code_tokens
stringlengths
60
3.94k
label
int64
0
1
doc
stringlengths
16
98
docstring_tokens
stringlengths
0
1.41k
idx
stringlengths
13
17
code
stringlengths
87
6.4k
def fill_form ( form , data ) : for ( key , value ) in data . items ( ) : if hasattr ( form , key ) : if isinstance ( value , dict ) : fill_form ( getattr ( form , key ) , value ) else : getattr ( form , key ) . data = value return form
0
python fill a form
Prefill form with data .
cosqa-train-300
def fill_form(form, data): """Prefill form with data. :param form: The form to fill. :param data: The data to insert in the form. :returns: A pre-filled form. """ for (key, value) in data.items(): if hasattr(form, key): if isinstance(value, dict): fill_form(getattr(form, key), value) else: getattr(form, key).data = value return form
def check_clang_apply_replacements_binary ( args ) : try : subprocess . check_call ( [ args . clang_apply_replacements_binary , '--version' ] ) except : print ( 'Unable to run clang-apply-replacements. Is clang-apply-replacements ' 'binary correctly specified?' , file = sys . stderr ) traceback . print_exc ( ) sys . exit ( 1 )
0
compile python with clang
Checks if invoking supplied clang - apply - replacements binary works .
cosqa-train-301
def check_clang_apply_replacements_binary(args): """Checks if invoking supplied clang-apply-replacements binary works.""" try: subprocess.check_call([args.clang_apply_replacements_binary, '--version']) except: print('Unable to run clang-apply-replacements. Is clang-apply-replacements ' 'binary correctly specified?', file=sys.stderr) traceback.print_exc() sys.exit(1)
def _maybe_fill ( arr , fill_value = np . nan ) : if _isna_compat ( arr , fill_value ) : arr . fill ( fill_value ) return arr
0
python fillna if false
if we have a compatible fill_value and arr dtype then fill
cosqa-train-302
def _maybe_fill(arr, fill_value=np.nan): """ if we have a compatible fill_value and arr dtype, then fill """ if _isna_compat(arr, fill_value): arr.fill(fill_value) return arr
def extract_alzip ( archive , compression , cmd , verbosity , interactive , outdir ) : return [ cmd , '-d' , outdir , archive ]
0
compression in python without using zlib
Extract a ALZIP archive .
cosqa-train-303
def extract_alzip (archive, compression, cmd, verbosity, interactive, outdir): """Extract a ALZIP archive.""" return [cmd, '-d', outdir, archive]
def _maybe_fill ( arr , fill_value = np . nan ) : if _isna_compat ( arr , fill_value ) : arr . fill ( fill_value ) return arr
1
python fillna inplace not working
if we have a compatible fill_value and arr dtype then fill
cosqa-train-304
def _maybe_fill(arr, fill_value=np.nan): """ if we have a compatible fill_value and arr dtype, then fill """ if _isna_compat(arr, fill_value): arr.fill(fill_value) return arr
def get_lons_from_cartesian ( x__ , y__ ) : return rad2deg ( arccos ( x__ / sqrt ( x__ ** 2 + y__ ** 2 ) ) ) * sign ( y__ )
0
compute degrees from survey bearing python function
Get longitudes from cartesian coordinates .
cosqa-train-305
def get_lons_from_cartesian(x__, y__): """Get longitudes from cartesian coordinates. """ return rad2deg(arccos(x__ / sqrt(x__ ** 2 + y__ ** 2))) * sign(y__)
def filter_ ( stream_spec , filter_name , * args , * * kwargs ) : return filter ( stream_spec , filter_name , * args , * * kwargs )
0
python filter str object is not callable
Alternate name for filter so as to not collide with the built - in python filter operator .
cosqa-train-306
def filter_(stream_spec, filter_name, *args, **kwargs): """Alternate name for ``filter``, so as to not collide with the built-in python ``filter`` operator. """ return filter(stream_spec, filter_name, *args, **kwargs)
def _calculate_distance ( latlon1 , latlon2 ) : lat1 , lon1 = latlon1 lat2 , lon2 = latlon2 dlon = lon2 - lon1 dlat = lat2 - lat1 R = 6371 # radius of the earth in kilometers a = np . sin ( dlat / 2 ) ** 2 + np . cos ( lat1 ) * np . cos ( lat2 ) * ( np . sin ( dlon / 2 ) ) ** 2 c = 2 * np . pi * R * np . arctan2 ( np . sqrt ( a ) , np . sqrt ( 1 - a ) ) / 180 return c
1
compute distance from longitude and latitude python
Calculates the distance between two points on earth .
cosqa-train-307
def _calculate_distance(latlon1, latlon2): """Calculates the distance between two points on earth. """ lat1, lon1 = latlon1 lat2, lon2 = latlon2 dlon = lon2 - lon1 dlat = lat2 - lat1 R = 6371 # radius of the earth in kilometers a = np.sin(dlat / 2)**2 + np.cos(lat1) * np.cos(lat2) * (np.sin(dlon / 2))**2 c = 2 * np.pi * R * np.arctan2(np.sqrt(a), np.sqrt(1 - a)) / 180 return c
def find_lt ( a , x ) : i = bs . bisect_left ( a , x ) if i : return i - 1 raise ValueError
1
python finding the smallest and largetst valuse in a list
Find rightmost value less than x .
cosqa-train-308
def find_lt(a, x): """Find rightmost value less than x.""" i = bs.bisect_left(a, x) if i: return i - 1 raise ValueError
def get_stationary_distribution ( self ) : # The stationary distribution is proportional to the left-eigenvector # associated with the largest eigenvalue (i.e., 1) of the transition # matrix. check_is_fitted ( self , "transmat_" ) eigvals , eigvecs = np . linalg . eig ( self . transmat_ . T ) eigvec = np . real_if_close ( eigvecs [ : , np . argmax ( eigvals ) ] ) return eigvec / eigvec . sum ( )
0
compute eigenvalues of transition matrix in python
Compute the stationary distribution of states .
cosqa-train-309
def get_stationary_distribution(self): """Compute the stationary distribution of states. """ # The stationary distribution is proportional to the left-eigenvector # associated with the largest eigenvalue (i.e., 1) of the transition # matrix. check_is_fitted(self, "transmat_") eigvals, eigvecs = np.linalg.eig(self.transmat_.T) eigvec = np.real_if_close(eigvecs[:, np.argmax(eigvals)]) return eigvec / eigvec.sum()
def apply_fit ( xy , coeffs ) : x_new = coeffs [ 0 ] [ 2 ] + coeffs [ 0 ] [ 0 ] * xy [ : , 0 ] + coeffs [ 0 ] [ 1 ] * xy [ : , 1 ] y_new = coeffs [ 1 ] [ 2 ] + coeffs [ 1 ] [ 0 ] * xy [ : , 0 ] + coeffs [ 1 ] [ 1 ] * xy [ : , 1 ] return x_new , y_new
0
python fit in 2 dimensions
Apply the coefficients from a linear fit to an array of x y positions .
