sha
null
last_modified
null
library_name
stringclasses
154 values
text
stringlengths
1
900k
metadata
stringlengths
2
348k
pipeline_tag
stringclasses
45 values
id
stringlengths
5
122
tags
sequencelengths
1
1.84k
created_at
stringlengths
25
25
arxiv
sequencelengths
0
201
languages
sequencelengths
0
1.83k
tags_str
stringlengths
17
9.34k
text_str
stringlengths
0
389k
text_lists
sequencelengths
0
722
processed_texts
sequencelengths
1
723
tokens_length
sequencelengths
1
723
input_texts
sequencelengths
1
61
embeddings
sequencelengths
768
768
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-epochs15 This model is a fine-tuned version of [AKulk/wav2vec2-base-timit-epochs10](https://huggingface.co/AKulk/wav2vec2-base-timit-epochs10) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 5 - total_train_batch_size: 80 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "wav2vec2-base-timit-epochs15", "results": []}]}
automatic-speech-recognition
AKulk/wav2vec2-base-timit-epochs15
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us
# wav2vec2-base-timit-epochs15 This model is a fine-tuned version of AKulk/wav2vec2-base-timit-epochs10 on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 5 - total_train_batch_size: 80 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
[ "# wav2vec2-base-timit-epochs15\n\nThis model is a fine-tuned version of AKulk/wav2vec2-base-timit-epochs10 on the None dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0001\n- train_batch_size: 16\n- eval_batch_size: 8\n- seed: 42\n- gradient_accumulation_steps: 5\n- total_train_batch_size: 80\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_steps: 1000\n- num_epochs: 5\n- mixed_precision_training: Native AMP", "### Training results", "### Framework versions\n\n- Transformers 4.11.3\n- Pytorch 1.10.0+cu111\n- Datasets 1.18.3\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us \n", "# wav2vec2-base-timit-epochs15\n\nThis model is a fine-tuned version of AKulk/wav2vec2-base-timit-epochs10 on the None dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0001\n- train_batch_size: 16\n- eval_batch_size: 8\n- seed: 42\n- gradient_accumulation_steps: 5\n- total_train_batch_size: 80\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_steps: 1000\n- num_epochs: 5\n- mixed_precision_training: Native AMP", "### Training results", "### Framework versions\n\n- Transformers 4.11.3\n- Pytorch 1.10.0+cu111\n- Datasets 1.18.3\n- Tokenizers 0.10.3" ]
[ 56, 48, 6, 12, 8, 3, 140, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us \n# wav2vec2-base-timit-epochs15\n\nThis model is a fine-tuned version of AKulk/wav2vec2-base-timit-epochs10 on the None dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0001\n- train_batch_size: 16\n- eval_batch_size: 8\n- seed: 42\n- gradient_accumulation_steps: 5\n- total_train_batch_size: 80\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_steps: 1000\n- num_epochs: 5\n- mixed_precision_training: Native AMP### Training results### Framework versions\n\n- Transformers 4.11.3\n- Pytorch 1.10.0+cu111\n- Datasets 1.18.3\n- Tokenizers 0.10.3" ]
[ -0.0954214408993721, 0.10474158823490143, -0.003669228870421648, 0.055591728538274765, 0.1258770227432251, 0.025360284373164177, 0.10450559109449387, 0.12859275937080383, -0.10188861191272736, 0.05186747759580612, 0.05815146863460541, 0.039368703961372375, 0.066119484603405, 0.08302401006221771, -0.016748175024986267, -0.2654612362384796, 0.008053882047533989, 0.016306888312101364, -0.09149379283189774, 0.10725872218608856, 0.12142201513051987, -0.10308510810136795, 0.026694005355238914, 0.05874117463827133, -0.12923656404018402, 0.027965400367975235, -0.04165806621313095, -0.0693727508187294, 0.10076554119586945, 0.006042290013283491, 0.12683996558189392, 0.01844087801873684, 0.12938381731510162, -0.23630096018314362, -0.00007763909525237978, 0.0854971632361412, 0.059113986790180206, 0.09098448604345322, 0.08363526314496994, -0.009924506768584251, 0.07458911091089249, -0.11804725974798203, 0.11207588762044907, 0.01034398004412651, -0.07050139456987381, -0.1951620876789093, -0.0814116895198822, 0.08751630783081055, 0.12079260498285294, 0.11186030507087708, -0.006647913251072168, 0.121462881565094, -0.09985962510108948, 0.0699731856584549, 0.17406386137008667, -0.2419123649597168, -0.06688226014375687, 0.012192973867058754, 0.03488079831004143, 0.042231615632772446, -0.10719941556453705, -0.03414497151970863, 0.03057633526623249, 0.020259078592061996, 0.09742697328329086, 0.02931339107453823, -0.07149858772754669, -0.0012940659653395414, -0.12553642690181732, -0.04137179255485535, 0.11959543824195862, 0.062261153012514114, -0.04329027235507965, -0.10119619220495224, -0.02104758657515049, -0.15355829894542694, -0.010336753912270069, -0.044125840067863464, 0.03425158932805061, -0.04461783543229103, -0.07556313276290894, -0.039364125579595566, -0.09134753048419952, -0.06063545495271683, 0.021180611103773117, 0.1319696009159088, 0.055524662137031555, 0.0008469494641758502, -0.0388953797519207, 0.13486474752426147, 0.027309399098157883, -0.1301882117986679, -0.004659571219235659, 0.018792148679494858, -0.09635914862155914, -0.06594997644424438, -0.050079576671123505, -0.03645164147019386, -0.04085313156247139, 0.15000371634960175, -0.024751456454396248, 0.07693211734294891, 0.006839336361736059, 0.009154915809631348, -0.043908461928367615, 0.17071467638015747, -0.0422222800552845, -0.005290896166115999, -0.03581129014492035, 0.10081993788480759, -0.020265057682991028, -0.006086021661758423, -0.07092393189668655, -0.01942056603729725, 0.07800167798995972, 0.04471554607152939, -0.06267907470464706, 0.022162027657032013, -0.0403071753680706, -0.04285483434796333, 0.004203525837510824, -0.1313311755657196, 0.04293421655893326, 0.002865449758246541, -0.09718149155378342, 0.01646347902715206, 0.02406679093837738, 0.03861640766263008, -0.038056373596191406, 0.13355016708374023, -0.06296803802251816, 0.0014499160461127758, -0.09882482886314392, -0.05882692337036133, 0.008298959583044052, -0.06653095781803131, 0.0036679634358733892, -0.05215848237276077, -0.17497506737709045, -0.0313403494656086, 0.06847082823514938, -0.053078509867191315, -0.06638333946466446, -0.040489617735147476, -0.05109625309705734, 0.016958463937044144, -0.015019016340374947, 0.19448977708816528, -0.038248464465141296, 0.0631675273180008, -0.013887602835893631, 0.020655721426010132, 0.07109370827674866, 0.052948616445064545, -0.06977535039186478, 0.022584093734622, -0.10100260376930237, 0.0713895782828331, -0.08656556159257889, 0.0027622412890195847, -0.12097107619047165, -0.11041969805955887, -0.032501108944416046, -0.01771981082856655, 0.075926773250103, 0.0831417515873909, -0.1583586186170578, -0.043694835156202316, 0.15953640639781952, -0.0708981528878212, -0.05814781039953232, 0.09120526164770126, -0.05348478630185127, 0.021814798936247826, 0.052552394568920135, 0.1367029845714569, 0.10688558220863342, -0.13949501514434814, 0.004845341667532921, -0.022609831765294075, 0.09364358335733414, 0.040948040783405304, 0.06497326493263245, -0.02655578963458538, 0.05410326272249222, -0.005614195019006729, -0.06283895671367645, 0.008428790606558323, -0.0758873000741005, -0.0896969735622406, -0.04316673427820206, -0.08447673916816711, 0.024723540991544724, 0.022709248587489128, 0.04902656003832817, -0.07235074788331985, -0.15167909860610962, 0.11891340464353561, 0.13520695269107819, -0.06587386131286621, 0.02719927206635475, -0.08753284066915512, -0.007766168564558029, -0.011447791941463947, -0.0495646633207798, -0.17240746319293976, -0.05335278809070587, 0.02556977979838848, -0.08521246165037155, 0.030050767585635185, 0.024444779381155968, 0.0715460404753685, 0.050697747617959976, -0.05565314367413521, -0.03465677797794342, -0.12779060006141663, 0.012869207188487053, -0.08085017651319504, -0.18448838591575623, -0.06307439506053925, -0.0165057685226202, 0.2026675045490265, -0.21870465576648712, 0.01202800590544939, -0.0159897580742836, 0.16306883096694946, 0.026887036859989166, -0.061331234872341156, -0.02192113921046257, 0.049766555428504944, 0.0021417709067463875, -0.08391859382390976, 0.024929551407694817, -0.0035526531282812357, -0.09649275243282318, -0.02957758679986, -0.09671353548765182, 0.013260501436889172, 0.09382959455251694, 0.043130140751600266, -0.08820252120494843, -0.010018767789006233, -0.06608305126428604, -0.05697084963321686, -0.07451293617486954, -0.0014806153485551476, 0.22867779433727264, 0.029535070061683655, 0.12263958156108856, -0.06296584010124207, -0.07715322822332382, -0.0027305511757731438, 0.008545043878257275, -0.00393923232331872, 0.08011666685342789, 0.08429694175720215, -0.06976766884326935, 0.06901964545249939, 0.0873090922832489, -0.08832579106092453, 0.1407766491174698, -0.06470613926649094, -0.1179436668753624, -0.008714280091226101, -0.010231433436274529, -0.006875226274132729, 0.10950077325105667, -0.10850124061107635, 0.024619976058602333, 0.030984971672296524, 0.026564396917819977, 0.048466138541698456, -0.20439358055591583, -0.002266700379550457, 0.05397605150938034, -0.03935057669878006, -0.035438451915979385, -0.043440211564302444, 0.030096616595983505, 0.07247091829776764, 0.018157118931412697, -0.02664174884557724, 0.009750882163643837, -0.016314126551151276, -0.07810220867395401, 0.16607119143009186, -0.10263215750455856, -0.1199311912059784, -0.12011545151472092, 0.045842576771974564, -0.008438005112111568, -0.042713794857263565, 0.0034193864557892084, -0.09692812711000443, -0.05197218060493469, -0.07955306768417358, -0.014949791133403778, -0.06342857331037521, -0.010988539084792137, 0.07776875048875809, 0.011413658037781715, 0.07783469557762146, -0.1289980262517929, 0.01959669217467308, -0.017835965380072594, -0.06914964318275452, 0.007913130335509777, 0.04959525167942047, 0.06058710440993309, 0.15471088886260986, -0.021133651956915855, 0.02377408742904663, -0.034545302391052246, 0.19040068984031677, -0.1028207466006279, -0.005341439042240381, 0.11342459917068481, -0.014847205951809883, 0.048684511333703995, 0.08272269368171692, 0.04379269853234291, -0.07710499316453934, 0.02823971025645733, 0.07941589504480362, -0.010412476025521755, -0.26404088735580444, -0.019421463832259178, -0.019207200035452843, -0.10040031373500824, 0.1221395879983902, 0.029421214014291763, 0.026464946568012238, 0.0520448237657547, -0.012016325257718563, 0.012816866859793663, 0.0056415703147649765, 0.07712338119745255, 0.06958001106977463, 0.049853868782520294, 0.11353497207164764, -0.014937715604901314, -0.03832539543509483, 0.03871070593595505, 0.023935100063681602, 0.26519981026649475, -0.0031947018578648567, 0.11342016607522964, 0.04459294676780701, 0.14447174966335297, -0.005161968991160393, 0.05050380155444145, 0.010272079147398472, -0.01603352278470993, 0.015049964189529419, -0.05814748629927635, 0.004736138507723808, 0.03432876989245415, 0.023365333676338196, 0.03306594491004944, -0.06630036234855652, -0.0067795864306390285, -0.0015882746083661914, 0.2865239083766937, 0.04638965055346489, -0.27342525124549866, -0.08031786233186722, 0.004793134517967701, -0.06520918011665344, -0.05871269851922989, 0.008430738002061844, 0.06771798431873322, -0.13372375071048737, 0.06576278805732727, -0.06716933101415634, 0.10048729926347733, -0.024177664890885353, -0.013396446593105793, 0.0719309076666832, 0.09601359814405441, -0.0043122898787260056, 0.08068948984146118, -0.2167673259973526, 0.22773027420043945, -0.008771565742790699, 0.12294355034828186, -0.06785619258880615, 0.041250716894865036, 0.014991354197263718, 0.015593470074236393, 0.06771252304315567, -0.011128014884889126, -0.046491678804159164, -0.14394605159759521, -0.07959827780723572, 0.032476864755153656, 0.11115793138742447, -0.053986337035894394, 0.0934404581785202, -0.03067352995276451, 0.010928966104984283, 0.06472764164209366, -0.05642808601260185, -0.17698147892951965, -0.13351911306381226, 0.023808535188436508, 0.011944386176764965, 0.011849535629153252, -0.09030157327651978, -0.12732450664043427, -0.07126552611589432, 0.16884015500545502, -0.011696422472596169, -0.04047161713242531, -0.13209392130374908, 0.06884302943944931, 0.1528083235025406, -0.03890879452228546, 0.03181878849864006, 0.04467550665140152, 0.15355902910232544, 0.019382460042834282, -0.049670640379190445, 0.04492699354887009, -0.07157254964113235, -0.18139995634555817, -0.04825783520936966, 0.15263643860816956, 0.0696917399764061, 0.05312862619757652, -0.004518221598118544, 0.035111334174871445, -0.0044482131488621235, -0.07355732470750809, 0.03576688840985298, 0.05566801130771637, 0.047572024166584015, 0.03659628704190254, -0.05220228061079979, 0.013236679136753082, -0.06911167502403259, -0.052444372326135635, 0.1096029207110405, 0.20648768544197083, -0.0751757025718689, 0.06919412314891815, 0.03062836453318596, -0.07889343053102493, -0.1141047552227974, 0.06314274668693542, 0.15941385924816132, 0.02904096245765686, 0.06206022575497627, -0.21177218854427338, 0.1060088574886322, 0.1122138574719429, -0.024079496040940285, 0.034293197095394135, -0.3036794066429138, -0.1456107795238495, 0.09623102098703384, 0.10393449664115906, -0.05415225028991699, -0.09513145685195923, -0.030642084777355194, -0.017480306327342987, -0.15207725763320923, 0.1374332159757614, -0.06239054724574089, 0.09609746187925339, 0.007031877059489489, 0.11395848542451859, 0.02746022492647171, -0.04238453134894371, 0.15417389571666718, 0.032134685665369034, 0.06227933615446091, -0.0264540147036314, 0.05452212691307068, 0.06474852561950684, -0.05165843665599823, 0.02811129204928875, -0.027334177866578102, 0.04233597218990326, -0.1538311243057251, -0.03210084140300751, -0.0777900293469429, 0.04265090823173523, -0.05857633054256439, -0.06235300749540329, -0.033949099481105804, 0.05072014406323433, 0.06533315032720566, -0.03025989420711994, 0.06953510642051697, 0.01212075725197792, 0.10760748386383057, 0.08425375074148178, 0.09427866339683533, 0.01843363791704178, -0.10452967137098312, -0.018343888223171234, -0.01882958598434925, 0.06077141314744949, -0.10762442648410797, 0.026544664055109024, 0.13299062848091125, 0.04503599554300308, 0.14101946353912354, 0.029969453811645508, -0.08552581071853638, -0.011220117099583149, 0.03207699954509735, -0.07653222233057022, -0.10577556490898132, -0.006960038561373949, 0.004767706152051687, -0.10803192853927612, -0.01657390035688877, 0.10298286378383636, -0.06676367670297623, -0.02060486190021038, 0.0034813007805496454, 0.00547794159501791, -0.03450540080666542, 0.19492320716381073, 0.03574659675359726, 0.07702053338289261, -0.0654011219739914, 0.11373329907655716, 0.08105838298797607, -0.12567776441574097, 0.046879686415195465, 0.0347338542342186, -0.0677369013428688, -0.004349490161985159, 0.039267539978027344, 0.11629487574100494, -0.021280977874994278, -0.06436990201473236, -0.08999274671077728, -0.11297556757926941, 0.06934427469968796, 0.058748986572027206, 0.03209592401981354, -0.00980142317712307, -0.04389100521802902, 0.04918096214532852, -0.14118145406246185, 0.09108176827430725, 0.07468953728675842, 0.06903228908777237, -0.12575985491275787, 0.14219218492507935, 0.029103342443704605, 0.003326528938487172, 0.006481302436441183, 0.01004212535917759, -0.053825993090867996, 0.007776860613375902, -0.12428790330886841, -0.01752348802983761, -0.00928737036883831, -0.0012091040844097733, -0.006382269784808159, -0.05217389762401581, -0.042733706533908844, 0.04593197628855705, -0.0899113342165947, -0.05152667313814163, 0.00462083425372839, 0.038634151220321655, -0.12160245329141617, -0.0014429525472223759, 0.04630916938185692, -0.10969217121601105, 0.06685952842235565, 0.06313620507717133, 0.032624613493680954, 0.04207320883870125, -0.11554057151079178, 0.009293382056057453, 0.01710236258804798, 0.027801673859357834, 0.03656897321343422, -0.13068006932735443, -0.009147701784968376, -0.027736816555261612, 0.03821241855621338, 0.004667299799621105, 0.032091014087200165, -0.12408764660358429, -0.050277672708034515, -0.024242445826530457, -0.055436551570892334, -0.05693122744560242, 0.048448629677295685, 0.08376042544841766, 0.039687737822532654, 0.16770106554031372, -0.06669323146343231, 0.055875036865472794, -0.2118844836950302, -0.017970040440559387, -0.014512494206428528, -0.003499859245494008, -0.045407384634017944, -0.02939356304705143, 0.06881453096866608, -0.07862713187932968, 0.11244048923254013, -0.02167649008333683, 0.06379369646310806, 0.048290230333805084, -0.08716883510351181, -0.04296739026904106, 0.026927556842565536, 0.21600738167762756, 0.06606504321098328, -0.0037719763349741697, 0.06636372208595276, -0.046796802431344986, 0.0324268713593483, 0.05435681343078613, 0.1603691279888153, 0.17987678945064545, -0.021462252363562584, 0.05933425948023796, 0.06571502238512039, -0.118645578622818, -0.15323638916015625, 0.1149766817688942, -0.029055003076791763, 0.11054975539445877, -0.03513886034488678, 0.20961426198482513, 0.09453613311052322, -0.18728967010974884, 0.05881040543317795, -0.056056827306747437, -0.10136840492486954, -0.10420496761798859, -0.07488349080085754, -0.06949418783187866, -0.12706677615642548, 0.0386451818048954, -0.1099257618188858, 0.052672889083623886, 0.08456019312143326, 0.03300371766090393, 0.004982720594853163, 0.14467407763004303, -0.02011200785636902, -0.013210561126470566, 0.07545922696590424, 0.01690477319061756, -0.0008440454839728773, -0.08836951106786728, -0.06452689319849014, 0.04339626803994179, 0.020694563165307045, 0.07300473004579544, -0.0696093812584877, -0.035981468856334686, 0.019492266699671745, 0.03108103945851326, -0.062205418944358826, 0.039296701550483704, -0.010195018723607063, 0.07434415817260742, 0.03506162390112877, 0.034844327718019485, 0.020620491355657578, -0.0543140210211277, 0.27934253215789795, -0.07667293399572372, -0.10000146180391312, -0.13669757544994354, 0.1837446093559265, 0.03618515655398369, -0.017295001074671745, 0.08353792130947113, -0.10131466388702393, -0.009712214581668377, 0.15135294198989868, 0.12675096094608307, -0.04016462713479996, -0.021240996196866035, 0.0005288774846121669, -0.023114703595638275, -0.05615163967013359, 0.09853146970272064, 0.11090121418237686, 0.0025671145413070917, -0.05953039228916168, 0.006439307704567909, -0.02048908732831478, -0.03254151716828346, -0.052332803606987, 0.09482329338788986, 0.007743560243397951, -0.016766943037509918, -0.031281113624572754, 0.08653036504983902, 0.01517582219094038, -0.2066536545753479, 0.0408465676009655, -0.166314497590065, -0.20144812762737274, -0.020154815167188644, 0.08779262751340866, -0.0145871601998806, 0.05023469403386116, -0.003741446416825056, -0.028431231155991554, 0.13045765459537506, 0.0056085349060595036, -0.013603592291474342, -0.09322601556777954, 0.09888969361782074, -0.08755524456501007, 0.19974364340305328, -0.004378652200102806, 0.08372378349304199, 0.08759478479623795, 0.05049704387784004, -0.0948299765586853, 0.030731432139873505, 0.07519309967756271, -0.06997176259756088, 0.031186897307634354, 0.180209219455719, -0.04419264942407608, 0.0829816535115242, 0.04350268095731735, -0.1576547473669052, -0.0010364233748987317, -0.055946771055459976, -0.041570015251636505, -0.07540114969015121, 0.0010406632209196687, -0.06135907024145126, 0.1501273661851883, 0.21753473579883575, -0.04652893915772438, 0.0017881534295156598, -0.06847439706325531, 0.031054295599460602, 0.03985670208930969, 0.09600794315338135, -0.03113505430519581, -0.21785351634025574, 0.015943747013807297, 0.016041554510593414, 0.02738720364868641, -0.23141171038150787, -0.08921431750059128, 0.05162671208381653, -0.0829949676990509, -0.042022962123155594, 0.09923920780420303, 0.07450494915246964, 0.046486884355545044, -0.03309439867734909, -0.08511730283498764, -0.044224467128515244, 0.13857243955135345, -0.16656604409217834, -0.02079012803733349 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-epochs5 This model is a fine-tuned version of [facebook/wav2vec2-lv-60-espeak-cv-ft](https://huggingface.co/facebook/wav2vec2-lv-60-espeak-cv-ft) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 5 - total_train_batch_size: 80 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "wav2vec2-base-timit-epochs5", "results": []}]}
automatic-speech-recognition
AKulk/wav2vec2-base-timit-epochs5
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us
# wav2vec2-base-timit-epochs5 This model is a fine-tuned version of facebook/wav2vec2-lv-60-espeak-cv-ft on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 5 - total_train_batch_size: 80 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
[ "# wav2vec2-base-timit-epochs5\n\nThis model is a fine-tuned version of facebook/wav2vec2-lv-60-espeak-cv-ft on the None dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0001\n- train_batch_size: 16\n- eval_batch_size: 8\n- seed: 42\n- gradient_accumulation_steps: 5\n- total_train_batch_size: 80\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_steps: 1000\n- num_epochs: 5\n- mixed_precision_training: Native AMP", "### Training results", "### Framework versions\n\n- Transformers 4.11.3\n- Pytorch 1.10.0+cu111\n- Datasets 1.18.3\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us \n", "# wav2vec2-base-timit-epochs5\n\nThis model is a fine-tuned version of facebook/wav2vec2-lv-60-espeak-cv-ft on the None dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0001\n- train_batch_size: 16\n- eval_batch_size: 8\n- seed: 42\n- gradient_accumulation_steps: 5\n- total_train_batch_size: 80\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_steps: 1000\n- num_epochs: 5\n- mixed_precision_training: Native AMP", "### Training results", "### Framework versions\n\n- Transformers 4.11.3\n- Pytorch 1.10.0+cu111\n- Datasets 1.18.3\n- Tokenizers 0.10.3" ]
[ 56, 49, 6, 12, 8, 3, 140, 4, 35 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us \n# wav2vec2-base-timit-epochs5\n\nThis model is a fine-tuned version of facebook/wav2vec2-lv-60-espeak-cv-ft on the None dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0001\n- train_batch_size: 16\n- eval_batch_size: 8\n- seed: 42\n- gradient_accumulation_steps: 5\n- total_train_batch_size: 80\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_steps: 1000\n- num_epochs: 5\n- mixed_precision_training: Native AMP### Training results### Framework versions\n\n- Transformers 4.11.3\n- Pytorch 1.10.0+cu111\n- Datasets 1.18.3\n- Tokenizers 0.10.3" ]
[ -0.10958375036716461, 0.1167384684085846, -0.0031598068308085203, 0.05707205832004547, 0.12061597406864166, 0.015062602236866951, 0.08752227574586868, 0.12658683955669403, -0.07713346183300018, 0.05981020629405975, 0.06725892424583435, 0.012788740918040276, 0.06926058232784271, 0.11984255164861679, -0.02847328409552574, -0.2341945767402649, 0.009309181943535805, 0.01164218783378601, -0.08861353248357773, 0.10499144345521927, 0.11597111821174622, -0.09274361282587051, 0.04658890888094902, 0.055853359401226044, -0.14456382393836975, 0.03175371140241623, -0.031114080920815468, -0.06593307107686996, 0.10304433852434158, 0.029722370207309723, 0.10352788120508194, 0.024098670110106468, 0.11820641905069351, -0.22606335580348969, 0.00019722615252248943, 0.09459426254034042, 0.03528660908341408, 0.08644198626279831, 0.0842384621500969, -0.008111769333481789, 0.08989317715167999, -0.12182313948869705, 0.10352274775505066, 0.023890186101198196, -0.08801707625389099, -0.22324693202972412, -0.08055869489908218, 0.10051744431257248, 0.12345929443836212, 0.11157847940921783, -0.012366589158773422, 0.10425345599651337, -0.08746658265590668, 0.06673186272382736, 0.17676417529582977, -0.23992344737052917, -0.07828281074762344, 0.012053725309669971, 0.04140843078494072, 0.021846754476428032, -0.10253972560167313, -0.016793904826045036, 0.04192095622420311, 0.031007295474410057, 0.10622268915176392, 0.014077339321374893, -0.05055137723684311, -0.01609761454164982, -0.12438072264194489, -0.048554614186286926, 0.12680883705615997, 0.08057325333356857, -0.04588858783245087, -0.10040032118558884, -0.022289851680397987, -0.11613466590642929, -0.010308207012712955, -0.05108805000782013, 0.017319155856966972, -0.03563221916556358, -0.07523797452449799, -0.04465816169977188, -0.09124460816383362, -0.05290616303682327, 0.039371464401483536, 0.09082049876451492, 0.03327818959951401, 0.003798140212893486, -0.04536457359790802, 0.12591665983200073, 0.019336724653840065, -0.1313440501689911, 0.009698553942143917, -0.001586445840075612, -0.10076035559177399, -0.06295107305049896, -0.05205529183149338, -0.017091210931539536, -0.03081538900732994, 0.1315414309501648, -0.028995322063565254, 0.08204647153615952, -0.007172104902565479, 0.009550239890813828, -0.04049305245280266, 0.15350684523582458, -0.04886992648243904, -0.03456046059727669, -0.028975481167435646, 0.1131904274225235, -0.02928987517952919, -0.011792851611971855, -0.0684131383895874, -0.016897136345505714, 0.07963965088129044, 0.03773854672908783, -0.050186559557914734, 0.014924624934792519, -0.04959734529256821, -0.040375325828790665, 0.023664282634854317, -0.11427316814661026, 0.04429277405142784, 0.009335309267044067, -0.08720836043357849, -0.00927121751010418, 0.025630386546254158, 0.027183013036847115, -0.029894936829805374, 0.09815974533557892, -0.06278640031814575, -0.011822530999779701, -0.08399848639965057, -0.051310501992702484, 0.010133911855518818, -0.03722265362739563, -0.0030576782301068306, -0.06486479192972183, -0.17165331542491913, -0.040032364428043365, 0.06646426022052765, -0.05561847239732742, -0.06813175231218338, -0.024324219673871994, -0.04880904778838158, 0.02035425789654255, -0.0174437016248703, 0.19150900840759277, -0.041081201285123825, 0.059858568012714386, -0.012395373545587063, 0.017079096287488937, 0.06649921834468842, 0.050981078296899796, -0.06357195228338242, 0.03864477202296257, -0.11076805740594864, 0.08173519372940063, -0.09039615839719772, 0.005327325779944658, -0.1189986914396286, -0.1045427992939949, -0.02184269391000271, -0.017679601907730103, 0.07786629348993301, 0.09227919578552246, -0.18448327481746674, -0.05730663612484932, 0.14978018403053284, -0.07545939087867737, -0.06885536760091782, 0.10407652705907822, -0.04759572818875313, 0.018414495512843132, 0.0527849979698658, 0.14002858102321625, 0.12994639575481415, -0.14024530351161957, 0.0011432917090132833, -0.01891554519534111, 0.08600583672523499, 0.04214431717991829, 0.0534079372882843, -0.02485324814915657, 0.033572666347026825, -0.005924682132899761, -0.0540938600897789, 0.012330400757491589, -0.07837476581335068, -0.0855179876089096, -0.044764772057533264, -0.09147243201732635, 0.03729017451405525, 0.025390945374965668, 0.02890161983668804, -0.07676559686660767, -0.145657479763031, 0.08326312154531479, 0.12215641885995865, -0.06074197217822075, 0.015341616235673428, -0.08339541405439377, 0.006841321475803852, 0.0024130677338689566, -0.03747820481657982, -0.17499065399169922, -0.06357517838478088, 0.028501836583018303, -0.08983832597732544, 0.010301917791366577, 0.033166978508234024, 0.06553561240434647, 0.04456620290875435, -0.05835641175508499, -0.03436780720949173, -0.13722287118434906, 0.011353082954883575, -0.07691655308008194, -0.18197001516819, -0.07654120773077011, -0.02563720941543579, 0.20886367559432983, -0.23616692423820496, 0.01234150119125843, 0.018417449668049812, 0.1731172651052475, 0.023657090961933136, -0.05817614868283272, -0.018875863403081894, 0.04497933387756348, 0.017819831147789955, -0.08735217899084091, 0.03212546929717064, 0.006030532065778971, -0.0949818566441536, -0.04011722654104233, -0.09045528620481491, 0.0450492724776268, 0.08375996351242065, 0.05455445870757103, -0.09462721645832062, -0.014874248765408993, -0.0717085748910904, -0.05225498229265213, -0.07514885067939758, -0.01207007747143507, 0.2318897396326065, 0.03321145474910736, 0.11592620611190796, -0.06385492533445358, -0.0738883763551712, 0.012803629972040653, 0.008621105924248695, -0.01878178119659424, 0.07252264767885208, 0.06598975509405136, -0.10649067908525467, 0.07070138305425644, 0.09327910840511322, -0.052258845418691635, 0.14416778087615967, -0.05260287597775459, -0.10547523945569992, -0.018953271210193634, -0.011799604631960392, -0.01000168640166521, 0.1247660219669342, -0.1067102923989296, 0.0231456458568573, 0.02428438328206539, 0.01770913042128086, 0.05030135437846184, -0.18568459153175354, -0.0020591015927493572, 0.04579824581742287, -0.044494662433862686, -0.03148514777421951, -0.033884234726428986, 0.03833423927426338, 0.06950297951698303, 0.020172251388430595, -0.03140674903988838, 0.01786874793469906, -0.021443786099553108, -0.08663159608840942, 0.16733036935329437, -0.09911578893661499, -0.1727439910173416, -0.11496433615684509, 0.053426142781972885, -0.025725316256284714, -0.04058998450636864, 0.01062089018523693, -0.09483372420072556, -0.05121264606714249, -0.07681412249803543, -0.012879742309451103, -0.04015002027153969, -0.007908249273896217, 0.091581329703331, 0.008661543019115925, 0.10104987025260925, -0.11413407325744629, 0.014250688254833221, -0.012633335776627064, -0.05193743482232094, -0.0051947967149317265, 0.04689698666334152, 0.060860902070999146, 0.1278236210346222, -0.006124280393123627, 0.03113206848502159, -0.03647290915250778, 0.22867754101753235, -0.10582903772592545, 0.0034708017483353615, 0.13576526939868927, -0.013312061317265034, 0.05032466724514961, 0.08172477036714554, 0.033082492649555206, -0.0932464450597763, 0.030613910406827927, 0.07536579668521881, -0.013441403396427631, -0.23615780472755432, -0.032422542572021484, -0.02611677534878254, -0.0834597796201706, 0.1288779228925705, 0.02464858628809452, 0.023834694176912308, 0.03971568122506142, -0.009327590465545654, 0.013520102947950363, 0.013032537885010242, 0.06691892445087433, 0.07133570313453674, 0.04986407607793808, 0.11009366065263748, -0.012943821027874947, -0.018854115158319473, 0.055031705647706985, 0.0005062276613898575, 0.24863405525684357, -0.007454219739884138, 0.07202622294425964, 0.04655875265598297, 0.15194091200828552, -0.008344097062945366, 0.03540145978331566, 0.004678140860050917, -0.02335515059530735, 0.012338900938630104, -0.0493834912776947, -0.004844958893954754, 0.030572326853871346, 0.033743251115083694, 0.02291015163064003, -0.0952029675245285, -0.003208223031833768, 0.0003576162562239915, 0.30386435985565186, 0.060602907091379166, -0.27293363213539124, -0.08492697775363922, -0.000712263397872448, -0.05383456125855446, -0.07045100629329681, 0.0066811200231313705, 0.09801790118217468, -0.1450076848268509, 0.08085262775421143, -0.062166016548871994, 0.09803829342126846, -0.016689447686076164, 0.004966469947248697, 0.07824859023094177, 0.08646263927221298, -0.001153019373305142, 0.07413237541913986, -0.21430498361587524, 0.22373564541339874, -0.001573121757246554, 0.11289722472429276, -0.0659441128373146, 0.0430031344294548, 0.015742626041173935, 0.025854917243123055, 0.0745849460363388, -0.00856764242053032, -0.04040668159723282, -0.13394932448863983, -0.07570438086986542, 0.03217734768986702, 0.0948382318019867, -0.05761804059147835, 0.07746590673923492, -0.026013202965259552, 0.006673391442745924, 0.057205650955438614, -0.01658259518444538, -0.17899349331855774, -0.13642176985740662, 0.020929140970110893, 0.010048888623714447, 0.021096933633089066, -0.10475380718708038, -0.11607339233160019, -0.047968678176403046, 0.17573563754558563, 0.01114743947982788, -0.033817749470472336, -0.13848598301410675, 0.07478772848844528, 0.13813729584217072, -0.0389665924012661, 0.034254346042871475, 0.050223879516124725, 0.1690089851617813, 0.016146227717399597, -0.06471806764602661, 0.05177806690335274, -0.08302834630012512, -0.18576018512248993, -0.0440838485956192, 0.1695830076932907, 0.08168698102235794, 0.045108895748853683, 0.01331196166574955, 0.020730238407850266, 0.003712879726663232, -0.07761189341545105, 0.05048095062375069, 0.036581508815288544, 0.04709916561841965, 0.021819664165377617, -0.024004440754652023, -0.01004053559154272, -0.05838879942893982, -0.03850080817937851, 0.09860000759363174, 0.22243385016918182, -0.08181460201740265, 0.06422818452119827, 0.051352567970752716, -0.0665915459394455, -0.1135169118642807, 0.07014952600002289, 0.1592458039522171, 0.02550463378429413, 0.05967910960316658, -0.20234055817127228, 0.09314049035310745, 0.11435964703559875, -0.019228270277380943, 0.025823380798101425, -0.29400381445884705, -0.13821348547935486, 0.10022635757923126, 0.08662547916173935, -0.04390452802181244, -0.08224419504404068, -0.034607402980327606, -0.02828841470181942, -0.15249864757061005, 0.14612619578838348, -0.09606842696666718, 0.08388416469097137, 0.014521904289722443, 0.0925811380147934, 0.02222561649978161, -0.031369324773550034, 0.1603509485721588, 0.023361746221780777, 0.07416214793920517, -0.016816023737192154, 0.06964073330163956, 0.07117355614900589, -0.0541510134935379, 0.018346544355154037, -0.021109215915203094, 0.04603612795472145, -0.1557997614145279, -0.025677455589175224, -0.10043224692344666, 0.05496371164917946, -0.06467614322900772, -0.05427955463528633, -0.029387278482317924, 0.06147075816988945, 0.06217103451490402, -0.031601954251527786, 0.02668650634586811, 0.004258273635059595, 0.1261463463306427, 0.11780797690153122, 0.10017763078212738, 0.002461610361933708, -0.1066383495926857, -0.014463351108133793, -0.02305763028562069, 0.06437592208385468, -0.08386722207069397, 0.03452602028846741, 0.12277951091527939, 0.03310447186231613, 0.14586949348449707, 0.021655229851603508, -0.08477069437503815, -0.010581953451037407, 0.03415892273187637, -0.09682423621416092, -0.10743682086467743, -0.02609744854271412, 0.009714765474200249, -0.11876753717660904, -0.022481152787804604, 0.11725395917892456, -0.056396257132291794, -0.01938352920114994, -0.0002402301470283419, 0.004246030934154987, -0.0394839346408844, 0.18616095185279846, 0.03393954783678055, 0.08266415446996689, -0.07210413366556168, 0.11253528296947479, 0.066485196352005, -0.12688222527503967, 0.05528188496828079, 0.032817307859659195, -0.074746273458004, -0.007062103599309921, 0.02747158147394657, 0.1389571875333786, -0.011409864760935307, -0.06303945928812027, -0.08851710706949234, -0.1255807876586914, 0.07779470086097717, 0.09213348478078842, 0.02892112173140049, -0.011131338775157928, -0.03961966931819916, 0.03328869119286537, -0.1296692043542862, 0.08382207900285721, 0.07477719336748123, 0.054447125643491745, -0.13139531016349792, 0.1351185292005539, 0.024185456335544586, 0.011062952689826488, -0.0014122904976829886, 0.011029457673430443, -0.07398045063018799, 0.002458402421325445, -0.15151838958263397, -0.027468755841255188, -0.007598724216222763, 0.0012706355191767216, -0.016626687720417976, -0.04671371355652809, -0.048963118344545364, 0.04068666324019432, -0.08581538498401642, -0.05145272612571716, 0.015245874412357807, 0.043947331607341766, -0.13499173521995544, -0.0021231418941169977, 0.04343375191092491, -0.10935699194669724, 0.07414573431015015, 0.05563938617706299, 0.03910931572318077, 0.03250272199511528, -0.08783049881458282, 0.0009110198589041829, 0.018130581825971603, 0.023151341825723648, 0.05124472454190254, -0.13554830849170685, -0.0030217128805816174, -0.029084978625178337, 0.01776125282049179, 0.01301838643848896, 0.05119374021887779, -0.10900834202766418, -0.04976559430360794, -0.013788808137178421, -0.04805205017328262, -0.049397505819797516, 0.0489828921854496, 0.09469255059957504, 0.05441754311323166, 0.1640351265668869, -0.07443796843290329, 0.0511544793844223, -0.2191508561372757, -0.03126014769077301, -0.013182217255234718, -0.0020809241104871035, -0.010312778875231743, -0.029755529016256332, 0.08084568381309509, -0.06786637008190155, 0.10916063189506531, -0.01925676129758358, 0.08613322675228119, 0.04992777481675148, -0.10956455767154694, -0.04542600363492966, 0.028853505849838257, 0.16742320358753204, 0.04999140650033951, 0.001475173863582313, 0.08922602981328964, -0.040571071207523346, 0.04081328585743904, 0.07569188624620438, 0.17889750003814697, 0.1598508208990097, -0.009752296842634678, 0.04890384525060654, 0.06547217071056366, -0.12719039618968964, -0.14945439994335175, 0.09666761755943298, -0.03903469070792198, 0.12188388407230377, -0.04538474604487419, 0.1741073727607727, 0.07924290746450424, -0.19907328486442566, 0.06446021795272827, -0.06172744557261467, -0.09796576201915741, -0.09391910582780838, -0.07216548919677734, -0.06320056319236755, -0.13208845257759094, 0.029605384916067123, -0.11309405416250229, 0.04262806102633476, 0.06805359572172165, 0.02073388360440731, -0.004552215337753296, 0.14662474393844604, -0.02201629988849163, -0.018046468496322632, 0.09368793666362762, 0.017034372314810753, -0.010861381888389587, -0.08466166257858276, -0.0597543902695179, 0.03925875201821327, 0.029539057984948158, 0.06421259045600891, -0.06745852530002594, -0.04155280068516731, 0.02138615772128105, 0.03633129969239235, -0.06737209856510162, 0.03960573300719261, -0.017286168411374092, 0.06234808266162872, 0.036031290888786316, 0.041523393243551254, 0.020744696259498596, -0.04785612225532532, 0.27880337834358215, -0.08203861862421036, -0.07271599024534225, -0.15318594872951508, 0.17374488711357117, 0.015860356390476227, -0.015563863329589367, 0.07328460365533829, -0.09402721375226974, -0.007935377769172192, 0.1470775008201599, 0.11737778782844543, -0.057180535048246384, -0.010688160546123981, -0.01404148992151022, -0.022261379286646843, -0.04869738221168518, 0.11141970008611679, 0.11431458592414856, 0.004089540336281061, -0.061578601598739624, 0.011889469809830189, -0.022594019770622253, -0.04368485137820244, -0.04390472546219826, 0.11502672731876373, 0.009961274452507496, -0.0024626648519188166, -0.02943197824060917, 0.09323485940694809, 0.01647895760834217, -0.20262916386127472, 0.027519796043634415, -0.17288613319396973, -0.20067362487316132, -0.02205813117325306, 0.059068601578474045, -0.016211852431297302, 0.06142546236515045, -0.0007027329411357641, -0.015457178466022015, 0.14197666943073273, -0.004880252294242382, 0.0013744953321292996, -0.12663407623767853, 0.10050485283136368, -0.10113151371479034, 0.20768143236637115, -0.014941269531846046, 0.05507336184382439, 0.09277304261922836, 0.03926673159003258, -0.10418828576803207, 0.014800995588302612, 0.07372365146875381, -0.056817978620529175, 0.015607605688273907, 0.17390571534633636, -0.04029523581266403, 0.10801771283149719, 0.04715689644217491, -0.1575860232114792, -0.012574517168104649, -0.06640490144491196, -0.01825384981930256, -0.06790702044963837, 0.005271121393889189, -0.06183001771569252, 0.14872629940509796, 0.21485362946987152, -0.05403181537985802, 0.0025770687498152256, -0.07051362842321396, 0.03768549859523773, 0.04413251951336861, 0.11342792212963104, -0.031185170635581017, -0.21815572679042816, 0.02355620637536049, 0.034588079899549484, 0.018553368747234344, -0.22450216114521027, -0.10159563273191452, 0.04767724871635437, -0.07870149612426758, -0.030909180641174316, 0.1093001440167427, 0.043185293674468994, 0.045104291290044785, -0.03160940483212471, -0.06021841987967491, -0.05478352680802345, 0.1437094509601593, -0.15708516538143158, -0.021789586171507835 ]
null
null
transformers
# summarization_fanpage128 This model is a fine-tuned version of [gsarti/it5-base](https://huggingface.co/gsarti/it5-base) on Fanpage dataset for Abstractive Summarization. It achieves the following results: - Loss: 1.5348 - Rouge1: 34.1882 - Rouge2: 15.7866 - Rougel: 25.141 - Rougelsum: 28.4882 - Gen Len: 69.3041 ## Usage ```python from transformers import T5Tokenizer, T5ForConditionalGeneration tokenizer = T5Tokenizer.from_pretrained("ARTeLab/it5-summarization-fanpage-128") model = T5ForConditionalGeneration.from_pretrained("ARTeLab/it5-summarization-fanpage-128") ``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 3 - eval_batch_size: 3 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4.0 ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.9.1+cu102 - Datasets 1.12.1 - Tokenizers 0.10.3 # Citation More details and results in [published work](https://www.mdpi.com/2078-2489/13/5/228) ``` @Article{info13050228, AUTHOR = {Landro, Nicola and Gallo, Ignazio and La Grassa, Riccardo and Federici, Edoardo}, TITLE = {Two New Datasets for Italian-Language Abstractive Text Summarization}, JOURNAL = {Information}, VOLUME = {13}, YEAR = {2022}, NUMBER = {5}, ARTICLE-NUMBER = {228}, URL = {https://www.mdpi.com/2078-2489/13/5/228}, ISSN = {2078-2489}, ABSTRACT = {Text summarization aims to produce a short summary containing relevant parts from a given text. Due to the lack of data for abstractive summarization on low-resource languages such as Italian, we propose two new original datasets collected from two Italian news websites with multi-sentence summaries and corresponding articles, and from a dataset obtained by machine translation of a Spanish summarization dataset. These two datasets are currently the only two available in Italian for this task. To evaluate the quality of these two datasets, we used them to train a T5-base model and an mBART model, obtaining good results with both. To better evaluate the results obtained, we also compared the same models trained on automatically translated datasets, and the resulting summaries in the same training language, with the automatically translated summaries, which demonstrated the superiority of the models obtained from the proposed datasets.}, DOI = {10.3390/info13050228} } ```
{"language": ["it"], "tags": ["summarization"], "datasets": ["ARTeLab/fanpage"], "metrics": ["rouge"], "base_model": "gsarti/it5-base", "model-index": [{"name": "summarization_fanpage128", "results": []}]}
summarization
ARTeLab/it5-summarization-fanpage
[ "transformers", "pytorch", "safetensors", "t5", "text2text-generation", "summarization", "it", "dataset:ARTeLab/fanpage", "base_model:gsarti/it5-base", "autotrain_compatible", "endpoints_compatible", "has_space", "text-generation-inference", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[ "it" ]
TAGS #transformers #pytorch #safetensors #t5 #text2text-generation #summarization #it #dataset-ARTeLab/fanpage #base_model-gsarti/it5-base #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us
# summarization_fanpage128 This model is a fine-tuned version of gsarti/it5-base on Fanpage dataset for Abstractive Summarization. It achieves the following results: - Loss: 1.5348 - Rouge1: 34.1882 - Rouge2: 15.7866 - Rougel: 25.141 - Rougelsum: 28.4882 - Gen Len: 69.3041 ## Usage ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 3 - eval_batch_size: 3 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4.0 ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.9.1+cu102 - Datasets 1.12.1 - Tokenizers 0.10.3 More details and results in published work
[ "# summarization_fanpage128\n\nThis model is a fine-tuned version of gsarti/it5-base on Fanpage dataset for Abstractive Summarization.\n\nIt achieves the following results:\n- Loss: 1.5348\n- Rouge1: 34.1882\n- Rouge2: 15.7866\n- Rougel: 25.141\n- Rougelsum: 28.4882\n- Gen Len: 69.3041", "## Usage", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 3\n- eval_batch_size: 3\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 4.0", "### Framework versions\n\n- Transformers 4.12.0.dev0\n- Pytorch 1.9.1+cu102\n- Datasets 1.12.1\n- Tokenizers 0.10.3\n\nMore details and results in published work" ]
[ "TAGS\n#transformers #pytorch #safetensors #t5 #text2text-generation #summarization #it #dataset-ARTeLab/fanpage #base_model-gsarti/it5-base #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n", "# summarization_fanpage128\n\nThis model is a fine-tuned version of gsarti/it5-base on Fanpage dataset for Abstractive Summarization.\n\nIt achieves the following results:\n- Loss: 1.5348\n- Rouge1: 34.1882\n- Rouge2: 15.7866\n- Rougel: 25.141\n- Rougelsum: 28.4882\n- Gen Len: 69.3041", "## Usage", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 3\n- eval_batch_size: 3\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 4.0", "### Framework versions\n\n- Transformers 4.12.0.dev0\n- Pytorch 1.9.1+cu102\n- Datasets 1.12.1\n- Tokenizers 0.10.3\n\nMore details and results in published work" ]
[ 84, 85, 3, 90, 44 ]
[ "passage: TAGS\n#transformers #pytorch #safetensors #t5 #text2text-generation #summarization #it #dataset-ARTeLab/fanpage #base_model-gsarti/it5-base #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n# summarization_fanpage128\n\nThis model is a fine-tuned version of gsarti/it5-base on Fanpage dataset for Abstractive Summarization.\n\nIt achieves the following results:\n- Loss: 1.5348\n- Rouge1: 34.1882\n- Rouge2: 15.7866\n- Rougel: 25.141\n- Rougelsum: 28.4882\n- Gen Len: 69.3041## Usage### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 3\n- eval_batch_size: 3\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 4.0### Framework versions\n\n- Transformers 4.12.0.dev0\n- Pytorch 1.9.1+cu102\n- Datasets 1.12.1\n- Tokenizers 0.10.3\n\nMore details and results in published work" ]
[ -0.10802867263555527, 0.17435681819915771, -0.004688513930886984, 0.08284550905227661, 0.08682821691036224, 0.03391453996300697, 0.06403793394565582, 0.12853342294692993, -0.10557505488395691, 0.14090128242969513, 0.1068645566701889, 0.06795131415128708, 0.04429629445075989, 0.17976656556129456, -0.04748998582363129, -0.19598083198070526, 0.04390929639339447, 0.0046554505825042725, -0.07651925832033157, 0.10006460547447205, 0.11538548022508621, -0.07895543426275253, 0.08437789976596832, 0.049663517624139786, -0.1212240681052208, 0.020531311631202698, -0.012706542387604713, -0.05955478176474571, 0.09335479140281677, 0.01403674017637968, 0.06863276660442352, 0.012779789976775646, 0.07914002984762192, -0.11786352843046188, -0.004494038410484791, 0.06177517771720886, 0.009843315929174423, 0.11135642230510712, 0.1194358840584755, -0.0011967341415584087, 0.14174415171146393, -0.15237364172935486, 0.04903162643313408, 0.036571305245161057, -0.11926793307065964, -0.161379873752594, -0.11093464493751526, 0.054192084819078445, 0.06338784098625183, 0.06275304406881332, -0.02047714591026306, 0.12626512348651886, -0.015270646661520004, 0.07457170635461807, 0.2178909182548523, -0.2859285771846771, -0.07616744935512543, 0.040966931730508804, 0.043265450745821, 0.0158243291079998, -0.07947681844234467, 0.0172061026096344, 0.04983188956975937, 0.028214098885655403, 0.1281287670135498, -0.017791906371712685, 0.058613039553165436, -0.0562308095395565, -0.12257631868124008, -0.0731118842959404, 0.17768248915672302, 0.05679585412144661, -0.05426806956529617, -0.10344726592302322, -0.10897807031869888, -0.071755550801754, -0.04427439346909523, -0.03896593675017357, 0.03865223005414009, -0.02740178257226944, -0.009965779259800911, -0.026538997888565063, -0.05055883526802063, -0.04472888633608818, -0.00860355980694294, 0.10460544377565384, 0.044665589928627014, 0.020928965881466866, 0.028926176950335503, 0.08640886843204498, -0.06276924163103104, -0.1460130214691162, -0.03567648306488991, -0.020152583718299866, -0.04614231735467911, -0.03338345140218735, -0.03319093585014343, -0.00219361181370914, 0.02616691030561924, 0.17845681309700012, -0.06087859347462654, 0.06707638502120972, 0.03838861361145973, -0.017063012346625328, -0.027253203094005585, 0.122852623462677, -0.04667656123638153, -0.07621176540851593, 0.05477605387568474, 0.10211759060621262, 0.05508509278297424, 0.007045257370918989, -0.017896704375743866, -0.05854753032326698, 0.10982071608304977, 0.025646820664405823, -0.010436036624014378, 0.02623993530869484, -0.07159744948148727, -0.01742558740079403, 0.12338837236166, -0.12040499597787857, 0.023092884570360184, 0.000653376686386764, -0.07351241260766983, -0.010528952814638615, 0.014204738661646843, -0.03084910474717617, -0.06279201805591583, 0.054868005216121674, -0.1035262942314148, -0.02972651645541191, -0.02718953788280487, -0.07332389801740646, -0.0007494817255064845, -0.06377124786376953, -0.03323499113321304, -0.08120480924844742, -0.1308751404285431, -0.03889266401529312, 0.032246630638837814, -0.08005974441766739, -0.08390194922685623, -0.010107327252626419, -0.05084003135561943, 0.0681576132774353, -0.0010066672693938017, 0.053786613047122955, -0.04747939482331276, 0.03987325727939606, 0.06568871438503265, 0.0653921440243721, 0.028237320482730865, 0.032155897468328476, -0.07705211639404297, 0.08483148366212845, -0.11671081185340881, 0.07595244795084, -0.06581912189722061, 0.00451325811445713, -0.12470286339521408, -0.10175899416208267, -0.004824521020054817, -0.013191747479140759, 0.10246908664703369, 0.14926362037658691, -0.09048191457986832, -0.02573413960635662, 0.16474100947380066, -0.08373747020959854, -0.0991823598742485, 0.09710968285799026, -0.019832732155919075, -0.049798570573329926, 0.03474387526512146, 0.16227848827838898, 0.05881418660283089, -0.09046667069196701, -0.040539611130952835, 0.00892777182161808, 0.052580952644348145, 0.012637253850698471, 0.08325992524623871, -0.043591585010290146, -0.0163376796990633, 0.018978729844093323, -0.06129428371787071, -0.03664902597665787, -0.06956584751605988, -0.06022289767861366, -0.08297903090715408, -0.040147699415683746, 0.038617558777332306, -0.00639179116114974, 0.045293353497982025, -0.08441469818353653, -0.09712547808885574, -0.024665342643857002, 0.1412247270345688, -0.055601008236408234, 0.024093208834528923, -0.042006559669971466, 0.08732906728982925, -0.05019848421216011, -0.0011795524042099714, -0.20013172924518585, -0.07538198679685593, 0.05755690485239029, -0.1133243590593338, -0.014167632907629013, -0.010749147273600101, 0.03629632666707039, 0.07716844975948334, -0.023757217451930046, -0.056085556745529175, -0.05468667298555374, -0.027373995631933212, -0.08139020949602127, -0.1341482400894165, -0.05577531084418297, -0.018206970766186714, 0.1167454794049263, -0.1877642273902893, 0.007010436616837978, -0.02149599976837635, 0.13441050052642822, 0.004263773560523987, -0.06179074943065643, 0.01633261702954769, 0.0036906416062265635, -0.038246527314186096, -0.09794533997774124, 0.037628062069416046, 0.0067594037391245365, -0.07302108407020569, 0.004335337784141302, -0.13105320930480957, 0.07690836489200592, 0.0788843184709549, 0.049711134284734726, -0.07881983369588852, 0.050747182220220566, -0.04884035885334015, -0.028822528198361397, -0.042534876614809036, -0.027346916496753693, 0.06798356771469116, -0.011159912683069706, 0.1506875604391098, -0.08580498397350311, -0.05439615622162819, 0.0232644435018301, -0.02804313600063324, -0.03129483759403229, 0.09763756394386292, 0.007328453939408064, -0.11905514448881149, 0.08178626000881195, 0.10577167570590973, -0.03262491524219513, 0.07467375695705414, -0.05301332846283913, -0.06835068762302399, -0.042196013033390045, 0.011290672235190868, 0.020001452416181564, 0.07733605802059174, -0.0785931646823883, 0.007121286820620298, 0.03959304094314575, 0.036404162645339966, 0.008796555921435356, -0.1507032811641693, 0.025841491296887398, 0.021351521834731102, -0.0431319884955883, 0.05357286334037781, 0.053458452224731445, -0.003844586666673422, 0.11910749226808548, 0.01701926626265049, -0.04930579662322998, -0.014769237488508224, -0.02743680216372013, -0.06276044994592667, 0.1770908087491989, -0.09170903265476227, -0.14339497685432434, -0.11767681688070297, 0.005909285508096218, -0.11252250522375107, 0.00036453804932534695, 0.014721628278493881, -0.03523412346839905, -0.0913240984082222, -0.1030401885509491, -0.019357681274414062, -0.055500198155641556, 0.009439745917916298, 0.09461035579442978, -0.02823016420006752, 0.12100498378276825, -0.13062185049057007, -0.023175803944468498, -0.017082849517464638, -0.0644933432340622, 0.011093910783529282, 0.030703214928507805, 0.11210726201534271, 0.06282339990139008, 0.001168128103017807, 0.005902258213609457, 0.005026034079492092, 0.294550359249115, -0.03981003165245056, 0.010739684104919434, 0.13123273849487305, 0.04988782852888107, 0.09282688796520233, 0.11494727432727814, 0.030225645750761032, -0.09252215921878815, 0.019124306738376617, 0.03527730703353882, 0.0005177093553356826, -0.2141330987215042, -0.06264164298772812, -0.058363497257232666, -0.02898261323571205, 0.13847294449806213, 0.05332450568675995, -0.011313413269817829, 0.053095605224370956, -0.024073677137494087, 0.08106383681297302, -0.005219023674726486, 0.09091606736183167, 0.1576603502035141, 0.07282812893390656, 0.09615543484687805, -0.03479117527604103, -0.025833578780293465, 0.10397772490978241, -0.044638559222221375, 0.20370566844940186, -0.03272198513150215, 0.19611816108226776, 0.014093300327658653, 0.15347658097743988, -0.00825178250670433, 0.06616714596748352, 0.017497410997748375, 0.020853545516729355, -0.011337686330080032, -0.05228254199028015, -0.028735173866152763, 0.003459182335063815, -0.0469585582613945, 0.04210188612341881, -0.0930509865283966, 0.030074715614318848, 0.04148966073989868, 0.21710558235645294, 0.09047416597604752, -0.324178010225296, -0.05468936264514923, 0.02460138127207756, -0.020713284611701965, -0.08903501182794571, -0.010154487565159798, 0.0726594477891922, -0.10910751670598984, 0.11328566074371338, -0.0659659132361412, 0.07918854057788849, -0.021947164088487625, 0.007046012673527002, 0.03561168536543846, 0.1474648118019104, -0.006455948576331139, 0.04614021256566048, -0.19649039208889008, 0.21247270703315735, 0.0066863372921943665, 0.06524297595024109, -0.009885560721158981, 0.04934731125831604, 0.036009591072797775, 0.08191971480846405, 0.11187907308340073, 0.01615135185420513, -0.11942896246910095, -0.10344873368740082, -0.11830421537160873, 0.022091057151556015, 0.07578616589307785, -0.05563415586948395, 0.10013752430677414, -0.05448327213525772, -0.031966567039489746, 0.019723622128367424, 0.021214570850133896, -0.14941540360450745, -0.11536058038473129, 0.04749856889247894, -0.004687738139182329, -0.023095492273569107, -0.07817146927118301, -0.08056090027093887, -0.027944128960371017, 0.198634535074234, 0.05121929198503494, -0.0529685840010643, -0.1330312043428421, 0.060388725250959396, 0.147951140999794, -0.08329141139984131, 0.07580429315567017, -0.037696722894907, 0.12266872823238373, 0.021497169509530067, -0.08672162145376205, 0.058119140565395355, -0.06443649530410767, -0.18816502392292023, -0.03280628100037575, 0.14495135843753815, -0.017641879618167877, 0.03563550114631653, 0.02211746759712696, 0.05313917621970177, -0.02267303317785263, -0.0939788967370987, 0.029091643169522285, 0.020130418241024017, 0.07227244228124619, 0.012645581737160683, -0.032427091151475906, -0.06074546277523041, -0.018822776153683662, -0.0013380887685343623, 0.11090974509716034, 0.3180778920650482, -0.06740594655275345, 0.016604231670498848, 0.018701473250985146, -0.08030951023101807, -0.15979622304439545, -0.023410728201270103, 0.08409233391284943, 0.019137881696224213, 0.04982994496822357, -0.14037466049194336, 0.06622917205095291, 0.11704008281230927, -0.0339631550014019, 0.0299856998026371, -0.31818994879722595, -0.13456924259662628, 0.04531913250684738, 0.10607490688562393, 0.15468788146972656, -0.14415210485458374, -0.05097338929772377, -0.038928620517253876, -0.156873419880867, 0.0895523726940155, 0.011996728368103504, 0.10552052408456802, -0.044248104095458984, 0.004330371972173452, 0.02367430366575718, -0.0198132935911417, 0.1842484176158905, 0.02415885590016842, 0.06194819509983063, -0.03008883446455002, 0.07563991844654083, 0.09103531390428543, -0.08774331212043762, 0.06869544088840485, -0.05893925949931145, 0.07304459810256958, -0.1498812884092331, -0.0020839027129113674, -0.044558629393577576, 0.06792929023504257, -0.058896321803331375, -0.012293071486055851, -0.046554084867239, 0.011888506822288036, 0.07606758177280426, -0.013610503636300564, 0.10527051240205765, 0.06815201789140701, 0.07422415167093277, 0.0748853087425232, 0.024559693410992622, 0.04129074513912201, -0.09951740503311157, 0.018131420016288757, 0.005741499364376068, 0.02940845862030983, -0.13056418299674988, 0.04258858785033226, 0.1186269223690033, 0.031115159392356873, 0.09562791138887405, 0.03178546950221062, -0.04075416550040245, 0.006546278949826956, 0.055143486708402634, -0.15606488287448883, -0.10568289458751678, -0.012309876270592213, -0.08695275336503983, -0.1171928346157074, 0.005370036698877811, 0.11067727208137512, -0.033093638718128204, -0.0389135517179966, -0.012821832671761513, 0.03170931339263916, -0.0027418648824095726, 0.18306796252727509, 0.02609001100063324, 0.05745233967900276, -0.08227439969778061, 0.11408960819244385, 0.0625026673078537, -0.047447334975004196, 0.010611052624881268, 0.09354748576879501, -0.0932537317276001, -0.012293698266148567, 0.04115178808569908, 0.102452352643013, 0.01102404948323965, -0.017994316294789314, -0.07623026520013809, -0.0929136648774147, 0.05193684250116348, 0.02635582908987999, 0.08047705143690109, 0.012684055604040623, -0.009043368510901928, -0.02064167894423008, -0.10330362617969513, 0.09062647819519043, 0.13257846236228943, 0.09394799172878265, -0.12219732999801636, 0.03745771944522858, -0.003850412555038929, 0.03227580711245537, -0.017216872423887253, 0.005264751147478819, -0.09815148264169693, -0.0675024539232254, -0.09219822287559509, 0.04423734173178673, -0.0783020406961441, -0.01132468692958355, -0.04246858134865761, -0.012862461619079113, -0.05712900683283806, 0.0462459959089756, -0.058233827352523804, -0.09428472071886063, -0.018555229529738426, 0.050095606595277786, -0.11999864876270294, 0.00956229493021965, 0.027222877368330956, -0.12717607617378235, 0.1001388430595398, 0.03496411442756653, 0.028750117868185043, 0.007344345562160015, -0.07235033065080643, -0.014589359052479267, 0.04536500200629234, 0.013794994913041592, 0.027219805866479874, -0.12233181297779083, 0.007272283546626568, -0.007535191252827644, 0.014869971200823784, -0.02822289615869522, 0.04037308692932129, -0.13208916783332825, -0.01938638649880886, -0.058901578187942505, -0.03791546821594238, -0.04094510152935982, 0.035753194242715836, 0.11985493451356888, 0.029012948274612427, 0.16027896106243134, -0.07433712482452393, 0.0027843061834573746, -0.2202090471982956, -0.017055748030543327, -0.0022348244674503803, -0.10565785318613052, -0.09552599489688873, -0.02638210728764534, 0.07664147764444351, -0.02501763589680195, 0.10274355113506317, -0.0059525067918002605, 0.03899321332573891, 0.03381647169589996, 0.017608875408768654, -0.018002890050411224, 0.0195771474391222, 0.16973567008972168, 0.02949771098792553, -0.02287885919213295, 0.0963708907365799, 0.0017217104323208332, 0.0848611369729042, 0.08547797799110413, 0.15035879611968994, 0.13747872412204742, -0.010298630222678185, 0.07780253887176514, 0.00238543632440269, -0.08302406221628189, -0.17278146743774414, 0.08366644382476807, -0.04300668463110924, 0.14139658212661743, -0.012530652806162834, 0.06497130542993546, 0.05047228932380676, -0.15582147240638733, 0.039653971791267395, -0.039399247616529465, -0.08475332707166672, -0.11650049686431885, -0.08542462438344955, -0.09827246516942978, -0.1179131418466568, 0.0043781534768640995, -0.12633591890335083, 0.06663529574871063, 0.11255227029323578, 0.006450682878494263, -0.02467350661754608, 0.11139323562383652, -0.009976083412766457, -0.04346837103366852, 0.07418042421340942, 0.013440209440886974, -0.018178537487983704, 0.013124837540090084, -0.04227375611662865, -0.006332804914563894, 0.020844850689172745, 0.08138417452573776, -0.014554446563124657, -0.0009288840810768306, 0.06303410977125168, -0.03976888954639435, -0.0815599262714386, 0.007805307395756245, 0.020514139905571938, 0.007337816990911961, 0.031347520649433136, 0.044666726142168045, -0.011643096804618835, -0.01723541133105755, 0.2278222143650055, -0.02752288617193699, -0.00932549312710762, -0.12991948425769806, 0.13215437531471252, 0.034336965531110764, -0.031028401106595993, 0.0829969123005867, -0.08992806822061539, -0.00014413251483347267, 0.12016256898641586, 0.12648150324821472, -0.02967926114797592, -0.01987122744321823, -0.04284202679991722, -0.019924918189644814, 0.025126930326223373, 0.10377391427755356, 0.07428031414747238, 0.03393984213471413, -0.04334504157304764, -0.0013085438404232264, -0.050636619329452515, -0.01856120303273201, -0.0809573233127594, 0.08076146245002747, 0.02333073318004608, 0.0005952417850494385, -0.029932772740721703, 0.03566836565732956, 0.011959467083215714, -0.12268376350402832, 0.033467911183834076, -0.1436941921710968, -0.1654025763273239, -0.010025854222476482, 0.0120702451094985, 0.011918161064386368, 0.08368465304374695, -0.015471347607672215, -0.022626584395766258, 0.15401853621006012, -0.023198267444968224, -0.054213229566812515, -0.09904253482818604, 0.06834305822849274, -0.11525559425354004, 0.23410466313362122, 0.014213216491043568, 0.0211257915943861, 0.09567802399396896, 0.007996291853487492, -0.16504015028476715, 0.032833367586135864, 0.058929283171892166, -0.020320415496826172, 0.05773351714015007, 0.11418606340885162, -0.014177597127854824, 0.030825911089777946, 0.03287838399410248, -0.082051120698452, -0.048647068440914154, 0.002240428002551198, -0.0034335018135607243, -0.07516510039567947, -0.022912854328751564, -0.07836917787790298, 0.1381780207157135, 0.18870070576667786, -0.050775013864040375, 0.006278061307966709, -0.0505158007144928, 0.04303344711661339, 0.026645006611943245, 0.09997468441724777, -0.012305992655456066, -0.24834614992141724, 0.03676259517669678, 0.03545844554901123, 0.01747308485209942, -0.18152347207069397, -0.09911095350980759, -0.03910912573337555, -0.03731951490044594, -0.08067038655281067, 0.11130807548761368, 0.04011936113238335, 0.007993909530341625, -0.028268665075302124, -0.032836392521858215, -0.06884868443012238, 0.15573322772979736, -0.1038493812084198, -0.07883456349372864 ]
null
null
transformers
# summarization_ilpost This model is a fine-tuned version of [gsarti/it5-base](https://huggingface.co/gsarti/it5-base) on IlPost dataset for Abstractive Summarization. It achieves the following results: - Loss: 1.6020 - Rouge1: 33.7802 - Rouge2: 16.2953 - Rougel: 27.4797 - Rougelsum: 30.2273 - Gen Len: 45.3175 ## Usage ```python from transformers import T5Tokenizer, T5ForConditionalGeneration tokenizer = T5Tokenizer.from_pretrained("ARTeLab/it5-summarization-ilpost") model = T5ForConditionalGeneration.from_pretrained("ARTeLab/it5-summarization-ilpost") ``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 6 - eval_batch_size: 6 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4.0 ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.9.1+cu102 - Datasets 1.12.1 - Tokenizers 0.10.3
{"language": ["it"], "tags": ["summarization"], "datasets": ["ARTeLab/ilpost"], "metrics": ["rouge"], "base_model": "gsarti/it5-base", "model-index": [{"name": "summarization_ilpost", "results": []}]}
summarization
ARTeLab/it5-summarization-ilpost
[ "transformers", "pytorch", "tensorboard", "safetensors", "t5", "text2text-generation", "summarization", "it", "dataset:ARTeLab/ilpost", "base_model:gsarti/it5-base", "autotrain_compatible", "endpoints_compatible", "has_space", "text-generation-inference", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[ "it" ]
TAGS #transformers #pytorch #tensorboard #safetensors #t5 #text2text-generation #summarization #it #dataset-ARTeLab/ilpost #base_model-gsarti/it5-base #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us
# summarization_ilpost This model is a fine-tuned version of gsarti/it5-base on IlPost dataset for Abstractive Summarization. It achieves the following results: - Loss: 1.6020 - Rouge1: 33.7802 - Rouge2: 16.2953 - Rougel: 27.4797 - Rougelsum: 30.2273 - Gen Len: 45.3175 ## Usage ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 6 - eval_batch_size: 6 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4.0 ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.9.1+cu102 - Datasets 1.12.1 - Tokenizers 0.10.3
[ "# summarization_ilpost\n\nThis model is a fine-tuned version of gsarti/it5-base on IlPost dataset for Abstractive Summarization.\n\nIt achieves the following results:\n- Loss: 1.6020\n- Rouge1: 33.7802\n- Rouge2: 16.2953\n- Rougel: 27.4797\n- Rougelsum: 30.2273\n- Gen Len: 45.3175", "## Usage", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 6\n- eval_batch_size: 6\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 4.0", "### Framework versions\n- Transformers 4.12.0.dev0\n- Pytorch 1.9.1+cu102\n- Datasets 1.12.1\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #safetensors #t5 #text2text-generation #summarization #it #dataset-ARTeLab/ilpost #base_model-gsarti/it5-base #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n", "# summarization_ilpost\n\nThis model is a fine-tuned version of gsarti/it5-base on IlPost dataset for Abstractive Summarization.\n\nIt achieves the following results:\n- Loss: 1.6020\n- Rouge1: 33.7802\n- Rouge2: 16.2953\n- Rougel: 27.4797\n- Rougelsum: 30.2273\n- Gen Len: 45.3175", "## Usage", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 6\n- eval_batch_size: 6\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 4.0", "### Framework versions\n- Transformers 4.12.0.dev0\n- Pytorch 1.9.1+cu102\n- Datasets 1.12.1\n- Tokenizers 0.10.3" ]
[ 88, 86, 3, 90, 37 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #safetensors #t5 #text2text-generation #summarization #it #dataset-ARTeLab/ilpost #base_model-gsarti/it5-base #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n# summarization_ilpost\n\nThis model is a fine-tuned version of gsarti/it5-base on IlPost dataset for Abstractive Summarization.\n\nIt achieves the following results:\n- Loss: 1.6020\n- Rouge1: 33.7802\n- Rouge2: 16.2953\n- Rougel: 27.4797\n- Rougelsum: 30.2273\n- Gen Len: 45.3175## Usage### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 6\n- eval_batch_size: 6\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 4.0### Framework versions\n- Transformers 4.12.0.dev0\n- Pytorch 1.9.1+cu102\n- Datasets 1.12.1\n- Tokenizers 0.10.3" ]
[ -0.1379970908164978, 0.1521882861852646, -0.004651216324418783, 0.0647406056523323, 0.09556883573532104, 0.04738730937242508, 0.0877595841884613, 0.14777474105358124, -0.05945650488138199, 0.1266050785779953, 0.0929919183254242, 0.055788468569517136, 0.06502176821231842, 0.1818566918373108, -0.04505264014005661, -0.21284160017967224, 0.049175240099430084, 0.013544329442083836, -0.12501364946365356, 0.08179139345884323, 0.10690168291330338, -0.0749700739979744, 0.0739159807562828, 0.028107451274991035, -0.13587582111358643, 0.02003008872270584, -0.003154912032186985, -0.05209570378065109, 0.07080301642417908, 0.02148663066327572, 0.07952544838190079, -0.00019727622566279024, 0.08306152373552322, -0.12032228708267212, -0.001374811283312738, 0.08607300370931625, 0.010909585282206535, 0.10899339616298676, 0.11298868805170059, -0.011835898272693157, 0.14041762053966522, -0.1239045262336731, 0.02881297655403614, 0.033100079745054245, -0.10496243834495544, -0.1848561316728592, -0.11973406374454498, 0.059135351330041885, 0.07259078323841095, 0.0561554990708828, -0.013045189902186394, 0.10824164003133774, -0.031527139246463776, 0.08375221490859985, 0.20263443887233734, -0.273563027381897, -0.08525175601243973, 0.10394803434610367, 0.0392618328332901, -0.002887808484956622, -0.07071627676486969, 0.005787374917417765, 0.04357028752565384, 0.023273607715964317, 0.09079655259847641, -0.02220642752945423, 0.02435336820781231, -0.031571485102176666, -0.1316002905368805, -0.05809140205383301, 0.2208264321088791, 0.047693438827991486, -0.04255278781056404, -0.05750259757041931, -0.09468218684196472, -0.09549300372600555, -0.052619319409132004, -0.031388431787490845, 0.04797925427556038, -0.02570592425763607, -0.025165745988488197, -0.00838492065668106, -0.041907262057065964, -0.05763065814971924, 0.0008043035049922764, 0.09882675856351852, 0.05446552857756615, 0.023456720635294914, -0.005980846472084522, 0.07413341104984283, -0.07472559809684753, -0.13485601544380188, -0.04351599141955376, -0.022883260622620583, -0.07448805123567581, -0.03856242820620537, -0.04546738788485527, 0.01902906969189644, 0.04147353395819664, 0.21375977993011475, -0.06548748165369034, 0.07889652252197266, 0.06508935987949371, -0.010326836258172989, -0.04211926460266113, 0.14427287876605988, -0.08326415717601776, -0.07954079657793045, 0.023108234629034996, 0.09500879049301147, 0.032953087240457535, 0.0046292804181575775, -0.03799711540341377, -0.03255033493041992, 0.09489832818508148, 0.025067254900932312, -0.0038219166453927755, 0.03455395624041557, -0.055054593831300735, -0.028023602440953255, 0.03610355406999588, -0.11814828217029572, 0.04669766128063202, -0.002982469741255045, -0.07267269492149353, 0.020551489666104317, 0.02864825166761875, -0.02700602263212204, -0.07510992139577866, 0.0419183187186718, -0.09540855884552002, -0.016293659806251526, -0.0742592066526413, -0.08546659350395203, 0.010322263464331627, -0.05643428489565849, -0.0325825996696949, -0.0801178589463234, -0.16372035443782806, -0.043647296726703644, 0.05859426036477089, -0.0895778238773346, -0.06483082473278046, -0.011071710847318172, -0.09020941704511642, 0.059101466089487076, 0.007565219420939684, 0.07775798439979553, -0.04245550557971001, 0.02461027167737484, 0.04244152829051018, 0.07648332417011261, 0.018138904124498367, 0.034265294671058655, -0.036500826478004456, 0.07337731868028641, -0.11904242634773254, 0.08271173387765884, -0.09486240893602371, -0.007837445475161076, -0.10878454148769379, -0.07450196892023087, -0.025747964158654213, 0.000288149225525558, 0.11841989308595657, 0.15648521482944489, -0.13630622625350952, -0.03367484733462334, 0.17893950641155243, -0.07563074678182602, -0.08132874965667725, 0.07840777933597565, -0.006194157991558313, -0.03887644410133362, 0.02694537863135338, 0.15023933351039886, 0.07780896127223969, -0.06826867908239365, -0.0560673326253891, 0.04101652652025223, 0.06637416779994965, -0.021539712324738503, 0.07831427454948425, -0.026074064895510674, -0.0455925352871418, 0.02790302224457264, -0.06577905267477036, -0.014019012451171875, -0.08055673539638519, -0.049989186227321625, -0.08197181671857834, -0.04649799317121506, 0.03472064062952995, 0.011412687599658966, 0.054837651550769806, -0.043996527791023254, -0.10094723105430603, 0.021418308839201927, 0.15061821043491364, -0.04923299700021744, 0.010561712086200714, -0.059736765921115875, 0.10215611755847931, -0.05042818561196327, 0.010798079892992973, -0.20679180324077606, -0.08486465364694595, 0.03738327696919441, -0.06551913172006607, -0.028378719463944435, -0.018078921362757683, 0.055301833897829056, 0.042393770068883896, -0.022218529134988785, -0.03713923692703247, -0.028008215129375458, -0.030476173385977745, -0.07936341315507889, -0.15348072350025177, -0.0692865177989006, -0.02955811284482479, 0.13756273686885834, -0.19406962394714355, 0.017203517258167267, -0.02204187586903572, 0.1612551510334015, 0.010738968849182129, -0.047976166009902954, 0.005093146115541458, 0.016717569902539253, -0.04006297141313553, -0.1127290278673172, 0.03113512508571148, 0.02286582440137863, -0.04672902077436447, -0.014458412304520607, -0.11099695414304733, 0.07043013721704483, 0.08865515887737274, 0.06503324210643768, -0.08707070350646973, 0.008957244455814362, -0.036052100360393524, -0.028116850182414055, -0.012221402488648891, -0.020730270072817802, 0.025703709572553635, -0.00341018452309072, 0.1372365653514862, -0.07645745575428009, -0.057590633630752563, 0.016606666147708893, -0.013806440867483616, -0.018624739721417427, 0.08809859305620193, 0.0691356435418129, -0.04717070981860161, 0.08285561949014664, 0.07915892452001572, -0.06641808897256851, 0.10345035791397095, -0.06433694809675217, -0.07416357100009918, -0.04950515925884247, 0.02066151238977909, 0.02438659407198429, 0.11385887116193771, -0.1069517508149147, 0.003763223299756646, 0.03990458324551582, 0.025867439806461334, 0.024759747087955475, -0.14070174098014832, 0.03449957072734833, 0.003225460648536682, -0.03257640451192856, 0.02253604866564274, 0.033324651420116425, -0.0013746739132329822, 0.10862910747528076, -0.0029194774106144905, -0.042435407638549805, -0.009609526954591274, -0.015205111354589462, -0.05645066127181053, 0.21013708412647247, -0.10720761865377426, -0.12832766771316528, -0.10467452555894852, 0.016882386058568954, -0.08901240676641464, -0.004862071480602026, 0.0028573728632181883, -0.054465457797050476, -0.08522623777389526, -0.08023326843976974, -0.016421779990196228, -0.018808098509907722, 0.01796833984553814, 0.06963486224412918, -0.02104395441710949, 0.10986709594726562, -0.1266874521970749, -0.004943086765706539, -0.01620994322001934, -0.06419489532709122, 0.019017484039068222, 0.018705764785408974, 0.07330195605754852, 0.09086170047521591, 0.011293693445622921, 0.025393038988113403, 0.0017732855631038547, 0.2477731555700302, -0.04743126407265663, 0.021062107756733894, 0.1119779422879219, 0.06211598962545395, 0.0781312957406044, 0.10785628110170364, 0.023318026214838028, -0.07719056308269501, -0.009549419395625591, 0.046970438212156296, -0.0015196691965684295, -0.21816878020763397, -0.05291648581624031, -0.06502022594213486, -0.012310365214943886, 0.12278704345226288, 0.03665159270167351, -0.02296295203268528, 0.0783519521355629, -0.027674343436956406, 0.0997709184885025, -0.021054942160844803, 0.09187071025371552, 0.11170200258493423, 0.04813523590564728, 0.10465870797634125, -0.036383043974637985, -0.011619419790804386, 0.10355252027511597, -0.018786145374178886, 0.2511114478111267, -0.024538449943065643, 0.12499821186065674, 0.01939738728106022, 0.15315447747707367, -0.017485640943050385, 0.07578305900096893, 0.00013369263615459204, 0.0028970991261303425, 0.0017923567211255431, -0.04104216769337654, -0.013453523628413677, -0.000010209600986854639, -0.05301022157073021, 0.039870329201221466, -0.07757793366909027, 0.07090394198894501, 0.03605201840400696, 0.2446814626455307, 0.09067457169294357, -0.3312034606933594, -0.04501977562904358, 0.0189583208411932, 0.003923104144632816, -0.11218756437301636, -0.0027938163839280605, 0.0902361199259758, -0.09442301094532013, 0.09261041134595871, -0.07364574074745178, 0.0699099749326706, 0.011880503036081791, -0.017597738653421402, 0.07023350894451141, 0.16580581665039062, 0.007651448715478182, 0.03877097740769386, -0.18361634016036987, 0.20250776410102844, 0.007339517120271921, 0.05605657398700714, -0.0203681793063879, 0.06047307327389717, 0.05256291851401329, 0.06544084846973419, 0.09069482237100601, 0.029526887461543083, -0.1566774845123291, -0.10303379595279694, -0.0966653898358345, 0.029562266543507576, 0.08825460076332092, -0.035584449768066406, 0.10834972560405731, -0.06552004814147949, -0.032744523137807846, 0.02133542113006115, -0.036053020507097244, -0.15140622854232788, -0.12204314768314362, 0.0509907603263855, 0.015069540590047836, -0.01911095902323723, -0.08452963829040527, -0.08515684306621552, -0.017290782183408737, 0.19953978061676025, -0.01692144200205803, -0.05009111762046814, -0.1377231925725937, 0.07746167480945587, 0.1543385535478592, -0.06810463964939117, 0.08209200948476791, -0.0248345248401165, 0.14363493025302887, 0.025060027837753296, -0.09740300476551056, 0.07516934722661972, -0.08895334601402283, -0.14970403909683228, -0.027532553300261497, 0.11872042715549469, -0.028290677815675735, 0.02568860352039337, 0.01287660002708435, 0.04098992422223091, -0.012254399247467518, -0.09840424358844757, 0.0076666041277348995, 0.038107335567474365, 0.05525871738791466, 0.06644579023122787, -0.06026291102170944, -0.05793508142232895, 0.009129554964601994, 0.019926724955439568, 0.08575033396482468, 0.2751307189464569, -0.08913682401180267, -0.015547743067145348, -0.0016584236873313785, -0.08612971007823944, -0.18261916935443878, 0.010468957014381886, 0.09834261983633041, 0.00996183417737484, 0.012881491333246231, -0.16676506400108337, 0.09271538257598877, 0.10252181440591812, -0.026911670342087746, 0.06056331470608711, -0.2911869287490845, -0.12313654273748398, 0.07379861176013947, 0.08731596171855927, 0.12221048772335052, -0.15330709517002106, -0.05374946817755699, -0.034055113792419434, -0.09730367362499237, 0.09261611104011536, -0.05255595222115517, 0.0998821035027504, -0.043390508741140366, 0.004526228178292513, 0.02192595601081848, -0.022741980850696564, 0.17202985286712646, 0.04006977751851082, 0.07725054025650024, -0.023722831159830093, 0.06268984824419022, 0.10422036051750183, -0.09940911829471588, 0.06434778869152069, -0.052023764699697495, 0.08012201637029648, -0.14266617596149445, 0.010692738927900791, -0.045967064797878265, 0.054978933185338974, -0.050596483051776886, 0.004846785683184862, -0.03815676271915436, 0.03479810431599617, 0.035683926194906235, -0.015925372019410133, 0.09402633458375931, 0.06551553308963776, 0.07882311195135117, 0.09242179244756699, 0.016843371093273163, -0.006933088880032301, -0.07196037471294403, 0.029092269018292427, 0.006303594913333654, 0.042539406567811966, -0.1377381831407547, 0.029372820630669594, 0.102797731757164, 0.03770874813199043, 0.0929410383105278, 0.048647671937942505, -0.04003375768661499, -0.015629617497324944, 0.07754148542881012, -0.13292434811592102, -0.12161163240671158, -0.0188479982316494, -0.03039013408124447, -0.13172602653503418, 0.03151867166161537, 0.10750101506710052, -0.025317523628473282, -0.023647859692573547, -0.01331908069550991, 0.02490621991455555, 0.002418468939140439, 0.1761685311794281, 0.026492221280932426, 0.061325643211603165, -0.09706800431013107, 0.11476557701826096, 0.03698263689875603, -0.05776725336909294, 0.018546685576438904, 0.0870312750339508, -0.08524765819311142, -0.02480246312916279, 0.031291134655475616, 0.12419869005680084, -0.018067166209220886, -0.029559511691331863, -0.08407363295555115, -0.10434099286794662, 0.06462793052196503, 0.05750051513314247, 0.06948493421077728, 0.005094950087368488, -0.001889180624857545, -0.012192712165415287, -0.11000215262174606, 0.0966043472290039, 0.13797442615032196, 0.10505086928606033, -0.14487503468990326, 0.04807673394680023, -0.005688901990652084, 0.017043516039848328, -0.014314260333776474, 0.0011663689510896802, -0.13506105542182922, -0.07004745304584503, -0.10737623274326324, 0.04002004489302635, -0.06880005449056625, -0.005233598407357931, -0.01748964749276638, -0.014265034347772598, -0.07052309811115265, 0.0450662262737751, -0.06416719406843185, -0.07872138917446136, -0.018467536196112633, 0.045448947697877884, -0.09913638979196548, 0.020166264846920967, 0.010729399509727955, -0.12715758383274078, 0.08140943944454193, 0.046532776206731796, 0.045697152614593506, 0.01997506245970726, -0.08021842688322067, -0.027885720133781433, 0.02421749196946621, 0.011328293941915035, 0.05584637448191643, -0.13511870801448822, 0.03015957400202751, -0.016689062118530273, 0.039200328290462494, -0.029931388795375824, 0.021849924698472023, -0.11713770776987076, -0.002053634263575077, -0.07960139214992523, -0.021743105724453926, -0.04736907035112381, 0.05224386230111122, 0.11316760629415512, 0.024903124198317528, 0.15866024792194366, -0.06850561499595642, -0.015499021857976913, -0.23127982020378113, -0.005746630486100912, -0.013553650118410587, -0.08696752786636353, -0.07782833278179169, -0.02305944822728634, 0.08174148201942444, -0.024294504895806313, 0.10864970833063126, -0.0017860778607428074, 0.034776121377944946, 0.01905389316380024, -0.024688733741641045, 0.0012600752525031567, 0.023096201941370964, 0.14380237460136414, 0.045487113296985626, -0.00953713059425354, 0.05619317293167114, 0.03520801663398743, 0.08541837334632874, 0.08096128702163696, 0.1557782143354416, 0.14216633141040802, -0.048648521304130554, 0.10305960476398468, 0.0062899417243897915, -0.11081255972385406, -0.11937562376260757, 0.092057965695858, -0.06555745750665665, 0.13496635854244232, -0.033959511667490005, 0.06471377611160278, 0.0754862129688263, -0.1683363914489746, 0.03402949124574661, -0.056710321456193924, -0.08248717337846756, -0.12557044625282288, -0.09312642365694046, -0.09046268463134766, -0.16134855151176453, -0.004915937781333923, -0.1397341936826706, 0.048838645219802856, 0.13673058152198792, 0.0195014625787735, 0.010177535004913807, 0.10405045002698898, -0.03716280311346054, -0.02556421048939228, 0.07669974118471146, 0.01526855118572712, -0.011201695539057255, 0.00845637172460556, -0.059865932911634445, 0.010604452341794968, 0.00432161008939147, 0.07663831114768982, -0.018415212631225586, 0.01067742332816124, 0.06630756705999374, -0.01833522692322731, -0.06574711203575134, 0.014597099274396896, 0.017681444063782692, 0.004370672162622213, 0.034889619797468185, 0.0336872935295105, -0.013013489544391632, -0.022128595039248466, 0.23714998364448547, -0.05267304182052612, -0.03565335273742676, -0.15994608402252197, 0.11785124242305756, 0.02414528653025627, -0.022196317091584206, 0.05058247223496437, -0.09012570232152939, -0.017394859343767166, 0.11986932158470154, 0.10598630458116531, -0.009668811224400997, -0.03739417716860771, -0.015239087864756584, -0.02668500691652298, -0.00540191913023591, 0.11093705892562866, 0.09827616810798645, 0.05897550657391548, -0.03856277838349342, -0.0161899384111166, -0.019470032304525375, -0.02301383949816227, -0.08604861795902252, 0.08336299657821655, 0.03296902775764465, -0.009107720106840134, -0.012795398943126202, 0.034754082560539246, 0.001858484698459506, -0.09094798564910889, 0.04074396938085556, -0.1278291791677475, -0.17456433176994324, -0.032225362956523895, 0.021366925910115242, -0.002972222398966551, 0.0800209790468216, -0.027717353776097298, -0.03836629167199135, 0.14395636320114136, -0.027936512604355812, -0.058323848992586136, -0.1401197463274002, 0.05932752788066864, -0.11047502607107162, 0.2312323898077011, -0.003398875007405877, 0.023972786962985992, 0.11756774038076401, 0.004049290437251329, -0.1866866946220398, -0.013667945750057697, 0.041038282215595245, -0.04547236114740372, 0.04965772479772568, 0.10831461101770401, -0.035258930176496506, 0.05779663845896721, 0.025337669998407364, -0.07842237502336502, -0.04552900418639183, -0.025465959683060646, -0.019967449828982353, -0.08494849503040314, -0.015997061505913734, -0.0761900544166565, 0.1425800919532776, 0.21572567522525787, -0.04884031042456627, 0.006151909474283457, -0.057407230138778687, 0.055461447685956955, 0.01975131593644619, 0.10569451004266739, -0.01270492933690548, -0.22014573216438293, 0.04967230558395386, 0.033625341951847076, 0.018555620685219765, -0.17745047807693481, -0.07056093215942383, -0.036120492964982986, -0.04149559885263443, -0.06512235850095749, 0.12378641963005066, 0.07673079520463943, 0.034489452838897705, -0.03515792638063431, -0.052492544054985046, -0.06715169548988342, 0.15419809520244598, -0.10421941429376602, -0.08217494189739227 ]
