Datasets:
dataset_info:
- config_name: en2de
features:
- name: path
dtype: string
- name: sentence
dtype: float64
- name: split
dtype: string
- name: lang
dtype: string
- name: task
dtype: string
- name: inst
dtype: string
- name: suffix
dtype: string
- name: st_system
dtype: string
- name: metric_score_xcomet-xl
dtype: float64
- name: metric_score_metricx-23-xl
dtype: float64
splits:
- name: test
num_bytes: 1150690
num_examples: 3500
- name: test_seamlv2
num_bytes: 161689
num_examples: 500
- name: test_seamlar
num_bytes: 161599
num_examples: 500
- name: test_seammid
num_bytes: 161887
num_examples: 500
- name: test_tfw2vlg
num_bytes: 162851
num_examples: 500
- name: test_tfmidmc
num_bytes: 173183
num_examples: 500
- name: test_tfsmlmc
num_bytes: 165835
num_examples: 500
- name: test_tfsmlcv
num_bytes: 163646
num_examples: 500
download_size: 569246
dataset_size: 2301380
- config_name: es2en
features:
- name: path
dtype: string
- name: sentence
dtype: float64
- name: split
dtype: string
- name: lang
dtype: string
- name: task
dtype: string
- name: inst
dtype: string
- name: suffix
dtype: string
- name: st_system
dtype: string
- name: metric_score_xcomet-xl
dtype: float64
- name: metric_score_metricx-23-xl
dtype: float64
splits:
- name: test
num_bytes: 1128742
num_examples: 3500
- name: test_whsplv3
num_bytes: 160913
num_examples: 500
- name: test_whsplv2
num_bytes: 159492
num_examples: 500
- name: test_whsplar
num_bytes: 157929
num_examples: 500
- name: test_whspmid
num_bytes: 158335
num_examples: 500
- name: test_whspsml
num_bytes: 158008
num_examples: 500
- name: test_whspbas
num_bytes: 163261
num_examples: 500
- name: test_whsptny
num_bytes: 170804
num_examples: 500
download_size: 547013
dataset_size: 2257484
configs:
- config_name: en2de
data_files:
- split: test
path: en2de/test-*
- split: test_seamlv2
path: en2de/test_seamlv2-*
- split: test_seamlar
path: en2de/test_seamlar-*
- split: test_seammid
path: en2de/test_seammid-*
- split: test_tfw2vlg
path: en2de/test_tfw2vlg-*
- split: test_tfmidmc
path: en2de/test_tfmidmc-*
- split: test_tfsmlmc
path: en2de/test_tfsmlmc-*
- split: test_tfsmlcv
path: en2de/test_tfsmlcv-*
- config_name: es2en
data_files:
- split: test
path: es2en/test-*
- split: test_whsplv3
path: es2en/test_whsplv3-*
- split: test_whsplv2
path: es2en/test_whsplv2-*
- split: test_whsplar
path: es2en/test_whsplar-*
- split: test_whspmid
path: es2en/test_whspmid-*
- split: test_whspsml
path: es2en/test_whspsml-*
- split: test_whspbas
path: es2en/test_whspbas-*
- split: test_whsptny
path: es2en/test_whsptny-*
license: mit
language:
- de
- es
- en
SpeechQE: Estimating the Quality of Direct Speech Translation
This is a benchmark and training corpus for the task of quality estimation for speech translation (SpeechQE).
We subsample about 80k segments from the training set and 500 from the dev and test of CoVoST2, then run seven different direct ST models to generate the ST hypotheses.
So,test
split consists of 3500 instances(500*7). We also provide splits for each translation model.
*(We provide test
split first, and the training corpus will be provided later. However, if you want those quickly, please do not hesitate to ping me ([email protected])!)
E2E Model Trained with SpeechQE-CoVoST2
Task | E2E Model | Trained Domain |
---|---|---|
SpeechQE for English-to-German Speech Translation | h-j-han/SpeechQE-TowerInstruct-7B-en2de | CoVoST2 |
SpeechQE for Spanish-to-English Speech Translation | h-j-han/SpeechQE-TowerInstruct-7B-es2en | CoVoST2 |
Setup
We provide code in Github repo : https://github.com/h-j-han/SpeechQE
$ git clone https://github.com/h-j-han/SpeechQE.git
$ cd SpeechQE
$ conda create -n speechqe Python=3.11 pytorch=2.0.1 pytorch-cuda=11.7 torchvision torchaudio -c pytorch -c nvidia
$ conda activate speechqe
$ pip install -r requirements.txt
Download Audio Data
Download the audio data from Common Voice. Here, we use mozilla-foundation/common_voice_4_0.
import datasets
cv4en = datasets.load_dataset(
"mozilla-foundation/common_voice_4_0", "es", cache_dir='path/to/cv4/download',
)
Evaluation with SpeechQE-CoVoST2
We provide SpeechQE benchmark: h-j-han/SpeechQE-CoVoST2. BASE_AUDIO_PATH is the path of downloaded Common Voice dataset.
$ python speechqe/score_speechqe.py \
--speechqe_model=h-j-han/SpeechQE-TowerInstruct-7B-es2en \
--dataset_name=h-j-han/SpeechQE-CoVoST2 \
--base_audio_path=$BASE_AUDIO_PATH \
--dataset_config_name=es2en \
--test_split_name=test \
Reference
Please find details in this EMNLP24 paper :
@misc{han2024speechqe,
title={SpeechQE: Estimating the Quality of Direct Speech Translation},
author={HyoJung Han and Kevin Duh and Marine Carpuat},
year={2024},
eprint={2410.21485},
archivePrefix={arXiv},
primaryClass={cs.CL}
}