cosqa-train-310
def apply_fit(xy,coeffs): """ Apply the coefficients from a linear fit to an array of x,y positions. The coeffs come from the 'coeffs' member of the 'fit_arrays()' output. """ x_new = coeffs[0][2] + coeffs[0][0]*xy[:,0] + coeffs[0][1]*xy[:,1] y_new = coeffs[1][2] + coeffs[1][0]*xy[:,0] + coeffs[1][1]*xy[:,1] return x_new,y_new
def _tf_squared_euclidean ( X , Y ) : return tf . reduce_sum ( tf . pow ( tf . subtract ( X , Y ) , 2 ) , axis = 1 )
0
compute euclidean distance between test set and training setin python
Squared Euclidean distance between the rows of X and Y .
cosqa-train-311
def _tf_squared_euclidean(X, Y): """Squared Euclidean distance between the rows of `X` and `Y`. """ return tf.reduce_sum(tf.pow(tf.subtract(X, Y), 2), axis=1)
def exp_fit_fun ( x , a , tau , c ) : # pylint: disable=invalid-name return a * np . exp ( - x / tau ) + c
1
python fit to exponential function
Function used to fit the exponential decay .
cosqa-train-312
def exp_fit_fun(x, a, tau, c): """Function used to fit the exponential decay.""" # pylint: disable=invalid-name return a * np.exp(-x / tau) + c
def euclidean ( x , y ) : result = 0.0 for i in range ( x . shape [ 0 ] ) : result += ( x [ i ] - y [ i ] ) ** 2 return np . sqrt ( result )
0
compute euclidean distance python 2d
Standard euclidean distance .
cosqa-train-313
def euclidean(x, y): """Standard euclidean distance. ..math:: D(x, y) = \sqrt{\sum_i (x_i - y_i)^2} """ result = 0.0 for i in range(x.shape[0]): result += (x[i] - y[i]) ** 2 return np.sqrt(result)
def create_table_from_fits ( fitsfile , hduname , colnames = None ) : if colnames is None : return Table . read ( fitsfile , hduname ) cols = [ ] with fits . open ( fitsfile , memmap = True ) as h : for k in colnames : data = h [ hduname ] . data . field ( k ) cols += [ Column ( name = k , data = data ) ] return Table ( cols )
0
python fits table add a column
Memory efficient function for loading a table from a FITS file .
cosqa-train-314
def create_table_from_fits(fitsfile, hduname, colnames=None): """Memory efficient function for loading a table from a FITS file.""" if colnames is None: return Table.read(fitsfile, hduname) cols = [] with fits.open(fitsfile, memmap=True) as h: for k in colnames: data = h[hduname].data.field(k) cols += [Column(name=k, data=data)] return Table(cols)
def _gcd_array ( X ) : greatest_common_divisor = 0.0 for x in X : greatest_common_divisor = _gcd ( greatest_common_divisor , x ) return greatest_common_divisor
0
compute gcd of a list of element in python
Return the largest real value h such that all elements in x are integer multiples of h .
cosqa-train-315
def _gcd_array(X): """ Return the largest real value h such that all elements in x are integer multiples of h. """ greatest_common_divisor = 0.0 for x in X: greatest_common_divisor = _gcd(greatest_common_divisor, x) return greatest_common_divisor
def lint ( args ) : application = get_current_application ( ) if not args : args = [ application . name , 'tests' ] args = [ 'flake8' ] + list ( args ) run . main ( args , standalone_mode = False )
0
python flake8 line too long
Run lint checks using flake8 .
cosqa-train-316
def lint(args): """Run lint checks using flake8.""" application = get_current_application() if not args: args = [application.name, 'tests'] args = ['flake8'] + list(args) run.main(args, standalone_mode=False)
def torecarray ( * args , * * kwargs ) : import numpy as np return toarray ( * args , * * kwargs ) . view ( np . recarray )
0
conactecate array python without numpy
Convenient shorthand for toarray ( * args ** kwargs ) . view ( np . recarray ) .
cosqa-train-317
def torecarray(*args, **kwargs): """ Convenient shorthand for ``toarray(*args, **kwargs).view(np.recarray)``. """ import numpy as np return toarray(*args, **kwargs).view(np.recarray)
def _type_bool ( label , default = False ) : return label , abstractSearch . nothing , abstractRender . boolen , default
0
python flask booleanfield center
Shortcut fot boolean like fields
cosqa-train-318
def _type_bool(label,default=False): """Shortcut fot boolean like fields""" return label, abstractSearch.nothing, abstractRender.boolen, default
def join_cols ( cols ) : return ", " . join ( [ i for i in cols ] ) if isinstance ( cols , ( list , tuple , set ) ) else cols
0
concate column names in python
Join list of columns into a string for a SQL query
cosqa-train-319
def join_cols(cols): """Join list of columns into a string for a SQL query""" return ", ".join([i for i in cols]) if isinstance(cols, (list, tuple, set)) else cols
def parse_form ( self , req , name , field ) : return core . get_value ( req . POST , name , field )
0
python flask get text from form post
Pull a form value from the request .
cosqa-train-320
def parse_form(self, req, name, field): """Pull a form value from the request.""" return core.get_value(req.POST, name, field)
def cors_header ( func ) : @ wraps ( func ) def wrapper ( self , request , * args , * * kwargs ) : res = func ( self , request , * args , * * kwargs ) request . setHeader ( 'Access-Control-Allow-Origin' , '*' ) request . setHeader ( 'Access-Control-Allow-Headers' , 'Content-Type, Access-Control-Allow-Headers, Authorization, X-Requested-With' ) return res return wrapper
0
python flask header cors allow
cosqa-train-321
def cors_header(func): """ @cors_header decorator adds CORS headers """ @wraps(func) def wrapper(self, request, *args, **kwargs): res = func(self, request, *args, **kwargs) request.setHeader('Access-Control-Allow-Origin', '*') request.setHeader('Access-Control-Allow-Headers', 'Content-Type, Access-Control-Allow-Headers, Authorization, X-Requested-With') return res return wrapper
def pdf ( x , mu , std ) : return ( 1.0 / ( std * sqrt ( 2 * pi ) ) ) * np . exp ( - ( x - mu ) ** 2 / ( 2 * std ** 2 ) )
0
conditional probability function in python
Probability density function ( normal distribution )
cosqa-train-322
def pdf(x, mu, std): """Probability density function (normal distribution)""" return (1.0 / (std * sqrt(2 * pi))) * np.exp(-(x - mu) ** 2 / (2 * std ** 2))
def handleFlaskPostRequest ( flaskRequest , endpoint ) : if flaskRequest . method == "POST" : return handleHttpPost ( flaskRequest , endpoint ) elif flaskRequest . method == "OPTIONS" : return handleHttpOptions ( ) else : raise exceptions . MethodNotAllowedException ( )
0
python flask method for common request
Handles the specified flask request for one of the POST URLS Invokes the specified endpoint to generate a response .