null
null
transformers
# summarization_mlsum This model is a fine-tuned version of [gsarti/it5-base](https://huggingface.co/gsarti/it5-base) on MLSum-it for Abstractive Summarization. It achieves the following results: - Loss: 2.0190 - Rouge1: 19.3739 - Rouge2: 5.9753 - Rougel: 16.691 - Rougelsum: 16.7862 - Gen Len: 32.5268 ## Usage ```python from transformers import T5Tokenizer, T5ForConditionalGeneration tokenizer = T5Tokenizer.from_pretrained("ARTeLab/it5-summarization-mlsum") model = T5ForConditionalGeneration.from_pretrained("ARTeLab/it5-summarization-mlsum") ``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 6 - eval_batch_size: 6 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4.0 ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.9.1+cu102 - Datasets 1.12.1 - Tokenizers 0.10.3 # Citation More details and results in [published work](https://www.mdpi.com/2078-2489/13/5/228) ``` @Article{info13050228, AUTHOR = {Landro, Nicola and Gallo, Ignazio and La Grassa, Riccardo and Federici, Edoardo}, TITLE = {Two New Datasets for Italian-Language Abstractive Text Summarization}, JOURNAL = {Information}, VOLUME = {13}, YEAR = {2022}, NUMBER = {5}, ARTICLE-NUMBER = {228}, URL = {https://www.mdpi.com/2078-2489/13/5/228}, ISSN = {2078-2489}, ABSTRACT = {Text summarization aims to produce a short summary containing relevant parts from a given text. Due to the lack of data for abstractive summarization on low-resource languages such as Italian, we propose two new original datasets collected from two Italian news websites with multi-sentence summaries and corresponding articles, and from a dataset obtained by machine translation of a Spanish summarization dataset. These two datasets are currently the only two available in Italian for this task. To evaluate the quality of these two datasets, we used them to train a T5-base model and an mBART model, obtaining good results with both. To better evaluate the results obtained, we also compared the same models trained on automatically translated datasets, and the resulting summaries in the same training language, with the automatically translated summaries, which demonstrated the superiority of the models obtained from the proposed datasets.}, DOI = {10.3390/info13050228} } ```
{"language": ["it"], "tags": ["summarization"], "datasets": ["ARTeLab/mlsum-it"], "metrics": ["rouge"], "base_model": "gsarti/it5-base", "model-index": [{"name": "summarization_mlsum", "results": []}]}
summarization
ARTeLab/it5-summarization-mlsum
[ "transformers", "pytorch", "safetensors", "t5", "text2text-generation", "summarization", "it", "dataset:ARTeLab/mlsum-it", "base_model:gsarti/it5-base", "autotrain_compatible", "endpoints_compatible", "has_space", "text-generation-inference", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[ "it" ]
TAGS #transformers #pytorch #safetensors #t5 #text2text-generation #summarization #it #dataset-ARTeLab/mlsum-it #base_model-gsarti/it5-base #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us
# summarization_mlsum This model is a fine-tuned version of gsarti/it5-base on MLSum-it for Abstractive Summarization. It achieves the following results: - Loss: 2.0190 - Rouge1: 19.3739 - Rouge2: 5.9753 - Rougel: 16.691 - Rougelsum: 16.7862 - Gen Len: 32.5268 ## Usage ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 6 - eval_batch_size: 6 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4.0 ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.9.1+cu102 - Datasets 1.12.1 - Tokenizers 0.10.3 More details and results in published work
[ "# summarization_mlsum\n\nThis model is a fine-tuned version of gsarti/it5-base on MLSum-it for Abstractive Summarization.\n\nIt achieves the following results:\n- Loss: 2.0190\n- Rouge1: 19.3739\n- Rouge2: 5.9753\n- Rougel: 16.691\n- Rougelsum: 16.7862\n- Gen Len: 32.5268", "## Usage", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 6\n- eval_batch_size: 6\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 4.0", "### Framework versions\n\n- Transformers 4.12.0.dev0\n- Pytorch 1.9.1+cu102\n- Datasets 1.12.1\n- Tokenizers 0.10.3\n\nMore details and results in published work" ]
[ "TAGS\n#transformers #pytorch #safetensors #t5 #text2text-generation #summarization #it #dataset-ARTeLab/mlsum-it #base_model-gsarti/it5-base #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n", "# summarization_mlsum\n\nThis model is a fine-tuned version of gsarti/it5-base on MLSum-it for Abstractive Summarization.\n\nIt achieves the following results:\n- Loss: 2.0190\n- Rouge1: 19.3739\n- Rouge2: 5.9753\n- Rougel: 16.691\n- Rougelsum: 16.7862\n- Gen Len: 32.5268", "## Usage", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 6\n- eval_batch_size: 6\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 4.0", "### Framework versions\n\n- Transformers 4.12.0.dev0\n- Pytorch 1.9.1+cu102\n- Datasets 1.12.1\n- Tokenizers 0.10.3\n\nMore details and results in published work" ]
[ 86, 85, 3, 90, 44 ]
[ "passage: TAGS\n#transformers #pytorch #safetensors #t5 #text2text-generation #summarization #it #dataset-ARTeLab/mlsum-it #base_model-gsarti/it5-base #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n# summarization_mlsum\n\nThis model is a fine-tuned version of gsarti/it5-base on MLSum-it for Abstractive Summarization.\n\nIt achieves the following results:\n- Loss: 2.0190\n- Rouge1: 19.3739\n- Rouge2: 5.9753\n- Rougel: 16.691\n- Rougelsum: 16.7862\n- Gen Len: 32.5268## Usage### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 6\n- eval_batch_size: 6\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 4.0### Framework versions\n\n- Transformers 4.12.0.dev0\n- Pytorch 1.9.1+cu102\n- Datasets 1.12.1\n- Tokenizers 0.10.3\n\nMore details and results in published work" ]
[ -0.1425154209136963, 0.14501653611660004, -0.004585064947605133, 0.0638197511434555, 0.10454908013343811, 0.027872417122125626, 0.05407509207725525, 0.14063917100429535, -0.08451662212610245, 0.1276850551366806, 0.10304296016693115, 0.08815712481737137, 0.04760599881410599, 0.1878906488418579, -0.037154413759708405, -0.20241817831993103, 0.033086709678173065, 0.0026059786323457956, -0.1346656233072281, 0.08898299932479858, 0.10519777238368988, -0.08248845487833023, 0.08652134239673615, 0.026972899213433266, -0.12369880825281143, 0.02129253000020981, -0.005730133969336748, -0.049348488450050354, 0.080707848072052, 0.03609926998615265, 0.051693759858608246, 0.00032084318809211254, 0.07292638719081879, -0.1193167120218277, -0.0072585586458444595, 0.05986522138118744, 0.01843872293829918, 0.1145019680261612, 0.1205705851316452, -0.007752705365419388, 0.1356978565454483, -0.15899589657783508, 0.018489468842744827, 0.045375071465969086, -0.10201670974493027, -0.19060485064983368, -0.11283041536808014, 0.024551786482334137, 0.06420910358428955, 0.0485294945538044, -0.01600375957787037, 0.12345639616250992, -0.025798264890909195, 0.0942549854516983, 0.21735639870166779, -0.28053152561187744, -0.0739215686917305, 0.0935668796300888, 0.04751455783843994, 0.009856794029474258, -0.0661192536354065, 0.01975235715508461, 0.05199545994400978, 0.02270691469311714, 0.1058262512087822, -0.018850525841116905, 0.05427507683634758, -0.03272804245352745, -0.13290272653102875, -0.060184575617313385, 0.2178972065448761, 0.04920658469200134, -0.044342510402202606, -0.08250337839126587, -0.10170434415340424, -0.09679179638624191, -0.03439961373806, -0.013286683708429337, 0.05781183019280434, -0.030945340171456337, -0.029608095064759254, -0.018520569428801537, -0.04097822681069374, -0.046020593494176865, -0.003554657334461808, 0.11091116070747375, 0.04365753009915352, 0.024354495108127594, 0.01229835581034422, 0.07798901200294495, -0.05410238727927208, -0.14152108132839203, -0.05243396386504173, -0.015436985529959202, -0.06271734833717346, -0.02879730984568596, -0.036797113716602325, 0.016978049650788307, 0.043796755373477936, 0.1771317720413208, -0.09011338651180267, 0.07052512466907501, 0.05918491631746292, -0.01102449931204319, -0.028724296018481255, 0.14753872156143188, -0.07544203102588654, -0.07693521678447723, 0.031398698687553406, 0.07583654671907425, 0.033786799758672714, 0.018312962725758553, -0.024598833173513412, -0.045120831578969955, 0.09731187671422958, 0.04721226170659065, -0.0064172083511948586, 0.03824913874268532, -0.05302394926548004, -0.029021495953202248, 0.0505279041826725, -0.13422438502311707, 0.019490418955683708, -0.003362898714840412, -0.07339270412921906, -0.015318716876208782, 0.023534439504146576, -0.040214911103248596, -0.06511631608009338, 0.03747238591313362, -0.0992690846323967, -0.01766231283545494, -0.05187336355447769, -0.08055844157934189, 0.0027445636224001646, -0.036336541175842285, -0.03080105595290661, -0.08311526477336884, -0.15138773620128632, -0.040892597287893295, 0.03281765431165695, -0.07772346585988998, -0.07155593484640121, 0.0006725144339725375, -0.07846705615520477, 0.05394706875085831, -0.005534595809876919, 0.09249883145093918, -0.047080155462026596, 0.041424866765737534, 0.05669741705060005, 0.06414146721363068, 0.0424007885158062, 0.03460463881492615, -0.059143662452697754, 0.07887547463178635, -0.11432383954524994, 0.09305545687675476, -0.07770033925771713, 0.014279155060648918, -0.12270420044660568, -0.08616209775209427, -0.022046934813261032, -0.00376390409655869, 0.10838361829519272, 0.1468433290719986, -0.12354093044996262, -0.02503054402768612, 0.1832767277956009, -0.06311402469873428, -0.08686908334493637, 0.07600007951259613, -0.006756992544978857, -0.04261741414666176, 0.040358301252126694, 0.16164442896842957, 0.05563518404960632, -0.04881199821829796, -0.03951924294233322, 0.0373196043074131, 0.06440632045269012, -0.020696228370070457, 0.09680899977684021, -0.03911225125193596, -0.0648997575044632, 0.027820277959108353, -0.07743873447179794, -0.011868649162352085, -0.08728480339050293, -0.055605463683605194, -0.08026342839002609, -0.04623794928193092, 0.03022942692041397, -0.0024192924611270428, 0.04675554111599922, -0.06792762130498886, -0.08995610475540161, 0.01772153191268444, 0.1491834819316864, -0.05079404264688492, 0.011704676784574986, -0.043738365173339844, 0.09476742893457413, -0.06749716401100159, 0.006750684697180986, -0.2127770483493805, -0.06425003707408905, 0.04574565216898918, -0.0991283431649208, -0.025118326768279076, -0.01384479645639658, 0.041496533900499344, 0.0648680105805397, -0.02297011949121952, -0.0387798510491848, -0.029899735003709793, -0.03660173714160919, -0.08029387891292572, -0.14089825749397278, -0.052668772637844086, -0.02016567625105381, 0.10805919766426086, -0.19526265561580658, 0.0031522661447525024, -0.02310001105070114, 0.13101033866405487, -0.002712841145694256, -0.053792163729667664, 0.02025195211172104, 0.006901687476783991, -0.035670142620801926, -0.10716095566749573, 0.033674802631139755, 0.01728738099336624, -0.07016566395759583, 0.004732317291200161, -0.1306537240743637, 0.09765171259641647, 0.07812447100877762, 0.05964125320315361, -0.08023527264595032, 0.02153957076370716, -0.04768562316894531, -0.02308223396539688, -0.03226539120078087, -0.02224161848425865, 0.048207517713308334, -0.017997143790125847, 0.1495300680398941, -0.09278286248445511, -0.06372907757759094, 0.01565629616379738, -0.01762276142835617, -0.013276911340653896, 0.11462096869945526, 0.02916054241359234, -0.10767707973718643, 0.07733911275863647, 0.09907140582799911, -0.02127109467983246, 0.11958115547895432, -0.06675736606121063, -0.06444908678531647, -0.0652819573879242, 0.028724970296025276, 0.009183885529637337, 0.08255811780691147, -0.08806004375219345, 0.013901418074965477, 0.039043642580509186, 0.03582088276743889, 0.020781556144356728, -0.13576526939868927, 0.026888705790042877, 0.015516478568315506, -0.043264515697956085, 0.04474157840013504, 0.047412388026714325, -0.004670243244618177, 0.12330188602209091, 0.002656719647347927, -0.015568116679787636, -0.01985625922679901, -0.021821940317749977, -0.06142308562994003, 0.21972967684268951, -0.11132451891899109, -0.1435515582561493, -0.09815707057714462, 0.033608149737119675, -0.09843631833791733, -0.0038528526201844215, 0.014445211738348007, -0.056399766355752945, -0.08610406517982483, -0.08144490420818329, 0.02307613380253315, -0.04806002601981163, 0.013032893650233746, 0.08080233633518219, -0.013414235785603523, 0.11870263516902924, -0.13877777755260468, -0.01709711365401745, -0.024389248341321945, -0.07245495170354843, 0.009687519632279873, 0.0271435733884573, 0.07688199728727341, 0.06820906698703766, 0.004591044038534164, 0.01765819452702999, 0.005102541763335466, 0.2648468017578125, -0.030093122273683548, -0.002360700163990259, 0.124080128967762, 0.07019997388124466, 0.07149486243724823, 0.0970977172255516, 0.02611805498600006, -0.09056814014911652, 0.005540227051824331, 0.03576008975505829, -0.013601101003587246, -0.23743396997451782, -0.0630534291267395, -0.060553111135959625, -0.009739353321492672, 0.11357781291007996, 0.04105398803949356, -0.033465541899204254, 0.056836578994989395, -0.03676629811525345, 0.07739762961864471, -0.022695036605000496, 0.07847250252962112, 0.13610975444316864, 0.045964550226926804, 0.10868344455957413, -0.03983937203884125, -0.005811094306409359, 0.10569848865270615, -0.0439203642308712, 0.23378917574882507, -0.022933602333068848, 0.14410628378391266, 0.032895103096961975, 0.13503192365169525, -0.020809143781661987, 0.06876510381698608, 0.01867757923901081, 0.018717726692557335, -0.00703419279307127, -0.05974835157394409, -0.02827601507306099, -0.0029554562643170357, -0.04672570899128914, 0.048006121069192886, -0.08689660578966141, 0.053700610995292664, 0.03604692965745926, 0.21620793640613556, 0.07691235840320587, -0.3194866478443146, -0.05725790187716484, 0.02370041236281395, 0.003049857448786497, -0.08995470404624939, -0.0023965679574757814, 0.09370149672031403, -0.10079894959926605, 0.09412907809019089, -0.062224555760622025, 0.0696396678686142, -0.003734188387170434, -0.0014482146361842752, 0.04719072952866554, 0.15252533555030823, 0.007308734580874443, 0.04912702739238739, -0.16863520443439484, 0.2297159731388092, 0.016449684277176857, 0.040408603847026825, -0.006161098834127188, 0.05376090854406357, 0.04133664071559906, 0.06148044019937515, 0.10544712841510773, 0.03290436416864395, -0.1605524867773056, -0.11397736519575119, -0.09917581081390381, 0.024318594485521317, 0.08359820395708084, -0.053459472954273224, 0.09794139117002487, -0.05903737619519234, -0.031415313482284546, 0.017808113247156143, -0.019641658291220665, -0.1550106704235077, -0.09822764992713928, 0.04748465120792389, -0.008896604180335999, -0.030033648014068604, -0.08209103345870972, -0.08420959115028381, -0.0059393285773694515, 0.20581196248531342, 0.00012117279402446002, -0.058028992265462875, -0.13856886327266693, 0.08472248166799545, 0.15991736948490143, -0.09163210541009903, 0.0736335888504982, -0.03151434287428856, 0.12559422850608826, 0.03239500895142555, -0.09898927062749863, 0.08000923693180084, -0.07396354526281357, -0.16570790112018585, -0.021330056712031364, 0.14535288512706757, -0.02953276038169861, 0.03418027237057686, 0.010410097427666187, 0.04467606544494629, -0.01055718120187521, -0.09663364291191101, 0.007111843209713697, 0.06348074972629547, 0.07743745297193527, 0.06159450113773346, -0.06857987493276596, -0.05071161687374115, 0.005437495186924934, -0.006026735063642263, 0.11044559627771378, 0.29402101039886475, -0.0891844853758812, -0.0046839420683681965, 0.004453256260603666, -0.09298717975616455, -0.18027706444263458, 0.0007545154658146203, 0.09923779219388962, 0.022812986746430397, 0.0473104827105999, -0.15465109050273895, 0.080275759100914, 0.10602844506502151, -0.024772629141807556, 0.023492557927966118, -0.31943657994270325, -0.13248583674430847, 0.050165701657533646, 0.0880531296133995, 0.1427992433309555, -0.15039438009262085, -0.062317121773958206, -0.041084591299295425, -0.07986883074045181, 0.08437478542327881, -0.02406601421535015, 0.11252257972955704, -0.04202768951654434, -0.0024328629951924086, 0.02797839418053627, -0.024932892993092537, 0.1776677668094635, 0.037154048681259155, 0.07191850244998932, -0.027780210599303246, 0.06922122836112976, 0.07937206327915192, -0.09079866856336594, 0.07079490274190903, -0.05333416536450386, 0.09146211296319962, -0.14320841431617737, 0.0024418747052550316, -0.04289752244949341, 0.07001764327287674, -0.052090488374233246, -0.008539448492228985, -0.03747449442744255, 0.029244741424918175, 0.05549553036689758, -0.0220493096858263, 0.09463819861412048, 0.057046983391046524, 0.06222015991806984, 0.08837678283452988, 0.02789664827287197, 0.02222478948533535, -0.08800564706325531, 0.025994272902607918, 0.017134781926870346, 0.02896651066839695, -0.16288097202777863, 0.034780099987983704, 0.1083945631980896, 0.042413417249917984, 0.08443355560302734, 0.036719005554914474, -0.034846194088459015, -0.01683635637164116, 0.06565359979867935, -0.12830515205860138, -0.12819068133831024, -0.0277447160333395, -0.04827940836548805, -0.11894520372152328, 0.02281162701547146, 0.11273941397666931, -0.026497310027480125, -0.02888505905866623, -0.022042296826839447, 0.03629903495311737, 0.00023154928931035101, 0.1965852826833725, 0.018580397590994835, 0.06446458399295807, -0.09205617755651474, 0.11286303400993347, 0.04302876815199852, -0.03678099066019058, 0.007001254241913557, 0.09204619377851486, -0.0854472815990448, -0.025924963876605034, 0.02986697293817997, 0.10952847450971603, -0.01397672574967146, -0.01607501693069935, -0.07230006158351898, -0.09581508487462997, 0.062141478061676025, 0.05326071009039879, 0.08405415713787079, 0.013549137860536575, 0.001242012600414455, -0.02847101166844368, -0.08514215797185898, 0.10424946993589401, 0.13733753561973572, 0.09114371240139008, -0.12687428295612335, 0.05381525307893753, -0.004539896734058857, 0.04096664860844612, -0.011451124213635921, 0.0010018973844125867, -0.11927719414234161, -0.06976436078548431, -0.08970741182565689, 0.039753276854753494, -0.05840466544032097, -0.013313587754964828, -0.03768545389175415, -0.017865503206849098, -0.07126317173242569, 0.051956936717033386, -0.06173238903284073, -0.09137262403964996, -0.026897583156824112, 0.06400449573993683, -0.09710391610860825, -0.0013676683884114027, 0.013170978054404259, -0.11960064619779587, 0.08503630012273788, 0.036511220037937164, 0.042275309562683105, 0.014142674393951893, -0.058246925473213196, -0.02339298091828823, 0.04133336991071701, 0.017358088865876198, 0.03476705774664879, -0.1419719159603119, 0.020218970254063606, -0.011198245920240879, 0.04338556528091431, -0.03178959712386131, 0.028644662350416183, -0.13400396704673767, -0.014684542082250118, -0.07980317622423172, -0.018375825136899948, -0.04071393981575966, 0.03297901898622513, 0.08810590207576752, 0.037959858775138855, 0.1423097401857376, -0.0674823746085167, -0.009825882501900196, -0.24161973595619202, -0.014050298370420933, -0.01704150065779686, -0.11025089770555496, -0.09651131182909012, -0.02137467823922634, 0.08695586770772934, -0.026606477797031403, 0.11951231956481934, 0.013482746668159962, 0.038624342530965805, 0.03216344118118286, 0.0024513467215001583, 0.01920761540532112, 0.014365513809025288, 0.16431403160095215, 0.029332416132092476, 0.0005490898620337248, 0.08433617651462555, 0.035958852618932724, 0.08795211464166641, 0.07453732937574387, 0.14783576130867004, 0.15548451244831085, -0.02675831876695156, 0.0772620216012001, 0.00812810380011797, -0.10380984842777252, -0.14462319016456604, 0.06609966605901718, -0.04541878402233124, 0.13872161507606506, -0.03080858290195465, 0.055027034133672714, 0.06528310477733612, -0.16418778896331787, 0.04618559405207634, -0.04639638215303421, -0.08247695863246918, -0.13058355450630188, -0.0789094939827919, -0.09548280388116837, -0.1314932256937027, -0.0078534921631217, -0.13835367560386658, 0.05369104817509651, 0.1347426027059555, 0.010975361801683903, -0.00019120202341582626, 0.11483556032180786, -0.03773476183414459, -0.04569752514362335, 0.06842616945505142, 0.016505548730492592, -0.002554951934143901, 0.004642721731215715, -0.04367993399500847, 0.012653070501983166, 0.01685316674411297, 0.07442281395196915, -0.012008590623736382, -0.007829796522855759, 0.06431161612272263, -0.028584839776158333, -0.06873554736375809, -0.002084719715639949, 0.023680707439780235, 0.0028190494049340487, 0.02926778979599476, 0.03445908799767494, -0.029400760307908058, -0.017839573323726654, 0.24661147594451904, -0.0393562875688076, -0.022334689274430275, -0.12135052680969238, 0.11892237514257431, 0.04749590903520584, -0.017784157767891884, 0.06179766729474068, -0.07895860821008682, -0.007687290199100971, 0.12093664705753326, 0.13149483501911163, -0.0003472988319117576, -0.03141516074538231, -0.02825763449072838, -0.02316613495349884, 0.005708233918994665, 0.11246851086616516, 0.0938926711678505, 0.05078991502523422, -0.0395091287791729, -0.003959208261221647, -0.0322628952562809, -0.015958908945322037, -0.08756686747074127, 0.07011542469263077, 0.021995000541210175, 0.0005438502412289381, -0.01032924558967352, 0.03955312818288803, 0.017950579524040222, -0.11086413264274597, 0.02460736408829689, -0.13543973863124847, -0.16450046002864838, -0.03171398863196373, 0.012435413897037506, 0.011936538852751255, 0.07803834974765778, -0.02943038009107113, -0.031873248517513275, 0.14410701394081116, -0.024786479771137238, -0.07652172446250916, -0.12569807469844818, 0.058203767985105515, -0.10516628623008728, 0.22231903672218323, 0.00594088202342391, 0.02003217674791813, 0.1054355725646019, -0.0021183828357607126, -0.17408479750156403, 0.009333032183349133, 0.049597401171922684, -0.030656393617391586, 0.0704607293009758, 0.10036780685186386, -0.027761274948716164, 0.055017925798892975, 0.024256668984889984, -0.07601635903120041, -0.04938076436519623, 0.00007212660420918837, -0.013689372688531876, -0.07819974422454834, -0.01690688729286194, -0.07817821204662323, 0.14245741069316864, 0.2021399438381195, -0.054498281329870224, 0.004837059881538153, -0.06473492830991745, 0.044360753148794174, 0.01718119904398918, 0.09672696888446808, -0.007842724211513996, -0.23323242366313934, 0.04401116073131561, 0.040709685534238815, 0.024769995361566544, -0.183621346950531, -0.08774422109127045, -0.022120099514722824, -0.04774684086441994, -0.07462669163942337, 0.12350054085254669, 0.046938035637140274, 0.013999979011714458, -0.02835664711892605, -0.06434466689825058, -0.06819664686918259, 0.14886896312236786, -0.10391274839639664, -0.09147471189498901 ]
null
null
transformers
# mbart-summarization-fanpage This model is a fine-tuned version of [facebook/mbart-large-cc25](https://huggingface.co/facebook/mbart-large-cc25) on Fanpage dataset for Abstractive Summarization. It achieves the following results: - Loss: 2.1833 - Rouge1: 36.5027 - Rouge2: 17.4428 - Rougel: 26.1734 - Rougelsum: 30.2636 - Gen Len: 75.2413 ## Usage ```python from transformers import MBartTokenizer, MBartForConditionalGeneration tokenizer = MBartTokenizer.from_pretrained("ARTeLab/mbart-summarization-fanpage") model = MBartForConditionalGeneration.from_pretrained("ARTeLab/mbart-summarization-fanpage") ``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4.0 ### Framework versions - Transformers 4.15.0.dev0 - Pytorch 1.10.0+cu102 - Datasets 1.15.1 - Tokenizers 0.10.3 # Citation More details and results in [published work](https://www.mdpi.com/2078-2489/13/5/228) ``` @Article{info13050228, AUTHOR = {Landro, Nicola and Gallo, Ignazio and La Grassa, Riccardo and Federici, Edoardo}, TITLE = {Two New Datasets for Italian-Language Abstractive Text Summarization}, JOURNAL = {Information}, VOLUME = {13}, YEAR = {2022}, NUMBER = {5}, ARTICLE-NUMBER = {228}, URL = {https://www.mdpi.com/2078-2489/13/5/228}, ISSN = {2078-2489}, ABSTRACT = {Text summarization aims to produce a short summary containing relevant parts from a given text. Due to the lack of data for abstractive summarization on low-resource languages such as Italian, we propose two new original datasets collected from two Italian news websites with multi-sentence summaries and corresponding articles, and from a dataset obtained by machine translation of a Spanish summarization dataset. These two datasets are currently the only two available in Italian for this task. To evaluate the quality of these two datasets, we used them to train a T5-base model and an mBART model, obtaining good results with both. To better evaluate the results obtained, we also compared the same models trained on automatically translated datasets, and the resulting summaries in the same training language, with the automatically translated summaries, which demonstrated the superiority of the models obtained from the proposed datasets.}, DOI = {10.3390/info13050228} } ```
{"language": ["it"], "tags": ["summarization"], "datasets": ["ARTeLab/fanpage"], "metrics": ["rouge"], "base_model": "facebook/mbart-large-cc25", "model-index": [{"name": "summarization_mbart_fanpage4epoch", "results": []}]}
summarization
ARTeLab/mbart-summarization-fanpage
[ "transformers", "pytorch", "safetensors", "mbart", "text2text-generation", "summarization", "it", "dataset:ARTeLab/fanpage", "base_model:facebook/mbart-large-cc25", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[ "it" ]
TAGS #transformers #pytorch #safetensors #mbart #text2text-generation #summarization #it #dataset-ARTeLab/fanpage #base_model-facebook/mbart-large-cc25 #autotrain_compatible #endpoints_compatible #has_space #region-us
# mbart-summarization-fanpage This model is a fine-tuned version of facebook/mbart-large-cc25 on Fanpage dataset for Abstractive Summarization. It achieves the following results: - Loss: 2.1833 - Rouge1: 36.5027 - Rouge2: 17.4428 - Rougel: 26.1734 - Rougelsum: 30.2636 - Gen Len: 75.2413 ## Usage ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4.0 ### Framework versions - Transformers 4.15.0.dev0 - Pytorch 1.10.0+cu102 - Datasets 1.15.1 - Tokenizers 0.10.3 More details and results in published work
[ "# mbart-summarization-fanpage\n\nThis model is a fine-tuned version of facebook/mbart-large-cc25 on Fanpage dataset for Abstractive Summarization.\n\nIt achieves the following results:\n- Loss: 2.1833\n- Rouge1: 36.5027\n- Rouge2: 17.4428\n- Rougel: 26.1734\n- Rougelsum: 30.2636\n- Gen Len: 75.2413", "## Usage", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 1\n- eval_batch_size: 1\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 4.0", "### Framework versions\n\n- Transformers 4.15.0.dev0\n- Pytorch 1.10.0+cu102\n- Datasets 1.15.1\n- Tokenizers 0.10.3\n\nMore details and results in published work" ]
[ "TAGS\n#transformers #pytorch #safetensors #mbart #text2text-generation #summarization #it #dataset-ARTeLab/fanpage #base_model-facebook/mbart-large-cc25 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "# mbart-summarization-fanpage\n\nThis model is a fine-tuned version of facebook/mbart-large-cc25 on Fanpage dataset for Abstractive Summarization.\n\nIt achieves the following results:\n- Loss: 2.1833\n- Rouge1: 36.5027\n- Rouge2: 17.4428\n- Rougel: 26.1734\n- Rougelsum: 30.2636\n- Gen Len: 75.2413", "## Usage", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 1\n- eval_batch_size: 1\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 4.0", "### Framework versions\n\n- Transformers 4.15.0.dev0\n- Pytorch 1.10.0+cu102\n- Datasets 1.15.1\n- Tokenizers 0.10.3\n\nMore details and results in published work" ]
[ 79, 93, 3, 90, 43 ]
[ "passage: TAGS\n#transformers #pytorch #safetensors #mbart #text2text-generation #summarization #it #dataset-ARTeLab/fanpage #base_model-facebook/mbart-large-cc25 #autotrain_compatible #endpoints_compatible #has_space #region-us \n# mbart-summarization-fanpage\n\nThis model is a fine-tuned version of facebook/mbart-large-cc25 on Fanpage dataset for Abstractive Summarization.\n\nIt achieves the following results:\n- Loss: 2.1833\n- Rouge1: 36.5027\n- Rouge2: 17.4428\n- Rougel: 26.1734\n- Rougelsum: 30.2636\n- Gen Len: 75.2413## Usage### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 1\n- eval_batch_size: 1\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 4.0### Framework versions\n\n- Transformers 4.15.0.dev0\n- Pytorch 1.10.0+cu102\n- Datasets 1.15.1\n- Tokenizers 0.10.3\n\nMore details and results in published work" ]
[ -0.15857934951782227, 0.1624511033296585, -0.003749730996787548, 0.0807233527302742, 0.0887390747666359, 0.012787952087819576, 0.027494054287672043, 0.11613187193870544, -0.10056351870298386, 0.1519976109266281, 0.09454315900802612, 0.012696301564574242, 0.05323679745197296, 0.2391631007194519, -0.05025072023272514, -0.17239688336849213, 0.032413169741630554, 0.005779495928436518, -0.10350643843412399, 0.0902542918920517, 0.10755429416894913, -0.09007056802511215, 0.09750094264745712, 0.04766887426376343, -0.16865384578704834, 0.03991573676466942, -0.005661970470100641, -0.06284214556217194, 0.08414573967456818, 0.03714039549231529, 0.06786684691905975, 0.019850507378578186, 0.07733722776174545, -0.08074773102998734, -0.0011960790725424886, 0.07744470983743668, -0.00006188294355524704, 0.1062365248799324, 0.13716350495815277, 0.002918072510510683, 0.15973350405693054, -0.1638273000717163, 0.03711980581283569, 0.053163982927799225, -0.11766491085290909, -0.20585544407367706, -0.10491450130939484, 0.0807572677731514, 0.06214430183172226, 0.07513925433158875, -0.028813248500227928, 0.10388673096895218, -0.017638372257351875, 0.06793186813592911, 0.24158865213394165, -0.27007970213890076, -0.09391716122627258, 0.048021089285612106, 0.03343677520751953, -0.012606494128704071, -0.07857160270214081, 0.020434964448213577, 0.08036205917596817, 0.03773336112499237, 0.1333901435136795, -0.03065577894449234, 0.06960195302963257, -0.06488704681396484, -0.11956989765167236, -0.04186389967799187, 0.1969127506017685, 0.0693947896361351, -0.04400705546140671, -0.08268763870000839, -0.09363715350627899, -0.021796468645334244, -0.051888782531023026, -0.04226474091410637, 0.03356863185763359, -0.030168566852808, -0.04461445286870003, -0.012815655209124088, -0.04779548943042755, -0.029376158490777016, -0.009733019396662712, 0.03144508972764015, 0.020987119525671005, 0.029004069045186043, 0.0042292834259569645, 0.06217844784259796, -0.07060770690441132, -0.14307084679603577, -0.008393433876335621, -0.05037298426032066, -0.0559970997273922, -0.032127514481544495, -0.040830470621585846, 0.04565909132361412, 0.03313428536057472, 0.1401917189359665, -0.08424132317304611, 0.07422389090061188, 0.012743690982460976, -0.010284423828125, -0.02303147315979004, 0.10540771484375, -0.07674683630466461, -0.114254429936409, 0.061624396592378616, 0.10591264069080353, 0.01236821711063385, 0.02308083511888981, -0.008540398441255093, -0.054579880088567734, 0.0914897620677948, 0.01799943298101425, -0.005589538719505072, 0.010987808927893639, -0.06271286308765411, -0.020052876323461533, 0.13578367233276367, -0.10621371120214462, 0.025045696645975113, 0.014176270924508572, -0.08069358766078949, -0.00818397756665945, 0.021856149658560753, -0.047105081379413605, -0.04974677041172981, 0.036121100187301636, -0.104459747672081, -0.04773232713341713, -0.029835578054189682, -0.0656098872423172, 0.01398404873907566, -0.04352392256259918, -0.03035004809498787, -0.10553860664367676, -0.1324392408132553, -0.04501833766698837, 0.009572096168994904, -0.0805157870054245, -0.09233252704143524, 0.0067494758404791355, -0.055823683738708496, 0.04245348274707794, -0.006793186068534851, 0.08724016696214676, -0.04469006881117821, 0.03360352665185928, 0.048258114606142044, 0.0672042965888977, 0.02509755827486515, 0.03637439385056496, -0.06017480790615082, 0.08661486953496933, -0.15590928494930267, 0.07948624342679977, -0.07958677411079407, 0.011807926930487156, -0.12860800325870514, -0.09920372813940048, -0.02563132904469967, -0.002374413888901472, 0.10876037925481796, 0.1431238055229187, -0.15068140625953674, -0.059400785714387894, 0.17792385816574097, -0.08071058243513107, -0.10571391880512238, 0.08962595462799072, -0.015540754422545433, -0.057734549045562744, 0.044241566210985184, 0.14707916975021362, 0.08290735632181168, -0.08754567801952362, -0.050801683217287064, 0.015372767113149166, 0.05787469819188118, -0.015233717858791351, 0.053091999143362045, -0.041140083223581314, -0.049838609993457794, 0.02447841502726078, -0.034606195986270905, -0.027094727382063866, -0.07892773300409317, -0.0442611426115036, -0.08031835407018661, -0.06368929892778397, 0.03330405429005623, 0.004779257345944643, 0.029143281280994415, -0.08660208433866501, -0.0697837769985199, -0.017931053414940834, 0.13794881105422974, -0.029854632914066315, 0.00647253030911088, -0.027934130281209946, 0.08875031769275665, -0.03307025879621506, 0.0009409806225448847, -0.20916610956192017, -0.07141232490539551, 0.04853692650794983, -0.11355011910200119, -0.032833416014909744, 0.029054896906018257, 0.028505632653832436, 0.048284780234098434, -0.03921931982040405, -0.035670023411512375, -0.06220192462205887, -0.028944386169314384, -0.08172452449798584, -0.15613919496536255, -0.05333768576383591, -0.024180639535188675, 0.10576305538415909, -0.20425568521022797, 0.006422396749258041, 0.009040738455951214, 0.1612223982810974, -0.0014601257862523198, -0.04926152154803276, 0.005803100764751434, 0.013217370957136154, -0.004637305624783039, -0.09489219635725021, 0.031272854655981064, 0.020266536623239517, -0.048243820667266846, -0.006395031698048115, -0.11147116869688034, 0.10003139823675156, 0.09051123261451721, 0.07174937427043915, -0.07912799715995789, 0.029686151072382927, -0.05981198698282242, -0.03023332729935646, -0.0564800463616848, -0.03181125596165657, 0.06969503313302994, -0.004926811903715134, 0.14352501928806305, -0.10101891309022903, -0.055469777435064316, 0.041298530995845795, -0.013110326603055, -0.04257110133767128, 0.09588687121868134, 0.027539951726794243, -0.126201793551445, 0.09603343158960342, 0.1181742399930954, -0.001258781529031694, 0.09777342528104782, -0.050857461988925934, -0.06945125758647919, -0.036461926996707916, -0.012429633177816868, 0.005261350888758898, 0.11747312545776367, -0.06544564664363861, 0.009072182700037956, 0.03089798614382744, 0.02571835368871689, 0.037482667714357376, -0.11241540312767029, 0.02541586570441723, 0.0074620237573981285, -0.033181216567754745, 0.0526602528989315, 0.05141999572515488, 0.032980386167764664, 0.12611764669418335, 0.01349289808422327, -0.04670194908976555, -0.023314975202083588, -0.021104946732521057, -0.07142984867095947, 0.18336164951324463, -0.10871046036481857, -0.1911647766828537, -0.08765572309494019, 0.05149286985397339, -0.11008215695619583, -0.017666280269622803, 0.011896400712430477, -0.0599462129175663, -0.08313131332397461, -0.08571276813745499, 0.006175782065838575, -0.03106069378554821, 0.015293382108211517, 0.1060563325881958, -0.002649974077939987, 0.14485237002372742, -0.11493335664272308, -0.018980424851179123, -0.009154422208666801, -0.06232568249106407, -0.018329378217458725, 0.028878482058644295, 0.09750700742006302, 0.04382869973778725, 0.017478767782449722, 0.013437507674098015, -0.00504278065636754, 0.3006172776222229, -0.038399938493967056, 0.026227330788969994, 0.1261126846075058, 0.07232778519392014, 0.0735463947057724, 0.10712842643260956, 0.01819394715130329, -0.10116186738014221, 0.02139228582382202, 0.05646609514951706, 0.01006358489394188, -0.18601514399051666, -0.08643701672554016, -0.053152333945035934, -0.0010547637939453125, 0.14155347645282745, 0.03741558641195297, -0.03574757277965546, 0.048729557543992996, -0.02696961537003517, 0.08526623249053955, -0.0104596558958292, 0.06551409512758255, 0.11104144901037216, 0.06116999685764313, 0.1046605110168457, -0.03450743481516838, 0.007887090556323528, 0.13332803547382355, -0.0770551860332489, 0.21672582626342773, -0.04490506649017334, 0.10244014859199524, 0.030723875388503075, 0.1730937361717224, -0.008076313883066177, 0.05807776749134064, 0.013813033699989319, 0.006741146557033062, -0.008369035087525845, -0.03851804882287979, -0.018951378762722015, -0.009650596417486668, -0.030362186953425407, 0.04665935039520264, -0.1398339420557022, 0.034219566732645035, 0.05181299149990082, 0.24222314357757568, 0.08988392353057861, -0.3109484612941742, -0.055471666157245636, 0.00903540663421154, -0.010535473003983498, -0.102595753967762, 0.010644272901117802, 0.12423453480005264, -0.11007530987262726, 0.12793682515621185, -0.054832618683576584, 0.08448772132396698, 0.02435968816280365, 0.024357303977012634, 0.04191187024116516, 0.146269753575325, -0.004283681511878967, 0.036004018038511276, -0.1894659847021103, 0.23109960556030273, 0.012382959946990013, 0.05069497972726822, -0.012710126116871834, 0.0364384651184082, 0.04687890037894249, 0.092720165848732, 0.106822170317173, 0.018908241763710976, -0.13766378164291382, -0.09656023979187012, -0.11209187656641006, 0.03170293569564819, 0.053810298442840576, -0.061260804533958435, 0.07224373519420624, -0.03284816816449165, -0.03274332359433174, 0.016873888671398163, 0.03366276994347572, -0.16625642776489258, -0.10739215463399887, 0.018816346302628517, -0.006781738251447678, -0.057653140276670456, -0.09861091524362564, -0.07353748381137848, -0.013021248392760754, 0.173627570271492, 0.05823212116956711, -0.03951996564865112, -0.14406545460224152, 0.10366542637348175, 0.146246075630188, -0.08220042288303375, 0.08055746555328369, -0.01635545864701271, 0.1555800586938858, 0.0123550770804286, -0.10857241600751877, 0.057155027985572815, -0.08657856285572052, -0.19176171720027924, -0.023806504905223846, 0.14290732145309448, 0.011812125332653522, 0.023552028462290764, 0.02930964156985283, 0.03386837989091873, -0.0043716118671, -0.09071438759565353, 0.01934344880282879, 0.01933082565665245, 0.0754670575261116, 0.0128334891051054, -0.024853670969605446, -0.1040366068482399, 0.0031656858045607805, 0.018517879769206047, 0.06711046397686005, 0.3059234023094177, -0.09043484181165695, -0.00047894162707962096, 0.045839592814445496, -0.06551159173250198, -0.1728704571723938, 0.03190789371728897, 0.08057853579521179, 0.014554847031831741, 0.05160433053970337, -0.13953009247779846, 0.09608474373817444, 0.1368466168642044, -0.021960822865366936, 0.0043097506277263165, -0.2875120937824249, -0.12175114452838898, 0.06500524282455444, 0.07173396646976471, 0.13809062540531158, -0.1165657788515091, -0.045360490679740906, -0.060972556471824646, -0.1094934493303299, 0.07166030257940292, -0.08804593235254288, 0.07284291088581085, -0.031173843890428543, -0.011073860339820385, 0.017759811133146286, -0.009216832928359509, 0.1750873327255249, 0.019253112375736237, 0.07765622437000275, -0.013759045861661434, 0.10337822139263153, 0.08166966587305069, -0.08637188374996185, 0.05678241327404976, -0.051672182977199554, 0.08727098256349564, -0.1387605518102646, 0.001317999791353941, -0.08502309769392014, 0.09118925780057907, -0.07441248744726181, 0.0003532748087309301, -0.05259154364466667, 0.037605226039886475, 0.06607602536678314, -0.020995493978261948, -0.003593105124309659, 0.05315119028091431, 0.07719113677740097, 0.09002547711133957, 0.04420318827033043, 0.021874064579606056, -0.09285227209329605, 0.03399321809411049, -0.004254764877259731, 0.041821498423814774, -0.1148381382226944, 0.05336666852235794, 0.11508867144584656, 0.01421443559229374, 0.07966348528862, 0.020303748548030853, -0.053116440773010254, -0.007758853491395712, 0.061628133058547974, -0.1525026261806488, -0.08921267837285995, -0.0312509685754776, -0.04929297789931297, -0.11819121986627579, -0.004193906206637621, 0.11560912430286407, -0.0374971479177475, -0.036399319767951965, -0.025194091722369194, 0.02426779642701149, -0.01062272023409605, 0.1849265694618225, 0.04046417400240898, 0.059655774384737015, -0.09700850397348404, 0.1274930238723755, 0.04106037691235542, -0.062288086861371994, 0.02431027963757515, 0.08974529057741165, -0.093674436211586, -0.021923841908574104, 0.0695972815155983, 0.1523529291152954, 0.029574943706393242, -0.0290945153683424, -0.0680939257144928, -0.12010347098112106, 0.07405351847410202, 0.11221746355295181, 0.06622108817100525, -0.0032166584860533476, 0.015412675216794014, -0.024549895897507668, -0.09871144592761993, 0.08379470556974411, 0.1521482765674591, 0.07137057930231094, -0.11122807115316391, 0.06230379268527031, -0.009690183214843273, 0.036502014845609665, -0.02147378772497177, 0.03362634778022766, -0.1230277419090271, -0.0729135200381279, -0.15502676367759705, 0.024650083854794502, -0.07345587760210037, -0.021307524293661118, -0.05486477166414261, -0.00210829870775342, -0.06483127921819687, 0.035341840237379074, -0.05967995896935463, -0.07386603206396103, -0.0067384252324700356, 0.0656604915857315, -0.1346127688884735, 0.013292661868035793, 0.026493631303310394, -0.11515379697084427, 0.08678284287452698, 0.03208104148507118, 0.041215930134058, 0.0051080044358968735, -0.03086060658097267, -0.03361530229449272, 0.0412333644926548, 0.022088291123509407, 0.06751587986946106, -0.10912047326564789, 0.02746444381773472, -0.006332348566502333, 0.022117603570222855, -0.022543149068951607, 0.03473207354545593, -0.1189059391617775, -0.022255869582295418, -0.03479594364762306, -0.03249431028962135, -0.030799120664596558, 0.019903017207980156, 0.13747699558734894, 0.049830369651317596, 0.1355539858341217, -0.08832606673240662, -0.008089124225080013, -0.2379394918680191, -0.03324153646826744, -0.01655525527894497, -0.08987443149089813, -0.025967778638005257, -0.011324790306389332, 0.10419213771820068, -0.01668877713382244, 0.11727748066186905, 0.011681544594466686, 0.04405000060796738, 0.037332385778427124, -0.042494453489780426, -0.03406725823879242, 0.03733910992741585, 0.11628958582878113, 0.01067870482802391, -0.006720197852700949, 0.1009342297911644, 0.0170338973402977, 0.0943339392542839, 0.11616187542676926, 0.18806587159633636, 0.16070441901683807, -0.0063779051415622234, 0.06630334258079529, 0.03070608340203762, -0.11604458838701248, -0.11092004179954529, 0.06069415062665939, -0.07991261780261993, 0.14060109853744507, -0.02781885676085949, 0.023752907291054726, 0.03623014688491821, -0.17823241651058197, 0.04759388417005539, -0.05391452834010124, -0.07922215014696121, -0.10868921130895615, -0.05152565613389015, -0.09749626368284225, -0.121919646859169, -0.0028596394695341587, -0.14082147181034088, 0.027812516316771507, 0.09251558035612106, -0.0015361914411187172, -0.02900201827287674, 0.12849874794483185, -0.018703004345297813, -0.04673464596271515, 0.11433285474777222, 0.031808480620384216, -0.032294005155563354, -0.006805394776165485, -0.03484014421701431, -0.003952208906412125, 0.0317702442407608, 0.05178471654653549, -0.029880747199058533, -0.03695829212665558, 0.06216025352478027, -0.015876704826951027, -0.07317885756492615, 0.005027864594012499, -0.011693533509969711, -0.0012025847099721432, 0.02618192322552204, 0.048046816140413284, -0.0032654041424393654, -0.02254655584692955, 0.2244272232055664, -0.0405462384223938, 0.002402016893029213, -0.1619473248720169, 0.10979564487934113, 0.00956864096224308, -0.03475372865796089, 0.07031730562448502, -0.08001890778541565, -0.009418935514986515, 0.14169885218143463, 0.12858639657497406, -0.04765952751040459, -0.011230016127228737, -0.06344882398843765, -0.021750854328274727, 0.009643486700952053, 0.12273243814706802, 0.10347127169370651, 0.02623048424720764, -0.0382395014166832, -0.01068997010588646, -0.04627721756696701, -0.028766481205821037, -0.06517041474580765, 0.10133432596921921, 0.029139742255210876, 0.006539898458868265, -0.021659554913640022, 0.049283597618341446, 0.029095198959112167, -0.1314128190279007, 0.03095037117600441, -0.1394408792257309, -0.17335247993469238, -0.020360395312309265, -0.023781875148415565, 0.013545571826398373, 0.08622317016124725, -0.017635593190789223, 0.0005581304430961609, 0.17959648370742798, -0.04124847427010536, -0.03575264289975166, -0.15775780379772186, 0.07544765621423721, -0.13545437157154083, 0.24491141736507416, -0.0008727856329642236, -0.01613132283091545, 0.0964139848947525, 0.006502469070255756, -0.16951356828212738, 0.0021601608023047447, 0.05757613480091095, -0.008945143781602383, 0.029078612104058266, 0.11447769403457642, -0.02075476199388504, 0.04547632113099098, 0.0399097241461277, -0.1038447692990303, -0.0584038570523262, -0.017648572102189064, 0.013291615061461926, -0.07992443442344666, 0.016187287867069244, -0.0810186043381691, 0.12878228724002838, 0.19321011006832123, -0.05994047969579697, 0.006694750860333443, -0.049469344317913055, 0.05895538628101349, 0.019778968766331673, 0.13088639080524445, 0.0016134681645780802, -0.24558837711811066, 0.03488771617412567, 0.03144077584147453, 0.007801195606589317, -0.17721202969551086, -0.08910533040761948, -0.031047765165567398, -0.04920089244842529, -0.06022047996520996, 0.1283121258020401, -0.01154035422950983, 0.012936403974890709, -0.02778489701449871, -0.0023984285071492195, -0.07549590617418289, 0.15661145746707916, -0.09992507845163345, -0.06854995340108871 ]
null
null
transformers
# mbart_summarization_ilpost This model is a fine-tuned version of [facebook/mbart-large-cc25](https://huggingface.co/facebook/mbart-large-cc25) on IlPost dataset for Abstractive Summarization. It achieves the following results: - Loss: 2.3640 - Rouge1: 38.9101 - Rouge2: 21.384 - Rougel: 32.0517 - Rougelsum: 35.0743 - Gen Len: 39.8843 ## Usage ```python from transformers import MBartTokenizer, MBartForConditionalGeneration tokenizer = MBartTokenizer.from_pretrained("ARTeLab/mbart-summarization-ilpost") model = MBartForConditionalGeneration.from_pretrained("ARTeLab/mbart-summarization-ilpost") ``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4.0 ### Framework versions - Transformers 4.15.0.dev0 - Pytorch 1.10.0+cu102 - Datasets 1.15.1 - Tokenizers 0.10.3 # Citation More details and results in [published work](https://www.mdpi.com/2078-2489/13/5/228) ``` @Article{info13050228, AUTHOR = {Landro, Nicola and Gallo, Ignazio and La Grassa, Riccardo and Federici, Edoardo}, TITLE = {Two New Datasets for Italian-Language Abstractive Text Summarization}, JOURNAL = {Information}, VOLUME = {13}, YEAR = {2022}, NUMBER = {5}, ARTICLE-NUMBER = {228}, URL = {https://www.mdpi.com/2078-2489/13/5/228}, ISSN = {2078-2489}, ABSTRACT = {Text summarization aims to produce a short summary containing relevant parts from a given text. Due to the lack of data for abstractive summarization on low-resource languages such as Italian, we propose two new original datasets collected from two Italian news websites with multi-sentence summaries and corresponding articles, and from a dataset obtained by machine translation of a Spanish summarization dataset. These two datasets are currently the only two available in Italian for this task. To evaluate the quality of these two datasets, we used them to train a T5-base model and an mBART model, obtaining good results with both. To better evaluate the results obtained, we also compared the same models trained on automatically translated datasets, and the resulting summaries in the same training language, with the automatically translated summaries, which demonstrated the superiority of the models obtained from the proposed datasets.}, DOI = {10.3390/info13050228} } ```
{"language": ["it"], "tags": ["summarization"], "datasets": ["ARTeLab/ilpost"], "metrics": ["rouge"], "base_model": "facebook/mbart-large-cc25", "model-index": [{"name": "summarization_mbart_ilpost", "results": []}]}
summarization
ARTeLab/mbart-summarization-ilpost
[ "transformers", "pytorch", "safetensors", "mbart", "text2text-generation", "summarization", "it", "dataset:ARTeLab/ilpost", "base_model:facebook/mbart-large-cc25", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[ "it" ]
TAGS #transformers #pytorch #safetensors #mbart #text2text-generation #summarization #it #dataset-ARTeLab/ilpost #base_model-facebook/mbart-large-cc25 #autotrain_compatible #endpoints_compatible #has_space #region-us
# mbart_summarization_ilpost This model is a fine-tuned version of facebook/mbart-large-cc25 on IlPost dataset for Abstractive Summarization. It achieves the following results: - Loss: 2.3640 - Rouge1: 38.9101 - Rouge2: 21.384 - Rougel: 32.0517 - Rougelsum: 35.0743 - Gen Len: 39.8843 ## Usage ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4.0 ### Framework versions - Transformers 4.15.0.dev0 - Pytorch 1.10.0+cu102 - Datasets 1.15.1 - Tokenizers 0.10.3 More details and results in published work
[ "# mbart_summarization_ilpost\n\nThis model is a fine-tuned version of facebook/mbart-large-cc25 on IlPost dataset for Abstractive Summarization.\n\nIt achieves the following results:\n- Loss: 2.3640\n- Rouge1: 38.9101\n- Rouge2: 21.384\n- Rougel: 32.0517\n- Rougelsum: 35.0743\n- Gen Len: 39.8843", "## Usage", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 1\n- eval_batch_size: 1\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 4.0", "### Framework versions\n\n- Transformers 4.15.0.dev0\n- Pytorch 1.10.0+cu102\n- Datasets 1.15.1\n- Tokenizers 0.10.3\n\nMore details and results in published work" ]
[ "TAGS\n#transformers #pytorch #safetensors #mbart #text2text-generation #summarization #it #dataset-ARTeLab/ilpost #base_model-facebook/mbart-large-cc25 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "# mbart_summarization_ilpost\n\nThis model is a fine-tuned version of facebook/mbart-large-cc25 on IlPost dataset for Abstractive Summarization.\n\nIt achieves the following results:\n- Loss: 2.3640\n- Rouge1: 38.9101\n- Rouge2: 21.384\n- Rougel: 32.0517\n- Rougelsum: 35.0743\n- Gen Len: 39.8843", "## Usage", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 1\n- eval_batch_size: 1\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 4.0", "### Framework versions\n\n- Transformers 4.15.0.dev0\n- Pytorch 1.10.0+cu102\n- Datasets 1.15.1\n- Tokenizers 0.10.3\n\nMore details and results in published work" ]
[ 79, 91, 3, 90, 43 ]
[ "passage: TAGS\n#transformers #pytorch #safetensors #mbart #text2text-generation #summarization #it #dataset-ARTeLab/ilpost #base_model-facebook/mbart-large-cc25 #autotrain_compatible #endpoints_compatible #has_space #region-us \n# mbart_summarization_ilpost\n\nThis model is a fine-tuned version of facebook/mbart-large-cc25 on IlPost dataset for Abstractive Summarization.\n\nIt achieves the following results:\n- Loss: 2.3640\n- Rouge1: 38.9101\n- Rouge2: 21.384\n- Rougel: 32.0517\n- Rougelsum: 35.0743\n- Gen Len: 39.8843## Usage### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 1\n- eval_batch_size: 1\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 4.0### Framework versions\n\n- Transformers 4.15.0.dev0\n- Pytorch 1.10.0+cu102\n- Datasets 1.15.1\n- Tokenizers 0.10.3\n\nMore details and results in published work" ]
[ -0.16381677985191345, 0.1661672443151474, -0.004303179681301117, 0.061665039509534836, 0.09342695027589798, 0.0007336697308346629, 0.06844419240951538, 0.12763524055480957, -0.056458715349435806, 0.13584864139556885, 0.10983137786388397, 0.04716213792562485, 0.04968132823705673, 0.21831001341342926, -0.06695468723773956, -0.16157226264476776, 0.04773994907736778, 0.0026905990671366453, -0.11703560501337051, 0.08990811556577682, 0.09229492396116257, -0.08382878452539444, 0.09688735008239746, 0.04645858705043793, -0.15843793749809265, 0.02631232887506485, 0.0015026553301140666, -0.05502351373434067, 0.07769355922937393, 0.042845189571380615, 0.059666357934474945, 0.021201327443122864, 0.060283079743385315, -0.10222483426332474, -0.003986688330769539, 0.0726783499121666, -0.0018441134598106146, 0.10959517955780029, 0.11820371448993683, -0.0031668345909565687, 0.153168186545372, -0.16118237376213074, 0.028815850615501404, 0.03721420094370842, -0.109202079474926, -0.20120032131671906, -0.1057632714509964, 0.08438431471586227, 0.06620548665523529, 0.06753266602754593, -0.020552782341837883, 0.11692962050437927, -0.016193930059671402, 0.08283933252096176, 0.22646470367908478, -0.27251768112182617, -0.08350181579589844, 0.04753246158361435, 0.043626803904771805, -0.0016627595759928226, -0.06367107480764389, 0.013508136384189129, 0.06380146741867065, 0.021121753379702568, 0.10584631562232971, -0.022489381954073906, 0.095250703394413, -0.05005929246544838, -0.1321047991514206, -0.06257481127977371, 0.21281684935092926, 0.06957351416349411, -0.047171469777822495, -0.08353584259748459, -0.09199939668178558, -0.05203816294670105, -0.045106373727321625, -0.04121851548552513, 0.033127423375844955, -0.02547098696231842, -0.044065386056900024, -0.008623115718364716, -0.04218185320496559, -0.009577681310474873, 0.007195698097348213, 0.07457029819488525, 0.0338456928730011, 0.027763254940509796, -0.008458769880235195, 0.06010343134403229, -0.04159003123641014, -0.14747026562690735, -0.014483602717518806, -0.03953711688518524, -0.04847743734717369, -0.037200961261987686, -0.04592758044600487, 0.029952045530080795, 0.026559246703982353, 0.17755141854286194, -0.06816164404153824, 0.08368680626153946, 0.022374076768755913, -0.006755318026989698, -0.02559533901512623, 0.14618413150310516, -0.08201238512992859, -0.07183834910392761, 0.04287229850888252, 0.10165940225124359, -0.0014564944431185722, 0.014759509824216366, -0.01975099928677082, -0.031005267053842545, 0.11249617487192154, 0.026925938203930855, -0.012696604244410992, 0.024396086111664772, -0.06801562756299973, -0.03894377499818802, 0.09846524894237518, -0.10486350953578949, 0.02653852477669716, 0.0019399459706619382, -0.06586166471242905, 0.0013152661267668009, 0.039227403700351715, -0.04376408830285072, -0.0650378167629242, 0.03426826372742653, -0.09914401173591614, -0.03066650964319706, -0.030274197459220886, -0.06582384556531906, 0.008045687340199947, -0.01918579451739788, -0.03167685121297836, -0.10848542302846909, -0.1242806538939476, -0.03796003386378288, 0.03370437026023865, -0.07126094400882721, -0.07725317031145096, 0.0012636842438951135, -0.0708349347114563, 0.04686873033642769, -0.005281881429255009, 0.06148892641067505, -0.043816711753606796, 0.03593568876385689, 0.02949976921081543, 0.057089097797870636, 0.04752380773425102, 0.03555276617407799, -0.05094605311751366, 0.07674193382263184, -0.13998888432979584, 0.09548310190439224, -0.08039133995771408, 0.0026145416777580976, -0.12434414029121399, -0.09455587714910507, -0.021230319514870644, -0.00835711695253849, 0.11067222058773041, 0.15363217890262604, -0.13255952298641205, -0.05457262694835663, 0.18456973135471344, -0.06691060215234756, -0.10132329165935516, 0.09505379945039749, -0.024294983595609665, -0.041269294917583466, 0.04517929628491402, 0.13633319735527039, 0.0856756716966629, -0.09000133723020554, -0.05238455906510353, 0.02356025017797947, 0.040070414543151855, -0.02816592901945114, 0.056419242173433304, -0.013108920305967331, -0.05595356598496437, 0.013531243428587914, -0.034530531615018845, -0.005772604141384363, -0.08340585231781006, -0.04728085920214653, -0.08267707377672195, -0.05099954828619957, 0.02685423195362091, 0.004496308509260416, 0.033577870577573776, -0.0682140663266182, -0.08052732795476913, 0.017286699265241623, 0.1357274055480957, -0.040642090141773224, 0.006921784952282906, -0.04712865129113197, 0.0991453304886818, -0.06541527062654495, 0.006096791476011276, -0.21316596865653992, -0.05582123622298241, 0.04802379757165909, -0.10300708562135696, -0.02599397674202919, 0.01723732054233551, 0.040065109729766846, 0.0398646742105484, -0.03146008774638176, -0.039822351187467575, -0.048296019434928894, -0.031773000955581665, -0.09079321473836899, -0.14110907912254333, -0.04178979992866516, -0.026247847825288773, 0.11222373694181442, -0.1876920759677887, 0.00604134239256382, 0.017613975331187248, 0.15343277156352997, 0.0032764009665697813, -0.045906879007816315, 0.0039163390174508095, 0.003487942973151803, -0.013512453995645046, -0.09845662117004395, 0.028827879577875137, 0.02540813758969307, -0.07040075957775116, -0.012985102832317352, -0.09673433750867844, 0.1272103190422058, 0.08531983941793442, 0.055782150477170944, -0.07455882430076599, 0.013497380539774895, -0.05589071661233902, -0.03157137706875801, -0.030674876645207405, -0.026024067774415016, 0.09713006764650345, 0.00514801824465394, 0.1431051343679428, -0.10569822788238525, -0.060826897621154785, 0.03525755554437637, -0.011366032063961029, -0.04256654903292656, 0.09903325885534286, 0.044635504484176636, -0.13870838284492493, 0.07519633322954178, 0.1264420747756958, 0.01566193625330925, 0.10174578428268433, -0.06329667568206787, -0.06865404546260834, -0.05234897881746292, 0.02188432402908802, 0.012164977379143238, 0.09048748016357422, -0.08196517080068588, 0.012567532248795033, 0.0338573195040226, 0.028832172974944115, 0.0304956566542387, -0.11179598420858383, 0.02643987350165844, 0.00984992366284132, -0.03722624108195305, 0.035220302641391754, 0.05352271348237991, 0.033572420477867126, 0.11792567372322083, 0.01614616997539997, -0.049986567348241806, -0.010849842801690102, -0.023342272266745567, -0.06333433836698532, 0.19949708878993988, -0.09888835996389389, -0.19126680493354797, -0.0913187712430954, 0.030732685700058937, -0.10189761966466904, -0.01607406511902809, 0.016333196312189102, -0.06569366157054901, -0.08422364294528961, -0.07675351202487946, -0.004911584779620171, -0.011061374098062515, 0.01779932528734207, 0.09846343100070953, -0.013392852619290352, 0.13743549585342407, -0.12023603916168213, -0.022514276206493378, -0.013904627412557602, -0.023298736661672592, -0.00973573513329029, 0.025073539465665817, 0.07441025227308273, 0.051905155181884766, 0.009264534339308739, 0.02331034280359745, 0.008445127867162228, 0.2879859507083893, -0.04418128356337547, 0.00572970462962985, 0.13411563634872437, 0.05615794286131859, 0.08282216638326645, 0.08810270577669144, 0.013472470454871655, -0.11078484356403351, 0.012271644547581673, 0.042157020419836044, 0.005462481174618006, -0.190407857298851, -0.075580894947052, -0.0562092624604702, -0.007959706708788872, 0.14556163549423218, 0.027296550571918488, -0.03195250406861305, 0.054110635071992874, -0.029939601197838783, 0.08239515125751495, -0.015182863920927048, 0.08748714625835419, 0.10653182864189148, 0.054294783622026443, 0.10741332918405533, -0.03150150552392006, -0.012476514093577862, 0.12564018368721008, -0.08477901667356491, 0.226248636841774, -0.023006675764918327, 0.10292614251375198, 0.03455589339137077, 0.16533203423023224, -0.014509724453091621, 0.0636511892080307, 0.008045734837651253, 0.0010843605268746614, -0.013508589938282967, -0.042045075446367264, -0.029207933694124222, 0.001416021608747542, -0.04142110422253609, 0.042192492634058, -0.12045438587665558, 0.042053837329149246, 0.040261268615722656, 0.24590617418289185, 0.08469048887491226, -0.3128095269203186, -0.05920090526342392, 0.005081276874989271, -0.01593630574643612, -0.10950468480587006, 0.008435030467808247, 0.09759313613176346, -0.10620904713869095, 0.10243552923202515, -0.0746636614203453, 0.07894693315029144, 0.0010388648370280862, 0.020763078704476357, 0.05166031792759895, 0.12265946716070175, 0.0011659041047096252, 0.03835907578468323, -0.16930396854877472, 0.21591588854789734, 0.01572614721953869, 0.03424285352230072, -0.03372570499777794, 0.04047973453998566, 0.04804574325680733, 0.06780941039323807, 0.0949726402759552, 0.024850212037563324, -0.11261003464460373, -0.0908145159482956, -0.12412414699792862, 0.021737411618232727, 0.06553464382886887, -0.060808662325143814, 0.07877916842699051, -0.0445033460855484, -0.028857246041297913, 0.018707456067204475, -0.0070810564793646336, -0.13745833933353424, -0.1098911315202713, 0.04148241505026817, -0.0021522948518395424, -0.037451498210430145, -0.08847775310277939, -0.08352961391210556, -0.01459659356623888, 0.207708939909935, 0.04845371097326279, -0.04993553087115288, -0.14167146384716034, 0.08610524237155914, 0.1429792046546936, -0.08596300333738327, 0.06728687882423401, -0.014048789627850056, 0.14096078276634216, 0.023173561319708824, -0.11205588281154633, 0.07028605043888092, -0.07605650275945663, -0.17095306515693665, -0.018152501434087753, 0.14961452782154083, 0.0021288858260959387, 0.015218558721244335, 0.013567083515226841, 0.03161172941327095, -0.014521317556500435, -0.09696050733327866, 0.0003686651471070945, 0.008647174574434757, 0.08596517890691757, 0.05145421251654625, -0.030840642750263214, -0.06235600262880325, -0.008389300666749477, 0.017444582656025887, 0.05624692142009735, 0.30793726444244385, -0.08364731073379517, -0.008219446055591106, 0.037059321999549866, -0.05727318674325943, -0.16170671582221985, 0.014313793741166592, 0.07888875156641006, 0.014506204053759575, 0.040122561156749725, -0.1293105036020279, 0.08355753868818283, 0.10086631774902344, -0.016919508576393127, 0.01081752311438322, -0.30734291672706604, -0.1263517439365387, 0.07174964249134064, 0.08051765710115433, 0.16962313652038574, -0.11004437506198883, -0.04434119537472725, -0.05019760876893997, -0.0630209818482399, 0.07762353122234344, -0.060024891048669815, 0.08094137161970139, -0.03599720448255539, -0.004124687053263187, 0.029446164146065712, -0.01603848673403263, 0.16081839799880981, 0.026018813252449036, 0.09578386694192886, -0.02432948723435402, 0.08812674880027771, 0.07134705036878586, -0.09291381388902664, 0.06542352586984634, -0.05283514782786369, 0.09727790206670761, -0.13763733208179474, 0.00010124764958163723, -0.06997628509998322, 0.06914085149765015, -0.06132921576499939, 0.001485197339206934, -0.05474703013896942, 0.030623478814959526, 0.06338680535554886, -0.02084462344646454, 0.04770183935761452, 0.061601124703884125, 0.045236606150865555, 0.10327007621526718, 0.04745959863066673, 0.0019427526276558638, -0.08495430648326874, 0.017690518870949745, 0.005102468188852072, 0.038173675537109375, -0.12431184947490692, 0.052795324474573135, 0.10845857113599777, 0.010663727298378944, 0.09801339358091354, 0.01970338448882103, -0.04438933730125427, -0.02983080968260765, 0.060725413262844086, -0.1565728634595871, -0.10588167607784271, -0.03411424905061722, -0.026009105145931244, -0.11580067873001099, 0.007690665777772665, 0.13278396427631378, -0.03119269572198391, -0.031327471137046814, -0.02178298681974411, 0.02323557622730732, 0.005348484497517347, 0.16370737552642822, 0.025940898805856705, 0.055767133831977844, -0.09951150417327881, 0.11603666841983795, 0.03412216529250145, -0.07127688825130463, 0.031816545873880386, 0.07459444552659988, -0.0959380716085434, -0.02185606211423874, 0.049704182893037796, 0.1759171187877655, 0.004142586141824722, -0.01675110124051571, -0.08077285438776016, -0.1034967377781868, 0.09131157398223877, 0.11250665783882141, 0.0676133930683136, 0.0009509861120022833, -0.00412061857059598, -0.034341778606176376, -0.10041892528533936, 0.0990631952881813, 0.14682888984680176, 0.06075636297464371, -0.13006724417209625, 0.04837657883763313, -0.019473208114504814, 0.03383340314030647, -0.018123716115951538, 0.018836313858628273, -0.12415380030870438, -0.07373618334531784, -0.1564844250679016, 0.01862410269677639, -0.04597119614481926, -0.00681233499199152, -0.048668429255485535, -0.01792244426906109, -0.06640378385782242, 0.03628065437078476, -0.06211667135357857, -0.06763291358947754, 0.0016060795169323683, 0.06069964915513992, -0.12058620899915695, -0.005379281006753445, 0.02384384348988533, -0.11830152571201324, 0.09432069212198257, 0.042402882128953934, 0.03472120314836502, -0.0009641327196732163, -0.005165073089301586, -0.020006610080599785, 0.04438404738903046, 0.02306910790503025, 0.059168003499507904, -0.13859626650810242, 0.03920343145728111, -0.008187219500541687, 0.023018697276711464, -0.019963344559073448, 0.030814263969659805, -0.11210352182388306, -0.022753456607460976, -0.049695443361997604, -0.02015628293156624, -0.041980765759944916, 0.03212663531303406, 0.11250622570514679, 0.044887132942676544, 0.1510007232427597, -0.07298361510038376, -0.015207293443381786, -0.23503345251083374, -0.02918035164475441, -0.004151225555688143, -0.09763089567422867, -0.020286759361624718, -0.03961372375488281, 0.09349080175161362, -0.028733916580677032, 0.11226069182157516, -0.003393624909222126, 0.03381253778934479, 0.03388284891843796, -0.0526028536260128, -0.02849300391972065, 0.0233064703643322, 0.10440050810575485, 0.01685076393187046, -0.004041644744575024, 0.0852186307311058, 0.019903408363461494, 0.10127488523721695, 0.11251220852136612, 0.16748395562171936, 0.17068831622600555, -0.01663469336926937, 0.07148772478103638, 0.009299994446337223, -0.10363256186246872, -0.12161538749933243, 0.050625208765268326, -0.08508807420730591, 0.1408545970916748, -0.026700880378484726, 0.04871068894863129, 0.03265499696135521, -0.16119720041751862, 0.04458371177315712, -0.041718438267707825, -0.07324143499135971, -0.102861687541008, -0.06545381993055344, -0.0879998654127121, -0.12458265572786331, -0.0024377114605158567, -0.13805893063545227, 0.032066404819488525, 0.07470016181468964, 0.0069662053138017654, -0.02605910412967205, 0.12468528002500534, -0.045462608337402344, -0.04740618169307709, 0.11274328082799911, 0.018988126888871193, -0.02975527197122574, 0.011963111348450184, -0.04512505233287811, 0.0017551160417497158, 0.02425295114517212, 0.059532344341278076, -0.017404891550540924, -0.01240018755197525, 0.05381184071302414, -0.020036188885569572, -0.08340013027191162, 0.0016959368949756026, 0.001485308981500566, 0.0070968493819236755, 0.02892351523041725, 0.03760233893990517, -0.002890821313485503, -0.0259479358792305, 0.20928944647312164, -0.046503134071826935, 0.006469568237662315, -0.14594310522079468, 0.1097295954823494, 0.023534411564469337, -0.02385239489376545, 0.048378441482782364, -0.06707315891981125, -0.013981561176478863, 0.14052826166152954, 0.09338107705116272, -0.04178272560238838, -0.01896917261183262, -0.04372093081474304, -0.022523367777466774, 0.006020348519086838, 0.11150647699832916, 0.10716916620731354, 0.024640539661049843, -0.029070498421788216, -0.008176185190677643, -0.03354252874851227, -0.01686660386621952, -0.06614694744348526, 0.10047890245914459, 0.017363473773002625, 0.005821752827614546, -0.020346906036138535, 0.03585517033934593, 0.029675474390387535, -0.11767788976430893, 0.01952185295522213, -0.14440202713012695, -0.1753225177526474, -0.017928823828697205, -0.027774181216955185, 0.002468169666826725, 0.08706869184970856, -0.01806987263262272, -0.02563728392124176, 0.15977217257022858, -0.03595615550875664, -0.03679193928837776, -0.1405363827943802, 0.06273980438709259, -0.130557119846344, 0.21280203759670258, 0.010838853195309639, -0.003385698888450861, 0.11044775694608688, -0.0011347424006089568, -0.16503013670444489, -0.0175650455057621, 0.048541512340307236, -0.0075796786695718765, 0.03460933640599251, 0.11099356412887573, -0.02139589935541153, 0.05402107164263725, 0.04598752781748772, -0.09784287959337234, -0.06878404319286346, -0.05443360656499863, 0.006048647686839104, -0.08296173065900803, 0.0002432621840853244, -0.07326836884021759, 0.14260514080524445, 0.2070549875497818, -0.05322292074561119, 0.007001882418990135, -0.054711442440748215, 0.060455404222011566, 0.020885802805423737, 0.10429304838180542, -0.0029604642186313868, -0.22336596250534058, 0.0381135530769825, 0.060620490461587906, 0.024662984535098076, -0.1830868124961853, -0.09475820511579514, -0.022579507902264595, -0.04958049952983856, -0.06457683444023132, 0.13718846440315247, -0.011894087307155132, 0.02390030398964882, -0.02445214055478573, -0.02257913537323475, -0.07744449377059937, 0.1509307473897934, -0.09321963042020798, -0.06278413534164429 ]
null
null
transformers
# mbart_summarization_mlsum This model is a fine-tuned version of [facebook/mbart-large-cc25](https://huggingface.co/facebook/mbart-large-cc25) on mlsum-it for Abstractive Summarization. It achieves the following results: - Loss: 3.3336 - Rouge1: 19.3489 - Rouge2: 6.4028 - Rougel: 16.3497 - Rougelsum: 16.5387 - Gen Len: 33.5945 ## Usage ```python from transformers import MBartTokenizer, MBartForConditionalGeneration tokenizer = MBartTokenizer.from_pretrained("ARTeLab/mbart-summarization-mlsum") model = MBartForConditionalGeneration.from_pretrained("ARTeLab/mbart-summarization-mlsum") ``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4.0 ### Framework versions - Transformers 4.15.0.dev0 - Pytorch 1.10.0+cu102 - Datasets 1.15.1 - Tokenizers 0.10.3 # Citation More details and results in [published work](https://www.mdpi.com/2078-2489/13/5/228) ``` @Article{info13050228, AUTHOR = {Landro, Nicola and Gallo, Ignazio and La Grassa, Riccardo and Federici, Edoardo}, TITLE = {Two New Datasets for Italian-Language Abstractive Text Summarization}, JOURNAL = {Information}, VOLUME = {13}, YEAR = {2022}, NUMBER = {5}, ARTICLE-NUMBER = {228}, URL = {https://www.mdpi.com/2078-2489/13/5/228}, ISSN = {2078-2489}, ABSTRACT = {Text summarization aims to produce a short summary containing relevant parts from a given text. Due to the lack of data for abstractive summarization on low-resource languages such as Italian, we propose two new original datasets collected from two Italian news websites with multi-sentence summaries and corresponding articles, and from a dataset obtained by machine translation of a Spanish summarization dataset. These two datasets are currently the only two available in Italian for this task. To evaluate the quality of these two datasets, we used them to train a T5-base model and an mBART model, obtaining good results with both. To better evaluate the results obtained, we also compared the same models trained on automatically translated datasets, and the resulting summaries in the same training language, with the automatically translated summaries, which demonstrated the superiority of the models obtained from the proposed datasets.}, DOI = {10.3390/info13050228} } ```
{"language": ["it"], "tags": ["summarization"], "datasets": ["ARTeLab/mlsum-it"], "metrics": ["rouge"], "base_model": "facebook/mbart-large-cc25", "model-index": [{"name": "summarization_mbart_mlsum", "results": []}]}
summarization
ARTeLab/mbart-summarization-mlsum
[ "transformers", "pytorch", "safetensors", "mbart", "text2text-generation", "summarization", "it", "dataset:ARTeLab/mlsum-it", "base_model:facebook/mbart-large-cc25", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[ "it" ]
TAGS #transformers #pytorch #safetensors #mbart #text2text-generation #summarization #it #dataset-ARTeLab/mlsum-it #base_model-facebook/mbart-large-cc25 #autotrain_compatible #endpoints_compatible #has_space #region-us
# mbart_summarization_mlsum This model is a fine-tuned version of facebook/mbart-large-cc25 on mlsum-it for Abstractive Summarization. It achieves the following results: - Loss: 3.3336 - Rouge1: 19.3489 - Rouge2: 6.4028 - Rougel: 16.3497 - Rougelsum: 16.5387 - Gen Len: 33.5945 ## Usage ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4.0 ### Framework versions - Transformers 4.15.0.dev0 - Pytorch 1.10.0+cu102 - Datasets 1.15.1 - Tokenizers 0.10.3 More details and results in published work
[ "# mbart_summarization_mlsum\n\nThis model is a fine-tuned version of facebook/mbart-large-cc25 on mlsum-it for Abstractive Summarization.\n\nIt achieves the following results:\n- Loss: 3.3336\n- Rouge1: 19.3489\n- Rouge2: 6.4028\n- Rougel: 16.3497\n- Rougelsum: 16.5387\n- Gen Len: 33.5945", "## Usage", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 1\n- eval_batch_size: 1\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 4.0", "### Framework versions\n\n- Transformers 4.15.0.dev0\n- Pytorch 1.10.0+cu102\n- Datasets 1.15.1\n- Tokenizers 0.10.3\n\nMore details and results in published work" ]
[ "TAGS\n#transformers #pytorch #safetensors #mbart #text2text-generation #summarization #it #dataset-ARTeLab/mlsum-it #base_model-facebook/mbart-large-cc25 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "# mbart_summarization_mlsum\n\nThis model is a fine-tuned version of facebook/mbart-large-cc25 on mlsum-it for Abstractive Summarization.\n\nIt achieves the following results:\n- Loss: 3.3336\n- Rouge1: 19.3489\n- Rouge2: 6.4028\n- Rougel: 16.3497\n- Rougelsum: 16.5387\n- Gen Len: 33.5945", "## Usage", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 1\n- eval_batch_size: 1\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 4.0", "### Framework versions\n\n- Transformers 4.15.0.dev0\n- Pytorch 1.10.0+cu102\n- Datasets 1.15.1\n- Tokenizers 0.10.3\n\nMore details and results in published work" ]
[ 81, 91, 3, 90, 43 ]
[ "passage: TAGS\n#transformers #pytorch #safetensors #mbart #text2text-generation #summarization #it #dataset-ARTeLab/mlsum-it #base_model-facebook/mbart-large-cc25 #autotrain_compatible #endpoints_compatible #has_space #region-us \n# mbart_summarization_mlsum\n\nThis model is a fine-tuned version of facebook/mbart-large-cc25 on mlsum-it for Abstractive Summarization.\n\nIt achieves the following results:\n- Loss: 3.3336\n- Rouge1: 19.3489\n- Rouge2: 6.4028\n- Rougel: 16.3497\n- Rougelsum: 16.5387\n- Gen Len: 33.5945## Usage### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 1\n- eval_batch_size: 1\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 4.0### Framework versions\n\n- Transformers 4.15.0.dev0\n- Pytorch 1.10.0+cu102\n- Datasets 1.15.1\n- Tokenizers 0.10.3\n\nMore details and results in published work" ]
