN-1 # print t Rc[t] += Rh[t] # Rc[t] = Rh[t] if t > 0: Rc[t-1] = lrp_linear(gates[t, d: 2 * d] * c[t - 1], # gates[t , 2 *d: 3 *d ] *c[ t -1], np.identity(d), np.zeros((d)), c[t], Rc[t], 2*d, eps, bias_factor, debug=False) Rg[t] = lrp_linear(gates[t, 0:d] * gates[t, 2*d:3*d], # h_input: i + g np.identity(d), # W np.zeros((d)), # b c[t], # h_output Rc[t], # R_output 2 * d, eps, bias_factor, debug=False) # foo = np.dot(x_l[t], Ws[:,2*d:3*d]) + np.dot(h[t-1], Us[:, 2*d:3*d]) + b[2*d:3*d] Rx[t] = lrp_linear(x_l[t], Ws[:,2*d:3*d], b[2*d:3*d], pre_gates[t, 2*d:3*d], Rg[t], d + 28 ** 2, eps, bias_factor, debug=False) if t > 0: Rh[t-1] = lrp_linear(h[t-1], Us[:,2*d:3*d], b[2*d:3*d], pre_gates[t, 2 * d:3 * d], Rg[t], d + 28**2, eps, bias_factor, debug=False) # hin, w, b, hout, Rout, bias_nb_units, eps, bias_factor, debug=False # Rx[np.where(d_l==-1.)[0]] *= 0 return Rx from keras.datasets import mnist from keras.utils import to_categorical from keras.models import Model, Input from keras.layers import Dense, GRU, LSTM, Dropout, Masking from keras.optimizers import * from keras.regularizers import l2 from sklearn.metrics import * # Script configurations ################################################################### seed=111111 use_TT = True # whether use Tensor-Train or plain RNNs # Prepare the data ######################################################################## # Load the MNIST data and build sequences: (x_train, y_train), (x_test, y_test) = mnist.load_data() x_train = x_train.reshape(x_train.shape[0], -1) x_test = x_test.reshape(x_test.shape[0], -1) MAXLEN = 32 # max length of the sequences X_tr, Y_tr, d_tr, idx_tr = make_seq(n=10000, x=x_train, y=y_train, maxlen=MAXLEN, seed=seed) X_te, Y_te, d_te, idx_te = make_seq(n=1000, x=x_test, y=y_test, maxlen=MAXLEN, seed=seed+1) # Define the model ###################################################################### if use_TT: # TT settings tt_input_shape = [7, 7, 16] tt_output_shape = [4, 4, 4] tt_ranks = [1, 4, 4, 1] rnn_size = 64 X = Input(shape=X_tr.shape[1::]) X_mask = Masking(mask_value=0.0, input_shape=X_tr.shape[1::])(X) if use_TT: Z = TT_LSTM(tt_input_shape=tt_input_shape, tt_output_shape=tt_output_shape, tt_ranks=tt_ranks, return_sequences=False, recurrent_dropout=.5)(X_mask) Out = Dense(units=1, activation='sigmoid', kernel_regularizer=l2(1e-2))(Z) else: Z = LSTM(units=rnn_size, return_sequences=False, recurrent_dropout=.5)(X_mask) # dropout=.5, Out = Dense(units=1, activation='sigmoid', kernel_regularizer=l2(1e-2))(Z) rnn_model = Model(X, Out) rnn_model.compile(optimizer=Adam(1e-3), loss='binary_crossentropy', metrics=['accuracy']) # Train the model and save the results ###################################################### rnn_model.fit(X_tr, Y_tr, epochs=50, batch_size=32, validation_split=.2, verbose=2) Y_hat = rnn_model.predict(X_tr, verbose=2).reshape(-1) train_acc = (np.round(Y_hat) == Y_tr).mean() Y_pred = rnn_model.predict(X_te, verbose=2).reshape(-1) (np.round(Y_pred) == Y_te).mean() pred_acc = (np.round(Y_pred) == Y_te).mean() # Collect all hidden layers ################################################################ if use_TT: # Reconstruct the fully connected input-to-hidden weights: from keras.initializers import constant _tt_output_shape = np.copy(tt_output_shape) _tt_output_shape[0] *= 4 fc_w = rnn_model.get_weights()[0] fc_layer = TT_Layer(tt_input_shape=tt_input_shape, tt_output_shape=_tt_output_shape, tt_ranks=tt_ranks, kernel_initializer=constant(value=fc_w), use_bias=False) fc_input = Input(shape=(X_tr.shape[2],)) fc_output = fc_layer(fc_input) fc_model = Model(fc_input, fc_output) fc_model.compile('sgd', 'mse') fc_recon_mat = fc_model.predict(np.identity(X_tr.shape[2])) # Reconstruct the entire LSTM: fc_Z = LSTM(units=np.prod(tt_output_shape), return_sequences=False, dropout=.5, recurrent_dropout=.5, weights=[fc_recon_mat, rnn_model.get_weights()[2], rnn_model.get_weights()[1]])(X_mask) else: fc_Z = LSTM(units=rnn_size, return_sequences=False, dropout=.5, recurrent_dropout=.5, weights=rnn_model.get_weights()[0:3])(X_mask) fc_Out = Dense(units=1, activation='sigmoid', kernel_regularizer=l2(1e-3), weights=rnn_model.get_weights()[3::])(fc_Z) fc_rnn_model = Model(X, fc_Out) fc_rnn_model.compile(optimizer=Adam(1e-3), loss='binary_crossentropy', metrics=['accuracy']) fc_rnn_model.evaluate(X_te, Y_te, verbose=2) # Calculate the LRP: ######################################################################### fc_Z_model = Model(X, fc_Z) fc_Z_model.compile('sgd', 'mse') Y_hat_fc = fc_rnn_model.predict(X_tr) Y_pred_fc = fc_rnn_model.predict(X_te) Ws = fc_rnn_model.get_weights()[0] Us = fc_rnn_model.get_weights()[1] b = fc_rnn_model.get_weights()[2] Dense_w = fc_rnn_model.get_weights()[3] Dense_b = fc_rnn_model.get_weights()[4] Z_tr = fc_Z_model.predict(X_tr) Z_te = fc_Z_model.predict(X_te) eps = 1e-4 is_number_flag = np.where(d_te != -1) # All relevance scores of the test sequences lrp_te = np.vstack([lstm_lrp(i, rnn_size, False).sum(1) for i in range(X_te.shape[0])]) lrp_auroc = roc_auc_score((d_te == 0).astype('int')[is_number_flag].reshape(-1), lrp_te[is_number_flag].reshape(-1)) lrp_auprc = average_precision_score((d_te == 0).astype('int')[is_number_flag].reshape(-1), lrp_te[is_number_flag].reshape(-1)) # The reported results: print pred_acc print lrp_auroc print lrp_auprc
mit