cosqa-train-323
def handleFlaskPostRequest(flaskRequest, endpoint): """ Handles the specified flask request for one of the POST URLS Invokes the specified endpoint to generate a response. """ if flaskRequest.method == "POST": return handleHttpPost(flaskRequest, endpoint) elif flaskRequest.method == "OPTIONS": return handleHttpOptions() else: raise exceptions.MethodNotAllowedException()
def pdf ( x , mu , std ) : return ( 1.0 / ( std * sqrt ( 2 * pi ) ) ) * np . exp ( - ( x - mu ) ** 2 / ( 2 * std ** 2 ) )
0
conditional probability functions in python
Probability density function ( normal distribution )
cosqa-train-324
def pdf(x, mu, std): """Probability density function (normal distribution)""" return (1.0 / (std * sqrt(2 * pi))) * np.exp(-(x - mu) ** 2 / (2 * std ** 2))
def python_mime ( fn ) : @ wraps ( fn ) def python_mime_decorator ( * args , * * kwargs ) : response . content_type = "text/x-python" return fn ( * args , * * kwargs ) return python_mime_decorator
0
python flask mime types
Decorator which adds correct MIME type for python source to the decorated bottle API function .
cosqa-train-325
def python_mime(fn): """ Decorator, which adds correct MIME type for python source to the decorated bottle API function. """ @wraps(fn) def python_mime_decorator(*args, **kwargs): response.content_type = "text/x-python" return fn(*args, **kwargs) return python_mime_decorator
def _spawn_kafka_consumer_thread ( self ) : self . logger . debug ( "Spawn kafka consumer thread" "" ) self . _consumer_thread = Thread ( target = self . _consumer_loop ) self . _consumer_thread . setDaemon ( True ) self . _consumer_thread . start ( )
0
confluent kafka consume poll python
Spawns a kafka continuous consumer thread
cosqa-train-326
def _spawn_kafka_consumer_thread(self): """Spawns a kafka continuous consumer thread""" self.logger.debug("Spawn kafka consumer thread""") self._consumer_thread = Thread(target=self._consumer_loop) self._consumer_thread.setDaemon(True) self._consumer_thread.start()
def flatpages_link_list ( request ) : from django . contrib . flatpages . models import FlatPage link_list = [ ( page . title , page . url ) for page in FlatPage . objects . all ( ) ] return render_to_link_list ( link_list )
0
python flask render list of files as links
Returns a HttpResponse whose content is a Javascript file representing a list of links to flatpages .
cosqa-train-327
def flatpages_link_list(request): """ Returns a HttpResponse whose content is a Javascript file representing a list of links to flatpages. """ from django.contrib.flatpages.models import FlatPage link_list = [(page.title, page.url) for page in FlatPage.objects.all()] return render_to_link_list(link_list)
def values ( self ) : lower = float ( self . lowerSpnbx . value ( ) ) upper = float ( self . upperSpnbx . value ( ) ) return ( lower , upper )
0
contolling the x and y limits of plot in python
Gets the user enter max and min values of where the raster points should appear on the y - axis
cosqa-train-328
def values(self): """Gets the user enter max and min values of where the raster points should appear on the y-axis :returns: (float, float) -- (min, max) y-values to bound the raster plot by """ lower = float(self.lowerSpnbx.value()) upper = float(self.upperSpnbx.value()) return (lower, upper)
def sqlmany ( self , stringname , * args ) : if hasattr ( self , 'alchemist' ) : return getattr ( self . alchemist . many , stringname ) ( * args ) s = self . strings [ stringname ] return self . connection . cursor ( ) . executemany ( s , args )
0
python flask sqlalchemy query on a query
Wrapper for executing many SQL calls on my connection .
cosqa-train-329
def sqlmany(self, stringname, *args): """Wrapper for executing many SQL calls on my connection. First arg is the name of a query, either a key in the precompiled JSON or a method name in ``allegedb.alchemy.Alchemist``. Remaining arguments should be tuples of argument sequences to be passed to the query. """ if hasattr(self, 'alchemist'): return getattr(self.alchemist.many, stringname)(*args) s = self.strings[stringname] return self.connection.cursor().executemany(s, args)
def convolve_gaussian_2d ( image , gaussian_kernel_1d ) : result = scipy . ndimage . filters . correlate1d ( image , gaussian_kernel_1d , axis = 0 ) result = scipy . ndimage . filters . correlate1d ( result , gaussian_kernel_1d , axis = 1 ) return result
0
convolve image with kernel python stack overflow
Convolve 2d gaussian .
cosqa-train-330
def convolve_gaussian_2d(image, gaussian_kernel_1d): """Convolve 2d gaussian.""" result = scipy.ndimage.filters.correlate1d( image, gaussian_kernel_1d, axis=0) result = scipy.ndimage.filters.correlate1d( result, gaussian_kernel_1d, axis=1) return result
def render_template_string ( source , * * context ) : ctx = _app_ctx_stack . top ctx . app . update_template_context ( context ) return _render ( ctx . app . jinja_env . from_string ( source ) , context , ctx . app )
1
python flask template extend with context
Renders a template from the given template source string with the given context .
cosqa-train-331
def render_template_string(source, **context): """Renders a template from the given template source string with the given context. :param source: the sourcecode of the template to be rendered :param context: the variables that should be available in the context of the template. """ ctx = _app_ctx_stack.top ctx.app.update_template_context(context) return _render(ctx.app.jinja_env.from_string(source), context, ctx.app)
def asynchronous ( function , event ) : thread = Thread ( target = synchronous , args = ( function , event ) ) thread . daemon = True thread . start ( )
0
coroutine blocking functions python
Runs the function asynchronously taking care of exceptions .