[ -0.17066195607185364, 0.12930946052074432, -0.00402539549395442, 0.06319595873355865, 0.1054205596446991, 0.0006059043807908893, 0.03792320564389229, 0.12456624954938889, -0.07079330086708069, 0.14381717145442963, 0.10653956234455109, 0.04468348249793053, 0.04680679365992546, 0.22824627161026, -0.055695127695798874, -0.16671258211135864, 0.03391473740339279, 0.0011491785990074277, -0.13670313358306885, 0.07995767891407013, 0.09629929810762405, -0.08952730149030685, 0.10594038665294647, 0.033319514244794846, -0.1614322066307068, 0.036111146211624146, -0.00035317428410053253, -0.05050349980592728, 0.0791042149066925, 0.057476866990327835, 0.05406458303332329, 0.011007290333509445, 0.059871189296245575, -0.09715160727500916, -0.002000146545469761, 0.06707596033811569, -0.000271076918579638, 0.10056725144386292, 0.12048658728599548, -0.007158853579312563, 0.15705975890159607, -0.16457504034042358, 0.024202294647693634, 0.054788969457149506, -0.10595186799764633, -0.2081761211156845, -0.1002211943268776, 0.0605362169444561, 0.07907061278820038, 0.06035614013671875, -0.021001579239964485, 0.0987696424126625, -0.022362418472766876, 0.0882219672203064, 0.23879744112491608, -0.26761963963508606, -0.0901181772351265, 0.0820096954703331, 0.048343077301979065, -0.013897417113184929, -0.06381478160619736, 0.021026751026511192, 0.07527218014001846, 0.03602450713515282, 0.11082132160663605, -0.031219197437167168, 0.08931536227464676, -0.049412909895181656, -0.12752673029899597, -0.042448557913303375, 0.2196577489376068, 0.0643276795744896, -0.03931835666298866, -0.07853105664253235, -0.08783327043056488, -0.05443568155169487, -0.04268156364560127, -0.023997796699404716, 0.04138821363449097, -0.031065305694937706, -0.04895158112049103, -0.005362274125218391, -0.03689302131533623, -0.020122051239013672, 0.006862607318907976, 0.05497395619750023, 0.02514508366584778, 0.027277318760752678, -0.011578304693102837, 0.06035974621772766, -0.05154666677117348, -0.1463947594165802, -0.021745819598436356, -0.03885049745440483, -0.05372706800699234, -0.03183596953749657, -0.05181116238236427, 0.04297203570604324, 0.04155685752630234, 0.16076724231243134, -0.09634818136692047, 0.09020702540874481, 0.033894117921590805, -0.0007094313623383641, -0.030471740290522575, 0.13398781418800354, -0.08609149605035782, -0.10777827352285385, 0.04855148494243622, 0.09139258414506912, 0.004837529268115759, 0.024080228060483932, -0.022476328536868095, -0.03212495520710945, 0.09225699305534363, 0.036392971873283386, -0.00848489161580801, 0.023980282247066498, -0.05516238138079643, -0.02604186162352562, 0.06852023303508759, -0.11312319338321686, 0.01590219885110855, 0.00496036047115922, -0.07353357970714569, -0.021290574222803116, 0.03684365749359131, -0.04805014654994011, -0.04977027699351311, 0.030858373269438744, -0.10142147541046143, -0.03519834578037262, -0.04358811303973198, -0.0699368342757225, 0.015077037736773491, -0.018272271379828453, -0.025940898805856705, -0.10805458575487137, -0.13613645732402802, -0.0438183955848217, 0.023074205964803696, -0.07000557333230972, -0.07883400470018387, 0.009179181419312954, -0.07845868170261383, 0.0420658104121685, -0.006700364872813225, 0.10167322307825089, -0.04499351605772972, 0.03149069473147392, 0.04021892324090004, 0.062002625316381454, 0.039070431143045425, 0.03550105541944504, -0.045949243009090424, 0.08560637384653091, -0.16414089500904083, 0.09141828864812851, -0.08440615236759186, 0.02712123468518257, -0.12111807614564896, -0.08459265530109406, -0.029747402295470238, 0.0016847389051690698, 0.10932836681604385, 0.13943696022033691, -0.15015168488025665, -0.05875662714242935, 0.17845189571380615, -0.06411175429821014, -0.09958844631910324, 0.07695591449737549, -0.01400659792125225, -0.047200556844472885, 0.04859030619263649, 0.1418120563030243, 0.07980037480592728, -0.07108572125434875, -0.04799363389611244, 0.028313612565398216, 0.05562853440642357, -0.0323505662381649, 0.05928763747215271, -0.02802906185388565, -0.07593253999948502, 0.028066232800483704, -0.036975570023059845, -0.0018638609908521175, -0.08658631891012192, -0.044653069227933884, -0.08041761070489883, -0.06543247401714325, 0.013185059651732445, 0.0007774243131279945, 0.03299558535218239, -0.07704484462738037, -0.06873121857643127, 0.022971447557210922, 0.13750481605529785, -0.03388415277004242, -0.00027775956550613046, -0.03496229276061058, 0.10356635600328445, -0.05282721668481827, 0.00909807812422514, -0.21503205597400665, -0.06432224065065384, 0.040769994258880615, -0.10962159186601639, -0.03365242853760719, 0.015556340105831623, 0.03661229461431503, 0.04801933839917183, -0.03853125125169754, -0.025866713374853134, -0.0409063957631588, -0.033238112926483154, -0.08754386752843857, -0.15694166719913483, -0.045678239315748215, -0.027757365256547928, 0.09573940187692642, -0.19348716735839844, 0.007477751933038235, 0.013662236742675304, 0.15651249885559082, -0.0019214705098420382, -0.04541394114494324, 0.008197641931474209, 0.016970910131931305, -0.007123828865587711, -0.10004865378141403, 0.031260162591934204, 0.02538471296429634, -0.05906251445412636, -0.009828128851950169, -0.11837074160575867, 0.1343923807144165, 0.09017523378133774, 0.06810560077428818, -0.08540962636470795, 0.010965821333229542, -0.05545362830162048, -0.028002073988318443, -0.038935981690883636, -0.031578365713357925, 0.0891103446483612, -0.0037930237594991922, 0.14614896476268768, -0.10579793155193329, -0.06346160173416138, 0.03669465333223343, -0.00930759683251381, -0.029862219467759132, 0.11183713376522064, 0.04485408216714859, -0.12321783602237701, 0.08258295059204102, 0.11666232347488403, 0.01059899665415287, 0.12907364964485168, -0.059528522193431854, -0.05967232957482338, -0.0598793625831604, 0.01563088782131672, 0.002217884175479412, 0.11172627657651901, -0.08578573167324066, 0.00978054292500019, 0.023424990475177765, 0.023465443402528763, 0.0409247912466526, -0.10868381708860397, 0.02621159702539444, 0.007972904480993748, -0.03282468393445015, 0.04890231415629387, 0.05242002382874489, 0.02948974072933197, 0.12244413048028946, 0.009985527023673058, -0.033802151679992676, -0.02090369164943695, -0.02198721468448639, -0.0698857456445694, 0.2168041169643402, -0.11401636153459549, -0.18792155385017395, -0.0836380198597908, 0.05520811304450035, -0.10384666919708252, -0.016998115926980972, 0.02047082595527172, -0.07444674521684647, -0.0801563709974289, -0.0735313817858696, 0.02662968635559082, -0.017034580931067467, 0.016289789229631424, 0.09594890475273132, 0.0038417873438447714, 0.1414102017879486, -0.12202233076095581, -0.024773409590125084, -0.014713403768837452, -0.04756246134638786, -0.018472900614142418, 0.028661254793405533, 0.07097634673118591, 0.05211029201745987, 0.016396934166550636, 0.01999546028673649, -0.0011495464714244008, 0.29213568568229675, -0.027337415143847466, 0.008174227550625801, 0.13109399378299713, 0.07343409955501556, 0.06757734715938568, 0.09492513537406921, 0.01646183431148529, -0.11049562692642212, 0.01618344336748123, 0.04919544234871864, -0.004284740425646305, -0.19479070603847504, -0.07762089371681213, -0.05657174065709114, 0.0063146729953587055, 0.1284000426530838, 0.02785799838602543, -0.05293189734220505, 0.04782642796635628, -0.03067122958600521, 0.08441885560750961, -0.018560035154223442, 0.0723055750131607, 0.1090245470404625, 0.038068607449531555, 0.11693371832370758, -0.03249243646860123, 0.013031402602791786, 0.12071751803159714, -0.077552430331707, 0.22776980698108673, -0.023869547992944717, 0.06623949855566025, 0.045474834740161896, 0.15451060235500336, -0.01662321202456951, 0.05487632006406784, 0.010772728361189365, -0.0013387682847678661, -0.010184203274548054, -0.047712527215480804, -0.024533363059163094, -0.0022407900542020798, -0.032696645706892014, 0.049767982214689255, -0.13478663563728333, 0.05681931972503662, 0.04294395074248314, 0.24731631577014923, 0.07263259589672089, -0.30635249614715576, -0.06288323551416397, 0.01050685066729784, -0.007627579849213362, -0.09622614085674286, 0.01545258704572916, 0.12167897820472717, -0.10689903050661087, 0.10313087701797485, -0.056858763098716736, 0.07787640392780304, 0.02698327600955963, 0.02146299183368683, 0.049400445073843, 0.133014515042305, 0.004663725849241018, 0.03223513811826706, -0.17094387114048004, 0.22952163219451904, 0.022052569314837456, 0.03416130691766739, -0.012728437781333923, 0.043865300714969635, 0.05335584655404091, 0.0663052424788475, 0.0983191579580307, 0.027513310313224792, -0.1586020439863205, -0.1112721785902977, -0.10042872279882431, 0.031430695205926895, 0.06507857888936996, -0.0601453073322773, 0.07446581870317459, -0.03505151346325874, -0.027880240231752396, 0.01832551322877407, -0.0000894842014531605, -0.1552629917860031, -0.0963897854089737, 0.022990962490439415, -0.0074194311164319515, -0.055527836084365845, -0.10103056579828262, -0.0782911628484726, 0.005548292770981789, 0.18823526799678802, 0.021587908267974854, -0.04981887340545654, -0.14270472526550293, 0.09133338183164597, 0.1453225463628769, -0.09254224598407745, 0.07988601922988892, -0.017642024904489517, 0.14606091380119324, 0.0176409725099802, -0.11472980678081512, 0.07753333449363708, -0.08825160562992096, -0.170907661318779, -0.0199603158980608, 0.1485823094844818, -0.004522042814642191, 0.021861646324396133, 0.01555224321782589, 0.029727190732955933, -0.001350682694464922, -0.09606652706861496, 0.00019763903401326388, 0.035533785820007324, 0.08142300695180893, 0.051432620733976364, -0.051115140318870544, -0.08060817420482635, 0.011053222231566906, 0.015292489901185036, 0.06737735122442245, 0.3059365749359131, -0.09445261210203171, -0.01300376933068037, 0.032762132585048676, -0.07009761035442352, -0.17735296487808228, 0.03704191744327545, 0.09375292807817459, 0.017861347645521164, 0.043974243104457855, -0.14279519021511078, 0.10124550014734268, 0.11169759929180145, -0.015660561621189117, 0.010627798736095428, -0.29501858353614807, -0.13032826781272888, 0.06840752065181732, 0.0766904354095459, 0.15407447516918182, -0.12164691835641861, -0.05131938308477402, -0.060098692774772644, -0.06557773053646088, 0.06697437912225723, -0.09122180938720703, 0.08513443917036057, -0.03265794366598129, -0.008832967840135098, 0.022187253460288048, -0.01649351790547371, 0.16774997115135193, 0.024535035714507103, 0.09302539378404617, -0.017579402774572372, 0.08397426456212997, 0.0639101043343544, -0.09343753755092621, 0.05527503043413162, -0.05925761163234711, 0.09556896239519119, -0.13494576513767242, 0.0018773346673697233, -0.07587151974439621, 0.08660395443439484, -0.06605604290962219, 0.0011232018005102873, -0.04916416108608246, 0.04199925810098648, 0.05340658873319626, -0.021746046841144562, 0.018645914271473885, 0.04071548581123352, 0.06719400733709335, 0.11532797664403915, 0.04214949160814285, -0.0099714994430542, -0.08469657599925995, 0.037033963948488235, 0.002521800808608532, 0.038340575993061066, -0.14100034534931183, 0.04563240706920624, 0.10705755650997162, 0.01655598171055317, 0.08349712193012238, 0.025111695751547813, -0.0393373928964138, -0.01980355568230152, 0.06896700710058212, -0.13814155757427216, -0.09870907664299011, -0.03923536464571953, -0.029454369097948074, -0.11598194390535355, 0.007550794631242752, 0.12896908819675446, -0.03264139965176582, -0.025542747229337692, -0.032058198004961014, 0.02463391050696373, -0.006269318517297506, 0.1844797134399414, 0.02982378378510475, 0.06472408771514893, -0.09787627309560776, 0.1234191358089447, 0.019847046583890915, -0.05804649367928505, 0.028064178302884102, 0.08245544135570526, -0.08986849337816238, -0.025853091850876808, 0.04136726260185242, 0.17138217389583588, -0.0032157173845916986, -0.017524711787700653, -0.08263471722602844, -0.12096533924341202, 0.08421479910612106, 0.14387880265712738, 0.06947116553783417, -0.0009339896496385336, 0.010978995822370052, -0.03185546025633812, -0.08244246989488602, 0.09400739520788193, 0.14603298902511597, 0.06243955343961716, -0.11961355060338974, 0.06460271030664444, -0.010708753019571304, 0.03855769708752632, -0.016197677701711655, 0.023343438282608986, -0.14060886204242706, -0.07154189050197601, -0.1635233610868454, 0.018121222034096718, -0.05138193070888519, -0.016581876203417778, -0.05024760961532593, -0.0066915652714669704, -0.0809156745672226, 0.042731501162052155, -0.06250762939453125, -0.07124678045511246, -0.01151588186621666, 0.07493610680103302, -0.11105339229106903, -0.002114193281158805, 0.02192714624106884, -0.112495057284832, 0.07634042203426361, 0.03251412510871887, 0.04538992792367935, 0.003980780486017466, -0.019381949678063393, -0.028353368863463402, 0.04290177673101425, 0.01868126355111599, 0.06139093637466431, -0.13515710830688477, 0.03433611989021301, -0.013683425262570381, 0.04241732880473137, -0.02069583348929882, 0.031856752932071686, -0.12009579688310623, -0.022368062287569046, -0.04670101776719093, -0.020540611818432808, -0.03481709212064743, 0.015747634693980217, 0.11319980770349503, 0.05037584900856018, 0.13421641290187836, -0.08143150061368942, -0.016093648970127106, -0.24730807542800903, -0.02947784587740898, -0.019671037793159485, -0.09681137651205063, -0.03168250992894173, -0.02343251183629036, 0.1004377007484436, -0.025486603379249573, 0.1297469586133957, 0.011675868183374405, 0.03777465969324112, 0.04105580225586891, -0.049089401960372925, -0.007314153015613556, 0.031759411096572876, 0.11297299712896347, 0.01057631429284811, 0.010133909992873669, 0.08857230097055435, 0.041028689593076706, 0.10386604815721512, 0.09647548198699951, 0.17345771193504333, 0.1745709478855133, -0.01140509732067585, 0.07054910063743591, 0.029059119522571564, -0.11435407400131226, -0.0992390587925911, 0.05040474981069565, -0.07328848540782928, 0.1430392563343048, -0.03907691687345505, 0.030389804393053055, 0.04795292019844055, -0.17919138073921204, 0.04911385849118233, -0.05638289824128151, -0.07171305269002914, -0.11455268412828445, -0.04620495066046715, -0.08954941481351852, -0.12795938551425934, -0.006781332660466433, -0.144095778465271, 0.019627217203378677, 0.09280484914779663, 0.0007712887017987669, -0.013366754166781902, 0.1330181360244751, -0.0545491948723793, -0.04469047114253044, 0.10688608884811401, 0.0287468284368515, -0.022389207035303116, -0.0009987081866711378, -0.04190348833799362, 0.001951426500454545, 0.014264668338000774, 0.045999135822057724, -0.022642089053988457, -0.04060977324843407, 0.05467868596315384, -0.010369312949478626, -0.0679289773106575, -0.0000471609782835003, -0.0007475116290152073, -0.0009160191402770579, 0.03405323997139931, 0.03378629311919212, -0.015852998942136765, -0.022232048213481903, 0.23275548219680786, -0.05030106008052826, -0.00031281053088605404, -0.1455114632844925, 0.10650063306093216, 0.02527145855128765, -0.01804492250084877, 0.04219962656497955, -0.06310925632715225, -0.010064246132969856, 0.14373734593391418, 0.11963441222906113, -0.03401870280504227, -0.017595570534467697, -0.04857045039534569, -0.0221857912838459, -0.005340559408068657, 0.11845298856496811, 0.11186922341585159, 0.037693146616220474, -0.033324889838695526, -0.0029919438529759645, -0.030864283442497253, -0.024852769449353218, -0.07421715557575226, 0.083394855260849, 0.02292216755449772, 0.008589006960391998, -0.008322041481733322, 0.043082743883132935, 0.023694263771176338, -0.11873059719800949, 0.030338121578097343, -0.14637944102287292, -0.17078544199466705, -0.028308426961302757, -0.022897059097886086, 0.009485747665166855, 0.08925899118185043, -0.024466026574373245, -0.0203858595341444, 0.16201500594615936, -0.04230106621980667, -0.046971581876277924, -0.1731073558330536, 0.06158598139882088, -0.12285768240690231, 0.22367949783802032, -0.005806182976812124, -0.015636829659342766, 0.11076855659484863, 0.002386908745393157, -0.16650047898292542, -0.012929610908031464, 0.053428035229444504, -0.02648092620074749, 0.036757346242666245, 0.10620352625846863, -0.028899649158120155, 0.08331546932458878, 0.03667820245027542, -0.09103981405496597, -0.055663324892520905, -0.030762823298573494, 0.005973507650196552, -0.08246363699436188, 0.009373112581670284, -0.07714281231164932, 0.1369209587574005, 0.2047673910856247, -0.057804808020591736, 0.00013594319170806557, -0.05469848960638046, 0.058398231863975525, 0.021994762122631073, 0.11209923028945923, -0.00429996894672513, -0.2392697036266327, 0.04965709149837494, 0.0546242892742157, 0.01372127141803503, -0.19114555418491364, -0.09954049438238144, -0.015360032208263874, -0.04843730852007866, -0.05972026288509369, 0.1388368457555771, -0.0008052407065406442, 0.019626816734671593, -0.025648141279816628, -0.04034045338630676, -0.07670395821332932, 0.15499329566955566, -0.0965128093957901, -0.08237059414386749 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # PENGMENGJIE-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unkown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Framework versions - Transformers 4.9.0 - Pytorch 1.7.1+cpu - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "model_index": [{"name": "PENGMENGJIE-finetuned-emotion", "results": [{"task": {"name": "Text Classification", "type": "text-classification"}}]}]}
text-classification
ASCCCCCCCC/PENGMENGJIE-finetuned-emotion
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
# PENGMENGJIE-finetuned-emotion This model is a fine-tuned version of distilbert-base-uncased on an unkown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Framework versions - Transformers 4.9.0 - Pytorch 1.7.1+cpu - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# PENGMENGJIE-finetuned-emotion\n\nThis model is a fine-tuned version of distilbert-base-uncased on an unkown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 64\n- eval_batch_size: 64\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 2", "### Framework versions\n\n- Transformers 4.9.0\n- Pytorch 1.7.1+cpu\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "# PENGMENGJIE-finetuned-emotion\n\nThis model is a fine-tuned version of distilbert-base-uncased on an unkown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 64\n- eval_batch_size: 64\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 2", "### Framework versions\n\n- Transformers 4.9.0\n- Pytorch 1.7.1+cpu\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 57, 40, 6, 12, 8, 3, 90, 34 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n# PENGMENGJIE-finetuned-emotion\n\nThis model is a fine-tuned version of distilbert-base-uncased on an unkown dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 64\n- eval_batch_size: 64\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 2### Framework versions\n\n- Transformers 4.9.0\n- Pytorch 1.7.1+cpu\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.08195730298757553, 0.07103101164102554, -0.002232304075732827, 0.08612740784883499, 0.16439902782440186, 0.03159385547041893, 0.14543454349040985, 0.10028411448001862, -0.10198250412940979, 0.03726338595151901, 0.055958837270736694, 0.08778274059295654, 0.02162586897611618, 0.08849785476922989, -0.0425543338060379, -0.2931940257549286, 0.01131697092205286, 0.03389441967010498, -0.09145983308553696, 0.0895785540342331, 0.11112325638532639, -0.11296956986188889, 0.07302147150039673, 0.023561792448163033, -0.1993720382452011, 0.02479848451912403, -0.013464609161019325, -0.05533917248249054, 0.11028161644935608, 0.026744499802589417, 0.1179480105638504, 0.013829654082655907, 0.13582099974155426, -0.18642166256904602, 0.006523030810058117, 0.07593614608049393, 0.03021194413304329, 0.0806693360209465, 0.020231226459145546, 0.009996461682021618, 0.10822124779224396, -0.09673154354095459, 0.10288659483194351, 0.026826832443475723, -0.06992971152067184, -0.22071146965026855, -0.0718417838215828, 0.07112911343574524, 0.07591020315885544, 0.09268658608198166, 0.007853969000279903, 0.1480751633644104, -0.08772947639226913, 0.07496343553066254, 0.20005851984024048, -0.25062453746795654, -0.07919538766145706, 0.06311646103858948, 0.05572095885872841, 0.06095103919506073, -0.09999818354845047, -0.019356561824679375, 0.05164274573326111, 0.04895324259996414, 0.11175796389579773, -0.0420524962246418, -0.09527042508125305, -0.025551527738571167, -0.1296108514070511, 0.018183859065175056, 0.16416668891906738, 0.023910870775580406, -0.05109767988324165, -0.07118502259254456, -0.07855673134326935, -0.05145882070064545, -0.03150959685444832, -0.0668940618634224, 0.055951930582523346, -0.026212412863969803, -0.07535091042518616, -0.08174657821655273, -0.08244810253381729, -0.04677475988864899, -0.016500480473041534, 0.15170301496982574, 0.03206222876906395, 0.022287532687187195, -0.03956932574510574, 0.09178794920444489, -0.04290546849370003, -0.11904548108577728, -0.002454555593430996, -0.01843491941690445, -0.02511170506477356, -0.055426888167858124, -0.0799001082777977, -0.021379774436354637, -0.003079931950196624, 0.1773909628391266, -0.07231561094522476, 0.0671980082988739, 0.015283023938536644, 0.011587805114686489, -0.024936441332101822, 0.16818007826805115, -0.030642472207546234, -0.036878108978271484, 0.012847965583205223, 0.06993631273508072, 0.02185625210404396, -0.018647469580173492, -0.12417352199554443, -0.0036911326460540295, 0.06972149759531021, 0.019721830263733864, -0.07663318514823914, 0.04931320622563362, -0.024306172505021095, -0.053201474249362946, -0.014108738861978054, -0.10438234359025955, 0.050331853330135345, -0.011331849731504917, -0.07315371185541153, 0.044156696647405624, 0.029362989589571953, 0.013331320136785507, -0.018143512308597565, 0.09993385523557663, -0.09015384316444397, 0.025227291509509087, -0.10823392868041992, -0.0941849946975708, 0.006640118081122637, -0.08912812918424606, 0.016895923763513565, -0.08890917897224426, -0.1997469663619995, -0.013969030231237411, 0.07536570727825165, -0.031442008912563324, -0.023562464863061905, -0.03216005861759186, -0.05522214248776436, 0.014113541692495346, -0.008778581395745277, 0.07316438853740692, -0.04099731519818306, 0.05058874189853668, 0.03131581470370293, 0.044038914144039154, -0.05346743389964104, 0.04270836338400841, -0.10109972208738327, 0.017255142331123352, -0.17875142395496368, 0.06010083481669426, -0.08087445795536041, 0.034648407250642776, -0.07241915166378021, -0.11333836615085602, 0.01618140935897827, -0.0003272299072705209, 0.056681931018829346, 0.08733577281236649, -0.17119912803173065, -0.06742706149816513, 0.14016322791576385, -0.088530994951725, -0.0782238319516182, 0.09299827367067337, -0.06031626835465431, 0.07970122247934341, 0.06850317865610123, 0.1402117908000946, 0.09047123044729233, -0.11737392842769623, -0.017620494589209557, 0.027234451845288277, 0.07890722900629044, 0.016962040215730667, 0.037426747381687164, 0.009401822462677956, 0.03734396770596504, 0.023050621151924133, -0.059852201491594315, -0.011985273100435734, -0.08431852608919144, -0.07753564417362213, -0.05610658600926399, -0.08115682750940323, 0.060045234858989716, 0.039269041270017624, 0.057513196021318436, -0.0715983584523201, -0.09844927489757538, 0.17652232944965363, 0.12122971564531326, -0.0745583325624466, 0.0312579870223999, -0.07346881926059723, 0.028116067871451378, 0.00355345057323575, -0.010749214328825474, -0.21189717948436737, -0.08168584108352661, 0.028231266885995865, -0.0326944999396801, 0.05731401592493057, 0.04268201068043709, 0.05595342069864273, 0.07965239882469177, -0.05623931437730789, -0.0020001851953566074, -0.09748673439025879, -0.00436298456043005, -0.1031193733215332, -0.19964975118637085, -0.05193287506699562, -0.032505590468645096, 0.16676262021064758, -0.2048509567975998, 0.043893955647945404, -0.023438919335603714, 0.12535519897937775, 0.02974868193268776, -0.026023542508482933, -0.06219480186700821, 0.061869241297245026, -0.041499629616737366, -0.08069787174463272, 0.051228251308202744, 0.013459795154631138, -0.07670300453901291, -0.0918414294719696, -0.15247003734111786, 0.09573141485452652, 0.11469846963882446, -0.04129505902528763, -0.05980799347162247, -0.008424702100455761, -0.05415165424346924, -0.02513500489294529, -0.06329725682735443, 0.00875441636890173, 0.18195486068725586, -0.012540610507130623, 0.14085006713867188, -0.06579332798719406, -0.036624081432819366, 0.007949776016175747, -0.032867323607206345, 0.005113658495247364, 0.035598430782556534, 0.08604417741298676, -0.06389205902814865, 0.1035279706120491, 0.13498780131340027, -0.10670328885316849, 0.15911810100078583, -0.030286960303783417, -0.05280385538935661, -0.02287118323147297, -0.04404282942414284, -0.01724693737924099, 0.10396803170442581, -0.14956143498420715, -0.00849541462957859, 0.022901473566889763, 0.021924912929534912, 0.0361369252204895, -0.18660983443260193, 0.012196164578199387, 0.029010238125920296, -0.021166959777474403, -0.003334309672936797, -0.03421425074338913, 0.01876083016395569, 0.08389626443386078, 0.01658347249031067, -0.026362013071775436, 0.029073266312479973, 0.011553274467587471, -0.0717371255159378, 0.188608318567276, -0.13617461919784546, -0.1507742553949356, -0.11452772468328476, -0.024716738611459732, -0.08493209630250931, 0.0022832024842500687, 0.039803020656108856, -0.09377259016036987, -0.049638308584690094, -0.05720074474811554, 0.025214826688170433, -0.011796698905527592, 0.0059497663751244545, 0.07941772788763046, 0.00949361827224493, 0.07763102650642395, -0.1408693790435791, -0.004632689990103245, -0.03306441381573677, -0.10218723118305206, 0.006606380455195904, 0.048738349229097366, 0.09780334681272507, 0.1532420665025711, -0.02355935424566269, 0.0092802494764328, -0.023737510666251183, 0.24237719178199768, -0.0638682022690773, -0.009636764414608479, 0.1520206183195114, -0.006401029881089926, 0.05248532071709633, 0.09979576617479324, 0.06194788217544556, -0.10417813807725906, 0.02657264657318592, 0.07917703688144684, -0.03251552954316139, -0.21021249890327454, -0.03942905366420746, -0.03212819993495941, -0.05518199875950813, 0.08001751452684402, 0.03018142282962799, 0.06340145319700241, 0.0757790058851242, -0.0024018045514822006, 0.10589736700057983, -0.012651965953409672, 0.09638626873493195, 0.14892072975635529, 0.029691826552152634, 0.1182362288236618, -0.02129579894244671, -0.04657101631164551, 0.07293985038995743, -0.0199875570833683, 0.262872576713562, 0.007343187928199768, 0.08116038143634796, 0.041959088295698166, 0.1260838359594345, -0.028018327429890633, 0.057217787951231, 0.007104177959263325, -0.020187528803944588, -0.01646796613931656, -0.05412500724196434, -0.02916749380528927, 0.030278442427515984, -0.05506588891148567, 0.06191897392272949, -0.09889466315507889, 0.04049884155392647, 0.04683970659971237, 0.2657321095466614, 0.004587231203913689, -0.2948010265827179, -0.10048635303974152, 0.010801333002746105, -0.02267165668308735, -0.053505346179008484, 0.00858849287033081, 0.0845092162489891, -0.11294595897197723, 0.06858757883310318, -0.06315258145332336, 0.09850551933050156, -0.014774599112570286, 0.040972888469696045, 0.05653565004467964, 0.1489170789718628, 0.007564405910670757, 0.07164358347654343, -0.23700903356075287, 0.18945665657520294, 0.022909551858901978, 0.11865083128213882, -0.06447179615497589, 0.03511890023946762, 0.0471503883600235, 0.12970106303691864, 0.04047318920493126, -0.008257797919213772, -0.0163706187158823, -0.15748198330402374, -0.023351294919848442, 0.03667621687054634, 0.13750925660133362, -0.024164631962776184, 0.09388710558414459, -0.054694999009370804, 0.015576822683215141, 0.07198117673397064, -0.04915546998381615, -0.17072826623916626, -0.12114813178777695, 0.01128200814127922, 0.018433213233947754, -0.04966818913817406, -0.06783681362867355, -0.10904763638973236, -0.02180568128824234, 0.1749487966299057, 0.010222273878753185, -0.042234864085912704, -0.13925328850746155, 0.07614578306674957, 0.09216964244842529, -0.06406570971012115, 0.028730692341923714, 0.010321113280951977, 0.13639460504055023, 0.021473532542586327, -0.11192774027585983, 0.07716264575719833, -0.09140591323375702, -0.17594864964485168, -0.04338660091161728, 0.07612273842096329, 0.050907135009765625, 0.04385901987552643, 0.0035449538845568895, 0.011094605550169945, 0.0005963610019534826, -0.10249412059783936, -0.018605411052703857, 0.06875507533550262, 0.0519433319568634, 0.04782460257411003, -0.08146171271800995, 0.017134586349129677, -0.0286638792604208, 0.013963954523205757, 0.11321090161800385, 0.21231456100940704, -0.0836111456155777, 0.03222016617655754, 0.0969076007604599, -0.08765923231840134, -0.18804797530174255, 0.0844835564494133, 0.09841874986886978, -0.010684299282729626, 0.0409831628203392, -0.21850058436393738, 0.1590709239244461, 0.12450350075960159, -0.01932988502085209, 0.0768776684999466, -0.28491756319999695, -0.1360623985528946, 0.09599895775318146, 0.11050355434417725, 0.07487840205430984, -0.13723452389240265, -0.020499875769019127, -0.060096606612205505, -0.1304960399866104, 0.14649546146392822, -0.1579408496618271, 0.10734996199607849, 0.0008088457398116589, 0.09006877988576889, 0.011002889834344387, -0.021137110888957977, 0.1424286961555481, 0.027686327695846558, 0.10080234706401825, -0.059149373322725296, 0.025155391544103622, 0.10221846401691437, -0.055952150374650955, 0.036509789526462555, -0.03111722692847252, 0.041661471128463745, -0.08797640353441238, -0.03132903575897217, -0.06626603752374649, 0.07180210202932358, -0.05032575875520706, -0.08906883746385574, -0.05895472317934036, 0.02723659761250019, 0.044064126908779144, -0.029762759804725647, 0.09817725419998169, 0.033672913908958435, 0.11695916205644608, 0.11596287786960602, 0.10179746896028519, -0.08378150314092636, -0.0816725566983223, 0.0032637128606438637, -0.01725120283663273, 0.08075754344463348, -0.12817543745040894, 0.03534837067127228, 0.1159905269742012, 0.03474414348602295, 0.1400216966867447, 0.07601242512464523, -0.03968275338411331, 0.018412260338664055, 0.041781749576330185, -0.1134163960814476, -0.12995019555091858, -0.016645174473524094, -0.0562872476875782, -0.11650671064853668, 0.0606362447142601, 0.1314663141965866, -0.06995462626218796, -0.0008674354758113623, -0.009156913496553898, -0.009805867448449135, -0.037839606404304504, 0.17082026600837708, 0.040637630969285965, 0.037187471985816956, -0.09631147235631943, 0.11845728754997253, 0.050817858427762985, -0.07819235324859619, 0.03320430964231491, 0.07542955130338669, -0.08748529851436615, -0.028942832723259926, 0.0482695996761322, 0.1765737682580948, -0.10841415822505951, -0.052370525896549225, -0.12209737300872803, -0.10785450041294098, 0.043457917869091034, 0.13441474735736847, 0.0814095064997673, -0.03312726318836212, -0.07643121480941772, 0.08111485093832016, -0.14327211678028107, 0.07296200841665268, 0.03295259550213814, 0.08081193268299103, -0.15795555710792542, 0.12231779098510742, 0.0307631753385067, 0.0391685925424099, -0.032826393842697144, 0.006549946032464504, -0.0984986424446106, -0.025905180722475052, -0.18390871584415436, -0.03419783338904381, -0.030236974358558655, 0.010250951163470745, -0.0026071511674672365, -0.04236748069524765, -0.051092248409986496, 0.0419030636548996, -0.08092465251684189, -0.039991848170757294, 0.021980585530400276, 0.03696901723742485, -0.13697129487991333, 0.000890106544829905, 0.018661215901374817, -0.09260750561952591, 0.07850979268550873, 0.06651507318019867, 0.01389588974416256, 0.06068074703216553, -0.120435930788517, -0.01737706921994686, 0.06406155228614807, 0.0395263135433197, 0.08259923756122589, -0.04416506737470627, -0.018589744344353676, -0.013601339422166348, 0.09211622178554535, 0.009113633073866367, 0.09543206542730331, -0.11575967073440552, -0.0011568048503249884, -0.06050566956400871, -0.07843293249607086, -0.05896148085594177, 0.04198605194687843, 0.10329847782850266, 0.047875672578811646, 0.1887097805738449, -0.07792983949184418, 0.02558761090040207, -0.1940765380859375, -0.02123984321951866, 0.002651239512488246, -0.05465526506304741, -0.06408177316188812, -0.05972050502896309, 0.05328483134508133, -0.05350681394338608, 0.1327584832906723, -0.0019488772377371788, 0.10812164098024368, 0.030087212100625038, -0.0218901876360178, -0.03754790872335434, -0.004407255910336971, 0.1938270926475525, 0.07640605419874191, -0.01152881234884262, 0.059741828590631485, 0.035797618329524994, 0.10308164358139038, 0.04745527729392052, 0.19750986993312836, 0.1135307177901268, -0.04562017321586609, 0.08950629085302353, 0.06759420782327652, -0.06333243101835251, -0.18544583022594452, 0.07101649045944214, -0.013753578066825867, 0.11272358149290085, -0.04818041995167732, 0.16349993646144867, 0.11011973768472672, -0.15322381258010864, 0.049617111682891846, -0.05332772061228752, -0.10180163383483887, -0.13202311098575592, -0.024068621918559074, -0.08359547704458237, -0.16008970141410828, 0.0008904795395210385, -0.14794059097766876, 0.021433189511299133, 0.07467915862798691, -0.00023434136528521776, -0.002639112528413534, 0.15091544389724731, -0.05337262153625488, -0.000813783670309931, 0.05268944054841995, 0.0034833408426493406, -0.032785214483737946, -0.07265984266996384, -0.07384991645812988, 0.0049745989963412285, 0.0212012380361557, 0.06485145539045334, -0.04761448875069618, -0.0354933924973011, 0.022246308624744415, -0.02391631528735161, -0.06209094449877739, 0.026331860572099686, 0.02753768488764763, 0.029016897082328796, 0.025406092405319214, 0.008506814949214458, -0.026145298033952713, -0.030779533088207245, 0.26643961668014526, -0.10141202062368393, -0.09706827998161316, -0.13559842109680176, 0.2198702096939087, 0.028721150010824203, 0.000272180768661201, 0.05314462259411812, -0.09544336795806885, -0.0386105552315712, 0.18608732521533966, 0.17338499426841736, -0.08432754874229431, -0.019324559718370438, -0.005550228990614414, -0.01187356747686863, -0.08027669042348862, 0.13730204105377197, 0.13071803748607635, 0.04586248844861984, -0.050183605402708054, -0.018385780975222588, -0.008195450529456139, -0.02116115391254425, -0.101840540766716, 0.0548633337020874, 0.031160835176706314, 0.004203814081847668, -0.028049582615494728, 0.05267149209976196, -0.021308690309524536, -0.1500585526227951, 0.05899263545870781, -0.14525938034057617, -0.1581512838602066, -0.025416342541575432, 0.07977306842803955, -0.025282088667154312, 0.07395702600479126, -0.014362799003720284, -0.023412875831127167, 0.14513452351093292, -0.027267199009656906, -0.061680614948272705, -0.10189177840948105, 0.11861954629421234, -0.09350196272134781, 0.20796985924243927, -0.02733459323644638, 0.06619421392679214, 0.11126762628555298, 0.04335743188858032, -0.07886575162410736, 0.03670332580804825, 0.052415382117033005, -0.07529841363430023, 0.0013101985678076744, 0.12136182188987732, -0.05548448860645294, 0.08055299520492554, 0.0388573557138443, -0.1940404772758484, -0.0065595488995313644, 0.0012605220545083284, -0.05254806950688362, -0.0665554329752922, -0.020124636590480804, -0.09382159262895584, 0.12270107120275497, 0.2035030573606491, -0.018382269889116287, 0.004638046491891146, -0.06784951686859131, 0.040020912885665894, 0.0683649480342865, 0.08094445616006851, -0.055975764989852905, -0.2313990294933319, 0.011382581666111946, 0.05131872743368149, -0.002318920101970434, -0.22481206059455872, -0.09696346521377563, 0.033664289861917496, -0.04244932904839516, -0.06346987187862396, 0.08766154199838638, 0.05923530459403992, 0.03668736293911934, -0.04131055250763893, -0.14631980657577515, -0.0768519937992096, 0.15650534629821777, -0.1597314476966858, -0.054578110575675964 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-chinese-finetuned-amazon_zh_20000 This model is a fine-tuned version of [bert-base-chinese](https://huggingface.co/bert-base-chinese) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.1683 - Accuracy: 0.5224 - F1: 0.5194 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 1.2051 | 1.0 | 2500 | 1.1717 | 0.506 | 0.4847 | | 1.0035 | 2.0 | 5000 | 1.1683 | 0.5224 | 0.5194 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.9.1 - Datasets 1.18.3 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "bert-base-chinese-finetuned-amazon_zh_20000", "results": []}]}
text-classification
ASCCCCCCCC/bert-base-chinese-finetuned-amazon_zh_20000
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #bert #text-classification #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us
bert-base-chinese-finetuned-amazon\_zh\_20000 ============================================= This model is a fine-tuned version of bert-base-chinese on an unknown dataset. It achieves the following results on the evaluation set: * Loss: 1.1683 * Accuracy: 0.5224 * F1: 0.5194 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 8 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 2 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.9.1 * Datasets 1.18.3 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.9.1\n* Datasets 1.18.3\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #bert #text-classification #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.9.1\n* Datasets 1.18.3\n* Tokenizers 0.10.3" ]
[ 47, 98, 4, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #bert #text-classification #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.9.1\n* Datasets 1.18.3\n* Tokenizers 0.10.3" ]
[ -0.08701301366090775, 0.03905447572469711, -0.001837060204707086, 0.11247409880161285, 0.21317344903945923, 0.035672321915626526, 0.11259725689888, 0.10010166466236115, -0.11717566102743149, 0.024880437180399895, 0.11344445496797562, 0.16847625374794006, -0.0006388574838638306, 0.08416237682104111, -0.06209235638380051, -0.27864736318588257, -0.03158076852560043, 0.04224766418337822, -0.08773152530193329, 0.12913301587104797, 0.07894822210073471, -0.15952591598033905, 0.07367763668298721, -0.011696354486048222, -0.24941787123680115, 0.02421925589442253, 0.0318584218621254, -0.060287173837423325, 0.15099269151687622, 0.013772579841315746, 0.16564466059207916, 0.0021059196442365646, 0.09901561588048935, -0.16146889328956604, 0.013779617846012115, 0.0632500872015953, 0.011030653491616249, 0.08351529389619827, 0.06612128019332886, -0.01308188121765852, 0.1230257898569107, -0.09701170027256012, 0.06703054159879684, 0.0102072237059474, -0.12733624875545502, -0.21016639471054077, -0.06150184944272041, -0.008391031064093113, 0.0535668283700943, 0.09434077888727188, -0.009806331247091293, 0.15423135459423065, -0.11262644082307816, 0.10224275290966034, 0.2250305861234665, -0.2701404094696045, -0.08295410871505737, 0.04097839072346687, -0.0056204162538051605, 0.10205445438623428, -0.12018095701932907, -0.004829668905586004, 0.058669619262218475, 0.05975368246436119, 0.12298853695392609, -0.029364630579948425, -0.10955603420734406, 0.02418309636414051, -0.14807181060314178, 0.007237934973090887, 0.069602832198143, 0.016562893986701965, -0.015015660785138607, -0.016282273456454277, -0.06753691285848618, -0.1401302069425583, -0.03934565931558609, -0.03230496495962143, 0.04652339592576027, -0.05986388772726059, -0.10156209766864777, 0.006291419267654419, -0.10211740434169769, -0.05921442434191704, -0.07376708090305328, 0.1746264100074768, 0.038888171315193176, 0.019782423973083496, -0.04146583005785942, 0.10206852108240128, 0.0023392322473227978, -0.1350296437740326, 0.052928876131772995, 0.029140114784240723, -0.021509185433387756, -0.0649116113781929, -0.07722354680299759, -0.11127372086048126, -0.005949844606220722, 0.06312323361635208, -0.04753943160176277, 0.0538589246571064, 0.021717244759202003, 0.0339810885488987, -0.08667539805173874, 0.20246176421642303, -0.033175092190504074, -0.023327505216002464, -0.0025402263272553682, 0.04717916622757912, -0.007707130629569292, -0.019907517358660698, -0.11595546454191208, 0.012564308941364288, 0.1179368793964386, 0.0031643586698919535, -0.08180377632379532, 0.06435266882181168, -0.034391000866889954, -0.02704419009387493, -0.036964185535907745, -0.09827838838100433, 0.05376341566443443, 0.00028084247605875134, -0.09173740446567535, 0.010370464064180851, 0.008291545324027538, 0.012835720553994179, -0.020912373438477516, 0.17297902703285217, -0.089232437312603, 0.05663976073265076, -0.11261118948459625, -0.1272507756948471, 0.004531404469162226, -0.07056280970573425, 0.015733910724520683, -0.09644439816474915, -0.12561555206775665, -0.017290987074375153, 0.05372846499085426, -0.031563498079776764, -0.03428191319108009, -0.055333781987428665, -0.07584881782531738, 0.008627486415207386, -0.01616547629237175, 0.16213297843933105, -0.050161417573690414, 0.11367202550172806, 0.04885949194431305, 0.0718836709856987, -0.05986254662275314, 0.05472266674041748, -0.08492511510848999, -0.0077542210929095745, -0.21993769705295563, 0.05257819592952728, -0.05029009282588959, 0.06460165977478027, -0.06260734051465988, -0.11819873750209808, 0.018755299970507622, -0.00023982908169273287, 0.08650071918964386, 0.08358727395534515, -0.1764177829027176, -0.09529750049114227, 0.1472497433423996, -0.05971423536539078, -0.08551744371652603, 0.1189209371805191, -0.07181335240602493, 0.02546713687479496, 0.09445414692163467, 0.16804532706737518, 0.05084843561053276, -0.07415558397769928, 0.022953927516937256, -0.024908145889639854, 0.06194428727030754, -0.05915629863739014, 0.03797236084938049, 0.020281372591853142, 0.007384247146546841, 0.03306043520569801, -0.015686484053730965, 0.06281287968158722, -0.12174563109874725, -0.08676943928003311, -0.035151053220033646, -0.10133841633796692, 0.06806810200214386, 0.09143850952386856, 0.10654199868440628, -0.10533010214567184, -0.06758879870176315, 0.11201653629541397, 0.04854854196310043, -0.052757516503334045, 0.03070143051445484, -0.050438232719898224, 0.0573473684489727, -0.04808712378144264, -0.022066883742809296, -0.2055637091398239, -0.03790314123034477, 0.0074858819134533405, 0.04255169257521629, 0.03445399925112724, 0.029183154925704002, 0.08493509143590927, 0.06975307315587997, -0.07087501883506775, 0.0008002836839295924, -0.024569034576416016, -0.007866515778005123, -0.16136372089385986, -0.20456397533416748, -0.01922541856765747, -0.014983848668634892, 0.08904809504747391, -0.220879465341568, 0.027150273323059082, -0.035772763192653656, 0.08261121809482574, 0.008766181766986847, -0.011384686455130577, -0.06899051368236542, 0.10808642953634262, -0.02658030577003956, -0.04011572524905205, 0.07486196607351303, -0.021604573354125023, -0.08276848495006561, -0.07732545584440231, -0.1070205420255661, 0.18866661190986633, 0.14056169986724854, -0.17573770880699158, -0.09116639941930771, 0.01962941698729992, -0.05477326735854149, -0.015352390706539154, -0.06496456265449524, 0.04846600815653801, 0.20170316100120544, -0.00605305191129446, 0.15697568655014038, -0.05789009854197502, -0.03737318143248558, 0.014169666916131973, -0.026423150673508644, 0.04647865146398544, 0.11990813910961151, 0.12811441719532013, -0.0689278393983841, 0.12453304976224899, 0.14364540576934814, -0.12091571092605591, 0.13621212542057037, -0.022771310061216354, -0.07245717942714691, -0.008497850969433784, -0.04465901479125023, 0.0014707715017721057, 0.09231487661600113, -0.12396169453859329, -0.02067749947309494, -0.0011257772566750646, 0.02353464439511299, 0.026971394196152687, -0.2326665073633194, -0.0438128337264061, 0.03031916730105877, -0.014057120308279991, -0.0013628414599224925, -0.02889668196439743, 0.02708151377737522, 0.1267215758562088, -0.0008288813987746835, -0.07012734562158585, 0.02241450734436512, -0.0016187228029593825, -0.07350378483533859, 0.21958860754966736, -0.0716979056596756, -0.12426348030567169, -0.09726987034082413, -0.08380715548992157, -0.05381249263882637, 0.014294836670160294, 0.04275071248412132, -0.13084039092063904, -0.015632446855306625, -0.038462795317173004, 0.03885688632726669, -0.0014101697597652674, 0.056736018508672714, -0.0012857078108936548, -0.0025533156003803015, 0.06240669637918472, -0.10409235954284668, -0.004269265569746494, -0.08529087156057358, -0.08632306754589081, 0.05390744283795357, 0.06088993698358536, 0.11389899998903275, 0.17938604950904846, -0.04622431844472885, 0.009194494225084782, -0.02526196278631687, 0.2291436344385147, -0.07031884044408798, -0.04065333679318428, 0.09790866076946259, -0.028154730796813965, 0.04808859899640083, 0.09813801944255829, 0.08417125791311264, -0.09610452502965927, 0.011555040255188942, 0.044823355972766876, -0.047217871993780136, -0.21848556399345398, -0.043429192155599594, -0.04945763945579529, -0.04287991672754288, 0.08090752363204956, 0.019371453672647476, 0.02419300377368927, 0.060561466962099075, 0.06347031891345978, 0.08575216680765152, -0.0554821603000164, 0.0395282618701458, 0.10144933313131332, 0.046273522078990936, 0.13528212904930115, -0.03774791955947876, -0.09404033422470093, 0.02439490519464016, -0.051709119230508804, 0.21922153234481812, -0.0037622416857630014, 0.06987034529447556, 0.040667254477739334, 0.1638416051864624, 0.0032199809793382883, 0.08094370365142822, 0.004315504338592291, -0.06573297828435898, -0.0031584310345351696, -0.035914115607738495, -0.038370855152606964, 0.011642022989690304, -0.03296402096748352, 0.06253255903720856, -0.12985722720623016, -0.015941236168146133, 0.06443905085325241, 0.2207418978214264, 0.02481960505247116, -0.3096053898334503, -0.06983403116464615, 0.004238249734044075, -0.034403860569000244, 0.0015042952727526426, 0.01133242342621088, 0.118099644780159, -0.09270570427179337, 0.03149084001779556, -0.06838922947645187, 0.09463601559400558, -0.03472601994872093, 0.05304542928934097, 0.057732053101062775, 0.11536074429750443, -0.007969846948981285, 0.06771872937679291, -0.3232254683971405, 0.27090662717819214, 0.010086352936923504, 0.08209053426980972, -0.07874184846878052, -0.01622108742594719, 0.033724892884492874, 0.05775161460042, 0.021970180794596672, -0.016625946387648582, -0.013165370561182499, -0.21518182754516602, -0.02936742827296257, 0.04034492373466492, 0.12854215502738953, -0.011108305305242538, 0.09615304321050644, -0.014565207064151764, 0.006242320407181978, 0.08354058116674423, -0.019100310280919075, -0.05541680008172989, -0.07652376592159271, -0.031297534704208374, 0.005561406258493662, -0.07876580208539963, -0.04801812022924423, -0.1309944987297058, -0.13736492395401, 0.1549542099237442, 0.014256046153604984, -0.014353870414197445, -0.11968117207288742, 0.13002777099609375, 0.06328795105218887, -0.0836736187338829, 0.024146821349859238, 0.01821303553879261, 0.05722474679350853, 0.0288197323679924, -0.07383386790752411, 0.1143580749630928, -0.05409683287143707, -0.15673813223838806, -0.06622917205095291, 0.09301890432834625, 0.05339118093252182, 0.07318267971277237, -0.02055845968425274, 0.0178340133279562, -0.014129799790680408, -0.09013689309358597, 0.03840985149145126, -0.02079053595662117, 0.054863959550857544, 0.036154936999082565, -0.058305516839027405, -0.005688115488737822, -0.06052735075354576, -0.011227300390601158, 0.19611427187919617, 0.22673913836479187, -0.09053871035575867, -0.0025307799223810434, 0.0315227173268795, -0.06708052009344101, -0.20097693800926208, 0.09663502871990204, 0.08601412177085876, 0.0020066688302904367, 0.051605287939310074, -0.16790390014648438, 0.1647934764623642, 0.09664636850357056, 0.0005128575721755624, 0.11366407573223114, -0.3137280344963074, -0.1359110176563263, 0.1042928472161293, 0.16978520154953003, 0.15510724484920502, -0.14812365174293518, -0.010578380897641182, -0.029681382700800896, -0.09214602410793304, 0.11073427647352219, -0.08921793103218079, 0.11896546185016632, -0.01798677071928978, 0.09933171421289444, 0.012209169566631317, -0.06012512370944023, 0.09708819538354874, 0.017697932198643684, 0.10425173491239548, -0.06508783251047134, -0.056765198707580566, 0.0400053970515728, -0.02540183626115322, -0.026622015982866287, -0.041417788714170456, 0.011354452930390835, -0.08159427344799042, -0.019851617515087128, -0.099490225315094, 0.03710565343499184, -0.030323168262839317, -0.06574609130620956, -0.027082078158855438, 0.020060935989022255, 0.04626452922821045, -0.017022332176566124, 0.12352228164672852, 0.001542188343591988, 0.18755415081977844, 0.08965069055557251, 0.08168184757232666, -0.07231248915195465, -0.030251991003751755, -0.001205064938403666, -0.006663142237812281, 0.06063801422715187, -0.13278508186340332, 0.026509324088692665, 0.15714769065380096, 0.024622978642582893, 0.12317395210266113, 0.09912566840648651, -0.01194070465862751, 0.015727054327726364, 0.07196114957332611, -0.16529588401317596, -0.07664883881807327, -0.001273437519557774, -0.08376102149486542, -0.10342025011777878, 0.060386963188648224, 0.08243612945079803, -0.07049455493688583, -0.008700274862349033, -0.013244976289570332, -0.01761491782963276, -0.0691119059920311, 0.22032588720321655, 0.07647714763879776, 0.044874537736177444, -0.10452435165643692, 0.058945540338754654, 0.05711280182003975, -0.0849219486117363, 0.0015678185736760497, 0.0975303053855896, -0.07218599319458008, -0.020552681758999825, 0.11981559544801712, 0.21493007242679596, -0.05715636536478996, -0.01458474900573492, -0.14719587564468384, -0.12009726464748383, 0.06899010390043259, 0.1867067664861679, 0.11389271914958954, -0.011562447063624859, -0.07258500903844833, 0.03559282422065735, -0.14458639919757843, 0.0728050023317337, 0.04038534313440323, 0.07826823741197586, -0.1307496428489685, 0.20910759270191193, 0.008007782511413097, 0.046789463609457016, -0.03794965147972107, 0.028853967785835266, -0.11961136013269424, 0.026488523930311203, -0.12803524732589722, -0.05419665947556496, 0.005416700150817633, -0.0077542332001030445, -0.0040700300596654415, -0.0754985511302948, -0.06207462027668953, -0.0008781697251833975, -0.13024355471134186, -0.01680861972272396, 0.03790890797972679, 0.02670501358807087, -0.11938250809907913, -0.04207347705960274, 0.01389504037797451, -0.05145682394504547, 0.0524166002869606, 0.0532083623111248, 0.012604018673300743, 0.08758702129125595, -0.17297115921974182, -0.024527397006750107, 0.06970206648111343, 0.0002879248932003975, 0.09153549373149872, -0.03498131036758423, -0.0047185965813696384, -0.0027595346327871084, 0.11236775666475296, 0.030492577701807022, 0.08125472068786621, -0.13252653181552887, 0.015581243671476841, -0.03745073825120926, -0.11152388900518417, -0.058831438422203064, 0.029505735263228416, 0.06571583449840546, 0.01558604184538126, 0.18560674786567688, -0.09178008884191513, 0.05935068055987358, -0.21978628635406494, -0.009538690559566021, -0.012997166253626347, -0.11075787246227264, -0.10922899097204208, -0.06503806263208389, 0.07942210882902145, -0.0566609725356102, 0.12503765523433685, 0.0527796633541584, 0.07334722578525543, 0.03722001239657402, -0.018970686942338943, -0.004681653343141079, 0.03392447158694267, 0.20223602652549744, 0.05057137832045555, -0.0444658026099205, 0.07013218849897385, 0.07374485582113266, 0.11198175698518753, 0.12527886033058167, 0.23938336968421936, 0.1432967483997345, -0.0342780239880085, 0.08745851367712021, 0.029000375419855118, -0.04797939583659172, -0.1522326022386551, 0.020802585408091545, -0.0682249441742897, 0.09408964961767197, -0.030264629051089287, 0.19753699004650116, 0.0445234477519989, -0.1591581404209137, 0.04629814997315407, -0.07052375376224518, -0.10197668522596359, -0.1138751283288002, 0.004849930759519339, -0.08683961629867554, -0.14527912437915802, 0.012852503918111324, -0.1112368032336235, 0.02475818060338497, 0.12176091969013214, 0.016789719462394714, -0.023387735709547997, 0.18281438946723938, 0.03428089991211891, 0.040129661560058594, 0.07109882682561874, 0.005315578542649746, -0.015150058083236217, -0.0877038910984993, -0.062492486089468, -0.04169222339987755, -0.004578546620905399, 0.03173195943236351, -0.06576976925134659, -0.09803832322359085, 0.030836675316095352, -0.021336646750569344, -0.11317894607782364, 0.02996768429875374, 0.020869260653853416, 0.07549518346786499, 0.03488307446241379, -0.002035871846601367, 0.012055469676852226, -0.031456924974918365, 0.22668763995170593, -0.0876251608133316, -0.07511595636606216, -0.08653157949447632, 0.2982148230075836, 0.04522723704576492, 0.007114763371646404, 0.01579902693629265, -0.0694715827703476, -0.00570644112303853, 0.23966184258460999, 0.2094815969467163, -0.12945470213890076, -0.007880237884819508, -0.0007901809876784682, -0.009058221243321896, -0.01506649050861597, 0.1423882246017456, 0.12507784366607666, 0.05092337727546692, -0.10905138403177261, -0.034973613917827606, -0.05217146500945091, -0.012517137452960014, -0.03583817556500435, 0.06526682525873184, 0.0714060440659523, 0.019465677440166473, -0.0572102852165699, 0.06349430233240128, -0.07476535439491272, -0.11004023998975754, 0.06358155608177185, -0.22717496752738953, -0.17360401153564453, -0.013796939514577389, 0.11964474618434906, -0.0066228327341377735, 0.07784684002399445, -0.024478182196617126, -0.003915212582796812, 0.0402572937309742, -0.0275826808065176, -0.07472991943359375, -0.08581025153398514, 0.10545407235622406, -0.13895589113235474, 0.17515695095062256, -0.046333666890859604, 0.06715089082717896, 0.11939436197280884, 0.06678511947393417, -0.03671538457274437, 0.05099654570221901, 0.03519568592309952, -0.1093636080622673, 0.018916921690106392, 0.12327513843774796, -0.036617714911699295, 0.03872009739279747, 0.04483663663268089, -0.1455758810043335, 0.034347835928201675, -0.09617471694946289, -0.05885080248117447, -0.03647991642355919, -0.050380535423755646, -0.05757587030529976, 0.1137886568903923, 0.2406405210494995, -0.007856134325265884, 0.031225522980093956, -0.08534993976354599, -0.0025860078167170286, 0.045811206102371216, 0.05776704475283623, -0.10025543719530106, -0.2602706551551819, 0.006630192510783672, 0.0800233855843544, -0.035920966416597366, -0.24222417175769806, -0.08202902972698212, 0.008581866510212421, -0.0711698830127716, -0.09438777714967728, 0.086371511220932, 0.07424486428499222, 0.05382053926587105, -0.05354680120944977, -0.12049315124750137, -0.07216767966747284, 0.16494281589984894, -0.15546587109565735, -0.08781757205724716 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-chinese-amazon_zh_20000 This model is a fine-tuned version of [bert-base-chinese](https://huggingface.co/bert-base-chinese) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.1518 - Accuracy: 0.5092 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.196 | 1.0 | 1250 | 1.1518 | 0.5092 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.9.1 - Datasets 1.18.3 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-chinese-amazon_zh_20000", "results": []}]}
text-classification
ASCCCCCCCC/distilbert-base-chinese-amazon_zh_20000
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #bert #text-classification #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-chinese-amazon\_zh\_20000 ========================================= This model is a fine-tuned version of bert-base-chinese on an unknown dataset. It achieves the following results on the evaluation set: * Loss: 1.1518 * Accuracy: 0.5092 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 1 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.9.1 * Datasets 1.18.3 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.9.1\n* Datasets 1.18.3\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #bert #text-classification #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.9.1\n* Datasets 1.18.3\n* Tokenizers 0.10.3" ]
[ 47, 98, 4, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #bert #text-classification #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.9.1\n* Datasets 1.18.3\n* Tokenizers 0.10.3" ]
[ -0.08623109757900238, 0.034294623881578445, -0.001779143582098186, 0.11161649972200394, 0.21475018560886383, 0.034256305545568466, 0.11224021017551422, 0.09823402017354965, -0.11950747668743134, 0.025662919506430626, 0.11525366455316544, 0.16848422586917877, -0.0012362711131572723, 0.08532115072011948, -0.06129920482635498, -0.27660393714904785, -0.03146592155098915, 0.04114774987101555, -0.09287503361701965, 0.12851862609386444, 0.07855582982301712, -0.15908682346343994, 0.07482308149337769, -0.00965317152440548, -0.24855928122997284, 0.02328301966190338, 0.031475212424993515, -0.05964398384094238, 0.15187902748584747, 0.014013344421982765, 0.16723693907260895, 0.000740565825253725, 0.09857881814241409, -0.1579517275094986, 0.013539466075599194, 0.06402286887168884, 0.011710137128829956, 0.08336781710386276, 0.06594464927911758, -0.014884654432535172, 0.12088017910718918, -0.09729213267564774, 0.06787998974323273, 0.01184153277426958, -0.12838289141654968, -0.21161217987537384, -0.06128185614943504, -0.011705812998116016, 0.05302450433373451, 0.09455395489931107, -0.009573194198310375, 0.15249162912368774, -0.11211799830198288, 0.10351871699094772, 0.2217826247215271, -0.268583208322525, -0.08372163027524948, 0.04259689524769783, -0.0062182871624827385, 0.09833802282810211, -0.1196225956082344, -0.004972887225449085, 0.058789610862731934, 0.06007920205593109, 0.12645697593688965, -0.029211601242423058, -0.11031582206487656, 0.02382138930261135, -0.14816996455192566, 0.008440615609288216, 0.06887514144182205, 0.015362048521637917, -0.015019064769148827, -0.014583740383386612, -0.06766734272241592, -0.14024880528450012, -0.04048025608062744, -0.02981903962790966, 0.04802265390753746, -0.06048162654042244, -0.10209067910909653, 0.0058412086218595505, -0.10070493817329407, -0.06010667234659195, -0.07474537193775177, 0.17759619653224945, 0.03810670226812363, 0.0204230435192585, -0.04188813641667366, 0.09991218894720078, 0.0034769473131746054, -0.13519282639026642, 0.053245071321725845, 0.030965982005000114, -0.0224133413285017, -0.06500432640314102, -0.07691552489995956, -0.11238473653793335, -0.005639919079840183, 0.06379885226488113, -0.05060885101556778, 0.05351687967777252, 0.02220555581152439, 0.03342363238334656, -0.08679243922233582, 0.20206399261951447, -0.035188306123018265, -0.020298242568969727, -0.000395330716855824, 0.04503718018531799, -0.007053234148770571, -0.018932973966002464, -0.11532017588615417, 0.0160115584731102, 0.11450374871492386, 0.0038054429460316896, -0.0807657465338707, 0.06589896976947784, -0.03349686786532402, -0.024888938292860985, -0.03566225245594978, -0.09781143814325333, 0.05250583961606026, -0.0009439701098017395, -0.09204894304275513, 0.0089641148224473, 0.010076453909277916, 0.01032195333391428, -0.020249398425221443, 0.17581917345523834, -0.09232757240533829, 0.05670291557908058, -0.11187227815389633, -0.12891367077827454, 0.003950430545955896, -0.06962661445140839, 0.015563521534204483, -0.0957452654838562, -0.129949688911438, -0.017155086621642113, 0.053073763847351074, -0.032769087702035904, -0.03412646800279617, -0.0539403073489666, -0.07898484170436859, 0.009892639704048634, -0.014818948693573475, 0.1627296656370163, -0.05010199174284935, 0.11382357776165009, 0.04947132617235184, 0.07186158001422882, -0.056507255882024765, 0.055589038878679276, -0.08772460371255875, -0.006054230500012636, -0.22398729622364044, 0.053934577852487564, -0.053846053779125214, 0.0680772140622139, -0.062134530395269394, -0.11789330095052719, 0.018593672662973404, -0.00005088839679956436, 0.08741749823093414, 0.0840190052986145, -0.17523659765720367, -0.09652242809534073, 0.14577864110469818, -0.05889086797833443, -0.08548185229301453, 0.11761075258255005, -0.07172627747058868, 0.023935820907354355, 0.09312998503446579, 0.16728338599205017, 0.04665033146739006, -0.07643574476242065, 0.02200683392584324, -0.024645382538437843, 0.05881781503558159, -0.059622395783662796, 0.03725218027830124, 0.02110353298485279, 0.005013924557715654, 0.03228023648262024, -0.015136651694774628, 0.06429720669984818, -0.12314626574516296, -0.08566422015428543, -0.036207929253578186, -0.10313467681407928, 0.06693127006292343, 0.09092971682548523, 0.10557595640420914, -0.10613046586513519, -0.06990184634923935, 0.11236289143562317, 0.04805389791727066, -0.05129118636250496, 0.029341017827391624, -0.048994630575180054, 0.05943860113620758, -0.04994269087910652, -0.02142079547047615, -0.20624162256717682, -0.0402887798845768, 0.006699558347463608, 0.04450404271483421, 0.03643137216567993, 0.026957428082823753, 0.08591747283935547, 0.07165462523698807, -0.0706130862236023, 0.0009832517243921757, -0.024530630558729172, -0.00746835907921195, -0.15938587486743927, -0.20548216998577118, -0.01952970214188099, -0.015424641780555248, 0.08881454169750214, -0.21994632482528687, 0.027019640430808067, -0.03837745636701584, 0.0819922611117363, 0.008342531509697437, -0.011314908973872662, -0.06717986613512039, 0.10737063735723495, -0.027130605652928352, -0.04149159416556358, 0.07202228903770447, -0.021199125796556473, -0.08184239268302917, -0.07559085637331009, -0.10575933009386063, 0.18742872774600983, 0.14164894819259644, -0.1788950115442276, -0.09448274224996567, 0.024315185844898224, -0.05510511249303818, -0.014505612663924694, -0.06654240936040878, 0.0493682324886322, 0.20130576193332672, -0.0064741806127130985, 0.15847618877887726, -0.0577252022922039, -0.03898975998163223, 0.015221905894577503, -0.026774492114782333, 0.04677489399909973, 0.12158086895942688, 0.12907342612743378, -0.0682830810546875, 0.12734754383563995, 0.14058862626552582, -0.12198633700609207, 0.13593235611915588, -0.023732081055641174, -0.07246658951044083, -0.009288005530834198, -0.045478012412786484, 0.0018421888817101717, 0.09310014545917511, -0.1216839924454689, -0.019480671733617783, -0.0007623712881468236, 0.02190285734832287, 0.02534439042210579, -0.23128566145896912, -0.04362112656235695, 0.03086177445948124, -0.014112506061792374, -0.0010802778415381908, -0.029576223343610764, 0.028590207919478416, 0.12726838886737823, -0.00168557686265558, -0.06905604153871536, 0.02149585634469986, 0.0006798766553401947, -0.07108514755964279, 0.2217862457036972, -0.07284989207983017, -0.12303318828344345, -0.09779448062181473, -0.08327478170394897, -0.055250976234674454, 0.01421474851667881, 0.040818408131599426, -0.13318267464637756, -0.018045339733362198, -0.036925237625837326, 0.04323336109519005, -0.00341852568089962, 0.05588741973042488, -0.0023246698547154665, -0.003675426123663783, 0.06186925247311592, -0.10553095489740372, -0.003992919810116291, -0.08473461866378784, -0.08664041757583618, 0.052964262664318085, 0.06397314369678497, 0.11434353142976761, 0.17810554802417755, -0.04882476106286049, 0.007601118180900812, -0.02516726590692997, 0.23378312587738037, -0.07034505158662796, -0.03887135162949562, 0.09715750813484192, -0.024813123047351837, 0.04842986911535263, 0.09618014097213745, 0.08603744208812714, -0.09738851338624954, 0.01101421657949686, 0.045956335961818695, -0.0473189502954483, -0.21992406249046326, -0.045007940381765366, -0.0487273670732975, -0.0430506095290184, 0.07927165180444717, 0.018970351666212082, 0.026822416111826897, 0.060483790934085846, 0.06129823625087738, 0.09011955559253693, -0.05800701305270195, 0.04047275707125664, 0.10512452572584152, 0.04589065909385681, 0.13597644865512848, -0.038965459913015366, -0.09480967372655869, 0.02478048764169216, -0.05289294943213463, 0.21924039721488953, -0.004121346864849329, 0.07431740313768387, 0.04002431035041809, 0.16016975045204163, 0.0032323210034519434, 0.08230236172676086, 0.004674325231462717, -0.06644101440906525, -0.0019722753204405308, -0.0367569699883461, -0.03848084807395935, 0.009404015727341175, -0.03567301854491234, 0.062286168336868286, -0.12760716676712036, -0.01550124678760767, 0.06421778351068497, 0.218219593167305, 0.021473392844200134, -0.3098054826259613, -0.07208134233951569, 0.0033909431658685207, -0.03336720168590546, -0.0004156478971708566, 0.011343446560204029, 0.11635997146368027, -0.09120411425828934, 0.03175928816199303, -0.06834844499826431, 0.09600992500782013, -0.03442518785595894, 0.05174494907259941, 0.05880718305706978, 0.11874117702245712, -0.009827793575823307, 0.06640265136957169, -0.3208920955657959, 0.27379193902015686, 0.011716439388692379, 0.08226016163825989, -0.07853814959526062, -0.01589132286608219, 0.03385947644710541, 0.057613544166088104, 0.02287985011935234, -0.01554989442229271, -0.012724833562970161, -0.2176462709903717, -0.02886100485920906, 0.03686811774969101, 0.12722469866275787, -0.010293200612068176, 0.09606559574604034, -0.01352153904736042, 0.004899895284324884, 0.08347881585359573, -0.021489502862095833, -0.05536522716283798, -0.07465346157550812, -0.03273821249604225, 0.006940338760614395, -0.08108168840408325, -0.046995531767606735, -0.13066700100898743, -0.13746941089630127, 0.1531374752521515, 0.014507190324366093, -0.01525439415127039, -0.1215534657239914, 0.13124758005142212, 0.06535140424966812, -0.08306785672903061, 0.02576266974210739, 0.0158804003149271, 0.05592568963766098, 0.027188753709197044, -0.07500036805868149, 0.1138375923037529, -0.055973850190639496, -0.15595829486846924, -0.0666051134467125, 0.0914110541343689, 0.05159573629498482, 0.07436297833919525, -0.023931263014674187, 0.01921127922832966, -0.015278561040759087, -0.09006458520889282, 0.038832247257232666, -0.026326708495616913, 0.05416121333837509, 0.03667575493454933, -0.057291340082883835, -0.0038107940927147865, -0.05901246890425682, -0.009826848283410072, 0.19399945437908173, 0.227279931306839, -0.0908133015036583, -0.004280564375221729, 0.031125109642744064, -0.06594645977020264, -0.2017768919467926, 0.097541444003582, 0.08539678901433945, 0.0018995438003912568, 0.04897970333695412, -0.16992372274398804, 0.16783827543258667, 0.0966634750366211, -0.00034533088910393417, 0.11617136746644974, -0.30936405062675476, -0.13665147125720978, 0.10401617735624313, 0.1703750342130661, 0.15589551627635956, -0.1503850221633911, -0.01010729931294918, -0.029766667634248734, -0.09075850993394852, 0.11152739822864532, -0.08573974668979645, 0.12002728134393692, -0.017214739695191383, 0.10210344940423965, 0.011824852786958218, -0.059675972908735275, 0.09647899866104126, 0.016465159133076668, 0.10661321878433228, -0.06455834209918976, -0.05417487770318985, 0.044347189366817474, -0.023517899215221405, -0.02413291484117508, -0.040687840431928635, 0.012275089509785175, -0.08096689730882645, -0.01914970949292183, -0.09873740375041962, 0.0385577455163002, -0.0310323778539896, -0.06647370010614395, -0.027692273259162903, 0.020608747377991676, 0.043829429894685745, -0.018919095396995544, 0.12330110371112823, 0.003381145652383566, 0.18819066882133484, 0.08786039799451828, 0.08078784495592117, -0.07063388079404831, -0.03235597535967827, 0.002105026738718152, -0.006574299186468124, 0.061391714960336685, -0.13519622385501862, 0.02458784356713295, 0.1568983942270279, 0.025746366009116173, 0.12070605158805847, 0.09951119124889374, -0.012875134125351906, 0.013444798067212105, 0.0707973912358284, -0.16542662680149078, -0.0777231827378273, -0.0018044577445834875, -0.082608163356781, -0.10116101056337357, 0.06081349030137062, 0.0817808136343956, -0.07214163988828659, -0.008928878232836723, -0.014002757146954536, -0.01777617260813713, -0.06674766540527344, 0.2199106216430664, 0.07859622687101364, 0.04560831934213638, -0.10614832490682602, 0.05915495753288269, 0.06054209545254707, -0.08340167254209518, 0.001434878446161747, 0.0991421714425087, -0.07006201148033142, -0.020646536722779274, 0.12166436016559601, 0.21887005865573883, -0.05758856236934662, -0.013152530416846275, -0.14736144244670868, -0.12239670753479004, 0.07071930915117264, 0.1926359087228775, 0.11247825622558594, -0.01229833159595728, -0.07162922620773315, 0.035847995430231094, -0.14601662755012512, 0.07466448843479156, 0.037750404328107834, 0.07838425785303116, -0.13039153814315796, 0.20763777196407318, 0.008489109575748444, 0.04703822731971741, -0.03850303217768669, 0.029181405901908875, -0.12014355510473251, 0.02606387436389923, -0.1261986345052719, -0.05381544306874275, 0.005492932163178921, -0.0077087958343327045, -0.004285145550966263, -0.07553495466709137, -0.062098488211631775, -0.000454778055427596, -0.12944497168064117, -0.01643223501741886, 0.03883097693324089, 0.026071853935718536, -0.12136445194482803, -0.04238106682896614, 0.014080299995839596, -0.05119458585977554, 0.05101428180932999, 0.05342845991253853, 0.012820935808122158, 0.08639074862003326, -0.1730313003063202, -0.02292723022401333, 0.06808976083993912, -0.0003328541642986238, 0.09384375810623169, -0.035341162234544754, -0.005056166555732489, -0.004993907641619444, 0.11276470124721527, 0.02922428958117962, 0.08008675277233124, -0.13262811303138733, 0.01596919633448124, -0.03554270789027214, -0.11144858598709106, -0.05815892294049263, 0.02924680896103382, 0.06792544573545456, 0.013127933256328106, 0.18423163890838623, -0.09075043350458145, 0.060156095772981644, -0.2212980091571808, -0.010203439742326736, -0.013542065396904945, -0.11335959285497665, -0.11123031377792358, -0.06445919722318649, 0.07953450083732605, -0.056555915623903275, 0.12567876279354095, 0.05628461390733719, 0.07518228143453598, 0.03803079202771187, -0.01364543754607439, -0.005994603503495455, 0.03394949063658714, 0.19919098913669586, 0.0504930317401886, -0.044484943151474, 0.06973141431808472, 0.07415242493152618, 0.11313509941101074, 0.1247931569814682, 0.238521009683609, 0.1404118686914444, -0.03377966955304146, 0.08712062984704971, 0.029954757541418076, -0.05020352452993393, -0.15119346976280212, 0.01929016411304474, -0.06789203733205795, 0.09432302415370941, -0.02956792525947094, 0.19631217420101166, 0.043175578117370605, -0.15826885402202606, 0.04899952560663223, -0.07033772766590118, -0.10175832360982895, -0.11446195840835571, 0.0046496703289449215, -0.08485452830791473, -0.14513596892356873, 0.01343168132007122, -0.11177703738212585, 0.023677349090576172, 0.12083379179239273, 0.01645546592772007, -0.02301831543445587, 0.18492145836353302, 0.034226756542921066, 0.042116373777389526, 0.06913167238235474, 0.005505128297954798, -0.01495959423482418, -0.08950001001358032, -0.06301622837781906, -0.04141741991043091, -0.005473317112773657, 0.03071918524801731, -0.0649961456656456, -0.09947769343852997, 0.03348535671830177, -0.020010044798254967, -0.11374646425247192, 0.030493590980768204, 0.0218521598726511, 0.07464239001274109, 0.03751397505402565, -0.004711100831627846, 0.013722860254347324, -0.03215868026018143, 0.22575710713863373, -0.08627122640609741, -0.0736982598900795, -0.08584856241941452, 0.2976880967617035, 0.04363224655389786, 0.005692335776984692, 0.01587543450295925, -0.06883975863456726, -0.007272535469383001, 0.24238580465316772, 0.21033726632595062, -0.12755845487117767, -0.009052788838744164, -0.0017802277579903603, -0.00986372772604227, -0.014782099984586239, 0.14108775556087494, 0.12477584183216095, 0.05121554061770439, -0.11051453649997711, -0.03633950278162956, -0.0531327947974205, -0.01403407845646143, -0.03642352297902107, 0.06313933432102203, 0.07132190465927124, 0.01834229566156864, -0.05667886883020401, 0.06276129186153412, -0.07756688445806503, -0.11126311123371124, 0.06587497889995575, -0.22755689918994904, -0.1721813827753067, -0.01588394120335579, 0.11869549006223679, -0.0051455129869282246, 0.07719848304986954, -0.02268141508102417, -0.0033827845472842455, 0.03906774893403053, -0.02907305210828781, -0.07483413815498352, -0.08767515420913696, 0.10550116747617722, -0.13769373297691345, 0.17560817301273346, -0.04672413319349289, 0.06690225750207901, 0.11980314552783966, 0.06669647991657257, -0.03916526585817337, 0.05153059586882591, 0.035788729786872864, -0.1113203838467598, 0.019314851611852646, 0.12501639127731323, -0.03665628656744957, 0.0394786037504673, 0.04222574830055237, -0.14723707735538483, 0.0350852832198143, -0.09254151582717896, -0.059160128235816956, -0.035649027675390244, -0.0505492277443409, -0.05706934258341789, 0.11376993358135223, 0.24247068166732788, -0.007436205632984638, 0.03077484481036663, -0.08644454181194305, -0.0036462440621107817, 0.04749042168259621, 0.05556950718164444, -0.1002742201089859, -0.26178669929504395, 0.006732272915542126, 0.08199861645698547, -0.036354128271341324, -0.24373997747898102, -0.08072898536920547, 0.008123901672661304, -0.06987407058477402, -0.09467791765928268, 0.08478515595197678, 0.07489781826734543, 0.055093914270401, -0.05349506065249443, -0.11617154628038406, -0.07122981548309326, 0.16392463445663452, -0.15408369898796082, -0.08627885580062866 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-multilingual-cased-amazon_zh_20000 This model is a fine-tuned version of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.3031 - Accuracy: 0.4406 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.396 | 1.0 | 1250 | 1.3031 | 0.4406 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.9.1 - Datasets 1.18.3 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-multilingual-cased-amazon_zh_20000", "results": []}]}
text-classification
ASCCCCCCCC/distilbert-base-multilingual-cased-amazon_zh_20000
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-multilingual-cased-amazon\_zh\_20000 ==================================================== This model is a fine-tuned version of distilbert-base-multilingual-cased on an unknown dataset. It achieves the following results on the evaluation set: * Loss: 1.3031 * Accuracy: 0.4406 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 1 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.9.1 * Datasets 1.18.3 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.9.1\n* Datasets 1.18.3\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.9.1\n* Datasets 1.18.3\n* Tokenizers 0.10.3" ]
[ 57, 98, 4, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.9.1\n* Datasets 1.18.3\n* Tokenizers 0.10.3" ]
[ -0.09505623579025269, 0.06580236554145813, -0.0021996446885168552, 0.11599233746528625, 0.17974494397640228, 0.02055610716342926, 0.11109361797571182, 0.12300596386194229, -0.11357199400663376, 0.010416093282401562, 0.118222676217556, 0.18831869959831238, 0.00455077551305294, 0.11346118897199631, -0.0548069104552269, -0.2561207115650177, -0.012130591087043285, 0.04993326589465141, -0.07485304027795792, 0.1407928615808487, 0.09919722378253937, -0.13122965395450592, 0.07082144916057587, 0.007009623106569052, -0.22528451681137085, 0.010621312074363232, 0.011387724429368973, -0.06444896757602692, 0.15092763304710388, 0.017057323828339577, 0.1297445148229599, 0.008049355819821358, 0.07525863498449326, -0.17669491469860077, 0.011222989298403263, 0.04888566583395004, 0.0057324920780956745, 0.08451122790575027, 0.05970839038491249, -0.015873907133936882, 0.12899096310138702, -0.08366822451353073, 0.05772225558757782, 0.023025959730148315, -0.12047315388917923, -0.23253321647644043, -0.07796379923820496, 0.017402956262230873, 0.06942003965377808, 0.10934793949127197, -0.00004689092020271346, 0.13213467597961426, -0.10111384093761444, 0.09753645956516266, 0.21104153990745544, -0.27361515164375305, -0.06307871639728546, 0.02913309633731842, 0.0016409321688115597, 0.07638917118310928, -0.10992292314767838, -0.02417611889541149, 0.054744381457567215, 0.05650750920176506, 0.1458728015422821, -0.031787097454071045, -0.12468308210372925, 0.01028088666498661, -0.14422670006752014, -0.03601685166358948, 0.1410694569349289, 0.020467860624194145, -0.029341645538806915, -0.04543990641832352, -0.058273788541555405, -0.14399148523807526, -0.03722658008337021, -0.010074279271066189, 0.04433617740869522, -0.03279930725693703, -0.04943428933620453, -0.002740651136264205, -0.11015331745147705, -0.06400662660598755, -0.07305939495563507, 0.15113146603107452, 0.04394412413239479, 0.013578588142991066, -0.025728197768330574, 0.11041521281003952, 0.0315859280526638, -0.13228169083595276, 0.03276799991726875, 0.028941575437784195, 0.00972442701458931, -0.04496114328503609, -0.07496365159749985, -0.0668453723192215, 0.0073329689912498, 0.10329756140708923, -0.06414953619241714, 0.04871359467506409, 0.027421321719884872, 0.046359773725271225, -0.09955347329378128, 0.19361741840839386, -0.02188003621995449, 0.005261564161628485, 0.014805108308792114, 0.04855195805430412, 0.007310644723474979, -0.007947538048028946, -0.11949194222688675, 0.00857661571353674, 0.11447485536336899, 0.022239798679947853, -0.07125308364629745, 0.07099750638008118, -0.052924465388059616, -0.026612548157572746, 0.014974189922213554, -0.10527228564023972, 0.02965008281171322, -0.000662364938762039, -0.08191835135221481, -0.012769770808517933, 0.03304380550980568, 0.009605800732970238, -0.03508710116147995, 0.11384090781211853, -0.07403714209794998, 0.046658217906951904, -0.09952051937580109, -0.10536448657512665, 0.012395743280649185, -0.07367712259292603, 0.02165699005126953, -0.10701166093349457, -0.16316843032836914, -0.017804648727178574, 0.05901537090539932, -0.021054306998848915, -0.062345996499061584, -0.05061499774456024, -0.07350606471300125, 0.009369303472340107, -0.017731646075844765, 0.14936667680740356, -0.05975859984755516, 0.11295512318611145, 0.03575848042964935, 0.0627414733171463, -0.046011630445718765, 0.06593557447195053, -0.09784533083438873, -0.002285693772137165, -0.18960699439048767, 0.05365972965955734, -0.05294785648584366, 0.0740339532494545, -0.08524325489997864, -0.1155262365937233, 0.01689617708325386, -0.0052056568674743176, 0.06699657440185547, 0.0899014100432396, -0.159663125872612, -0.08122887462377548, 0.14844690263271332, -0.07090716063976288, -0.10809163749217987, 0.1173148900270462, -0.05948057025671005, 0.05212773382663727, 0.08063410222530365, 0.17390131950378418, 0.08205308020114899, -0.06749898195266724, 0.03444024547934532, 0.006977352779358625, 0.04568468779325485, -0.07647013664245605, 0.057327207177877426, 0.005905170924961567, -0.007630881387740374, 0.0409318171441555, -0.024950573220849037, 0.07253910601139069, -0.09434900432825089, -0.09594510495662689, -0.04405306652188301, -0.0970548465847969, 0.054613128304481506, 0.08227723091840744, 0.0931786373257637, -0.09344270825386047, -0.06827899813652039, 0.08025965839624405, 0.07589302211999893, -0.06041840463876724, 0.03737187758088112, -0.04422670602798462, 0.06184108927845955, -0.027500897645950317, -0.016592957079410553, -0.20434041321277618, 0.0038874719757586718, 0.012850085273385048, -0.003269692650064826, 0.020704835653305054, 0.016511356458067894, 0.06753861904144287, 0.05626491829752922, -0.06131249666213989, -0.021111981943249702, -0.026256758719682693, -0.007080983370542526, -0.1359267681837082, -0.1885405033826828, -0.015495339408516884, -0.02103400230407715, 0.12238357216119766, -0.19404350221157074, 0.03939218446612358, -0.023682786151766777, 0.06165146455168724, -0.0036613380070775747, -0.0015775244683027267, -0.04314113035798073, 0.0881352350115776, -0.03502294048666954, -0.044718142598867416, 0.08315323293209076, 0.006726464256644249, -0.08360301703214645, -0.0356028787791729, -0.08433564007282257, 0.1692429780960083, 0.14023710787296295, -0.13719764351844788, -0.07899154722690582, -0.0022784729953855276, -0.06155446171760559, -0.029566071927547455, -0.040704719722270966, 0.04355936869978905, 0.19076886773109436, -0.015136940404772758, 0.16240176558494568, -0.06999710202217102, -0.048385169357061386, 0.016509026288986206, -0.03210586681962013, 0.03689642623066902, 0.12460234761238098, 0.10878457874059677, -0.06732210516929626, 0.14147692918777466, 0.15786060690879822, -0.10553022474050522, 0.12303540855646133, -0.050363603979349136, -0.06513142585754395, -0.0016328486381098628, -0.0188487246632576, -0.003947111777961254, 0.07469406723976135, -0.13659220933914185, -0.004594705533236265, 0.0220408346503973, 0.025669557973742485, 0.029334435239434242, -0.23199455440044403, -0.033747121691703796, 0.027311008423566818, -0.04263518378138542, 0.00087407958926633, -0.019507454708218575, 0.011702390387654305, 0.1084039956331253, -0.004110838286578655, -0.08303888887166977, 0.04274245351552963, 0.004420737270265818, -0.08068209886550903, 0.22430746257305145, -0.09254465252161026, -0.17047567665576935, -0.12113843858242035, -0.06843525916337967, -0.043593067675828934, 0.009740347974002361, 0.06676675379276276, -0.10123958438634872, -0.02486914023756981, -0.05463770404458046, 0.021899713203310966, -0.006947132293134928, 0.03543214499950409, 0.002914363518357277, 0.008636746555566788, 0.07015442848205566, -0.11374694108963013, -0.00918294582515955, -0.05617833882570267, -0.06652042269706726, 0.055253565311431885, 0.03422192111611366, 0.103670634329319, 0.16427312791347504, -0.021113457158207893, 0.008791392669081688, -0.03221858665347099, 0.2167690545320511, -0.06424154341220856, -0.032061319798231125, 0.13913844525814056, -0.002594292163848877, 0.05593902990221977, 0.09771070629358292, 0.07066389918327332, -0.0891803652048111, 0.012887478806078434, 0.021579260006546974, -0.03639297932386398, -0.23498478531837463, -0.05769440159201622, -0.060570430010557175, -0.028612850233912468, 0.09285278618335724, 0.03133036196231842, 0.04965890944004059, 0.06327666342258453, 0.042238712310791016, 0.07681889086961746, -0.03273826465010643, 0.04807695001363754, 0.13056251406669617, 0.0431218259036541, 0.1273403912782669, -0.04949146509170532, -0.06654863059520721, 0.03365302458405495, -0.024603314697742462, 0.22567583620548248, 0.0001760745799401775, 0.11760649085044861, 0.061116404831409454, 0.17246519029140472, 0.00033598070149309933, 0.08503907918930054, -0.002149424282833934, -0.042300473898649216, -0.010304074734449387, -0.03943547606468201, -0.045892734080553055, 0.010853545740246773, -0.06397915631532669, 0.05661288648843765, -0.12156306952238083, -0.02265750803053379, 0.06189524754881859, 0.2510695159435272, 0.019382672384381294, -0.31640926003456116, -0.08458353579044342, -0.001545870560221374, -0.03915601223707199, -0.017202815040946007, 0.021587276831269264, 0.0784095823764801, -0.10119478404521942, 0.030444283038377762, -0.06688114255666733, 0.09861665964126587, -0.04154025390744209, 0.044497858732938766, 0.06379616260528564, 0.08434532582759857, 0.01583755947649479, 0.08961191028356552, -0.33296939730644226, 0.2708559036254883, -0.0003132441488560289, 0.07288913428783417, -0.07990418374538422, 0.0016837631119415164, 0.03833094984292984, 0.07209745794534683, 0.05192220211029053, -0.011187554337084293, -0.01576179265975952, -0.18967819213867188, -0.05649273842573166, 0.03000408038496971, 0.08366022258996964, -0.021622180938720703, 0.07673326134681702, -0.0260748490691185, 0.011746514588594437, 0.07548260688781738, -0.029316581785678864, -0.05358043685555458, -0.09886908531188965, -0.01330094039440155, 0.013716344721615314, -0.04509783908724785, -0.06089820712804794, -0.12014755606651306, -0.12800337374210358, 0.15389500558376312, -0.010946151800453663, -0.0431014783680439, -0.11349023133516312, 0.08659520000219345, 0.06946467608213425, -0.08621998131275177, 0.05067526549100876, 0.003250619862228632, 0.0538746602833271, 0.02535422332584858, -0.0796079933643341, 0.09874039143323898, -0.06375157088041306, -0.15322978794574738, -0.04915699362754822, 0.11478187143802643, 0.035780735313892365, 0.0649036169052124, -0.011637600138783455, 0.011605915613472462, -0.041509658098220825, -0.09526442736387253, 0.017265498638153076, -0.013874271884560585, 0.08552124351263046, 0.027218004688620567, -0.0688440203666687, -0.0021959191653877497, -0.0664294883608818, -0.03882046788930893, 0.20056122541427612, 0.2189573496580124, -0.09418437629938126, 0.03277766704559326, 0.03754029422998428, -0.07202544808387756, -0.20651350915431976, 0.03961408883333206, 0.07271444797515869, 0.0000020313200366217643, 0.03181695193052292, -0.1824197620153427, 0.12940871715545654, 0.0967065691947937, -0.013379508629441261, 0.1038726419210434, -0.33519142866134644, -0.12974534928798676, 0.1271643340587616, 0.14763221144676208, 0.12596459686756134, -0.14555875957012177, -0.019779697060585022, -0.02644413523375988, -0.11176571249961853, 0.1002092957496643, -0.08046078681945801, 0.12304629385471344, -0.03522541746497154, 0.07920567691326141, 0.0010293364757671952, -0.05870305374264717, 0.1182011291384697, 0.022012978792190552, 0.09656514972448349, -0.061383046209812164, -0.018925638869404793, 0.04128611460328102, -0.03423634171485901, 0.015176915563642979, -0.08201025426387787, 0.03156158700585365, -0.10001152008771896, -0.020995372906327248, -0.08840770274400711, 0.04715863987803459, -0.03193137049674988, -0.05643615126609802, -0.03316408023238182, 0.01829364150762558, 0.05198770388960838, -0.015499802306294441, 0.12574650347232819, 0.023381469771265984, 0.15429069101810455, 0.1230560690164566, 0.06731949746608734, -0.06541040539741516, -0.06684786826372147, -0.023459454998373985, -0.014572038315236568, 0.05587013438344002, -0.15096989274024963, 0.029934974387288094, 0.1447451114654541, 0.019542234018445015, 0.13348343968391418, 0.08617712557315826, -0.011839567683637142, 0.00269293668679893, 0.06502947956323624, -0.1617765724658966, -0.07599177956581116, -0.00745773920789361, -0.056866373866796494, -0.09744413197040558, 0.0509602352976799, 0.07796629518270493, -0.07042116671800613, -0.014905638061463833, -0.008805760182440281, 0.003416691906750202, -0.060482852160930634, 0.2080744504928589, 0.06621476262807846, 0.04834800586104393, -0.1088128611445427, 0.07952140271663666, 0.05958801135420799, -0.0801180750131607, -0.0019557327032089233, 0.08316075801849365, -0.08941678702831268, -0.05077551677823067, 0.12333551049232483, 0.17002439498901367, -0.049546945840120316, -0.04369223117828369, -0.13770842552185059, -0.13153591752052307, 0.08270789682865143, 0.15144731104373932, 0.12819676101207733, 0.01186969131231308, -0.06692549586296082, 0.009945477358996868, -0.1205596849322319, 0.08352150768041611, 0.040084272623062134, 0.06367497891187668, -0.13190799951553345, 0.17290876805782318, 0.019596323370933533, 0.05427702143788338, -0.026658840477466583, 0.019973699003458023, -0.0961725264787674, 0.0235975943505764, -0.1193380132317543, -0.02199709787964821, -0.013890471309423447, 0.007049861829727888, -0.008955579251050949, -0.05552099645137787, -0.04791061207652092, 0.020932218059897423, -0.12466023862361908, -0.020702144131064415, 0.02241421677172184, 0.05706406757235527, -0.1141464114189148, -0.04859495535492897, 0.02135397680103779, -0.06146124377846718, 0.06296172738075256, 0.05729253590106964, 0.006259278394281864, 0.07008684426546097, -0.1378105729818344, -0.006222427356988192, 0.08408398181200027, 0.014375466853380203, 0.05964681878685951, -0.08774511516094208, -0.0043645636178553104, 0.013303957879543304, 0.06436533480882645, 0.022623339667916298, 0.08147251605987549, -0.14680516719818115, 0.0033161069732159376, -0.03688746690750122, -0.08772814273834229, -0.06635589152574539, 0.031611859798431396, 0.07763860374689102, 0.018500154837965965, 0.1987166851758957, -0.08197426050901413, 0.0425879992544651, -0.2104177325963974, -0.0019478244939818978, -0.021420633420348167, -0.11927946656942368, -0.1323263943195343, -0.06805459409952164, 0.0630425363779068, -0.04991232603788376, 0.1371365636587143, 0.04046026989817619, 0.0452151857316494, 0.02886279858648777, -0.005422048736363649, 0.008964584209024906, 0.02385467290878296, 0.21093177795410156, 0.03300361707806587, -0.03151417896151543, 0.07677588611841202, 0.05324608460068703, 0.09927208721637726, 0.11592020094394684, 0.19725781679153442, 0.15969336032867432, -0.017025945708155632, 0.09053058177232742, 0.018303146585822105, -0.04527265951037407, -0.15486273169517517, 0.03281908109784126, -0.042722780257463455, 0.10206053406000137, -0.024976136162877083, 0.2103056013584137, 0.053271226584911346, -0.16606159508228302, 0.05833013355731964, -0.051079537719488144, -0.09103614836931229, -0.10465317219495773, -0.03474590182304382, -0.0789547935128212, -0.14352010190486908, -0.003498375415802002, -0.10567283630371094, 0.015108180232346058, 0.10943204164505005, 0.007195769343525171, -0.030957844108343124, 0.15600894391536713, 0.0350976325571537, 0.012644225731492043, 0.06443651020526886, -0.006933677941560745, -0.028263697400689125, -0.1076730489730835, -0.062154266983270645, -0.02135535143315792, -0.009178351610898972, 0.03649783879518509, -0.053051259368658066, -0.07380951195955276, 0.0354912169277668, -0.03819799795746803, -0.0966421514749527, 0.02032262459397316, 0.023030204698443413, 0.06828615814447403, 0.05917210876941681, 0.008562309667468071, 0.007901321165263653, -0.009874008595943451, 0.22405681014060974, -0.07231011986732483, -0.09210266172885895, -0.08747104555368423, 0.283118337392807, 0.05304412171244621, -0.01215288694947958, 0.03402986377477646, -0.05895751714706421, -0.008176907896995544, 0.2592351734638214, 0.20328761637210846, -0.08639279752969742, -0.009797357022762299, 0.002709877211600542, -0.010022986680269241, -0.0047803036868572235, 0.12778891623020172, 0.1483973115682602, 0.042894259095191956, -0.10534082353115082, -0.04040104150772095, -0.0586966834962368, -0.014236262068152428, -0.05500936508178711, 0.06827989220619202, 0.03732096403837204, -0.004033330362290144, -0.036429498344659805, 0.05832428112626076, -0.06654410809278488, -0.08860224485397339, 0.05022623762488365, -0.20285189151763916, -0.16139841079711914, -0.016668956726789474, 0.11128243058919907, 0.0017458479851484299, 0.058420754969120026, -0.020813236013054848, 0.005465415306389332, 0.06641564518213272, -0.026523565873503685, -0.08729936927556992, -0.07565651088953018, 0.09921526908874512, -0.12515656650066376, 0.17925599217414856, -0.039685070514678955, 0.07489360868930817, 0.11669638007879257, 0.07405497133731842, -0.06299017369747162, 0.0654919371008873, 0.030147716403007507, -0.06667371839284897, 0.040840599685907364, 0.0873798280954361, -0.030289433896541595, 0.02440466918051243, 0.03523913025856018, -0.11709452420473099, 0.02501933090388775, -0.0758938118815422, -0.059097014367580414, -0.03815935552120209, -0.043918177485466, -0.05699338763952255, 0.11474516242742538, 0.21789349615573883, -0.024046488106250763, 0.011023741215467453, -0.08314748853445053, 0.0021152659319341183, 0.047857865691185, 0.013551488518714905, -0.08089105784893036, -0.23240047693252563, 0.004699896089732647, 0.05826215818524361, -0.020815962925553322, -0.22294726967811584, -0.09203434735536575, -0.0029788732063025236, -0.07640335708856583, -0.10159341990947723, 0.08340651541948318, 0.06407440453767776, 0.048015840351581573, -0.052871331572532654, -0.08060108125209808, -0.07933705300092697, 0.15493951737880707, -0.1569516807794571, -0.08540824055671692 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-amazon_zh_20000 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.3516 - Accuracy: 0.414 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.4343 | 1.0 | 1250 | 1.3516 | 0.414 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.9.1 - Datasets 1.18.3 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased-finetuned-amazon_zh_20000", "results": []}]}
text-classification
ASCCCCCCCC/distilbert-base-uncased-finetuned-amazon_zh_20000
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased-finetuned-amazon\_zh\_20000 =================================================== This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set: * Loss: 1.3516 * Accuracy: 0.414 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 1 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.9.1 * Datasets 1.18.3 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.9.1\n* Datasets 1.18.3\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.9.1\n* Datasets 1.18.3\n* Tokenizers 0.10.3" ]
[ 57, 98, 4, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1### Training results### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.9.1\n* Datasets 1.18.3\n* Tokenizers 0.10.3" ]
[ -0.09505623579025269, 0.06580236554145813, -0.0021996446885168552, 0.11599233746528625, 0.17974494397640228, 0.02055610716342926, 0.11109361797571182, 0.12300596386194229, -0.11357199400663376, 0.010416093282401562, 0.118222676217556, 0.18831869959831238, 0.00455077551305294, 0.11346118897199631, -0.0548069104552269, -0.2561207115650177, -0.012130591087043285, 0.04993326589465141, -0.07485304027795792, 0.1407928615808487, 0.09919722378253937, -0.13122965395450592, 0.07082144916057587, 0.007009623106569052, -0.22528451681137085, 0.010621312074363232, 0.011387724429368973, -0.06444896757602692, 0.15092763304710388, 0.017057323828339577, 0.1297445148229599, 0.008049355819821358, 0.07525863498449326, -0.17669491469860077, 0.011222989298403263, 0.04888566583395004, 0.0057324920780956745, 0.08451122790575027, 0.05970839038491249, -0.015873907133936882, 0.12899096310138702, -0.08366822451353073, 0.05772225558757782, 0.023025959730148315, -0.12047315388917923, -0.23253321647644043, -0.07796379923820496, 0.017402956262230873, 0.06942003965377808, 0.10934793949127197, -0.00004689092020271346, 0.13213467597961426, -0.10111384093761444, 0.09753645956516266, 0.21104153990745544, -0.27361515164375305, -0.06307871639728546, 0.02913309633731842, 0.0016409321688115597, 0.07638917118310928, -0.10992292314767838, -0.02417611889541149, 0.054744381457567215, 0.05650750920176506, 0.1458728015422821, -0.031787097454071045, -0.12468308210372925, 0.01028088666498661, -0.14422670006752014, -0.03601685166358948, 0.1410694569349289, 0.020467860624194145, -0.029341645538806915, -0.04543990641832352, -0.058273788541555405, -0.14399148523807526, -0.03722658008337021, -0.010074279271066189, 0.04433617740869522, -0.03279930725693703, -0.04943428933620453, -0.002740651136264205, -0.11015331745147705, -0.06400662660598755, -0.07305939495563507, 0.15113146603107452, 0.04394412413239479, 0.013578588142991066, -0.025728197768330574, 0.11041521281003952, 0.0315859280526638, -0.13228169083595276, 0.03276799991726875, 0.028941575437784195, 0.00972442701458931, -0.04496114328503609, -0.07496365159749985, -0.0668453723192215, 0.0073329689912498, 0.10329756140708923, -0.06414953619241714, 0.04871359467506409, 0.027421321719884872, 0.046359773725271225, -0.09955347329378128, 0.19361741840839386, -0.02188003621995449, 0.005261564161628485, 0.014805108308792114, 0.04855195805430412, 0.007310644723474979, -0.007947538048028946, -0.11949194222688675, 0.00857661571353674, 0.11447485536336899, 0.022239798679947853, -0.07125308364629745, 0.07099750638008118, -0.052924465388059616, -0.026612548157572746, 0.014974189922213554, -0.10527228564023972, 0.02965008281171322, -0.000662364938762039, -0.08191835135221481, -0.012769770808517933, 0.03304380550980568, 0.009605800732970238, -0.03508710116147995, 0.11384090781211853, -0.07403714209794998, 0.046658217906951904, -0.09952051937580109, -0.10536448657512665, 0.012395743280649185, -0.07367712259292603, 0.02165699005126953, -0.10701166093349457, -0.16316843032836914, -0.017804648727178574, 0.05901537090539932, -0.021054306998848915, -0.062345996499061584, -0.05061499774456024, -0.07350606471300125, 0.009369303472340107, -0.017731646075844765, 0.14936667680740356, -0.05975859984755516, 0.11295512318611145, 0.03575848042964935, 0.0627414733171463, -0.046011630445718765, 0.06593557447195053, -0.09784533083438873, -0.002285693772137165, -0.18960699439048767, 0.05365972965955734, -0.05294785648584366, 0.0740339532494545, -0.08524325489997864, -0.1155262365937233, 0.01689617708325386, -0.0052056568674743176, 0.06699657440185547, 0.0899014100432396, -0.159663125872612, -0.08122887462377548, 0.14844690263271332, -0.07090716063976288, -0.10809163749217987, 0.1173148900270462, -0.05948057025671005, 0.05212773382663727, 0.08063410222530365, 0.17390131950378418, 0.08205308020114899, -0.06749898195266724, 0.03444024547934532, 0.006977352779358625, 0.04568468779325485, -0.07647013664245605, 0.057327207177877426, 0.005905170924961567, -0.007630881387740374, 0.0409318171441555, -0.024950573220849037, 0.07253910601139069, -0.09434900432825089, -0.09594510495662689, -0.04405306652188301, -0.0970548465847969, 0.054613128304481506, 0.08227723091840744, 0.0931786373257637, -0.09344270825386047, -0.06827899813652039, 0.08025965839624405, 0.07589302211999893, -0.06041840463876724, 0.03737187758088112, -0.04422670602798462, 0.06184108927845955, -0.027500897645950317, -0.016592957079410553, -0.20434041321277618, 0.0038874719757586718, 0.012850085273385048, -0.003269692650064826, 0.020704835653305054, 0.016511356458067894, 0.06753861904144287, 0.05626491829752922, -0.06131249666213989, -0.021111981943249702, -0.026256758719682693, -0.007080983370542526, -0.1359267681837082, -0.1885405033826828, -0.015495339408516884, -0.02103400230407715, 0.12238357216119766, -0.19404350221157074, 0.03939218446612358, -0.023682786151766777, 0.06165146455168724, -0.0036613380070775747, -0.0015775244683027267, -0.04314113035798073, 0.0881352350115776, -0.03502294048666954, -0.044718142598867416, 0.08315323293209076, 0.006726464256644249, -0.08360301703214645, -0.0356028787791729, -0.08433564007282257, 0.1692429780960083, 0.14023710787296295, -0.13719764351844788, -0.07899154722690582, -0.0022784729953855276, -0.06155446171760559, -0.029566071927547455, -0.040704719722270966, 0.04355936869978905, 0.19076886773109436, -0.015136940404772758, 0.16240176558494568, -0.06999710202217102, -0.048385169357061386, 0.016509026288986206, -0.03210586681962013, 0.03689642623066902, 0.12460234761238098, 0.10878457874059677, -0.06732210516929626, 0.14147692918777466, 0.15786060690879822, -0.10553022474050522, 0.12303540855646133, -0.050363603979349136, -0.06513142585754395, -0.0016328486381098628, -0.0188487246632576, -0.003947111777961254, 0.07469406723976135, -0.13659220933914185, -0.004594705533236265, 0.0220408346503973, 0.025669557973742485, 0.029334435239434242, -0.23199455440044403, -0.033747121691703796, 0.027311008423566818, -0.04263518378138542, 0.00087407958926633, -0.019507454708218575, 0.011702390387654305, 0.1084039956331253, -0.004110838286578655, -0.08303888887166977, 0.04274245351552963, 0.004420737270265818, -0.08068209886550903, 0.22430746257305145, -0.09254465252161026, -0.17047567665576935, -0.12113843858242035, -0.06843525916337967, -0.043593067675828934, 0.009740347974002361, 0.06676675379276276, -0.10123958438634872, -0.02486914023756981, -0.05463770404458046, 0.021899713203310966, -0.006947132293134928, 0.03543214499950409, 0.002914363518357277, 0.008636746555566788, 0.07015442848205566, -0.11374694108963013, -0.00918294582515955, -0.05617833882570267, -0.06652042269706726, 0.055253565311431885, 0.03422192111611366, 0.103670634329319, 0.16427312791347504, -0.021113457158207893, 0.008791392669081688, -0.03221858665347099, 0.2167690545320511, -0.06424154341220856, -0.032061319798231125, 0.13913844525814056, -0.002594292163848877, 0.05593902990221977, 0.09771070629358292, 0.07066389918327332, -0.0891803652048111, 0.012887478806078434, 0.021579260006546974, -0.03639297932386398, -0.23498478531837463, -0.05769440159201622, -0.060570430010557175, -0.028612850233912468, 0.09285278618335724, 0.03133036196231842, 0.04965890944004059, 0.06327666342258453, 0.042238712310791016, 0.07681889086961746, -0.03273826465010643, 0.04807695001363754, 0.13056251406669617, 0.0431218259036541, 0.1273403912782669, -0.04949146509170532, -0.06654863059520721, 0.03365302458405495, -0.024603314697742462, 0.22567583620548248, 0.0001760745799401775, 0.11760649085044861, 0.061116404831409454, 0.17246519029140472, 0.00033598070149309933, 0.08503907918930054, -0.002149424282833934, -0.042300473898649216, -0.010304074734449387, -0.03943547606468201, -0.045892734080553055, 0.010853545740246773, -0.06397915631532669, 0.05661288648843765, -0.12156306952238083, -0.02265750803053379, 0.06189524754881859, 0.2510695159435272, 0.019382672384381294, -0.31640926003456116, -0.08458353579044342, -0.001545870560221374, -0.03915601223707199, -0.017202815040946007, 0.021587276831269264, 0.0784095823764801, -0.10119478404521942, 0.030444283038377762, -0.06688114255666733, 0.09861665964126587, -0.04154025390744209, 0.044497858732938766, 0.06379616260528564, 0.08434532582759857, 0.01583755947649479, 0.08961191028356552, -0.33296939730644226, 0.2708559036254883, -0.0003132441488560289, 0.07288913428783417, -0.07990418374538422, 0.0016837631119415164, 0.03833094984292984, 0.07209745794534683, 0.05192220211029053, -0.011187554337084293, -0.01576179265975952, -0.18967819213867188, -0.05649273842573166, 0.03000408038496971, 0.08366022258996964, -0.021622180938720703, 0.07673326134681702, -0.0260748490691185, 0.011746514588594437, 0.07548260688781738, -0.029316581785678864, -0.05358043685555458, -0.09886908531188965, -0.01330094039440155, 0.013716344721615314, -0.04509783908724785, -0.06089820712804794, -0.12014755606651306, -0.12800337374210358, 0.15389500558376312, -0.010946151800453663, -0.0431014783680439, -0.11349023133516312, 0.08659520000219345, 0.06946467608213425, -0.08621998131275177, 0.05067526549100876, 0.003250619862228632, 0.0538746602833271, 0.02535422332584858, -0.0796079933643341, 0.09874039143323898, -0.06375157088041306, -0.15322978794574738, -0.04915699362754822, 0.11478187143802643, 0.035780735313892365, 0.0649036169052124, -0.011637600138783455, 0.011605915613472462, -0.041509658098220825, -0.09526442736387253, 0.017265498638153076, -0.013874271884560585, 0.08552124351263046, 0.027218004688620567, -0.0688440203666687, -0.0021959191653877497, -0.0664294883608818, -0.03882046788930893, 0.20056122541427612, 0.2189573496580124, -0.09418437629938126, 0.03277766704559326, 0.03754029422998428, -0.07202544808387756, -0.20651350915431976, 0.03961408883333206, 0.07271444797515869, 0.0000020313200366217643, 0.03181695193052292, -0.1824197620153427, 0.12940871715545654, 0.0967065691947937, -0.013379508629441261, 0.1038726419210434, -0.33519142866134644, -0.12974534928798676, 0.1271643340587616, 0.14763221144676208, 0.12596459686756134, -0.14555875957012177, -0.019779697060585022, -0.02644413523375988, -0.11176571249961853, 0.1002092957496643, -0.08046078681945801, 0.12304629385471344, -0.03522541746497154, 0.07920567691326141, 0.0010293364757671952, -0.05870305374264717, 0.1182011291384697, 0.022012978792190552, 0.09656514972448349, -0.061383046209812164, -0.018925638869404793, 0.04128611460328102, -0.03423634171485901, 0.015176915563642979, -0.08201025426387787, 0.03156158700585365, -0.10001152008771896, -0.020995372906327248, -0.08840770274400711, 0.04715863987803459, -0.03193137049674988, -0.05643615126609802, -0.03316408023238182, 0.01829364150762558, 0.05198770388960838, -0.015499802306294441, 0.12574650347232819, 0.023381469771265984, 0.15429069101810455, 0.1230560690164566, 0.06731949746608734, -0.06541040539741516, -0.06684786826372147, -0.023459454998373985, -0.014572038315236568, 0.05587013438344002, -0.15096989274024963, 0.029934974387288094, 0.1447451114654541, 0.019542234018445015, 0.13348343968391418, 0.08617712557315826, -0.011839567683637142, 0.00269293668679893, 0.06502947956323624, -0.1617765724658966, -0.07599177956581116, -0.00745773920789361, -0.056866373866796494, -0.09744413197040558, 0.0509602352976799, 0.07796629518270493, -0.07042116671800613, -0.014905638061463833, -0.008805760182440281, 0.003416691906750202, -0.060482852160930634, 0.2080744504928589, 0.06621476262807846, 0.04834800586104393, -0.1088128611445427, 0.07952140271663666, 0.05958801135420799, -0.0801180750131607, -0.0019557327032089233, 0.08316075801849365, -0.08941678702831268, -0.05077551677823067, 0.12333551049232483, 0.17002439498901367, -0.049546945840120316, -0.04369223117828369, -0.13770842552185059, -0.13153591752052307, 0.08270789682865143, 0.15144731104373932, 0.12819676101207733, 0.01186969131231308, -0.06692549586296082, 0.009945477358996868, -0.1205596849322319, 0.08352150768041611, 0.040084272623062134, 0.06367497891187668, -0.13190799951553345, 0.17290876805782318, 0.019596323370933533, 0.05427702143788338, -0.026658840477466583, 0.019973699003458023, -0.0961725264787674, 0.0235975943505764, -0.1193380132317543, -0.02199709787964821, -0.013890471309423447, 0.007049861829727888, -0.008955579251050949, -0.05552099645137787, -0.04791061207652092, 0.020932218059897423, -0.12466023862361908, -0.020702144131064415, 0.02241421677172184, 0.05706406757235527, -0.1141464114189148, -0.04859495535492897, 0.02135397680103779, -0.06146124377846718, 0.06296172738075256, 0.05729253590106964, 0.006259278394281864, 0.07008684426546097, -0.1378105729818344, -0.006222427356988192, 0.08408398181200027, 0.014375466853380203, 0.05964681878685951, -0.08774511516094208, -0.0043645636178553104, 0.013303957879543304, 0.06436533480882645, 0.022623339667916298, 0.08147251605987549, -0.14680516719818115, 0.0033161069732159376, -0.03688746690750122, -0.08772814273834229, -0.06635589152574539, 0.031611859798431396, 0.07763860374689102, 0.018500154837965965, 0.1987166851758957, -0.08197426050901413, 0.0425879992544651, -0.2104177325963974, -0.0019478244939818978, -0.021420633420348167, -0.11927946656942368, -0.1323263943195343, -0.06805459409952164, 0.0630425363779068, -0.04991232603788376, 0.1371365636587143, 0.04046026989817619, 0.0452151857316494, 0.02886279858648777, -0.005422048736363649, 0.008964584209024906, 0.02385467290878296, 0.21093177795410156, 0.03300361707806587, -0.03151417896151543, 0.07677588611841202, 0.05324608460068703, 0.09927208721637726, 0.11592020094394684, 0.19725781679153442, 0.15969336032867432, -0.017025945708155632, 0.09053058177232742, 0.018303146585822105, -0.04527265951037407, -0.15486273169517517, 0.03281908109784126, -0.042722780257463455, 0.10206053406000137, -0.024976136162877083, 0.2103056013584137, 0.053271226584911346, -0.16606159508228302, 0.05833013355731964, -0.051079537719488144, -0.09103614836931229, -0.10465317219495773, -0.03474590182304382, -0.0789547935128212, -0.14352010190486908, -0.003498375415802002, -0.10567283630371094, 0.015108180232346058, 0.10943204164505005, 0.007195769343525171, -0.030957844108343124, 0.15600894391536713, 0.0350976325571537, 0.012644225731492043, 0.06443651020526886, -0.006933677941560745, -0.028263697400689125, -0.1076730489730835, -0.062154266983270645, -0.02135535143315792, -0.009178351610898972, 0.03649783879518509, -0.053051259368658066, -0.07380951195955276, 0.0354912169277668, -0.03819799795746803, -0.0966421514749527, 0.02032262459397316, 0.023030204698443413, 0.06828615814447403, 0.05917210876941681, 0.008562309667468071, 0.007901321165263653, -0.009874008595943451, 0.22405681014060974, -0.07231011986732483, -0.09210266172885895, -0.08747104555368423, 0.283118337392807, 0.05304412171244621, -0.01215288694947958, 0.03402986377477646, -0.05895751714706421, -0.008176907896995544, 0.2592351734638214, 0.20328761637210846, -0.08639279752969742, -0.009797357022762299, 0.002709877211600542, -0.010022986680269241, -0.0047803036868572235, 0.12778891623020172, 0.1483973115682602, 0.042894259095191956, -0.10534082353115082, -0.04040104150772095, -0.0586966834962368, -0.014236262068152428, -0.05500936508178711, 0.06827989220619202, 0.03732096403837204, -0.004033330362290144, -0.036429498344659805, 0.05832428112626076, -0.06654410809278488, -0.08860224485397339, 0.05022623762488365, -0.20285189151763916, -0.16139841079711914, -0.016668956726789474, 0.11128243058919907, 0.0017458479851484299, 0.058420754969120026, -0.020813236013054848, 0.005465415306389332, 0.06641564518213272, -0.026523565873503685, -0.08729936927556992, -0.07565651088953018, 0.09921526908874512, -0.12515656650066376, 0.17925599217414856, -0.039685070514678955, 0.07489360868930817, 0.11669638007879257, 0.07405497133731842, -0.06299017369747162, 0.0654919371008873, 0.030147716403007507, -0.06667371839284897, 0.040840599685907364, 0.0873798280954361, -0.030289433896541595, 0.02440466918051243, 0.03523913025856018, -0.11709452420473099, 0.02501933090388775, -0.0758938118815422, -0.059097014367580414, -0.03815935552120209, -0.043918177485466, -0.05699338763952255, 0.11474516242742538, 0.21789349615573883, -0.024046488106250763, 0.011023741215467453, -0.08314748853445053, 0.0021152659319341183, 0.047857865691185, 0.013551488518714905, -0.08089105784893036, -0.23240047693252563, 0.004699896089732647, 0.05826215818524361, -0.020815962925553322, -0.22294726967811584, -0.09203434735536575, -0.0029788732063025236, -0.07640335708856583, -0.10159341990947723, 0.08340651541948318, 0.06407440453767776, 0.048015840351581573, -0.052871331572532654, -0.08060108125209808, -0.07933705300092697, 0.15493951737880707, -0.1569516807794571, -0.08540824055671692 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unkown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Framework versions - Transformers 4.9.0 - Pytorch 1.7.1+cpu - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "model_index": [{"name": "distilbert-base-uncased-finetuned-clinc", "results": [{"task": {"name": "Text Classification", "type": "text-classification"}}]}]}
text-classification
ASCCCCCCCC/distilbert-base-uncased-finetuned-clinc
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
# distilbert-base-uncased-finetuned-clinc This model is a fine-tuned version of distilbert-base-uncased on an unkown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Framework versions - Transformers 4.9.0 - Pytorch 1.7.1+cpu - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# distilbert-base-uncased-finetuned-clinc\n\nThis model is a fine-tuned version of distilbert-base-uncased on an unkown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 48\n- eval_batch_size: 48\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 1", "### Framework versions\n\n- Transformers 4.9.0\n- Pytorch 1.7.1+cpu\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "# distilbert-base-uncased-finetuned-clinc\n\nThis model is a fine-tuned version of distilbert-base-uncased on an unkown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 48\n- eval_batch_size: 48\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 1", "### Framework versions\n\n- Transformers 4.9.0\n- Pytorch 1.7.1+cpu\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 57, 44, 6, 12, 8, 3, 90, 34 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n# distilbert-base-uncased-finetuned-clinc\n\nThis model is a fine-tuned version of distilbert-base-uncased on an unkown dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 48\n- eval_batch_size: 48\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 1### Framework versions\n\n- Transformers 4.9.0\n- Pytorch 1.7.1+cpu\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.07148110121488571, 0.09172748029232025, -0.0019257401581853628, 0.08142565190792084, 0.17345057427883148, 0.03701271116733551, 0.11829107999801636, 0.08549080789089203, -0.10427279025316238, 0.040570907294750214, 0.06417793780565262, 0.102497398853302, 0.019179973751306534, 0.07949195057153702, -0.04420431703329086, -0.2583226263523102, 0.00865939911454916, 0.026043785735964775, -0.08797696977853775, 0.09483633935451508, 0.10283885896205902, -0.10890878736972809, 0.06675396114587784, 0.013882440514862537, -0.20044666528701782, 0.017156463116407394, -0.0189682487398386, -0.04654104635119438, 0.10174435377120972, 0.015371011570096016, 0.1327676773071289, 0.004873188212513924, 0.1233578771352768, -0.2063504308462143, 0.0008047780720517039, 0.08386603742837906, 0.03366263583302498, 0.07270026206970215, 0.021891843527555466, 0.016122663393616676, 0.1266394555568695, -0.12421302497386932, 0.096748486161232, 0.025794396176934242, -0.06495794653892517, -0.14347830414772034, -0.067749984562397, 0.06331722438335419, 0.080983467400074, 0.10064265877008438, 0.011596104130148888, 0.131869375705719, -0.10818643122911453, 0.06787213683128357, 0.13457483053207397, -0.2675102651119232, -0.08039458096027374, 0.07979557663202286, 0.03239055722951889, 0.06084805727005005, -0.09547658264636993, -0.023931048810482025, 0.04663868248462677, 0.04417242109775543, 0.09620264172554016, -0.02750471420586109, -0.09849744290113449, -0.02236597053706646, -0.14050807058811188, 0.02185405045747757, 0.1727180778980255, 0.031963419169187546, -0.03280063346028328, -0.06574788689613342, -0.06685575097799301, -0.05166291445493698, -0.0236361026763916, -0.06392280757427216, 0.03664080426096916, -0.025436053052544594, -0.05977262929081917, -0.06193332001566887, -0.07053067535161972, -0.03461094945669174, -0.0187294352799654, 0.11200173199176788, 0.044949229806661606, 0.009839633479714394, -0.028661103919148445, 0.09598810970783234, -0.00783251877874136, -0.11107783764600754, 0.01578410528600216, -0.014280859380960464, -0.04330146685242653, -0.0776280015707016, -0.07079602777957916, -0.01283031515777111, 0.0011129972990602255, 0.1517820656299591, -0.05858534574508667, 0.05801868066191673, 0.0274765994399786, 0.012850562110543251, -0.03363097086548805, 0.12882296741008759, -0.04589257761836052, -0.03158363699913025, 0.011937353760004044, 0.0799628496170044, 0.008703650906682014, -0.013250206597149372, -0.10347289592027664, -0.008008618839085102, 0.08196794986724854, 0.023834101855754852, -0.06301815062761307, 0.04659608379006386, -0.019822901114821434, -0.049501508474349976, -0.015583528205752373, -0.11545467376708984, 0.048160210251808167, -0.010415159165859222, -0.07254274934530258, 0.031262096017599106, 0.02484584040939808, 0.017369123175740242, -0.03637055307626724, 0.10755781084299088, -0.10241977125406265, 0.023013746365904808, -0.11275539547204971, -0.08083194494247437, 0.0034601157531142235, -0.08486522734165192, 0.0043854983523488045, -0.0800723060965538, -0.1776982843875885, -0.03259655833244324, 0.07362952828407288, -0.02693823352456093, -0.04994790628552437, -0.05536274239420891, -0.0606776662170887, 0.0029117546509951353, 0.0016278130933642387, 0.08671398460865021, -0.03970491886138916, 0.060123540461063385, 0.0034640480298548937, 0.022961905226111412, -0.03269874304533005, 0.044951580464839935, -0.0998816266655922, 0.016558468341827393, -0.12910382449626923, 0.0754416361451149, -0.07978037744760513, 0.03830273821949959, -0.08079131692647934, -0.11668716371059418, -0.017866360023617744, -0.008644871413707733, 0.053620532155036926, 0.08724425733089447, -0.1843460500240326, -0.045652274042367935, 0.12268708646297455, -0.07105925679206848, -0.07682470977306366, 0.0963454321026802, -0.06180301681160927, 0.06334829330444336, 0.06050972267985344, 0.13715504109859467, 0.11687661707401276, -0.09554218500852585, -0.01892189122736454, 0.019599810242652893, 0.06576907634735107, 0.0028449404053390026, 0.02933022379875183, 0.007217601407319307, -0.0028894473798573017, 0.01922754943370819, -0.05812938138842583, -0.00594252347946167, -0.08666367083787918, -0.09342480450868607, -0.06166873499751091, -0.09125860780477524, 0.048230044543743134, 0.04725361615419388, 0.06283918768167496, -0.05873001739382744, -0.09434446692466736, 0.18033209443092346, 0.11662786453962326, -0.07473620772361755, 0.022112099453806877, -0.062433600425720215, 0.03192436322569847, -0.011391786858439445, -0.01778627187013626, -0.20780892670154572, -0.103659987449646, 0.02486206218600273, -0.0318225622177124, 0.06303670257329941, 0.049076683819293976, 0.04400775954127312, 0.07295374572277069, -0.04216013103723526, 0.005185441114008427, -0.07476488500833511, 0.007614194881170988, -0.10713096708059311, -0.1871088296175003, -0.04622740298509598, -0.01725763827562332, 0.18408603966236115, -0.2394839972257614, 0.03528862074017525, -0.05509763956069946, 0.12586136162281036, 0.00035049417056143284, -0.03190411627292633, -0.05412060022354126, 0.08355948328971863, -0.024725133553147316, -0.07967516779899597, 0.05966828390955925, 0.012905099429190159, -0.07742533832788467, -0.11849583685398102, -0.13389591872692108, 0.07096920162439346, 0.10550188273191452, -0.04297143220901489, -0.07623942196369171, 0.0029362838249653578, -0.060177844017744064, -0.042268283665180206, -0.06388836354017258, 0.030403712764382362, 0.20044271647930145, -0.015096845105290413, 0.132898211479187, -0.05001133680343628, -0.04475899413228035, -0.004762979224324226, -0.018692467361688614, 0.00003444194226176478, 0.05644099786877632, 0.1207752674818039, -0.09121087938547134, 0.10285621136426926, 0.11627781391143799, -0.11298749595880508, 0.13241663575172424, -0.02788689360022545, -0.06105620414018631, -0.013648789376020432, -0.02993359975516796, -0.017059242352843285, 0.089570552110672, -0.13234420120716095, -0.0002544684975873679, 0.016963984817266464, 0.012326130643486977, 0.05791962519288063, -0.18127813935279846, 0.006994410417973995, 0.024267448112368584, -0.012046442367136478, -0.010028577409684658, -0.029188398271799088, 0.024323515594005585, 0.08079736679792404, 0.016287097707390785, -0.03327285498380661, 0.03252642974257469, 0.007205384783446789, -0.08068425208330154, 0.1875675469636917, -0.13005797564983368, -0.14311470091342926, -0.11223749071359634, 0.013682274147868156, -0.07901208847761154, -0.009760535322129726, 0.01873021200299263, -0.0882224291563034, -0.050295595079660416, -0.06047870218753815, -0.01961246132850647, -0.029657574370503426, -0.004565587267279625, 0.062211375683546066, 0.013549795374274254, 0.0818871483206749, -0.1257655769586563, 0.0036890178453177214, -0.02644433081150055, -0.10330642014741898, 0.0015391126507893205, 0.05371137335896492, 0.09545402973890305, 0.15901805460453033, -0.032640110701322556, 0.009136831387877464, -0.012027121149003506, 0.23625679314136505, -0.04856622964143753, -0.012305117212235928, 0.1247454434633255, -0.002505604876205325, 0.04800909757614136, 0.10660751909017563, 0.06251019239425659, -0.09690381586551666, 0.027717310935258865, 0.07414361089468002, -0.019189346581697464, -0.2106192708015442, -0.06850488483905792, -0.04269270971417427, -0.09311001002788544, 0.09732729196548462, 0.029743660241365433, 0.049229372292757034, 0.06167939305305481, 0.006925816182047129, 0.09605789184570312, -0.0197136290371418, 0.08175566047430038, 0.14711305499076843, 0.0379595011472702, 0.11269904673099518, -0.02754054218530655, -0.04797971248626709, 0.048908427357673645, -0.022151757031679153, 0.2528766989707947, -0.0005432288162410259, 0.050613608211278915, 0.04989490658044815, 0.14281871914863586, -0.018988555297255516, 0.03786958381533623, 0.003200012957677245, -0.019221587106585503, 0.010687794536352158, -0.051350146532058716, -0.04156452789902687, 0.022198302671313286, -0.0330478809773922, 0.05314760282635689, -0.09558635205030441, 0.0561528243124485, 0.04741688072681427, 0.22566623985767365, 0.015487483702600002, -0.2882942855358124, -0.09641201049089432, 0.002367212437093258, -0.012453064322471619, -0.05156531557440758, 0.015778882429003716, 0.09023281186819077, -0.10302380472421646, 0.03865867480635643, -0.05855743959546089, 0.09712500125169754, -0.021375752985477448, 0.03135939687490463, 0.07766931504011154, 0.1607000082731247, 0.015237660147249699, 0.08321764320135117, -0.24032127857208252, 0.17406825721263885, 0.020214058458805084, 0.12743771076202393, -0.060585979372262955, 0.02266536094248295, 0.02043558470904827, 0.12069229781627655, 0.05693516507744789, 0.0023785606026649475, -0.014020148664712906, -0.14672096073627472, -0.04097256436944008, 0.04254240170121193, 0.12012457102537155, -0.012987060472369194, 0.07615112513303757, -0.05462277680635452, 0.016977697610855103, 0.0689578726887703, -0.06783529371023178, -0.18040017783641815, -0.14245347678661346, 0.01121449377387762, 0.014312414452433586, -0.06396395713090897, -0.06673230230808258, -0.10045801848173141, -0.055790577083826065, 0.21603311598300934, -0.008261717855930328, -0.028177199885249138, -0.124363474547863, 0.08427520841360092, 0.10674047470092773, -0.05737520381808281, 0.028106871992349625, 0.014847797341644764, 0.10415852069854736, 0.024238403886556625, -0.1082930862903595, 0.04918939620256424, -0.08116454631090164, -0.12447625398635864, -0.046763502061367035, 0.08797027915716171, 0.05589064955711365, 0.04434354975819588, 0.0013885523658245802, 0.010236222296953201, -0.0007720813155174255, -0.09559736400842667, -0.029289359226822853, 0.07859817147254944, 0.07396112382411957, 0.049675047397613525, -0.11549773067235947, 0.010892917402088642, -0.046531081199645996, 0.007551031652837992, 0.13149499893188477, 0.16788721084594727, -0.08786743879318237, 0.025705255568027496, 0.08427004516124725, -0.09314845502376556, -0.18614810705184937, 0.08012101799249649, 0.09302246570587158, -0.0045667667873203754, 0.011677125468850136, -0.21188750863075256, 0.1703290045261383, 0.1315368115901947, -0.004280539695173502, 0.07797633111476898, -0.32101011276245117, -0.12979331612586975, 0.09856022149324417, 0.10352711379528046, 0.07528305798768997, -0.12179190665483475, -0.021873749792575836, -0.043760791420936584, -0.1284671127796173, 0.14695924520492554, -0.12078370153903961, 0.10156870633363724, 0.003455893835052848, 0.08178350329399109, 0.015430333092808723, -0.03712838515639305, 0.13336221873760223, 0.047820765525102615, 0.08977247029542923, -0.052864816039800644, 0.009684412740170956, 0.07645849883556366, -0.053931135684251785, 0.032957084476947784, -0.009293030016124249, 0.05989700183272362, -0.08987203985452652, -0.027052823454141617, -0.061376091092824936, 0.07629027217626572, -0.0513107031583786, -0.07362587749958038, -0.047399766743183136, 0.04302108287811279, 0.06545138359069824, -0.025098782032728195, 0.07828371226787567, 0.028859974816441536, 0.12952837347984314, 0.07635084539651871, 0.10006707906723022, -0.07070304453372955, -0.06698412448167801, 0.0018436956452205777, -0.014230306260287762, 0.07818572223186493, -0.09749884158372879, 0.025821534916758537, 0.13684767484664917, 0.03555337339639664, 0.1341155469417572, 0.0679168626666069, -0.017374631017446518, -0.010186330415308475, 0.03831164538860321, -0.12605127692222595, -0.12877294421195984, -0.01192248985171318, -0.06118284910917282, -0.12013702839612961, 0.03568459302186966, 0.1036330983042717, -0.07194637507200241, -0.0037822467274963856, -0.011266897432506084, -0.003220138605684042, -0.046961694955825806, 0.16714797914028168, 0.03952885791659355, 0.04447251930832863, -0.08318300545215607, 0.11418973654508591, 0.07683201879262924, -0.09074653685092926, 0.024899987503886223, 0.056070178747177124, -0.103159099817276, -0.034981027245521545, 0.054657790809869766, 0.15144218504428864, -0.07698383927345276, -0.039552491158246994, -0.08945398032665253, -0.09917447715997696, 0.04374856874346733, 0.12136579304933548, 0.07363229990005493, -0.014343050308525562, -0.07590753585100174, 0.047503866255283356, -0.16441965103149414, 0.0690634474158287, 0.030165143311023712, 0.07915932685136795, -0.15816564857959747, 0.14225396513938904, 0.025354912504553795, 0.03546847030520439, -0.023377856239676476, 0.017413131892681122, -0.10044041275978088, -0.027034886181354523, -0.12914244830608368, -0.03893190249800682, -0.03688574209809303, 0.01157205831259489, 0.001933182473294437, -0.03150703012943268, -0.055421531200408936, 0.04310411214828491, -0.06482504308223724, -0.04936359450221062, 0.023722149431705475, 0.046759121119976044, -0.1271638125181198, 0.007189507596194744, 0.015888052061200142, -0.08895238488912582, 0.05400560051202774, 0.06675684452056885, 0.015469415113329887, 0.04595712199807167, -0.131570503115654, -0.0211043544113636, 0.047255195677280426, 0.05182655528187752, 0.07817967236042023, -0.06604774296283722, -0.006816510576754808, -0.0035105447750538588, 0.08044195920228958, 0.013898519799113274, 0.0934893786907196, -0.1183125227689743, -0.008788642473518848, -0.06359493732452393, -0.06958332657814026, -0.060833536088466644, 0.033061496913433075, 0.11952078342437744, 0.04223327711224556, 0.19865591824054718, -0.08469002693891525, 0.03375234827399254, -0.18065449595451355, -0.028802409768104553, -0.005051173735409975, -0.03711191564798355, -0.035136252641677856, -0.05459625646471977, 0.058346472680568695, -0.05762388929724693, 0.13274933397769928, -0.005468667484819889, 0.09212148189544678, 0.03169545531272888, -0.03397713974118233, -0.05416850745677948, 0.01304381713271141, 0.21780765056610107, 0.07521234452724457, -0.012329806573688984, 0.061184030026197433, 0.017955360934138298, 0.07594586908817291, 0.05910893529653549, 0.19215886294841766, 0.13190826773643494, -0.07061417400836945, 0.06514259427785873, 0.05868086963891983, -0.08763983100652695, -0.14923539757728577, 0.11481773108243942, -0.03189472481608391, 0.10690926015377045, -0.04653718322515488, 0.15900301933288574, 0.09207076579332352, -0.15936747193336487, 0.04281416907906532, -0.0573258101940155, -0.11912079900503159, -0.11976076662540436, -0.04098774865269661, -0.08007139712572098, -0.12633267045021057, 0.010241353884339333, -0.13422153890132904, 0.012781664729118347, 0.07948259264230728, 0.0050111133605241776, -0.005505486857146025, 0.16451485455036163, -0.05878126248717308, 0.02030971646308899, 0.044545892626047134, 0.003010763553902507, -0.03039093129336834, -0.0819595530629158, -0.06666798889636993, 0.00760652543976903, 0.008457663469016552, 0.07080414891242981, -0.06218389421701431, -0.010359852574765682, 0.033958800137043, -0.012965096160769463, -0.050382375717163086, 0.027133405208587646, 0.02012518234550953, 0.02300674468278885, 0.045235224068164825, 0.027738820761442184, -0.027700170874595642, -0.03742615878582001, 0.25113335251808167, -0.08174431324005127, -0.11702661961317062, -0.13743162155151367, 0.24465949833393097, 0.049875713884830475, -0.008901651948690414, 0.05829773098230362, -0.09178104996681213, -0.007152133621275425, 0.18572700023651123, 0.18826302886009216, -0.09192940592765808, -0.02331562526524067, 0.004175582900643349, -0.016880864277482033, -0.06962365657091141, 0.13139337301254272, 0.12818767130374908, 0.04309472441673279, -0.04697068780660629, -0.037302128970623016, -0.029622118920087814, -0.018224745988845825, -0.10518839210271835, 0.04518108442425728, 0.03483520820736885, -0.004410899244248867, -0.020237432792782784, 0.05645532160997391, -0.03674797713756561, -0.1328052282333374, 0.056104566901922226, -0.14263449609279633, -0.16172276437282562, -0.028337491676211357, 0.0804748386144638, -0.051824264228343964, 0.05377063900232315, -0.022353891283273697, -0.025066787376999855, 0.13958585262298584, -0.024988610297441483, -0.05037779361009598, -0.0779014378786087, 0.08463388681411743, -0.06096827983856201, 0.2076011449098587, -0.013666519895195961, 0.07400671392679214, 0.1102820411324501, 0.055784545838832855, -0.08696036040782928, 0.0459471195936203, 0.05110825225710869, -0.06279520690441132, 0.026733852922916412, 0.10917193442583084, -0.051818422973155975, 0.08860455453395844, 0.046173691749572754, -0.1636611521244049, -0.004486028105020523, -0.04078492522239685, -0.044256847351789474, -0.061643682420253754, -0.010308678261935711, -0.07388344407081604, 0.1468498408794403, 0.21864721179008484, -0.01661152020096779, 0.006580009125173092, -0.0778169259428978, 0.02609998546540737, 0.057466983795166016, 0.10521445423364639, -0.05902428552508354, -0.21743258833885193, 0.01737275905907154, -0.01576952263712883, 0.004684156272560358, -0.21320009231567383, -0.09093200415372849, 0.038918931037187576, -0.05532483011484146, -0.06422706693410873, 0.10181024670600891, 0.06988053023815155, 0.04398152977228165, -0.05193652585148811, -0.11513340473175049, -0.07007758319377899, 0.14456161856651306, -0.15217731893062592, -0.06292637437582016 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-base-finetuned-wikitext2 This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 80.0 ### Training results ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "distilroberta-base-finetuned-wikitext2", "results": []}]}
fill-mask
AT/distilroberta-base-finetuned-wikitext2
[ "transformers", "pytorch", "tensorboard", "roberta", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #roberta #fill-mask #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
# distilroberta-base-finetuned-wikitext2 This model is a fine-tuned version of distilroberta-base on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 80.0 ### Training results ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# distilroberta-base-finetuned-wikitext2\n\nThis model is a fine-tuned version of distilroberta-base on the None dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 80.0", "### Training results", "### Framework versions\n\n- Transformers 4.15.0\n- Pytorch 1.10.0+cu111\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #roberta #fill-mask #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "# distilroberta-base-finetuned-wikitext2\n\nThis model is a fine-tuned version of distilroberta-base on the None dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 80.0", "### Training results", "### Framework versions\n\n- Transformers 4.15.0\n- Pytorch 1.10.0+cu111\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ 56, 38, 6, 12, 8, 3, 91, 4, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #roberta #fill-mask #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n# distilroberta-base-finetuned-wikitext2\n\nThis model is a fine-tuned version of distilroberta-base on the None dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 80.0### Training results### Framework versions\n\n- Transformers 4.15.0\n- Pytorch 1.10.0+cu111\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ -0.10208059847354889, 0.05119477957487106, -0.0017580764833837748, 0.08746824413537979, 0.16583506762981415, 0.027064606547355652, 0.1290665864944458, 0.10939839482307434, -0.1304401010274887, 0.029197368770837784, 0.058949943631887436, 0.08761929720640182, 0.026701809838414192, 0.12448880821466446, -0.039796601980924606, -0.2591331899166107, -0.010454557836055756, 0.02051142416894436, -0.12641121447086334, 0.10188936442136765, 0.12124872207641602, -0.10731012374162674, 0.06492700427770615, 0.022332463413476944, -0.21786174178123474, 0.02777138352394104, 0.006890175864100456, -0.07381176948547363, 0.11599886417388916, 0.022292956709861755, 0.13875342905521393, -0.0037301303818821907, 0.1425132155418396, -0.1511078029870987, 0.008760098367929459, 0.09904206544160843, 0.04816153645515442, 0.09178411215543747, 0.012270796112716198, -0.014394652098417282, 0.11819954961538315, -0.10477081686258316, 0.09657805413007736, 0.03693763166666031, -0.09730130434036255, -0.20413987338542938, -0.08663781732320786, 0.04311337321996689, 0.07283110171556473, 0.10382547974586487, 0.012337899766862392, 0.14526231586933136, -0.07823022454977036, 0.07535766810178757, 0.2020302563905716, -0.2481001764535904, -0.09037309139966965, 0.07862119376659393, 0.045067060738801956, 0.04762743040919304, -0.10619647800922394, -0.004018057603389025, 0.06257607042789459, 0.052150432020425797, 0.10984699428081512, -0.0235733725130558, -0.13281121850013733, -0.01610243134200573, -0.11262458562850952, 0.019423266872763634, 0.1786273717880249, 0.027515627443790436, -0.06284143775701523, -0.03947355970740318, -0.06327938288450241, -0.06800837814807892, -0.03822297975420952, -0.043326154351234436, 0.045916538685560226, -0.031014394015073776, -0.0943494662642479, -0.06042243167757988, -0.08492984622716904, -0.07559077441692352, -0.04016617313027382, 0.14998212456703186, 0.02825125679373741, 0.024382002651691437, -0.0685187503695488, 0.09512527287006378, -0.04602660983800888, -0.13318794965744019, -0.008826474659144878, -0.007578490301966667, -0.038510698825120926, -0.060980647802352905, -0.07159748673439026, -0.04153674095869064, 0.011656498536467552, 0.17116069793701172, -0.08236194401979446, 0.05736451596021652, 0.015066751278936863, 0.013673338107764721, -0.055696070194244385, 0.1578640639781952, -0.044102925807237625, -0.04293167218565941, 0.025181550532579422, 0.05503785237669945, 0.010081802494823933, -0.005064174998551607, -0.09066281467676163, -0.013550013303756714, 0.06283823400735855, 0.024199139326810837, -0.053517669439315796, 0.041485559195280075, -0.02845139056444168, -0.026020295917987823, -0.009422973729670048, -0.11702823638916016, 0.026683490723371506, -0.03329054266214371, -0.10093370079994202, 0.021120615303516388, 0.04348858445882797, 0.007352176122367382, 0.0015715851914137602, 0.1201787069439888, -0.09107490628957748, 0.010232383385300636, -0.12389971315860748, -0.09409473836421967, -0.0015828926116228104, -0.09010206907987595, 0.003985893912613392, -0.08537659794092178, -0.20679213106632233, -0.029883604496717453, 0.06709970533847809, -0.04547495394945145, -0.027060596272349358, -0.02140536718070507, -0.08344803750514984, 0.013793667778372765, -0.004716168157756329, 0.14534878730773926, -0.04350574314594269, 0.07377994805574417, 0.03900317847728729, 0.052436619997024536, -0.058716192841529846, 0.037400729954242706, -0.08802425861358643, 0.010270331986248493, -0.17600706219673157, 0.06300485134124756, -0.07890766859054565, 0.05836724489927292, -0.10072959959506989, -0.0996864065527916, -0.024727467447519302, -0.005222152452915907, 0.08279497921466827, 0.09966850280761719, -0.2093249410390854, -0.04458006098866463, 0.14026609063148499, -0.0795634388923645, -0.08220119029283524, 0.07500151544809341, -0.056031063199043274, 0.0937088131904602, 0.07717178016901016, 0.12023226916790009, 0.09394220262765884, -0.12638631463050842, -0.005330554209649563, 0.012698660604655743, 0.06787385791540146, -0.0033560164738446474, 0.03134280443191528, -0.0006000708090141416, 0.039375778287649155, 0.03254621475934982, -0.03309454023838043, -0.0033988882787525654, -0.09542860090732574, -0.08183299005031586, -0.07033998519182205, -0.10410358756780624, 0.028845403343439102, 0.048588693141937256, 0.06048315018415451, -0.0869951918721199, -0.1075286790728569, 0.14247049391269684, 0.1307549625635147, -0.03925686329603195, 0.019904669374227524, -0.09254037588834763, 0.039552487432956696, -0.013385850004851818, -0.020165083929896355, -0.22720396518707275, -0.09605478495359421, -0.0020523392595350742, -0.007318088784813881, 0.05744455009698868, 0.023420870304107666, 0.07242564857006073, 0.05714225023984909, -0.062160950154066086, 0.010026334784924984, -0.0881558358669281, -0.007670490071177483, -0.09362273663282394, -0.21322859823703766, -0.047335151582956314, -0.026108304038643837, 0.1571657657623291, -0.1966581791639328, 0.030503876507282257, -0.03585576266050339, 0.1368788480758667, 0.0313878171145916, -0.02805924043059349, -0.04848209396004677, 0.07358294725418091, -0.027340997010469437, -0.09383895248174667, 0.03945964202284813, 0.008790133520960808, -0.07134153693914413, -0.09645427763462067, -0.10470698773860931, 0.0755358561873436, 0.11412253975868225, -0.02635950781404972, -0.09952474385499954, 0.04616621136665344, -0.06067196652293205, -0.02149900235235691, -0.071668840944767, 0.016154548153281212, 0.14406757056713104, -0.006346358917653561, 0.12643463909626007, -0.059897616505622864, -0.04924575611948967, 0.011073717847466469, -0.029407598078250885, 0.03255264088511467, 0.04081851616501808, 0.0838090181350708, -0.07399360835552216, 0.09939766675233841, 0.10803896188735962, -0.1122938022017479, 0.14173683524131775, -0.05084110051393509, -0.06495220214128494, -0.006160730496048927, -0.029616499319672585, 0.007083596661686897, 0.12679423391819, -0.09814033657312393, -0.00014111257041804492, 0.017732130363583565, 0.02456788346171379, 0.037049029022455215, -0.19442181289196014, -0.003269240027293563, 0.014582809060811996, -0.024124888703227043, -0.022199716418981552, -0.009675675071775913, 0.015515920706093311, 0.0941358432173729, 0.017580540850758553, -0.025496961548924446, 0.012770622968673706, 0.006980030331760645, -0.05399611219763756, 0.20007206499576569, -0.11760243028402328, -0.11091664433479309, -0.11847129464149475, -0.009092525579035282, -0.057763032615184784, -0.005524071399122477, 0.025937404483556747, -0.10733193159103394, -0.04999929666519165, -0.04719392955303192, 0.02380416728556156, -0.01099153608083725, 0.00749770924448967, 0.0510634183883667, 0.023696260526776314, 0.10569901019334793, -0.1521596759557724, 0.007648666389286518, -0.03406205028295517, -0.1161113902926445, 0.0037843966856598854, 0.046334441751241684, 0.10217884182929993, 0.13561411201953888, -0.037257444113492966, 0.0026618775445967913, -0.02097983844578266, 0.24593190848827362, -0.07546035945415497, 0.00496727554127574, 0.15187925100326538, 0.02067568339407444, 0.04143741354346275, 0.10061471909284592, 0.060837749391794205, -0.11575538665056229, 0.03358221799135208, 0.08794871717691422, -0.03326316550374031, -0.23606254160404205, -0.03125442564487457, -0.04152580350637436, -0.09172002971172333, 0.07047440111637115, 0.03751020506024361, 0.05944504961371422, 0.07663263380527496, 0.0050568850710988045, 0.08646222949028015, -0.024083830416202545, 0.08375979959964752, 0.10445619374513626, 0.05327581614255905, 0.13352206349372864, -0.0469493567943573, -0.029998114332556725, 0.0588037334382534, -0.010201185941696167, 0.279848575592041, -0.015432128682732582, 0.0627390593290329, 0.07120110839605331, 0.13762104511260986, -0.016070663928985596, 0.06389886140823364, 0.002877319697290659, -0.027041610330343246, -0.00035767501685768366, -0.05794669687747955, -0.015614966861903667, 0.009113442152738571, -0.08366299420595169, 0.0695262923836708, -0.07581412047147751, 0.03672926127910614, 0.036638785153627396, 0.26387307047843933, 0.02308177947998047, -0.3137930631637573, -0.1133250817656517, 0.0035819835029542446, -0.01292858924716711, -0.058979954570531845, 0.0012975301360711455, 0.08029863238334656, -0.10204537212848663, 0.06923134624958038, -0.05760255828499794, 0.10986235737800598, 0.020281892269849777, 0.01718800701200962, 0.07168389856815338, 0.1678537279367447, -0.0019967621192336082, 0.06184158846735954, -0.2702868580818176, 0.21796199679374695, 0.021649092435836792, 0.1518409103155136, -0.049291640520095825, 0.03637842461466789, 0.04399386793375015, 0.11156801879405975, 0.0486934594810009, -0.01853911578655243, -0.029999379068613052, -0.15900425612926483, -0.007698382716625929, 0.03774157539010048, 0.12235991656780243, -0.020955152809619904, 0.09505410492420197, -0.05239975452423096, 0.01718077063560486, 0.07162925601005554, -0.05962451919913292, -0.18050897121429443, -0.10760276764631271, -0.011685539036989212, 0.02619938552379608, -0.04138375073671341, -0.08002529293298721, -0.09708046168088913, -0.027127709239721298, 0.14657434821128845, 0.020854542031884193, -0.031371161341667175, -0.14023537933826447, 0.10245629400014877, 0.12713856995105743, -0.05961407721042633, 0.03788064047694206, 0.0022103143855929375, 0.11203782260417938, 0.03651301935315132, -0.09174347668886185, 0.05874055251479149, -0.08033144474029541, -0.15907573699951172, -0.04926479980349541, 0.07459771633148193, 0.04621044546365738, 0.04050086811184883, 0.0018241042271256447, 0.029766563326120377, -0.0008845394477248192, -0.0916823223233223, -0.00916235987097025, 0.046704307198524475, 0.06633522361516953, 0.033888980746269226, -0.08690580725669861, -0.002068720292299986, -0.03323355317115784, -0.005202006548643112, 0.08743364363908768, 0.18792545795440674, -0.08832565695047379, 0.024353893473744392, 0.06463684141635895, -0.08293924480676651, -0.18877935409545898, 0.11194708198308945, 0.09891191869974136, 0.009542285464704037, 0.034802280366420746, -0.20898637175559998, 0.15831883251667023, 0.11277972161769867, -0.020941078662872314, 0.09754088521003723, -0.2840155065059662, -0.13916002213954926, 0.07795055955648422, 0.11481957882642746, 0.06980039924383163, -0.14256326854228973, -0.017116231843829155, -0.06303811073303223, -0.14659637212753296, 0.1071280762553215, -0.1549699306488037, 0.10842455178499222, 0.0009394083172082901, 0.10065215080976486, 0.0029486133717000484, -0.025157811120152473, 0.1397133618593216, 0.018086189404129982, 0.10760616511106491, -0.05100703984498978, 0.04163764417171478, 0.13229794800281525, -0.04759274795651436, 0.014025554060935974, -0.02903878316283226, 0.06311661750078201, -0.07150927186012268, -0.01649351790547371, -0.07023770362138748, 0.08070981502532959, -0.04985637217760086, -0.07416803389787674, -0.04943150281906128, 0.04478980973362923, 0.015870127826929092, -0.04330216720700264, 0.08961325883865356, 0.006501386873424053, 0.17528244853019714, 0.05684864521026611, 0.09186136722564697, -0.05965103209018707, -0.06167174130678177, 0.03126360476016998, -0.019727958366274834, 0.08108982443809509, -0.17927968502044678, 0.021782398223876953, 0.10647295415401459, 0.049516867846250534, 0.11631465703248978, 0.07022855430841446, -0.04806908592581749, 0.026301421225070953, 0.06979289650917053, -0.09499343484640121, -0.10435817390680313, 0.012626547366380692, -0.0473523773252964, -0.1180095300078392, 0.07333001494407654, 0.11275139451026917, -0.07354144752025604, -0.0025514932349324226, -0.010958963073790073, -0.011164041236042976, -0.06864844262599945, 0.20357012748718262, 0.05341373011469841, 0.05364687740802765, -0.09266598522663116, 0.10871336609125137, 0.05547884479165077, -0.049280740320682526, 0.018895108252763748, 0.06650932133197784, -0.08835602551698685, -0.01549671869724989, 0.07422537356615067, 0.16389402747154236, -0.07610854506492615, -0.05273890495300293, -0.11583168059587479, -0.097353994846344, 0.03308119624853134, 0.16184039413928986, 0.07209192216396332, -0.018505331128835678, -0.05351998656988144, 0.05813394486904144, -0.15018053352832794, 0.06836368143558502, 0.04861937463283539, 0.08428548276424408, -0.1441226452589035, 0.13634830713272095, 0.024853821843862534, 0.022332562133669853, -0.02499076910316944, 0.021256636828184128, -0.08776959031820297, -0.007096495945006609, -0.17232537269592285, -0.02995203621685505, -0.019692743197083473, 0.006444268394261599, -0.010143207386136055, -0.056617580354213715, -0.06485065817832947, 0.050620537251234055, -0.08032137155532837, -0.05238941311836243, 0.02808036282658577, 0.02656710520386696, -0.133169025182724, 0.009022989310324192, 0.017308693379163742, -0.08243142068386078, 0.04964994266629219, 0.058104258030653, 0.016803137958049774, 0.069104865193367, -0.13203805685043335, -0.02317091077566147, 0.03925742208957672, 0.026331940665841103, 0.08281363546848297, -0.04681902378797531, -0.006064351182430983, -0.021244840696454048, 0.10552550107240677, 0.008270082995295525, 0.058950938284397125, -0.12161286175251007, -0.008573251776397228, -0.05198364332318306, -0.06635887920856476, -0.05757251754403114, 0.03608192503452301, 0.1333998441696167, 0.05452398955821991, 0.1855878382921219, -0.08250316977500916, 0.01603992097079754, -0.2011234313249588, -0.020860373973846436, -0.018412649631500244, -0.05169902369379997, -0.09402941912412643, -0.0501755028963089, 0.07313305884599686, -0.06488905847072601, 0.09633927792310715, 0.006769612431526184, 0.10416443645954132, 0.04588436707854271, -0.04559501260519028, -0.05311792343854904, 0.006687477696686983, 0.21164631843566895, 0.07273362576961517, 0.0003403080627322197, 0.06424090266227722, 0.030845068395137787, 0.07232668995857239, 0.0645495131611824, 0.2033078372478485, 0.15751871466636658, -0.04549602046608925, 0.07435314357280731, 0.05505095049738884, -0.0761566311120987, -0.13926498591899872, 0.09791533648967743, -0.030321981757879257, 0.08567608892917633, -0.05506107956171036, 0.11454043537378311, 0.12058962881565094, -0.14990144968032837, 0.050128500908613205, -0.07707854360342026, -0.09617908298969269, -0.13698048889636993, -0.00927744060754776, -0.08396326750516891, -0.14391842484474182, 0.018384406343102455, -0.12795473635196686, 0.03461065888404846, 0.11198152601718903, 0.001656969077885151, 0.00396821741014719, 0.16612127423286438, -0.039671316742897034, 0.007438815198838711, 0.04848819598555565, 0.0005468828603625298, -0.0199561957269907, -0.07595530897378922, -0.07060796767473221, 0.012051778845489025, 0.013564019463956356, 0.05658869445323944, -0.05335311219096184, -0.045881643891334534, 0.034281276166439056, -0.01812933385372162, -0.06826724857091904, 0.03088899329304695, 0.03599502146244049, 0.03586730360984802, 0.02812749147415161, 0.02409416064620018, -0.005988000426441431, -0.02526014856994152, 0.30348873138427734, -0.09505345672369003, -0.14195547997951508, -0.15733985602855682, 0.23349153995513916, 0.028892820701003075, -0.021098405122756958, 0.043672673404216766, -0.10177785158157349, -0.020736731588840485, 0.18850745260715485, 0.17401614785194397, -0.06188514828681946, -0.023027068004012108, -0.011464369483292103, -0.025743473321199417, -0.09371969103813171, 0.14618884027004242, 0.12190477550029755, 0.04991177096962929, -0.057021185755729675, -0.023056644946336746, -0.01956269145011902, -0.024562006816267967, -0.07844939082860947, 0.06100625544786453, 0.0020611423533409834, -0.003840950783342123, -0.03412199392914772, 0.07544982433319092, -0.011460008099675179, -0.1788386106491089, 0.0917678102850914, -0.15746060013771057, -0.17205211520195007, -0.033953554928302765, 0.07674757391214371, -0.023612577468156815, 0.0660921260714531, -0.026333395391702652, -0.004413038492202759, 0.11781314760446548, -0.025812914595007896, -0.030091874301433563, -0.12958107888698578, 0.11215076595544815, -0.07950153946876526, 0.19497530162334442, -0.035849861800670624, 0.054824311286211014, 0.12097806483507156, 0.03628087788820267, -0.10564462095499039, 0.04759013652801514, 0.040839944034814835, -0.08138681948184967, 0.021948298439383507, 0.12767845392227173, -0.05363788455724716, 0.07608653604984283, 0.038626376539468765, -0.16522116959095, 0.0020912052132189274, -0.02793704904615879, -0.03715315833687782, -0.08074954897165298, -0.015618899837136269, -0.09215961396694183, 0.13450492918491364, 0.21004369854927063, -0.026003846898674965, 0.01879977248609066, -0.0906095802783966, 0.04554958641529083, 0.0726228877902031, 0.06113363802433014, -0.07469352334737778, -0.24052873253822327, 0.010432375594973564, 0.04668397456407547, -0.014844886027276516, -0.23293371498584747, -0.07205788791179657, 0.046462755650281906, -0.059852853417396545, -0.04970496520400047, 0.09335322678089142, 0.09071808308362961, 0.048504896461963654, -0.041914839297533035, -0.13475778698921204, -0.06376827508211136, 0.16017462313175201, -0.1660483181476593, -0.06029267609119415 ]
null
null
transformers
#Harry Potter DialoGPT Model
{"tags": ["conversational"]}
text-generation
ATGdev/DialoGPT-small-harrypotter
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
#Harry Potter DialoGPT Model
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 51 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.009697278961539268, 0.03208012506365776, -0.007204889785498381, 0.004809224978089333, 0.16726240515708923, 0.014898733235895634, 0.09765533357858658, 0.13672804832458496, -0.007841327227652073, -0.031050153076648712, 0.14490588009357452, 0.20411323010921478, -0.006439372431486845, 0.0661218985915184, -0.07572533935308456, -0.2683109939098358, 0.05759621039032936, 0.046649303287267685, 0.016515716910362244, 0.1200079694390297, 0.08573378622531891, -0.05473608896136284, 0.08714032918214798, -0.014583407901227474, -0.150366872549057, 0.017733458429574966, 0.043394338339567184, -0.12260226160287857, 0.11910516023635864, 0.05462685227394104, 0.07063519209623337, 0.014929565601050854, -0.07541623711585999, -0.1631229966878891, 0.03031250834465027, 0.01425902172923088, -0.0594632662832737, 0.04757995903491974, 0.059961482882499695, -0.10165371745824814, 0.10819483548402786, 0.09530027210712433, -0.013078106567263603, 0.06798283755779266, -0.16849711537361145, -0.020869607105851173, -0.01446688175201416, 0.009899779222905636, 0.05550243332982063, 0.09964893013238907, -0.03413357585668564, 0.10497362166643143, -0.09214533120393753, 0.11017382889986038, 0.10932035744190216, -0.32057443261146545, -0.005767723545432091, 0.09167823940515518, 0.039358653128147125, 0.07352814823389053, -0.04467793554067612, 0.06258884817361832, 0.018015462905168533, 0.017986174672842026, -0.014015024527907372, -0.07283061742782593, -0.11612214148044586, 0.04717336222529411, -0.08668071031570435, -0.059868961572647095, 0.2244078367948532, -0.05464440956711769, 0.06881742179393768, -0.05281897634267807, -0.10522868484258652, -0.04308144748210907, -0.029833965003490448, 0.00475557055324316, -0.07660607248544693, 0.08692064881324768, 0.00869679357856512, -0.09547875821590424, -0.1376667022705078, -0.02496783249080181, -0.1776352822780609, 0.16140350699424744, 0.02465328387916088, 0.05232657864689827, -0.2027255892753601, 0.09623090922832489, 0.017906051129102707, -0.08045592904090881, 0.022091427817940712, -0.10046248883008957, 0.029131146147847176, 0.013760408386588097, -0.04754498973488808, -0.061387211084365845, 0.0843690037727356, 0.11199145019054413, -0.01731434464454651, 0.025486016646027565, -0.039331406354904175, 0.08100687712430954, 0.03553595021367073, 0.09077847748994827, 0.007288969587534666, -0.028338588774204254, 0.025842782109975815, -0.13719046115875244, -0.003647835226729512, -0.07116208970546722, -0.16572439670562744, -0.021088803187012672, 0.02994808368384838, 0.08289173990488052, 0.015449047088623047, 0.11682453751564026, -0.03272046521306038, -0.025152435526251793, 0.03602350503206253, -0.047656361013650894, -0.012649794109165668, 0.016648368909955025, 0.013163427822291851, 0.12399329990148544, -0.0022096503525972366, 0.03235051408410072, -0.13653022050857544, 0.031423524022102356, -0.06793295592069626, -0.003740974934771657, -0.03486552834510803, -0.040637075901031494, 0.009043924510478973, -0.06862333416938782, 0.003486064961180091, -0.15030112862586975, -0.15063877403736115, 0.007587034720927477, -0.007836631499230862, -0.04107699543237686, -0.06370922178030014, -0.06952770054340363, -0.013550350442528725, 0.04251532256603241, -0.07093454152345657, -0.011352915316820145, -0.06403283774852753, 0.11004766076803207, -0.03197755664587021, 0.07921615242958069, -0.11953279376029968, 0.08390819281339645, -0.11260783672332764, -0.02386913076043129, -0.060801517218351364, 0.09317506104707718, -0.0006014376995153725, 0.09549830108880997, -0.006563255097717047, -0.017931854352355003, -0.07981178909540176, 0.06445012241601944, -0.042872510850429535, 0.21701598167419434, -0.0615808479487896, -0.11181682348251343, 0.28781595826148987, -0.052628401666879654, -0.1370542049407959, 0.11647392809391022, 0.008682746440172195, 0.05777018144726753, 0.10703510791063309, 0.19733482599258423, -0.015276194550096989, 0.004040541127324104, 0.09471915662288666, 0.11263324320316315, -0.11276852339506149, -0.033160366117954254, 0.013019153848290443, -0.04081077128648758, -0.10867965966463089, 0.04689536616206169, 0.09810488671064377, 0.07090286910533905, -0.04786505550146103, -0.03377414867281914, -0.01366397924721241, 0.0052589005790650845, 0.08885077387094498, -0.007157256826758385, 0.10962837189435959, -0.05819983780384064, -0.03796621412038803, -0.029282379895448685, -0.012126247398555279, -0.03951939567923546, 0.03137664496898651, -0.043376367539167404, 0.10821941494941711, -0.011204327456653118, 0.06364280730485916, -0.16185984015464783, -0.07691477984189987, -0.017002692446112633, 0.1581239402294159, 0.024538565427064896, 0.09859629720449448, 0.0552486926317215, -0.040398042649030685, -0.0012767292791977525, 0.012792680412530899, 0.15581141412258148, -0.022091681137681007, -0.065607450902462, -0.052166227251291275, 0.08642971515655518, -0.05641226842999458, 0.04504093527793884, -0.05937713757157326, 0.012367865070700645, 0.05064384639263153, 0.10342344641685486, -0.00018274025933351368, 0.03323284164071083, -0.008164864964783192, 0.002145637758076191, -0.058205123990774155, 0.007405933458358049, 0.10799351334571838, 0.00036868182360194623, -0.07365862280130386, 0.22074243426322937, -0.17796069383621216, 0.1765957772731781, 0.1893044263124466, -0.299345999956131, 0.017949223518371582, -0.10759581625461578, -0.04561871662735939, 0.014407722279429436, 0.05567655712366104, -0.0454222597181797, 0.1703362911939621, -0.009871348738670349, 0.18874616920948029, -0.04946064203977585, -0.04464937001466751, -0.0200483538210392, -0.05118836089968681, -0.0024189651012420654, 0.07781197130680084, 0.10685696452856064, -0.13992026448249817, 0.1964332014322281, 0.1621224284172058, 0.048237916082143784, 0.19945049285888672, 0.015346456319093704, -0.011589210480451584, 0.0909530371427536, 0.005220826715230942, -0.058739423751831055, -0.07409929484128952, -0.2594851851463318, -0.030033592134714127, 0.07992640137672424, 0.0422382652759552, 0.1212305948138237, -0.11349532753229141, -0.038956157863140106, -0.01763172075152397, -0.023146281018853188, 0.021672505885362625, 0.0914369598031044, 0.06075398623943329, 0.13201528787612915, -0.001710098935291171, -0.007300339173525572, 0.10524573177099228, 0.01783694699406624, -0.09354141354560852, 0.18308524787425995, -0.13652534782886505, -0.37097251415252686, -0.13911493122577667, -0.18057456612586975, -0.05449081212282181, 0.05712554603815079, 0.11679314076900482, -0.12011238187551498, -0.018752124160528183, 0.01578843593597412, 0.10931742936372757, -0.08449502289295197, 0.0021454424131661654, -0.06880278885364532, 0.0321490578353405, -0.10310184955596924, -0.09194442629814148, -0.055416494607925415, -0.031392451375722885, -0.08001253753900528, 0.1423761546611786, -0.10777941346168518, 0.04476889222860336, 0.20262959599494934, 0.04653622955083847, 0.05625178664922714, -0.044105201959609985, 0.19377262890338898, -0.11264272034168243, -0.01661740615963936, 0.19215328991413116, -0.048360925167798996, 0.07476246356964111, 0.1232115849852562, -0.006348740309476852, -0.08765771239995956, 0.03011748194694519, -0.02085109055042267, -0.07988511025905609, -0.23219464719295502, -0.13938382267951965, -0.12429051846265793, 0.09477275609970093, 0.028005298227071762, 0.056365787982940674, 0.17219258844852448, 0.06577219814062119, -0.038416244089603424, 0.006410336587578058, 0.02959546446800232, 0.08237514644861221, 0.23417828977108002, -0.06035616248846054, 0.1364797055721283, -0.03420931473374367, -0.14982740581035614, 0.08169995993375778, 0.0713929831981659, 0.10213395953178406, 0.06678459793329239, 0.0804823637008667, 0.0149586396291852, 0.06188136339187622, 0.1311223804950714, 0.08191446959972382, 0.019586285576224327, -0.02480296604335308, -0.03388110175728798, -0.025523077696561813, -0.05937909707427025, 0.040128443390131, 0.06589099019765854, -0.16763372719287872, -0.039227183908224106, -0.09338314831256866, 0.09657008945941925, 0.0873042419552803, 0.06609832495450974, -0.1842060089111328, -0.008006223477423191, 0.08488986641168594, -0.03854905813932419, -0.13727426528930664, 0.09535189718008041, 0.01523482333868742, -0.15144726634025574, 0.03139317408204079, -0.04061909019947052, 0.12188644707202911, -0.07804752141237259, 0.09809603542089462, -0.08108244836330414, -0.07448557764291763, 0.02123199962079525, 0.1261177361011505, -0.30527687072753906, 0.20240111649036407, -0.0024993624538183212, -0.06486981362104416, -0.1243603527545929, -0.0032166161108762026, 0.002410882618278265, 0.07357452809810638, 0.10519039630889893, -0.007196315098553896, 0.001897757756523788, -0.06300821900367737, -0.01829923689365387, 0.032471053302288055, 0.13080233335494995, -0.0401318334043026, -0.021158374845981598, -0.050194524228572845, -0.001653497340157628, -0.03173094615340233, -0.06934895366430283, 0.02002747356891632, -0.19509181380271912, 0.08751901984214783, 0.04166261479258537, 0.09648149460554123, 0.029994789510965347, 0.004265148192644119, -0.09651939570903778, 0.24698667228221893, -0.07148019969463348, -0.10072879493236542, -0.10919588059186935, -0.046813901513814926, 0.03569883480668068, -0.05628936365246773, 0.04309194162487984, -0.0788632407784462, 0.028997479006648064, -0.06352769583463669, -0.19235502183437347, 0.12410202622413635, -0.09027006477117538, -0.04412810131907463, -0.02371402643620968, 0.2110891044139862, -0.05598580464720726, 0.010335659608244896, 0.02930437959730625, 0.01208863127976656, -0.11645778268575668, -0.09678568691015244, 0.031018631532788277, -0.007351789623498917, 0.050603240728378296, 0.041841957718133926, -0.05915454775094986, -0.017138581722974777, -0.052199993282556534, -0.022926922887563705, 0.3496883809566498, 0.14231905341148376, -0.043836336582899094, 0.19347235560417175, 0.12347975373268127, -0.07452994585037231, -0.3159443140029907, -0.1066238060593605, -0.10937739163637161, -0.04680149629712105, -0.07012093812227249, -0.2002030611038208, 0.06474938243627548, 0.00662544509395957, -0.013415241613984108, 0.12749312818050385, -0.2561831772327423, -0.07571036368608475, 0.15906259417533875, -0.017980827018618584, 0.3745945692062378, -0.1168576180934906, -0.10926306992769241, -0.03950892388820648, -0.14175476133823395, 0.16968177258968353, -0.01989765651524067, 0.11221715062856674, -0.009765521623194218, 0.14388824999332428, 0.05548359826207161, -0.023479344323277473, 0.08544106781482697, 0.004999885335564613, -0.03290518373250961, -0.10304180532693863, -0.05676887184381485, 0.007092386484146118, 0.02477436140179634, 0.018026655539870262, -0.041834570467472076, 0.02227151393890381, -0.11731979995965958, -0.04657655209302902, -0.08982590585947037, 0.04431166127324104, 0.03899754583835602, -0.07325074821710587, -0.002380647463724017, -0.07165111601352692, -0.012272949330508709, 0.022334342822432518, 0.20356793701648712, -0.08029330521821976, 0.16448934376239777, 0.09239562600851059, 0.12419285625219345, -0.14376309514045715, -0.00019283240544609725, -0.0762530043721199, -0.05611240118741989, 0.07737895101308823, -0.09433035552501678, 0.058893077075481415, 0.10901971161365509, -0.04567738622426987, 0.08828683942556381, 0.10377411544322968, 0.008936077356338501, 0.003213887568563223, 0.10916902124881744, -0.2667325437068939, -0.0296600554138422, -0.07532413303852081, 0.000883326749317348, 0.09092561900615692, 0.08562852442264557, 0.18840822577476501, 0.025361526757478714, -0.04293036088347435, -0.002770674182102084, 0.028597986325621605, -0.039021048694849014, 0.051667019724845886, 0.001123449532315135, 0.01947369985282421, -0.1530752182006836, 0.072522833943367, 0.01490565575659275, -0.15215420722961426, 0.021316176280379295, 0.16572684049606323, -0.11656328290700912, -0.1283872276544571, -0.06520111113786697, 0.08313824236392975, -0.11755692958831787, -0.01578943058848381, -0.03279297426342964, -0.13145680725574493, 0.07992171496152878, 0.12629036605358124, 0.05557859688997269, 0.0972496047616005, -0.06061713397502899, -0.020469192415475845, -0.018721895292401314, -0.014099318534135818, -0.012384648434817791, -0.007667020428925753, -0.055978111922740936, 0.0590752474963665, -0.026677248999476433, 0.1425808072090149, -0.09221141785383224, -0.1037059873342514, -0.16142144799232483, 0.0374140702188015, -0.11013076454401016, -0.08825794607400894, -0.08821134269237518, -0.050188567489385605, 0.002360827289521694, -0.019856395199894905, -0.04037635400891304, -0.05829505994915962, -0.12300454825162888, 0.0338277705013752, -0.040771447122097015, 0.024727050215005875, -0.07512269169092178, 0.015856385231018066, 0.08507686108350754, -0.03285100311040878, 0.15655414760112762, 0.1450488418340683, -0.1006515845656395, 0.10741901397705078, -0.14806775748729706, -0.09138492494821548, 0.11116421222686768, 0.015329592861235142, 0.0449691042304039, 0.09723787009716034, 0.013362943194806576, 0.0635865181684494, 0.032776717096567154, 0.05308786407113075, 0.027619892731308937, -0.11959987878799438, 0.06483134627342224, -0.03626115620136261, -0.14700546860694885, -0.049338050186634064, -0.05282869189977646, 0.01647452637553215, 0.013054544106125832, 0.09622690081596375, -0.05301849544048309, 0.10698331147432327, -0.04055701196193695, 0.0346808135509491, 0.017554637044668198, -0.1730053424835205, -0.03816922754049301, -0.08538098633289337, 0.03681723028421402, 0.014741539023816586, 0.25266793370246887, 0.030072299763560295, 0.012416383251547813, 0.032671261578798294, 0.08285367488861084, 0.03899408504366875, 0.010228337720036507, 0.17482228577136993, 0.1162426546216011, -0.06621865928173065, -0.10445023328065872, 0.0729617029428482, 0.016332454979419708, 0.01286179106682539, 0.13617953658103943, 0.008365051820874214, 0.005795429926365614, 0.08649782836437225, -0.016865963116288185, 0.009968153201043606, -0.10052056610584259, -0.13426925241947174, -0.022176474332809448, 0.05151832848787308, -0.04655967652797699, 0.11727844923734665, 0.1406494379043579, -0.01806013658642769, 0.03222079202532768, -0.021771740168333054, -0.05699979141354561, -0.1683429479598999, -0.1429590880870819, -0.06883849948644638, -0.13416796922683716, 0.00897989235818386, -0.11180389672517776, 0.05395037308335304, 0.06001098081469536, 0.06750501692295074, -0.06899319589138031, 0.10220931470394135, 0.04626858979463577, -0.11440542340278625, 0.06264589726924896, -0.0296088308095932, 0.09430401772260666, -0.02759445086121559, -0.019505485892295837, -0.09039592742919922, 0.014574515633285046, 0.011419114656746387, 0.06245238706469536, -0.04707273095846176, 0.007463190704584122, -0.14696238934993744, -0.08972041308879852, -0.0523175448179245, 0.0718572810292244, -0.050409089773893356, 0.14282815158367157, 0.00775480642914772, -0.0170906875282526, 0.039554283022880554, 0.22787313163280487, -0.07476283609867096, -0.04778539761900902, -0.05269690603017807, 0.20717895030975342, 0.02975541539490223, 0.1171872541308403, -0.022938819602131844, -0.006106364540755749, -0.0919521227478981, 0.3764844834804535, 0.30030161142349243, -0.09031439572572708, 0.011794124729931355, 0.02137952297925949, 0.04502861574292183, 0.1316293478012085, 0.1216534823179245, 0.10318691283464432, 0.3006802201271057, -0.07452366501092911, -0.04653361067175865, -0.012629742734134197, -0.023858042433857918, -0.09059546142816544, 0.1021224707365036, 0.04839762672781944, -0.06382183730602264, -0.03313443064689636, 0.0954432487487793, -0.25862133502960205, 0.1277991235256195, -0.12311873584985733, -0.17578600347042084, -0.06654827296733856, 0.009760108776390553, 0.10465722531080246, 0.015642458572983742, 0.0946015790104866, 0.007128213066607714, -0.11252258718013763, 0.06305865943431854, 0.03397420793771744, -0.22762253880500793, 0.0006893770187161863, 0.06642123311758041, -0.07006710022687912, -0.0024247700348496437, -0.026499588042497635, 0.05657242611050606, 0.0656052976846695, 0.054629553109407425, -0.00971333310008049, 0.03816632181406021, 0.0034184439573436975, -0.0585215799510479, 0.016623929142951965, 0.05121519789099693, 0.02472509816288948, -0.09763528406620026, 0.06927435845136642, -0.1574270874261856, 0.04766253009438515, -0.0030655991286039352, -0.04124255105853081, 0.006064958870410919, 0.008823691867291927, -0.06491616368293762, 0.05165379121899605, 0.07916834205389023, -0.0016257909592241049, -0.0062433634884655476, -0.057178743183612823, -0.02632102556526661, -0.027755750343203545, -0.09291748702526093, -0.10495562851428986, -0.14682936668395996, -0.11640441417694092, 0.09368976950645447, -0.01011267676949501, -0.1848134547472, 0.022154374048113823, -0.08606051653623581, 0.08319322764873505, -0.1670055389404297, 0.08040720224380493, 0.07041648775339127, 0.013038921169936657, -0.0031511052511632442, -0.02002427540719509, 0.054132770746946335, 0.086809903383255, -0.10407156497240067, -0.07400695979595184 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # result This model is a fine-tuned version of [neuralmind/bert-large-portuguese-cased](https://huggingface.co/neuralmind/bert-large-portuguese-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7458 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.10.0+cu102 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "model-index": [{"name": "result", "results": []}]}
fill-mask
AVSilva/bertimbau-large-fine-tuned-md
[ "transformers", "pytorch", "bert", "fill-mask", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #bert #fill-mask #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #region-us
# result This model is a fine-tuned version of neuralmind/bert-large-portuguese-cased on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7458 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.10.0+cu102 - Datasets 1.16.1 - Tokenizers 0.10.3
[ "# result\n\nThis model is a fine-tuned version of neuralmind/bert-large-portuguese-cased on an unknown dataset.\nIt achieves the following results on the evaluation set:\n- Loss: 0.7458", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 4\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3.0", "### Training results", "### Framework versions\n\n- Transformers 4.13.0.dev0\n- Pytorch 1.10.0+cu102\n- Datasets 1.16.1\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #bert #fill-mask #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #region-us \n", "# result\n\nThis model is a fine-tuned version of neuralmind/bert-large-portuguese-cased on an unknown dataset.\nIt achieves the following results on the evaluation set:\n- Loss: 0.7458", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 4\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3.0", "### Training results", "### Framework versions\n\n- Transformers 4.13.0.dev0\n- Pytorch 1.10.0+cu102\n- Datasets 1.16.1\n- Tokenizers 0.10.3" ]
[ 48, 54, 6, 12, 8, 3, 90, 4, 36 ]
[ "passage: TAGS\n#transformers #pytorch #bert #fill-mask #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #region-us \n# result\n\nThis model is a fine-tuned version of neuralmind/bert-large-portuguese-cased on an unknown dataset.\nIt achieves the following results on the evaluation set:\n- Loss: 0.7458## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 4\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3.0### Training results### Framework versions\n\n- Transformers 4.13.0.dev0\n- Pytorch 1.10.0+cu102\n- Datasets 1.16.1\n- Tokenizers 0.10.3" ]