cosqa-train-332
def asynchronous(function, event): """ Runs the function asynchronously taking care of exceptions. """ thread = Thread(target=synchronous, args=(function, event)) thread.daemon = True thread.start()
def HttpResponse403 ( request , template = KEY_AUTH_403_TEMPLATE , content = KEY_AUTH_403_CONTENT , content_type = KEY_AUTH_403_CONTENT_TYPE ) : return AccessFailedResponse ( request , template , content , content_type , status = 403 )
0
python flask template request status 403
HTTP response for forbidden access ( status code 403 )
cosqa-train-333
def HttpResponse403(request, template=KEY_AUTH_403_TEMPLATE, content=KEY_AUTH_403_CONTENT, content_type=KEY_AUTH_403_CONTENT_TYPE): """ HTTP response for forbidden access (status code 403) """ return AccessFailedResponse(request, template, content, content_type, status=403)
def similarity ( self , other ) : if self . magnitude == 0 or other . magnitude == 0 : return 0 return self . dot ( other ) / self . magnitude
0
cosine similarity python query
Calculates the cosine similarity between this vector and another vector .
cosqa-train-334
def similarity(self, other): """Calculates the cosine similarity between this vector and another vector.""" if self.magnitude == 0 or other.magnitude == 0: return 0 return self.dot(other) / self.magnitude
def default_static_path ( ) : fdir = os . path . dirname ( __file__ ) return os . path . abspath ( os . path . join ( fdir , '../assets/' ) )
0
python flask template static file
Return the path to the javascript bundle
cosqa-train-335
def default_static_path(): """ Return the path to the javascript bundle """ fdir = os.path.dirname(__file__) return os.path.abspath(os.path.join(fdir, '../assets/'))
def count_list ( the_list ) : count = the_list . count result = [ ( item , count ( item ) ) for item in set ( the_list ) ] result . sort ( ) return result
0
count frequency of unique values in list python
Generates a count of the number of times each unique item appears in a list
cosqa-train-336
def count_list(the_list): """ Generates a count of the number of times each unique item appears in a list """ count = the_list.count result = [(item, count(item)) for item in set(the_list)] result.sort() return result
def round_to_float ( number , precision ) : rounded = Decimal ( str ( floor ( ( number + precision / 2 ) // precision ) ) ) * Decimal ( str ( precision ) ) return float ( rounded )
1
python float precision rounding
Round a float to a precision
cosqa-train-337
def round_to_float(number, precision): """Round a float to a precision""" rounded = Decimal(str(floor((number + precision / 2) // precision)) ) * Decimal(str(precision)) return float(rounded)
def _calc_overlap_count ( markers1 : dict , markers2 : dict , ) : overlaps = np . zeros ( ( len ( markers1 ) , len ( markers2 ) ) ) j = 0 for marker_group in markers1 : tmp = [ len ( markers2 [ i ] . intersection ( markers1 [ marker_group ] ) ) for i in markers2 . keys ( ) ] overlaps [ j , : ] = tmp j += 1 return overlaps
1
count number of overlaps in two python lists
Calculate overlap count between the values of two dictionaries
cosqa-train-338
def _calc_overlap_count( markers1: dict, markers2: dict, ): """Calculate overlap count between the values of two dictionaries Note: dict values must be sets """ overlaps=np.zeros((len(markers1), len(markers2))) j=0 for marker_group in markers1: tmp = [len(markers2[i].intersection(markers1[marker_group])) for i in markers2.keys()] overlaps[j,:] = tmp j += 1 return overlaps
def intround ( value ) : return int ( decimal . Decimal . from_float ( value ) . to_integral_value ( decimal . ROUND_HALF_EVEN ) )
0
python float to int cast round
Given a float returns a rounded int . Should give the same result on both Py2 / 3
cosqa-train-339
def intround(value): """Given a float returns a rounded int. Should give the same result on both Py2/3 """ return int(decimal.Decimal.from_float( value).to_integral_value(decimal.ROUND_HALF_EVEN))
def _datetime_to_date ( arg ) : _arg = parse ( arg ) if isinstance ( _arg , datetime . datetime ) : _arg = _arg . date ( ) return _arg
0
covert datetime date to datetime python
convert datetime / str to date : param arg : : return :
cosqa-train-340
def _datetime_to_date(arg): """ convert datetime/str to date :param arg: :return: """ _arg = parse(arg) if isinstance(_arg, datetime.datetime): _arg = _arg.date() return _arg
def focusInEvent ( self , event ) : self . focus_changed . emit ( ) return super ( PageControlWidget , self ) . focusInEvent ( event )
0
python focusout comes before button
Reimplement Qt method to send focus change notification
cosqa-train-341
def focusInEvent(self, event): """Reimplement Qt method to send focus change notification""" self.focus_changed.emit() return super(PageControlWidget, self).focusInEvent(event)
def mkdir ( dir , enter ) : if not os . path . exists ( dir ) : os . makedirs ( dir )
0
creat new folder in python
Create directory with template for topic of the current environment
cosqa-train-342
def mkdir(dir, enter): """Create directory with template for topic of the current environment """ if not os.path.exists(dir): os.makedirs(dir)
def _accumulate ( sequence , func ) : iterator = iter ( sequence ) total = next ( iterator ) yield total for element in iterator : total = func ( total , element ) yield total
1
python for comprehension sum
Python2 accumulate implementation taken from https : // docs . python . org / 3 / library / itertools . html#itertools . accumulate
cosqa-train-343
def _accumulate(sequence, func): """ Python2 accumulate implementation taken from https://docs.python.org/3/library/itertools.html#itertools.accumulate """ iterator = iter(sequence) total = next(iterator) yield total for element in iterator: total = func(total, element) yield total
def one_hot ( x , size , dtype = np . float32 ) : return np . array ( x [ ... , np . newaxis ] == np . arange ( size ) , dtype )
0
create 2d array python numpy one hot encoding
Make a n + 1 dim one - hot array from n dim int - categorical array .