[ -0.07977238297462463, 0.08149079233407974, -0.0019694312941282988, 0.10045184940099716, 0.19418662786483765, 0.03334180638194084, 0.08718033134937286, 0.10544977337121964, -0.12517957389354706, 0.07235980778932571, 0.07156473398208618, 0.09931442886590958, 0.02753392979502678, 0.12035156041383743, -0.011692484840750694, -0.24713456630706787, 0.02053513377904892, -0.004491931293159723, -0.0806189626455307, 0.08556880056858063, 0.07518262416124344, -0.12477206438779831, 0.06014711782336235, 0.00684299785643816, -0.20076344907283783, 0.03374207764863968, -0.0061408295296132565, -0.045766718685626984, 0.08649048209190369, 0.004455858375877142, 0.12739703059196472, -0.0174104031175375, 0.11940222233533859, -0.1734638214111328, -0.004046815913170576, 0.0792723149061203, 0.03481966629624367, 0.056669093668460846, 0.061016540974378586, 0.008572147227823734, 0.12156230956315994, -0.12584932148456573, 0.08417634665966034, 0.02067641168832779, -0.08858319371938705, -0.1809983253479004, -0.07512877136468887, 0.044483404606580734, 0.06251982599496841, 0.12274923920631409, -0.01116375532001257, 0.15507429838180542, -0.11198323965072632, 0.06297902017831802, 0.21193388104438782, -0.2675589621067047, -0.07899686694145203, 0.059942007064819336, 0.017777614295482635, 0.035556867718696594, -0.08516225218772888, -0.00415388960391283, 0.05718877166509628, 0.049295611679553986, 0.09079429507255554, -0.0163034088909626, -0.06026734039187431, -0.006274038460105658, -0.1473025381565094, -0.003434606362134218, 0.10255095362663269, 0.0360967181622982, -0.03529559448361397, -0.04024583846330643, -0.04206080362200737, -0.06824008375406265, -0.03951217979192734, -0.02039985917508602, 0.052046697586774826, -0.04761797934770584, -0.0723094716668129, -0.02692282386124134, -0.059997644275426865, -0.05834377184510231, -0.03522568568587303, 0.13332867622375488, 0.053080424666404724, 0.009617178700864315, -0.028975987806916237, 0.08138599991798401, -0.0301930233836174, -0.10401599854230881, 0.014851205050945282, 0.009333866648375988, -0.0598529651761055, -0.056094758212566376, -0.07402520626783371, -0.0568486824631691, 0.005968048702925444, 0.087778739631176, -0.06088992580771446, 0.054515741765499115, 0.010839322581887245, 0.018366269767284393, -0.047182049602270126, 0.1508442908525467, -0.0757661983370781, -0.010548415593802929, -0.007091281469911337, 0.07447729259729385, 0.0037497757002711296, -0.0019573180470615625, -0.10656093060970306, 0.010767156258225441, 0.07830004394054413, 0.03482595458626747, -0.06678448617458344, 0.04149897024035454, -0.044940266758203506, -0.02873506024479866, -0.043711744248867035, -0.1071772575378418, 0.05269774794578552, 0.006450560409575701, -0.10982508212327957, 0.014334207400679588, 0.01587034948170185, -0.01549504790455103, -0.04220151528716087, 0.13330116868019104, -0.10651081800460815, 0.03412486985325813, -0.12845870852470398, -0.11448366940021515, 0.0044737872667610645, -0.04970956966280937, -0.015056954696774483, -0.07559238374233246, -0.17571097612380981, -0.035422105342149734, 0.059794556349515915, -0.059421006590127945, 0.004660274833440781, -0.06907812505960464, -0.07559068500995636, -0.00010936589387711138, -0.004701373632997274, 0.11378992348909378, -0.0459219366312027, 0.0780828520655632, 0.029829679057002068, 0.046434901654720306, -0.012305528856813908, 0.048246461898088455, -0.07987800985574722, 0.009700031951069832, -0.16222451627254486, 0.07543350011110306, -0.07505329698324203, 0.04296896606683731, -0.08920525759458542, -0.13222560286521912, -0.007745588663965464, -0.0026988310273736715, 0.0999499186873436, 0.11223281919956207, -0.19454440474510193, -0.06282328814268112, 0.1721208542585373, -0.06923718750476837, -0.06915846467018127, 0.10307575762271881, -0.05554582178592682, 0.03472718596458435, 0.07578709721565247, 0.17287299036979675, 0.028931977227330208, -0.12464289367198944, -0.008642488159239292, -0.038793500512838364, 0.0629754289984703, -0.0066354526206851006, 0.033802494406700134, -0.013680394738912582, -0.001167988870292902, 0.020668573677539825, -0.0564083606004715, 0.02597019635140896, -0.10835909098386765, -0.08523456752300262, -0.03170454502105713, -0.09733189642429352, 0.048567187041044235, 0.05284743756055832, 0.0790596604347229, -0.08183808624744415, -0.0986485555768013, 0.16263914108276367, 0.09751962870359421, -0.06743623316287994, 0.01800171285867691, -0.07352009415626526, 0.07189157605171204, -0.04667070508003235, -0.022510478273034096, -0.2060377150774002, -0.09422256052494049, 0.03815554454922676, -0.049225952476263046, 0.06184104084968567, -0.0029779004398733377, 0.06222779303789139, 0.08008788526058197, -0.04249560460448265, -0.0009198724874295294, -0.08967086672782898, -0.00009837025572778657, -0.0997297540307045, -0.19565609097480774, -0.025495702400803566, -0.004977225326001644, 0.12785011529922485, -0.23008833825588226, 0.007186447735875845, -0.07492314279079437, 0.12005551904439926, 0.005483711138367653, -0.050651054829359055, -0.037657953798770905, 0.08321439474821091, -0.0015348857268691063, -0.07449903339147568, 0.07337405532598495, -0.012877078726887703, -0.06710629910230637, -0.09841156005859375, -0.12483202666044235, 0.06920434534549713, 0.10255519300699234, -0.052266012877225876, -0.10545669496059418, 0.040663961321115494, -0.056953344494104385, -0.03226683661341667, -0.07290447503328323, 0.025774035602808, 0.20174401998519897, -0.0073064835742115974, 0.13404223322868347, -0.06532877683639526, -0.03343295305967331, 0.011908351443707943, -0.004992884583771229, 0.007472021505236626, 0.0748118907213211, 0.12373294681310654, -0.0800369456410408, 0.09612484276294708, 0.07678042352199554, -0.11781110614538193, 0.13812187314033508, -0.034247417002916336, -0.08665312081575394, -0.023366285488009453, -0.012542054988443851, -0.0008714497089385986, 0.11413305252790451, -0.11758673936128616, -0.006251849699765444, 0.01172193419188261, 0.03345571085810661, 0.0453973263502121, -0.18738923966884613, -0.0098308976739645, 0.012277021072804928, -0.028498079627752304, -0.03144869580864906, -0.01605755276978016, 0.017909759655594826, 0.0954693928360939, 0.03539087250828743, -0.034884605556726456, 0.008714650757610798, -0.01023178081959486, -0.07632841169834137, 0.19004179537296295, -0.13419637084007263, -0.12889714539051056, -0.09258338809013367, 0.024270405992865562, -0.07128547132015228, -0.005911346059292555, 0.0295522753149271, -0.11446633189916611, -0.04743240401148796, -0.06707964092493057, 0.011784607544541359, -0.03517691418528557, 0.011824274435639381, 0.04000698775053024, -0.003577014897018671, 0.07985036820173264, -0.12035893648862839, -0.009206357412040234, -0.06032693386077881, -0.10219214111566544, -0.004177389666438103, 0.03153810277581215, 0.11403106153011322, 0.14338190853595734, -0.010902591049671173, 0.025213416665792465, -0.03510290011763573, 0.25971856713294983, -0.05674557760357857, -0.03912890702486038, 0.09617718309164047, 0.021491823717951775, 0.04348162189126015, 0.11189626157283783, 0.05365229398012161, -0.12268833816051483, 0.03794030845165253, 0.07688909024000168, -0.010620811954140663, -0.22383497655391693, -0.06341877579689026, -0.04905035346746445, -0.08335453271865845, 0.08146478235721588, 0.027310384437441826, -0.006308016832917929, 0.03289678320288658, 0.03381551057100296, 0.07099255174398422, -0.052231382578611374, 0.0774371400475502, 0.11544515937566757, 0.050642892718315125, 0.1063246801495552, -0.02552133798599243, -0.050944600254297256, 0.0577489398419857, -0.05217694118618965, 0.30531999468803406, -0.01163854543119669, 0.05301741138100624, 0.07437844574451447, 0.12985815107822418, -0.03865991160273552, 0.0456845685839653, -0.00251152366399765, -0.032137975096702576, -0.004053105600178242, -0.06770629435777664, -0.02781595289707184, -0.006399242673069239, -0.004218484275043011, 0.07002630084753036, -0.14089448750019073, -0.0026455316692590714, 0.05554862320423126, 0.20498505234718323, 0.03608308359980583, -0.30027511715888977, -0.08524716645479202, -0.011396735906600952, -0.012463916093111038, -0.032178591936826706, 0.001048134290613234, 0.10253629833459854, -0.11172265559434891, 0.03949310630559921, -0.04692579433321953, 0.09778042137622833, -0.005819530691951513, 0.020487071946263313, 0.044808246195316315, 0.15055932104587555, 0.005769176874309778, 0.07535780221223831, -0.2257574051618576, 0.2570369243621826, 0.01482989452779293, 0.13677088916301727, -0.044488850980997086, 0.005413072649389505, 0.030070427805185318, 0.08014139533042908, 0.06777126342058182, 0.0029384642839431763, -0.013187252916395664, -0.1723199188709259, -0.019181616604328156, 0.0332445427775383, 0.12793654203414917, 0.0026452962774783373, 0.08527427911758423, -0.03377532958984375, 0.003535814583301544, 0.05853479355573654, -0.0015009328490123153, -0.1687997579574585, -0.09247763454914093, 0.0014321740018203855, 0.019243527203798294, -0.056985434144735336, -0.060924407094717026, -0.12471036612987518, -0.05499759688973427, 0.1665155291557312, 0.03983672708272934, -0.01943323016166687, -0.12601611018180847, 0.11187025159597397, 0.10826730728149414, -0.061729881912469864, 0.02147432416677475, 0.013507920317351818, 0.08225739747285843, 0.04672502353787422, -0.07886124402284622, 0.08648926019668579, -0.07761874049901962, -0.12589867413043976, -0.07082813233137131, 0.0852930024266243, 0.07208545506000519, 0.06933896988630295, -0.012576676905155182, 0.018731608986854553, 0.01447607297450304, -0.09438362717628479, -0.0007652058848179877, 0.07491140067577362, 0.09403002262115479, 0.08645288646221161, -0.10862530767917633, -0.012691633775830269, -0.048377081751823425, -0.0003792021598201245, 0.12065662443637848, 0.2177974432706833, -0.08168847113847733, 0.0334043987095356, 0.06316434592008591, -0.10120834410190582, -0.1915474385023117, 0.11203189939260483, 0.12947718799114227, 0.0065162754617631435, 0.029964465647935867, -0.18673183023929596, 0.1440528780221939, 0.11026348173618317, -0.012411429546773434, 0.04826671630144119, -0.347818523645401, -0.12195050716400146, 0.060439132153987885, 0.1478203535079956, 0.12225048989057541, -0.14653728902339935, -0.018004411831498146, -0.0389830656349659, -0.11588925123214722, 0.11738654971122742, -0.08657582849264145, 0.1258191168308258, 0.004887355957180262, 0.09843220561742783, 0.017241492867469788, -0.044981494545936584, 0.1280926614999771, 0.029622452333569527, 0.09238786995410919, -0.04164688661694527, 0.013548031449317932, 0.06231261417269707, -0.04528139904141426, 0.035176023840904236, 0.013693167828023434, 0.051281146705150604, -0.07269831001758575, -0.022324159741401672, -0.08750966936349869, 0.06585347652435303, -0.038241591304540634, -0.06104610487818718, -0.04635994881391525, 0.06307801604270935, 0.07442410290241241, -0.011702374555170536, 0.03539075702428818, 0.017573833465576172, 0.11803262680768967, 0.017735373228788376, 0.059306927025318146, -0.033304594457149506, -0.10481349378824234, 0.01715165004134178, -0.00444877240806818, 0.06364918500185013, -0.10026776790618896, 0.012345694936811924, 0.14631570875644684, 0.024354984983801842, 0.1457827240228653, 0.0753292590379715, -0.0564672015607357, 0.000824665417894721, 0.05592546612024307, -0.10209694504737854, -0.12389490008354187, 0.010129754431545734, -0.07305699586868286, -0.10670077800750732, 0.02495788410305977, 0.07697945833206177, -0.07516282796859741, -0.0030503571033477783, -0.01566576026380062, -0.012682419270277023, -0.05654186010360718, 0.20307694375514984, 0.037977591156959534, 0.03994416072964668, -0.08128379285335541, 0.10572825372219086, 0.055323630571365356, -0.08772796392440796, 0.049515556544065475, 0.07002720981836319, -0.09262466430664062, -0.01617239974439144, 0.09047824144363403, 0.22658628225326538, -0.05308413878083229, -0.038213130086660385, -0.11234679818153381, -0.07250272482633591, 0.05103893205523491, 0.13526001572608948, 0.08018618077039719, -0.03956642001867294, -0.05554308369755745, 0.04838624224066734, -0.14565467834472656, 0.06754865497350693, 0.038803622126579285, 0.05674320459365845, -0.12435666471719742, 0.15339291095733643, 0.0287739560008049, 0.03146149218082428, -0.027955900877714157, 0.021595880389213562, -0.14104580879211426, 0.00003278344956925139, -0.11757005751132965, -0.026849431917071342, -0.02270316518843174, -0.01253303699195385, 0.001306381425820291, -0.043082330375909805, -0.05931048467755318, 0.04598110914230347, -0.09152480959892273, -0.05409989878535271, 0.03962145373225212, 0.05435599014163017, -0.12413198500871658, -0.015936648473143578, -0.0008488321909680963, -0.06526706367731094, 0.045664869248867035, 0.06891801953315735, 0.020336506888270378, 0.0700245350599289, -0.13980847597122192, -0.03840645030140877, 0.0380343534052372, 0.020688777789473534, 0.09877660870552063, -0.0771605372428894, 0.0022221822291612625, -0.014535708352923393, 0.09860999882221222, 0.020494436845183372, 0.07050038874149323, -0.11953200399875641, -0.018130190670490265, -0.05490008369088173, -0.06695971637964249, -0.03637940436601639, 0.03462369367480278, 0.07499148696660995, 0.04027347266674042, 0.1755470633506775, -0.1051856279373169, 0.0472346767783165, -0.17500896751880646, -0.0362868458032608, -0.015168385580182076, -0.03622513264417648, -0.07234326750040054, -0.04260566458106041, 0.08239202201366425, -0.06734329462051392, 0.11583995074033737, 0.03183171898126602, 0.10390914231538773, 0.029761014506220818, -0.050826653838157654, -0.030271081253886223, 0.005248784553259611, 0.17749229073524475, 0.0654049962759018, -0.02488306351006031, 0.07553432136774063, 0.03860316798090935, 0.08045701682567596, 0.10845252871513367, 0.23351134359836578, 0.14271420240402222, -0.017515026032924652, 0.08248087763786316, 0.055771589279174805, -0.08054284006357193, -0.1778474897146225, 0.06240228936076164, -0.015160544775426388, 0.12087702751159668, -0.045611847192049026, 0.1694658249616623, 0.0761290192604065, -0.15495669841766357, 0.06516050547361374, -0.06725424528121948, -0.10997170209884644, -0.12179479748010635, -0.027118656784296036, -0.07245747745037079, -0.14844685792922974, 0.024645863100886345, -0.12058057636022568, 0.021005980670452118, 0.08646669238805771, 0.020924873650074005, -0.0009027553605847061, 0.18654829263687134, -0.06368489563465118, 0.028425700962543488, 0.055121831595897675, -0.0027784218546003103, -0.022408708930015564, -0.06711237877607346, -0.04575551301240921, -0.0067394501529634, -0.00715342303737998, 0.07353770732879639, -0.03852301463484764, -0.0552481971681118, 0.031141331419348717, -0.013741507194936275, -0.06699355691671371, 0.035153828561306, 0.020740076899528503, 0.03983011841773987, 0.06426788121461868, 0.03318019583821297, -0.029441459104418755, -0.04057059809565544, 0.2485198676586151, -0.08049003034830093, -0.09536897391080856, -0.12618668377399445, 0.2842073440551758, 0.0585554875433445, -0.002260096138343215, 0.03313567116856575, -0.10668491572141647, -0.03579804301261902, 0.22909939289093018, 0.18175837397575378, -0.08878954499959946, -0.03262017294764519, 0.007380451075732708, -0.01830233260989189, -0.06180008128285408, 0.14744096994400024, 0.10329468548297882, 0.08380530774593353, -0.04852820560336113, -0.02314736694097519, -0.043433863669633865, -0.01703411340713501, -0.09537514299154282, 0.01671253703534603, 0.05440056324005127, 0.010131736285984516, -0.03349173814058304, 0.07670004665851593, -0.05500036105513573, -0.17613768577575684, 0.0633690282702446, -0.17022737860679626, -0.1755383461713791, -0.028445852920413017, 0.07438518851995468, -0.011920532211661339, 0.0876404345035553, -0.03548601642251015, -0.006825488526374102, 0.10406255722045898, -0.020621245726943016, -0.04665770009160042, -0.13109968602657318, 0.07300905883312225, -0.06731226295232773, 0.23836784064769745, -0.007109507452696562, 0.07305103540420532, 0.12046632915735245, 0.04737580567598343, -0.09335580468177795, 0.06391891837120056, 0.05587015673518181, -0.07817142456769943, 0.026666371151804924, 0.13811631500720978, -0.06647071242332458, 0.05884947627782822, 0.028104592114686966, -0.13542470335960388, 0.003973966930061579, -0.0631602555513382, -0.02641613408923149, -0.07734830677509308, -0.005821055267006159, -0.09287763386964798, 0.13045869767665863, 0.2300248146057129, -0.016309702768921852, 0.010370594449341297, -0.08828804641962051, 0.027774736285209656, 0.053982898592948914, 0.11339177936315536, -0.06992185860872269, -0.23046360909938812, 0.022320810705423355, 0.011948048137128353, -0.0024178063031286, -0.2679899334907532, -0.07566747069358826, 0.039114221930503845, -0.05733002349734306, -0.07546789944171906, 0.0966993197798729, 0.05488940328359604, 0.04213404282927513, -0.05399689823389053, -0.15220007300376892, -0.06890374422073364, 0.15054436028003693, -0.14630559086799622, -0.08221940696239471 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # result This model is a fine-tuned version of [neuralmind/bert-large-portuguese-cased](https://huggingface.co/neuralmind/bert-large-portuguese-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7570 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.10.0+cu102 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "model-index": [{"name": "result", "results": []}]}
fill-mask
AVSilva/bertimbau-large-fine-tuned-sd
[ "transformers", "pytorch", "bert", "fill-mask", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #bert #fill-mask #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #region-us
# result This model is a fine-tuned version of neuralmind/bert-large-portuguese-cased on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7570 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.10.0+cu102 - Datasets 1.16.1 - Tokenizers 0.10.3
[ "# result\n\nThis model is a fine-tuned version of neuralmind/bert-large-portuguese-cased on an unknown dataset.\nIt achieves the following results on the evaluation set:\n- Loss: 0.7570", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 4\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3.0", "### Training results", "### Framework versions\n\n- Transformers 4.13.0.dev0\n- Pytorch 1.10.0+cu102\n- Datasets 1.16.1\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #bert #fill-mask #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #region-us \n", "# result\n\nThis model is a fine-tuned version of neuralmind/bert-large-portuguese-cased on an unknown dataset.\nIt achieves the following results on the evaluation set:\n- Loss: 0.7570", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 4\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3.0", "### Training results", "### Framework versions\n\n- Transformers 4.13.0.dev0\n- Pytorch 1.10.0+cu102\n- Datasets 1.16.1\n- Tokenizers 0.10.3" ]
[ 48, 54, 6, 12, 8, 3, 90, 4, 36 ]
[ "passage: TAGS\n#transformers #pytorch #bert #fill-mask #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #region-us \n# result\n\nThis model is a fine-tuned version of neuralmind/bert-large-portuguese-cased on an unknown dataset.\nIt achieves the following results on the evaluation set:\n- Loss: 0.7570## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 4\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3.0### Training results### Framework versions\n\n- Transformers 4.13.0.dev0\n- Pytorch 1.10.0+cu102\n- Datasets 1.16.1\n- Tokenizers 0.10.3" ]
[ -0.08033296465873718, 0.08053704351186752, -0.0019347650231793523, 0.09992503374814987, 0.19386038184165955, 0.03363344818353653, 0.08701848238706589, 0.10515984892845154, -0.1253071129322052, 0.07142333686351776, 0.07186280936002731, 0.09966716170310974, 0.027872733771800995, 0.12092208862304688, -0.011896315962076187, -0.24768054485321045, 0.02015133760869503, -0.0039325556717813015, -0.08028609305620193, 0.08606449514627457, 0.07508569210767746, -0.12509678304195404, 0.06032313406467438, 0.00699967797845602, -0.20121939480304718, 0.03370041400194168, -0.005696175619959831, -0.045613039284944534, 0.08629059046506882, 0.0045349327847361565, 0.12728971242904663, -0.017248477786779404, 0.11958224326372147, -0.17376039922237396, -0.0038360808975994587, 0.07940700650215149, 0.03472275286912918, 0.057025399059057236, 0.06057436019182205, 0.008560914546251297, 0.12194956094026566, -0.1254347413778305, 0.08403143286705017, 0.020587608218193054, -0.08854152262210846, -0.18069837987422943, -0.074964240193367, 0.04434340074658394, 0.06333553791046143, 0.12282661348581314, -0.011049973778426647, 0.15497587621212006, -0.11191456764936447, 0.06318263709545135, 0.21248917281627655, -0.2675626277923584, -0.07890063524246216, 0.060570042580366135, 0.017815101891756058, 0.03616700693964958, -0.08509738743305206, -0.004038364160805941, 0.056815508753061295, 0.04917033389210701, 0.09186369925737381, -0.016394028440117836, -0.05985981598496437, -0.006214612629264593, -0.14752669632434845, -0.003443023655563593, 0.10242905467748642, 0.03618209809064865, -0.03530772402882576, -0.04049147665500641, -0.04227319359779358, -0.06921380758285522, -0.0399191677570343, -0.020716138184070587, 0.05198385939002037, -0.04725781828165054, -0.07357709109783173, -0.026934290304780006, -0.06031055003404617, -0.05907072126865387, -0.03497783839702606, 0.13308139145374298, 0.05309751257300377, 0.009914769791066647, -0.029150551185011864, 0.08167658001184464, -0.030717110261321068, -0.10402250289916992, 0.014712476171553135, 0.009509575553238392, -0.05959872156381607, -0.056415703147649765, -0.07421749085187912, -0.057635996490716934, 0.0056523727253079414, 0.08727464079856873, -0.06066356599330902, 0.05424758046865463, 0.011611663736402988, 0.018491670489311218, -0.047376103699207306, 0.15121042728424072, -0.07546951621770859, -0.011111325584352016, -0.007180844899266958, 0.07422412931919098, 0.0037523112259805202, -0.0018999443855136633, -0.10667219012975693, 0.010668967850506306, 0.07885168492794037, 0.03454741835594177, -0.06725992262363434, 0.04147208482027054, -0.044549573212862015, -0.029052389785647392, -0.042618121951818466, -0.1067039966583252, 0.052633121609687805, 0.006074955221265554, -0.10976962745189667, 0.014513706788420677, 0.01577032171189785, -0.015384168364107609, -0.04202119633555412, 0.13364499807357788, -0.10656386613845825, 0.034225255250930786, -0.128990039229393, -0.11450695991516113, 0.004096151329576969, -0.049652766436338425, -0.015399890020489693, -0.07546281069517136, -0.17601822316646576, -0.03483470901846886, 0.05973881483078003, -0.05887732654809952, 0.004407152067869902, -0.06922068446874619, -0.07524960488080978, -0.0002666123618837446, -0.004542201291769743, 0.11429183930158615, -0.045684173703193665, 0.07841170579195023, 0.03009539097547531, 0.0465429462492466, -0.012148147448897362, 0.04829184710979462, -0.08009657263755798, 0.009356487542390823, -0.16196446120738983, 0.07493072748184204, -0.07431001961231232, 0.04298204928636551, -0.08898117393255234, -0.13198772072792053, -0.008304227143526077, -0.002811213955283165, 0.09951301664113998, 0.11192131042480469, -0.19443903863430023, -0.06330955028533936, 0.17262491583824158, -0.06926921755075455, -0.06900938600301743, 0.10305330157279968, -0.05522150918841362, 0.0344444140791893, 0.07611247897148132, 0.17162688076496124, 0.028806263580918312, -0.12473642826080322, -0.008436408825218678, -0.038745809346437454, 0.06315112859010696, -0.00780881242826581, 0.033806201070547104, -0.013509525917470455, -0.001423917943611741, 0.02079610526561737, -0.05651348456740379, 0.026062678545713425, -0.10838910937309265, -0.08525486290454865, -0.0319221206009388, -0.09770818054676056, 0.048463642597198486, 0.052740830928087234, 0.07923904806375504, -0.08111823350191116, -0.09854398667812347, 0.1623675674200058, 0.09713368117809296, -0.06728488951921463, 0.018176311627030373, -0.07323306053876877, 0.07111156731843948, -0.04745271056890488, -0.022597536444664, -0.20605707168579102, -0.09306015819311142, 0.03827286139130592, -0.048706166446208954, 0.06196754798293114, -0.002260684734210372, 0.06241817772388458, 0.08010806888341904, -0.042868033051490784, -0.0008274205611087382, -0.09012827277183533, -0.00017651208327151835, -0.09973368048667908, -0.19517679512500763, -0.025859059765934944, -0.005082911346107721, 0.12745214998722076, -0.2300836741924286, 0.007386468350887299, -0.07542885839939117, 0.11972986161708832, 0.005618971306830645, -0.050457775592803955, -0.038031529635190964, 0.08335380256175995, -0.0015462534502148628, -0.07418989390134811, 0.07347068190574646, -0.012785996310412884, -0.06718841195106506, -0.09878380596637726, -0.12457275390625, 0.06903209537267685, 0.1026570275425911, -0.05264687538146973, -0.10559125244617462, 0.03981684893369675, -0.056865643709897995, -0.03210348263382912, -0.07340307533740997, 0.025550322607159615, 0.20049536228179932, -0.006983228959143162, 0.13400898873806, -0.06542930006980896, -0.03376498818397522, 0.011792776174843311, -0.004944926127791405, 0.007991540245711803, 0.07363294810056686, 0.12414459139108658, -0.08090753853321075, 0.09610205888748169, 0.07756048440933228, -0.11854405701160431, 0.1380356103181839, -0.03400386869907379, -0.08675738424062729, -0.023007771000266075, -0.013202894479036331, -0.0011608850909397006, 0.11430522054433823, -0.11725910753011703, -0.006243900395929813, 0.011601907201111317, 0.03319357708096504, 0.04543331637978554, -0.1877209097146988, -0.009827655740082264, 0.012453222647309303, -0.028637638315558434, -0.031806815415620804, -0.016030902042984962, 0.01749260164797306, 0.0954161137342453, 0.03517122194170952, -0.034643761813640594, 0.008956622332334518, -0.010042106732726097, -0.07644395530223846, 0.1903858333826065, -0.13369227945804596, -0.129205584526062, -0.09218192100524902, 0.0246435459703207, -0.07088060677051544, -0.005930317100137472, 0.029335660859942436, -0.11432632058858871, -0.04719281196594238, -0.06701494753360748, 0.011970315128564835, -0.03538218140602112, 0.012270106934010983, 0.039238784462213516, -0.003740450832992792, 0.07923691719770432, -0.12027688324451447, -0.008980751037597656, -0.0607379674911499, -0.10263131558895111, -0.004024263937026262, 0.031174831092357635, 0.1136590987443924, 0.1436033546924591, -0.010888280346989632, 0.02548306994140148, -0.03528283163905144, 0.26000186800956726, -0.05639594793319702, -0.03909189999103546, 0.09612639993429184, 0.021982762962579727, 0.043602973222732544, 0.11224724352359772, 0.053759295493364334, -0.1224418580532074, 0.038016412407159805, 0.07662269473075867, -0.010797418653964996, -0.22272437810897827, -0.06276954710483551, -0.049398697912693024, -0.08355700224637985, 0.08182378113269806, 0.02730894275009632, -0.0050217811949551105, 0.03356201574206352, 0.033363696187734604, 0.07073661684989929, -0.05224720016121864, 0.07754377275705338, 0.11501504480838776, 0.05100800842046738, 0.10648844391107559, -0.02529318816959858, -0.051034342497587204, 0.057312846183776855, -0.05177408829331398, 0.3060489892959595, -0.011009934358298779, 0.053331684321165085, 0.07441151887178421, 0.12950551509857178, -0.038019195199012756, 0.04616742208600044, -0.0027911090292036533, -0.03226592764258385, -0.004147635307163, -0.06758967787027359, -0.027647746726870537, -0.006504854653030634, -0.003875281661748886, 0.07016769796609879, -0.14027026295661926, -0.003130640136078, 0.05549972876906395, 0.20505055785179138, 0.03585679084062576, -0.3005625307559967, -0.08510152250528336, -0.011394321918487549, -0.012696698307991028, -0.031961772590875626, 0.0005193557590246201, 0.10193925350904465, -0.1115650087594986, 0.03964048996567726, -0.047718994319438934, 0.09773658215999603, -0.005836745724081993, 0.02021067962050438, 0.04436758533120155, 0.1511884182691574, 0.005826280452311039, 0.07539287954568863, -0.22711516916751862, 0.25741103291511536, 0.014835692010819912, 0.1369648575782776, -0.044688887894153595, 0.00530210742726922, 0.029726941138505936, 0.08041498064994812, 0.06747940182685852, 0.0027816863730549812, -0.013647498562932014, -0.17202052474021912, -0.01888773776590824, 0.033251017332077026, 0.12759080529212952, 0.0024319260846823454, 0.08515005558729172, -0.033854890614748, 0.003243024693801999, 0.058309562504291534, -0.001080497750081122, -0.16925911605358124, -0.09274178743362427, 0.0011018429649993777, 0.019299322739243507, -0.057065654546022415, -0.06066391244530678, -0.12453682720661163, -0.054788924753665924, 0.16621379554271698, 0.03952803835272789, -0.019208000972867012, -0.1261623054742813, 0.11248473078012466, 0.10744814574718475, -0.06163536757230759, 0.02169201336801052, 0.01356594730168581, 0.08288159221410751, 0.046434566378593445, -0.07885812222957611, 0.08641368895769119, -0.07781440019607544, -0.12606586515903473, -0.07084620743989944, 0.08516592532396317, 0.07215433567762375, 0.06938601285219193, -0.012328068725764751, 0.018888913094997406, 0.014258013106882572, -0.09443213045597076, -0.0008788020350039005, 0.0755019262433052, 0.09355589002370834, 0.08551847189664841, -0.10844128578901291, -0.012665997259318829, -0.04840933904051781, 0.00003201066283509135, 0.12032418698072433, 0.2166769653558731, -0.08173906058073044, 0.03306622430682182, 0.06304321438074112, -0.10071661323308945, -0.19144099950790405, 0.11219628155231476, 0.12923595309257507, 0.006580219604074955, 0.02994595840573311, -0.18692350387573242, 0.1443934142589569, 0.11009838432073593, -0.012523503974080086, 0.04819859564304352, -0.3476223945617676, -0.12207333743572235, 0.060363367199897766, 0.14844535291194916, 0.1218213215470314, -0.14590051770210266, -0.01775875873863697, -0.03918573260307312, -0.11517224460840225, 0.11871983110904694, -0.08665388822555542, 0.12577088177204132, 0.004590054042637348, 0.09874416142702103, 0.016949046403169632, -0.04511130601167679, 0.1273774802684784, 0.02955750748515129, 0.09259814023971558, -0.041282378137111664, 0.013548845425248146, 0.06229076534509659, -0.045177675783634186, 0.03515064716339111, 0.012548798695206642, 0.0511355884373188, -0.07142310589551926, -0.022381214424967766, -0.08759805560112, 0.06587141007184982, -0.038084857165813446, -0.06127601116895676, -0.04642622172832489, 0.06300188601016998, 0.07410584390163422, -0.011887243017554283, 0.03585376963019371, 0.017153147608041763, 0.118057481944561, 0.01766147091984749, 0.059370387345552444, -0.03427179530262947, -0.10456681996583939, 0.01686512492597103, -0.004446719773113728, 0.06410184502601624, -0.10001619905233383, 0.01215917244553566, 0.14594827592372894, 0.024683697149157524, 0.1456029862165451, 0.07525566220283508, -0.056644801050424576, 0.0005273239803500473, 0.055904362350702286, -0.10188813507556915, -0.12459802627563477, 0.009998850524425507, -0.07239647954702377, -0.10717602074146271, 0.025322550907731056, 0.0761740654706955, -0.07517479360103607, -0.0031344485469162464, -0.015757258981466293, -0.012864750809967518, -0.05644608289003372, 0.20346829295158386, 0.037711746990680695, 0.039793960750103, -0.08145561814308167, 0.10524654388427734, 0.05509578064084053, -0.08755169808864594, 0.04847509413957596, 0.06973396241664886, -0.09288530051708221, -0.016074197366833687, 0.0907718762755394, 0.22627626359462738, -0.05318523943424225, -0.03810862451791763, -0.11203615367412567, -0.07246596366167068, 0.05107052996754646, 0.13558481633663177, 0.0804784744977951, -0.03962153568863869, -0.05581042543053627, 0.04840002581477165, -0.14540298283100128, 0.06752295047044754, 0.03891928121447563, 0.05708204582333565, -0.1241641491651535, 0.1532014012336731, 0.029100628569722176, 0.0314035527408123, -0.02798663266003132, 0.021771861240267754, -0.1402839571237564, 0.00003967921657022089, -0.11620448529720306, -0.02709484100341797, -0.022879499942064285, -0.01274559274315834, 0.0012331153266131878, -0.043247196823358536, -0.05940200760960579, 0.045913420617580414, -0.09156415611505508, -0.05376896262168884, 0.03920043259859085, 0.05336541309952736, -0.12410052120685577, -0.015397824347019196, -0.0009380042902193964, -0.06512921303510666, 0.04515301436185837, 0.06863773614168167, 0.020191770046949387, 0.07037144899368286, -0.14040066301822662, -0.038237713277339935, 0.03826877847313881, 0.020624181255698204, 0.09864972531795502, -0.07707320898771286, 0.0024029910564422607, -0.014133679680526257, 0.09876241534948349, 0.020363086834549904, 0.07062714546918869, -0.11972470581531525, -0.018248513340950012, -0.05494459718465805, -0.06690174341201782, -0.03634460270404816, 0.03446965664625168, 0.07538004964590073, 0.03993964195251465, 0.17631295323371887, -0.10504709929227829, 0.04664193466305733, -0.17536994814872742, -0.03601404279470444, -0.01488619577139616, -0.03631379082798958, -0.07328684628009796, -0.04263097792863846, 0.0824241042137146, -0.06711341440677643, 0.11556094884872437, 0.031752243638038635, 0.10400938987731934, 0.02967519313097, -0.05018677935004234, -0.029317706823349, 0.005071781110018492, 0.17831209301948547, 0.0653744712471962, -0.025069644674658775, 0.07571802288293839, 0.038815222680568695, 0.0805884376168251, 0.10874202102422714, 0.23430174589157104, 0.1422039419412613, -0.018633265048265457, 0.0824633538722992, 0.05538652092218399, -0.08004046231508255, -0.17698507010936737, 0.06228109821677208, -0.015288186259567738, 0.12032482773065567, -0.045547083020210266, 0.17030183970928192, 0.07710989564657211, -0.15526382625102997, 0.06512036919593811, -0.06641542166471481, -0.11004561930894852, -0.12215928733348846, -0.028569970279932022, -0.07284726202487946, -0.14873024821281433, 0.02464541792869568, -0.12040448188781738, 0.020599210634827614, 0.0863984003663063, 0.021089499816298485, -0.0009759606327861547, 0.18692027032375336, -0.06258080899715424, 0.02844441495835781, 0.054733794182538986, -0.0029084740672260523, -0.022371741011738777, -0.06704569607973099, -0.04540297016501427, -0.006446877960115671, -0.007853999733924866, 0.07381736487150192, -0.03904810547828674, -0.055888447910547256, 0.03143135830760002, -0.013505358248949051, -0.06702016294002533, 0.035008251667022705, 0.02044500783085823, 0.03976577892899513, 0.06440562009811401, 0.03328032046556473, -0.029076509177684784, -0.040692806243896484, 0.24813197553157806, -0.0808841735124588, -0.09565848112106323, -0.12646235525608063, 0.2840888798236847, 0.05908385291695595, -0.002355876611545682, 0.03338552638888359, -0.10669557750225067, -0.03582201525568962, 0.22939547896385193, 0.18171285092830658, -0.08826317638158798, -0.03223324567079544, 0.0072817206382751465, -0.018459999933838844, -0.06173684448003769, 0.14708171784877777, 0.10306069999933243, 0.08367986232042313, -0.04838831350207329, -0.02330370806157589, -0.04318825900554657, -0.01734391786158085, -0.09475202858448029, 0.01689049042761326, 0.05454746261239052, 0.009811165742576122, -0.033558499068021774, 0.07681035995483398, -0.05458502098917961, -0.17499025166034698, 0.06318951398134232, -0.16950272023677826, -0.17479541897773743, -0.02831386961042881, 0.07427876442670822, -0.01176287978887558, 0.08739552646875381, -0.03533853963017464, -0.0064973230473697186, 0.103672094643116, -0.020479556173086166, -0.047021981328725815, -0.13151682913303375, 0.07350501418113708, -0.06744395196437836, 0.23800651729106903, -0.0070515647530555725, 0.07334844022989273, 0.12054432183504105, 0.04724326357245445, -0.09282314777374268, 0.06475519388914108, 0.055648837238550186, -0.07786238193511963, 0.026605628430843353, 0.13840040564537048, -0.06642581522464752, 0.05923668295145035, 0.02782045677304268, -0.13564221560955048, 0.004429235588759184, -0.06430143862962723, -0.026717161759734154, -0.0772860124707222, -0.005220966413617134, -0.09256510436534882, 0.13048496842384338, 0.22984425723552704, -0.01622040756046772, 0.010381738655269146, -0.08835584670305252, 0.027899758890271187, 0.054527539759874344, 0.11304794996976852, -0.07011105865240097, -0.2305910736322403, 0.02196923829615116, 0.012227772735059261, -0.002981303259730339, -0.26721009612083435, -0.07550566643476486, 0.03878482058644295, -0.057439759373664856, -0.07537940889596939, 0.09598571062088013, 0.05519096180796623, 0.04219326004385948, -0.05409608781337738, -0.15145091712474823, -0.06896736472845078, 0.15040189027786255, -0.14681610465049744, -0.0821111723780632 ]
null
null
transformers
#Tony Stark DialoGPT model
{"tags": ["conversational"]}
text-generation
AVeryRealHuman/DialoGPT-small-TonyStark
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "has_space", "text-generation-inference", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us
#Tony Stark DialoGPT model
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n" ]
[ 55 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n" ]
[ -0.0020731890108436346, 0.034266941249370575, -0.005774117540568113, 0.004248267505317926, 0.14393343031406403, 0.004326540976762772, 0.08896105736494064, 0.14543265104293823, -0.02302609197795391, 0.005462841596454382, 0.15414410829544067, 0.16123731434345245, -0.01616818644106388, 0.06624367088079453, -0.06798949837684631, -0.27222639322280884, 0.06252840161323547, 0.04033168777823448, -0.0042655146680772305, 0.1149275004863739, 0.0867869034409523, -0.07195974141359329, 0.08031850308179855, -0.010707243345677853, -0.14797940850257874, 0.027399519458413124, 0.027168817818164825, -0.11926408857107162, 0.1205340251326561, 0.04608513414859772, 0.08750468492507935, 0.018780281767249107, -0.08323448896408081, -0.13803936541080475, 0.03054818883538246, 0.03042440116405487, -0.06272798776626587, 0.06205490604043007, 0.04915359988808632, -0.08692146092653275, 0.11027362942695618, 0.05846209451556206, -0.021504774689674377, 0.04821402579545975, -0.173249289393425, -0.0497460775077343, -0.018249358981847763, -0.004099908750504255, 0.02475488930940628, 0.10208485275506973, -0.04358411207795143, 0.11388547718524933, -0.11227327585220337, 0.09600768983364105, 0.13744568824768066, -0.32189610600471497, -0.005977143067866564, 0.12905555963516235, 0.08356072753667831, 0.07893235981464386, -0.05513899773359299, 0.06879978626966476, 0.026153596118092537, 0.016823088750243187, 0.01882046088576317, -0.06101960316300392, -0.1321486234664917, 0.06851786375045776, -0.1029922217130661, -0.06102414429187775, 0.23576463758945465, -0.05459221452474594, 0.0850215032696724, -0.06047354266047478, -0.1171741634607315, -0.06511004269123077, -0.012023513205349445, 0.013670753687620163, -0.06820649653673172, 0.08349429816007614, 0.00736558623611927, -0.0910419449210167, -0.1503107100725174, -0.009757339023053646, -0.18359589576721191, 0.1544029712677002, 0.010258159600198269, 0.04417330399155617, -0.18897868692874908, 0.09543006867170334, -0.0019848651718348265, -0.09227047860622406, 0.0379180908203125, -0.09267305582761765, 0.025528281927108765, 0.02594062313437462, -0.07617612928152084, -0.04994349926710129, 0.07540341466665268, 0.10172723978757858, -0.03571772947907448, 0.007284308318048716, -0.01317865401506424, 0.08920414000749588, 0.050415460020303726, 0.0920315757393837, -0.024628832936286926, -0.029775982722640038, 0.0030826895963400602, -0.10573206096887589, 0.00843293871730566, -0.08909433335065842, -0.17530705034732819, -0.033279649913311005, 0.038942400366067886, 0.06327997148036957, 0.03506982699036598, 0.11513926833868027, -0.020643576979637146, -0.0004622370470315218, 0.044502582401037216, -0.04962502419948578, 0.01620616763830185, 0.015400436706840992, 0.024300534278154373, 0.09366749972105026, 0.00024095026310533285, 0.02871517464518547, -0.1108408123254776, 0.016502954065799713, -0.08566248416900635, -0.004433690570294857, -0.04066275432705879, -0.08080097287893295, 0.014394298195838928, -0.08052104711532593, -0.0014747381210327148, -0.16010569036006927, -0.0941496267914772, 0.006874208338558674, -0.008340749889612198, -0.04847903922200203, -0.06897178292274475, -0.028291959315538406, -0.039629727602005005, 0.07005634158849716, -0.07429031282663345, 0.012378060258924961, -0.0653066337108612, 0.09632273763418198, -0.04399619624018669, 0.09719543159008026, -0.1355123370885849, 0.08746109157800674, -0.10122440755367279, -0.013804182410240173, -0.05389239266514778, 0.07130532711744308, -0.004290519282221794, 0.07858801633119583, -0.003894622204825282, -0.026532486081123352, -0.10342510789632797, 0.07591511309146881, -0.029038161039352417, 0.1919892430305481, -0.09368238598108292, -0.09697038680315018, 0.24372151494026184, -0.04206692799925804, -0.11992959678173065, 0.11316732317209244, 0.006276176776736975, 0.04031015560030937, 0.06636199355125427, 0.23529867827892303, -0.002608133712783456, -0.015463003888726234, 0.05858722701668739, 0.1285160332918167, -0.09163093566894531, -0.022528203204274178, 0.02665521204471588, -0.035680610686540604, -0.06949988007545471, 0.03786681219935417, 0.09224521368741989, 0.06898946315050125, -0.04217932000756264, -0.038546912372112274, -0.0338650681078434, 0.006019831635057926, 0.10229165107011795, -0.004237710032612085, 0.11900407075881958, -0.06430190056562424, -0.06083345785737038, -0.0039004783611744642, -0.007743727415800095, -0.025927990674972534, 0.03889498487114906, -0.020975790917873383, 0.13977456092834473, -0.020214391872286797, 0.050080306828022, -0.1659611612558365, -0.07867800444364548, -0.0276208333671093, 0.15121620893478394, 0.023065028712153435, 0.16074787080287933, 0.05593082308769226, -0.04575453698635101, 0.0020971912890672684, 0.015426015481352806, 0.14330679178237915, 0.002297409577295184, -0.08078709989786148, -0.045803289860486984, 0.06078236922621727, -0.07078943401575089, 0.02853701077401638, -0.06128615140914917, 0.02451801672577858, 0.0706944391131401, 0.11360251158475876, -0.012172793038189411, 0.04050501063466072, -0.007806553039699793, 0.005355477333068848, -0.08260910212993622, 0.006272532045841217, 0.09126780182123184, -0.007062161341309547, -0.05587177723646164, 0.23702523112297058, -0.21233628690242767, 0.19319729506969452, 0.20568932592868805, -0.2847190499305725, 0.017599696293473244, -0.08135107904672623, -0.04634881764650345, 0.0296412892639637, 0.034921593964099884, -0.07091964036226273, 0.11610180884599686, -0.03123846836388111, 0.1735609918832779, -0.04871121793985367, -0.033698420971632004, -0.02400193363428116, -0.05103839933872223, -0.023231912404298782, 0.07538758218288422, 0.07964178919792175, -0.10268472135066986, 0.2096041589975357, 0.21891969442367554, 0.029522806406021118, 0.20605546236038208, 0.020199809223413467, -0.01082384493201971, 0.06585343927145004, -0.016593173146247864, -0.07647227495908737, -0.05193748697638512, -0.25636377930641174, -0.04254206269979477, 0.08694203943014145, 0.05027908831834793, 0.11748719960451126, -0.11812889575958252, -0.03973527252674103, 0.0017026892164722085, -0.0044732606038451195, 0.010201654396951199, 0.10733214765787125, 0.0688849464058876, 0.13163818418979645, 0.0035053531173616648, -0.015395179390907288, 0.0933142676949501, 0.021278366446495056, -0.07218139618635178, 0.16777180135250092, -0.14471881091594696, -0.3617521822452545, -0.12198661267757416, -0.1411694437265396, -0.04819782078266144, 0.05570744723081589, 0.12146272510290146, -0.11843276768922806, -0.013039637356996536, -0.024426942691206932, 0.10403992235660553, -0.10458782315254211, 0.015547837130725384, -0.09316565841436386, 0.023360151797533035, -0.09507838636636734, -0.10290220379829407, -0.04919681325554848, -0.02349056676030159, -0.07685697078704834, 0.13987404108047485, -0.06632959097623825, 0.05164608359336853, 0.21594153344631195, 0.03643343225121498, 0.04860004410147667, -0.03824276477098465, 0.2174932211637497, -0.10651476681232452, 0.004577175248414278, 0.1883121132850647, -0.010507632978260517, 0.07504907250404358, 0.14718979597091675, -0.006049822084605694, -0.06113997846841812, 0.021373562514781952, -0.008945688605308533, -0.09400025755167007, -0.19167540967464447, -0.1440424621105194, -0.14082567393779755, 0.07228381931781769, 0.027764417231082916, 0.06478160619735718, 0.15267089009284973, 0.05694347992539406, -0.026157980784773827, -0.006062425673007965, -0.001836199895478785, 0.0684063658118248, 0.23882564902305603, -0.07312719523906708, 0.15863476693630219, -0.03803245723247528, -0.148991659283638, 0.08423012495040894, 0.08482091128826141, 0.10031978040933609, 0.04883745685219765, 0.06448925286531448, 0.024240154772996902, 0.09675179421901703, 0.13343869149684906, 0.061844173818826675, 0.022185444831848145, -0.026203498244285583, -0.04098205268383026, -0.028983715921640396, -0.021278686821460724, 0.060860130935907364, 0.10284382104873657, -0.18223826587200165, -0.03360753133893013, -0.12674574553966522, 0.1040237694978714, 0.05630733072757721, 0.10208160430192947, -0.18108898401260376, 0.003050506114959717, 0.09536994993686676, -0.032557163387537, -0.1301579475402832, 0.0850055143237114, 0.06722985208034515, -0.11821058392524719, 0.015397914685308933, -0.02095544897019863, 0.11126109957695007, -0.031123479828238487, 0.10620614886283875, -0.09822628647089005, -0.09220608323812485, 0.013774980790913105, 0.11459406465291977, -0.2817303538322449, 0.21255555748939514, -0.013365482911467552, -0.09690005332231522, -0.11579300463199615, -0.004715035669505596, 0.01031493116170168, 0.0819380059838295, 0.08188709616661072, 0.004763775505125523, -0.04350537434220314, -0.06545519083738327, 0.004248070530593395, 0.019060388207435608, 0.12491510063409805, -0.03152519837021828, -0.01991986855864525, -0.04806303605437279, 0.011300591751933098, -0.0015421127900481224, 0.01802166923880577, 0.01983943209052086, -0.20397375524044037, 0.09817983210086823, 0.07011082023382187, 0.06267958134412766, 0.022111909464001656, -0.009729073382914066, -0.14869281649589539, 0.22171661257743835, -0.02809896692633629, -0.0771496519446373, -0.10737742483615875, -0.05013793334364891, 0.06141689419746399, -0.04688161984086037, 0.041116632521152496, -0.08103673905134201, 0.03962651267647743, -0.07487211376428604, -0.17772899568080902, 0.12835821509361267, -0.08348777145147324, -0.042941171675920486, -0.025282789021730423, 0.1864084005355835, -0.0846327543258667, 0.024463225156068802, 0.025082062929868698, 0.04613133519887924, -0.1508028209209442, -0.10233563929796219, 0.034852705895900726, -0.03161567449569702, 0.061152249574661255, 0.04001912102103233, -0.04340772330760956, -0.021880418062210083, -0.002970570931211114, -0.011320682242512703, 0.33755841851234436, 0.15072861313819885, -0.08390255272388458, 0.17842750251293182, 0.0893208310008049, -0.059796981513500214, -0.3357309103012085, -0.09483138471841812, -0.12697452306747437, -0.025288153439760208, -0.021405275911092758, -0.16736409068107605, 0.04016929119825363, -0.003834964707493782, -0.03241279721260071, 0.10695530474185944, -0.25454771518707275, -0.0813552588224411, 0.1530611217021942, -0.051993608474731445, 0.3512592017650604, -0.1353636085987091, -0.08938448131084442, -0.027285385876893997, -0.11751596629619598, 0.17193706333637238, -0.07499987632036209, 0.11728648841381073, -0.005291353445500135, 0.14058533310890198, 0.0594446137547493, -0.032975900918245316, 0.11937713623046875, -0.008806196972727776, -0.023774700239300728, -0.11386077105998993, -0.08634026348590851, 0.04117414727807045, -0.0033683227375149727, 0.016631845384836197, -0.07227682322263718, 0.02188601717352867, -0.1352013796567917, -0.020081689581274986, -0.10218049585819244, 0.05960511416196823, 0.02450513280928135, -0.07391975075006485, -0.044624634087085724, -0.05516489967703819, -0.005635458510369062, 0.015539255924522877, 0.21460223197937012, -0.08054444938898087, 0.18822970986366272, 0.14798088371753693, 0.0750354528427124, -0.1478407084941864, -0.005493863020092249, -0.03167466074228287, -0.051466576755046844, 0.08480866998434067, -0.12806963920593262, 0.05007537081837654, 0.09602449834346771, -0.04866054281592369, 0.08426439762115479, 0.10378798842430115, 0.00529234204441309, 0.003562262048944831, 0.1266377568244934, -0.24999721348285675, -0.05188959464430809, -0.06728829443454742, -0.0003314604109618813, 0.07470729202032089, 0.05989599972963333, 0.18490374088287354, 0.024284880608320236, -0.02933247573673725, -0.001147680333815515, 0.02046186476945877, -0.044130854308605194, 0.034657470881938934, 0.020751554518938065, 0.037146806716918945, -0.13429945707321167, 0.049100302159786224, 0.03831800818443298, -0.14490972459316254, 0.02793888933956623, 0.15596450865268707, -0.09589001536369324, -0.1481330692768097, -0.08178485929965973, 0.046700187027454376, -0.09863997250795364, -0.003060641000047326, -0.016482530161738396, -0.13233160972595215, 0.0721844807267189, 0.10570328682661057, 0.0632612556219101, 0.0926874577999115, -0.05276959761977196, -0.02356615848839283, -0.005535936914384365, -0.013608732260763645, -0.017031483352184296, 0.00047467724652960896, -0.06871786713600159, 0.08851433545351028, -0.02970702014863491, 0.14091646671295166, -0.09792686998844147, -0.08993403613567352, -0.16552817821502686, 0.012215564027428627, -0.11382917314767838, -0.10604946315288544, -0.08692184090614319, -0.06279279291629791, 0.007451801095157862, -0.03690037131309509, -0.05121577903628349, -0.05880220606923103, -0.13037677109241486, 0.025712331756949425, -0.05368543416261673, 0.04174434766173363, -0.08266101777553558, 0.009202999994158745, 0.08040843904018402, -0.025321047753095627, 0.1427605152130127, 0.10867537558078766, -0.09636122733354568, 0.08708717674016953, -0.10933805257081985, -0.10561708360910416, 0.0996691957116127, 0.015306972898542881, 0.049583129584789276, 0.0882255807518959, 0.0016521752113476396, 0.047729525715112686, 0.05468335375189781, 0.05270431563258171, 0.010714812204241753, -0.11086291074752808, 0.06701637804508209, -0.046916425228118896, -0.14871534705162048, -0.0383060947060585, -0.04576587677001953, 0.023959442973136902, 0.014766783453524113, 0.09013618528842926, -0.03914914280176163, 0.09170293807983398, -0.060116108506917953, 0.03544970601797104, -0.005962125025689602, -0.17961421608924866, -0.025273950770497322, -0.07678066939115524, 0.036338284611701965, 0.009770811535418034, 0.27444127202033997, 0.07005681097507477, -0.02579980343580246, 0.03809122368693352, 0.09221042692661285, 0.04013144597411156, 0.01235515158623457, 0.17545528709888458, 0.1118883416056633, -0.06960049271583557, -0.11137815564870834, 0.06916595250368118, 0.02774476259946823, 0.030671268701553345, 0.11741524934768677, 0.028308389708399773, 0.02884010225534439, 0.09906800836324692, -0.010664747096598148, -0.029787031933665276, -0.11760692298412323, -0.12204014509916306, -0.025804514065384865, 0.0716206356883049, -0.08077048510313034, 0.07161043584346771, 0.15348944067955017, -0.024815790355205536, 0.04494022950530052, -0.04187069460749626, -0.05125942826271057, -0.16044385731220245, -0.13453450798988342, -0.06714465469121933, -0.1462772637605667, -0.01798534393310547, -0.10550841689109802, 0.07317068427801132, 0.0905640497803688, 0.054012611508369446, -0.04726504907011986, 0.1088385358452797, 0.04488391429185867, -0.10305679589509964, 0.04867062717676163, -0.028838563710451126, 0.10472944378852844, -0.0389210507273674, -0.017331164330244064, -0.08582847565412521, 0.018834469839930534, -0.00014729268150404096, 0.05825033783912659, -0.046236004680395126, 0.0008270144462585449, -0.15260833501815796, -0.09336699545383453, -0.067965067923069, 0.06514385342597961, -0.03987060859799385, 0.16180802881717682, 0.006504714023321867, -0.019208962097764015, 0.027142219245433807, 0.2522609531879425, -0.09437862038612366, -0.03748486936092377, -0.04197218641638756, 0.18040455877780914, 0.026413097977638245, 0.10892705619335175, -0.04485548287630081, -0.022241802886128426, -0.11629731208086014, 0.34659260511398315, 0.3378466069698334, -0.09852437674999237, 0.030723217874765396, 0.025790590792894363, 0.035837359726428986, 0.11793298274278641, 0.10910405218601227, 0.1060420423746109, 0.2840439975261688, -0.07986118644475937, -0.04112262278795242, -0.015220209956169128, -0.020856084302067757, -0.09601940214633942, 0.10299155116081238, 0.04667018726468086, -0.07291784137487411, -0.0344402976334095, 0.06851313263177872, -0.2328837513923645, 0.11787183582782745, -0.1064424142241478, -0.21074175834655762, -0.06903064996004105, 0.035422950983047485, 0.14039748907089233, -0.0034193163737654686, 0.10519111156463623, -0.008336585015058517, -0.09666894376277924, 0.04311183840036392, 0.018499037250876427, -0.19733557105064392, 0.004534261301159859, 0.0827038586139679, -0.06582990288734436, -0.009068409912288189, -0.034264057874679565, 0.03624148294329643, 0.08922430127859116, 0.05437808111310005, -0.01910148747265339, 0.05042428895831108, 0.014998827129602432, -0.0677507072687149, -0.0006768365274183452, 0.03367190062999725, 0.02013298124074936, -0.1020888015627861, 0.08180907368659973, -0.17628344893455505, 0.053729098290205, -0.013982406817376614, -0.0291798934340477, -0.0029725844506174326, -0.01890522800385952, -0.055641546845436096, 0.06260602921247482, 0.07296348363161087, -0.011743206530809402, -0.02574125863611698, -0.04272527992725372, -0.04611913114786148, -0.03326372802257538, -0.08508988469839096, -0.11325842887163162, -0.13927727937698364, -0.09787482768297195, 0.09634150564670563, -0.008824790827929974, -0.18197888135910034, 0.0028776151593774557, -0.06104812026023865, 0.08618874102830887, -0.14188407361507416, 0.08006776124238968, 0.08249889314174652, 0.00013928746921010315, -0.0090348981320858, -0.021353812888264656, 0.04725958779454231, 0.07949267327785492, -0.11032622307538986, -0.06586744636297226 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # tmp_znj9o4r This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.16.2 - TensorFlow 2.8.0 - Datasets 1.18.3 - Tokenizers 0.11.0
{"tags": ["generated_from_keras_callback"], "model-index": [{"name": "tmp_znj9o4r", "results": []}]}
text-classification
AWTStress/stress_classifier
[ "transformers", "tf", "distilbert", "text-classification", "generated_from_keras_callback", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #tf #distilbert #text-classification #generated_from_keras_callback #autotrain_compatible #endpoints_compatible #region-us
# tmp_znj9o4r This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.16.2 - TensorFlow 2.8.0 - Datasets 1.18.3 - Tokenizers 0.11.0
[ "# tmp_znj9o4r\n\nThis model was trained from scratch on an unknown dataset.\nIt achieves the following results on the evaluation set:", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- optimizer: None\n- training_precision: float32", "### Training results", "### Framework versions\n\n- Transformers 4.16.2\n- TensorFlow 2.8.0\n- Datasets 1.18.3\n- Tokenizers 0.11.0" ]
[ "TAGS\n#transformers #tf #distilbert #text-classification #generated_from_keras_callback #autotrain_compatible #endpoints_compatible #region-us \n", "# tmp_znj9o4r\n\nThis model was trained from scratch on an unknown dataset.\nIt achieves the following results on the evaluation set:", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- optimizer: None\n- training_precision: float32", "### Training results", "### Framework versions\n\n- Transformers 4.16.2\n- TensorFlow 2.8.0\n- Datasets 1.18.3\n- Tokenizers 0.11.0" ]
[ 48, 37, 6, 12, 8, 3, 33, 4, 34 ]
[ "passage: TAGS\n#transformers #tf #distilbert #text-classification #generated_from_keras_callback #autotrain_compatible #endpoints_compatible #region-us \n# tmp_znj9o4r\n\nThis model was trained from scratch on an unknown dataset.\nIt achieves the following results on the evaluation set:## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- optimizer: None\n- training_precision: float32### Training results### Framework versions\n\n- Transformers 4.16.2\n- TensorFlow 2.8.0\n- Datasets 1.18.3\n- Tokenizers 0.11.0" ]
[ -0.0718684121966362, 0.023954803124070168, -0.0005222507752478123, 0.08498486131429672, 0.16690625250339508, 0.018718160688877106, 0.08609471470117569, 0.11229293048381805, -0.14354625344276428, -0.006508303340524435, 0.053223006427288055, 0.15455791354179382, 0.020938530564308167, 0.0997108742594719, -0.06050528958439827, -0.26188358664512634, 0.0038794931024312973, 0.04859308898448944, -0.08151929080486298, 0.10787368565797806, 0.10952577739953995, -0.09278877824544907, 0.08884274214506149, -0.0004600350803229958, -0.2249756008386612, 0.010727932676672935, 0.017555605620145798, -0.08317749947309494, 0.11088933795690536, 0.049934666603803635, 0.09089653939008713, 0.05705435574054718, 0.08576270937919617, -0.11005984991788864, 0.021653002128005028, 0.07564588636159897, -0.017567260190844536, 0.07991820573806763, 0.07120834290981293, -0.040514592081308365, 0.1602349877357483, -0.09362195432186127, 0.072354257106781, 0.06783832609653473, -0.1086188480257988, -0.13957750797271729, -0.06772260367870331, 0.05869384482502937, 0.04824437201023102, 0.0978596955537796, 0.0011314032599329948, 0.24659331142902374, -0.08850375562906265, 0.10552733391523361, 0.1475197970867157, -0.3179093897342682, -0.07108525931835175, 0.07460854947566986, 0.06718094646930695, 0.019772596657276154, -0.08364279568195343, 0.03573145344853401, 0.05261165648698807, 0.036614783108234406, 0.08370787650346756, -0.0262076985090971, -0.13182376325130463, -0.0009109157253988087, -0.13063786923885345, 0.04514854773879051, 0.22932562232017517, 0.011684787459671497, -0.05221354961395264, -0.04859200865030289, -0.07130798697471619, -0.09284481406211853, -0.00881137978285551, -0.07429763674736023, 0.01306207850575447, -0.004851836711168289, -0.0853298082947731, -0.049713943153619766, -0.09846487641334534, -0.05513206869363785, -0.09958053380250931, 0.1856449693441391, 0.020161215215921402, 0.02204323001205921, -0.0862455666065216, 0.11436860263347626, 0.00862989854067564, -0.10198189318180084, -0.004346610978245735, -0.044269658625125885, -0.08975913375616074, -0.11136776953935623, -0.05757969245314598, -0.19883880019187927, 0.013441216200590134, 0.09857350587844849, 0.0124561358243227, 0.06622092425823212, -0.05245405063033104, 0.024990221485495567, -0.006365528795868158, 0.12379314005374908, -0.06731858849525452, -0.018711203709244728, 0.03963743895292282, -0.03853970021009445, -0.037692923098802567, -0.04250987246632576, -0.12229517847299576, -0.013737525790929794, 0.10637887567281723, 0.04456210881471634, -0.053397297859191895, 0.13606542348861694, -0.01993419975042343, -0.05483441427350044, -0.056745775043964386, -0.08882501721382141, 0.0010540428338572383, -0.022720133885741234, -0.09690463542938232, 0.051955241709947586, 0.10052306205034256, -0.022182971239089966, -0.06972362846136093, 0.029893027618527412, -0.09641251713037491, -0.0010775886476039886, -0.06442638486623764, -0.1044130027294159, 0.01971106231212616, -0.09051278978586197, 0.02315681055188179, -0.12621960043907166, -0.17463992536067963, -0.005301463417708874, 0.07280565798282623, -0.060232438147068024, 0.016906017437577248, -0.055414896458387375, -0.07538102567195892, 0.028370067477226257, 0.007761294022202492, 0.11501404643058777, -0.041687723249197006, 0.06188914552330971, -0.003563081379979849, 0.04501282423734665, -0.05456848070025444, 0.035514358431100845, -0.08923563361167908, 0.013633145950734615, -0.0760820284485817, 0.09332738816738129, -0.040705613791942596, 0.06424860656261444, -0.11582564562559128, -0.07728919386863708, -0.019867410883307457, -0.011600681580603123, 0.057983431965112686, 0.1413651555776596, -0.21209010481834412, -0.006111836526542902, 0.13967777788639069, -0.09101351350545883, -0.1160048320889473, 0.07891548424959183, -0.07164406031370163, 0.16764329373836517, 0.07872242480516434, 0.12500746548175812, 0.08950000256299973, -0.11327899992465973, 0.055789973586797714, 0.03129330277442932, -0.051396965980529785, 0.0006318531814031303, 0.006076836492866278, 0.03172601759433746, -0.07848449796438217, 0.030382754281163216, 0.038019709289073944, 0.045044854283332825, -0.11568503081798553, -0.06406692415475845, -0.05235155671834946, -0.08647996187210083, 0.1057370975613594, 0.015716493129730225, 0.10247701406478882, -0.04294084385037422, -0.10922831296920776, 0.1188042089343071, 0.07384686172008514, -0.04124104976654053, 0.008780749514698982, -0.12338504940271378, 0.022828463464975357, -0.07599205523729324, 0.006833714433014393, -0.2119278758764267, -0.07354389876127243, -0.0011990965576842427, 0.08058561384677887, 0.07639239728450775, 0.08732137829065323, 0.07506650686264038, 0.05296158418059349, -0.05463099852204323, 0.008179104886949062, -0.0006030873046256602, 0.05325399711728096, -0.10072828829288483, -0.18774059414863586, -0.017399201169610023, -0.04908611252903938, 0.07621477544307709, -0.24024634063243866, 0.011074350215494633, 0.05751323327422142, 0.12403259426355362, 0.048392411321401596, 0.006708632688969374, -0.008655202575027943, 0.03538009896874428, -0.04538923501968384, -0.08395960927009583, 0.06113257259130478, 0.033832356333732605, -0.13513658940792084, 0.001528964494355023, -0.14521554112434387, 0.09828656166791916, 0.1140911802649498, -0.12681125104427338, -0.12521280348300934, 0.05723428726196289, -0.0520842969417572, -0.04833158850669861, -0.002344070700928569, 0.036939844489097595, 0.13039901852607727, -0.012141773477196693, 0.16452741622924805, -0.05534202605485916, -0.0558646097779274, 0.0528150275349617, -0.03659573569893837, 0.0030562235042452812, 0.06222733110189438, 0.03365431725978851, -0.22974927723407745, 0.08965633809566498, 0.05402027443051338, -0.03501309081912041, 0.19226330518722534, -0.02463938109576702, -0.04925353452563286, -0.05842059850692749, -0.008994764648377895, 0.024601450189948082, 0.08916956931352615, -0.1688777059316635, -0.007448108401149511, 0.028999803587794304, 0.03750384598970413, 0.054900381714105606, -0.1434459686279297, 0.000016351710655726492, 0.034188661724328995, 0.008016274310648441, 0.02334924228489399, 0.04313117638230324, -0.018127042800188065, 0.12377499788999557, 0.036467455327510834, -0.011022347025573254, 0.08535470813512802, 0.0038347679655998945, -0.11521054059267044, 0.1959369033575058, -0.11659540235996246, -0.14185194671154022, -0.08555623888969421, -0.03805531933903694, -0.08200906217098236, 0.006832410581409931, 0.015614805743098259, -0.06834172457456589, -0.0395117811858654, -0.05673613399267197, 0.005175609607249498, -0.07694978266954422, 0.02718723751604557, -0.034929461777210236, 0.029749171808362007, 0.0667920783162117, -0.11518103629350662, -0.011723524890840054, -0.03901471197605133, -0.09673068672418594, 0.04095201939344406, -0.05330440029501915, 0.09118091315031052, 0.16628609597682953, -0.06617645919322968, 0.04972264543175697, -0.042399611324071884, 0.17907412350177765, -0.07047583162784576, 0.02414211444556713, 0.10622446238994598, -0.030523164197802544, 0.0018100771121680737, 0.061738524585962296, 0.03154292330145836, -0.1026822030544281, 0.04729631170630455, 0.03043666109442711, -0.06763697415590286, -0.2286723554134369, -0.07873616367578506, -0.06660165637731552, -0.03845293074846268, 0.05833849310874939, 0.058882471174001694, 0.15045444667339325, 0.0639495775103569, 0.049848973751068115, 0.10840936750173569, -0.010801952332258224, 0.08422871679067612, 0.06344863027334213, 0.05243615433573723, 0.09035107493400574, -0.0703296959400177, -0.042663585394620895, 0.0675436332821846, -0.03628291189670563, 0.23618297278881073, 0.013908588327467442, 0.0685286596417427, 0.07633350789546967, 0.10978909581899643, 0.02146907150745392, 0.11684247106313705, 0.05344506725668907, -0.038680579513311386, 0.004237425979226828, -0.07484758645296097, -0.03420465067028999, 0.02318928949534893, -0.06195763871073723, 0.03707217052578926, -0.11251369118690491, 0.005066544283181429, 0.03808565437793732, 0.21390560269355774, 0.021036572754383087, -0.3110090494155884, -0.10651921480894089, -0.029722057282924652, -0.013019141741096973, -0.06138978898525238, 0.00045187323121353984, 0.0659019723534584, -0.1029752567410469, 0.07030920684337616, -0.07247290760278702, 0.09735255688428879, -0.00699985958635807, 0.013710733503103256, 0.0035511977039277554, 0.07135336101055145, -0.01856595277786255, 0.10882854461669922, -0.30199891328811646, 0.2189449965953827, 0.021872296929359436, 0.13011029362678528, -0.11274386197328568, -0.023271597921848297, 0.0157903041690588, 0.14886946976184845, 0.13498026132583618, -0.012476027943193913, -0.03151073679327965, -0.14064089953899384, -0.009202525019645691, -0.011558286845684052, 0.10781380534172058, 0.016962358728051186, 0.0982397273182869, -0.03588582202792168, -0.001057629706338048, 0.07105426490306854, 0.023312965407967567, -0.17807480692863464, -0.09575716406106949, 0.03537577763199806, -0.029453236609697342, -0.06038811430335045, -0.04609125107526779, -0.09626706689596176, -0.011832932010293007, 0.20501741766929626, -0.01283372100442648, -0.03646954894065857, -0.16816957294940948, 0.0667109414935112, 0.0728958249092102, -0.04351349547505379, 0.01149262860417366, 0.022638725116848946, 0.094047412276268, 0.038662225008010864, -0.16314563155174255, 0.10425786674022675, -0.07932517677545547, -0.147822305560112, -0.04082046449184418, 0.08151115477085114, 0.08328966051340103, 0.03243663161993027, 0.028772739693522453, -0.007556282449513674, 0.01689166948199272, -0.09376420825719833, -0.00645811203867197, 0.017749734222888947, 0.04152685031294823, 0.02069745771586895, -0.06782083213329315, -0.02676151692867279, -0.023450186476111412, 0.0010206247679889202, 0.14066165685653687, 0.1534963995218277, -0.07929744571447372, 0.08500344306230545, 0.031870536506175995, -0.10726925730705261, -0.22847269475460052, 0.08586443215608597, 0.0360746793448925, 0.018529541790485382, 0.009234650060534477, -0.13767209649085999, 0.1121247410774231, 0.01911606267094612, 0.005554141942411661, 0.054434794932603836, -0.28219857811927795, -0.14264348149299622, 0.10859737545251846, 0.12635083496570587, 0.16469402611255646, -0.11160676181316376, -0.025241801515221596, -0.06179118528962135, -0.062254518270492554, 0.22131426632404327, -0.2066464126110077, 0.10885201394557953, 0.0004883134970441461, 0.034736353904008865, 0.04046976566314697, -0.03348589316010475, 0.0735882818698883, 0.031031347811222076, 0.09469425678253174, -0.11055605858564377, -0.014682375825941563, 0.17940515279769897, -0.041566152125597, 0.06228840351104736, 0.028970420360565186, 0.05184289440512657, -0.08802725374698639, -0.034247323870658875, -0.08123589307069778, 0.085625559091568, -0.02740207128226757, -0.08783777058124542, -0.04260563477873802, 0.05212021991610527, 0.09230884909629822, -0.04256878420710564, 0.09225358814001083, -0.010436518117785454, 0.13953448832035065, 0.16403192281723022, 0.18499599397182465, -0.025951040908694267, 0.007810697890818119, 0.017822906374931335, -0.03544551134109497, 0.07769816368818283, -0.13892580568790436, 0.04076584801077843, 0.11953195929527283, 0.02065878175199032, 0.12458617240190506, 0.09530891478061676, -0.07326999306678772, -0.014746188186109066, 0.05745450407266617, -0.14295688271522522, -0.09790178388357162, -0.06615255773067474, -0.06763327866792679, -0.023035870864987373, 0.07651133090257645, 0.14389120042324066, -0.09976907074451447, 0.018657760694622993, 0.0032860932406038046, -0.04147498682141304, -0.09421881288290024, 0.1801367700099945, 0.06005541607737541, 0.0471472404897213, -0.07809528708457947, 0.13038553297519684, 0.04715386778116226, -0.03440016135573387, 0.06363753974437714, 0.05613137409090996, -0.13055582344532013, -0.07220268249511719, 0.09796754270792007, 0.22809530794620514, -0.0721229836344719, -0.05039989948272705, -0.10087860375642776, -0.08812956511974335, 0.03766781836748123, 0.2582069933414459, 0.062198709696531296, 0.04869571328163147, -0.08576378971338272, 0.014096347615122795, -0.16925205290317535, 0.05385813117027283, 0.06611569225788116, 0.043657027184963226, -0.1495034247636795, 0.191778302192688, -0.014963120222091675, 0.09308188408613205, -0.09374074637889862, -0.019631583243608475, -0.13178451359272003, 0.004429236985743046, -0.16963699460029602, -0.0066077327355742455, -0.028843069449067116, -0.005657606292515993, 0.00489705940708518, -0.026762068271636963, -0.050571415573358536, 0.037967830896377563, -0.08920467644929886, 0.0020306885708123446, 0.04119878262281418, 0.018171139061450958, -0.05181877687573433, -0.035686127841472626, -0.028106162324547768, -0.0724060907959938, 0.06310638785362244, 0.0619339644908905, -0.026278801262378693, 0.0819893404841423, -0.1522618979215622, -0.005301712546497583, 0.025617258623242378, 0.005835526157170534, 0.07658542692661285, -0.022974736988544464, 0.0008384130778722465, -0.006414288189262152, 0.04858067259192467, 0.025944288820028305, 0.04808350279927254, -0.09478358924388885, -0.06424017995595932, -0.05252941697835922, -0.01891588233411312, -0.06599217653274536, 0.07691903412342072, 0.07224179059267044, 0.04665052518248558, 0.13228969275951385, -0.08635278046131134, 0.03481036052107811, -0.14760848879814148, -0.03403893858194351, 0.007008292246609926, -0.07166018337011337, -0.00858568400144577, -0.06256862729787827, 0.07261572033166885, -0.07048436999320984, 0.12570783495903015, 0.027062656357884407, 0.09224989265203476, 0.01668311096727848, 0.010848233476281166, -0.055120207369327545, 0.025767024606466293, 0.24938265979290009, 0.0295809768140316, -0.006595205515623093, 0.004137138836085796, 0.05883380398154259, 0.04680487513542175, 0.033265117555856705, 0.17471954226493835, 0.055401913821697235, -0.10580900311470032, 0.08630544692277908, 0.03020741604268551, -0.06245763227343559, -0.11036807298660278, 0.03923502564430237, -0.04159586876630783, 0.10566529631614685, -0.06947122514247894, 0.014362117275595665, 0.0969802662730217, -0.09263834357261658, 0.04334985837340355, -0.03973555564880371, -0.08611028641462326, -0.11685174703598022, -0.16525256633758545, -0.0889066606760025, -0.09624354541301727, 0.0025837793946266174, -0.09000905603170395, -0.007413910701870918, 0.0240949559956789, 0.041438229382038116, -0.03527946397662163, 0.1686270534992218, -0.07802154868841171, -0.0369851253926754, 0.10053221881389618, -0.02845529466867447, -0.039789412170648575, -0.07960384339094162, 0.002680996200069785, 0.004506049212068319, 0.009168597869575024, 0.018499299883842468, -0.020952191203832626, 0.008671022951602936, 0.031692128628492355, -0.021742500364780426, -0.09398096799850464, 0.029596835374832153, 0.03902673348784447, 0.017430810257792473, 0.01237623579800129, 0.022355174645781517, -0.04850897565484047, -0.033826399594545364, 0.23088832199573517, -0.06771157681941986, -0.09379038214683533, -0.12508313357830048, 0.2555035650730133, 0.059114255011081696, 0.009157020598649979, 0.040722258388996124, -0.07500441372394562, 0.023135218769311905, 0.2358316332101822, 0.19239600002765656, -0.04187488555908203, 0.011508788913488388, 0.02225474826991558, -0.004954609554260969, -0.032057520002126694, 0.16143839061260223, 0.02684233896434307, 0.029075417667627335, -0.06294601410627365, 0.0018834710353985429, -0.029580233618617058, -0.030221782624721527, -0.016308896243572235, 0.10161374509334564, 0.05392863601446152, -0.0007039534393697977, -0.03285066783428192, 0.08276373893022537, -0.13191714882850647, -0.11652792245149612, 0.07249566167593002, -0.12425839155912399, -0.14252658188343048, -0.0569460354745388, -0.01991988532245159, -0.009051898494362831, 0.06983938068151474, -0.031407684087753296, -0.00037489377427846193, 0.09439246356487274, 0.011239352636039257, -0.08596330136060715, -0.01333852019160986, 0.08936980366706848, -0.05646694451570511, 0.17294368147850037, -0.03503185510635376, 0.05169326812028885, 0.114403635263443, 0.03530869260430336, -0.09515853971242905, 0.08914624899625778, -0.0024303763639181852, -0.021191218867897987, 0.06730977445840836, 0.1432560831308365, -0.03178029879927635, 0.037626855075359344, 0.007163802161812782, -0.20214612782001495, 0.01425708457827568, -0.043148644268512726, -0.03412258252501488, -0.05825422331690788, 0.011018333956599236, -0.061634622514247894, 0.1449170708656311, 0.17943568527698517, -0.046792030334472656, 0.02767210826277733, -0.1015135645866394, 0.040432158857584, 0.052051298320293427, 0.012242256663739681, -0.045591630041599274, -0.194963738322258, -0.004160654731094837, 0.022087985649704933, 0.0023513867054134607, -0.23284794390201569, -0.050767555832862854, 0.006220987997949123, -0.07665188610553741, -0.08626091480255127, 0.10729674249887466, 0.11136173456907272, 0.045857589691877365, -0.0570516437292099, -0.09319069236516953, -0.04371314123272896, 0.1126009151339531, -0.1477832943201065, -0.06467434018850327 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # stress_score This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.16.2 - TensorFlow 2.8.0 - Datasets 1.18.3 - Tokenizers 0.11.0
{"tags": ["generated_from_keras_callback"], "model-index": [{"name": "stress_score", "results": []}]}
text-classification
AWTStress/stress_score
[ "transformers", "tf", "distilbert", "text-classification", "generated_from_keras_callback", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #tf #distilbert #text-classification #generated_from_keras_callback #autotrain_compatible #endpoints_compatible #region-us
# stress_score This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.16.2 - TensorFlow 2.8.0 - Datasets 1.18.3 - Tokenizers 0.11.0
[ "# stress_score\n\nThis model was trained from scratch on an unknown dataset.\nIt achieves the following results on the evaluation set:", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- optimizer: None\n- training_precision: float32", "### Training results", "### Framework versions\n\n- Transformers 4.16.2\n- TensorFlow 2.8.0\n- Datasets 1.18.3\n- Tokenizers 0.11.0" ]
[ "TAGS\n#transformers #tf #distilbert #text-classification #generated_from_keras_callback #autotrain_compatible #endpoints_compatible #region-us \n", "# stress_score\n\nThis model was trained from scratch on an unknown dataset.\nIt achieves the following results on the evaluation set:", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- optimizer: None\n- training_precision: float32", "### Training results", "### Framework versions\n\n- Transformers 4.16.2\n- TensorFlow 2.8.0\n- Datasets 1.18.3\n- Tokenizers 0.11.0" ]
[ 48, 31, 6, 12, 8, 3, 33, 4, 34 ]
[ "passage: TAGS\n#transformers #tf #distilbert #text-classification #generated_from_keras_callback #autotrain_compatible #endpoints_compatible #region-us \n# stress_score\n\nThis model was trained from scratch on an unknown dataset.\nIt achieves the following results on the evaluation set:## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- optimizer: None\n- training_precision: float32### Training results### Framework versions\n\n- Transformers 4.16.2\n- TensorFlow 2.8.0\n- Datasets 1.18.3\n- Tokenizers 0.11.0" ]
[ -0.07949482649564743, 0.003999642096459866, -0.000503388699144125, 0.07455523312091827, 0.18542110919952393, 0.01766563206911087, 0.12547491490840912, 0.11496234685182571, -0.13007980585098267, 0.019242245703935623, 0.08275371044874191, 0.13955703377723694, 0.02691587433218956, 0.12365357577800751, -0.06325553357601166, -0.2661949098110199, 0.01102458406239748, 0.01008742768317461, -0.04243476688861847, 0.09218599647283554, 0.11164068430662155, -0.09046027809381485, 0.09711170941591263, -0.00812289398163557, -0.2627674639225006, 0.041771795600652695, 0.028179673478007317, -0.05572488531470299, 0.13012264668941498, 0.0384395606815815, 0.11288454383611679, 0.03950142860412598, 0.08063210546970367, -0.10862746089696884, 0.02399863675236702, 0.08811362087726593, -0.004122476559132338, 0.07222235947847366, 0.09409380704164505, -0.031482890248298645, 0.15427494049072266, -0.10185737162828445, 0.07048941403627396, 0.044573452323675156, -0.11687172949314117, -0.11240482330322266, -0.08797576278448105, -0.011422810144722462, 0.0745893269777298, 0.09092627465724945, -0.013615237548947334, 0.25318169593811035, -0.07614246010780334, 0.10805873572826385, 0.13021661341190338, -0.305765300989151, -0.08211001753807068, 0.06816435605287552, 0.04363600164651871, 0.018659163266420364, -0.07819681614637375, 0.049283068627119064, 0.07867076247930527, 0.0559542216360569, 0.046892788261175156, -0.023894818499684334, -0.16003450751304626, -0.003830364905297756, -0.11916297674179077, 0.045908067375421524, 0.17363561689853668, 0.0013443869538605213, -0.05555737391114235, -0.0783444419503212, -0.06134236231446266, -0.06723254919052124, 0.002842710819095373, -0.0906054675579071, 0.03285461291670799, -0.006216838955879211, -0.049736179411411285, -0.031746454536914825, -0.10473398864269257, -0.05723663046956062, -0.10410404950380325, 0.10845991969108582, 0.0006708018481731415, 0.024473605677485466, -0.07994218170642853, 0.1068783551454544, -0.03226800635457039, -0.1062718853354454, 0.01593026891350746, -0.011235442012548447, -0.08627019822597504, -0.10772532969713211, -0.09213133156299591, -0.24276742339134216, 0.003120250767096877, 0.05715728923678398, -0.04406380653381348, 0.07003321498632431, -0.08602738380432129, 0.02230490744113922, -0.0031489492394030094, 0.15239913761615753, -0.04570380970835686, -0.027417602017521858, 0.010983254760503769, -0.027101153507828712, -0.02064160630106926, -0.019815756008028984, -0.11440276354551315, 0.01217654999345541, 0.03764727711677551, 0.050781670957803726, -0.06260089576244354, 0.0980151817202568, -0.04191172495484352, -0.02820415049791336, -0.03220602497458458, -0.10802438110113144, 0.016503799706697464, -0.030743315815925598, -0.06787943094968796, 0.040716879069805145, 0.09006453305482864, -0.0201430507004261, -0.05408484861254692, 0.03275184705853462, -0.09141355007886887, 0.0030482583679258823, -0.08964573591947556, -0.10462988913059235, 0.013870146125555038, -0.16022595763206482, 0.020855357870459557, -0.07996527850627899, -0.2362559735774994, -0.01882031373679638, 0.06559586524963379, -0.08697254955768585, 0.015542013570666313, -0.07232199609279633, -0.06624447554349899, 0.02510767988860607, 0.0058046551421284676, 0.1346285343170166, -0.025399671867489815, 0.02355426736176014, 0.018889712169766426, 0.053670939058065414, -0.061247508972883224, 0.033134330064058304, -0.08873438835144043, 0.011852777563035488, -0.11358043551445007, 0.11271099746227264, -0.02692023105919361, 0.07781349122524261, -0.10148773342370987, -0.0566113144159317, -0.016996977850794792, 0.027327802032232285, 0.07381560653448105, 0.1638340950012207, -0.20105907320976257, -0.024526424705982208, 0.1495341956615448, -0.1023801788687706, -0.1088503748178482, 0.08371008187532425, -0.07432575523853302, 0.182701975107193, 0.08180641382932663, 0.11859213560819626, 0.023586293682456017, -0.09621338546276093, 0.06077460199594498, 0.051160041242837906, -0.03999463468790054, 0.010783764533698559, -0.017783384770154953, 0.006339081097394228, -0.05751628428697586, 0.037436943501234055, 0.03356606885790825, 0.01877201721072197, -0.10843367874622345, -0.06843207776546478, -0.05864756926894188, -0.0891203060746193, 0.06151895970106125, 0.01041391771286726, 0.11071617901325226, -0.050736747682094574, -0.09290219098329544, 0.14295299351215363, 0.053046971559524536, -0.022937722504138947, 0.0012949646916240454, -0.09820104390382767, -0.011785653419792652, -0.06572405993938446, -0.002177102491259575, -0.22196976840496063, -0.07539503276348114, 0.004512366373091936, 0.12660075724124908, 0.059636618942022324, 0.0882011204957962, 0.0934411957859993, 0.03208020702004433, -0.046416494995355606, 0.03396647423505783, 0.023496612906455994, 0.027064278721809387, -0.12909211218357086, -0.1934577226638794, 0.01517798937857151, -0.0793929249048233, 0.07062648236751556, -0.25563186407089233, 0.003062176052480936, 0.05103087052702904, 0.11303462088108063, 0.05147084966301918, -0.010349762625992298, -0.012588425539433956, 0.040497373789548874, -0.042065270245075226, -0.08374952524900436, 0.04811931028962135, 0.031539611518383026, -0.11930219829082489, 0.009797965176403522, -0.16049246490001678, 0.11248345673084259, 0.11207077652215958, -0.07921941578388214, -0.15086185932159424, 0.04843032732605934, -0.045007769018411636, -0.04003046452999115, -0.03282134607434273, 0.04291117936372757, 0.1693768948316574, -0.0013286828761920333, 0.15778136253356934, -0.03349677473306656, -0.03819036856293678, 0.037342313677072525, -0.0217767171561718, -0.017924653366208076, 0.06923028081655502, -0.033927954733371735, -0.15083998441696167, 0.08118245005607605, 0.06271206587553024, -0.05482801795005798, 0.15474867820739746, -0.032973792403936386, -0.07131140679121017, -0.04268382862210274, -0.007416886277496815, 0.028053421527147293, 0.08722609281539917, -0.15417788922786713, -0.024955211207270622, 0.012927362695336342, 0.03190939128398895, 0.04798407107591629, -0.16346587240695953, -0.0037479158490896225, 0.03915468230843544, 0.004050349351018667, -0.0032400728669017553, 0.029148029163479805, -0.0028468628879636526, 0.10876411944627762, 0.021640142425894737, -0.014502879232168198, 0.08086728304624557, -0.00591666717082262, -0.11221323907375336, 0.2191927284002304, -0.11389020085334778, -0.14137659966945648, -0.10485919564962387, -0.0235423780977726, -0.0477883405983448, 0.010561773553490639, 0.021957416087388992, -0.10663623362779617, -0.06082382798194885, -0.060476820915937424, 0.017452096566557884, -0.06705077737569809, 0.024529309943318367, 0.002163766883313656, -0.0007039956981316209, 0.07828208059072495, -0.10388586670160294, -0.004601297900080681, -0.03069392405450344, -0.10901747643947601, 0.024348163977265358, -0.0257587693631649, 0.06975970417261124, 0.14296695590019226, -0.04954751580953598, 0.04495229944586754, -0.05739479511976242, 0.17906711995601654, -0.07898760586977005, -0.012514863163232803, 0.11326143890619278, -0.04208559915423393, 0.008472767658531666, 0.056682731956243515, 0.028610074892640114, -0.12422294914722443, 0.052345920354127884, 0.03726758807897568, -0.05930180102586746, -0.2565475404262543, -0.0509660467505455, -0.042745474725961685, -0.04215073585510254, 0.03578730672597885, 0.05068925768136978, 0.1175394281744957, 0.07921307533979416, 0.08204825967550278, 0.10462678223848343, -0.0431479848921299, 0.06533648073673248, 0.04609500244259834, 0.030418913811445236, 0.0928947925567627, -0.07957760989665985, -0.05654403939843178, 0.07976337522268295, -0.033502042293548584, 0.23380905389785767, 0.0427112802863121, 0.05834975466132164, 0.0626392737030983, 0.0725448802113533, -0.008253311738371849, 0.11272022873163223, 0.03982514515519142, -0.05172823742032051, 0.0010103959357365966, -0.06647849082946777, -0.02462785877287388, 0.04614235460758209, -0.07665245234966278, 0.028581632301211357, -0.12156925350427628, 0.010871701873838902, 0.04046548157930374, 0.24948818981647491, 0.02152520976960659, -0.3407871723175049, -0.09363571554422379, -0.013137307949364185, -0.0227213092148304, -0.06757954508066177, -0.0027806370053440332, 0.03732883557677269, -0.10665059834718704, 0.08618433028459549, -0.0825297012925148, 0.09398679435253143, -0.006538190878927708, 0.027843812480568886, 0.0023928587324917316, 0.08856596797704697, -0.012093298137187958, 0.07826999574899673, -0.2750084102153778, 0.266804963350296, 0.0329442098736763, 0.1299920529127121, -0.09568587690591812, 0.005354597698897123, 0.03731737285852432, 0.12413856387138367, 0.15320244431495667, -0.031448256224393845, -0.09035547077655792, -0.12296748906373978, -0.0065496512688696384, 0.00280278199352324, 0.12419264018535614, 0.029142454266548157, 0.08781313896179199, -0.02634921483695507, 0.012404849752783775, 0.07942772656679153, -0.025240624323487282, -0.16150903701782227, -0.08956308662891388, 0.014972520060837269, -0.02103886939585209, -0.07330791652202606, -0.049790315330028534, -0.09771344065666199, -0.02125570923089981, 0.22999486327171326, -0.005499598104506731, -0.021316034719347954, -0.17512930929660797, 0.0843360498547554, 0.06983284652233124, -0.02648688666522503, 0.012212270870804787, 0.009289433248341084, 0.08330021053552628, 0.04895063117146492, -0.14212124049663544, 0.11658793687820435, -0.07690019905567169, -0.1209632009267807, -0.046101540327072144, 0.04840708151459694, 0.08359578996896744, 0.01672455109655857, 0.027844702824950218, 0.024418335407972336, 0.005753593519330025, -0.07922198623418808, 0.02486904338002205, 0.003848722204566002, 0.032215386629104614, 0.05930754542350769, -0.05870726332068443, 0.0016875100554898381, -0.011466674506664276, -0.01098103728145361, 0.1246570274233818, 0.1540844738483429, -0.08823155611753464, 0.08548779040575027, 0.030515285208821297, -0.1261109858751297, -0.2536396086215973, 0.13302531838417053, 0.05989820510149002, 0.04051177203655243, 0.05646423622965813, -0.1753309965133667, 0.13165929913520813, 0.015283411368727684, -0.01217699982225895, 0.05899662896990776, -0.26284247636795044, -0.135976642370224, 0.14483214914798737, 0.10908718407154083, 0.16469739377498627, -0.12601549923419952, -0.039535921066999435, -0.06607986986637115, 0.00346720521338284, 0.14638014137744904, -0.23308557271957397, 0.0960511714220047, 0.004614715464413166, 0.06390585750341415, 0.03245963528752327, -0.03450070321559906, 0.09743881225585938, 0.010268324054777622, 0.1232614815235138, -0.09041251987218857, 0.01682879589498043, 0.15079136192798615, -0.04682245850563049, 0.08796846121549606, 0.020762834697961807, 0.05257980152964592, -0.1144694834947586, -0.025748034939169884, -0.052452486008405685, 0.08551438897848129, -0.01627657562494278, -0.05878452584147453, -0.037084463983774185, 0.020587248727679253, 0.06282742321491241, -0.048942893743515015, 0.07193074375391006, 0.0025373816024512053, 0.15093842148780823, 0.1907155066728592, 0.18517455458641052, -0.01280125416815281, -0.0008598624262958765, 0.03876638039946556, -0.03681733459234238, 0.053502969443798065, -0.11261191219091415, 0.01751989871263504, 0.11094462126493454, 0.007404527626931667, 0.12226129323244095, 0.0964028388261795, -0.05891652777791023, 0.014676965773105621, 0.07865212112665176, -0.13644278049468994, -0.12017413973808289, -0.03858394920825958, -0.0917038694024086, -0.05836264416575432, 0.06286875903606415, 0.1607336699962616, -0.0718671903014183, 0.03137258067727089, -0.008290528319776058, -0.02845982275903225, -0.09712862968444824, 0.1756112277507782, 0.024835288524627686, 0.025797875598073006, -0.08145017921924591, 0.14959874749183655, 0.03425655514001846, -0.07914022356271744, 0.07622453570365906, 0.06154518201947212, -0.10359316319227219, -0.04871639981865883, 0.11524718999862671, 0.23096752166748047, -0.11430751532316208, -0.05277344584465027, -0.11871983855962753, -0.11060577630996704, 0.02094152756035328, 0.24547162652015686, 0.06946755945682526, 0.049807243049144745, -0.09125606715679169, 0.039972178637981415, -0.14590094983577728, 0.04441046714782715, 0.0680006816983223, 0.05431852489709854, -0.13355140388011932, 0.17360225319862366, -0.020369399338960648, 0.07250005751848221, -0.08894501626491547, -0.00858918484300375, -0.11458291858434677, -0.0030491857323795557, -0.139947772026062, -0.003311979118734598, 0.009083911776542664, -0.02107323333621025, 0.019087648019194603, -0.016072437167167664, -0.045146964490413666, 0.0344606377184391, -0.08203274756669998, 0.005598563235253096, 0.02932383120059967, 0.025139596313238144, -0.08368212729692459, -0.02889886684715748, -0.01863357611000538, -0.05638046935200691, 0.057446401566267014, 0.0624610036611557, -0.023396870121359825, 0.07482349127531052, -0.18006043136119843, -0.002394902054220438, 0.037239834666252136, -0.012698279693722725, 0.08477286994457245, -0.026357006281614304, -0.006865392439067364, 0.0030789971351623535, 0.07149031013250351, 0.030292855575680733, 0.07292201370000839, -0.09331405907869339, -0.05740253999829292, -0.041743505746126175, -0.029116138815879822, -0.055632300674915314, 0.05838574096560478, 0.08956515043973923, 0.037609633058309555, 0.12224306166172028, -0.11131574958562851, 0.025543492287397385, -0.15708142518997192, -0.025198938325047493, 0.004106950480490923, -0.061709433794021606, -0.06507767736911774, -0.06358145922422409, 0.0889551192522049, -0.07207692414522171, 0.19018708169460297, 0.0438748300075531, 0.10730575770139694, 0.034810472279787064, -0.004009366501122713, -0.03877400979399681, 0.024182820692658424, 0.19871877133846283, 0.04340460151433945, -0.005935018416494131, -0.0338132418692112, 0.05497940629720688, 0.04005314037203789, -0.008632508106529713, 0.2033751755952835, 0.05120592191815376, -0.08400843292474747, 0.12102004885673523, 0.03513815999031067, -0.041826728731393814, -0.09730733931064606, 0.021160243079066277, -0.07730454951524734, 0.11179523915052414, -0.06824742257595062, 0.01886703632771969, 0.09296131134033203, -0.09218432754278183, 0.06364818662405014, -0.0611252561211586, -0.08310272544622421, -0.14754952490329742, -0.08136259764432907, -0.08748867362737656, -0.11868466436862946, 0.005060744471848011, -0.10679618269205093, 0.027693774551153183, 0.04500822350382805, 0.03353511542081833, -0.026598352938890457, 0.21500232815742493, -0.08239235728979111, 0.012304190546274185, 0.12089419364929199, -0.021809494122862816, -0.0041650463826954365, -0.06814920902252197, 0.004189496859908104, 0.0021457350812852383, 0.019942855462431908, 0.017042404040694237, -0.031040111556649208, -0.003041615942493081, 0.025841927155852318, -0.010254022665321827, -0.08985032886266708, 0.032329708337783813, 0.05750269070267677, -0.005170801188796759, 0.015007604844868183, 0.0322287380695343, -0.03660235553979874, -0.041749972850084305, 0.1974121332168579, -0.09491999447345734, -0.03578009456396103, -0.13040432333946228, 0.3239313066005707, 0.029722340404987335, 0.030310021713376045, 0.024099096655845642, -0.0800129845738411, 0.002510013524442911, 0.22846673429012299, 0.20722319185733795, -0.07252781838178635, -0.013740223832428455, 0.011620867066085339, 0.00023500742099713534, -0.04527318850159645, 0.16445164382457733, 0.02436544932425022, 0.05132139101624489, -0.06980925798416138, 0.005907389335334301, -0.010754258371889591, -0.04988980293273926, -0.030831338837742805, 0.06805424392223358, 0.05388816446065903, 0.024112839251756668, -0.022559285163879395, 0.10286950320005417, -0.0930742621421814, -0.15614433586597443, 0.0670672208070755, -0.14381970465183258, -0.13683240115642548, -0.04107155650854111, -0.014338182285428047, -0.007001020945608616, 0.07396768778562546, -0.026181796565651894, 0.000681212346535176, 0.1151721403002739, -0.016169177368283272, -0.0788908302783966, -0.0480569452047348, 0.07283882796764374, -0.09848590195178986, 0.1596543788909912, -0.026230869814753532, 0.03677155077457428, 0.09499198198318481, 0.016896184533834457, -0.08953722566366196, 0.051699742674827576, -0.0060828025452792645, -0.032410185784101486, 0.06423714011907578, 0.14856357872486115, -0.03638684004545212, -0.0016452482668682933, 0.004851583857089281, -0.1732328236103058, 0.034524980932474136, -0.04934816434979439, -0.06954313069581985, -0.06444013118743896, -0.00616740807890892, -0.07316315919160843, 0.13178206980228424, 0.2220892310142517, -0.018272653222084045, 0.05630937218666077, -0.074367955327034, 0.04123299941420555, 0.04786702245473862, 0.02756030485033989, -0.03862693905830383, -0.18925867974758148, 0.0172844547778368, 0.11006885021924973, -0.0021029182244092226, -0.279020220041275, -0.07437661290168762, -0.0022247456945478916, -0.05537169799208641, -0.07565052807331085, 0.08551668375730515, 0.10739313066005707, 0.053896643221378326, -0.05598432570695877, -0.14227265119552612, -0.01859447918832302, 0.12230763584375381, -0.120588019490242, -0.07316849380731583 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4812 - Wer: 0.3557 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.4668 | 4.0 | 500 | 1.3753 | 0.9895 | | 0.6126 | 8.0 | 1000 | 0.4809 | 0.4350 | | 0.2281 | 12.0 | 1500 | 0.4407 | 0.4033 | | 0.1355 | 16.0 | 2000 | 0.4590 | 0.3765 | | 0.0923 | 20.0 | 2500 | 0.4754 | 0.3707 | | 0.0654 | 24.0 | 3000 | 0.4719 | 0.3557 | | 0.0489 | 28.0 | 3500 | 0.4812 | 0.3557 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "wav2vec2-base-timit-demo-colab", "results": []}]}