cosqa-train-344
def one_hot(x, size, dtype=np.float32): """Make a n+1 dim one-hot array from n dim int-categorical array.""" return np.array(x[..., np.newaxis] == np.arange(size), dtype)
def iter_finds ( regex_obj , s ) : if isinstance ( regex_obj , str ) : for m in re . finditer ( regex_obj , s ) : yield m . group ( ) else : for m in regex_obj . finditer ( s ) : yield m . group ( )
0
python for each regex match in a string
Generate all matches found within a string for a regex and yield each match as a string
cosqa-train-345
def iter_finds(regex_obj, s): """Generate all matches found within a string for a regex and yield each match as a string""" if isinstance(regex_obj, str): for m in re.finditer(regex_obj, s): yield m.group() else: for m in regex_obj.finditer(s): yield m.group()
def a2s ( a ) : s = np . zeros ( ( 6 , ) , 'f' ) # make the a matrix for i in range ( 3 ) : s [ i ] = a [ i ] [ i ] s [ 3 ] = a [ 0 ] [ 1 ] s [ 4 ] = a [ 1 ] [ 2 ] s [ 5 ] = a [ 0 ] [ 2 ] return s
0
create 5 by 5 matrix in python
convert 3 3 a matrix to 6 element s list ( see Tauxe 1998 )
cosqa-train-346
def a2s(a): """ convert 3,3 a matrix to 6 element "s" list (see Tauxe 1998) """ s = np.zeros((6,), 'f') # make the a matrix for i in range(3): s[i] = a[i][i] s[3] = a[0][1] s[4] = a[1][2] s[5] = a[0][2] return s
def concat ( cls , iterables ) : def generator ( ) : for it in iterables : for element in it : yield element return cls ( generator ( ) )
0
python for multiple iterables
Similar to #itertools . chain . from_iterable () .
cosqa-train-347
def concat(cls, iterables): """ Similar to #itertools.chain.from_iterable(). """ def generator(): for it in iterables: for element in it: yield element return cls(generator())
def format_result ( input ) : items = list ( iteritems ( input ) ) return OrderedDict ( sorted ( items , key = lambda x : x [ 0 ] ) )
0
create a dict as ordered dict in python
From : http : // stackoverflow . com / questions / 13062300 / convert - a - dict - to - sorted - dict - in - python
cosqa-train-348
def format_result(input): """From: http://stackoverflow.com/questions/13062300/convert-a-dict-to-sorted-dict-in-python """ items = list(iteritems(input)) return OrderedDict(sorted(items, key=lambda x: x[0]))
def bulk_query ( self , query , * multiparams ) : with self . get_connection ( ) as conn : conn . bulk_query ( query , * multiparams )
0
python for sql server bulk load
Bulk insert or update .
cosqa-train-349
def bulk_query(self, query, *multiparams): """Bulk insert or update.""" with self.get_connection() as conn: conn.bulk_query(query, *multiparams)
def Trie ( S ) : T = None for w in S : T = add ( T , w ) return T
0
create a trie with a words python
: param S : set of words : returns : trie containing all words from S : complexity : linear in total word sizes from S
cosqa-train-350
def Trie(S): """ :param S: set of words :returns: trie containing all words from S :complexity: linear in total word sizes from S """ T = None for w in S: T = add(T, w) return T
def __set__ ( self , instance , value ) : self . map [ id ( instance ) ] = ( weakref . ref ( instance ) , value )
1
python foreign key to a foreign key
Set a related object for an instance .
cosqa-train-351
def __set__(self, instance, value): """ Set a related object for an instance. """ self.map[id(instance)] = (weakref.ref(instance), value)
def recarray ( self ) : return numpy . rec . fromrecords ( self . records , names = self . names )
1
create an array in python without numpy
Returns data as : class : numpy . recarray .
cosqa-train-352
def recarray(self): """Returns data as :class:`numpy.recarray`.""" return numpy.rec.fromrecords(self.records, names=self.names)
def go_to_background ( ) : try : if os . fork ( ) : sys . exit ( ) except OSError as errmsg : LOGGER . error ( 'Fork failed: {0}' . format ( errmsg ) ) sys . exit ( 'Fork failed' )
0
python fork output incomplete
Daemonize the running process .
cosqa-train-353
def go_to_background(): """ Daemonize the running process. """ try: if os.fork(): sys.exit() except OSError as errmsg: LOGGER.error('Fork failed: {0}'.format(errmsg)) sys.exit('Fork failed')
def generate_unique_host_id ( ) : host = "." . join ( reversed ( socket . gethostname ( ) . split ( "." ) ) ) pid = os . getpid ( ) return "%s.%d" % ( host , pid )
0
create automatic unique id in python
Generate a unique ID that is somewhat guaranteed to be unique among all instances running at the same time .
cosqa-train-354
def generate_unique_host_id(): """Generate a unique ID, that is somewhat guaranteed to be unique among all instances running at the same time.""" host = ".".join(reversed(socket.gethostname().split("."))) pid = os.getpid() return "%s.%d" % (host, pid)
def compress ( self , data_list ) : data = { } if data_list : return dict ( ( f . name , data_list [ i ] ) for i , f in enumerate ( self . form ) ) return data
0
python form data to dict
Return the cleaned_data of the form everything should already be valid
cosqa-train-355
def compress(self, data_list): """ Return the cleaned_data of the form, everything should already be valid """ data = {} if data_list: return dict( (f.name, data_list[i]) for i, f in enumerate(self.form)) return data
def init_db ( ) : db . drop_all ( ) db . configure_mappers ( ) db . create_all ( ) db . session . commit ( )
0
create database postgres python sqlalchemy
Drops and re - creates the SQL schema
cosqa-train-356
def init_db(): """ Drops and re-creates the SQL schema """ db.drop_all() db.configure_mappers() db.create_all() db.session.commit()
def safe_format ( s , * * kwargs ) : return string . Formatter ( ) . vformat ( s , ( ) , defaultdict ( str , * * kwargs ) )
0
python format string pass varialbes
: type s str
cosqa-train-357
def safe_format(s, **kwargs): """ :type s str """ return string.Formatter().vformat(s, (), defaultdict(str, **kwargs))
def _init_unique_sets ( self ) : ks = dict ( ) for t in self . _unique_checks : key = t [ 0 ] ks [ key ] = set ( ) # empty set return ks
0
create dictionary python unique key
Initialise sets used for uniqueness checking .
cosqa-train-358
def _init_unique_sets(self): """Initialise sets used for uniqueness checking.""" ks = dict() for t in self._unique_checks: key = t[0] ks[key] = set() # empty set return ks
def straight_line_show ( title , length = 100 , linestyle = "=" , pad = 0 ) : print ( StrTemplate . straight_line ( title = title , length = length , linestyle = linestyle , pad = pad ) )
0
python formatting a long line
Print a formatted straight line .
cosqa-train-359
def straight_line_show(title, length=100, linestyle="=", pad=0): """Print a formatted straight line. """ print(StrTemplate.straight_line( title=title, length=length, linestyle=linestyle, pad=pad))
def make_executable ( script_path ) : status = os . stat ( script_path ) os . chmod ( script_path , status . st_mode | stat . S_IEXEC )
0
create executable python script directly instead of chmod
Make script_path executable .
cosqa-train-360
def make_executable(script_path): """Make `script_path` executable. :param script_path: The file to change """ status = os.stat(script_path) os.chmod(script_path, status.st_mode | stat.S_IEXEC)
def make_html_code ( self , lines ) : line = code_header + '\n' for l in lines : line = line + html_quote ( l ) + '\n' return line + code_footer
0
python formatting code into 2 lines
convert a code sequence to HTML
cosqa-train-361
def make_html_code( self, lines ): """ convert a code sequence to HTML """ line = code_header + '\n' for l in lines: line = line + html_quote( l ) + '\n' return line + code_footer
def cross_product_matrix ( vec ) : return np . array ( [ [ 0 , - vec [ 2 ] , vec [ 1 ] ] , [ vec [ 2 ] , 0 , - vec [ 0 ] ] , [ - vec [ 1 ] , vec [ 0 ] , 0 ] ] )
0
create matrix from vectors python3
Returns a 3x3 cross - product matrix from a 3 - element vector .
cosqa-train-362
def cross_product_matrix(vec): """Returns a 3x3 cross-product matrix from a 3-element vector.""" return np.array([[0, -vec[2], vec[1]], [vec[2], 0, -vec[0]], [-vec[1], vec[0], 0]])
def index_nearest ( value , array ) : a = ( array - value ) ** 2 return index ( a . min ( ) , a )
0
python found to nearest integer
expects a _n . array returns the global minimum of ( value - array ) ^2
cosqa-train-363
def index_nearest(value, array): """ expects a _n.array returns the global minimum of (value-array)^2 """ a = (array-value)**2 return index(a.min(), a)
def main ( args = sys . argv ) : parser = create_optparser ( args [ 0 ] ) return cli ( parser . parse_args ( args [ 1 : ] ) )
0
create parse args python script
main entry point for the jardiff CLI
cosqa-train-364
def main(args=sys.argv): """ main entry point for the jardiff CLI """ parser = create_optparser(args[0]) return cli(parser.parse_args(args[1:]))
def free ( self ) : if self . _ptr is None : return Gauged . array_free ( self . ptr ) FloatArray . ALLOCATIONS -= 1 self . _ptr = None
0
python free unused numpy array memory
Free the underlying C array
cosqa-train-365
def free(self): """Free the underlying C array""" if self._ptr is None: return Gauged.array_free(self.ptr) FloatArray.ALLOCATIONS -= 1 self._ptr = None
def from_points ( cls , list_of_lists ) : result = [ ] for l in list_of_lists : curve = [ ] for point in l : curve . append ( ( point . lon , point . lat ) ) result . append ( curve ) return Polygon ( result )
1
create polygon from lists of points python
Creates a * Polygon * instance out of a list of lists each sublist being populated with pyowm . utils . geo . Point instances : param list_of_lists : list : type : list_of_lists : iterable_of_polygons : returns : a * Polygon * instance
cosqa-train-366
def from_points(cls, list_of_lists): """ Creates a *Polygon* instance out of a list of lists, each sublist being populated with `pyowm.utils.geo.Point` instances :param list_of_lists: list :type: list_of_lists: iterable_of_polygons :returns: a *Polygon* instance """ result = [] for l in list_of_lists: curve = [] for point in l: curve.append((point.lon, point.lat)) result.append(curve) return Polygon(result)
def connect ( ) : ftp_class = ftplib . FTP if not SSL else ftplib . FTP_TLS ftp = ftp_class ( timeout = TIMEOUT ) ftp . connect ( HOST , PORT ) ftp . login ( USER , PASSWORD ) if SSL : ftp . prot_p ( ) # secure data connection return ftp
0
python ftp login and get file
Connect to FTP server login and return an ftplib . FTP instance .
cosqa-train-367
def connect(): """Connect to FTP server, login and return an ftplib.FTP instance.""" ftp_class = ftplib.FTP if not SSL else ftplib.FTP_TLS ftp = ftp_class(timeout=TIMEOUT) ftp.connect(HOST, PORT) ftp.login(USER, PASSWORD) if SSL: ftp.prot_p() # secure data connection return ftp
def tmpfile ( prefix , direc ) : return tempfile . mktemp ( prefix = prefix , suffix = '.pdb' , dir = direc )
0
create temporary directory in python with a specific name
Returns the path to a newly created temporary file .
cosqa-train-368
def tmpfile(prefix, direc): """Returns the path to a newly created temporary file.""" return tempfile.mktemp(prefix=prefix, suffix='.pdb', dir=direc)
def connect ( host , port , username , password ) : # Instantiate ftplib client session = ftplib . FTP ( ) # Connect to host without auth session . connect ( host , port ) # Authenticate connection session . login ( username , password ) return session
0
python ftp server user name and password
Connect and login to an FTP server and return ftplib . FTP object .
cosqa-train-369
def connect(host, port, username, password): """Connect and login to an FTP server and return ftplib.FTP object.""" # Instantiate ftplib client session = ftplib.FTP() # Connect to host without auth session.connect(host, port) # Authenticate connection session.login(username, password) return session
def unique_list ( lst ) : uniq = [ ] for item in lst : if item not in uniq : uniq . append ( item ) return uniq
0
create unique list from a list in python
Make a list unique retaining order of initial appearance .
cosqa-train-370
def unique_list(lst): """Make a list unique, retaining order of initial appearance.""" uniq = [] for item in lst: if item not in uniq: uniq.append(item) return uniq
def connect ( ) : ftp_class = ftplib . FTP if not SSL else ftplib . FTP_TLS ftp = ftp_class ( timeout = TIMEOUT ) ftp . connect ( HOST , PORT ) ftp . login ( USER , PASSWORD ) if SSL : ftp . prot_p ( ) # secure data connection return ftp
0
python ftps implicit ssl
Connect to FTP server login and return an ftplib . FTP instance .
cosqa-train-371
def connect(): """Connect to FTP server, login and return an ftplib.FTP instance.""" ftp_class = ftplib.FTP if not SSL else ftplib.FTP_TLS ftp = ftp_class(timeout=TIMEOUT) ftp.connect(HOST, PORT) ftp.login(USER, PASSWORD) if SSL: ftp.prot_p() # secure data connection return ftp
def exp_fit_fun ( x , a , tau , c ) : # pylint: disable=invalid-name return a * np . exp ( - x / tau ) + c
0
creating a function to fit exponential curve python
Function used to fit the exponential decay .
cosqa-train-372
def exp_fit_fun(x, a, tau, c): """Function used to fit the exponential decay.""" # pylint: disable=invalid-name return a * np.exp(-x / tau) + c
def All ( sequence ) : return bool ( reduce ( lambda x , y : x and y , sequence , True ) )
0
python fucntion if every element is true
: param sequence : Any sequence whose elements can be evaluated as booleans . : returns : true if all elements of the sequence satisfy True and x .