automatic-speech-recognition
Pinwheel/wav2vec2-base-timit-demo-colab
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us
wav2vec2-base-timit-demo-colab ============================== This model is a fine-tuned version of facebook/wav2vec2-base on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.4812 * Wer: 0.3557 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0001 * train\_batch\_size: 32 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 1000 * num\_epochs: 30 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.11.3 * Pytorch 1.10.0+cu111 * Datasets 1.13.3 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1000\n* num\\_epochs: 30\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.13.3\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1000\n* num\\_epochs: 30\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.13.3\n* Tokenizers 0.10.3" ]
[ 56, 130, 4, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1000\n* num\\_epochs: 30\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.13.3\n* Tokenizers 0.10.3" ]
[ -0.10822959244251251, 0.099675752222538, -0.003300065640360117, 0.06340761482715607, 0.10860926657915115, -0.020167825743556023, 0.1288769543170929, 0.15049001574516296, -0.09271349757909775, 0.07457399368286133, 0.12636904418468475, 0.1505885273218155, 0.04232662543654442, 0.1459311991930008, -0.05005314201116562, -0.2829117476940155, 0.046162717044353485, 0.0348406657576561, -0.0121766971424222, 0.12717968225479126, 0.08421128243207932, -0.12457819283008575, 0.057947319000959396, 0.034365277737379074, -0.1584104299545288, -0.003970644436776638, -0.005117249675095081, -0.10462873429059982, 0.12317385524511337, 0.006251727696508169, 0.07064329087734222, 0.04838201776146889, 0.06631770730018616, -0.2193475365638733, 0.006690362934023142, 0.043937861919403076, 0.028387419879436493, 0.07415802031755447, 0.0581994503736496, -0.02945130504667759, 0.10399823635816574, -0.07501231133937836, 0.08020306378602982, 0.03743743896484375, -0.10571174323558807, -0.29113149642944336, -0.08603336662054062, 0.04763360694050789, 0.06857916712760925, 0.08891522884368896, -0.012067495845258236, 0.144022136926651, -0.05461663380265236, 0.11053165048360825, 0.28164494037628174, -0.31383398175239563, -0.04501998424530029, -0.03997642174363136, 0.05645865947008133, 0.060465965420007706, -0.09994802623987198, -0.017910847440361977, 0.015012132935225964, 0.044832006096839905, 0.13800188899040222, -0.016268642619252205, -0.05933629348874092, -0.006875182036310434, -0.149040088057518, -0.060275666415691376, 0.11524058878421783, 0.022648070007562637, -0.039792802184820175, -0.09874942153692245, -0.055090054869651794, -0.21280622482299805, -0.06727685779333115, -0.01608140580356121, 0.04322221875190735, -0.0424761027097702, -0.10445226728916168, -0.011462483555078506, -0.067214734852314, -0.07468024641275406, -0.04020216315984726, 0.19049659371376038, 0.0569683313369751, -0.0015599278267472982, -0.03913375735282898, 0.07671435922384262, -0.02081478387117386, -0.13849472999572754, -0.024057583883404732, 0.036882609128952026, -0.020599735900759697, -0.01540920790284872, -0.041751619428396225, -0.059525419026613235, 0.02147202007472515, 0.16159066557884216, -0.10229084640741348, 0.09610845148563385, -0.02040909230709076, 0.03964505344629288, -0.1023506298661232, 0.20751461386680603, -0.04149479418992996, 0.017300888895988464, -0.01036039274185896, 0.055753905326128006, 0.029493195936083794, -0.026112813502550125, -0.0944448858499527, 0.03134589642286301, 0.1209908202290535, 0.04713206738233566, -0.04747193679213524, 0.06453514844179153, -0.034078627824783325, -0.00976975541561842, 0.0015425614546984434, -0.1116979643702507, 0.036166802048683167, 0.019734438508749008, -0.06563939899206161, 0.004243024159222841, 0.014517679810523987, 0.007364774588495493, -0.054604124277830124, 0.08333495259284973, -0.06161367520689964, 0.03338611125946045, -0.05673642084002495, -0.1255759745836258, 0.0254832673817873, -0.11468040943145752, -0.003398764180019498, -0.09991598129272461, -0.10067108273506165, -0.011766123585402966, 0.03731279447674751, -0.03822978585958481, -0.02582731656730175, -0.07831884920597076, -0.0903376117348671, 0.045774877071380615, -0.03446253389120102, 0.07107189297676086, -0.07455966621637344, 0.09409195184707642, 0.03365432471036911, 0.08763306587934494, -0.01564944162964821, 0.06029713898897171, -0.07134567946195602, 0.026744363829493523, -0.19970214366912842, 0.07492507249116898, -0.08829209953546524, 0.05765917897224426, -0.12506166100502014, -0.11516561359167099, 0.02212962694466114, -0.007345497142523527, 0.09889665991067886, 0.0976170003414154, -0.17107638716697693, -0.08861831575632095, 0.20791228115558624, -0.08212082087993622, -0.08377639949321747, 0.12448340654373169, -0.02486608363687992, -0.00034487590892240405, 0.05570755526423454, 0.25771892070770264, 0.04567098990082741, -0.12561871111392975, 0.007944315671920776, -0.040438469499349594, 0.0426238514482975, -0.035683345049619675, 0.058901671320199966, -0.028174052014946938, 0.06841765344142914, 0.01783875562250614, -0.004300459288060665, 0.0377449095249176, -0.08730132132768631, -0.0771728903055191, -0.043716900050640106, -0.07817266881465912, 0.029336441308259964, 0.032532043755054474, 0.06398753076791763, -0.11690137535333633, -0.10784720629453659, 0.03895878419280052, 0.0814940482378006, -0.10364940762519836, 0.07184524834156036, -0.1202312484383583, 0.08338981866836548, -0.01493844948709011, -0.005216938443481922, -0.19063900411128998, 0.03534865006804466, 0.03775133937597275, -0.028579330071806908, 0.04033041372895241, -0.06452071666717529, 0.07755736261606216, 0.045356228947639465, -0.026059629395604134, -0.04673822969198227, -0.009306485764682293, 0.010259725153446198, -0.08931370079517365, -0.20704664289951324, -0.03785887360572815, -0.038044244050979614, 0.07835710793733597, -0.13819026947021484, 0.034040216356515884, 0.07705976814031601, 0.0922568067908287, 0.032501887530088425, -0.03155825659632683, -0.0013533032033592463, 0.08992743492126465, -0.020763428881764412, -0.06439613550901413, 0.05805477127432823, 0.020028982311487198, -0.08660950511693954, 0.03891601413488388, -0.14935077726840973, 0.12675049901008606, 0.14704614877700806, -0.015051227062940598, -0.06689473241567612, 0.00010667734750313684, -0.04766694828867912, -0.03477296233177185, -0.0042805140838027, 0.03377611190080643, 0.2151905596256256, 0.013937880285084248, 0.14332830905914307, -0.0892372876405716, -0.04220341518521309, 0.04966939240694046, -0.02212832309305668, -0.0064864978194236755, 0.11720538139343262, 0.0451214499771595, -0.05501340702176094, 0.11844924837350845, 0.0907815545797348, -0.0788188949227333, 0.12142251431941986, -0.06029483675956726, -0.07461198419332504, -0.020842645317316055, 0.005617763847112656, 0.023748908191919327, 0.09859650582075119, -0.16244098544120789, -0.039806708693504333, 0.025940977036952972, 0.025764435529708862, 0.020472196862101555, -0.20870044827461243, 0.014138329774141312, 0.02901417203247547, -0.08571688830852509, -0.04336029291152954, 0.0030441186390817165, 0.012708943337202072, 0.09419949352741241, 0.01257222518324852, -0.0939040407538414, 0.01075243204832077, 0.003870375920087099, -0.07392288744449615, 0.1760009527206421, -0.11667042225599289, -0.17668895423412323, -0.10546509921550751, -0.09277024120092392, -0.03984987363219261, -0.002946222200989723, 0.08907544612884521, -0.09253612160682678, -0.03951948508620262, -0.08322479575872421, -0.015800848603248596, -0.02584817260503769, 0.041999366134405136, 0.0313355028629303, -0.011593472212553024, 0.06448721885681152, -0.11675503849983215, -0.021844986826181412, -0.0398770235478878, -0.0008108904585242271, 0.05417420715093613, 0.03741366043686867, 0.10862545669078827, 0.15839046239852905, -0.01037275604903698, 0.050479814410209656, -0.0457041934132576, 0.18834930658340454, -0.07471095770597458, -0.03741134703159332, 0.11121487617492676, -0.0058354721404612064, 0.06876740604639053, 0.11724447458982468, 0.048488009721040726, -0.09788484871387482, -0.012771572917699814, 0.004045606590807438, -0.04586487263441086, -0.21520774066448212, -0.03567230701446533, -0.04488169774413109, -0.0015765558928251266, 0.10597339272499084, 0.04105941206216812, 0.03757038712501526, 0.021633010357618332, 0.03250035271048546, 0.0055378032848238945, 0.0024906140752136707, 0.09663364291191101, 0.1290869563817978, 0.040204159915447235, 0.13291816413402557, -0.03813957795500755, -0.03726104274392128, 0.030234666541218758, 0.00462446128949523, 0.23055092990398407, 0.019664591178297997, 0.19055898487567902, 0.056628961116075516, 0.17497165501117706, 0.04161965847015381, 0.06674608588218689, -0.001665950519964099, -0.011428255587816238, 0.011377641931176186, -0.05277388170361519, -0.039488013833761215, 0.024215510115027428, 0.024078506976366043, 0.010328367352485657, -0.11433999240398407, -0.011104782111942768, 0.046694785356521606, 0.35245031118392944, 0.028211859986186028, -0.33761468529701233, -0.09064370393753052, -0.012201257050037384, -0.08551396429538727, -0.030578618869185448, 0.04586395248770714, 0.08793317526578903, -0.08076810091733932, 0.06415379047393799, -0.062390632927417755, 0.08992937952280045, -0.0642600953578949, 0.03401235491037369, 0.03723759949207306, 0.07146970927715302, 0.004128440748900175, 0.03326454013586044, -0.29203230142593384, 0.28165560960769653, 0.005191357806324959, 0.07652265578508377, -0.06112175062298775, 0.008107251487672329, 0.025618722662329674, 0.01830456405878067, 0.08772759884595871, -0.025723259896039963, -0.11981545388698578, -0.17462708055973053, -0.09302173554897308, 0.011321182362735271, 0.12884265184402466, 0.01404081005603075, 0.11067666113376617, -0.011263678781688213, -0.016661478206515312, 0.049431778490543365, -0.09618551284074783, -0.06534599512815475, -0.09206702560186386, 0.011860211379826069, 0.08234149217605591, 0.03347118943929672, -0.07286433130502701, -0.10325606167316437, -0.08850222080945969, 0.14942961931228638, -0.05208592489361763, -0.042645301669836044, -0.11885630339384079, 0.008311794139444828, 0.109124094247818, -0.07936578243970871, 0.06090658903121948, 0.009680752642452717, 0.10459772497415543, 0.011390188708901405, -0.06779034435749054, 0.11945819109678268, -0.06419113278388977, -0.16671337187290192, -0.028847509995102882, 0.14494214951992035, 0.03056386671960354, 0.060433026403188705, -0.008058210834860802, 0.038120876997709274, -0.021853651851415634, -0.0774228423833847, 0.0406605489552021, 0.026499440893530846, 0.0439123660326004, -0.013164152391254902, -0.018967239186167717, -0.006070209201425314, -0.09074874222278595, -0.01814614050090313, 0.2064867615699768, 0.24344108998775482, -0.09640686959028244, 0.09291441738605499, 0.06943506747484207, -0.042097147554159164, -0.17234089970588684, -0.0038790483959019184, 0.06509050726890564, 0.000005351470463210717, -0.0248651634901762, -0.1938454508781433, 0.023908907547593117, 0.06926876306533813, -0.020998604595661163, 0.08171622455120087, -0.3183232247829437, -0.1406307816505432, 0.1374066323041916, 0.11396436393260956, 0.059524938464164734, -0.14593273401260376, -0.05537234991788864, -0.010357857681810856, -0.1036871075630188, 0.09447412192821503, -0.07449747622013092, 0.1356905996799469, -0.02407083474099636, 0.09048546850681305, 0.011327960528433323, -0.05825302377343178, 0.10642484575510025, 0.012443309649825096, 0.059944190084934235, -0.045728690922260284, 0.017388567328453064, 0.04785845801234245, -0.06322921067476273, 0.055156588554382324, -0.08024109899997711, 0.02839946746826172, -0.08033619076013565, -0.03248301148414612, -0.08508959412574768, 0.01420549862086773, -0.009605566039681435, -0.0333847776055336, -0.037120092660188675, 0.0018844814039766788, 0.06282699108123779, -0.010366815142333508, 0.15573710203170776, -0.027310438454151154, 0.12642912566661835, 0.16214096546173096, 0.10141889750957489, -0.10404428839683533, -0.07683391124010086, 0.005353863351047039, -0.03425366058945656, 0.05507161468267441, -0.11772949248552322, 0.0374416708946228, 0.1360854059457779, 0.031792279332876205, 0.1228531077504158, 0.06948218494653702, -0.06524974852800369, 0.03323432430624962, 0.04207287356257439, -0.13784939050674438, -0.12749193608760834, 0.013279353268444538, 0.02333078719675541, -0.07195265591144562, 0.07305441796779633, 0.11555314809083939, -0.055095698684453964, -0.013801833614706993, -0.0019095407333225012, 0.013798229396343231, -0.04101138189435005, 0.19526535272598267, 0.03678850829601288, 0.06154259294271469, -0.1245705634355545, 0.08053390681743622, 0.038583576679229736, -0.1331944614648819, 0.060929812490940094, 0.10616770386695862, -0.09484384208917618, -0.02851886674761772, 0.028711074963212013, 0.11185205727815628, -0.028263479471206665, -0.07390765845775604, -0.14269445836544037, -0.1429070234298706, 0.10887688398361206, 0.20547187328338623, 0.056251514703035355, 0.016643211245536804, -0.05918126553297043, 0.016913002356886864, -0.11840061843395233, 0.06926038861274719, 0.04077918455004692, 0.06004178896546364, -0.1290147453546524, 0.14634470641613007, 0.01732582412660122, 0.03992059826850891, -0.014602077193558216, -0.011380162090063095, -0.11204449087381363, 0.03977004438638687, -0.12899863719940186, 0.004968761000782251, -0.06649181246757507, 0.0010107652051374316, 0.003637960646301508, -0.04961981624364853, -0.06380630284547806, 0.034933269023895264, -0.11994827538728714, -0.023454628884792328, 0.0013668711762875319, 0.03702240437269211, -0.12869490683078766, -0.00937681831419468, 0.01491378154605627, -0.09351558983325958, 0.09738873690366745, 0.08695000410079956, -0.03262457251548767, 0.05093376338481903, -0.060065679252147675, -0.026180030778050423, 0.07850224524736404, -0.006546197924762964, 0.05116262659430504, -0.13098447024822235, -0.019763074815273285, 0.011079980991780758, 0.034322094172239304, 0.024183884263038635, 0.11216950416564941, -0.11596840620040894, 0.0009172951686196029, -0.027726253494620323, -0.05208310857415199, -0.06831369549036026, 0.05034910887479782, 0.10944218933582306, 0.027158264070749283, 0.16378004848957062, -0.09329521656036377, 0.02864367887377739, -0.1659409999847412, 0.006244651973247528, -0.015402473509311676, -0.12141422927379608, -0.05091831088066101, -0.031923726201057434, 0.07782353460788727, -0.06372612714767456, 0.12926429510116577, -0.0302314143627882, 0.02521517500281334, 0.03747618943452835, -0.07651915401220322, -0.05347057059407234, 0.039878156036138535, 0.20521073043346405, 0.038992080837488174, -0.04332895576953888, 0.0748397707939148, 0.020881792530417442, 0.08104509860277176, 0.12795478105545044, 0.17392674088478088, 0.16054309904575348, 0.06415445357561111, 0.11675389856100082, 0.0548175610601902, -0.05325957387685776, -0.17404964566230774, 0.09129635989665985, -0.05973295867443085, 0.1303301602602005, -0.013782957568764687, 0.2406129240989685, 0.12073571979999542, -0.15380768477916718, 0.06590574234724045, -0.019002273678779602, -0.08930869400501251, -0.11625064164400101, -0.0640975832939148, -0.08643919974565506, -0.17592790722846985, 0.009026954881846905, -0.10206138342618942, 0.06300023943185806, 0.046582844108343124, 0.037413351237773895, 0.016993701457977295, 0.1380058079957962, 0.015221303328871727, 0.0026881019584834576, 0.09175070375204086, -0.003382439725100994, -0.055894702672958374, -0.07345172762870789, -0.0844438374042511, 0.03444278612732887, -0.013464136980473995, 0.0579255074262619, -0.0041413637809455395, -0.06932219862937927, 0.04745379090309143, -0.038733821362257004, -0.09639431536197662, 0.023092305287718773, 0.02144113928079605, 0.06993499398231506, 0.050396792590618134, 0.03458376228809357, -0.041390322148799896, -0.0023561420384794474, 0.19505612552165985, -0.09454663842916489, -0.09351488947868347, -0.10949129611253738, 0.25379374623298645, 0.039379071444272995, -0.015554843470454216, 0.02151809260249138, -0.060560062527656555, -0.03180092200636864, 0.2114194929599762, 0.1723226010799408, -0.01116170920431614, 0.004614291246980429, -0.01414461899548769, -0.006181462202221155, -0.03659471869468689, 0.07935505360364914, 0.14721040427684784, 0.0624801442027092, -0.06336896121501923, -0.051964882761240005, -0.05117638781666756, -0.03481784462928772, -0.06592334061861038, 0.07547760754823685, 0.006828696001321077, -0.025172237306833267, -0.044893521815538406, 0.06380100548267365, -0.09479472041130066, -0.08201537281274796, 0.024797851219773293, -0.19570329785346985, -0.14996619522571564, 0.006833694875240326, 0.07076682895421982, 0.011772987432777882, 0.034874558448791504, 0.003135041566565633, -0.009663884527981281, 0.08166079223155975, -0.0014469854068011045, -0.08074266463518143, -0.06594680994749069, 0.08451119065284729, -0.1334533542394638, 0.1663215011358261, -0.04209939017891884, 0.04780808091163635, 0.12325333803892136, 0.08858786523342133, -0.08054462820291519, 0.08672730624675751, 0.04238315671682358, -0.10697498172521591, 0.021263642236590385, 0.1536252200603485, -0.033488329499959946, 0.09508569538593292, 0.030688641592860222, -0.11497800052165985, 0.014703071676194668, -0.08972270041704178, -0.03808770328760147, -0.04114031791687012, -0.050166599452495575, -0.044312071055173874, 0.10966888070106506, 0.1632404923439026, -0.04387403652071953, 0.003933595027774572, -0.05213035270571709, 0.011972117237746716, 0.04762331768870354, -0.0004025105736218393, -0.061575230211019516, -0.27876561880111694, 0.011589550413191319, 0.036713045090436935, 0.0030818863306194544, -0.2576640844345093, -0.09719633311033249, 0.013703498058021069, -0.04294035583734512, -0.08798902481794357, 0.08574584126472473, 0.07478064298629761, 0.04632873460650444, -0.0524776466190815, -0.057823486626148224, -0.03551657870411873, 0.18890078365802765, -0.1751941740512848, -0.05986809358000755 ]
null
null
null
#FashionMNIST PyTorch Quick Start
{"tags": ["image-classification", "pytorch", "huggingpics", "some_thing"], "metrics": ["accuracy"], "private": false}
image-classification
Ab0/foo-model
[ "pytorch", "image-classification", "huggingpics", "some_thing", "model-index", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[]
TAGS #pytorch #image-classification #huggingpics #some_thing #model-index #region-us
#FashionMNIST PyTorch Quick Start
[]
[ "TAGS\n#pytorch #image-classification #huggingpics #some_thing #model-index #region-us \n" ]
[ 28 ]
[ "passage: TAGS\n#pytorch #image-classification #huggingpics #some_thing #model-index #region-us \n" ]
[ -0.035085003823041916, 0.07374754548072815, -0.00933443196117878, 0.05657544732093811, 0.1682635247707367, 0.10385128855705261, 0.04515744000673294, 0.0970364362001419, 0.184097558259964, -0.028076693415641785, 0.11240050196647644, 0.07390487939119339, -0.015689007937908173, 0.04498686641454697, 0.029406247660517693, -0.3915368914604187, 0.04027389734983444, 0.04801035672426224, 0.0027459580451250076, 0.08819898962974548, -0.006114870775490999, -0.10342538356781006, 0.11715695261955261, -0.05055586248636246, -0.20030242204666138, -0.020369727164506912, -0.03293352201581001, 0.004424965940415859, 0.11690609902143478, -0.04834681376814842, 0.12148337811231613, -0.04989759251475334, -0.014338870532810688, -0.15701931715011597, 0.05363614112138748, 0.010212328284978867, -0.06510373950004578, 0.07827833294868469, 0.17991849780082703, -0.08615075796842575, 0.09425227344036102, 0.08402498066425323, -0.027368882670998573, 0.018478741869330406, -0.15820622444152832, -0.14616945385932922, 0.06240933761000633, 0.0997011587023735, 0.03125881776213646, -0.01315443217754364, 0.0306534543633461, 0.11763009428977966, -0.180838942527771, 0.08789020776748657, 0.14155933260917664, -0.051899902522563934, -0.038123637437820435, 0.15366539359092712, 0.04274902492761612, 0.04910067468881607, -0.10438741743564606, 0.06248947232961655, 0.009406886994838715, 0.0006550517864525318, -0.054899662733078, -0.02435041032731533, -0.02796107903122902, -0.01305849477648735, -0.061260681599378586, -0.06292229145765305, 0.15735100209712982, 0.09217649698257446, 0.07084035873413086, -0.03702536225318909, -0.07336166501045227, 0.03348182141780853, -0.07418490946292877, 0.11851437389850616, 0.0371692068874836, 0.04501136392354965, 0.07875946164131165, -0.032776735723018646, -0.13592134416103363, 0.026152700185775757, -0.16770416498184204, 0.06242022663354874, -0.009182747453451157, 0.10795043408870697, -0.2031908929347992, 0.030649518594145775, -0.07372488081455231, -0.0675259679555893, 0.0905437245965004, -0.11982126533985138, 0.05957241728901863, 0.0812884271144867, 0.05122150853276253, 0.13525277376174927, 0.11878687143325806, 0.06164475157856941, -0.08058832585811615, 0.05036453530192375, -0.02359960973262787, 0.16285787522792816, 0.09665611386299133, 0.07647386193275452, -0.015580147504806519, 0.03887459635734558, -0.05933339148759842, -0.04079931601881981, -0.006163096055388451, -0.07802225649356842, -0.0761379823088646, 0.00497009139508009, -0.0022435495629906654, -0.008780219592154026, 0.025328902527689934, 0.04274393245577812, -0.08435668051242828, -0.01777435466647148, 0.04882952570915222, 0.04813864454627037, -0.020246034488081932, 0.022218216210603714, -0.020904995501041412, 0.11613616347312927, -0.047712668776512146, -0.011867443099617958, 0.04095277190208435, 0.09645237028598785, -0.10258916765451431, 0.05919349938631058, -0.0032882855739444494, 0.01428171806037426, 0.03100600466132164, -0.21287688612937927, 0.056225091218948364, -0.11104670912027359, -0.030177263543009758, 0.022134138271212578, 0.023640789091587067, -0.033738285303115845, 0.03460561856627464, 0.031762946397066116, -0.026240631937980652, -0.05333380773663521, 0.02739543281495571, -0.059351712465286255, -0.10310342162847519, 0.09296540915966034, -0.1420019567012787, 0.13877588510513306, -0.07594530284404755, 0.0174273531883955, -0.11726102977991104, 0.026401758193969727, -0.13338902592658997, 0.03590942174196243, -0.04603797197341919, 0.21348562836647034, 0.06781121343374252, -0.013059668242931366, -0.15582816302776337, 0.04620148241519928, -0.0989052951335907, 0.237106591463089, -0.11711049824953079, -0.10838459432125092, 0.15509027242660522, -0.13089802861213684, -0.07754635810852051, 0.0859217494726181, -0.003794381394982338, -0.006301644258201122, 0.03748013824224472, 0.3675248324871063, -0.11317326128482819, -0.01103815995156765, 0.029591936618089676, 0.13842180371284485, -0.18669462203979492, -0.0010067489929497242, 0.02725813537836075, 0.04202599078416824, -0.09814877808094025, 0.05209135264158249, -0.051219746470451355, 0.12166352570056915, -0.12413999438285828, -0.03957633301615715, 0.05217761918902397, -0.014254005625844002, 0.08093976974487305, 0.12562984228134155, 0.045749057084321976, -0.05626748502254486, -0.02491854690015316, -0.10937313735485077, 0.05614979937672615, 0.07092413306236267, -0.0059418994933366776, -0.0031390488147735596, 0.24461182951927185, -0.020038757473230362, -0.04191730543971062, -0.16832146048545837, -0.0590052455663681, -0.014777247793972492, 0.07218435406684875, 0.020770477131009102, 0.015128334984183311, 0.09144735336303711, -0.019893601536750793, 0.014607037417590618, -0.04434360936284065, 0.04258216917514801, -0.028490982949733734, -0.013548331335186958, -0.13861194252967834, 0.046297021210193634, -0.05560511350631714, 0.16581298410892487, -0.08762884140014648, -0.03966092690825462, 0.06675345450639725, 0.09162937104701996, 0.02798737771809101, 0.01441522128880024, 0.010469647124409676, -0.05112055689096451, -0.0027477077674120665, -0.03020482137799263, 0.18278264999389648, -0.03399182856082916, -0.033268220722675323, 0.11311106383800507, -0.029981525614857674, 0.1491994857788086, 0.19524165987968445, -0.33592891693115234, -0.053641341626644135, -0.11805997788906097, -0.03620313107967377, 0.047329314053058624, 0.039315614849328995, 0.013575589284300804, -0.047163497656583786, 0.010412910021841526, 0.08116854727268219, -0.01740729995071888, -0.0010393839329481125, 0.02609637752175331, -0.008263185620307922, -0.11251727491617203, 0.12075069546699524, 0.14744824171066284, -0.12299848347902298, 0.14992758631706238, 0.23411110043525696, 0.07698553055524826, 0.14981423318386078, -0.011003075167536736, 0.033980730921030045, 0.09329591691493988, -0.04033184051513672, -0.0720556303858757, 0.183905690908432, -0.22812682390213013, -0.02616691030561924, 0.055050186812877655, -0.07593168318271637, 0.05003675818443298, -0.12909682095050812, -0.090909443795681, -0.035730645060539246, 0.005531521514058113, -0.09423546493053436, 0.03488690406084061, 0.021433349698781967, 0.1398954838514328, -0.0035177329555153847, -0.07910485565662384, -0.000038716476410627365, 0.00045481830602511764, 0.007509101182222366, 0.16508805751800537, -0.07328517735004425, -0.33903807401657104, -0.05050714313983917, 0.0071119945496320724, -0.048585183918476105, 0.019664175808429718, 0.016033805906772614, -0.18542921543121338, 0.006362478248775005, 0.022490985691547394, -0.005004593171179295, -0.025810912251472473, -0.03698325157165527, -0.13620668649673462, 0.044870324432849884, -0.06831756979227066, -0.06671404838562012, -0.046491242945194244, -0.15491929650306702, 0.04138971492648125, 0.20379555225372314, -0.15949395298957825, 0.0906059592962265, 0.1264275163412094, 0.010942003689706326, 0.09072259813547134, 0.013838223181664944, 0.19595977663993835, -0.12928399443626404, 0.043262988328933716, 0.1034267246723175, -0.011613808572292328, 0.0872001200914383, 0.12230701744556427, 0.07516733556985855, -0.07885024696588516, -0.0601167306303978, 0.03087485581636429, -0.12965387105941772, -0.03505260869860649, -0.1175030767917633, -0.03706827759742737, 0.13566583395004272, 0.07188908755779266, 0.06808578968048096, 0.06837765127420425, 0.11817546933889389, 0.00844641588628292, -0.14267598092556, -0.02641546167433262, 0.00812994223088026, -0.06879866123199463, -0.0765465646982193, 0.04307136312127113, -0.024728160351514816, -0.127554789185524, 0.12938034534454346, 0.0013078972697257996, 0.13230079412460327, 0.07231985032558441, -0.1313582956790924, 0.03349669277667999, 0.09414726495742798, 0.13722816109657288, 0.04546497017145157, -0.029854217544198036, -0.03374173864722252, -0.07560379803180695, -0.029622480273246765, 0.020290909335017204, 0.006317714229226112, 0.09620733559131622, -0.15084664523601532, -0.05714444816112518, -0.152501180768013, 0.07188044488430023, -0.026454400271177292, 0.07775713503360748, -0.20212087035179138, 0.10925956815481186, 0.05251660197973251, 0.12240615487098694, -0.10498198121786118, 0.06767531484365463, 0.05730610340833664, -0.11786691844463348, 0.05489186942577362, -0.0010253936052322388, 0.12147025763988495, -0.07538701593875885, 0.05074305087327957, -0.030842600390315056, -0.12416451424360275, 0.013737963512539864, 0.06767413020133972, 0.010088223963975906, 0.2679316997528076, -0.013381590135395527, -0.18216286599636078, -0.04585641250014305, -0.0963178277015686, 0.1255246251821518, 0.19958798587322235, 0.18145224452018738, 0.07799354195594788, 0.07811234891414642, -0.23920057713985443, -0.045478858053684235, -0.010692596435546875, 0.09674621373414993, -0.09335094690322876, -0.10277694463729858, 0.03743498772382736, -0.020976468920707703, -0.049154236912727356, 0.03408881276845932, 0.05170261114835739, -0.04420012608170509, -0.04757032170891762, -0.06869451701641083, -0.10796599090099335, 0.06793279945850372, -0.03785312920808792, -0.05065678060054779, -0.059680141508579254, 0.11080858111381531, -0.05122421309351921, -0.07930584251880646, -0.06585872918367386, 0.04337751120328903, -0.06262921541929245, 0.016413768753409386, -0.10228307545185089, 0.013484401628375053, -0.05174698680639267, -0.21341705322265625, 0.1211271733045578, -0.07101508229970932, 0.044121213257312775, -0.06215427815914154, 0.12660068273544312, -0.04172274470329285, 0.016200590878725052, 0.0025372973177582026, 0.03129206970334053, -0.08013812452554703, -0.06260805577039719, 0.14983385801315308, -0.04326243698596954, 0.03231114149093628, 0.15851089358329773, -0.07155285030603409, 0.03305209428071976, -0.07413791120052338, 0.07573261857032776, 0.15044540166854858, 0.2384105622768402, -0.06925606727600098, 0.10708008706569672, 0.1612403243780136, -0.03331618010997772, -0.3261682987213135, -0.029548902064561844, -0.09639393538236618, -0.05124266445636749, 0.15044137835502625, -0.13625022768974304, 0.1605595052242279, 0.09304922819137573, -0.04694954305887222, 0.20993298292160034, -0.20141974091529846, -0.026414399966597557, 0.1314101666212082, 0.027037862688302994, 0.3462308943271637, -0.15247005224227905, -0.0555475652217865, -0.03345968574285507, -0.11082608997821808, 0.18237265944480896, 0.03733286261558533, 0.010352782905101776, -0.027528932318091393, -0.03403154015541077, 0.07128976285457611, -0.016285376623272896, 0.1733332872390747, 0.014410510659217834, 0.09428566694259644, -0.15128421783447266, -0.2670536935329437, 0.001585821621119976, -0.0011725896038115025, -0.06983603537082672, 0.0248714666813612, 0.009022964164614677, -0.18348157405853271, 0.037070903927087784, -0.18174001574516296, 0.05304843187332153, 0.05083967745304108, -0.014200516045093536, -0.059440284967422485, 0.06350001692771912, -0.10509242117404938, 0.06295548379421234, 0.21878725290298462, -0.032433971762657166, 0.16766604781150818, -0.016846582293510437, 0.0074943434447050095, -0.1300785094499588, -0.1710299402475357, -0.15155714750289917, -0.03377862647175789, 0.10298977792263031, -0.11571882665157318, 0.033718593418598175, 0.10695004463195801, 0.022636625915765762, 0.041730642318725586, 0.08950598537921906, 0.017126988619565964, 0.0014088882599025965, 0.17546649277210236, -0.14483855664730072, -0.11957041174173355, -0.08385444432497025, -0.1383427381515503, 0.1976478099822998, -0.014502152800559998, 0.023049045354127884, 0.095594123005867, -0.034628450870513916, 0.03546062484383583, 0.028078271076083183, 0.006846539676189423, -0.03109903819859028, 0.12491270899772644, 0.001882885117083788, -0.09837881475687027, 0.11503191292285919, 0.025913354009389877, -0.10294914245605469, -0.11544116586446762, 0.16439808905124664, -0.08987855911254883, -0.10900125652551651, -0.003581840544939041, 0.14820079505443573, -0.12654414772987366, 0.029920827597379684, -0.013499927707016468, -0.07014070451259613, -0.03088219091296196, 0.03297480568289757, 0.12214118987321854, 0.02543513849377632, 0.043833766132593155, -0.0182516910135746, 0.04151260480284691, 0.0015984643250703812, -0.018814044073224068, 0.03030189871788025, -0.17202243208885193, -0.10156820714473724, 0.05777496099472046, 0.18356341123580933, -0.10206681489944458, -0.13318143784999847, -0.16610188782215118, 0.045070335268974304, -0.040380969643592834, 0.039080660790205, -0.04261861369013786, -0.0500042587518692, 0.008086140267550945, -0.01605483517050743, -0.01590970903635025, -0.08727871626615524, -0.13256387412548065, 0.008505783975124359, 0.04375164955854416, 0.035247400403022766, 0.015243666246533394, -0.04254898428916931, 0.1091761440038681, -0.04752280190587044, 0.13796114921569824, 0.09374591708183289, -0.04768269509077072, 0.07514621317386627, -0.15545791387557983, -0.15380895137786865, 0.1338927298784256, -0.007837697863578796, -0.019784949719905853, 0.18670612573623657, 0.0245028305798769, -0.052102502435445786, -0.02223639003932476, 0.05557042360305786, 0.06542856991291046, -0.11495986580848694, 0.031049279496073723, -0.03326520323753357, -0.17809632420539856, -0.042200952768325806, -0.02794766053557396, 0.1295967698097229, 0.013968747109174728, 0.04140373319387436, 0.023017315194010735, 0.10239703953266144, -0.10413630306720734, 0.027468951418995857, 0.0014739611651748419, -0.16885599493980408, 0.019829656928777695, -0.007217875216156244, 0.005052904132753611, -0.08108454942703247, 0.1875181496143341, 0.1468365341424942, -0.060082174837589264, -0.00948442704975605, 0.2632479667663574, 0.054697856307029724, 0.0020242519676685333, 0.10542900860309601, 0.07537561655044556, -0.042415086179971695, -0.04087556526064873, 0.09266344457864761, 0.03080303966999054, 0.016061289235949516, 0.07250045984983444, 0.08410155773162842, 0.007859181612730026, -0.00018740538507699966, 0.14845137298107147, 0.06691501289606094, 0.005699357017874718, -0.08426347374916077, 0.03006528876721859, 0.049890995025634766, -0.0011561450082808733, 0.09127964079380035, 0.1486402451992035, -0.026816390454769135, 0.1361023336648941, -0.01835041120648384, 0.005707642063498497, -0.07949614524841309, -0.16214437782764435, -0.03747314214706421, -0.1047656387090683, 0.055395662784576416, -0.006597498431801796, -0.1291617602109909, 0.283471941947937, 0.04351464658975601, -0.03182804584503174, 0.003854351118206978, -0.02405678480863571, -0.06804507225751877, 0.14794638752937317, 0.021905511617660522, -0.07167067378759384, -0.05134756863117218, -0.046649061143398285, 0.0034128050319850445, 0.017676305025815964, -0.07219377160072327, -0.000994003377854824, -0.05031425505876541, -0.01286037266254425, -0.14932066202163696, -0.14667899906635284, -0.04960580915212631, -0.042288921773433685, -0.0965646356344223, 0.050510190427303314, -0.024582020938396454, 0.08480778336524963, 0.0008754483424127102, 0.14500752091407776, 0.00508655933663249, 0.10867079347372055, 0.014176756143569946, 0.056187115609645844, -0.14778198301792145, 0.044728077948093414, -0.03490651398897171, -0.03444720432162285, -0.06413085758686066, 0.27443569898605347, 0.33886006474494934, -0.1639300286769867, -0.011150084435939789, 0.04564337432384491, 0.023704852908849716, 0.05613233149051666, 0.1439041793346405, 0.03443249315023422, 0.23882925510406494, -0.08278659731149673, 0.042287394404411316, -0.041457369923591614, -0.03468978777527809, -0.02547033503651619, -0.021640580147504807, 0.1575831174850464, -0.031487155705690384, -0.15968742966651917, 0.1272381842136383, -0.20587381720542908, 0.16963672637939453, 0.11708299815654755, -0.23234206438064575, -0.0862228274345398, -0.06744803488254547, 0.07018797099590302, 0.08299004286527634, 0.0808495581150055, -0.10185329616069794, -0.07798854261636734, -0.10284839570522308, 0.037401046603918076, -0.3346676230430603, -0.19851461052894592, -0.019014453515410423, -0.04650871083140373, 0.18805855512619019, -0.03783651441335678, 0.0035505376290529966, -0.009785889647901058, 0.004060735926032066, -0.0017429068684577942, -0.057722464203834534, -0.01280262228101492, 0.04016967862844467, -0.10431407392024994, 0.0913282036781311, 0.013354594819247723, -0.23138870298862457, 0.08884342014789581, -0.03902403265237808, 0.019905507564544678, 0.011838896200060844, -0.10338684916496277, 0.00256110611371696, 0.11373326182365417, -0.12223485112190247, 0.023232772946357727, 0.061296865344047546, 0.05847589671611786, -0.1153905838727951, -0.06347520649433136, -0.055132120847702026, 0.05370154231786728, -0.1860586702823639, -0.08567293733358383, 0.10649215430021286, -0.08798757195472717, -0.03334341198205948, -0.07900092750787735, -0.08349747955799103, -0.02834552526473999, -0.10023082047700882, 0.062490351498126984, -0.062233880162239075, 0.029271354898810387, 0.08948608487844467, 0.03294633701443672, 0.025360792875289917, -0.0051690638065338135, 0.11255322396755219, 0.06147182732820511, -0.007255413103848696, -0.07103440910577774 ]
null
null
transformers
# BERT Models Fine-tuned on Algerian Dialect Sentiment Analysis These are different BERT models (BERT Arabic models are initialized from [AraBERT](https://huggingface.co/aubmindlab/bert-large-arabertv02)) fine-tuned on the [Algerian Dialect Sentiment Analysis](https://huggingface.co/datasets/Abdou/dz-sentiment-yt-comments) dataset. The dataset contains 50,016 comments from YouTube videos in Algerian dialect. The models are evaluated on the testing set: | Model Version | No. of Parameters | Training Time | F1-Score | Accuracy | | ------------------- | ----------------- | -------------- | -------- | -------- | | LSTM | ~4 M | 3 min | 0.7399 | 0.7445 | | Bi-LSTM | ~4.3 M | 6 min 35 s | 0.7380 | 0.7437 | | [BERT Base](https://huggingface.co/bert-base-uncased) | ~109.5 M | 33 min 20 s | 0.6979 | 0.7500 | | [BERT Large](https://huggingface.co/bert-large-uncased) | ~335.1 M | 1 h 50 min | 0.6976 | 0.7484 | | [BERT Arabic Mini](https://huggingface.co/Abdou/arabert-mini-algerian) | ~11.6 M | 2 min 40 s | 0.7057 | 0.7527 | | [BERT Arabic Medium](https://huggingface.co/Abdou/arabert-medium-algerian) | ~42.1 M | 11 min 25 s | 0.7521 | 0.7860 | | [BERT Arabic Base](https://huggingface.co/Abdou/arabert-base-algerian) | ~110.6 M | 34 min 19 s | 0.7688 | 0.8002 | | **[BERT Arabic Large](https://huggingface.co/Abdou/arabert-large-algerian)** | **~336.7 M** | **1 h 53 min** | **0.7838** | **0.8174** | # Citation If you find our work useful, please cite it as follows: ```bibtex @article{2023, title={Sentiment Analysis on Algerian Dialect with Transformers}, author={Zakaria Benmounah and Abdennour Boulesnane and Abdeladim Fadheli and Mustapha Khial}, journal={Applied Sciences}, volume={13}, number={20}, pages={11157}, year={2023}, month={Oct}, publisher={MDPI AG}, DOI={10.3390/app132011157}, ISSN={2076-3417}, url={http://dx.doi.org/10.3390/app132011157} } ```
{"language": ["ar"], "license": "mit", "library_name": "transformers", "datasets": ["Abdou/dz-sentiment-yt-comments"], "metrics": ["f1", "accuracy"]}
text-classification
Abdou/arabert-base-algerian
[ "transformers", "pytorch", "bert", "text-classification", "ar", "dataset:Abdou/dz-sentiment-yt-comments", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[ "ar" ]
TAGS #transformers #pytorch #bert #text-classification #ar #dataset-Abdou/dz-sentiment-yt-comments #license-mit #autotrain_compatible #endpoints_compatible #region-us
BERT Models Fine-tuned on Algerian Dialect Sentiment Analysis ============================================================= These are different BERT models (BERT Arabic models are initialized from AraBERT) fine-tuned on the Algerian Dialect Sentiment Analysis dataset. The dataset contains 50,016 comments from YouTube videos in Algerian dialect. The models are evaluated on the testing set: If you find our work useful, please cite it as follows:
[]
[ "TAGS\n#transformers #pytorch #bert #text-classification #ar #dataset-Abdou/dz-sentiment-yt-comments #license-mit #autotrain_compatible #endpoints_compatible #region-us \n" ]
[ 59 ]
[ "passage: TAGS\n#transformers #pytorch #bert #text-classification #ar #dataset-Abdou/dz-sentiment-yt-comments #license-mit #autotrain_compatible #endpoints_compatible #region-us \n" ]
[ -0.048443201929330826, 0.09173168241977692, -0.005922634154558182, 0.027874184772372246, 0.15967309474945068, 0.03353098779916763, 0.1223534643650055, 0.1015472337603569, 0.09503154456615448, -0.05138532817363739, 0.11538945883512497, 0.2223052829504013, 0.012671849690377712, 0.06934879720211029, -0.10213954001665115, -0.2187228500843048, 0.052419185638427734, 0.05950456112623215, 0.027568422257900238, 0.11014501005411148, 0.14198778569698334, -0.06779944896697998, 0.0959530621767044, -0.021472685039043427, -0.10183466225862503, 0.024576861411333084, 0.021044744178652763, -0.10912105441093445, 0.1284485012292862, 0.06602831184864044, 0.10981950163841248, 0.08968780189752579, -0.03471435233950615, -0.19103725254535675, 0.046479351818561554, -0.020193882286548615, -0.08546628057956696, 0.03490955010056496, 0.06898102164268494, -0.060393862426280975, 0.09053504467010498, -0.021290717646479607, -0.006622869987040758, 0.05691402405500412, -0.1043148934841156, -0.1674308478832245, -0.07484317570924759, 0.057347603142261505, 0.06576584279537201, 0.038869909942150116, -0.011037701740860939, 0.14571741223335266, -0.12459614127874374, 0.09019078314304352, 0.08335652202367783, -0.22942747175693512, 0.02004583738744259, 0.07611299306154251, 0.02911127172410488, 0.03466914966702461, -0.05194012448191643, 0.04462558776140213, 0.03426907956600189, -0.011245259083807468, -0.0198379997164011, -0.07036342471837997, -0.005745836067944765, 0.03383161127567291, -0.02234838530421257, -0.06094374135136604, 0.27108147740364075, 0.012941605411469936, 0.03702455013990402, -0.03236038610339165, -0.02970864623785019, -0.014355742372572422, -0.02583908662199974, -0.004204666707664728, -0.0024985361378639936, 0.05470377951860428, 0.018575936555862427, 0.069731704890728, -0.1200876533985138, 0.04477309435606003, -0.2585335373878479, 0.12471005320549011, 0.0006905013578943908, 0.03106491081416607, -0.1317910999059677, 0.04344078525900841, -0.007923522032797337, -0.10955549776554108, -0.02833717130124569, -0.08520432561635971, 0.053640175610780716, -0.04226451739668846, -0.05201118066906929, 0.03508826717734337, 0.10302478820085526, 0.11855582892894745, -0.0018838928081095219, 0.03066759556531906, -0.058081917464733124, 0.08310981094837189, 0.04754027724266052, 0.08386573195457458, -0.00974730122834444, -0.045394331216812134, 0.009738034568727016, -0.11035393178462982, 0.016468841582536697, -0.0029196820687502623, -0.14787115156650543, -0.02631189115345478, 0.03190060332417488, 0.0754113644361496, 0.004376120399683714, 0.11907043308019638, -0.06908911466598511, -0.014888063073158264, 0.09777313470840454, -0.051731307059526443, -0.003034137887880206, 0.02838955819606781, -0.03635944426059723, 0.06318101286888123, -0.0093435263261199, 0.020450159907341003, -0.025207940489053726, 0.13442224264144897, -0.033088210970163345, -0.006936178542673588, 0.01115487515926361, -0.05834713578224182, 0.08905541896820068, -0.05908685550093651, 0.06553614139556885, -0.18056602776050568, -0.13347551226615906, 0.01908312551677227, 0.03050166927278042, -0.010202158242464066, -0.026174217462539673, -0.03463887423276901, 0.00567665696144104, 0.05993103235960007, -0.06201979145407677, -0.05796954408288002, -0.09352923929691315, 0.12066774815320969, -0.042765062302351, 0.061210714280605316, -0.1303016096353531, 0.0754242017865181, -0.08677003532648087, -0.01074525061994791, -0.05301002413034439, 0.04054751992225647, -0.06699831038713455, 0.17243637144565582, -0.03642548248171806, -0.05483931303024292, 0.00813606008887291, 0.020025799050927162, -0.052669115364551544, 0.18750768899917603, -0.14788497984409332, -0.09658155590295792, 0.14275196194648743, -0.06621190160512924, -0.18020623922348022, 0.12402354180812836, -0.027315737679600716, 0.027315877377986908, 0.11839266121387482, 0.19336634874343872, 0.019719470292329788, -0.054371315985918045, 0.003273627022281289, 0.12709173560142517, -0.06395616382360458, -0.0927489846944809, 0.041902635246515274, 0.03655942529439926, -0.05928567424416542, 0.04888048395514488, 0.0775512084364891, 0.09872188419103622, -0.034078244119882584, -0.06833476573228836, -0.0002633000840432942, -0.026622559875249863, 0.09347690641880035, 0.07740604877471924, 0.04776113107800484, -0.1007886752486229, 0.01650647260248661, -0.048319313675165176, 0.04834841936826706, 0.047984447330236435, 0.005095371976494789, -0.07750686258077621, 0.0840160995721817, 0.017094723880290985, 0.008578493259847164, -0.12514127790927887, -0.022909656167030334, -0.06037311255931854, 0.11091144382953644, -0.008525212295353413, 0.1393183022737503, 0.03471667692065239, -0.08131368458271027, -0.04243665561079979, 0.006861941888928413, 0.14856886863708496, 0.04987834021449089, -0.030137304216623306, -0.14999498426914215, 0.10245069861412048, -0.0553278848528862, 0.05234701931476593, -0.07418949156999588, -0.009507779031991959, 0.11044274270534515, 0.09632144123315811, -0.02074774168431759, 0.1035558208823204, -0.024754922837018967, 0.04325679689645767, -0.05308925360441208, 0.02510814741253853, 0.09942708909511566, -0.016049420461058617, -0.11204010248184204, 0.18901696801185608, -0.12130171805620193, 0.26725152134895325, 0.2190028578042984, -0.18639835715293884, 0.008287117816507816, -0.038475483655929565, -0.010237381793558598, 0.006953104864805937, 0.08317187428474426, 0.0263687614351511, 0.03826277703046799, -0.013089357875287533, 0.1749497801065445, -0.043133560568094254, -0.03561713173985481, 0.004714054521173239, -0.0339079312980175, -0.07915792614221573, 0.08922874927520752, 0.0804683044552803, -0.2333698570728302, 0.2194271832704544, 0.279623806476593, 0.076899953186512, 0.15603654086589813, -0.043900322169065475, 0.04402961954474449, 0.04508468136191368, -0.06032751873135567, -0.05851302668452263, 0.049051955342292786, -0.17162199318408966, -0.020395731553435326, 0.08467549830675125, 0.002305520698428154, 0.010022575967013836, -0.11607657372951508, -0.07692411541938782, 0.008201494812965393, -0.02311450056731701, -0.12108888477087021, 0.09317363053560257, 0.047536298632621765, 0.14173360168933868, 0.013928193598985672, -0.09228398650884628, 0.11718569695949554, -0.004759573377668858, -0.1006593257188797, 0.15187318623065948, -0.17041096091270447, -0.29365015029907227, -0.03175611421465874, -0.19915275275707245, -0.05595341697335243, 0.03242253512144089, 0.1168721541762352, -0.11370740830898285, -0.023396272212266922, 0.031958676874637604, -0.036593224853277206, -0.0593482181429863, 0.0071470774710178375, -0.036252155900001526, 0.028672846034169197, -0.0435076467692852, -0.11659768968820572, -0.06904129683971405, -0.032231446355581284, -0.0006349436589516699, 0.12368539720773697, -0.11531045287847519, 0.06652101874351501, 0.11599547415971756, 0.006115762982517481, 0.036005649715662, -0.06558054685592651, 0.2001442313194275, -0.11552037298679352, -0.0033796250354498625, 0.14254027605056763, -0.004378614015877247, 0.08887183666229248, 0.25692319869995117, 0.03922361508011818, -0.07443346828222275, 0.018075380474328995, -0.030299481004476547, -0.06096610054373741, -0.1954985111951828, -0.14945794641971588, -0.10733570903539658, 0.06009615212678909, 0.011149769648909569, 0.07294607162475586, 0.10236325114965439, 0.07803033292293549, -0.03110663965344429, -0.02544482611119747, -0.026211850345134735, 0.0638929009437561, 0.25076228380203247, -0.007060660049319267, 0.10335219651460648, -0.08606988936662674, -0.0765913724899292, 0.1303294599056244, 0.04714830219745636, 0.048560917377471924, 0.07936341315507889, 0.05293792113661766, 0.0531633235514164, 0.12821640074253082, 0.09755703806877136, 0.048805009573698044, 0.037508729845285416, -0.03358744829893112, -0.046984244138002396, -0.01098775677382946, -0.08454728871583939, 0.029761601239442825, 0.04165082797408104, -0.12249264121055603, -0.0572691485285759, -0.18653640151023865, 0.10501126945018768, 0.039952680468559265, 0.02616971544921398, -0.21064186096191406, -0.019467921927571297, 0.07643193751573563, -0.010001065209507942, -0.06052493304014206, 0.03669067099690437, -0.07331467419862747, -0.1319868415594101, 0.14277687668800354, -0.01986052095890045, 0.112200528383255, -0.04586640000343323, 0.07594072073698044, -0.028972206637263298, -0.13002656400203705, 0.017597638070583344, 0.10904357582330704, -0.36178335547447205, 0.2506633996963501, 0.017442595213651657, -0.06017522141337395, -0.09668584913015366, -0.04298195242881775, 0.0699787437915802, 0.24279198050498962, 0.09572964906692505, 0.03099760413169861, -0.016600968316197395, -0.1191953793168068, 0.03981487825512886, 0.04830382391810417, 0.06013999506831169, -0.015497419051826, -0.057767223566770554, -0.01997881382703781, 0.0084669329226017, 0.003600027412176132, 0.044638101011514664, -0.039092887192964554, -0.15405239164829254, 0.0753394067287445, 0.06538839638233185, 0.0906669944524765, 0.0011749970726668835, -0.05311061069369316, -0.18617691099643707, 0.16046583652496338, -0.08560057729482651, -0.08081100881099701, -0.10720596462488174, -0.08548729121685028, -0.03647853061556816, -0.07689083367586136, 0.011938786134123802, -0.06980998069047928, -0.036908265203237534, -0.052395064383745193, -0.19072213768959045, 0.10878390073776245, -0.10883818566799164, -0.03302750736474991, -0.07876230031251907, 0.11073563247919083, -0.03394194319844246, 0.016786551102995872, 0.039650432765483856, -0.015126271173357964, -0.08178932219743729, -0.08664283901453018, -0.0005519393598660827, 0.00726369908079505, 0.059468191117048264, 0.007266520522534847, -0.03401000425219536, -0.07487495243549347, -0.050850916653871536, -0.0656270980834961, 0.20379382371902466, 0.2169228494167328, -0.05981852486729622, 0.17449423670768738, 0.17601464688777924, -0.03952883929014206, -0.32497358322143555, -0.11447349935770035, -0.10872352123260498, -0.052379027009010315, -0.01883469708263874, -0.14818784594535828, 0.052334416657686234, -0.014027648605406284, -0.04579439386725426, 0.042830970138311386, -0.1775190383195877, -0.08874274045228958, 0.2133360356092453, -0.009512855671346188, 0.41393497586250305, -0.1153540089726448, -0.06410151720046997, -0.07048850506544113, -0.14776773750782013, 0.1844071000814438, 0.036542344838380814, 0.07304567843675613, -0.016077281907200813, 0.14780981838703156, 0.019826192408800125, -0.011691595427691936, 0.1631263643503189, 0.037848420441150665, 0.05449420586228371, -0.16133812069892883, -0.07042663544416428, -0.0003224005631636828, -0.00046139812911860645, -0.010219174437224865, -0.07078274339437485, -0.0016136765480041504, -0.18298126757144928, -0.016727060079574585, -0.09664010256528854, 0.05438942462205887, 0.014329002238810062, -0.07197892665863037, -0.05978373810648918, 0.022237369790673256, 0.03814570978283882, -0.053552281111478806, 0.17587429285049438, -0.031837478280067444, 0.07697822898626328, 0.0608845129609108, 0.14469631016254425, -0.16067124903202057, 0.04195836931467056, -0.05218435823917389, -0.058794934302568436, 0.0654185339808464, -0.1590341478586197, 0.05870237201452255, 0.13966360688209534, -0.05137632042169571, 0.08921247720718384, 0.07915367931127548, 0.005246342159807682, -0.018140872940421104, 0.14942486584186554, -0.15299738943576813, -0.058976687490940094, -0.034717120230197906, -0.030653128400444984, 0.05353833734989166, 0.008121402002871037, 0.08151338994503021, 0.01770702376961708, -0.030777571722865105, 0.016350379213690758, 0.0067230151034891605, -0.025530723854899406, 0.051512811332941055, 0.04561944305896759, 0.006432116962969303, -0.15177573263645172, 0.06216150522232056, 0.01173799205571413, -0.18561424314975739, -0.00036888557951897383, 0.06802637130022049, -0.1594138741493225, -0.12161818891763687, -0.05355818197131157, 0.12238357216119766, -0.14878793060779572, -0.08583846688270569, -0.038673095405101776, -0.14683318138122559, 0.05199581757187843, 0.15811169147491455, 0.10278848558664322, 0.09401939064264297, -0.016539251431822777, -0.08624285459518433, 0.008311404846608639, 0.04886581003665924, 0.0019472241401672363, 0.009996073320508003, -0.09420794993638992, -0.046461764723062515, -0.033893126994371414, 0.1726311892271042, -0.07188478857278824, -0.04233406484127045, -0.12562409043312073, 0.01742061972618103, -0.16519200801849365, -0.02433653548359871, -0.11787263303995132, 0.004609480034559965, 0.02532394789159298, -0.08322976529598236, -0.015070358291268349, -0.07291378825902939, -0.12017937004566193, 0.05381816625595093, 0.04373010993003845, 0.11994633078575134, -0.10240046679973602, -0.06058480590581894, 0.07147056609392166, 0.0008888093288987875, 0.13588836789131165, 0.10150406509637833, -0.08065403997898102, 0.07928693294525146, -0.22014015913009644, -0.09785620123147964, 0.08658836781978607, 0.027985578402876854, 0.05680866166949272, 0.006461342331022024, 0.019815362989902496, 0.07741386443376541, -0.020417284220457077, 0.06638649851083755, 0.08222294598817825, -0.10846348106861115, 0.018675783649086952, -0.005046587437391281, -0.09995243698358536, -0.05385768041014671, -0.015267918817698956, 0.08373571187257767, 0.002393862931057811, 0.16823847591876984, -0.055798280984163284, 0.019384849816560745, -0.02558084949851036, -0.006595605984330177, -0.02085573598742485, -0.17738689482212067, -0.09091375023126602, -0.1135571226477623, 0.0011935981456190348, -0.01240117009729147, 0.22657625377178192, 0.04679347947239876, -0.05924588441848755, 0.06688525527715683, 0.10545457154512405, -0.03450090438127518, -0.029509203508496284, 0.20631153881549835, 0.04851151257753372, -0.029096079990267754, -0.08092155307531357, 0.06678976863622665, 0.008313216269016266, 0.008785184472799301, 0.08167015761137009, 0.1317056268453598, 0.07533062994480133, 0.023235497996211052, -0.004937549587339163, -0.0038386827800422907, -0.035685546696186066, -0.12358483672142029, -0.03641830384731293, 0.05680859833955765, -0.007726703304797411, 0.07594059407711029, 0.10388961434364319, -0.047260385006666183, 0.05099991336464882, -0.08662666380405426, -0.029902193695306778, -0.1286696046590805, -0.14271046221256256, -0.07901491969823837, -0.09494384378194809, 0.02533465065062046, -0.0626489669084549, 0.023064522072672844, 0.09855387359857559, 0.06780039519071579, -0.08325158804655075, -0.000654761039186269, -0.055434491485357285, -0.0833599790930748, 0.06639783829450607, -0.016388384625315666, 0.0017773366998881102, -0.06277409195899963, -0.0058065433986485004, -0.09097988903522491, -0.017752865329384804, -0.021071109920740128, 0.03851920738816261, -0.030708927661180496, 0.01328735426068306, -0.16710372269153595, -0.10217643529176712, -0.033489059656858444, 0.0675351694226265, -0.008725927211344242, 0.1682416945695877, -0.005367485340684652, 0.06215246021747589, 0.07994456589221954, 0.18540845811367035, -0.019974177703261375, -0.07238683104515076, -0.04103207215666771, 0.20183826982975006, 0.04349476099014282, 0.06067699193954468, 0.03114769235253334, -0.027733923867344856, -0.0442325621843338, 0.27211880683898926, 0.3119214177131653, -0.04897415265440941, 0.052883196622133255, -0.05340471863746643, 0.04885626584291458, 0.07948314398527145, 0.08874817192554474, 0.09329349547624588, 0.13963253796100616, -0.08231952041387558, 0.026755571365356445, -0.051021356135606766, 0.008192524313926697, -0.053210705518722534, 0.07763762772083282, 0.057096172124147415, -0.07941602915525436, -0.05346386134624481, 0.1220288947224617, -0.15648651123046875, 0.044706277549266815, 0.05720188468694687, -0.15522021055221558, -0.036788735538721085, -0.016534611582756042, 0.11836976557970047, 0.07445883005857468, 0.023023463785648346, -0.022529827430844307, -0.04414179548621178, 0.08752048760652542, 0.016659311950206757, -0.22642196714878082, -0.008257090114057064, 0.10494258254766464, 0.001191221526823938, 0.040935587137937546, -0.019063998013734818, 0.07278453558683395, 0.09678000211715698, 0.058476559817790985, -0.03574461117386818, 0.07754530757665634, 0.07015838474035263, -0.008151009678840637, -0.00020616489928215742, -0.013645656406879425, 0.030457306653261185, -0.06804449111223221, 0.062363915145397186, -0.13182364404201508, 0.06117909401655197, -0.07125215232372284, -0.09008386731147766, -0.04402779042720795, 0.13259373605251312, -0.06266862899065018, 0.06093243137001991, 0.046983931213617325, 0.0034168183337897062, -0.010776527225971222, -0.07075345516204834, -0.048443567007780075, 0.00928656104952097, -0.1885787397623062, -0.061335980892181396, -0.026507923379540443, -0.05068037286400795, 0.10958841443061829, 0.026118334382772446, -0.14452864229679108, 0.004098629578948021, -0.09748566150665283, 0.03438885882496834, -0.10090175271034241, 0.07612837851047516, 0.022865954786539078, 0.0004495921602938324, -0.031115254387259483, -0.10371100902557373, 0.03263894096016884, 0.0625564455986023, -0.07805072516202927, -0.07922948896884918 ]
null
null
transformers
# BERT Models Fine-tuned on Algerian Dialect Sentiment Analysis These are different BERT models (BERT Arabic models are initialized from [AraBERT](https://huggingface.co/aubmindlab/bert-large-arabertv02)) fine-tuned on the [Algerian Dialect Sentiment Analysis](https://huggingface.co/datasets/Abdou/dz-sentiment-yt-comments) dataset. The dataset contains 50,016 comments from YouTube videos in Algerian dialect. The models are evaluated on the testing set: | Model Version | No. of Parameters | Training Time | F1-Score | Accuracy | | ------------------- | ----------------- | -------------- | -------- | -------- | | LSTM | ~4 M | 3 min | 0.7399 | 0.7445 | | Bi-LSTM | ~4.3 M | 6 min 35 s | 0.7380 | 0.7437 | | [BERT Base](https://huggingface.co/bert-base-uncased) | ~109.5 M | 33 min 20 s | 0.6979 | 0.7500 | | [BERT Large](https://huggingface.co/bert-large-uncased) | ~335.1 M | 1 h 50 min | 0.6976 | 0.7484 | | [BERT Arabic Mini](https://huggingface.co/Abdou/arabert-mini-algerian) | ~11.6 M | 2 min 40 s | 0.7057 | 0.7527 | | [BERT Arabic Medium](https://huggingface.co/Abdou/arabert-medium-algerian) | ~42.1 M | 11 min 25 s | 0.7521 | 0.7860 | | [BERT Arabic Base](https://huggingface.co/Abdou/arabert-base-algerian) | ~110.6 M | 34 min 19 s | 0.7688 | 0.8002 | | **[BERT Arabic Large](https://huggingface.co/Abdou/arabert-large-algerian)** | **~336.7 M** | **1 h 53 min** | **0.7838** | **0.8174** | # Citation If you find our work useful, please cite it as follows: ```bibtex @article{2023, title={Sentiment Analysis on Algerian Dialect with Transformers}, author={Zakaria Benmounah and Abdennour Boulesnane and Abdeladim Fadheli and Mustapha Khial}, journal={Applied Sciences}, volume={13}, number={20}, pages={11157}, year={2023}, month={Oct}, publisher={MDPI AG}, DOI={10.3390/app132011157}, ISSN={2076-3417}, url={http://dx.doi.org/10.3390/app132011157} } ```
{"language": ["ar"], "license": "mit", "library_name": "transformers", "datasets": ["Abdou/dz-sentiment-yt-comments"], "metrics": ["f1", "accuracy"]}
text-classification
Abdou/arabert-large-algerian
[ "transformers", "pytorch", "bert", "text-classification", "ar", "dataset:Abdou/dz-sentiment-yt-comments", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[ "ar" ]
TAGS #transformers #pytorch #bert #text-classification #ar #dataset-Abdou/dz-sentiment-yt-comments #license-mit #autotrain_compatible #endpoints_compatible #region-us
BERT Models Fine-tuned on Algerian Dialect Sentiment Analysis ============================================================= These are different BERT models (BERT Arabic models are initialized from AraBERT) fine-tuned on the Algerian Dialect Sentiment Analysis dataset. The dataset contains 50,016 comments from YouTube videos in Algerian dialect. The models are evaluated on the testing set: If you find our work useful, please cite it as follows:
[]
[ "TAGS\n#transformers #pytorch #bert #text-classification #ar #dataset-Abdou/dz-sentiment-yt-comments #license-mit #autotrain_compatible #endpoints_compatible #region-us \n" ]
[ 59 ]
[ "passage: TAGS\n#transformers #pytorch #bert #text-classification #ar #dataset-Abdou/dz-sentiment-yt-comments #license-mit #autotrain_compatible #endpoints_compatible #region-us \n" ]
[ -0.048443201929330826, 0.09173168241977692, -0.005922634154558182, 0.027874184772372246, 0.15967309474945068, 0.03353098779916763, 0.1223534643650055, 0.1015472337603569, 0.09503154456615448, -0.05138532817363739, 0.11538945883512497, 0.2223052829504013, 0.012671849690377712, 0.06934879720211029, -0.10213954001665115, -0.2187228500843048, 0.052419185638427734, 0.05950456112623215, 0.027568422257900238, 0.11014501005411148, 0.14198778569698334, -0.06779944896697998, 0.0959530621767044, -0.021472685039043427, -0.10183466225862503, 0.024576861411333084, 0.021044744178652763, -0.10912105441093445, 0.1284485012292862, 0.06602831184864044, 0.10981950163841248, 0.08968780189752579, -0.03471435233950615, -0.19103725254535675, 0.046479351818561554, -0.020193882286548615, -0.08546628057956696, 0.03490955010056496, 0.06898102164268494, -0.060393862426280975, 0.09053504467010498, -0.021290717646479607, -0.006622869987040758, 0.05691402405500412, -0.1043148934841156, -0.1674308478832245, -0.07484317570924759, 0.057347603142261505, 0.06576584279537201, 0.038869909942150116, -0.011037701740860939, 0.14571741223335266, -0.12459614127874374, 0.09019078314304352, 0.08335652202367783, -0.22942747175693512, 0.02004583738744259, 0.07611299306154251, 0.02911127172410488, 0.03466914966702461, -0.05194012448191643, 0.04462558776140213, 0.03426907956600189, -0.011245259083807468, -0.0198379997164011, -0.07036342471837997, -0.005745836067944765, 0.03383161127567291, -0.02234838530421257, -0.06094374135136604, 0.27108147740364075, 0.012941605411469936, 0.03702455013990402, -0.03236038610339165, -0.02970864623785019, -0.014355742372572422, -0.02583908662199974, -0.004204666707664728, -0.0024985361378639936, 0.05470377951860428, 0.018575936555862427, 0.069731704890728, -0.1200876533985138, 0.04477309435606003, -0.2585335373878479, 0.12471005320549011, 0.0006905013578943908, 0.03106491081416607, -0.1317910999059677, 0.04344078525900841, -0.007923522032797337, -0.10955549776554108, -0.02833717130124569, -0.08520432561635971, 0.053640175610780716, -0.04226451739668846, -0.05201118066906929, 0.03508826717734337, 0.10302478820085526, 0.11855582892894745, -0.0018838928081095219, 0.03066759556531906, -0.058081917464733124, 0.08310981094837189, 0.04754027724266052, 0.08386573195457458, -0.00974730122834444, -0.045394331216812134, 0.009738034568727016, -0.11035393178462982, 0.016468841582536697, -0.0029196820687502623, -0.14787115156650543, -0.02631189115345478, 0.03190060332417488, 0.0754113644361496, 0.004376120399683714, 0.11907043308019638, -0.06908911466598511, -0.014888063073158264, 0.09777313470840454, -0.051731307059526443, -0.003034137887880206, 0.02838955819606781, -0.03635944426059723, 0.06318101286888123, -0.0093435263261199, 0.020450159907341003, -0.025207940489053726, 0.13442224264144897, -0.033088210970163345, -0.006936178542673588, 0.01115487515926361, -0.05834713578224182, 0.08905541896820068, -0.05908685550093651, 0.06553614139556885, -0.18056602776050568, -0.13347551226615906, 0.01908312551677227, 0.03050166927278042, -0.010202158242464066, -0.026174217462539673, -0.03463887423276901, 0.00567665696144104, 0.05993103235960007, -0.06201979145407677, -0.05796954408288002, -0.09352923929691315, 0.12066774815320969, -0.042765062302351, 0.061210714280605316, -0.1303016096353531, 0.0754242017865181, -0.08677003532648087, -0.01074525061994791, -0.05301002413034439, 0.04054751992225647, -0.06699831038713455, 0.17243637144565582, -0.03642548248171806, -0.05483931303024292, 0.00813606008887291, 0.020025799050927162, -0.052669115364551544, 0.18750768899917603, -0.14788497984409332, -0.09658155590295792, 0.14275196194648743, -0.06621190160512924, -0.18020623922348022, 0.12402354180812836, -0.027315737679600716, 0.027315877377986908, 0.11839266121387482, 0.19336634874343872, 0.019719470292329788, -0.054371315985918045, 0.003273627022281289, 0.12709173560142517, -0.06395616382360458, -0.0927489846944809, 0.041902635246515274, 0.03655942529439926, -0.05928567424416542, 0.04888048395514488, 0.0775512084364891, 0.09872188419103622, -0.034078244119882584, -0.06833476573228836, -0.0002633000840432942, -0.026622559875249863, 0.09347690641880035, 0.07740604877471924, 0.04776113107800484, -0.1007886752486229, 0.01650647260248661, -0.048319313675165176, 0.04834841936826706, 0.047984447330236435, 0.005095371976494789, -0.07750686258077621, 0.0840160995721817, 0.017094723880290985, 0.008578493259847164, -0.12514127790927887, -0.022909656167030334, -0.06037311255931854, 0.11091144382953644, -0.008525212295353413, 0.1393183022737503, 0.03471667692065239, -0.08131368458271027, -0.04243665561079979, 0.006861941888928413, 0.14856886863708496, 0.04987834021449089, -0.030137304216623306, -0.14999498426914215, 0.10245069861412048, -0.0553278848528862, 0.05234701931476593, -0.07418949156999588, -0.009507779031991959, 0.11044274270534515, 0.09632144123315811, -0.02074774168431759, 0.1035558208823204, -0.024754922837018967, 0.04325679689645767, -0.05308925360441208, 0.02510814741253853, 0.09942708909511566, -0.016049420461058617, -0.11204010248184204, 0.18901696801185608, -0.12130171805620193, 0.26725152134895325, 0.2190028578042984, -0.18639835715293884, 0.008287117816507816, -0.038475483655929565, -0.010237381793558598, 0.006953104864805937, 0.08317187428474426, 0.0263687614351511, 0.03826277703046799, -0.013089357875287533, 0.1749497801065445, -0.043133560568094254, -0.03561713173985481, 0.004714054521173239, -0.0339079312980175, -0.07915792614221573, 0.08922874927520752, 0.0804683044552803, -0.2333698570728302, 0.2194271832704544, 0.279623806476593, 0.076899953186512, 0.15603654086589813, -0.043900322169065475, 0.04402961954474449, 0.04508468136191368, -0.06032751873135567, -0.05851302668452263, 0.049051955342292786, -0.17162199318408966, -0.020395731553435326, 0.08467549830675125, 0.002305520698428154, 0.010022575967013836, -0.11607657372951508, -0.07692411541938782, 0.008201494812965393, -0.02311450056731701, -0.12108888477087021, 0.09317363053560257, 0.047536298632621765, 0.14173360168933868, 0.013928193598985672, -0.09228398650884628, 0.11718569695949554, -0.004759573377668858, -0.1006593257188797, 0.15187318623065948, -0.17041096091270447, -0.29365015029907227, -0.03175611421465874, -0.19915275275707245, -0.05595341697335243, 0.03242253512144089, 0.1168721541762352, -0.11370740830898285, -0.023396272212266922, 0.031958676874637604, -0.036593224853277206, -0.0593482181429863, 0.0071470774710178375, -0.036252155900001526, 0.028672846034169197, -0.0435076467692852, -0.11659768968820572, -0.06904129683971405, -0.032231446355581284, -0.0006349436589516699, 0.12368539720773697, -0.11531045287847519, 0.06652101874351501, 0.11599547415971756, 0.006115762982517481, 0.036005649715662, -0.06558054685592651, 0.2001442313194275, -0.11552037298679352, -0.0033796250354498625, 0.14254027605056763, -0.004378614015877247, 0.08887183666229248, 0.25692319869995117, 0.03922361508011818, -0.07443346828222275, 0.018075380474328995, -0.030299481004476547, -0.06096610054373741, -0.1954985111951828, -0.14945794641971588, -0.10733570903539658, 0.06009615212678909, 0.011149769648909569, 0.07294607162475586, 0.10236325114965439, 0.07803033292293549, -0.03110663965344429, -0.02544482611119747, -0.026211850345134735, 0.0638929009437561, 0.25076228380203247, -0.007060660049319267, 0.10335219651460648, -0.08606988936662674, -0.0765913724899292, 0.1303294599056244, 0.04714830219745636, 0.048560917377471924, 0.07936341315507889, 0.05293792113661766, 0.0531633235514164, 0.12821640074253082, 0.09755703806877136, 0.048805009573698044, 0.037508729845285416, -0.03358744829893112, -0.046984244138002396, -0.01098775677382946, -0.08454728871583939, 0.029761601239442825, 0.04165082797408104, -0.12249264121055603, -0.0572691485285759, -0.18653640151023865, 0.10501126945018768, 0.039952680468559265, 0.02616971544921398, -0.21064186096191406, -0.019467921927571297, 0.07643193751573563, -0.010001065209507942, -0.06052493304014206, 0.03669067099690437, -0.07331467419862747, -0.1319868415594101, 0.14277687668800354, -0.01986052095890045, 0.112200528383255, -0.04586640000343323, 0.07594072073698044, -0.028972206637263298, -0.13002656400203705, 0.017597638070583344, 0.10904357582330704, -0.36178335547447205, 0.2506633996963501, 0.017442595213651657, -0.06017522141337395, -0.09668584913015366, -0.04298195242881775, 0.0699787437915802, 0.24279198050498962, 0.09572964906692505, 0.03099760413169861, -0.016600968316197395, -0.1191953793168068, 0.03981487825512886, 0.04830382391810417, 0.06013999506831169, -0.015497419051826, -0.057767223566770554, -0.01997881382703781, 0.0084669329226017, 0.003600027412176132, 0.044638101011514664, -0.039092887192964554, -0.15405239164829254, 0.0753394067287445, 0.06538839638233185, 0.0906669944524765, 0.0011749970726668835, -0.05311061069369316, -0.18617691099643707, 0.16046583652496338, -0.08560057729482651, -0.08081100881099701, -0.10720596462488174, -0.08548729121685028, -0.03647853061556816, -0.07689083367586136, 0.011938786134123802, -0.06980998069047928, -0.036908265203237534, -0.052395064383745193, -0.19072213768959045, 0.10878390073776245, -0.10883818566799164, -0.03302750736474991, -0.07876230031251907, 0.11073563247919083, -0.03394194319844246, 0.016786551102995872, 0.039650432765483856, -0.015126271173357964, -0.08178932219743729, -0.08664283901453018, -0.0005519393598660827, 0.00726369908079505, 0.059468191117048264, 0.007266520522534847, -0.03401000425219536, -0.07487495243549347, -0.050850916653871536, -0.0656270980834961, 0.20379382371902466, 0.2169228494167328, -0.05981852486729622, 0.17449423670768738, 0.17601464688777924, -0.03952883929014206, -0.32497358322143555, -0.11447349935770035, -0.10872352123260498, -0.052379027009010315, -0.01883469708263874, -0.14818784594535828, 0.052334416657686234, -0.014027648605406284, -0.04579439386725426, 0.042830970138311386, -0.1775190383195877, -0.08874274045228958, 0.2133360356092453, -0.009512855671346188, 0.41393497586250305, -0.1153540089726448, -0.06410151720046997, -0.07048850506544113, -0.14776773750782013, 0.1844071000814438, 0.036542344838380814, 0.07304567843675613, -0.016077281907200813, 0.14780981838703156, 0.019826192408800125, -0.011691595427691936, 0.1631263643503189, 0.037848420441150665, 0.05449420586228371, -0.16133812069892883, -0.07042663544416428, -0.0003224005631636828, -0.00046139812911860645, -0.010219174437224865, -0.07078274339437485, -0.0016136765480041504, -0.18298126757144928, -0.016727060079574585, -0.09664010256528854, 0.05438942462205887, 0.014329002238810062, -0.07197892665863037, -0.05978373810648918, 0.022237369790673256, 0.03814570978283882, -0.053552281111478806, 0.17587429285049438, -0.031837478280067444, 0.07697822898626328, 0.0608845129609108, 0.14469631016254425, -0.16067124903202057, 0.04195836931467056, -0.05218435823917389, -0.058794934302568436, 0.0654185339808464, -0.1590341478586197, 0.05870237201452255, 0.13966360688209534, -0.05137632042169571, 0.08921247720718384, 0.07915367931127548, 0.005246342159807682, -0.018140872940421104, 0.14942486584186554, -0.15299738943576813, -0.058976687490940094, -0.034717120230197906, -0.030653128400444984, 0.05353833734989166, 0.008121402002871037, 0.08151338994503021, 0.01770702376961708, -0.030777571722865105, 0.016350379213690758, 0.0067230151034891605, -0.025530723854899406, 0.051512811332941055, 0.04561944305896759, 0.006432116962969303, -0.15177573263645172, 0.06216150522232056, 0.01173799205571413, -0.18561424314975739, -0.00036888557951897383, 0.06802637130022049, -0.1594138741493225, -0.12161818891763687, -0.05355818197131157, 0.12238357216119766, -0.14878793060779572, -0.08583846688270569, -0.038673095405101776, -0.14683318138122559, 0.05199581757187843, 0.15811169147491455, 0.10278848558664322, 0.09401939064264297, -0.016539251431822777, -0.08624285459518433, 0.008311404846608639, 0.04886581003665924, 0.0019472241401672363, 0.009996073320508003, -0.09420794993638992, -0.046461764723062515, -0.033893126994371414, 0.1726311892271042, -0.07188478857278824, -0.04233406484127045, -0.12562409043312073, 0.01742061972618103, -0.16519200801849365, -0.02433653548359871, -0.11787263303995132, 0.004609480034559965, 0.02532394789159298, -0.08322976529598236, -0.015070358291268349, -0.07291378825902939, -0.12017937004566193, 0.05381816625595093, 0.04373010993003845, 0.11994633078575134, -0.10240046679973602, -0.06058480590581894, 0.07147056609392166, 0.0008888093288987875, 0.13588836789131165, 0.10150406509637833, -0.08065403997898102, 0.07928693294525146, -0.22014015913009644, -0.09785620123147964, 0.08658836781978607, 0.027985578402876854, 0.05680866166949272, 0.006461342331022024, 0.019815362989902496, 0.07741386443376541, -0.020417284220457077, 0.06638649851083755, 0.08222294598817825, -0.10846348106861115, 0.018675783649086952, -0.005046587437391281, -0.09995243698358536, -0.05385768041014671, -0.015267918817698956, 0.08373571187257767, 0.002393862931057811, 0.16823847591876984, -0.055798280984163284, 0.019384849816560745, -0.02558084949851036, -0.006595605984330177, -0.02085573598742485, -0.17738689482212067, -0.09091375023126602, -0.1135571226477623, 0.0011935981456190348, -0.01240117009729147, 0.22657625377178192, 0.04679347947239876, -0.05924588441848755, 0.06688525527715683, 0.10545457154512405, -0.03450090438127518, -0.029509203508496284, 0.20631153881549835, 0.04851151257753372, -0.029096079990267754, -0.08092155307531357, 0.06678976863622665, 0.008313216269016266, 0.008785184472799301, 0.08167015761137009, 0.1317056268453598, 0.07533062994480133, 0.023235497996211052, -0.004937549587339163, -0.0038386827800422907, -0.035685546696186066, -0.12358483672142029, -0.03641830384731293, 0.05680859833955765, -0.007726703304797411, 0.07594059407711029, 0.10388961434364319, -0.047260385006666183, 0.05099991336464882, -0.08662666380405426, -0.029902193695306778, -0.1286696046590805, -0.14271046221256256, -0.07901491969823837, -0.09494384378194809, 0.02533465065062046, -0.0626489669084549, 0.023064522072672844, 0.09855387359857559, 0.06780039519071579, -0.08325158804655075, -0.000654761039186269, -0.055434491485357285, -0.0833599790930748, 0.06639783829450607, -0.016388384625315666, 0.0017773366998881102, -0.06277409195899963, -0.0058065433986485004, -0.09097988903522491, -0.017752865329384804, -0.021071109920740128, 0.03851920738816261, -0.030708927661180496, 0.01328735426068306, -0.16710372269153595, -0.10217643529176712, -0.033489059656858444, 0.0675351694226265, -0.008725927211344242, 0.1682416945695877, -0.005367485340684652, 0.06215246021747589, 0.07994456589221954, 0.18540845811367035, -0.019974177703261375, -0.07238683104515076, -0.04103207215666771, 0.20183826982975006, 0.04349476099014282, 0.06067699193954468, 0.03114769235253334, -0.027733923867344856, -0.0442325621843338, 0.27211880683898926, 0.3119214177131653, -0.04897415265440941, 0.052883196622133255, -0.05340471863746643, 0.04885626584291458, 0.07948314398527145, 0.08874817192554474, 0.09329349547624588, 0.13963253796100616, -0.08231952041387558, 0.026755571365356445, -0.051021356135606766, 0.008192524313926697, -0.053210705518722534, 0.07763762772083282, 0.057096172124147415, -0.07941602915525436, -0.05346386134624481, 0.1220288947224617, -0.15648651123046875, 0.044706277549266815, 0.05720188468694687, -0.15522021055221558, -0.036788735538721085, -0.016534611582756042, 0.11836976557970047, 0.07445883005857468, 0.023023463785648346, -0.022529827430844307, -0.04414179548621178, 0.08752048760652542, 0.016659311950206757, -0.22642196714878082, -0.008257090114057064, 0.10494258254766464, 0.001191221526823938, 0.040935587137937546, -0.019063998013734818, 0.07278453558683395, 0.09678000211715698, 0.058476559817790985, -0.03574461117386818, 0.07754530757665634, 0.07015838474035263, -0.008151009678840637, -0.00020616489928215742, -0.013645656406879425, 0.030457306653261185, -0.06804449111223221, 0.062363915145397186, -0.13182364404201508, 0.06117909401655197, -0.07125215232372284, -0.09008386731147766, -0.04402779042720795, 0.13259373605251312, -0.06266862899065018, 0.06093243137001991, 0.046983931213617325, 0.0034168183337897062, -0.010776527225971222, -0.07075345516204834, -0.048443567007780075, 0.00928656104952097, -0.1885787397623062, -0.061335980892181396, -0.026507923379540443, -0.05068037286400795, 0.10958841443061829, 0.026118334382772446, -0.14452864229679108, 0.004098629578948021, -0.09748566150665283, 0.03438885882496834, -0.10090175271034241, 0.07612837851047516, 0.022865954786539078, 0.0004495921602938324, -0.031115254387259483, -0.10371100902557373, 0.03263894096016884, 0.0625564455986023, -0.07805072516202927, -0.07922948896884918 ]
null
null
transformers
# BERT Models Fine-tuned on Algerian Dialect Sentiment Analysis These are different BERT models (BERT Arabic models are initialized from [AraBERT](https://huggingface.co/aubmindlab/bert-large-arabertv02)) fine-tuned on the [Algerian Dialect Sentiment Analysis](https://huggingface.co/datasets/Abdou/dz-sentiment-yt-comments) dataset. The dataset contains 50,016 comments from YouTube videos in Algerian dialect. The models are evaluated on the testing set: | Model Version | No. of Parameters | Training Time | F1-Score | Accuracy | | ------------------- | ----------------- | -------------- | -------- | -------- | | LSTM | ~4 M | 3 min | 0.7399 | 0.7445 | | Bi-LSTM | ~4.3 M | 6 min 35 s | 0.7380 | 0.7437 | | [BERT Base](https://huggingface.co/bert-base-uncased) | ~109.5 M | 33 min 20 s | 0.6979 | 0.7500 | | [BERT Large](https://huggingface.co/bert-large-uncased) | ~335.1 M | 1 h 50 min | 0.6976 | 0.7484 | | [BERT Arabic Mini](https://huggingface.co/Abdou/arabert-mini-algerian) | ~11.6 M | 2 min 40 s | 0.7057 | 0.7527 | | [BERT Arabic Medium](https://huggingface.co/Abdou/arabert-medium-algerian) | ~42.1 M | 11 min 25 s | 0.7521 | 0.7860 | | [BERT Arabic Base](https://huggingface.co/Abdou/arabert-base-algerian) | ~110.6 M | 34 min 19 s | 0.7688 | 0.8002 | | **[BERT Arabic Large](https://huggingface.co/Abdou/arabert-large-algerian)** | **~336.7 M** | **1 h 53 min** | **0.7838** | **0.8174** | # Citation If you find our work useful, please cite it as follows: ```bibtex @article{2023, title={Sentiment Analysis on Algerian Dialect with Transformers}, author={Zakaria Benmounah and Abdennour Boulesnane and Abdeladim Fadheli and Mustapha Khial}, journal={Applied Sciences}, volume={13}, number={20}, pages={11157}, year={2023}, month={Oct}, publisher={MDPI AG}, DOI={10.3390/app132011157}, ISSN={2076-3417}, url={http://dx.doi.org/10.3390/app132011157} } ```
{"language": ["ar"], "license": "mit", "library_name": "transformers", "datasets": ["Abdou/dz-sentiment-yt-comments"], "metrics": ["f1", "accuracy"]}
text-classification
Abdou/arabert-medium-algerian
[ "transformers", "pytorch", "bert", "text-classification", "ar", "dataset:Abdou/dz-sentiment-yt-comments", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[ "ar" ]
TAGS #transformers #pytorch #bert #text-classification #ar #dataset-Abdou/dz-sentiment-yt-comments #license-mit #autotrain_compatible #endpoints_compatible #region-us
BERT Models Fine-tuned on Algerian Dialect Sentiment Analysis ============================================================= These are different BERT models (BERT Arabic models are initialized from AraBERT) fine-tuned on the Algerian Dialect Sentiment Analysis dataset. The dataset contains 50,016 comments from YouTube videos in Algerian dialect. The models are evaluated on the testing set: If you find our work useful, please cite it as follows:
[]
[ "TAGS\n#transformers #pytorch #bert #text-classification #ar #dataset-Abdou/dz-sentiment-yt-comments #license-mit #autotrain_compatible #endpoints_compatible #region-us \n" ]
[ 59 ]
[ "passage: TAGS\n#transformers #pytorch #bert #text-classification #ar #dataset-Abdou/dz-sentiment-yt-comments #license-mit #autotrain_compatible #endpoints_compatible #region-us \n" ]
[ -0.048443201929330826, 0.09173168241977692, -0.005922634154558182, 0.027874184772372246, 0.15967309474945068, 0.03353098779916763, 0.1223534643650055, 0.1015472337603569, 0.09503154456615448, -0.05138532817363739, 0.11538945883512497, 0.2223052829504013, 0.012671849690377712, 0.06934879720211029, -0.10213954001665115, -0.2187228500843048, 0.052419185638427734, 0.05950456112623215, 0.027568422257900238, 0.11014501005411148, 0.14198778569698334, -0.06779944896697998, 0.0959530621767044, -0.021472685039043427, -0.10183466225862503, 0.024576861411333084, 0.021044744178652763, -0.10912105441093445, 0.1284485012292862, 0.06602831184864044, 0.10981950163841248, 0.08968780189752579, -0.03471435233950615, -0.19103725254535675, 0.046479351818561554, -0.020193882286548615, -0.08546628057956696, 0.03490955010056496, 0.06898102164268494, -0.060393862426280975, 0.09053504467010498, -0.021290717646479607, -0.006622869987040758, 0.05691402405500412, -0.1043148934841156, -0.1674308478832245, -0.07484317570924759, 0.057347603142261505, 0.06576584279537201, 0.038869909942150116, -0.011037701740860939, 0.14571741223335266, -0.12459614127874374, 0.09019078314304352, 0.08335652202367783, -0.22942747175693512, 0.02004583738744259, 0.07611299306154251, 0.02911127172410488, 0.03466914966702461, -0.05194012448191643, 0.04462558776140213, 0.03426907956600189, -0.011245259083807468, -0.0198379997164011, -0.07036342471837997, -0.005745836067944765, 0.03383161127567291, -0.02234838530421257, -0.06094374135136604, 0.27108147740364075, 0.012941605411469936, 0.03702455013990402, -0.03236038610339165, -0.02970864623785019, -0.014355742372572422, -0.02583908662199974, -0.004204666707664728, -0.0024985361378639936, 0.05470377951860428, 0.018575936555862427, 0.069731704890728, -0.1200876533985138, 0.04477309435606003, -0.2585335373878479, 0.12471005320549011, 0.0006905013578943908, 0.03106491081416607, -0.1317910999059677, 0.04344078525900841, -0.007923522032797337, -0.10955549776554108, -0.02833717130124569, -0.08520432561635971, 0.053640175610780716, -0.04226451739668846, -0.05201118066906929, 0.03508826717734337, 0.10302478820085526, 0.11855582892894745, -0.0018838928081095219, 0.03066759556531906, -0.058081917464733124, 0.08310981094837189, 0.04754027724266052, 0.08386573195457458, -0.00974730122834444, -0.045394331216812134, 0.009738034568727016, -0.11035393178462982, 0.016468841582536697, -0.0029196820687502623, -0.14787115156650543, -0.02631189115345478, 0.03190060332417488, 0.0754113644361496, 0.004376120399683714, 0.11907043308019638, -0.06908911466598511, -0.014888063073158264, 0.09777313470840454, -0.051731307059526443, -0.003034137887880206, 0.02838955819606781, -0.03635944426059723, 0.06318101286888123, -0.0093435263261199, 0.020450159907341003, -0.025207940489053726, 0.13442224264144897, -0.033088210970163345, -0.006936178542673588, 0.01115487515926361, -0.05834713578224182, 0.08905541896820068, -0.05908685550093651, 0.06553614139556885, -0.18056602776050568, -0.13347551226615906, 0.01908312551677227, 0.03050166927278042, -0.010202158242464066, -0.026174217462539673, -0.03463887423276901, 0.00567665696144104, 0.05993103235960007, -0.06201979145407677, -0.05796954408288002, -0.09352923929691315, 0.12066774815320969, -0.042765062302351, 0.061210714280605316, -0.1303016096353531, 0.0754242017865181, -0.08677003532648087, -0.01074525061994791, -0.05301002413034439, 0.04054751992225647, -0.06699831038713455, 0.17243637144565582, -0.03642548248171806, -0.05483931303024292, 0.00813606008887291, 0.020025799050927162, -0.052669115364551544, 0.18750768899917603, -0.14788497984409332, -0.09658155590295792, 0.14275196194648743, -0.06621190160512924, -0.18020623922348022, 0.12402354180812836, -0.027315737679600716, 0.027315877377986908, 0.11839266121387482, 0.19336634874343872, 0.019719470292329788, -0.054371315985918045, 0.003273627022281289, 0.12709173560142517, -0.06395616382360458, -0.0927489846944809, 0.041902635246515274, 0.03655942529439926, -0.05928567424416542, 0.04888048395514488, 0.0775512084364891, 0.09872188419103622, -0.034078244119882584, -0.06833476573228836, -0.0002633000840432942, -0.026622559875249863, 0.09347690641880035, 0.07740604877471924, 0.04776113107800484, -0.1007886752486229, 0.01650647260248661, -0.048319313675165176, 0.04834841936826706, 0.047984447330236435, 0.005095371976494789, -0.07750686258077621, 0.0840160995721817, 0.017094723880290985, 0.008578493259847164, -0.12514127790927887, -0.022909656167030334, -0.06037311255931854, 0.11091144382953644, -0.008525212295353413, 0.1393183022737503, 0.03471667692065239, -0.08131368458271027, -0.04243665561079979, 0.006861941888928413, 0.14856886863708496, 0.04987834021449089, -0.030137304216623306, -0.14999498426914215, 0.10245069861412048, -0.0553278848528862, 0.05234701931476593, -0.07418949156999588, -0.009507779031991959, 0.11044274270534515, 0.09632144123315811, -0.02074774168431759, 0.1035558208823204, -0.024754922837018967, 0.04325679689645767, -0.05308925360441208, 0.02510814741253853, 0.09942708909511566, -0.016049420461058617, -0.11204010248184204, 0.18901696801185608, -0.12130171805620193, 0.26725152134895325, 0.2190028578042984, -0.18639835715293884, 0.008287117816507816, -0.038475483655929565, -0.010237381793558598, 0.006953104864805937, 0.08317187428474426, 0.0263687614351511, 0.03826277703046799, -0.013089357875287533, 0.1749497801065445, -0.043133560568094254, -0.03561713173985481, 0.004714054521173239, -0.0339079312980175, -0.07915792614221573, 0.08922874927520752, 0.0804683044552803, -0.2333698570728302, 0.2194271832704544, 0.279623806476593, 0.076899953186512, 0.15603654086589813, -0.043900322169065475, 0.04402961954474449, 0.04508468136191368, -0.06032751873135567, -0.05851302668452263, 0.049051955342292786, -0.17162199318408966, -0.020395731553435326, 0.08467549830675125, 0.002305520698428154, 0.010022575967013836, -0.11607657372951508, -0.07692411541938782, 0.008201494812965393, -0.02311450056731701, -0.12108888477087021, 0.09317363053560257, 0.047536298632621765, 0.14173360168933868, 0.013928193598985672, -0.09228398650884628, 0.11718569695949554, -0.004759573377668858, -0.1006593257188797, 0.15187318623065948, -0.17041096091270447, -0.29365015029907227, -0.03175611421465874, -0.19915275275707245, -0.05595341697335243, 0.03242253512144089, 0.1168721541762352, -0.11370740830898285, -0.023396272212266922, 0.031958676874637604, -0.036593224853277206, -0.0593482181429863, 0.0071470774710178375, -0.036252155900001526, 0.028672846034169197, -0.0435076467692852, -0.11659768968820572, -0.06904129683971405, -0.032231446355581284, -0.0006349436589516699, 0.12368539720773697, -0.11531045287847519, 0.06652101874351501, 0.11599547415971756, 0.006115762982517481, 0.036005649715662, -0.06558054685592651, 0.2001442313194275, -0.11552037298679352, -0.0033796250354498625, 0.14254027605056763, -0.004378614015877247, 0.08887183666229248, 0.25692319869995117, 0.03922361508011818, -0.07443346828222275, 0.018075380474328995, -0.030299481004476547, -0.06096610054373741, -0.1954985111951828, -0.14945794641971588, -0.10733570903539658, 0.06009615212678909, 0.011149769648909569, 0.07294607162475586, 0.10236325114965439, 0.07803033292293549, -0.03110663965344429, -0.02544482611119747, -0.026211850345134735, 0.0638929009437561, 0.25076228380203247, -0.007060660049319267, 0.10335219651460648, -0.08606988936662674, -0.0765913724899292, 0.1303294599056244, 0.04714830219745636, 0.048560917377471924, 0.07936341315507889, 0.05293792113661766, 0.0531633235514164, 0.12821640074253082, 0.09755703806877136, 0.048805009573698044, 0.037508729845285416, -0.03358744829893112, -0.046984244138002396, -0.01098775677382946, -0.08454728871583939, 0.029761601239442825, 0.04165082797408104, -0.12249264121055603, -0.0572691485285759, -0.18653640151023865, 0.10501126945018768, 0.039952680468559265, 0.02616971544921398, -0.21064186096191406, -0.019467921927571297, 0.07643193751573563, -0.010001065209507942, -0.06052493304014206, 0.03669067099690437, -0.07331467419862747, -0.1319868415594101, 0.14277687668800354, -0.01986052095890045, 0.112200528383255, -0.04586640000343323, 0.07594072073698044, -0.028972206637263298, -0.13002656400203705, 0.017597638070583344, 0.10904357582330704, -0.36178335547447205, 0.2506633996963501, 0.017442595213651657, -0.06017522141337395, -0.09668584913015366, -0.04298195242881775, 0.0699787437915802, 0.24279198050498962, 0.09572964906692505, 0.03099760413169861, -0.016600968316197395, -0.1191953793168068, 0.03981487825512886, 0.04830382391810417, 0.06013999506831169, -0.015497419051826, -0.057767223566770554, -0.01997881382703781, 0.0084669329226017, 0.003600027412176132, 0.044638101011514664, -0.039092887192964554, -0.15405239164829254, 0.0753394067287445, 0.06538839638233185, 0.0906669944524765, 0.0011749970726668835, -0.05311061069369316, -0.18617691099643707, 0.16046583652496338, -0.08560057729482651, -0.08081100881099701, -0.10720596462488174, -0.08548729121685028, -0.03647853061556816, -0.07689083367586136, 0.011938786134123802, -0.06980998069047928, -0.036908265203237534, -0.052395064383745193, -0.19072213768959045, 0.10878390073776245, -0.10883818566799164, -0.03302750736474991, -0.07876230031251907, 0.11073563247919083, -0.03394194319844246, 0.016786551102995872, 0.039650432765483856, -0.015126271173357964, -0.08178932219743729, -0.08664283901453018, -0.0005519393598660827, 0.00726369908079505, 0.059468191117048264, 0.007266520522534847, -0.03401000425219536, -0.07487495243549347, -0.050850916653871536, -0.0656270980834961, 0.20379382371902466, 0.2169228494167328, -0.05981852486729622, 0.17449423670768738, 0.17601464688777924, -0.03952883929014206, -0.32497358322143555, -0.11447349935770035, -0.10872352123260498, -0.052379027009010315, -0.01883469708263874, -0.14818784594535828, 0.052334416657686234, -0.014027648605406284, -0.04579439386725426, 0.042830970138311386, -0.1775190383195877, -0.08874274045228958, 0.2133360356092453, -0.009512855671346188, 0.41393497586250305, -0.1153540089726448, -0.06410151720046997, -0.07048850506544113, -0.14776773750782013, 0.1844071000814438, 0.036542344838380814, 0.07304567843675613, -0.016077281907200813, 0.14780981838703156, 0.019826192408800125, -0.011691595427691936, 0.1631263643503189, 0.037848420441150665, 0.05449420586228371, -0.16133812069892883, -0.07042663544416428, -0.0003224005631636828, -0.00046139812911860645, -0.010219174437224865, -0.07078274339437485, -0.0016136765480041504, -0.18298126757144928, -0.016727060079574585, -0.09664010256528854, 0.05438942462205887, 0.014329002238810062, -0.07197892665863037, -0.05978373810648918, 0.022237369790673256, 0.03814570978283882, -0.053552281111478806, 0.17587429285049438, -0.031837478280067444, 0.07697822898626328, 0.0608845129609108, 0.14469631016254425, -0.16067124903202057, 0.04195836931467056, -0.05218435823917389, -0.058794934302568436, 0.0654185339808464, -0.1590341478586197, 0.05870237201452255, 0.13966360688209534, -0.05137632042169571, 0.08921247720718384, 0.07915367931127548, 0.005246342159807682, -0.018140872940421104, 0.14942486584186554, -0.15299738943576813, -0.058976687490940094, -0.034717120230197906, -0.030653128400444984, 0.05353833734989166, 0.008121402002871037, 0.08151338994503021, 0.01770702376961708, -0.030777571722865105, 0.016350379213690758, 0.0067230151034891605, -0.025530723854899406, 0.051512811332941055, 0.04561944305896759, 0.006432116962969303, -0.15177573263645172, 0.06216150522232056, 0.01173799205571413, -0.18561424314975739, -0.00036888557951897383, 0.06802637130022049, -0.1594138741493225, -0.12161818891763687, -0.05355818197131157, 0.12238357216119766, -0.14878793060779572, -0.08583846688270569, -0.038673095405101776, -0.14683318138122559, 0.05199581757187843, 0.15811169147491455, 0.10278848558664322, 0.09401939064264297, -0.016539251431822777, -0.08624285459518433, 0.008311404846608639, 0.04886581003665924, 0.0019472241401672363, 0.009996073320508003, -0.09420794993638992, -0.046461764723062515, -0.033893126994371414, 0.1726311892271042, -0.07188478857278824, -0.04233406484127045, -0.12562409043312073, 0.01742061972618103, -0.16519200801849365, -0.02433653548359871, -0.11787263303995132, 0.004609480034559965, 0.02532394789159298, -0.08322976529598236, -0.015070358291268349, -0.07291378825902939, -0.12017937004566193, 0.05381816625595093, 0.04373010993003845, 0.11994633078575134, -0.10240046679973602, -0.06058480590581894, 0.07147056609392166, 0.0008888093288987875, 0.13588836789131165, 0.10150406509637833, -0.08065403997898102, 0.07928693294525146, -0.22014015913009644, -0.09785620123147964, 0.08658836781978607, 0.027985578402876854, 0.05680866166949272, 0.006461342331022024, 0.019815362989902496, 0.07741386443376541, -0.020417284220457077, 0.06638649851083755, 0.08222294598817825, -0.10846348106861115, 0.018675783649086952, -0.005046587437391281, -0.09995243698358536, -0.05385768041014671, -0.015267918817698956, 0.08373571187257767, 0.002393862931057811, 0.16823847591876984, -0.055798280984163284, 0.019384849816560745, -0.02558084949851036, -0.006595605984330177, -0.02085573598742485, -0.17738689482212067, -0.09091375023126602, -0.1135571226477623, 0.0011935981456190348, -0.01240117009729147, 0.22657625377178192, 0.04679347947239876, -0.05924588441848755, 0.06688525527715683, 0.10545457154512405, -0.03450090438127518, -0.029509203508496284, 0.20631153881549835, 0.04851151257753372, -0.029096079990267754, -0.08092155307531357, 0.06678976863622665, 0.008313216269016266, 0.008785184472799301, 0.08167015761137009, 0.1317056268453598, 0.07533062994480133, 0.023235497996211052, -0.004937549587339163, -0.0038386827800422907, -0.035685546696186066, -0.12358483672142029, -0.03641830384731293, 0.05680859833955765, -0.007726703304797411, 0.07594059407711029, 0.10388961434364319, -0.047260385006666183, 0.05099991336464882, -0.08662666380405426, -0.029902193695306778, -0.1286696046590805, -0.14271046221256256, -0.07901491969823837, -0.09494384378194809, 0.02533465065062046, -0.0626489669084549, 0.023064522072672844, 0.09855387359857559, 0.06780039519071579, -0.08325158804655075, -0.000654761039186269, -0.055434491485357285, -0.0833599790930748, 0.06639783829450607, -0.016388384625315666, 0.0017773366998881102, -0.06277409195899963, -0.0058065433986485004, -0.09097988903522491, -0.017752865329384804, -0.021071109920740128, 0.03851920738816261, -0.030708927661180496, 0.01328735426068306, -0.16710372269153595, -0.10217643529176712, -0.033489059656858444, 0.0675351694226265, -0.008725927211344242, 0.1682416945695877, -0.005367485340684652, 0.06215246021747589, 0.07994456589221954, 0.18540845811367035, -0.019974177703261375, -0.07238683104515076, -0.04103207215666771, 0.20183826982975006, 0.04349476099014282, 0.06067699193954468, 0.03114769235253334, -0.027733923867344856, -0.0442325621843338, 0.27211880683898926, 0.3119214177131653, -0.04897415265440941, 0.052883196622133255, -0.05340471863746643, 0.04885626584291458, 0.07948314398527145, 0.08874817192554474, 0.09329349547624588, 0.13963253796100616, -0.08231952041387558, 0.026755571365356445, -0.051021356135606766, 0.008192524313926697, -0.053210705518722534, 0.07763762772083282, 0.057096172124147415, -0.07941602915525436, -0.05346386134624481, 0.1220288947224617, -0.15648651123046875, 0.044706277549266815, 0.05720188468694687, -0.15522021055221558, -0.036788735538721085, -0.016534611582756042, 0.11836976557970047, 0.07445883005857468, 0.023023463785648346, -0.022529827430844307, -0.04414179548621178, 0.08752048760652542, 0.016659311950206757, -0.22642196714878082, -0.008257090114057064, 0.10494258254766464, 0.001191221526823938, 0.040935587137937546, -0.019063998013734818, 0.07278453558683395, 0.09678000211715698, 0.058476559817790985, -0.03574461117386818, 0.07754530757665634, 0.07015838474035263, -0.008151009678840637, -0.00020616489928215742, -0.013645656406879425, 0.030457306653261185, -0.06804449111223221, 0.062363915145397186, -0.13182364404201508, 0.06117909401655197, -0.07125215232372284, -0.09008386731147766, -0.04402779042720795, 0.13259373605251312, -0.06266862899065018, 0.06093243137001991, 0.046983931213617325, 0.0034168183337897062, -0.010776527225971222, -0.07075345516204834, -0.048443567007780075, 0.00928656104952097, -0.1885787397623062, -0.061335980892181396, -0.026507923379540443, -0.05068037286400795, 0.10958841443061829, 0.026118334382772446, -0.14452864229679108, 0.004098629578948021, -0.09748566150665283, 0.03438885882496834, -0.10090175271034241, 0.07612837851047516, 0.022865954786539078, 0.0004495921602938324, -0.031115254387259483, -0.10371100902557373, 0.03263894096016884, 0.0625564455986023, -0.07805072516202927, -0.07922948896884918 ]
null
null
transformers
# BERT Models Fine-tuned on Algerian Dialect Sentiment Analysis These are different BERT models (BERT Arabic models are initialized from [AraBERT](https://huggingface.co/aubmindlab/bert-large-arabertv02)) fine-tuned on the [Algerian Dialect Sentiment Analysis](https://huggingface.co/datasets/Abdou/dz-sentiment-yt-comments) dataset. The dataset contains 50,016 comments from YouTube videos in Algerian dialect. The models are evaluated on the testing set: | Model Version | No. of Parameters | Training Time | F1-Score | Accuracy | | ------------------- | ----------------- | -------------- | -------- | -------- | | LSTM | ~4 M | 3 min | 0.7399 | 0.7445 | | Bi-LSTM | ~4.3 M | 6 min 35 s | 0.7380 | 0.7437 | | [BERT Base](https://huggingface.co/bert-base-uncased) | ~109.5 M | 33 min 20 s | 0.6979 | 0.7500 | | [BERT Large](https://huggingface.co/bert-large-uncased) | ~335.1 M | 1 h 50 min | 0.6976 | 0.7484 | | [BERT Arabic Mini](https://huggingface.co/Abdou/arabert-mini-algerian) | ~11.6 M | 2 min 40 s | 0.7057 | 0.7527 | | [BERT Arabic Medium](https://huggingface.co/Abdou/arabert-medium-algerian) | ~42.1 M | 11 min 25 s | 0.7521 | 0.7860 | | [BERT Arabic Base](https://huggingface.co/Abdou/arabert-base-algerian) | ~110.6 M | 34 min 19 s | 0.7688 | 0.8002 | | **[BERT Arabic Large](https://huggingface.co/Abdou/arabert-large-algerian)** | **~336.7 M** | **1 h 53 min** | **0.7838** | **0.8174** | # Citation If you find our work useful, please cite it as follows: ```bibtex @article{2023, title={Sentiment Analysis on Algerian Dialect with Transformers}, author={Zakaria Benmounah and Abdennour Boulesnane and Abdeladim Fadheli and Mustapha Khial}, journal={Applied Sciences}, volume={13}, number={20}, pages={11157}, year={2023}, month={Oct}, publisher={MDPI AG}, DOI={10.3390/app132011157}, ISSN={2076-3417}, url={http://dx.doi.org/10.3390/app132011157} } ```
{"language": ["ar"], "license": "mit", "library_name": "transformers", "datasets": ["Abdou/dz-sentiment-yt-comments"], "metrics": ["f1", "accuracy"]}
text-classification
Abdou/arabert-mini-algerian
[ "transformers", "pytorch", "bert", "text-classification", "ar", "dataset:Abdou/dz-sentiment-yt-comments", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[ "ar" ]
TAGS #transformers #pytorch #bert #text-classification #ar #dataset-Abdou/dz-sentiment-yt-comments #license-mit #autotrain_compatible #endpoints_compatible #region-us
BERT Models Fine-tuned on Algerian Dialect Sentiment Analysis ============================================================= These are different BERT models (BERT Arabic models are initialized from AraBERT) fine-tuned on the Algerian Dialect Sentiment Analysis dataset. The dataset contains 50,016 comments from YouTube videos in Algerian dialect. The models are evaluated on the testing set: If you find our work useful, please cite it as follows:
[]
[ "TAGS\n#transformers #pytorch #bert #text-classification #ar #dataset-Abdou/dz-sentiment-yt-comments #license-mit #autotrain_compatible #endpoints_compatible #region-us \n" ]
[ 59 ]
[ "passage: TAGS\n#transformers #pytorch #bert #text-classification #ar #dataset-Abdou/dz-sentiment-yt-comments #license-mit #autotrain_compatible #endpoints_compatible #region-us \n" ]
[ -0.048443201929330826, 0.09173168241977692, -0.005922634154558182, 0.027874184772372246, 0.15967309474945068, 0.03353098779916763, 0.1223534643650055, 0.1015472337603569, 0.09503154456615448, -0.05138532817363739, 0.11538945883512497, 0.2223052829504013, 0.012671849690377712, 0.06934879720211029, -0.10213954001665115, -0.2187228500843048, 0.052419185638427734, 0.05950456112623215, 0.027568422257900238, 0.11014501005411148, 0.14198778569698334, -0.06779944896697998, 0.0959530621767044, -0.021472685039043427, -0.10183466225862503, 0.024576861411333084, 0.021044744178652763, -0.10912105441093445, 0.1284485012292862, 0.06602831184864044, 0.10981950163841248, 0.08968780189752579, -0.03471435233950615, -0.19103725254535675, 0.046479351818561554, -0.020193882286548615, -0.08546628057956696, 0.03490955010056496, 0.06898102164268494, -0.060393862426280975, 0.09053504467010498, -0.021290717646479607, -0.006622869987040758, 0.05691402405500412, -0.1043148934841156, -0.1674308478832245, -0.07484317570924759, 0.057347603142261505, 0.06576584279537201, 0.038869909942150116, -0.011037701740860939, 0.14571741223335266, -0.12459614127874374, 0.09019078314304352, 0.08335652202367783, -0.22942747175693512, 0.02004583738744259, 0.07611299306154251, 0.02911127172410488, 0.03466914966702461, -0.05194012448191643, 0.04462558776140213, 0.03426907956600189, -0.011245259083807468, -0.0198379997164011, -0.07036342471837997, -0.005745836067944765, 0.03383161127567291, -0.02234838530421257, -0.06094374135136604, 0.27108147740364075, 0.012941605411469936, 0.03702455013990402, -0.03236038610339165, -0.02970864623785019, -0.014355742372572422, -0.02583908662199974, -0.004204666707664728, -0.0024985361378639936, 0.05470377951860428, 0.018575936555862427, 0.069731704890728, -0.1200876533985138, 0.04477309435606003, -0.2585335373878479, 0.12471005320549011, 0.0006905013578943908, 0.03106491081416607, -0.1317910999059677, 0.04344078525900841, -0.007923522032797337, -0.10955549776554108, -0.02833717130124569, -0.08520432561635971, 0.053640175610780716, -0.04226451739668846, -0.05201118066906929, 0.03508826717734337, 0.10302478820085526, 0.11855582892894745, -0.0018838928081095219, 0.03066759556531906, -0.058081917464733124, 0.08310981094837189, 0.04754027724266052, 0.08386573195457458, -0.00974730122834444, -0.045394331216812134, 0.009738034568727016, -0.11035393178462982, 0.016468841582536697, -0.0029196820687502623, -0.14787115156650543, -0.02631189115345478, 0.03190060332417488, 0.0754113644361496, 0.004376120399683714, 0.11907043308019638, -0.06908911466598511, -0.014888063073158264, 0.09777313470840454, -0.051731307059526443, -0.003034137887880206, 0.02838955819606781, -0.03635944426059723, 0.06318101286888123, -0.0093435263261199, 0.020450159907341003, -0.025207940489053726, 0.13442224264144897, -0.033088210970163345, -0.006936178542673588, 0.01115487515926361, -0.05834713578224182, 0.08905541896820068, -0.05908685550093651, 0.06553614139556885, -0.18056602776050568, -0.13347551226615906, 0.01908312551677227, 0.03050166927278042, -0.010202158242464066, -0.026174217462539673, -0.03463887423276901, 0.00567665696144104, 0.05993103235960007, -0.06201979145407677, -0.05796954408288002, -0.09352923929691315, 0.12066774815320969, -0.042765062302351, 0.061210714280605316, -0.1303016096353531, 0.0754242017865181, -0.08677003532648087, -0.01074525061994791, -0.05301002413034439, 0.04054751992225647, -0.06699831038713455, 0.17243637144565582, -0.03642548248171806, -0.05483931303024292, 0.00813606008887291, 0.020025799050927162, -0.052669115364551544, 0.18750768899917603, -0.14788497984409332, -0.09658155590295792, 0.14275196194648743, -0.06621190160512924, -0.18020623922348022, 0.12402354180812836, -0.027315737679600716, 0.027315877377986908, 0.11839266121387482, 0.19336634874343872, 0.019719470292329788, -0.054371315985918045, 0.003273627022281289, 0.12709173560142517, -0.06395616382360458, -0.0927489846944809, 0.041902635246515274, 0.03655942529439926, -0.05928567424416542, 0.04888048395514488, 0.0775512084364891, 0.09872188419103622, -0.034078244119882584, -0.06833476573228836, -0.0002633000840432942, -0.026622559875249863, 0.09347690641880035, 0.07740604877471924, 0.04776113107800484, -0.1007886752486229, 0.01650647260248661, -0.048319313675165176, 0.04834841936826706, 0.047984447330236435, 0.005095371976494789, -0.07750686258077621, 0.0840160995721817, 0.017094723880290985, 0.008578493259847164, -0.12514127790927887, -0.022909656167030334, -0.06037311255931854, 0.11091144382953644, -0.008525212295353413, 0.1393183022737503, 0.03471667692065239, -0.08131368458271027, -0.04243665561079979, 0.006861941888928413, 0.14856886863708496, 0.04987834021449089, -0.030137304216623306, -0.14999498426914215, 0.10245069861412048, -0.0553278848528862, 0.05234701931476593, -0.07418949156999588, -0.009507779031991959, 0.11044274270534515, 0.09632144123315811, -0.02074774168431759, 0.1035558208823204, -0.024754922837018967, 0.04325679689645767, -0.05308925360441208, 0.02510814741253853, 0.09942708909511566, -0.016049420461058617, -0.11204010248184204, 0.18901696801185608, -0.12130171805620193, 0.26725152134895325, 0.2190028578042984, -0.18639835715293884, 0.008287117816507816, -0.038475483655929565, -0.010237381793558598, 0.006953104864805937, 0.08317187428474426, 0.0263687614351511, 0.03826277703046799, -0.013089357875287533, 0.1749497801065445, -0.043133560568094254, -0.03561713173985481, 0.004714054521173239, -0.0339079312980175, -0.07915792614221573, 0.08922874927520752, 0.0804683044552803, -0.2333698570728302, 0.2194271832704544, 0.279623806476593, 0.076899953186512, 0.15603654086589813, -0.043900322169065475, 0.04402961954474449, 0.04508468136191368, -0.06032751873135567, -0.05851302668452263, 0.049051955342292786, -0.17162199318408966, -0.020395731553435326, 0.08467549830675125, 0.002305520698428154, 0.010022575967013836, -0.11607657372951508, -0.07692411541938782, 0.008201494812965393, -0.02311450056731701, -0.12108888477087021, 0.09317363053560257, 0.047536298632621765, 0.14173360168933868, 0.013928193598985672, -0.09228398650884628, 0.11718569695949554, -0.004759573377668858, -0.1006593257188797, 0.15187318623065948, -0.17041096091270447, -0.29365015029907227, -0.03175611421465874, -0.19915275275707245, -0.05595341697335243, 0.03242253512144089, 0.1168721541762352, -0.11370740830898285, -0.023396272212266922, 0.031958676874637604, -0.036593224853277206, -0.0593482181429863, 0.0071470774710178375, -0.036252155900001526, 0.028672846034169197, -0.0435076467692852, -0.11659768968820572, -0.06904129683971405, -0.032231446355581284, -0.0006349436589516699, 0.12368539720773697, -0.11531045287847519, 0.06652101874351501, 0.11599547415971756, 0.006115762982517481, 0.036005649715662, -0.06558054685592651, 0.2001442313194275, -0.11552037298679352, -0.0033796250354498625, 0.14254027605056763, -0.004378614015877247, 0.08887183666229248, 0.25692319869995117, 0.03922361508011818, -0.07443346828222275, 0.018075380474328995, -0.030299481004476547, -0.06096610054373741, -0.1954985111951828, -0.14945794641971588, -0.10733570903539658, 0.06009615212678909, 0.011149769648909569, 0.07294607162475586, 0.10236325114965439, 0.07803033292293549, -0.03110663965344429, -0.02544482611119747, -0.026211850345134735, 0.0638929009437561, 0.25076228380203247, -0.007060660049319267, 0.10335219651460648, -0.08606988936662674, -0.0765913724899292, 0.1303294599056244, 0.04714830219745636, 0.048560917377471924, 0.07936341315507889, 0.05293792113661766, 0.0531633235514164, 0.12821640074253082, 0.09755703806877136, 0.048805009573698044, 0.037508729845285416, -0.03358744829893112, -0.046984244138002396, -0.01098775677382946, -0.08454728871583939, 0.029761601239442825, 0.04165082797408104, -0.12249264121055603, -0.0572691485285759, -0.18653640151023865, 0.10501126945018768, 0.039952680468559265, 0.02616971544921398, -0.21064186096191406, -0.019467921927571297, 0.07643193751573563, -0.010001065209507942, -0.06052493304014206, 0.03669067099690437, -0.07331467419862747, -0.1319868415594101, 0.14277687668800354, -0.01986052095890045, 0.112200528383255, -0.04586640000343323, 0.07594072073698044, -0.028972206637263298, -0.13002656400203705, 0.017597638070583344, 0.10904357582330704, -0.36178335547447205, 0.2506633996963501, 0.017442595213651657, -0.06017522141337395, -0.09668584913015366, -0.04298195242881775, 0.0699787437915802, 0.24279198050498962, 0.09572964906692505, 0.03099760413169861, -0.016600968316197395, -0.1191953793168068, 0.03981487825512886, 0.04830382391810417, 0.06013999506831169, -0.015497419051826, -0.057767223566770554, -0.01997881382703781, 0.0084669329226017, 0.003600027412176132, 0.044638101011514664, -0.039092887192964554, -0.15405239164829254, 0.0753394067287445, 0.06538839638233185, 0.0906669944524765, 0.0011749970726668835, -0.05311061069369316, -0.18617691099643707, 0.16046583652496338, -0.08560057729482651, -0.08081100881099701, -0.10720596462488174, -0.08548729121685028, -0.03647853061556816, -0.07689083367586136, 0.011938786134123802, -0.06980998069047928, -0.036908265203237534, -0.052395064383745193, -0.19072213768959045, 0.10878390073776245, -0.10883818566799164, -0.03302750736474991, -0.07876230031251907, 0.11073563247919083, -0.03394194319844246, 0.016786551102995872, 0.039650432765483856, -0.015126271173357964, -0.08178932219743729, -0.08664283901453018, -0.0005519393598660827, 0.00726369908079505, 0.059468191117048264, 0.007266520522534847, -0.03401000425219536, -0.07487495243549347, -0.050850916653871536, -0.0656270980834961, 0.20379382371902466, 0.2169228494167328, -0.05981852486729622, 0.17449423670768738, 0.17601464688777924, -0.03952883929014206, -0.32497358322143555, -0.11447349935770035, -0.10872352123260498, -0.052379027009010315, -0.01883469708263874, -0.14818784594535828, 0.052334416657686234, -0.014027648605406284, -0.04579439386725426, 0.042830970138311386, -0.1775190383195877, -0.08874274045228958, 0.2133360356092453, -0.009512855671346188, 0.41393497586250305, -0.1153540089726448, -0.06410151720046997, -0.07048850506544113, -0.14776773750782013, 0.1844071000814438, 0.036542344838380814, 0.07304567843675613, -0.016077281907200813, 0.14780981838703156, 0.019826192408800125, -0.011691595427691936, 0.1631263643503189, 0.037848420441150665, 0.05449420586228371, -0.16133812069892883, -0.07042663544416428, -0.0003224005631636828, -0.00046139812911860645, -0.010219174437224865, -0.07078274339437485, -0.0016136765480041504, -0.18298126757144928, -0.016727060079574585, -0.09664010256528854, 0.05438942462205887, 0.014329002238810062, -0.07197892665863037, -0.05978373810648918, 0.022237369790673256, 0.03814570978283882, -0.053552281111478806, 0.17587429285049438, -0.031837478280067444, 0.07697822898626328, 0.0608845129609108, 0.14469631016254425, -0.16067124903202057, 0.04195836931467056, -0.05218435823917389, -0.058794934302568436, 0.0654185339808464, -0.1590341478586197, 0.05870237201452255, 0.13966360688209534, -0.05137632042169571, 0.08921247720718384, 0.07915367931127548, 0.005246342159807682, -0.018140872940421104, 0.14942486584186554, -0.15299738943576813, -0.058976687490940094, -0.034717120230197906, -0.030653128400444984, 0.05353833734989166, 0.008121402002871037, 0.08151338994503021, 0.01770702376961708, -0.030777571722865105, 0.016350379213690758, 0.0067230151034891605, -0.025530723854899406, 0.051512811332941055, 0.04561944305896759, 0.006432116962969303, -0.15177573263645172, 0.06216150522232056, 0.01173799205571413, -0.18561424314975739, -0.00036888557951897383, 0.06802637130022049, -0.1594138741493225, -0.12161818891763687, -0.05355818197131157, 0.12238357216119766, -0.14878793060779572, -0.08583846688270569, -0.038673095405101776, -0.14683318138122559, 0.05199581757187843, 0.15811169147491455, 0.10278848558664322, 0.09401939064264297, -0.016539251431822777, -0.08624285459518433, 0.008311404846608639, 0.04886581003665924, 0.0019472241401672363, 0.009996073320508003, -0.09420794993638992, -0.046461764723062515, -0.033893126994371414, 0.1726311892271042, -0.07188478857278824, -0.04233406484127045, -0.12562409043312073, 0.01742061972618103, -0.16519200801849365, -0.02433653548359871, -0.11787263303995132, 0.004609480034559965, 0.02532394789159298, -0.08322976529598236, -0.015070358291268349, -0.07291378825902939, -0.12017937004566193, 0.05381816625595093, 0.04373010993003845, 0.11994633078575134, -0.10240046679973602, -0.06058480590581894, 0.07147056609392166, 0.0008888093288987875, 0.13588836789131165, 0.10150406509637833, -0.08065403997898102, 0.07928693294525146, -0.22014015913009644, -0.09785620123147964, 0.08658836781978607, 0.027985578402876854, 0.05680866166949272, 0.006461342331022024, 0.019815362989902496, 0.07741386443376541, -0.020417284220457077, 0.06638649851083755, 0.08222294598817825, -0.10846348106861115, 0.018675783649086952, -0.005046587437391281, -0.09995243698358536, -0.05385768041014671, -0.015267918817698956, 0.08373571187257767, 0.002393862931057811, 0.16823847591876984, -0.055798280984163284, 0.019384849816560745, -0.02558084949851036, -0.006595605984330177, -0.02085573598742485, -0.17738689482212067, -0.09091375023126602, -0.1135571226477623, 0.0011935981456190348, -0.01240117009729147, 0.22657625377178192, 0.04679347947239876, -0.05924588441848755, 0.06688525527715683, 0.10545457154512405, -0.03450090438127518, -0.029509203508496284, 0.20631153881549835, 0.04851151257753372, -0.029096079990267754, -0.08092155307531357, 0.06678976863622665, 0.008313216269016266, 0.008785184472799301, 0.08167015761137009, 0.1317056268453598, 0.07533062994480133, 0.023235497996211052, -0.004937549587339163, -0.0038386827800422907, -0.035685546696186066, -0.12358483672142029, -0.03641830384731293, 0.05680859833955765, -0.007726703304797411, 0.07594059407711029, 0.10388961434364319, -0.047260385006666183, 0.05099991336464882, -0.08662666380405426, -0.029902193695306778, -0.1286696046590805, -0.14271046221256256, -0.07901491969823837, -0.09494384378194809, 0.02533465065062046, -0.0626489669084549, 0.023064522072672844, 0.09855387359857559, 0.06780039519071579, -0.08325158804655075, -0.000654761039186269, -0.055434491485357285, -0.0833599790930748, 0.06639783829450607, -0.016388384625315666, 0.0017773366998881102, -0.06277409195899963, -0.0058065433986485004, -0.09097988903522491, -0.017752865329384804, -0.021071109920740128, 0.03851920738816261, -0.030708927661180496, 0.01328735426068306, -0.16710372269153595, -0.10217643529176712, -0.033489059656858444, 0.0675351694226265, -0.008725927211344242, 0.1682416945695877, -0.005367485340684652, 0.06215246021747589, 0.07994456589221954, 0.18540845811367035, -0.019974177703261375, -0.07238683104515076, -0.04103207215666771, 0.20183826982975006, 0.04349476099014282, 0.06067699193954468, 0.03114769235253334, -0.027733923867344856, -0.0442325621843338, 0.27211880683898926, 0.3119214177131653, -0.04897415265440941, 0.052883196622133255, -0.05340471863746643, 0.04885626584291458, 0.07948314398527145, 0.08874817192554474, 0.09329349547624588, 0.13963253796100616, -0.08231952041387558, 0.026755571365356445, -0.051021356135606766, 0.008192524313926697, -0.053210705518722534, 0.07763762772083282, 0.057096172124147415, -0.07941602915525436, -0.05346386134624481, 0.1220288947224617, -0.15648651123046875, 0.044706277549266815, 0.05720188468694687, -0.15522021055221558, -0.036788735538721085, -0.016534611582756042, 0.11836976557970047, 0.07445883005857468, 0.023023463785648346, -0.022529827430844307, -0.04414179548621178, 0.08752048760652542, 0.016659311950206757, -0.22642196714878082, -0.008257090114057064, 0.10494258254766464, 0.001191221526823938, 0.040935587137937546, -0.019063998013734818, 0.07278453558683395, 0.09678000211715698, 0.058476559817790985, -0.03574461117386818, 0.07754530757665634, 0.07015838474035263, -0.008151009678840637, -0.00020616489928215742, -0.013645656406879425, 0.030457306653261185, -0.06804449111223221, 0.062363915145397186, -0.13182364404201508, 0.06117909401655197, -0.07125215232372284, -0.09008386731147766, -0.04402779042720795, 0.13259373605251312, -0.06266862899065018, 0.06093243137001991, 0.046983931213617325, 0.0034168183337897062, -0.010776527225971222, -0.07075345516204834, -0.048443567007780075, 0.00928656104952097, -0.1885787397623062, -0.061335980892181396, -0.026507923379540443, -0.05068037286400795, 0.10958841443061829, 0.026118334382772446, -0.14452864229679108, 0.004098629578948021, -0.09748566150665283, 0.03438885882496834, -0.10090175271034241, 0.07612837851047516, 0.022865954786539078, 0.0004495921602938324, -0.031115254387259483, -0.10371100902557373, 0.03263894096016884, 0.0625564455986023, -0.07805072516202927, -0.07922948896884918 ]
null
null
null
Model details available [here](https://github.com/awasthiabhijeet/PIE)
{}
null
AbhijeetA/PIE
[ "region:us" ]
2022-03-02T23:29:04+00:00
[]
[]
TAGS #region-us
Model details available here
[]
[ "TAGS\n#region-us \n" ]
[ 6 ]
[ "passage: TAGS\n#region-us \n" ]
[ 0.024608636274933815, -0.026205500587821007, -0.009666500613093376, -0.10395516455173492, 0.08638657629489899, 0.059816278517246246, 0.01882290467619896, 0.020661840215325356, 0.23975107073783875, -0.005599027033895254, 0.1219947561621666, 0.0015615287702530622, -0.037353623658418655, 0.03733762726187706, -0.0035912662278860807, -0.17583473026752472, 0.03876631706953049, -0.018274923786520958, 0.01843859627842903, 0.026470553129911423, -0.07776834815740585, -0.07564429938793182, 0.015296397730708122, -0.10247814655303955, -0.083692267537117, 0.11002834886312485, 0.031466204673051834, -0.019670886918902397, 0.10779199749231339, -0.04243955761194229, 0.18699054419994354, -0.011512263678014278, -0.11213519424200058, -0.2536850869655609, 0.021806683391332626, -0.01765260472893715, -0.08747660368680954, 0.01506110467016697, 0.0665089413523674, -0.09014441072940826, -0.0588928684592247, 0.0795099288225174, -0.01132340170443058, 0.04246443510055542, -0.27593839168548584, -0.12684126198291779, -0.05297930911183357, -0.1421966552734375, 0.08651168644428253, 0.04035491496324539, 0.008764253929257393, 0.15506891906261444, -0.20897391438484192, 0.004104613792151213, 0.08255259692668915, -0.2538507878780365, 0.05591634660959244, 0.17671173810958862, 0.03623908758163452, 0.18037272989749908, 0.0060391901060938835, 0.11029672622680664, 0.0716743916273117, -0.024263937026262283, -0.17590197920799255, -0.08127854019403458, -0.04696211963891983, 0.16642488539218903, -0.06727185100317001, -0.14248386025428772, 0.34701237082481384, 0.00015008423360995948, 0.009657775051891804, 0.16921205818653107, -0.059524230659008026, -0.09972117841243744, 0.07259953022003174, 0.016484731808304787, 0.018492350354790688, 0.1471305936574936, 0.16307872533798218, -0.0458691343665123, -0.13837823271751404, -0.018630273640155792, -0.22798998653888702, 0.17510560154914856, -0.03248048573732376, 0.13137903809547424, -0.27447956800460815, 0.01684025302529335, -0.2570667266845703, 0.0032130838371813297, 0.04178816080093384, -0.06004921346902847, -0.0226522795855999, -0.013265985064208508, -0.08018817007541656, 0.004899587947875261, 0.06192673370242119, 0.1266920566558838, -0.06128726154565811, 0.06128238886594772, -0.09319206327199936, 0.141696035861969, 0.07166698575019836, 0.07868369668722153, 0.13037432730197906, 0.041205424815416336, -0.07187089323997498, -0.21872246265411377, -0.0026476888451725245, -0.06275863200426102, -0.09502086788415909, -0.0020165652967989445, -0.11606067419052124, 0.17244569957256317, -0.030802514404058456, -0.09825427830219269, -0.11208184063434601, 0.09148659557104111, -0.032992321997880936, -0.03437839448451996, -0.03552987426519394, -0.020977836102247238, 0.019381176680326462, 0.04704452306032181, -0.1548958420753479, -0.005131472367793322, 0.07039852440357208, 0.11502562463283539, -0.1346137970685959, -0.003783059772104025, -0.07908964157104492, 0.03039063885807991, 0.07654735445976257, -0.16510222852230072, 0.03158547356724739, -0.1124754324555397, -0.07531405985355377, 0.002912673633545637, -0.015710093080997467, -0.016202643513679504, 0.166526660323143, -0.0020451415330171585, 0.0714716836810112, -0.026345307007431984, -0.05890209600329399, -0.11243434250354767, -0.08489254862070084, 0.05390460044145584, 0.03670717030763626, 0.03266148269176483, -0.2193479984998703, 0.014805203303694725, -0.12762966752052307, 0.1360815018415451, -0.10566820204257965, -0.04705966264009476, -0.022842247039079666, 0.20562705397605896, 0.037286072969436646, 0.08762791007757187, -0.22171171009540558, 0.039756543934345245, -0.05404696613550186, 0.18480908870697021, -0.1502426266670227, -0.0799463614821434, 0.20813211798667908, -0.07964949309825897, -0.10115210711956024, 0.021235812455415726, 0.020391687750816345, 0.026287272572517395, 0.0766737088561058, 0.4564172327518463, -0.09766800701618195, -0.09146861732006073, 0.10178250074386597, 0.17055274546146393, -0.12427149713039398, -0.1827561855316162, 0.06446871906518936, -0.16666454076766968, -0.1973118633031845, 0.0018917324487119913, 0.09222044050693512, 0.038269978016614914, -0.07875611633062363, -0.020746968686580658, 0.06325206160545349, -0.0007678253459744155, 0.09095914661884308, 0.03755716234445572, 0.09034032374620438, -0.08716782182455063, 0.11115926504135132, -0.05017651244997978, 0.004037132486701012, 0.1343354731798172, 0.027325427159667015, -0.03223329409956932, 0.08694463223218918, -0.0485352948307991, 0.05295134335756302, -0.1662379503250122, -0.15068690478801727, 0.03398871049284935, 0.06283251196146011, 0.03186952322721481, 0.1280253529548645, 0.08141885697841644, -0.10732853412628174, 0.022690722718834877, -0.004228927195072174, 0.058398615568876266, 0.03891623765230179, 0.006107209715992212, 0.008764320984482765, 0.0961301177740097, -0.10607069730758667, -0.13589619100093842, -0.07336436957120895, -0.014715781435370445, 0.14371353387832642, -0.0302802175283432, 0.07690227776765823, -0.004240254405885935, 0.00013200697139836848, 0.06930823624134064, 0.08137880265712738, 0.016412746161222458, 0.08971183747053146, -0.05237193778157234, -0.05160155147314072, 0.10863113403320312, -0.13533565402030945, 0.17837053537368774, 0.14053137600421906, -0.20532016456127167, 0.029453208670020103, -0.06838275492191315, 0.03670361638069153, -0.008162540383636951, 0.0975119024515152, -0.08272241055965424, -0.02106042578816414, 0.013134466484189034, 0.0052274600602686405, -0.013007243163883686, 0.017682146281003952, -0.07295988500118256, -0.07787393033504486, -0.10233919322490692, 0.08436838537454605, 0.11562882363796234, -0.10282530635595322, 0.14214380085468292, 0.4384984076023102, 0.11495281755924225, 0.21582984924316406, -0.09581480920314789, -0.0412987545132637, 0.007486371789127588, 0.0001535322517156601, -0.04476691037416458, 0.08031861484050751, -0.15973517298698425, -0.038901735097169876, 0.027348900213837624, 0.07128690183162689, 0.11475157737731934, -0.14959022402763367, -0.09639324247837067, -0.00793045200407505, 0.0022841424215584993, -0.1249532699584961, 0.023905446752905846, -0.03974650055170059, 0.04015624523162842, 0.07232289016246796, -0.021535737439990044, 0.13939237594604492, -0.04166141897439957, -0.0639561116695404, 0.07585346698760986, -0.2017085999250412, -0.23179671168327332, -0.12309670448303223, -0.14680525660514832, 0.04366797208786011, 0.05154111236333847, 0.01726446859538555, -0.17635835707187653, -0.015074856579303741, 0.07706750929355621, 0.07820965349674225, -0.20886357128620148, -0.022814949974417686, -0.004290030337870121, 0.0895976573228836, -0.10227091610431671, -0.0017130117630586028, -0.04419664293527603, -0.10150232166051865, 0.0017003051470965147, 0.07279510796070099, -0.137485533952713, 0.13807645440101624, 0.21589438617229462, 0.07225540280342102, 0.07359948754310608, -0.019093448296189308, 0.09936179965734482, -0.10856141895055771, -0.16549113392829895, 0.08348225057125092, -0.06234746053814888, 0.047262318432331085, 0.17534415423870087, 0.03307317942380905, -0.13904969394207, -0.015682822093367577, -0.0402069091796875, -0.15603256225585938, -0.238995760679245, -0.09178274869918823, -0.1182505264878273, 0.16442428529262543, 0.0009358620154671371, 0.06651917099952698, 0.08258313685655594, -0.022042419761419296, 0.16447891294956207, -0.07379321753978729, -0.07578866183757782, -0.006978808436542749, 0.12375060468912125, -0.056660156697034836, -0.03080669604241848, -0.10566964000463486, -0.008295975625514984, 0.1151021271944046, 0.15304014086723328, 0.12214863300323486, 0.2957419455051422, 0.08268889784812927, 0.026645636186003685, 0.08958091586828232, 0.17622539401054382, 0.09495089203119278, 0.07838419824838638, -0.045413073152303696, -0.014814783819019794, 0.014317171648144722, -0.04022889584302902, 0.010141594335436821, 0.14683100581169128, -0.2679629921913147, -0.006678564939647913, -0.2710230350494385, 0.0965198427438736, -0.10913380235433578, 0.11837165057659149, -0.01015760749578476, 0.10194015502929688, 0.11082887649536133, 0.03233652561903, -0.03858073800802231, 0.16613617539405823, 0.08450309932231903, -0.11277695000171661, 0.001758623169735074, 0.03737903758883476, 0.09715615212917328, -0.02818971499800682, 0.12721189856529236, -0.11048974841833115, -0.1464834064245224, 0.013753619976341724, 0.07152791321277618, -0.15373679995536804, 0.3138748109340668, 0.012069208547472954, -0.13481520116329193, -0.01481647603213787, -0.09957809001207352, -0.006440147757530212, 0.1254177987575531, 0.09333524852991104, 0.07935678958892822, -0.2185502052307129, -0.13339371979236603, 0.05872276425361633, -0.00575496768578887, 0.22408108413219452, -0.034034017473459244, -0.11356475204229355, -0.027013886719942093, 0.04241163283586502, -0.06043251231312752, 0.08524788916110992, 0.023536119610071182, -0.08113526552915573, -0.032957352697849274, 0.05323701351881027, 0.012368366122245789, 0.00524376705288887, 0.09360801428556442, 0.020107939839363098, -0.0009265501867048442, 0.01785753294825554, 0.047885000705718994, -0.0675911232829094, -0.1984109878540039, 0.09357594698667526, -0.05215044692158699, 0.0015536568826064467, -0.08013670891523361, -0.15122665464878082, -0.08837161958217621, -0.16009655594825745, 0.12540200352668762, -0.034406669437885284, 0.12700119614601135, -0.06619787961244583, 0.17341409623622894, -0.07871770113706589, 0.04481020197272301, -0.047349292784929276, 0.050332702696323395, -0.007268077693879604, -0.07756082713603973, 0.16585899889469147, -0.15564003586769104, 0.01809087023139, 0.19572502374649048, -0.018915493041276932, 0.07177707552909851, 0.021322092041373253, -0.0636206790804863, 0.23147478699684143, 0.3014698624610901, 0.008138049393892288, 0.1665448248386383, 0.3018903136253357, -0.07466315478086472, -0.2642788887023926, -0.05505012720823288, -0.2841376066207886, -0.05371501296758652, 0.10716094076633453, -0.22523896396160126, 0.06986407935619354, 0.14383509755134583, -0.06471995264291763, 0.30228954553604126, -0.21825523674488068, 0.012589273042976856, 0.15434536337852478, -0.08868814259767532, 0.5515313148498535, -0.1133413165807724, -0.17677772045135498, -0.008122089318931103, -0.08741296827793121, 0.10602109134197235, -0.0340677872300148, 0.06877441704273224, 0.013465235009789467, 0.04797380417585373, 0.048932258039712906, -0.03111894056200981, 0.22701001167297363, 0.008710170164704323, 0.09015397727489471, -0.07378865778446198, -0.18624304234981537, 0.11639340221881866, -0.04359482601284981, -0.08891059458255768, 0.0849778801202774, -0.05942516401410103, -0.11078983545303345, 0.04663389176130295, -0.07950539886951447, -0.024862350896000862, 0.08423490077257156, -0.04678233340382576, -0.042606171220541, -0.008054176345467567, -0.1618063747882843, -0.0002289071271661669, 0.31360217928886414, -0.07096036523580551, 0.16695955395698547, 0.03677211329340935, 0.00038613268407061696, -0.11027684062719345, 0.030288029462099075, -0.05203165486454964, -0.021576624363660812, 0.09578979015350342, -0.11096979677677155, 0.03204701095819473, 0.14160704612731934, -0.04864364117383957, 0.05846960097551346, 0.09256096184253693, -0.0849417969584465, 0.007583672646433115, 0.17753590643405914, -0.17537221312522888, -0.1273445188999176, -0.006135711446404457, -0.09862716495990753, 0.14055661857128143, 0.04394126310944557, 0.05191568285226822, 0.16669964790344238, 0.03967129811644554, -0.029474308714270592, -0.02817419543862343, -0.1153380498290062, -0.0201893113553524, 0.040153320878744125, 0.00045633706031367183, -0.08791285753250122, 0.2262638509273529, 0.06409153342247009, -0.1328488290309906, -0.051157206296920776, 0.2161225974559784, -0.06805316358804703, -0.04911920800805092, -0.223562553524971, 0.10752306133508682, -0.07112517952919006, -0.0965060144662857, 0.05453834682703018, -0.02270081453025341, 0.005106312222778797, 0.181985542178154, 0.03941008821129799, 0.11070270836353302, 0.03738937899470329, -0.02448922023177147, 0.15798696875572205, -0.142850860953331, -0.14191335439682007, -0.025354057550430298, -0.08757315576076508, -0.13844476640224457, -0.026804137974977493, 0.1617041826248169, -0.09177309274673462, -0.14772607386112213, -0.2621181011199951, 0.10968475043773651, -0.16432365775108337, -0.10192688554525375, -0.03469514101743698, -0.08968492597341537, 0.0696166530251503, 0.030301768332719803, -0.03093348816037178, -0.06706760823726654, -0.18593791127204895, 0.0816768929362297, 0.06349513679742813, 0.045533183962106705, -0.017847947776317596, 0.0067379772663116455, 0.1720137596130371, 0.025955144315958023, 0.10040043294429779, 0.16762186586856842, 0.011397695168852806, 0.2246655523777008, -0.1671202927827835, -0.11496317386627197, 0.1336962729692459, -0.026543032377958298, 0.06762003898620605, 0.16792191565036774, -0.0772583931684494, 0.015526676550507545, -0.028136352077126503, 0.07066910713911057, -0.11003983020782471, -0.105624258518219, 0.007937257178127766, 0.02567129209637642, -0.2755882740020752, -0.005599735304713249, -0.19717298448085785, 0.14788752794265747, 0.02579621411859989, 0.03297143429517746, 0.10257530212402344, 0.10404334217309952, 0.08312062919139862, -0.0017710148822516203, 0.03226327523589134, -0.1176818460226059, 0.02753005363047123, -0.059239376336336136, -0.020663779228925705, 0.017624232918024063, 0.36952024698257446, -0.03603357449173927, -0.046802736818790436, 0.003710439894348383, 0.1307835876941681, -0.02139742486178875, 0.017395347356796265, 0.13209912180900574, 0.12607666850090027, -0.08595693111419678, -0.1504845917224884, 0.04888554662466049, -0.04565655067563057, -0.02836887165904045, 0.1464131623506546, 0.05905961990356445, 0.1050296202301979, 0.0908031314611435, -0.014463032595813274, -0.00318976235575974, 0.012856799177825451, -0.15486004948616028, 0.06223496049642563, -0.010558074340224266, 0.012565906159579754, 0.017934376373887062, 0.15238402783870697, -0.005540105979889631, 0.07739730179309845, -0.09889880567789078, 0.004208535887300968, -0.13498884439468384, -0.07913459837436676, 0.03617347031831741, -0.13393273949623108, 0.04141177982091904, -0.01871878281235695, 0.029611799865961075, 0.30386561155319214, 0.02558239921927452, -0.020639164373278618, 0.12512871623039246, -0.1214587539434433, -0.12050267308950424, -0.001594188273884356, -0.029960084706544876, 0.0791488066315651, -0.02633434161543846, -0.0997740775346756, -0.1001306027173996, -0.15166029334068298, -0.09759195148944855, 0.05182836204767227, -0.04993441700935364, -0.059362251311540604, -0.17634081840515137, -0.05707859992980957, -0.05147340148687363, 0.14025864005088806, -0.12263951450586319, 0.15159130096435547, -0.014490418136119843, 0.004084470681846142, 0.04405883327126503, 0.1950942426919937, -0.03644494712352753, 0.08714226633310318, 0.0154351145029068, 0.1522706001996994, -0.05119588226079941, 0.14720745384693146, -0.10931728035211563, -0.04014137014746666, -0.06710435450077057, 0.21513493359088898, 0.25630924105644226, -0.06136954948306084, -0.008937356993556023, -0.012760217301547527, 0.058654606342315674, 0.1073930487036705, 0.16049085557460785, 0.002326392102986574, 0.2802925705909729, -0.03133585304021835, 0.04815128445625305, 0.02901598811149597, 0.013607407920062542, -0.06336209923028946, 0.03397751972079277, 0.07539387792348862, -0.035039983689785004, -0.1412304788827896, 0.15837742388248444, -0.21980468928813934, 0.18157227337360382, 0.11640069633722305, -0.19996967911720276, -0.013728445395827293, -0.04882071167230606, 0.1689416468143463, -0.0856364443898201, 0.1637246012687683, -0.0903693437576294, -0.2108195722103119, -0.2056000679731369, 0.03867346793413162, -0.34623071551322937, -0.254462867975235, 0.10422009229660034, 0.1488201916217804, 0.04015883058309555, -0.018507536500692368, -0.019967829808592796, -0.018367022275924683, 0.04877542704343796, -0.0067357709631323814, 0.06014643982052803, 0.031397558748722076, -0.02988368645310402, -0.24127542972564697, -0.029804671183228493, 0.023964406922459602, -0.07093082368373871, 0.07464958727359772, -0.06874357163906097, -0.022495782002806664, 0.08059766888618469, -0.03066304884850979, 0.03298592567443848, -0.035373736172914505, -0.16326889395713806, 0.027529051527380943, 0.03900543600320816, 0.036012712866067886, 0.00634160777553916, 0.0008072225609794259, -0.03455270454287529, 0.0644603744149208, -0.16716794669628143, -0.16015739738941193, 0.14140215516090393, -0.06745140254497528, 0.2779497504234314, -0.05812826007604599, -0.0809100940823555, 0.04766704887151718, -0.03426874056458473, 0.1807648241519928, -0.07756473124027252, 0.047254521399736404, 0.12766779959201813, 0.011127962730824947, 0.03121316432952881, -0.3092964291572571, 0.11082969605922699, -0.000795336440205574, -0.006093299947679043, -0.07581598311662674 ]
null
null
transformers
#HarryPotter DialoGPT Model
{"tags": ["conversational"]}
text-generation
AbhinavSaiTheGreat/DialoGPT-small-harrypotter
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
#HarryPotter DialoGPT Model
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 51 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.009697278961539268, 0.03208012506365776, -0.007204889785498381, 0.004809224978089333, 0.16726240515708923, 0.014898733235895634, 0.09765533357858658, 0.13672804832458496, -0.007841327227652073, -0.031050153076648712, 0.14490588009357452, 0.20411323010921478, -0.006439372431486845, 0.0661218985915184, -0.07572533935308456, -0.2683109939098358, 0.05759621039032936, 0.046649303287267685, 0.016515716910362244, 0.1200079694390297, 0.08573378622531891, -0.05473608896136284, 0.08714032918214798, -0.014583407901227474, -0.150366872549057, 0.017733458429574966, 0.043394338339567184, -0.12260226160287857, 0.11910516023635864, 0.05462685227394104, 0.07063519209623337, 0.014929565601050854, -0.07541623711585999, -0.1631229966878891, 0.03031250834465027, 0.01425902172923088, -0.0594632662832737, 0.04757995903491974, 0.059961482882499695, -0.10165371745824814, 0.10819483548402786, 0.09530027210712433, -0.013078106567263603, 0.06798283755779266, -0.16849711537361145, -0.020869607105851173, -0.01446688175201416, 0.009899779222905636, 0.05550243332982063, 0.09964893013238907, -0.03413357585668564, 0.10497362166643143, -0.09214533120393753, 0.11017382889986038, 0.10932035744190216, -0.32057443261146545, -0.005767723545432091, 0.09167823940515518, 0.039358653128147125, 0.07352814823389053, -0.04467793554067612, 0.06258884817361832, 0.018015462905168533, 0.017986174672842026, -0.014015024527907372, -0.07283061742782593, -0.11612214148044586, 0.04717336222529411, -0.08668071031570435, -0.059868961572647095, 0.2244078367948532, -0.05464440956711769, 0.06881742179393768, -0.05281897634267807, -0.10522868484258652, -0.04308144748210907, -0.029833965003490448, 0.00475557055324316, -0.07660607248544693, 0.08692064881324768, 0.00869679357856512, -0.09547875821590424, -0.1376667022705078, -0.02496783249080181, -0.1776352822780609, 0.16140350699424744, 0.02465328387916088, 0.05232657864689827, -0.2027255892753601, 0.09623090922832489, 0.017906051129102707, -0.08045592904090881, 0.022091427817940712, -0.10046248883008957, 0.029131146147847176, 0.013760408386588097, -0.04754498973488808, -0.061387211084365845, 0.0843690037727356, 0.11199145019054413, -0.01731434464454651, 0.025486016646027565, -0.039331406354904175, 0.08100687712430954, 0.03553595021367073, 0.09077847748994827, 0.007288969587534666, -0.028338588774204254, 0.025842782109975815, -0.13719046115875244, -0.003647835226729512, -0.07116208970546722, -0.16572439670562744, -0.021088803187012672, 0.02994808368384838, 0.08289173990488052, 0.015449047088623047, 0.11682453751564026, -0.03272046521306038, -0.025152435526251793, 0.03602350503206253, -0.047656361013650894, -0.012649794109165668, 0.016648368909955025, 0.013163427822291851, 0.12399329990148544, -0.0022096503525972366, 0.03235051408410072, -0.13653022050857544, 0.031423524022102356, -0.06793295592069626, -0.003740974934771657, -0.03486552834510803, -0.040637075901031494, 0.009043924510478973, -0.06862333416938782, 0.003486064961180091, -0.15030112862586975, -0.15063877403736115, 0.007587034720927477, -0.007836631499230862, -0.04107699543237686, -0.06370922178030014, -0.06952770054340363, -0.013550350442528725, 0.04251532256603241, -0.07093454152345657, -0.011352915316820145, -0.06403283774852753, 0.11004766076803207, -0.03197755664587021, 0.07921615242958069, -0.11953279376029968, 0.08390819281339645, -0.11260783672332764, -0.02386913076043129, -0.060801517218351364, 0.09317506104707718, -0.0006014376995153725, 0.09549830108880997, -0.006563255097717047, -0.017931854352355003, -0.07981178909540176, 0.06445012241601944, -0.042872510850429535, 0.21701598167419434, -0.0615808479487896, -0.11181682348251343, 0.28781595826148987, -0.052628401666879654, -0.1370542049407959, 0.11647392809391022, 0.008682746440172195, 0.05777018144726753, 0.10703510791063309, 0.19733482599258423, -0.015276194550096989, 0.004040541127324104, 0.09471915662288666, 0.11263324320316315, -0.11276852339506149, -0.033160366117954254, 0.013019153848290443, -0.04081077128648758, -0.10867965966463089, 0.04689536616206169, 0.09810488671064377, 0.07090286910533905, -0.04786505550146103, -0.03377414867281914, -0.01366397924721241, 0.0052589005790650845, 0.08885077387094498, -0.007157256826758385, 0.10962837189435959, -0.05819983780384064, -0.03796621412038803, -0.029282379895448685, -0.012126247398555279, -0.03951939567923546, 0.03137664496898651, -0.043376367539167404, 0.10821941494941711, -0.011204327456653118, 0.06364280730485916, -0.16185984015464783, -0.07691477984189987, -0.017002692446112633, 0.1581239402294159, 0.024538565427064896, 0.09859629720449448, 0.0552486926317215, -0.040398042649030685, -0.0012767292791977525, 0.012792680412530899, 0.15581141412258148, -0.022091681137681007, -0.065607450902462, -0.052166227251291275, 0.08642971515655518, -0.05641226842999458, 0.04504093527793884, -0.05937713757157326, 0.012367865070700645, 0.05064384639263153, 0.10342344641685486, -0.00018274025933351368, 0.03323284164071083, -0.008164864964783192, 0.002145637758076191, -0.058205123990774155, 0.007405933458358049, 0.10799351334571838, 0.00036868182360194623, -0.07365862280130386, 0.22074243426322937, -0.17796069383621216, 0.1765957772731781, 0.1893044263124466, -0.299345999956131, 0.017949223518371582, -0.10759581625461578, -0.04561871662735939, 0.014407722279429436, 0.05567655712366104, -0.0454222597181797, 0.1703362911939621, -0.009871348738670349, 0.18874616920948029, -0.04946064203977585, -0.04464937001466751, -0.0200483538210392, -0.05118836089968681, -0.0024189651012420654, 0.07781197130680084, 0.10685696452856064, -0.13992026448249817, 0.1964332014322281, 0.1621224284172058, 0.048237916082143784, 0.19945049285888672, 0.015346456319093704, -0.011589210480451584, 0.0909530371427536, 0.005220826715230942, -0.058739423751831055, -0.07409929484128952, -0.2594851851463318, -0.030033592134714127, 0.07992640137672424, 0.0422382652759552, 0.1212305948138237, -0.11349532753229141, -0.038956157863140106, -0.01763172075152397, -0.023146281018853188, 0.021672505885362625, 0.0914369598031044, 0.06075398623943329, 0.13201528787612915, -0.001710098935291171, -0.007300339173525572, 0.10524573177099228, 0.01783694699406624, -0.09354141354560852, 0.18308524787425995, -0.13652534782886505, -0.37097251415252686, -0.13911493122577667, -0.18057456612586975, -0.05449081212282181, 0.05712554603815079, 0.11679314076900482, -0.12011238187551498, -0.018752124160528183, 0.01578843593597412, 0.10931742936372757, -0.08449502289295197, 0.0021454424131661654, -0.06880278885364532, 0.0321490578353405, -0.10310184955596924, -0.09194442629814148, -0.055416494607925415, -0.031392451375722885, -0.08001253753900528, 0.1423761546611786, -0.10777941346168518, 0.04476889222860336, 0.20262959599494934, 0.04653622955083847, 0.05625178664922714, -0.044105201959609985, 0.19377262890338898, -0.11264272034168243, -0.01661740615963936, 0.19215328991413116, -0.048360925167798996, 0.07476246356964111, 0.1232115849852562, -0.006348740309476852, -0.08765771239995956, 0.03011748194694519, -0.02085109055042267, -0.07988511025905609, -0.23219464719295502, -0.13938382267951965, -0.12429051846265793, 0.09477275609970093, 0.028005298227071762, 0.056365787982940674, 0.17219258844852448, 0.06577219814062119, -0.038416244089603424, 0.006410336587578058, 0.02959546446800232, 0.08237514644861221, 0.23417828977108002, -0.06035616248846054, 0.1364797055721283, -0.03420931473374367, -0.14982740581035614, 0.08169995993375778, 0.0713929831981659, 0.10213395953178406, 0.06678459793329239, 0.0804823637008667, 0.0149586396291852, 0.06188136339187622, 0.1311223804950714, 0.08191446959972382, 0.019586285576224327, -0.02480296604335308, -0.03388110175728798, -0.025523077696561813, -0.05937909707427025, 0.040128443390131, 0.06589099019765854, -0.16763372719287872, -0.039227183908224106, -0.09338314831256866, 0.09657008945941925, 0.0873042419552803, 0.06609832495450974, -0.1842060089111328, -0.008006223477423191, 0.08488986641168594, -0.03854905813932419, -0.13727426528930664, 0.09535189718008041, 0.01523482333868742, -0.15144726634025574, 0.03139317408204079, -0.04061909019947052, 0.12188644707202911, -0.07804752141237259, 0.09809603542089462, -0.08108244836330414, -0.07448557764291763, 0.02123199962079525, 0.1261177361011505, -0.30527687072753906, 0.20240111649036407, -0.0024993624538183212, -0.06486981362104416, -0.1243603527545929, -0.0032166161108762026, 0.002410882618278265, 0.07357452809810638, 0.10519039630889893, -0.007196315098553896, 0.001897757756523788, -0.06300821900367737, -0.01829923689365387, 0.032471053302288055, 0.13080233335494995, -0.0401318334043026, -0.021158374845981598, -0.050194524228572845, -0.001653497340157628, -0.03173094615340233, -0.06934895366430283, 0.02002747356891632, -0.19509181380271912, 0.08751901984214783, 0.04166261479258537, 0.09648149460554123, 0.029994789510965347, 0.004265148192644119, -0.09651939570903778, 0.24698667228221893, -0.07148019969463348, -0.10072879493236542, -0.10919588059186935, -0.046813901513814926, 0.03569883480668068, -0.05628936365246773, 0.04309194162487984, -0.0788632407784462, 0.028997479006648064, -0.06352769583463669, -0.19235502183437347, 0.12410202622413635, -0.09027006477117538, -0.04412810131907463, -0.02371402643620968, 0.2110891044139862, -0.05598580464720726, 0.010335659608244896, 0.02930437959730625, 0.01208863127976656, -0.11645778268575668, -0.09678568691015244, 0.031018631532788277, -0.007351789623498917, 0.050603240728378296, 0.041841957718133926, -0.05915454775094986, -0.017138581722974777, -0.052199993282556534, -0.022926922887563705, 0.3496883809566498, 0.14231905341148376, -0.043836336582899094, 0.19347235560417175, 0.12347975373268127, -0.07452994585037231, -0.3159443140029907, -0.1066238060593605, -0.10937739163637161, -0.04680149629712105, -0.07012093812227249, -0.2002030611038208, 0.06474938243627548, 0.00662544509395957, -0.013415241613984108, 0.12749312818050385, -0.2561831772327423, -0.07571036368608475, 0.15906259417533875, -0.017980827018618584, 0.3745945692062378, -0.1168576180934906, -0.10926306992769241, -0.03950892388820648, -0.14175476133823395, 0.16968177258968353, -0.01989765651524067, 0.11221715062856674, -0.009765521623194218, 0.14388824999332428, 0.05548359826207161, -0.023479344323277473, 0.08544106781482697, 0.004999885335564613, -0.03290518373250961, -0.10304180532693863, -0.05676887184381485, 0.007092386484146118, 0.02477436140179634, 0.018026655539870262, -0.041834570467472076, 0.02227151393890381, -0.11731979995965958, -0.04657655209302902, -0.08982590585947037, 0.04431166127324104, 0.03899754583835602, -0.07325074821710587, -0.002380647463724017, -0.07165111601352692, -0.012272949330508709, 0.022334342822432518, 0.20356793701648712, -0.08029330521821976, 0.16448934376239777, 0.09239562600851059, 0.12419285625219345, -0.14376309514045715, -0.00019283240544609725, -0.0762530043721199, -0.05611240118741989, 0.07737895101308823, -0.09433035552501678, 0.058893077075481415, 0.10901971161365509, -0.04567738622426987, 0.08828683942556381, 0.10377411544322968, 0.008936077356338501, 0.003213887568563223, 0.10916902124881744, -0.2667325437068939, -0.0296600554138422, -0.07532413303852081, 0.000883326749317348, 0.09092561900615692, 0.08562852442264557, 0.18840822577476501, 0.025361526757478714, -0.04293036088347435, -0.002770674182102084, 0.028597986325621605, -0.039021048694849014, 0.051667019724845886, 0.001123449532315135, 0.01947369985282421, -0.1530752182006836, 0.072522833943367, 0.01490565575659275, -0.15215420722961426, 0.021316176280379295, 0.16572684049606323, -0.11656328290700912, -0.1283872276544571, -0.06520111113786697, 0.08313824236392975, -0.11755692958831787, -0.01578943058848381, -0.03279297426342964, -0.13145680725574493, 0.07992171496152878, 0.12629036605358124, 0.05557859688997269, 0.0972496047616005, -0.06061713397502899, -0.020469192415475845, -0.018721895292401314, -0.014099318534135818, -0.012384648434817791, -0.007667020428925753, -0.055978111922740936, 0.0590752474963665, -0.026677248999476433, 0.1425808072090149, -0.09221141785383224, -0.1037059873342514, -0.16142144799232483, 0.0374140702188015, -0.11013076454401016, -0.08825794607400894, -0.08821134269237518, -0.050188567489385605, 0.002360827289521694, -0.019856395199894905, -0.04037635400891304, -0.05829505994915962, -0.12300454825162888, 0.0338277705013752, -0.040771447122097015, 0.024727050215005875, -0.07512269169092178, 0.015856385231018066, 0.08507686108350754, -0.03285100311040878, 0.15655414760112762, 0.1450488418340683, -0.1006515845656395, 0.10741901397705078, -0.14806775748729706, -0.09138492494821548, 0.11116421222686768, 0.015329592861235142, 0.0449691042304039, 0.09723787009716034, 0.013362943194806576, 0.0635865181684494, 0.032776717096567154, 0.05308786407113075, 0.027619892731308937, -0.11959987878799438, 0.06483134627342224, -0.03626115620136261, -0.14700546860694885, -0.049338050186634064, -0.05282869189977646, 0.01647452637553215, 0.013054544106125832, 0.09622690081596375, -0.05301849544048309, 0.10698331147432327, -0.04055701196193695, 0.0346808135509491, 0.017554637044668198, -0.1730053424835205, -0.03816922754049301, -0.08538098633289337, 0.03681723028421402, 0.014741539023816586, 0.25266793370246887, 0.030072299763560295, 0.012416383251547813, 0.032671261578798294, 0.08285367488861084, 0.03899408504366875, 0.010228337720036507, 0.17482228577136993, 0.1162426546216011, -0.06621865928173065, -0.10445023328065872, 0.0729617029428482, 0.016332454979419708, 0.01286179106682539, 0.13617953658103943, 0.008365051820874214, 0.005795429926365614, 0.08649782836437225, -0.016865963116288185, 0.009968153201043606, -0.10052056610584259, -0.13426925241947174, -0.022176474332809448, 0.05151832848787308, -0.04655967652797699, 0.11727844923734665, 0.1406494379043579, -0.01806013658642769, 0.03222079202532768, -0.021771740168333054, -0.05699979141354561, -0.1683429479598999, -0.1429590880870819, -0.06883849948644638, -0.13416796922683716, 0.00897989235818386, -0.11180389672517776, 0.05395037308335304, 0.06001098081469536, 0.06750501692295074, -0.06899319589138031, 0.10220931470394135, 0.04626858979463577, -0.11440542340278625, 0.06264589726924896, -0.0296088308095932, 0.09430401772260666, -0.02759445086121559, -0.019505485892295837, -0.09039592742919922, 0.014574515633285046, 0.011419114656746387, 0.06245238706469536, -0.04707273095846176, 0.007463190704584122, -0.14696238934993744, -0.08972041308879852, -0.0523175448179245, 0.0718572810292244, -0.050409089773893356, 0.14282815158367157, 0.00775480642914772, -0.0170906875282526, 0.039554283022880554, 0.22787313163280487, -0.07476283609867096, -0.04778539761900902, -0.05269690603017807, 0.20717895030975342, 0.02975541539490223, 0.1171872541308403, -0.022938819602131844, -0.006106364540755749, -0.0919521227478981, 0.3764844834804535, 0.30030161142349243, -0.09031439572572708, 0.011794124729931355, 0.02137952297925949, 0.04502861574292183, 0.1316293478012085, 0.1216534823179245, 0.10318691283464432, 0.3006802201271057, -0.07452366501092911, -0.04653361067175865, -0.012629742734134197, -0.023858042433857918, -0.09059546142816544, 0.1021224707365036, 0.04839762672781944, -0.06382183730602264, -0.03313443064689636, 0.0954432487487793, -0.25862133502960205, 0.1277991235256195, -0.12311873584985733, -0.17578600347042084, -0.06654827296733856, 0.009760108776390553, 0.10465722531080246, 0.015642458572983742, 0.0946015790104866, 0.007128213066607714, -0.11252258718013763, 0.06305865943431854, 0.03397420793771744, -0.22762253880500793, 0.0006893770187161863, 0.06642123311758041, -0.07006710022687912, -0.0024247700348496437, -0.026499588042497635, 0.05657242611050606, 0.0656052976846695, 0.054629553109407425, -0.00971333310008049, 0.03816632181406021, 0.0034184439573436975, -0.0585215799510479, 0.016623929142951965, 0.05121519789099693, 0.02472509816288948, -0.09763528406620026, 0.06927435845136642, -0.1574270874261856, 0.04766253009438515, -0.0030655991286039352, -0.04124255105853081, 0.006064958870410919, 0.008823691867291927, -0.06491616368293762, 0.05165379121899605, 0.07916834205389023, -0.0016257909592241049, -0.0062433634884655476, -0.057178743183612823, -0.02632102556526661, -0.027755750343203545, -0.09291748702526093, -0.10495562851428986, -0.14682936668395996, -0.11640441417694092, 0.09368976950645447, -0.01011267676949501, -0.1848134547472, 0.022154374048113823, -0.08606051653623581, 0.08319322764873505, -0.1670055389404297, 0.08040720224380493, 0.07041648775339127, 0.013038921169936657, -0.0031511052511632442, -0.02002427540719509, 0.054132770746946335, 0.086809903383255, -0.10407156497240067, -0.07400695979595184 ]
null
null
transformers
## Petrained Model BERT: base model (cased) BERT base model (cased) is a pretrained model on English language using a masked language modeling (MLM) objective. It was introduced in this [paper](https://arxiv.org/abs/1810.04805) and first released in this [repository](https://github.com/google-research/bert). This model is case-sensitive: it makes a difference between english and English. ## Pretained Model Description BERT is an auto-encoder transformer model pretrained on a large corpus of English data (English Wikipedia + Books Corpus) in a self-supervised fashion. This means the targets are computed from the inputs themselves, and humans are not needed to label the data. It was pretrained with two objectives: - Masked language modeling (MLM) - Next sentence prediction (NSP) ## Fine-tuned Model Description: BERT fine-tuned Cola The pretrained model could be fine-tuned on other NLP tasks. The BERT model has been fine-tuned on a cola dataset from the GLUE BENCHAMRK, which is an academic benchmark that aims to measure the performance of ML models. Cola is one of the 11 datasets in this GLUE BENCHMARK.  By fine-tuning BERT on cola dataset, the model is now able to classify a given setence gramatically and semantically as acceptable or not acceptable ## How to use ? ###### Directly with a pipeline for a text-classification NLP task ```python from transformers import pipeline cola = pipeline('text-classification', model='Abirate/bert_fine_tuned_cola') cola("Tunisia is a beautiful country") [{'label': 'acceptable', 'score': 0.989352285861969}] ``` ###### Breaking down all the steps (Tokenization, Modeling, Postprocessing) ```python from transformers import AutoTokenizer, TFAutoModelForSequenceClassification import tensorflow as tf import numpy as np tokenizer = AutoTokenizer.from_pretrained('Abirate/bert_fine_tuned_cola') model = TFAutoModelForSequenceClassification.from_pretrained("Abirate/bert_fine_tuned_cola") text = "Tunisia is a beautiful country." encoded_input = tokenizer(text, return_tensors='tf') #The logits output = model(encoded_input) #Postprocessing probas_output = tf.math.softmax(tf.squeeze(output['logits']), axis = -1) class_preds = np.argmax(probas_output, axis = -1) #Predicting the class acceptable or not acceptable model.config.id2label[class_preds] #Result 'acceptable' ```
{}
text-classification
Abirate/bert_fine_tuned_cola
[ "transformers", "tf", "bert", "text-classification", "arxiv:1810.04805", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
2022-03-02T23:29:04+00:00
[ "1810.04805" ]
[]
TAGS #transformers #tf #bert #text-classification #arxiv-1810.04805 #autotrain_compatible #endpoints_compatible #has_space #region-us
## Petrained Model BERT: base model (cased) BERT base model (cased) is a pretrained model on English language using a masked language modeling (MLM) objective. It was introduced in this paper and first released in this repository. This model is case-sensitive: it makes a difference between english and English. ## Pretained Model Description BERT is an auto-encoder transformer model pretrained on a large corpus of English data (English Wikipedia + Books Corpus) in a self-supervised fashion. This means the targets are computed from the inputs themselves, and humans are not needed to label the data. It was pretrained with two objectives: - Masked language modeling (MLM) - Next sentence prediction (NSP) ## Fine-tuned Model Description: BERT fine-tuned Cola The pretrained model could be fine-tuned on other NLP tasks. The BERT model has been fine-tuned on a cola dataset from the GLUE BENCHAMRK, which is an academic benchmark that aims to measure the performance of ML models. Cola is one of the 11 datasets in this GLUE BENCHMARK.  By fine-tuning BERT on cola dataset, the model is now able to classify a given setence gramatically and semantically as acceptable or not acceptable ## How to use ? ###### Directly with a pipeline for a text-classification NLP task ###### Breaking down all the steps (Tokenization, Modeling, Postprocessing)
[ "## Petrained Model BERT: base model (cased)\nBERT base model (cased) is a pretrained model on English language using a masked language modeling (MLM) objective. It was introduced in this paper and first released in this repository. This model is case-sensitive: it makes a difference between english and English.", "## Pretained Model Description\nBERT is an auto-encoder transformer model pretrained on a large corpus of English data (English Wikipedia + Books Corpus) in a self-supervised fashion. This means the targets are computed from the inputs themselves, and humans are not needed to label the data. It was pretrained with two objectives:\n\n- Masked language modeling (MLM)\n- Next sentence prediction (NSP)", "## Fine-tuned Model Description: BERT fine-tuned Cola\nThe pretrained model could be fine-tuned on other NLP tasks. The BERT model has been fine-tuned on a cola dataset from the GLUE BENCHAMRK, which is an academic benchmark that aims to measure the performance of ML models. Cola is one of the 11 datasets in this GLUE BENCHMARK. \n\nBy fine-tuning BERT on cola dataset, the model is now able to classify a given setence gramatically and semantically as acceptable or not acceptable", "## How to use ?", "###### Directly with a pipeline for a text-classification NLP task", "###### Breaking down all the steps (Tokenization, Modeling, Postprocessing)" ]
[ "TAGS\n#transformers #tf #bert #text-classification #arxiv-1810.04805 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "## Petrained Model BERT: base model (cased)\nBERT base model (cased) is a pretrained model on English language using a masked language modeling (MLM) objective. It was introduced in this paper and first released in this repository. This model is case-sensitive: it makes a difference between english and English.", "## Pretained Model Description\nBERT is an auto-encoder transformer model pretrained on a large corpus of English data (English Wikipedia + Books Corpus) in a self-supervised fashion. This means the targets are computed from the inputs themselves, and humans are not needed to label the data. It was pretrained with two objectives:\n\n- Masked language modeling (MLM)\n- Next sentence prediction (NSP)", "## Fine-tuned Model Description: BERT fine-tuned Cola\nThe pretrained model could be fine-tuned on other NLP tasks. The BERT model has been fine-tuned on a cola dataset from the GLUE BENCHAMRK, which is an academic benchmark that aims to measure the performance of ML models. Cola is one of the 11 datasets in this GLUE BENCHMARK. \n\nBy fine-tuning BERT on cola dataset, the model is now able to classify a given setence gramatically and semantically as acceptable or not acceptable", "## How to use ?", "###### Directly with a pipeline for a text-classification NLP task", "###### Breaking down all the steps (Tokenization, Modeling, Postprocessing)" ]
[ 48, 76, 96, 126, 5, 18, 20 ]
[ "passage: TAGS\n#transformers #tf #bert #text-classification #arxiv-1810.04805 #autotrain_compatible #endpoints_compatible #has_space #region-us \n## Petrained Model BERT: base model (cased)\nBERT base model (cased) is a pretrained model on English language using a masked language modeling (MLM) objective. It was introduced in this paper and first released in this repository. This model is case-sensitive: it makes a difference between english and English.## Pretained Model Description\nBERT is an auto-encoder transformer model pretrained on a large corpus of English data (English Wikipedia + Books Corpus) in a self-supervised fashion. This means the targets are computed from the inputs themselves, and humans are not needed to label the data. It was pretrained with two objectives:\n\n- Masked language modeling (MLM)\n- Next sentence prediction (NSP)## Fine-tuned Model Description: BERT fine-tuned Cola\nThe pretrained model could be fine-tuned on other NLP tasks. The BERT model has been fine-tuned on a cola dataset from the GLUE BENCHAMRK, which is an academic benchmark that aims to measure the performance of ML models. Cola is one of the 11 datasets in this GLUE BENCHMARK. \n\nBy fine-tuning BERT on cola dataset, the model is now able to classify a given setence gramatically and semantically as acceptable or not acceptable## How to use ?###### Directly with a pipeline for a text-classification NLP task###### Breaking down all the steps (Tokenization, Modeling, Postprocessing)" ]