cosqa-train-373
def All(sequence): """ :param sequence: Any sequence whose elements can be evaluated as booleans. :returns: true if all elements of the sequence satisfy True and x. """ return bool(reduce(lambda x, y: x and y, sequence, True))
def zero_state ( self , batch_size ) : return torch . zeros ( batch_size , self . state_dim , dtype = torch . float32 )
0
creating a matrix in python tensorflow
Initial state of the network
cosqa-train-374
def zero_state(self, batch_size): """ Initial state of the network """ return torch.zeros(batch_size, self.state_dim, dtype=torch.float32)
def _fullname ( o ) : return o . __module__ + "." + o . __name__ if o . __module__ else o . __name__
0
python fully qualified filename
Return the fully - qualified name of a function .
cosqa-train-375
def _fullname(o): """Return the fully-qualified name of a function.""" return o.__module__ + "." + o.__name__ if o.__module__ else o.__name__
def create_index ( config ) : filename = pathlib . Path ( config . cache_path ) / "index.json" index = { "version" : __version__ } with open ( filename , "w" ) as out : out . write ( json . dumps ( index , indent = 2 ) )
0
creating an index file in python
Create the root index .
cosqa-train-376
def create_index(config): """Create the root index.""" filename = pathlib.Path(config.cache_path) / "index.json" index = {"version": __version__} with open(filename, "w") as out: out.write(json.dumps(index, indent=2))
def issorted ( list_ , op = operator . le ) : return all ( op ( list_ [ ix ] , list_ [ ix + 1 ] ) for ix in range ( len ( list_ ) - 1 ) )
0
python function states whether a list is sorted
Determines if a list is sorted
cosqa-train-377
def issorted(list_, op=operator.le): """ Determines if a list is sorted Args: list_ (list): op (func): sorted operation (default=operator.le) Returns: bool : True if the list is sorted """ return all(op(list_[ix], list_[ix + 1]) for ix in range(len(list_) - 1))
def is_valid ( number ) : n = str ( number ) if not n . isdigit ( ) : return False return int ( n [ - 1 ] ) == get_check_digit ( n [ : - 1 ] )
0
credit card number check digit python
determines whether the card number is valid .
cosqa-train-378
def is_valid(number): """determines whether the card number is valid.""" n = str(number) if not n.isdigit(): return False return int(n[-1]) == get_check_digit(n[:-1])
def us2mc ( string ) : return re . sub ( r'_([a-z])' , lambda m : ( m . group ( 1 ) . upper ( ) ) , string )
0
python function stating with underscore
Transform an underscore_case string to a mixedCase string
cosqa-train-379
def us2mc(string): """Transform an underscore_case string to a mixedCase string""" return re.sub(r'_([a-z])', lambda m: (m.group(1).upper()), string)
def csv2yaml ( in_file , out_file = None ) : if out_file is None : out_file = "%s.yaml" % os . path . splitext ( in_file ) [ 0 ] barcode_ids = _generate_barcode_ids ( _read_input_csv ( in_file ) ) lanes = _organize_lanes ( _read_input_csv ( in_file ) , barcode_ids ) with open ( out_file , "w" ) as out_handle : out_handle . write ( yaml . safe_dump ( lanes , default_flow_style = False ) ) return out_file
0
csv to yaml python
Convert a CSV SampleSheet to YAML run_info format .
cosqa-train-380
def csv2yaml(in_file, out_file=None): """Convert a CSV SampleSheet to YAML run_info format. """ if out_file is None: out_file = "%s.yaml" % os.path.splitext(in_file)[0] barcode_ids = _generate_barcode_ids(_read_input_csv(in_file)) lanes = _organize_lanes(_read_input_csv(in_file), barcode_ids) with open(out_file, "w") as out_handle: out_handle.write(yaml.safe_dump(lanes, default_flow_style=False)) return out_file
def get_average_length_of_string ( strings ) : if not strings : return 0 return sum ( len ( word ) for word in strings ) / len ( strings )
0
python function that returns the average of each length of words in a string
Computes average length of words
cosqa-train-381
def get_average_length_of_string(strings): """Computes average length of words :param strings: list of words :return: Average length of word on list """ if not strings: return 0 return sum(len(word) for word in strings) / len(strings)
def cumsum ( inlist ) : newlist = copy . deepcopy ( inlist ) for i in range ( 1 , len ( newlist ) ) : newlist [ i ] = newlist [ i ] + newlist [ i - 1 ] return newlist
1
cumulative sum of list python
Returns a list consisting of the cumulative sum of the items in the passed list .
cosqa-train-382
def cumsum(inlist): """ Returns a list consisting of the cumulative sum of the items in the passed list. Usage: lcumsum(inlist) """ newlist = copy.deepcopy(inlist) for i in range(1, len(newlist)): newlist[i] = newlist[i] + newlist[i - 1] return newlist
def good ( txt ) : print ( "%s# %s%s%s" % ( PR_GOOD_CC , get_time_stamp ( ) , txt , PR_NC ) ) sys . stdout . flush ( )
0
python function to bold the print statemetn
Print emphasized good the given txt message
cosqa-train-383
def good(txt): """Print, emphasized 'good', the given 'txt' message""" print("%s# %s%s%s" % (PR_GOOD_CC, get_time_stamp(), txt, PR_NC)) sys.stdout.flush()
def move_to ( self , ypos , xpos ) : # the screen's co-ordinates are 1 based, but the command is 0 based xpos -= 1 ypos -= 1 self . exec_command ( "MoveCursor({0}, {1})" . format ( ypos , xpos ) . encode ( "ascii" ) )
0
cursor movement in game using python
move the cursor to the given co - ordinates . Co - ordinates are 1 based as listed in the status area of the terminal .
cosqa-train-384
def move_to(self, ypos, xpos): """ move the cursor to the given co-ordinates. Co-ordinates are 1 based, as listed in the status area of the terminal. """ # the screen's co-ordinates are 1 based, but the command is 0 based xpos -= 1 ypos -= 1 self.exec_command("MoveCursor({0}, {1})".format(ypos, xpos).encode("ascii"))
def dict_from_object ( obj : object ) : # If object is a dict instance, no need to convert. return ( obj if isinstance ( obj , dict ) else { attr : getattr ( obj , attr ) for attr in dir ( obj ) if not attr . startswith ( '_' ) } )
0
python function to get object attributes
Convert a object into dictionary with all of its readable attributes .
cosqa-train-385
def dict_from_object(obj: object): """Convert a object into dictionary with all of its readable attributes.""" # If object is a dict instance, no need to convert. return (obj if isinstance(obj, dict) else {attr: getattr(obj, attr) for attr in dir(obj) if not attr.startswith('_')})
def ensure_hbounds ( self ) : self . cursor . x = min ( max ( 0 , self . cursor . x ) , self . columns - 1 )
1
cursor position graphics python
Ensure the cursor is within horizontal screen bounds .
cosqa-train-386
def ensure_hbounds(self): """Ensure the cursor is within horizontal screen bounds.""" self.cursor.x = min(max(0, self.cursor.x), self.columns - 1)
def strip_spaces ( s ) : return u" " . join ( [ c for c in s . split ( u' ' ) if c ] )
0
python function to remove spaces in a string
Strip excess spaces from a string
cosqa-train-387
def strip_spaces(s): """ Strip excess spaces from a string """ return u" ".join([c for c in s.split(u' ') if c])
def scatter ( self , * args , * * kwargs ) : cls = _make_class ( ScatterVisual , _default_marker = kwargs . pop ( 'marker' , None ) , ) return self . _add_item ( cls , * args , * * kwargs )
0
custom scatter plot marker with png python
Add a scatter plot .
cosqa-train-388
def scatter(self, *args, **kwargs): """Add a scatter plot.""" cls = _make_class(ScatterVisual, _default_marker=kwargs.pop('marker', None), ) return self._add_item(cls, *args, **kwargs)
def download_file_from_bucket ( self , bucket , file_path , key ) : with open ( file_path , 'wb' ) as data : self . __s3 . download_fileobj ( bucket , key , data ) return file_path
0
python function to upload file to s3
Download file from S3 Bucket
cosqa-train-389
def download_file_from_bucket(self, bucket, file_path, key): """ Download file from S3 Bucket """ with open(file_path, 'wb') as data: self.__s3.download_fileobj(bucket, key, data) return file_path
def imdecode ( image_path ) : import os assert os . path . exists ( image_path ) , image_path + ' not found' im = cv2 . imread ( image_path ) return im
0
cv2 python load image
Return BGR image read by opencv
cosqa-train-390
def imdecode(image_path): """Return BGR image read by opencv""" import os assert os.path.exists(image_path), image_path + ' not found' im = cv2.imread(image_path) return im
def ex ( self , cmd ) : with self . builtin_trap : exec cmd in self . user_global_ns , self . user_ns
0
python function use variable defined in outer scope
Execute a normal python statement in user namespace .
cosqa-train-391
def ex(self, cmd): """Execute a normal python statement in user namespace.""" with self.builtin_trap: exec cmd in self.user_global_ns, self.user_ns
def isbinary ( * args ) : return all ( map ( lambda c : isnumber ( c ) or isbool ( c ) , args ) )
1
cython python2 bool function
Checks if value can be part of binary / bitwise operations .
cosqa-train-392
def isbinary(*args): """Checks if value can be part of binary/bitwise operations.""" return all(map(lambda c: isnumber(c) or isbool(c), args))
def split ( s ) : l = [ _split ( x ) for x in _SPLIT_RE . split ( s ) ] return [ item for sublist in l for item in sublist ]
0
python function used to explode a string into a list of strings
Uses dynamic programming to infer the location of spaces in a string without spaces .
cosqa-train-393
def split(s): """Uses dynamic programming to infer the location of spaces in a string without spaces.""" l = [_split(x) for x in _SPLIT_RE.split(s)] return [item for sublist in l for item in sublist]
def dt2jd ( dt ) : a = ( 14 - dt . month ) // 12 y = dt . year + 4800 - a m = dt . month + 12 * a - 3 return dt . day + ( ( 153 * m + 2 ) // 5 ) + 365 * y + y // 4 - y // 100 + y // 400 - 32045
0
date to jday python
Convert datetime to julian date
cosqa-train-394
def dt2jd(dt): """Convert datetime to julian date """ a = (14 - dt.month)//12 y = dt.year + 4800 - a m = dt.month + 12*a - 3 return dt.day + ((153*m + 2)//5) + 365*y + y//4 - y//100 + y//400 - 32045
def smooth_gaussian ( image , sigma = 1 ) : return scipy . ndimage . filters . gaussian_filter ( image , sigma = sigma , mode = "nearest" )
0
python gaussian filter blur image
Returns Gaussian smoothed image .
cosqa-train-395
def smooth_gaussian(image, sigma=1): """Returns Gaussian smoothed image. :param image: numpy array or :class:`jicimagelib.image.Image` :param sigma: standard deviation :returns: :class:`jicimagelib.image.Image` """ return scipy.ndimage.filters.gaussian_filter(image, sigma=sigma, mode="nearest")
def _time_to_json ( value ) : if isinstance ( value , datetime . time ) : value = value . isoformat ( ) return value
0
datetime to json in python
Coerce value to an JSON - compatible representation .
cosqa-train-396
def _time_to_json(value): """Coerce 'value' to an JSON-compatible representation.""" if isinstance(value, datetime.time): value = value.isoformat() return value
def EvalGaussianPdf ( x , mu , sigma ) : return scipy . stats . norm . pdf ( x , mu , sigma )
0
python gaussian pdf plot
Computes the unnormalized PDF of the normal distribution .
cosqa-train-397
def EvalGaussianPdf(x, mu, sigma): """Computes the unnormalized PDF of the normal distribution. x: value mu: mean sigma: standard deviation returns: float probability density """ return scipy.stats.norm.pdf(x, mu, sigma)
def convert_timestamp ( timestamp ) : datetime = dt . datetime . utcfromtimestamp ( timestamp / 1000. ) return np . datetime64 ( datetime . replace ( tzinfo = None ) )
0
datetime to timestamp ironpython
Converts bokehJS timestamp to datetime64 .
cosqa-train-398
def convert_timestamp(timestamp): """ Converts bokehJS timestamp to datetime64. """ datetime = dt.datetime.utcfromtimestamp(timestamp/1000.) return np.datetime64(datetime.replace(tzinfo=None))
def _make_cmd_list ( cmd_list ) : cmd = '' for i in cmd_list : cmd = cmd + '"' + i + '",' cmd = cmd [ : - 1 ] return cmd
0
python generate a string based on a list
Helper function to easily create the proper json formated string from a list of strs : param cmd_list : list of strings : return : str json formatted
cosqa-train-399
def _make_cmd_list(cmd_list): """ Helper function to easily create the proper json formated string from a list of strs :param cmd_list: list of strings :return: str json formatted """ cmd = '' for i in cmd_list: cmd = cmd + '"' + i + '",' cmd = cmd[:-1] return cmd