[ -0.0557975098490715, 0.07406655699014664, -0.0033413756173104048, 0.04518413171172142, 0.06270574033260345, -0.0457032136619091, -0.04789060354232788, 0.019957534968852997, 0.011396362446248531, 0.08350992202758789, 0.057704858481884, 0.0367988757789135, -0.01007442269474268, 0.15551836788654327, 0.06075001135468483, -0.2787306308746338, 0.025875043123960495, -0.07942154258489609, 0.12254941463470459, 0.11080413311719894, 0.09844966977834702, -0.0666085034608841, 0.08320484310388565, -0.007341568823903799, -0.05575990304350853, -0.07385602593421936, -0.01840362511575222, -0.08393393456935883, 0.049279410392045975, 0.077713243663311, 0.09514117985963821, 0.03619568422436714, -0.002584631321951747, -0.12809263169765472, 0.004540922585874796, 0.019007600843906403, 0.05741580203175545, 0.015529985539615154, 0.06733390688896179, -0.002205286640673876, 0.13612471520900726, -0.027905132621526718, 0.05737880617380142, 0.043215494602918625, -0.1200973317027092, 0.027260471135377884, -0.0702965036034584, 0.008707148022949696, 0.03532334789633751, 0.05786852166056633, -0.04444311186671257, 0.07855529338121414, -0.09551099687814713, 0.06435330957174301, 0.061310525983572006, -0.28661128878593445, -0.024768292903900146, 0.05251819267868996, 0.07689505070447922, 0.024439062923192978, -0.03145410493016243, 0.024937469512224197, -0.017101559787988663, 0.026855243369936943, -0.01124943234026432, -0.024890106171369553, 0.07169149816036224, -0.019289692863821983, -0.18420395255088806, -0.0337659977376461, 0.1543106883764267, 0.0751543641090393, -0.12741054594516754, -0.07570436596870422, -0.0003470097726676613, 0.04695231467485428, 0.008805560879409313, -0.09848595410585403, -0.008723038248717785, -0.011755498126149178, 0.006304583512246609, 0.01823529042303562, -0.0709666833281517, -0.01746373623609543, -0.13779276609420776, 0.30524539947509766, -0.014861224219202995, 0.01738615520298481, 0.03826252371072769, 0.07397811114788055, -0.12075011432170868, -0.058038681745529175, -0.10153403133153915, -0.06354549527168274, -0.11051894724369049, -0.07322664558887482, -0.04410009831190109, -0.03229277580976486, -0.0551411397755146, 0.08893534541130066, -0.053437717258930206, 0.007934554480016232, 0.05344705656170845, -0.020535480231046677, 0.07474582642316818, 0.15992163121700287, -0.07023879140615463, -0.08450279384851456, -0.01206288393586874, -0.01739620976150036, -0.005220864433795214, 0.009721022099256516, -0.02034541592001915, 0.0464295819401741, 0.01559858862310648, 0.00037956039886921644, 0.010558082722127438, 0.05210762843489647, -0.062074657529592514, -0.0490398108959198, 0.1295969933271408, -0.08831436932086945, -0.011856704019010067, 0.01576640084385872, -0.07005930691957474, -0.0004120384401176125, 0.05559145286679268, -0.021943876519799232, -0.011022727936506271, 0.057541221380233765, -0.06500636041164398, -0.07383455336093903, -0.051543232053518295, -0.06792943924665451, 0.028793223202228546, 0.03455103561282158, -0.05406719446182251, -0.17017319798469543, -0.14635051786899567, -0.05740205943584442, 0.015574627555906773, -0.06868299841880798, -0.049353115260601044, 0.004993066191673279, -0.019721312448382378, -0.026229307055473328, 0.0037554637528955936, 0.03355779871344566, -0.03104390949010849, 0.06529535353183746, -0.007725822273641825, 0.06384607404470444, 0.01955864392220974, 0.016339465975761414, -0.14272820949554443, -0.03553427755832672, -0.21174927055835724, 0.15509691834449768, -0.05017818883061409, 0.006606629118323326, -0.11289829760789871, -0.042840488255023956, -0.18939344584941864, 0.0054942537099123, -0.02848108857870102, 0.1459396332502365, -0.19759775698184967, -0.061241790652275085, 0.07050320506095886, -0.0596390962600708, -0.019978294149041176, 0.10250288248062134, -0.004914190620183945, 0.078489750623703, 0.13363376259803772, 0.17039704322814941, 0.052749451249837875, -0.10477383434772491, -0.09323371201753616, 0.03739989176392555, -0.03434043377637863, 0.1811898648738861, 0.06642812490463257, -0.06834444403648376, -0.07807798683643341, 0.043350670486688614, -0.10180023312568665, 0.02664552442729473, -0.04525316134095192, -0.029641345143318176, 0.002042871667072177, -0.031362857669591904, 0.015883738175034523, -0.004930419847369194, 0.011433593928813934, -0.020341187715530396, -0.12398067861795425, 0.04306015372276306, 0.02164079248905182, 0.011079388670623302, 0.015381423756480217, -0.12458449602127075, 0.15622159838676453, -0.025672264397144318, -0.017289921641349792, -0.18811343610286713, -0.053635019809007645, 0.058044809848070145, 0.011401110328733921, 0.09432177245616913, 0.007176877465099096, 0.0097280852496624, 0.04764549061655998, -0.0024471674114465714, 0.008896898478269577, 0.017486561089754105, 0.023700956255197525, -0.09276566654443741, -0.14351171255111694, 0.0066186049953103065, -0.04786079749464989, 0.10842229425907135, -0.12117353081703186, -0.05305008590221405, 0.10755246877670288, 0.08283122628927231, 0.0338640995323658, -0.09530381113290787, 0.03408855199813843, 0.033027611672878265, -0.0009158364264294505, -0.010873276740312576, 0.01119766291230917, 0.04180874302983284, -0.04035201296210289, 0.04812402278184891, -0.13682228326797485, -0.13809086382389069, 0.06376500427722931, 0.06638631224632263, -0.11113111674785614, -0.010398760437965393, -0.05582636594772339, 0.006454437505453825, -0.05810347571969032, -0.03122258000075817, 0.18938052654266357, -0.012205361388623714, 0.04984351247549057, -0.0790390819311142, 0.000505256000906229, -0.004760921932756901, -0.012272165156900883, -0.07264899462461472, 0.1192646473646164, -0.0014958832180127501, -0.1530470997095108, -0.015147642232477665, 0.05581791698932648, 0.049248822033405304, 0.17263613641262054, 0.03243114799261093, -0.07033868134021759, -0.028684616088867188, 0.018811354413628578, -0.010724418796598911, 0.11133194714784622, -0.029092635959386826, 0.05198391526937485, 0.0472983792424202, 0.027389734983444214, 0.0029903098475188017, -0.032999493181705475, 0.05006716027855873, 0.06141822040081024, -0.05069969221949577, 0.07859844714403152, -0.007877168245613575, -0.03087102808058262, 0.10368948429822922, 0.0665932148694992, -0.053719662129879, -0.017540842294692993, 0.008344029076397419, -0.10918410867452621, 0.18266795575618744, -0.06820368021726608, -0.2139323651790619, -0.0750354453921318, 0.012347780168056488, -0.02242761291563511, 0.016678202897310257, 0.01294704619795084, -0.04137158393859863, -0.05139045789837837, -0.14511728286743164, 0.07394912838935852, 0.022062834352254868, 0.008837880566716194, -0.04019831120967865, -0.0635494738817215, -0.005621111486107111, -0.08720359206199646, 0.0069192987866699696, -0.03873695805668831, -0.08426298201084137, 0.027363775297999382, -0.051753636449575424, 0.14069658517837524, 0.1985567957162857, -0.010444151237607002, 0.022213030606508255, -0.02679775469005108, 0.2452392578125, -0.0871037021279335, 0.09342775493860245, -0.0007986232521943748, 0.040907587856054306, -0.004895741119980812, 0.12051272392272949, -0.01058738399296999, -0.06181749701499939, 0.06032345071434975, 0.04038005322217941, -0.07510308176279068, -0.1329423189163208, -0.15300530195236206, 0.025228923186659813, -0.0473196916282177, -0.006556055974215269, 0.05450265109539032, -0.04316912963986397, -0.02516055665910244, -0.009421022608876228, -0.02050268091261387, 0.004447462968528271, 0.029219714924693108, 0.039305489510297775, -0.03508070111274719, 0.10253460705280304, -0.03826366364955902, -0.0002089387853629887, 0.12295534461736679, -0.08785664290189743, 0.17550605535507202, -0.03602569177746773, 0.0462336465716362, 0.10004649311304092, -0.03201456367969513, 0.06199786812067032, -0.026391560211777687, -0.016252195462584496, 0.006787653546780348, -0.035674065351486206, -0.10736729949712753, -0.03166765719652176, 0.059123847633600235, 0.04077182337641716, -0.0009504936169832945, -0.04594733193516731, 0.02395021915435791, 0.06240582466125488, 0.1144225001335144, 0.05512689799070358, -0.2134893238544464, -0.10248660296201706, 0.025276431813836098, -0.039800871163606644, -0.027729233726859093, 0.01869823969900608, 0.04622126370668411, -0.09643922746181488, 0.06695862859487534, 0.025021778419613838, 0.06144893541932106, 0.009755246341228485, -0.00019790028454735875, 0.04801533371210098, 0.005381331779062748, -0.035362351685762405, 0.0774737149477005, -0.19035807251930237, 0.13326193392276764, 0.01813441887497902, 0.10151241719722748, -0.04416482150554657, -0.025985069572925568, -0.033033788204193115, 0.1229102835059166, 0.15894007682800293, 0.04882272705435753, 0.1176849827170372, -0.046730030328035355, -0.09660385549068451, 0.05282936990261078, 0.0713386982679367, -0.029239624738693237, 0.08556494116783142, 0.03755372762680054, 0.006937484256923199, -0.02184440940618515, 0.02212444506585598, -0.1997261643409729, -0.0698457881808281, 0.04814540967345238, -0.11361001431941986, 0.04127075523138046, -0.057207997888326645, -0.05892346799373627, -0.057515084743499756, 0.14630958437919617, -0.12444815784692764, -0.02260708622634411, -0.09708372503519058, 0.011237294413149357, 0.07153837382793427, -0.09799830615520477, -0.011755683459341526, -0.056493211537599564, 0.05033579096198082, 0.01052930485457182, -0.08937760442495346, 0.038184620440006256, -0.04917706921696663, -0.10685013234615326, -0.061774447560310364, 0.05815572664141655, 0.13528314232826233, 0.09371162950992584, 0.04690055549144745, 0.03528215363621712, 0.03054211474955082, -0.1147247850894928, -0.06602142006158829, 0.07564177364110947, -0.0014767824904993176, 0.05610397085547447, -0.09535876661539078, -0.01939423382282257, -0.04884634539484978, -0.01589265838265419, 0.05660809203982353, 0.09932330995798111, -0.09378758817911148, 0.12051070481538773, 0.2064630389213562, -0.0984075516462326, -0.1952359676361084, 0.007605967577546835, 0.053538527339696884, 0.059955064207315445, -0.037854816764593124, -0.12679621577262878, 0.10971341282129288, 0.10164046287536621, -0.035883110016584396, -0.05148179456591606, -0.20463787019252777, -0.12474726140499115, 0.13159316778182983, 0.04850838705897331, 0.06917613744735718, -0.15652459859848022, -0.09810489416122437, 0.026962637901306152, 0.02102748118340969, 0.15100397169589996, -0.01628478802740574, 0.0993797779083252, 0.0440027080476284, -0.01880745403468609, 0.009426278993487358, -0.0010770296212285757, 0.11125554889440536, 0.08079022169113159, -0.04331761226058006, -0.04978559911251068, 0.03453988954424858, -0.03376974165439606, -0.031360089778900146, 0.131710946559906, 0.17211437225341797, 0.0489102266728878, -0.2164589762687683, -0.03584149479866028, -0.15356314182281494, 0.11751095205545425, -0.05323345214128494, -0.05771923437714577, -0.05529762804508209, 0.09102164953947067, 0.017381232231855392, -0.02343599870800972, -0.10212147235870361, -0.1272846758365631, -0.02160383202135563, 0.03137482330203056, 0.1706078201532364, -0.09916628152132034, -0.08428166806697845, 0.0662555918097496, -0.02326449751853943, 0.041473060846328735, -0.042864542454481125, 0.0018590866820886731, 0.08928214013576508, 0.03621811792254448, 0.12532950937747955, 0.009215899743139744, -0.13856914639472961, -0.04572150856256485, 0.10236428678035736, -0.17265984416007996, -0.06564926356077194, -0.04898664727807045, 0.006842477712780237, -0.09771779179573059, -0.06877844780683517, 0.14157341420650482, -0.025651447474956512, -0.004961410071700811, -0.03878256678581238, 0.01968187652528286, 0.000708100909832865, 0.1455397754907608, 0.1171107292175293, 0.008716474287211895, -0.04929746314883232, 0.06437405198812485, 0.0727294459939003, -0.11441146582365036, -0.023687761276960373, 0.07318384945392609, -0.12610429525375366, -0.05928608775138855, -0.053591713309288025, 0.0355057530105114, -0.04453347250819206, -0.013267504051327705, -0.008048203773796558, -0.06588046252727509, 0.0711769089102745, 0.18189500272274017, 0.05513690784573555, 0.07871589064598083, -0.06459970772266388, 0.004764659330248833, -0.010280981659889221, 0.08541544526815414, 0.04627637937664986, 0.0008909348398447037, -0.03716401755809784, 0.16039638221263885, -0.022898955270648003, 0.04053769260644913, -0.057538826018571854, -0.053637489676475525, -0.10438799858093262, -0.0372895784676075, 0.019522441551089287, 0.008564885705709457, -0.04448511078953743, -0.023193495348095894, -0.039238251745700836, -0.01777546852827072, 0.019915517419576645, 0.002876866376027465, -0.036888375878334045, 0.008028621785342693, -0.02228865586221218, 0.07016410678625107, -0.11519425362348557, -0.005034629255533218, 0.05299099534749985, -0.03807678818702698, 0.07950005680322647, 0.023448199033737183, 0.00026425038231536746, -0.02275523543357849, -0.1062687486410141, 0.05192553997039795, 0.030639993026852608, 0.01017521508038044, 0.003742936300113797, -0.10473810136318207, 0.04205753281712532, 0.009335670620203018, 0.07921025902032852, 0.03494846448302269, 0.08665338158607483, -0.08932031691074371, 0.05580223351716995, 0.02492697536945343, -0.034599315375089645, -0.07701568305492401, 0.047958970069885254, 0.01673983596265316, 0.07821580022573471, 0.07156448811292648, -0.03394637256860733, -0.045859720557928085, -0.11177870631217957, -0.03699333965778351, -0.010089640505611897, 0.04680074751377106, -0.06018839403986931, 0.02174503728747368, 0.04580355063080788, 0.05493742227554321, 0.09875545650720596, 0.08545994758605957, 0.035495009273290634, 0.0632520467042923, -0.04392281174659729, 0.1166444942355156, -0.0011106267338618636, 0.006995919160544872, 0.038538042455911636, 0.01850804127752781, 0.044395532459020615, 0.021203625947237015, -0.028717217966914177, -0.01339008379727602, 0.08267144113779068, 0.17571516335010529, 0.05525070056319237, 0.053247131407260895, 0.011063818819820881, -0.060028720647096634, -0.06917258352041245, -0.052269455045461655, -0.06396365165710449, 0.0702565610408783, -0.007998606190085411, 0.0659274235367775, 0.048300907015800476, -0.1953125, 0.050803180783987045, 0.00036072381772100925, -0.12295027077198029, -0.0870463103055954, -0.13426989316940308, -0.043122150003910065, 0.02246657758951187, 0.005731251556426287, -0.12766610085964203, 0.025474093854427338, 0.06981031596660614, -0.0043470473028719425, 0.03115290030837059, 0.12332192063331604, -0.1779196858406067, -0.08866291493177414, 0.09969823807477951, -0.019686033949255943, 0.04908781498670578, -0.007593728136271238, 0.06154252216219902, -0.006264875177294016, 0.039901889860630035, 0.018719211220741272, 0.07392317801713943, 0.015638671815395355, 0.01682412624359131, 0.016713276505470276, -0.038071729242801666, -0.006016324739903212, 0.009622429497539997, 0.03788990154862404, 0.17099665105342865, 0.047825105488300323, -0.066074438393116, 0.032478321343660355, 0.23241445422172546, -0.029629457741975784, -0.07777431607246399, -0.132191002368927, 0.21834230422973633, 0.030068518593907356, 0.059526391327381134, -0.012855195440351963, -0.07405375689268112, 0.022052159532904625, 0.2039966732263565, 0.0724867582321167, -0.053599581122398376, -0.019146393984556198, -0.014394039288163185, 0.0036835300270467997, 0.07600665837526321, 0.07441815733909607, 0.019244994968175888, 0.3230650722980499, -0.07773599028587341, 0.048027075827121735, -0.06884002685546875, -0.000803290749900043, -0.04562542587518692, 0.08023503422737122, 0.004126532003283501, -0.0317867249250412, -0.10351862758398056, 0.09140639007091522, -0.0566912516951561, -0.1982882022857666, -0.026864364743232727, -0.07558955997228622, -0.08299271762371063, -0.02133101411163807, -0.06357377022504807, -0.02310057170689106, 0.0728256031870842, -0.0068054175935685635, -0.0009908851934596896, 0.04349607974290848, 0.04567602276802063, -0.13256099820137024, -0.05283401161432266, 0.07566357403993607, 0.026729881763458252, 0.20065748691558838, 0.03466416150331497, 0.1321922391653061, 0.08042196929454803, 0.054171524941921234, -0.11402127891778946, 0.09156560897827148, -0.023652946576476097, -0.047026388347148895, 0.04000529646873474, 0.10740260779857635, 0.04496169090270996, 0.1520957499742508, 0.07528951019048691, -0.05249003693461418, 0.10115347802639008, 0.05956549197435379, -0.03897527605295181, -0.1181807741522789, 0.07478604465723038, -0.11798150837421417, 0.15176011621952057, 0.17135556042194366, -0.008042884059250355, 0.03426527976989746, -0.06723123043775558, 0.031008129939436913, 0.015074403956532478, 0.03885388374328613, 0.0035810337867587805, -0.13383930921554565, -0.0014781270874664187, -0.08351551741361618, -0.013165121898055077, -0.28689098358154297, -0.0942009836435318, 0.0030793403275310993, 0.028725655749440193, 0.03736722841858864, 0.13970866799354553, -0.018099138513207436, 0.03529401496052742, -0.02820737473666668, 0.032696984708309174, 0.030386850237846375, 0.09020666778087616, -0.18752284348011017, -0.09312929958105087 ]
null
null
transformers
# jeff's 100% authorized brain scan
{"tags": ["conversational"]}
text-generation
AccurateIsaiah/DialoGPT-small-jefftastic
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# jeff's 100% authorized brain scan
[ "# jeff's 100% authorized brain scan" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# jeff's 100% authorized brain scan" ]
[ 51, 10 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# jeff's 100% authorized brain scan" ]
[ -0.039373498409986496, 0.08864568918943405, -0.0034721335396170616, -0.04092903807759285, 0.03520398586988449, 0.010666578076779842, 0.1014297679066658, 0.15743567049503326, -0.009883549064397812, 0.0465865358710289, 0.10276548564434052, 0.164160817861557, 0.008088107220828533, 0.15087296068668365, -0.05862998962402344, -0.17291009426116943, 0.06165090575814247, 0.11751975864171982, 0.0201567430049181, 0.12268220633268356, 0.007106686942279339, -0.06906674802303314, 0.08954030275344849, -0.052164722234010696, -0.10620530694723129, -0.019287269562482834, 0.022192222997546196, -0.06462092697620392, 0.10073529183864594, 0.067646823823452, -0.06202351674437523, 0.08462245017290115, -0.05206376314163208, -0.061606474220752716, 0.03833039104938507, 0.0780646875500679, -0.03404102101922035, 0.07605631649494171, 0.020619574934244156, -0.02407258190214634, 0.11109191924333572, 0.07172314077615738, -0.005097091663628817, -0.0060425191186368465, -0.13395531475543976, 0.033439069986343384, -0.036548055708408356, 0.03635207563638687, 0.01801665686070919, 0.07414113730192184, -0.04406324774026871, 0.2077333778142929, 0.00920804776251316, 0.09939448535442352, 0.21850189566612244, -0.29130250215530396, -0.030652988702058792, 0.04596669226884842, -0.03362780064344406, 0.021015314385294914, -0.03152868151664734, 0.08306844532489777, 0.12136858701705933, -0.007779361680150032, -0.06274709850549698, -0.06638176739215851, -0.05793137848377228, 0.007289472036063671, -0.05367450788617134, 0.0178441870957613, 0.18998894095420837, -0.05820633843541145, 0.041429538279771805, -0.04882277920842171, -0.10181842744350433, -0.12310957163572311, -0.03540848568081856, 0.009306620806455612, -0.04061312973499298, -0.02762814797461033, -0.053390368819236755, -0.05973066762089729, -0.09824199974536896, -0.14456315338611603, -0.23046636581420898, 0.14093853533267975, 0.0031446334905922413, 0.034603215754032135, -0.12021176517009735, 0.1362200528383255, -0.050978656858205795, -0.0034702098928391933, -0.038603294640779495, -0.0290649626404047, -0.08265233784914017, 0.002130385721102357, -0.08243338763713837, -0.06467293947935104, 0.05934832990169525, 0.23005032539367676, 0.040865764021873474, 0.036961205303668976, -0.14006030559539795, 0.08658868074417114, -0.003106790827587247, 0.0805959403514862, -0.10549864917993546, 0.12054591625928879, -0.016509564593434334, -0.03987973928451538, 0.018729450181126595, -0.0017478475347161293, -0.14452272653579712, -0.08661932498216629, 0.07450447976589203, 0.0263635516166687, -0.0823599249124527, 0.12907759845256805, 0.012792544439435005, -0.044365279376506805, 0.04008479043841362, -0.01800079457461834, -0.03593018651008606, 0.07662081718444824, -0.000845377508085221, -0.00028275669319555163, 0.038800425827503204, -0.0055134352296590805, -0.07329633831977844, 0.07137773931026459, -0.054046377539634705, 0.03255617246031761, -0.049604251980781555, -0.00787914264947176, 0.03694705292582512, -0.018453357741236687, 0.005475474987179041, -0.13112923502922058, -0.17893193662166595, -0.05220385640859604, -0.04039221256971359, -0.05900624394416809, 0.040259167551994324, -0.045413509011268616, 0.0054223123006522655, -0.018731415271759033, -0.10419357568025589, 0.12640924751758575, -0.01981348916888237, 0.12333514541387558, 0.005210991483181715, 0.10153039544820786, -0.13182729482650757, 0.0223984457552433, -0.12623460590839386, -0.014004108496010303, -0.06077726557850838, 0.08233602344989777, 0.01448169443756342, 0.10642041265964508, -0.01514972373843193, -0.04505830258131027, -0.20021706819534302, 0.024059981107711792, 0.021867943927645683, 0.13161608576774597, -0.2305351048707962, -0.10451842844486237, 0.2735253572463989, -0.02728828601539135, -0.2094333916902542, 0.13176709413528442, -0.02915714867413044, 0.09665852040052414, 0.1325952112674713, 0.29745033383369446, -0.15689821541309357, -0.03161801025271416, 0.038962166756391525, -0.04877995699644089, -0.047479864209890366, -0.00130724988412112, 0.03312977775931358, 0.0027436132077127695, -0.11367041617631912, 0.005905644036829472, 0.00014970439951866865, -0.010053848847746849, -0.04194650426506996, -0.016398606821894646, 0.0435776486992836, -0.06249433010816574, 0.07996633648872375, 0.020272569730877876, 0.08504839986562729, -0.10302425175905228, 0.009990917518734932, -0.1185336634516716, -0.004268253687769175, -0.02042478695511818, 0.021168632432818413, -0.05350453406572342, -0.020809734240174294, -0.01582309976220131, 0.0571124441921711, -0.16205406188964844, -0.013054140843451023, -0.029968107119202614, 0.15533627569675446, 0.16034261882305145, -0.0022251405753195286, 0.07529077678918839, -0.04175363481044769, -0.03401472419500351, -0.0425543487071991, 0.13894888758659363, -0.015126064419746399, -0.08520612865686417, -0.061605505645275116, 0.1527443826198578, -0.08795870840549469, -0.004543195478618145, -0.07260902971029282, 0.03220835328102112, -0.006222356576472521, 0.09175202995538712, -0.012090615928173065, 0.02308262325823307, 0.03717087209224701, -0.06253508478403091, -0.024882085621356964, -0.015777023509144783, 0.0950394868850708, -0.007784316316246986, -0.09532774984836578, 0.1417570859193802, -0.21736395359039307, 0.16497093439102173, 0.14202527701854706, -0.1475822478532791, -0.057853251695632935, -0.07803329825401306, -0.06135186925530434, -0.02454991824924946, -0.03381962329149246, -0.07974252104759216, 0.2212415188550949, -0.020119914785027504, 0.14138375222682953, -0.06777612119913101, -0.05384832248091698, -0.030634034425020218, 0.027438664808869362, 0.030095912516117096, 0.09062006324529648, 0.15155982971191406, -0.20314621925354004, 0.13993069529533386, 0.09518469870090485, -0.040140584111213684, 0.16487888991832733, 0.012494448572397232, -0.03375351056456566, 0.03641284629702568, -0.020837564021348953, -0.05322101712226868, -0.020744260400533676, -0.17351382970809937, -0.00898691825568676, 0.0741579607129097, 0.012677840888500214, 0.09270762652158737, -0.15206803381443024, 0.005310497246682644, -0.07592012733221054, 0.005195930600166321, 0.061762794852256775, 0.19875560700893402, 0.013711538165807724, 0.12888048589229584, -0.05677154287695885, -0.03968263790011406, 0.04722194746136665, -0.0037981050554662943, -0.09414341300725937, 0.17066599428653717, -0.07024135440587997, -0.2743225395679474, -0.017545685172080994, -0.013979854993522167, -0.03365997597575188, 0.05927908793091774, 0.06338238716125488, -0.0589541494846344, 0.010252666659653187, -0.03306742385029793, -0.06620386987924576, 0.069254070520401, 0.0645408183336258, -0.03153796121478081, -0.02232452668249607, -0.07051567733287811, -0.04582550376653671, -0.08317720890045166, -0.06933999806642532, -0.06385103613138199, 0.0801558569073677, -0.1039612740278244, 0.0423620380461216, 0.1531996876001358, 0.06455277651548386, 0.06210285425186157, -0.07563281059265137, 0.1398729830980301, -0.13032802939414978, -0.05093639716506004, 0.03551618754863739, -0.04021088778972626, -0.04239349812269211, 0.12423883378505707, -0.03861483931541443, -0.09745220094919205, 0.04596344754099846, 0.018050193786621094, -0.03921200707554817, -0.2414155751466751, -0.08595916628837585, -0.04300978034734726, 0.17047537863254547, 0.12501785159111023, 0.05997835099697113, 0.1680012047290802, -0.02052397094666958, -0.017682308331131935, 0.038002051413059235, 0.056549008935689926, 0.06569679826498032, 0.06808111071586609, -0.0829450935125351, 0.08672172576189041, -0.0121528385207057, -0.17685621976852417, 0.039325907826423645, 0.09437917917966843, 0.0888727530837059, 0.046100154519081116, 0.14533458650112152, -0.017737874761223793, -0.12669043242931366, 0.05049264430999756, 0.15522849559783936, -0.04111061245203018, -0.05048564448952675, -0.05497582629323006, -0.04940614104270935, -0.06262823194265366, 0.04309064894914627, 0.03794201835989952, -0.13287168741226196, -0.03749139606952667, -0.17460505664348602, 0.14447738230228424, -0.060507528483867645, 0.10632842034101486, -0.22020241618156433, -0.0039046553429216146, 0.019214266911149025, 0.004827871918678284, -0.08586627244949341, 0.1280842423439026, 0.020877206698060036, -0.05985894799232483, 0.07798898220062256, -0.03943954408168793, 0.12533697485923767, -0.07503636926412582, 0.05965696647763252, -0.19844934344291687, -0.21847419440746307, -0.033866699784994125, 0.08257081359624863, -0.23750779032707214, 0.16628442704677582, -0.0006588374963030219, -0.02613147348165512, -0.07282523065805435, -0.0869503989815712, 0.08236288279294968, 0.2061009705066681, 0.11785947531461716, -0.03781011328101158, -0.14268827438354492, 0.03607550635933876, -0.07645126432180405, 0.028926309198141098, 0.03639938682317734, -0.059005048125982285, -0.015489303506910801, -0.016391349956393242, -0.012724975124001503, -0.04744948074221611, 0.03231635317206383, 0.02367324009537697, -0.03128678351640701, 0.07716663181781769, 0.09214098751544952, 0.15827931463718414, -0.0028053554706275463, -0.08250933885574341, -0.12588463723659515, 0.10791110247373581, -0.036529384553432465, 0.01254463940858841, -0.05522683635354042, 0.13900110125541687, 0.06020598113536835, -0.014475400559604168, -0.11566334217786789, -0.009738247841596603, 0.03799399361014366, -0.03448300063610077, -0.15885205566883087, 0.1309390366077423, -0.0939154103398323, -0.09557628631591797, -0.07290080189704895, 0.2154822051525116, -0.08711269497871399, 0.05884823575615883, 0.00894471537321806, -0.02809545025229454, -0.08311181515455246, -0.016448110342025757, 0.13824224472045898, 0.012438247911632061, 0.039986297488212585, 0.10533973574638367, -0.0407600924372673, -0.08793632686138153, -0.06556046009063721, 0.008965268731117249, 0.2654009163379669, 0.06717813014984131, 0.02127521112561226, 0.11919085681438446, 0.14504966139793396, -0.08506754785776138, -0.3071945905685425, 0.01838080585002899, -0.051087502390146255, -0.03640192747116089, -0.0884346291422844, -0.14005085825920105, 0.043553031980991364, 0.007645402569323778, -0.02388174645602703, 0.1770237386226654, -0.14822141826152802, -0.09604139626026154, 0.185602605342865, -0.02594217285513878, 0.35357043147087097, -0.16312439739704132, -0.08422145247459412, -0.06904397904872894, -0.039902593940496445, 0.18452362716197968, -0.15990079939365387, 0.16771739721298218, 0.01333034597337246, 0.13142365217208862, 0.043520737439394, -0.036669667810201645, 0.06805111467838287, 0.011216002516448498, 0.007759334519505501, -0.027453327551484108, -0.07946862280368805, -0.030541472136974335, 0.0048178075812757015, 0.06346900761127472, -0.026520492509007454, 0.029847117140889168, 0.04864462837576866, -0.04052482172846794, -0.12116306275129318, 0.01900898478925228, 0.08975856751203537, -0.026521172374486923, -0.04391840100288391, 0.019067049026489258, -0.008144468069076538, 0.04575086757540703, 0.10395213961601257, -0.11392097175121307, 0.049848999828100204, 0.0663602352142334, 0.1387632042169571, -0.1524980664253235, -0.04445336386561394, -0.038448479026556015, -0.05219176411628723, 0.0986231192946434, -0.07585243880748749, 0.0602387860417366, 0.17118512094020844, -0.005123194307088852, 0.18322531878948212, 0.11902916431427002, -0.02229970693588257, -0.02985057234764099, 0.07655982673168182, -0.22842112183570862, -0.06450984627008438, -0.03119482658803463, 0.06813029944896698, 0.06424043327569962, 0.19401629269123077, 0.15565244853496552, -0.02552240900695324, -0.01609973981976509, 0.04187966138124466, 0.0391051284968853, 0.0008014784543775022, 0.14523611962795258, 0.0030002291314303875, -0.011681631207466125, -0.09344964474439621, 0.03849302604794502, -0.03408588469028473, -0.1973085105419159, 0.019077587872743607, 0.10100410133600235, -0.1253955066204071, -0.13588006794452667, -0.030500831082463264, 0.2237091064453125, 0.0006107786321081221, -0.03717729449272156, -0.07786476612091064, -0.056626759469509125, 0.1260819435119629, 0.17718662321567535, 0.05467001348733902, 0.00817534513771534, -0.06889522820711136, -0.04534274339675903, 0.05591548979282379, 0.06060432642698288, -0.08554831147193909, 0.09153614938259125, 0.0274313073605299, 0.09362169355154037, -0.04004580155014992, 0.12610265612602234, -0.06541755050420761, -0.047126781195402145, -0.11748184263706207, 0.07505310326814651, -0.04201631247997284, -0.04201338812708855, 0.012298076413571835, -0.06749477982521057, 0.0710454061627388, 0.017006680369377136, -0.05422748997807503, -0.06906788051128387, -0.12296470999717712, 0.005386616103351116, 0.0007720952853560448, 0.05579486861824989, -0.05611313134431839, -0.009068329818546772, 0.03483647108078003, -0.016473982483148575, 0.13706903159618378, 0.12108748406171799, -0.06530911475419998, 0.1418284922838211, -0.15741169452667236, -0.12761566042900085, 0.11328539997339249, 0.03296436741948128, -0.005540325306355953, 0.003854473354294896, -0.01834924891591072, 0.028737947344779968, 0.08160072565078735, 0.07910648733377457, -0.006626194342970848, -0.03223971650004387, -0.016012685373425484, -0.020342614501714706, -0.10489396005868912, -0.025474313646554947, -0.08042611181735992, -0.15583331882953644, 0.11733954399824142, 0.030469711869955063, -0.05783219262957573, 0.05658112093806267, -0.044499944895505905, 0.052402231842279434, 0.02431594766676426, -0.1857692003250122, 0.013136014342308044, -0.0852389931678772, 0.08919903635978699, -0.016874730587005615, 0.23314890265464783, 0.010495051741600037, -0.09361016750335693, -0.029812736436724663, 0.027408014982938766, -0.055304981768131256, 0.03749808296561241, 0.2520419955253601, 0.07331079244613647, -0.0883038267493248, -0.1257750689983368, 0.11072389036417007, 0.0987725555896759, 0.26508235931396484, 0.20655955374240875, -0.02490902505815029, 0.026248257607221603, 0.08810462057590485, 0.019800983369350433, 0.01816514879465103, -0.055053360760211945, -0.04017731547355652, -0.024865515530109406, 0.04029913619160652, -0.01000834908336401, 0.17028598487377167, 0.1778436303138733, -0.003482480300590396, -0.016583409160375595, -0.08511398732662201, 0.0007253627409227192, -0.11279061436653137, -0.15241244435310364, -0.12683719396591187, -0.13060735166072845, 0.021102281287312508, -0.07575758546590805, -0.024799499660730362, -0.04573533684015274, 0.11994414031505585, -0.04538112133741379, 0.22133122384548187, -0.04708731546998024, -0.08261223137378693, 0.05562509223818779, -0.01398544292896986, -0.021286679431796074, -0.08129365742206573, -0.015065101906657219, 0.05966627597808838, -0.0661802664399147, 0.04688325524330139, -0.011469067074358463, -0.05409663915634155, -0.00935762282460928, -0.056174252182245255, -0.05359378829598427, -0.025210734456777573, 0.008212754502892494, 0.03205733001232147, 0.0703778862953186, 0.02766299992799759, 0.017722172662615776, 0.025034131482243538, 0.09808158129453659, -0.06674641370773315, -0.05394546687602997, -0.11969131231307983, 0.0766897052526474, -0.011536214500665665, 0.07394111156463623, -0.020001666620373726, -0.012525028549134731, -0.04878631979227066, 0.2645624577999115, 0.257219135761261, -0.12210004776716232, -0.012483770027756691, 0.050515320152044296, 0.046410199254751205, 0.08440898358821869, 0.035175371915102005, 0.0872870683670044, 0.2544439435005188, -0.04940163716673851, -0.06695722788572311, 0.04347219690680504, -0.07342076301574707, 0.04166310280561447, 0.004298505373299122, 0.04259168356657028, 0.01858973689377308, -0.06561759114265442, 0.09916859120130539, -0.12965473532676697, -0.09235312044620514, -0.009031473658978939, -0.19287967681884766, -0.04029735177755356, 0.005908968858420849, 0.08826828747987747, 0.00379000511020422, 0.022043993696570396, -0.05441664159297943, -0.02221629023551941, -0.026592785492539406, -0.032339487224817276, -0.19335363805294037, 0.0032549744937568903, 0.0029999096877872944, 0.005711771082133055, 0.07183238863945007, -0.025254609063267708, 0.15824207663536072, 0.059108562767505646, -0.01536133885383606, -0.033997926861047745, 0.12514430284500122, -0.05291460081934929, -0.05632614716887474, 0.025357047095894814, 0.08205586671829224, -0.00005513979704119265, -0.08419919013977051, 0.08448127657175064, -0.18578548729419708, -0.007178278174251318, 0.032500267028808594, -0.06761784106492996, -0.11169857531785965, 0.10464830696582794, -0.0694509893655777, 0.06565292924642563, 0.08072036504745483, 0.017895149067044258, 0.017673350870609283, -0.016893642023205757, -0.03576665744185448, 0.03493018448352814, -0.0705842673778534, -0.048430100083351135, -0.15265998244285583, -0.06188107281923294, 0.04370250552892685, 0.002578575862571597, -0.33621084690093994, 0.03976169228553772, -0.09942979365587234, 0.01100146397948265, -0.06536359339952469, 0.06393099576234818, 0.049546364694833755, -0.0206604041159153, -0.043045178055763245, -0.11113793402910233, 0.029644964262843132, 0.06040863320231438, -0.14605221152305603, -0.1394423395395279 ]
null
null
transformers
# Mozark's Brain Uploaded to Hugging Face
{"tags": ["conversational"]}
text-generation
AccurateIsaiah/DialoGPT-small-mozark
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Mozark's Brain Uploaded to Hugging Face
[ "# Mozark's Brain Uploaded to Hugging Face" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Mozark's Brain Uploaded to Hugging Face" ]
[ 51, 13 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Mozark's Brain Uploaded to Hugging Face" ]
[ -0.0031721845734864473, -0.07610717415809631, -0.003111664205789566, 0.008046663366258144, 0.19636450707912445, 0.04983844608068466, 0.11955051124095917, 0.15140044689178467, 0.02104688249528408, 0.005679826717823744, 0.06520772725343704, 0.14508789777755737, 0.06304925680160522, 0.0390765443444252, 0.04857565462589264, -0.2781336009502411, 0.04433872923254967, 0.043058671057224274, 0.10123005509376526, 0.07059728354215622, 0.09003659337759018, -0.03617299348115921, 0.13225531578063965, -0.040586791932582855, -0.2207878828048706, -0.00242052786052227, -0.013343993574380875, 0.025398051366209984, 0.10017365962266922, 0.0743011012673378, -0.09728962182998657, 0.06228923797607422, -0.0525183379650116, -0.16768549382686615, 0.06291857361793518, 0.023105362430214882, -0.048823028802871704, 0.0009922089520841837, 0.08318770676851273, -0.08434134721755981, 0.16167093813419342, 0.040481120347976685, -0.11375536024570465, 0.061887867748737335, -0.11704759299755096, -0.0362793430685997, -0.01113975327461958, 0.011895815841853619, 0.0412718839943409, 0.08147832006216049, -0.01819753646850586, 0.12302038073539734, -0.009684817865490913, 0.08730616420507431, 0.32967373728752136, -0.19785887002944946, -0.07420927286148071, 0.09642785787582397, 0.0463748462498188, -0.041795842349529266, -0.13880790770053864, 0.10337872803211212, 0.05181259289383888, -0.050903718918561935, -0.06083370000123978, -0.061824243515729904, -0.027173828333616257, 0.00874883309006691, -0.042972370982170105, 0.020698871463537216, 0.15108992159366608, -0.0005000967648811638, 0.04421483352780342, -0.06394261121749878, -0.06020978465676308, 0.06699110567569733, -0.044046491384506226, 0.0520499162375927, -0.04027687758207321, 0.015208235941827297, -0.10181193053722382, -0.10688731074333191, -0.08969215303659439, 0.0029876530170440674, -0.13973131775856018, 0.17973415553569794, -0.062331900000572205, -0.019881829619407654, -0.12223699688911438, 0.051479049026966095, -0.02264474704861641, -0.03474779427051544, -0.007823205552995205, -0.09125739336013794, 0.026730159297585487, 0.042861007153987885, -0.07240047305822372, -0.022747201845049858, 0.11402863264083862, 0.04898397997021675, 0.16951006650924683, 0.01916159689426422, -0.04518995061516762, 0.07839074730873108, 0.0622711256146431, 0.04432261735200882, -0.06491208076477051, -0.09743401408195496, 0.011967726051807404, -0.017766928300261497, 0.023055098950862885, -0.07234393060207367, -0.13844358921051025, -0.021590959280729294, 0.02419527992606163, -0.0028388563077896833, 0.015048840083181858, 0.16782879829406738, 0.03232380747795105, -0.014485755003988743, -0.07102524489164352, 0.01849992573261261, -0.017018035054206848, 0.06225162371993065, -0.08164170384407043, 0.08887022733688354, -0.02730260044336319, 0.035547103732824326, -0.0703146904706955, 0.027604399248957634, -0.0648825392127037, 0.05741436406970024, -0.030359840020537376, -0.04686177894473076, 0.049537207931280136, -0.019149858504533768, 0.037258390337228775, -0.1682046800851822, -0.064751535654068, -0.0033109879586845636, 0.00415803911164403, -0.03421354293823242, 0.01879313960671425, -0.09054672718048096, 0.026729853823781013, 0.013332155533134937, -0.05953424051403999, 0.0013801788445562124, 0.011491861194372177, 0.05613406002521515, 0.006788704078644514, 0.16031897068023682, -0.05806392431259155, 0.03747377544641495, -0.06406077742576599, -0.023911619558930397, -0.006222957745194435, 0.003934086300432682, 0.0006805816083215177, 0.1683703511953354, 0.02618095465004444, -0.0016482630744576454, -0.0669560432434082, 0.0029679995495826006, 0.03955294191837311, 0.1952776312828064, -0.059860777109861374, -0.1322900503873825, 0.2557242810726166, 0.00022464190260507166, -0.1654253453016281, 0.16946926712989807, 0.03209209814667702, 0.04544726014137268, 0.0792718380689621, 0.273594468832016, -0.10665140300989151, 0.0027966087218374014, -0.004646181128919125, -0.0007254680967889726, -0.10909651219844818, 0.09999479353427887, 0.04177675023674965, 0.07428717613220215, -0.13537277281284332, 0.037248898297548294, 0.10409881174564362, 0.1001003086566925, -0.08797260373830795, 0.0032218177802860737, 0.04763396456837654, -0.02628254145383835, 0.08244138956069946, 0.013545640744268894, 0.004118519369512796, -0.10223431885242462, 0.04089178889989853, -0.1603461354970932, 0.038196053355932236, -0.039648186415433884, 0.0534483827650547, -0.04276759922504425, 0.05317021906375885, 0.006485816091299057, 0.05317807197570801, -0.046256549656391144, -0.05782344937324524, -0.05119771510362625, 0.19122569262981415, 0.10311555862426758, -0.03305956721305847, 0.09056472778320312, -0.00814053788781166, 0.01836097054183483, 0.0076983291655778885, 0.08467545360326767, -0.032919175922870636, -0.005157742649316788, -0.11642788350582123, 0.0811569094657898, -0.04089603200554848, 0.16905684769153595, -0.016876153647899628, 0.027423741295933723, -0.0030084357131272554, 0.06934088468551636, -0.06777346134185791, 0.031473513692617416, 0.017997872084379196, -0.07657977193593979, -0.0646737739443779, -0.0339285209774971, 0.15062832832336426, 0.0011292705312371254, -0.03741052746772766, 0.2806556224822998, -0.23019595444202423, 0.057016875594854355, 0.19421154260635376, -0.23702967166900635, 0.015143457800149918, -0.15366500616073608, -0.04308861121535301, -0.03141528367996216, 0.04825178533792496, -0.07989627122879028, 0.13191400468349457, -0.10998892039060593, 0.1316741555929184, -0.05112086609005928, -0.0015337285585701466, 0.04932954162359238, -0.03401733562350273, -0.07604552060365677, 0.0344419963657856, 0.05194445326924324, -0.16118167340755463, 0.11926960945129395, 0.03733520582318306, 0.008763991296291351, 0.23369014263153076, 0.08753800392150879, 0.03962213173508644, -0.052506666630506516, -0.029019754379987717, -0.06811206042766571, 0.009272681549191475, -0.253459095954895, -0.07911373674869537, 0.0694708377122879, -0.009635393507778645, 0.1073048859834671, -0.0930195301771164, -0.03727312758564949, -0.02216196432709694, -0.03252372518181801, 0.051890429109334946, 0.19096305966377258, -0.04089159891009331, 0.11596164852380753, 0.001349269412457943, 0.002050039591267705, 0.014404145069420338, -0.04339412599802017, -0.10758701711893082, 0.10102350264787674, -0.14354795217514038, -0.26568809151649475, -0.060130566358566284, -0.18700672686100006, -0.15375962853431702, 0.044122856110334396, 0.08000312000513077, -0.053248438984155655, 0.05232255905866623, -0.032905541360378265, 0.05419217795133591, 0.007492554374039173, 0.04801224544644356, -0.01604023016989231, -0.014014887623488903, -0.12631967663764954, -0.07305187731981277, -0.051136817783117294, -0.028732405975461006, -0.0658734142780304, 0.12525106966495514, -0.14724457263946533, 0.0704597681760788, 0.1023356094956398, 0.03972424194216728, 0.0682811290025711, -0.0976591631770134, 0.15309935808181763, -0.08522190898656845, 0.0023177212569862604, 0.09221819788217545, 0.02549903281033039, 0.05733519420027733, 0.06955359131097794, -0.05733076483011246, -0.08796507865190506, 0.05637109652161598, -0.03965050354599953, -0.0967506468296051, -0.09739599376916885, -0.06160212308168411, -0.08802823722362518, 0.21664948761463165, 0.04246646910905838, -0.007375036831945181, 0.16429941356182098, 0.04538052901625633, -0.0577164962887764, -0.03906584158539772, 0.03581035137176514, 0.09456533193588257, -0.039532341063022614, -0.046237263828516006, 0.03170221671462059, -0.02065872959792614, -0.0883471891283989, 0.09458988904953003, 0.05753093585371971, 0.11933792382478714, 0.034642502665519714, 0.03564798831939697, 0.02218136377632618, -0.01617797277867794, 0.018010513857007027, 0.10814083367586136, -0.06337716430425644, -0.06409613788127899, -0.05355089157819748, -0.058127693831920624, -0.07309050858020782, 0.0547543540596962, 0.1555011123418808, -0.05412791296839714, -0.11742690950632095, -0.10897177457809448, 0.1348961591720581, 0.05855061858892441, 0.05610458552837372, -0.14249390363693237, 0.021553298458456993, 0.0345945879817009, 0.07624643296003342, -0.058738868683576584, 0.04051440581679344, 0.09262190014123917, -0.10370709747076035, 0.07053035497665405, 0.014667260460555553, 0.07878661900758743, 0.016131233423948288, 0.045819319784641266, -0.1882464438676834, -0.0463094525039196, -0.003804734442383051, 0.12223372608423233, -0.24140094220638275, 0.14916977286338806, -0.02070198580622673, -0.0558355338871479, -0.10203272849321365, -0.0859982892870903, 0.1462436318397522, 0.10380086302757263, 0.0521041639149189, 0.014862185344099998, -0.10210766643285751, 0.018587136641144753, -0.03984255716204643, 0.020722145214676857, 0.17560796439647675, -0.06601867079734802, 0.022599173709750175, -0.06873729825019836, -0.04371700435876846, -0.03939231485128403, 0.2387329787015915, 0.005959643982350826, -0.11003681272268295, 0.10183379799127579, 0.081761434674263, 0.10978423804044724, 0.03602007403969765, -0.013707038015127182, -0.1187412291765213, 0.1300061196088791, 0.05210616812109947, 0.07100994139909744, -0.09784102439880371, -0.029220489785075188, -0.07905910909175873, -0.018664510920643806, -0.08116337656974792, -0.027722755447030067, 0.14120493829250336, -0.09829651564359665, -0.18140074610710144, 0.10295849293470383, -0.1343601942062378, -0.052748098969459534, -0.05252498760819435, 0.18716584146022797, -0.07016298919916153, 0.006205396726727486, 0.06501524150371552, -0.07899327576160431, -0.11994840204715729, -0.04121732339262962, 0.14354082942008972, 0.12440075725317001, -0.05468209087848663, 0.07217279821634293, -0.02346109412610531, 0.02341424487531185, -0.13861043751239777, -0.019144918769598007, 0.24855288863182068, 0.15821903944015503, 0.008525458164513111, 0.0899265930056572, 0.14600607752799988, -0.06432639062404633, -0.3873928189277649, -0.05221323296427727, -0.07337815314531326, 0.006617703940719366, -0.09590195119380951, -0.0916098952293396, -0.03155623376369476, -0.09108525514602661, 0.024888435378670692, 0.0961824283003807, -0.1903224140405655, -0.08701108396053314, 0.05860363692045212, 0.04756825044751167, 0.4948876202106476, -0.1371646374464035, -0.007815925404429436, -0.1517500877380371, -0.08406683057546616, 0.18719609081745148, -0.18095757067203522, 0.18496130406856537, 0.022827519103884697, 0.12725740671157837, 0.03420120105147362, -0.007429438643157482, 0.1372697502374649, -0.010673809796571732, -0.029292695224285126, -0.15195052325725555, -0.08533797413110733, 0.04600076004862785, -0.027283404022455215, 0.011446161195635796, -0.08327022194862366, -0.018535694107413292, -0.12911123037338257, 0.001520806341432035, -0.13190259039402008, 0.062441445887088776, 0.04210729897022247, -0.04888918995857239, -0.08032243698835373, 0.06139344349503517, 0.06347697973251343, 0.09870517253875732, 0.00022884327336214483, -0.12531207501888275, 0.04087783023715019, 0.11765840649604797, 0.10145342350006104, -0.1367008239030838, -0.015157531015574932, -0.054358430206775665, -0.01998152770102024, 0.08460911363363266, -0.07392843812704086, 0.031340502202510834, 0.10518480092287064, -0.021620627492666245, 0.1021900624036789, 0.07092878222465515, -0.046760424971580505, 0.02980215847492218, 0.133794903755188, -0.22771711647510529, -0.11329282075166702, -0.10683433711528778, 0.0784287080168724, 0.08110371232032776, 0.0715801790356636, 0.13623745739459991, -0.009787402115762234, 0.011621272191405296, -0.0017355880700051785, 0.03368022292852402, -0.008049323223531246, -0.012072009034454823, -0.020822856575250626, 0.011466775089502335, -0.09188699722290039, 0.07666473835706711, -0.07757235318422318, -0.16478848457336426, 0.0009627210674807429, 0.16231846809387207, -0.06722357869148254, -0.13642436265945435, -0.11943794786930084, 0.1727534532546997, -0.032762616872787476, -0.010949305258691311, -0.07626400142908096, -0.08415921032428741, -0.006224374752491713, 0.06883066892623901, 0.052705373615026474, -0.005286474712193012, 0.007637167815119028, -0.008652005344629288, -0.08920082449913025, 0.012276118621230125, -0.055072881281375885, 0.062252845615148544, 0.03135072439908981, 0.029772775247693062, -0.04606359452009201, 0.20152680575847626, -0.07561509311199188, -0.1299475133419037, -0.11932156980037689, -0.016241537407040596, 0.02918510138988495, -0.08970571309328079, -0.06724251061677933, -0.08331865072250366, 0.06431010365486145, -0.0173562653362751, -0.07442140579223633, -0.08308345079421997, -0.08114603161811829, 0.009681419469416142, -0.014767354354262352, 0.06632691621780396, 0.015263136476278305, -0.057576946914196014, 0.038903214037418365, -0.05787300691008568, 0.13475535809993744, 0.15667062997817993, -0.03909347206354141, 0.05762290209531784, -0.183218315243721, -0.15309280157089233, 0.03222368657588959, -0.01776924356818199, 0.03716675937175751, 0.0020396218169480562, -0.015982063487172127, -0.04027309641242027, 0.06574158370494843, 0.017516789957880974, 0.08731980621814728, -0.0460064560174942, 0.06664338707923889, -0.024801647290587425, -0.0986994281411171, -0.013660049065947533, -0.06935761868953705, -0.05410229042172432, 0.05065456032752991, 0.06930336356163025, -0.05874039977788925, 0.11346413195133209, -0.04115670174360275, 0.0482926070690155, 0.016182206571102142, -0.1748422384262085, 0.12631769478321075, -0.07992058247327805, 0.04450395703315735, -0.012670719996094704, 0.11175684630870819, 0.015470854938030243, -0.06924419105052948, -0.008454795926809311, 0.004358774516731501, -0.028509773313999176, 0.00170355464797467, 0.10119443386793137, 0.09039872884750366, -0.05965979024767876, -0.08839897811412811, 0.13260018825531006, 0.09651805460453033, 0.1944725066423416, 0.12406641989946365, -0.07425349950790405, 0.1587163358926773, 0.15992116928100586, 0.09493304789066315, 0.02994520589709282, -0.08562086522579193, -0.10852514207363129, -0.04403236135840416, 0.0677480697631836, -0.02537047676742077, 0.1303253173828125, 0.2831677198410034, -0.02974081039428711, 0.020772311836481094, -0.040770407766103745, -0.021076146513223648, -0.07057347893714905, -0.12735122442245483, -0.08065837621688843, -0.1773415356874466, 0.026640046387910843, -0.07307908684015274, -0.01095275767147541, -0.01653914898633957, 0.08894071727991104, -0.057700663805007935, 0.11407450586557388, -0.060725219547748566, -0.12035567313432693, 0.16014641523361206, -0.06130132079124451, -0.04880799725651741, 0.005242120008915663, -0.09386737644672394, -0.00863687228411436, -0.07198721170425415, 0.08222955465316772, 0.05194437876343727, -0.0062582530081272125, 0.0036705508828163147, -0.08352414518594742, -0.12381323426961899, -0.03171166777610779, -0.005656696390360594, -0.0009083173936232924, 0.07956618070602417, -0.017197802662849426, 0.012735399417579174, -0.004861381370574236, 0.05003584548830986, -0.04216752573847771, 0.02792813815176487, -0.04856868460774422, 0.06402924656867981, -0.036827292293310165, 0.07594233751296997, -0.1081702932715416, 0.007000591605901718, -0.14010506868362427, 0.3462847173213959, 0.2796957492828369, -0.13038775324821472, -0.012001283466815948, 0.00005694259743904695, 0.06285668164491653, 0.06591323763132095, 0.10468953102827072, 0.09213089197874069, 0.08853589743375778, -0.03804751858115196, -0.012647789902985096, -0.03573831170797348, -0.02598285861313343, 0.017130104824900627, 0.04240361973643303, 0.04463935270905495, -0.019754117354750633, -0.027833687141537666, 0.06489422172307968, -0.19760382175445557, 0.07345378398895264, -0.03867266699671745, -0.18192818760871887, -0.032035186886787415, -0.014214595779776573, 0.06493344157934189, 0.0649954229593277, 0.1581643670797348, -0.006631634198129177, -0.008036459796130657, 0.047178298234939575, 0.018793990835547447, -0.24399858713150024, 0.029170943424105644, 0.002681853249669075, -0.2191275656223297, 0.09777367860078812, -0.10210676491260529, 0.032210081815719604, 0.0867147147655487, -0.011342475190758705, -0.05979347974061966, 0.060557834804058075, -0.0068606603890657425, -0.08118326961994171, 0.01879234053194523, 0.22638995945453644, -0.037085000425577164, -0.07695522904396057, 0.06559482961893082, -0.09459342062473297, 0.036883704364299774, 0.11195772886276245, 0.04410871863365173, 0.0014278372982516885, 0.1422426849603653, -0.06189440190792084, 0.08649126440286636, 0.08913405984640121, -0.014758535660803318, -0.05194757506251335, -0.00038493008469231427, -0.07689061760902405, -0.04344053938984871, -0.03532042354345322, -0.05686739832162857, -0.12826420366764069, -0.11807888001203537, -0.02126774564385414, 0.019942112267017365, -0.24526828527450562, 0.017404451966285706, -0.10601452738046646, -0.04031827673316002, -0.057118915021419525, 0.12678967416286469, 0.06908312439918518, -0.025095326825976372, -0.03816843777894974, -0.13442476093769073, 0.0683557391166687, 0.11229195445775986, -0.07090523838996887, -0.17206259071826935 ]
null
null
transformers
# Mozark's Brain Uploaded to Hugging Face but v2
{"tags": ["conversational"]}
text-generation
AccurateIsaiah/DialoGPT-small-mozarkv2
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Mozark's Brain Uploaded to Hugging Face but v2
[ "# Mozark's Brain Uploaded to Hugging Face but v2" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Mozark's Brain Uploaded to Hugging Face but v2" ]
[ 51, 16 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Mozark's Brain Uploaded to Hugging Face but v2" ]
[ 0.003168402938172221, -0.08590717613697052, -0.002794380998238921, 0.01660344749689102, 0.19002312421798706, 0.054376550018787384, 0.1066361516714096, 0.1636747568845749, 0.01005462184548378, 0.0049474178813397884, 0.06715501844882965, 0.13582928478717804, 0.06739211827516556, 0.05197907239198685, 0.039336252957582474, -0.2687721848487854, 0.0664866641163826, 0.039216067641973495, 0.08794772624969482, 0.05919802933931351, 0.09336920082569122, -0.04232721030712128, 0.12903805077075958, -0.03747043013572693, -0.21201008558273315, 0.0001788810914149508, 0.007604412734508514, 0.03317762166261673, 0.08711273968219757, 0.07447116822004318, -0.09174642711877823, 0.06806439161300659, -0.03191601112484932, -0.15311342477798462, 0.0548752062022686, 0.032024502754211426, -0.0570913627743721, -0.0007845446816645563, 0.09251920878887177, -0.05058097466826439, 0.1513914316892624, 0.04165869951248169, -0.10419025272130966, 0.07350393384695053, -0.09975036978721619, -0.06686187535524368, -0.03727871552109718, 0.031023649498820305, 0.04504624381661415, 0.06606084853410721, -0.018231747671961784, 0.13206668198108673, -0.010166388005018234, 0.0825340524315834, 0.3366946578025818, -0.2059633880853653, -0.06858427077531815, 0.10371451824903488, 0.02705635316669941, -0.03454609960317612, -0.1226922795176506, 0.11161104589700699, 0.048352837562561035, -0.04624434560537338, -0.06781478971242905, -0.05312737450003624, -0.04927290603518486, 0.0036233970895409584, -0.042494289577007294, -0.014751321636140347, 0.147765651345253, 0.00588832376524806, 0.052982229739427567, -0.05322299152612686, -0.0750785693526268, 0.057799287140369415, -0.027589598670601845, 0.04764041304588318, -0.039665430784225464, 0.009837523102760315, -0.07212383300065994, -0.13120388984680176, -0.09677828848361969, -0.028499310836195946, -0.12170495092868805, 0.15788555145263672, -0.04938902705907822, 0.0003282862307969481, -0.11830972135066986, 0.07133494317531586, -0.04839707538485527, -0.037340760231018066, -0.021965190768241882, -0.10191526263952255, 0.018438411876559258, 0.057942718267440796, -0.0734952837228775, -0.034649550914764404, 0.1069718599319458, 0.03036685660481453, 0.18107610940933228, 0.02129450999200344, -0.0631943792104721, 0.07989902794361115, 0.04711524397134781, 0.05484236404299736, -0.07454976439476013, -0.062144506722688675, 0.050051070749759674, 0.0002165881742257625, 0.01750507950782776, -0.06929933279752731, -0.1488625407218933, -0.04589169844985008, 0.03801707923412323, 0.017717864364385605, 0.031928010284900665, 0.15557511150836945, 0.026610320433974266, -0.028527135029435158, -0.06803172081708908, 0.0022277601528912783, -0.01122585404664278, 0.07139738649129868, -0.07325755059719086, 0.07769612222909927, -0.0037807796616107225, 0.031601469963788986, -0.0807650089263916, 0.000715568894520402, -0.05070977285504341, 0.041699036955833435, -0.05047246441245079, -0.055183809250593185, 0.04561403766274452, -0.02177734300494194, 0.02107514627277851, -0.16187302768230438, -0.07343795150518417, 0.006043222267180681, -0.0008174491813406348, -0.018229182809591293, 0.02655193768441677, -0.08249880373477936, 0.017558826133608818, 0.017396584153175354, -0.05325620621442795, 0.026185261085629463, 0.024191856384277344, 0.05119587108492851, 0.01925748400390148, 0.14974701404571533, -0.07081858813762665, 0.030446035787463188, -0.04970598220825195, -0.02178794890642166, 0.030987722799181938, 0.0007552813040092587, -0.011220473796129227, 0.12625060975551605, 0.02401147596538067, -0.0050463927909731865, -0.04303916171193123, -0.01883249543607235, 0.04413295164704323, 0.1739945411682129, -0.097625233232975, -0.12504638731479645, 0.24930615723133087, -0.024623863399028778, -0.17750822007656097, 0.16892124712467194, 0.037581462413072586, 0.0016307083424180746, 0.07000547647476196, 0.23921987414360046, -0.09119515866041183, -0.02281178906559944, -0.002196019049733877, -0.010274987667798996, -0.11414136737585068, 0.09665495902299881, 0.05187993496656418, 0.08118178695440292, -0.13199880719184875, 0.048154473304748535, 0.0516972579061985, 0.07769861072301865, -0.07996433228254318, -0.008454432711005211, 0.025690224021673203, -0.02158169262111187, 0.07069572061300278, 0.006607497576624155, -0.000852593220770359, -0.0976094901561737, 0.044130463153123856, -0.1592715084552765, 0.055486422032117844, -0.055231425911188126, 0.06367284804582596, -0.04395518824458122, 0.07537202537059784, 0.00033553806133568287, 0.061094678938388824, -0.03388044610619545, -0.07555345445871353, -0.02906489372253418, 0.1876733899116516, 0.08447586745023727, 0.01847917214035988, 0.08618177473545074, 0.0026683539617806673, 0.004260826390236616, -0.01913343369960785, 0.02793455496430397, -0.026639031246304512, 0.005766306072473526, -0.11595334112644196, 0.044144488871097565, -0.03769828751683235, 0.12149785459041595, -0.005340385716408491, 0.020183615386486053, 0.018410567194223404, 0.1094837486743927, -0.06045794114470482, 0.030720526352524757, 0.008960582315921783, -0.09149188548326492, -0.06560573726892471, -0.034042440354824066, 0.13747797906398773, -0.012241093441843987, -0.029796335846185684, 0.273703396320343, -0.2072967290878296, 0.05319031700491905, 0.19112390279769897, -0.20814724266529083, 0.05276353657245636, -0.112993024289608, -0.0501486174762249, -0.020110968500375748, 0.036454979330301285, -0.08944310247898102, 0.10807286202907562, -0.09596766531467438, 0.1371651291847229, -0.0713660940527916, 0.011343947611749172, 0.054496314376592636, -0.040797434747219086, -0.08340772241353989, 0.006372943986207247, 0.057384222745895386, -0.14678354561328888, 0.10493124276399612, 0.04237137734889984, 0.005482851527631283, 0.24948112666606903, 0.08587659895420074, 0.028429817408323288, -0.05664006620645523, -0.036052267998456955, -0.052028805017471313, 0.00021902566368225962, -0.2348155677318573, -0.06045493111014366, 0.08874379098415375, 0.012307164259254932, 0.10485059767961502, -0.09693049639463425, -0.023028099909424782, -0.02045731619000435, -0.03553270176053047, 0.053590789437294006, 0.18361572921276093, -0.02869131602346897, 0.12140379101037979, -0.01677728071808815, 0.02938179485499859, 0.016710910946130753, -0.06001674011349678, -0.11562529951334, 0.07936117053031921, -0.15213164687156677, -0.2759453058242798, -0.06497015804052353, -0.1474641114473343, -0.17053130269050598, 0.057295750826597214, 0.07931000739336014, -0.04902997985482216, 0.0333106555044651, -0.03532220795750618, 0.06651128828525543, -0.008370072580873966, 0.06350503116846085, -0.0047910078428685665, 0.01077547762542963, -0.10409173369407654, -0.07777715474367142, -0.05136251077055931, -0.029523510485887527, -0.09959300607442856, 0.11932066828012466, -0.13105817139148712, 0.06903589516878128, 0.08036181330680847, 0.015400211326777935, 0.07200037688016891, -0.08762743324041367, 0.16194471716880798, -0.06494525820016861, 0.003866278799250722, 0.12699908018112183, 0.03888525813817978, 0.05912373214960098, 0.06432980298995972, -0.07351093739271164, -0.08771688491106033, 0.048074956983327866, -0.053220853209495544, -0.0842369943857193, -0.11323704570531845, -0.054928477853536606, -0.11002817004919052, 0.19110488891601562, 0.04824555665254593, -0.014317014254629612, 0.14395646750926971, 0.03690715879201889, -0.08427547663450241, -0.01039939559996128, 0.036607541143894196, 0.0899478942155838, -0.00911449920386076, -0.04800281301140785, 0.03252560272812843, -0.02272625081241131, -0.06374844908714294, 0.11192295700311661, 0.07547279447317123, 0.13625001907348633, 0.01088818721473217, 0.027947451919317245, 0.025335252285003662, 0.004538678098469973, 0.028668222948908806, 0.11053535342216492, -0.05475851520895958, -0.06085425242781639, -0.06060308218002319, -0.052425604313611984, -0.10144706070423126, 0.058228619396686554, 0.1845100373029709, -0.06687536090612411, -0.13639824092388153, -0.06968113780021667, 0.13983285427093506, 0.06279891729354858, 0.04956720396876335, -0.12807688117027283, 0.028582919389009476, 0.045060209929943085, 0.07759907096624374, -0.07835674285888672, 0.024690235033631325, 0.1043941006064415, -0.11618757992982864, 0.06695600599050522, 0.01984209381043911, 0.08254216611385345, 0.01193949207663536, 0.040447670966386795, -0.19191163778305054, -0.04525086656212807, 0.02110927551984787, 0.1397581696510315, -0.22241702675819397, 0.1405102163553238, -0.019915882498025894, -0.036949750036001205, -0.10271470993757248, -0.06391575932502747, 0.1339770257472992, 0.11879218369722366, 0.05063904449343681, 0.015177243389189243, -0.11348585039377213, 0.03598521277308464, -0.015250847674906254, 0.026607263833284378, 0.15378761291503906, -0.061237920075654984, 0.011799913831055164, -0.09612088650465012, -0.038103848695755005, -0.03273787721991539, 0.22715210914611816, -0.019887132570147514, -0.10152537375688553, 0.12034265697002411, 0.0899331346154213, 0.10748041421175003, 0.0038422292564064264, -0.022466585040092468, -0.0898265689611435, 0.1625162661075592, 0.028139350935816765, 0.05988791957497597, -0.10522185266017914, 0.005846979096531868, -0.057905472815036774, -0.021595176309347153, -0.07033032923936844, -0.05245096981525421, 0.17731088399887085, -0.10813739150762558, -0.1802871972322464, 0.08576468378305435, -0.1462237536907196, -0.09738536924123764, -0.0532468780875206, 0.19990260899066925, -0.10500524938106537, 0.0009233593591488898, 0.07063458114862442, -0.0706387460231781, -0.10825369507074356, -0.04941657930612564, 0.14553353190422058, 0.1570015549659729, -0.0697455182671547, 0.058572493493556976, -0.020232534036040306, 0.005545328836888075, -0.10941271483898163, -0.020484207198023796, 0.25751861929893494, 0.1813543140888214, -0.0024034709203988314, 0.10301044583320618, 0.1271650493144989, -0.0678907111287117, -0.3932066559791565, -0.08351956307888031, -0.04868152365088463, 0.010237823240458965, -0.0926990881562233, -0.07121218740940094, -0.05440812185406685, -0.09420324862003326, 0.011828365735709667, 0.05944795161485672, -0.17057135701179504, -0.09238814562559128, 0.042040593922138214, 0.040429189801216125, 0.4467584192752838, -0.10732705146074295, -0.009849405847489834, -0.14679665863513947, -0.08556971698999405, 0.18209873139858246, -0.14828749001026154, 0.19131329655647278, 0.014641529880464077, 0.1058507040143013, 0.036632563918828964, -0.02143515832722187, 0.14152048528194427, -0.03150598704814911, -0.02535012923181057, -0.13560500741004944, -0.07086716592311859, 0.08738291263580322, -0.04276624321937561, 0.022670142352581024, -0.046669211238622665, 0.018599383533000946, -0.13120390474796295, -0.004133273381739855, -0.13434065878391266, 0.06431085616350174, 0.04436250403523445, -0.0567471943795681, -0.0717930868268013, 0.05074581876397133, 0.08322816342115402, 0.08710575848817825, -0.0050441003404557705, -0.11035143584012985, -0.0017387795960530639, 0.16639967262744904, 0.08151668310165405, -0.1428845077753067, -0.002631136681884527, -0.05952906236052513, -0.01523255929350853, 0.09350781887769699, -0.06881594657897949, 0.05967516824603081, 0.10217256098985672, -0.03651626408100128, 0.0928901806473732, 0.07180378586053848, -0.05063055083155632, 0.024561671540141106, 0.13344165682792664, -0.2337276041507721, -0.10274773836135864, -0.10987691581249237, 0.09212127327919006, 0.07277970761060715, 0.06082361564040184, 0.14446300268173218, -0.01618286408483982, 0.008767355233430862, -0.013693614862859249, 0.028950557112693787, -0.020926425233483315, -0.005931349936872721, -0.01553821749985218, 0.013684514909982681, -0.10288657248020172, 0.08571553975343704, -0.09287946671247482, -0.1361842155456543, 0.015579290688037872, 0.14018619060516357, -0.07034018635749817, -0.13486716151237488, -0.10177544504404068, 0.1454528421163559, -0.015243463218212128, -0.025814976543188095, -0.08076883852481842, -0.07271742820739746, -0.006987960543483496, 0.031815703958272934, 0.054347146302461624, 0.009919156320393085, 0.006408152170479298, -0.018120091408491135, -0.09077963978052139, 0.025568461045622826, -0.06088399142026901, 0.04830043017864227, -0.0085256053134799, 0.046012673527002335, -0.04403526708483696, 0.20359891653060913, -0.08366639912128448, -0.12076374143362045, -0.0968046560883522, -0.02019139751791954, 0.012684937566518784, -0.08658467233181, -0.03360328823328018, -0.07648440450429916, 0.06430277228355408, -0.04244976490736008, -0.08026795834302902, -0.04322291538119316, -0.0903949961066246, 0.004887257236987352, -0.04568091407418251, 0.060527507215738297, 0.00015929278742987663, -0.0662446990609169, 0.042960189282894135, -0.061056964099407196, 0.12818649411201477, 0.15341681241989136, -0.031698379665613174, 0.06695976853370667, -0.16895145177841187, -0.17801533639431, 0.04263287037611008, 0.011165566742420197, 0.04122605547308922, -0.009932657703757286, -0.0009740251116454601, -0.017353380098938942, 0.04042721167206764, 0.005756131373345852, 0.10078907012939453, -0.05369355157017708, 0.025873860344290733, -0.03581910580396652, -0.09461936354637146, -0.004281570203602314, -0.06246380880475044, -0.05910899117588997, 0.06759442389011383, 0.07154863327741623, -0.047584418207407, 0.11772257834672928, -0.06874347478151321, 0.04802651330828667, 0.013150878250598907, -0.16224177181720734, 0.0976550430059433, -0.06712385267019272, 0.041882701218128204, -0.021961545571684837, 0.11513654887676239, 0.021592743694782257, -0.0631491169333458, 0.0004078623023815453, 0.0091011393815279, -0.027095019817352295, 0.0009192161378450692, 0.10762973874807358, 0.0797104686498642, -0.046110332012176514, -0.08156861364841461, 0.10373130440711975, 0.09283368289470673, 0.1863168627023697, 0.12789970636367798, -0.0938950777053833, 0.15442408621311188, 0.15586961805820465, 0.10767208784818649, 0.03626491501927376, -0.13122960925102234, -0.10976304858922958, -0.048211999237537384, 0.07193010300397873, -0.04759121686220169, 0.0938192680478096, 0.2911691963672638, -0.046534545719623566, 0.01369751337915659, -0.03309602662920952, -0.014032857492566109, -0.07730145007371902, -0.13778819143772125, -0.10340940207242966, -0.18740594387054443, 0.03961661830544472, -0.0846099853515625, 0.018167011439800262, -0.03716572746634483, 0.08215825259685516, -0.04989125207066536, 0.10618440806865692, -0.06418931484222412, -0.11149116605520248, 0.13756808638572693, -0.060411978513002396, -0.04486134648323059, 0.035415783524513245, -0.09054812788963318, 0.012133143842220306, -0.06848612427711487, 0.06985477358102798, 0.05720800906419754, -0.006233630236238241, 0.0088739525526762, -0.0757409855723381, -0.12799589335918427, -0.04276604950428009, -0.01171195786446333, -0.00877928826957941, 0.09932368248701096, -0.01008586399257183, 0.003399731358513236, -0.0016777062555775046, 0.06283161789178848, -0.051763929426670074, -0.00564851239323616, -0.05680437386035919, 0.0572592169046402, -0.019180364906787872, 0.08436605334281921, -0.08381310105323792, 0.002586789196357131, -0.13766370713710785, 0.3415949046611786, 0.2630341351032257, -0.11777254194021225, -0.009333683177828789, 0.0005748691619373858, 0.061454590409994125, 0.050589852035045624, 0.11748617142438889, 0.07379017770290375, 0.07552216947078705, -0.037012092769145966, -0.00505923293530941, -0.042323000729084015, -0.03340497985482216, 0.019157664850354195, 0.07497715950012207, 0.02051440440118313, -0.025058720260858536, -0.016018779948353767, 0.04062957316637039, -0.15157252550125122, 0.06110469251871109, -0.029469436034560204, -0.1679249107837677, -0.030444731935858727, 0.0008862594841048121, 0.09021658450365067, 0.05628959462046623, 0.1516808718442917, -0.017247751355171204, -0.0032329491805285215, 0.08954399079084396, 0.018321549519896507, -0.23631839454174042, 0.02281709760427475, 0.013258061371743679, -0.19464890658855438, 0.11872328817844391, -0.08948895335197449, 0.043129123747348785, 0.06474965065717697, -0.01960776560008526, -0.07732931524515152, 0.0679968073964119, -0.005325864534825087, -0.08414424955844879, 0.005444849841296673, 0.24347767233848572, -0.047595176845788956, -0.06538189202547073, 0.059797655791044235, -0.09810519218444824, 0.031322866678237915, 0.11370564997196198, 0.04264145344495773, 0.008379691280424595, 0.1467299908399582, -0.05923715606331825, 0.08176326751708984, 0.0802396908402443, -0.023092851042747498, -0.05331864207983017, -0.025571664795279503, -0.05844748020172119, -0.03320309519767761, -0.016625158488750458, -0.03918714448809624, -0.1298520714044571, -0.11317594349384308, 0.014591549523174763, 0.021939922124147415, -0.18381626904010773, 0.003489797469228506, -0.10932706296443939, -0.04292025417089462, -0.06501366943120956, 0.13985763490200043, 0.05302532762289047, -0.041570406407117844, -0.02766571007668972, -0.13290336728096008, 0.06700458377599716, 0.08526831120252609, -0.07035525143146515, -0.17479856312274933 ]
null
null
transformers
# Un Filtered brain upload of sinclair
{"tags": ["conversational"]}
text-generation
AccurateIsaiah/DialoGPT-small-sinclair
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Un Filtered brain upload of sinclair
[ "# Un Filtered brain upload of sinclair" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Un Filtered brain upload of sinclair" ]
[ 51, 9 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Un Filtered brain upload of sinclair" ]
[ -0.01943400502204895, 0.08245186507701874, -0.00316404877230525, 0.013878962025046349, 0.14190874993801117, 0.05707838758826256, 0.17225104570388794, 0.11887965351343155, 0.021572496742010117, -0.025342930108308792, 0.11748050898313522, 0.2545144855976105, 0.008744923397898674, -0.0035224836319684982, -0.009661931544542313, -0.25080451369285583, 0.11496463418006897, 0.08660958707332611, 0.08095207065343857, 0.11783642321825027, 0.05339321121573448, -0.0542142353951931, 0.061381809413433075, -0.012511605396866798, -0.1361703872680664, -0.06272061169147491, 0.01730787567794323, -0.05204889923334122, 0.09472198039293289, 0.08111213147640228, -0.03827420622110367, 0.05103805661201477, -0.07163766026496887, -0.12897078692913055, 0.04951455071568489, 0.04481552168726921, -0.053968124091625214, 0.05760188400745392, 0.02322062849998474, -0.037507250905036926, 0.18694788217544556, 0.13216495513916016, 0.029095448553562164, 0.06798648089170456, -0.12525947391986847, -0.06397208571434021, -0.0133490189909935, 0.06120407581329346, 0.07237420976161957, 0.055441129952669144, -0.017319342121481895, 0.17376339435577393, -0.012094473466277122, 0.12578760087490082, 0.19040954113006592, -0.3512025773525238, -0.026957020163536072, 0.05952697992324829, 0.059549733996391296, 0.057536862790584564, -0.09693419188261032, 0.08390816301107407, 0.032370083034038544, 0.006072478834539652, -0.028064168989658356, -0.07186207920312881, -0.07380101084709167, -0.024142993614077568, -0.0645790621638298, 0.007317584939301014, 0.17650794982910156, -0.00018162140622735023, 0.047769006341695786, -0.09995687007904053, -0.09039861708879471, -0.02735252119600773, -0.05814151093363762, 0.0389970988035202, -0.07707749307155609, -0.009968409314751625, -0.0007332740351557732, -0.11550957709550858, -0.10447853058576584, -0.07419349253177643, -0.16087889671325684, 0.19225890934467316, 0.016755379736423492, 0.062141671776771545, -0.14441481232643127, 0.09454932808876038, 0.11251309514045715, -0.044921133667230606, -0.012666833586990833, -0.09120523929595947, -0.03371167927980423, 0.02544081024825573, -0.07001125067472458, -0.07558466494083405, 0.00699659064412117, 0.17308753728866577, 0.08158621191978455, 0.051409050822257996, -0.014598220586776733, 0.08754831552505493, 0.05726563557982445, 0.03915739059448242, -0.12054526805877686, 0.01565304957330227, 0.02520744502544403, -0.08099047839641571, 0.00652910303324461, -0.1126781776547432, -0.17434149980545044, -0.0005860975943505764, 0.08383778482675552, -0.0017240578308701515, 0.006726460997015238, 0.13792219758033752, 0.007164844777435064, -0.11160813271999359, 0.06573973596096039, 0.03703885152935982, -0.01726071536540985, 0.0843418687582016, 0.009702617302536964, 0.13705238699913025, 0.018039047718048096, 0.000504816125612706, -0.055655788630247116, 0.01745525933802128, -0.09948015213012695, 0.007000111974775791, -0.016730230301618576, -0.09520524740219116, -0.00598727073520422, 0.016459239646792412, -0.0012601874768733978, -0.16044896841049194, -0.15149089694023132, 0.0007169998716562986, 0.03780731186270714, -0.024637676775455475, 0.0007626451551914215, -0.04400177299976349, -0.000851198798045516, 0.06184840202331543, -0.0746643915772438, -0.0410771518945694, -0.0638437420129776, 0.1239745169878006, -0.0935002937912941, 0.10394900292158127, -0.17642462253570557, 0.05716368556022644, -0.05830777436494827, -0.03960618004202843, -0.08573828637599945, 0.09169663488864899, -0.027810286730527878, 0.09027446806430817, 0.01187652163207531, -0.04364120215177536, -0.03152269497513771, 0.025484878569841385, -0.016279833391308784, 0.1343161165714264, -0.20632876455783844, -0.07795002311468124, 0.21332572400569916, -0.039475489407777786, -0.12687385082244873, 0.15238696336746216, -0.057636480778455734, 0.025436801835894585, 0.14196175336837769, 0.20947101712226868, -0.005217071156948805, 0.008747085928916931, 0.08015734702348709, 0.019928818568587303, -0.09742796421051025, 0.04208933934569359, 0.0049391514621675014, 0.10491529107093811, -0.1132587194442749, 0.017672546207904816, 0.106919065117836, 0.0563356913626194, -0.05332443118095398, 0.009689902886748314, 0.05325472354888916, -0.055341191589832306, 0.12161330878734589, 0.017021287232637405, 0.024333322420716286, -0.09124395996332169, -0.02597295492887497, 0.023014787584543228, 0.045549485832452774, -0.06735903769731522, 0.042605601251125336, -0.06290487200021744, 0.10580015182495117, -0.050956372171640396, 0.07206267863512039, -0.14639709889888763, -0.046763114631175995, -0.02233985811471939, 0.1623491793870926, 0.10543042421340942, 0.09430734813213348, 0.04678945243358612, -0.004809924401342869, -0.010293044149875641, 0.00031330063939094543, 0.13264432549476624, 0.011557930149137974, -0.09232907742261887, -0.09420899301767349, 0.05707355588674545, -0.03610164672136307, 0.16378863155841827, -0.15897594392299652, 0.0169302336871624, 0.06430505961179733, 0.06180122122168541, -0.005592146422713995, -0.005995392333716154, 0.03951165825128555, -0.08190733194351196, -0.06479448080062866, -0.005184039939194918, 0.10256996005773544, 0.00876438245177269, -0.1317709982395172, 0.19526804983615875, -0.23049162328243256, 0.10765688121318817, 0.17953230440616608, -0.26223599910736084, -0.023087425157427788, -0.018468117341399193, -0.0015112287364900112, -0.017116278409957886, 0.07667198032140732, -0.08946796506643295, 0.11452999711036682, -0.016692327335476875, 0.13180449604988098, -0.06459639221429825, -0.05327674746513367, -0.021987546235322952, 0.04624556750059128, 0.010716094635426998, 0.07024496793746948, 0.011055771261453629, -0.2575700879096985, 0.10952543467283249, 0.12346310913562775, 0.03905501216650009, 0.18243654072284698, 0.09141267836093903, -0.02877907268702984, 0.030661245808005333, -0.09833327680826187, -0.04540618509054184, 0.0071561457589268684, -0.11975792050361633, -0.004314024467021227, 0.0959470272064209, 0.03260815143585205, 0.05116556957364082, -0.10941383987665176, -0.02218756452202797, -0.02560076117515564, -0.00014426372945308685, 0.019636470824480057, 0.12668606638908386, 0.040328964591026306, 0.11398165673017502, -0.046216171234846115, -0.0166044719517231, 0.06712863594293594, -0.03690492734313011, -0.08063928782939911, 0.16163915395736694, -0.12967756390571594, -0.3077163100242615, -0.08424906432628632, -0.15721595287322998, -0.085518017411232, 0.05590342730283737, 0.10201436281204224, -0.019514454528689384, 0.009095458313822746, -0.042768023908138275, -0.02551441639661789, 0.03596032038331032, 0.026611102744936943, -0.05583713948726654, -0.039597246795892715, -0.0933435782790184, -0.10571698844432831, -0.017889223992824554, -0.07891400158405304, -0.04540124908089638, 0.11012374609708786, -0.09963112324476242, 0.04401188716292381, 0.1681997925043106, 0.042340684682130814, 0.031351685523986816, -0.0443866029381752, 0.27377596497535706, -0.11405963450670242, -0.013112979009747505, 0.08371871709823608, -0.09000097215175629, 0.011947190389037132, 0.048361364752054214, -0.0003453637473285198, -0.1019245982170105, 0.030682150274515152, 0.002531516831368208, -0.06700851023197174, -0.1994933933019638, -0.08681491017341614, -0.09659513831138611, 0.10718877613544464, 0.09715908020734787, 0.0353565476834774, 0.08791180700063705, 0.05239351466298103, -0.06843189150094986, 0.052150480449199677, 0.08811451494693756, 0.10636354237794876, 0.1563379466533661, -0.06562365591526031, 0.12605637311935425, -0.04118127003312111, -0.06211497634649277, 0.08871890604496002, 0.06265915930271149, 0.05065634101629257, 0.0748906284570694, 0.12484720349311829, 0.007863957434892654, -0.04934723675251007, 0.06559886038303375, 0.17887809872627258, -0.04746771976351738, -0.05780339241027832, -0.06141386926174164, -0.04557711258530617, -0.0976981520652771, 0.011502517387270927, 0.09854620695114136, -0.057527147233486176, -0.050452545285224915, -0.12246088683605194, 0.09028351306915283, 0.0725293830037117, 0.09750969707965851, -0.20042413473129272, -0.08530795574188232, 0.06673863530158997, -0.030248768627643585, -0.13008563220500946, 0.1245630607008934, 0.05153638869524002, -0.10098394006490707, 0.03982946649193764, -0.012742472812533379, 0.1356521099805832, -0.17202886939048767, 0.040916621685028076, -0.10282979905605316, -0.14376528561115265, 0.007620074320584536, 0.0980910062789917, -0.17968964576721191, 0.10474170744419098, -0.019661832600831985, -0.07814536243677139, -0.10401760041713715, -0.12053830921649933, 0.07136130332946777, 0.11164435744285583, 0.04243795946240425, -0.00883402768522501, -0.048238616436719894, -0.024096231907606125, -0.051280803978443146, -0.014015707187354565, 0.05520448088645935, -0.06210041791200638, -0.00024344120174646378, -0.04486436769366264, 0.015487553551793098, -0.04333871230483055, 0.0321274995803833, -0.030609143897891045, -0.1656215786933899, 0.1140172928571701, 0.1558377742767334, 0.053829316049814224, 0.027496330440044403, -0.07032410055398941, -0.10577981919050217, 0.19199156761169434, -0.1120489314198494, -0.036573626101017, -0.07022428512573242, -0.039471328258514404, 0.038338031619787216, -0.032171767204999924, -0.0382222980260849, -0.039674174040555954, 0.11410604417324066, -0.05158348008990288, -0.19780004024505615, 0.13745388388633728, -0.10004770010709763, -0.08450938761234283, -0.05361749976873398, 0.15592549741268158, 0.007566187065094709, 0.05503921955823898, 0.06352251768112183, -0.02130240947008133, -0.09210878610610962, -0.09545177966356277, 0.01943635568022728, 0.004644457716494799, -0.029640188440680504, 0.06390175968408585, -0.01933303289115429, 0.023960763588547707, -0.07095751166343689, 0.03252067416906357, 0.2856724262237549, 0.16888153553009033, -0.0350552573800087, 0.1376143842935562, 0.2021380513906479, -0.0509207658469677, -0.2865840494632721, -0.06729202717542648, -0.10856260359287262, -0.06870806217193604, -0.0013391803950071335, -0.10083513706922531, 0.056442055851221085, 0.0012460659490898252, -0.01899564079940319, 0.2525404393672943, -0.1753568798303604, -0.09122733026742935, 0.2263507843017578, 0.0646040290594101, 0.4021299481391907, -0.1788642406463623, -0.07282999157905579, -0.13596183061599731, -0.26724937558174133, 0.2910572290420532, -0.10659542679786682, 0.1922682821750641, -0.013656695373356342, 0.16172456741333008, 0.04041949659585953, -0.017124537378549576, 0.08390618860721588, 0.03008740022778511, 0.007146128453314304, -0.13477909564971924, -0.013648389838635921, 0.049897655844688416, -0.0034576538018882275, 0.0035038632340729237, -0.05790909379720688, 0.007901659235358238, -0.11166341602802277, -0.007056057918816805, -0.09192823618650436, -0.028619464486837387, 0.04654042422771454, -0.033417150378227234, -0.060335688292980194, 0.014380873180925846, 0.03795589879155159, 0.0746920257806778, 0.14732028543949127, -0.08352921903133392, 0.11350852251052856, 0.03306909650564194, 0.10811803489923477, -0.18617726862430573, -0.030686471611261368, -0.09107798337936401, -0.03573569655418396, 0.11601022630929947, -0.021140949800610542, 0.07394906133413315, 0.10920849442481995, -0.023029571399092674, 0.1227862685918808, 0.10522374510765076, -0.007693266496062279, 0.020129043608903885, 0.043607041239738464, -0.2957291305065155, -0.07828477025032043, 0.006323209032416344, 0.13369783759117126, 0.08238300681114197, 0.10848233103752136, 0.18941909074783325, 0.029023729264736176, -0.04174406826496124, 0.04141756892204285, -0.013408718630671501, -0.0012677599443122745, 0.03750203177332878, 0.011829713359475136, 0.034771133214235306, -0.1376504898071289, 0.03152461349964142, 0.005213674623519182, -0.11697198450565338, -0.008981753140687943, 0.10670588910579681, -0.10239368677139282, -0.1368512213230133, -0.14660991728305817, 0.042641691863536835, -0.04247581958770752, -0.012554900720715523, -0.004905191250145435, -0.09947766363620758, 0.05543635040521622, 0.11068355292081833, 0.07340697199106216, 0.06955654174089432, -0.09150718152523041, -0.011968360282480717, -0.03915835916996002, 0.010158034041523933, -0.06902617961168289, 0.05695159733295441, -0.03714924678206444, -0.04410583898425102, -0.02886311709880829, 0.1387433260679245, -0.09692873805761337, -0.10913483053445816, -0.13233903050422668, 0.03363367170095444, -0.09672509133815765, -0.05691885948181152, -0.0727623775601387, -0.014383137226104736, 0.024089140817523003, -0.03819439932703972, -0.05920496582984924, -0.07043460756540298, -0.10321004688739777, -0.00042004603892564774, 0.02381611056625843, 0.03574240207672119, -0.07227916270494461, -0.05170707404613495, 0.056029945611953735, -0.042354729026556015, 0.17677325010299683, 0.14321528375148773, -0.09923034906387329, 0.07087348401546478, -0.1823064386844635, -0.14564195275306702, 0.01648860238492489, 0.0211132001131773, 0.04839498922228813, 0.02901889942586422, -0.002070994582027197, 0.0038873921148478985, 0.07099597156047821, 0.04470209777355194, 0.05664440244436264, -0.06727076321840286, -0.03773968666791916, -0.07225023210048676, -0.11846870929002762, -0.048482008278369904, -0.07593993097543716, -0.04886981472373009, 0.02627069689333439, 0.13001161813735962, -0.037956178188323975, 0.05680130794644356, -0.06274517625570297, 0.0504743829369545, 0.05273837968707085, -0.1974431872367859, 0.013804215006530285, -0.08308757841587067, 0.040230996906757355, -0.037759311497211456, 0.23014625906944275, -0.09867343306541443, -0.03709382563829422, 0.024282243102788925, 0.0854354053735733, -0.08835458755493164, -0.03091442957520485, 0.17218321561813354, 0.07728743553161621, -0.08343368023633957, -0.08234982192516327, 0.07356482744216919, 0.0754704475402832, 0.15658850967884064, 0.14385733008384705, -0.06356555223464966, -0.0009700730443000793, 0.09973357617855072, -0.010773147456347942, 0.13346996903419495, -0.09092588722705841, -0.044691380113363266, 0.011078822426497936, 0.052362941205501556, -0.00022977648768574, 0.19647285342216492, 0.19479742646217346, -0.013081654906272888, 0.01251199096441269, -0.03647215664386749, -0.03664487600326538, -0.14366976916790009, -0.1907905638217926, -0.08357038348913193, -0.10193310678005219, 0.005820645019412041, -0.09072291105985641, -0.0019834302365779877, 0.006468695588409901, 0.1188395693898201, -0.04589865729212761, 0.12964142858982086, -0.032633379101753235, -0.05506496876478195, 0.10164599865674973, -0.030859937891364098, -0.033252254128456116, -0.039323143661022186, -0.02460821345448494, 0.012168018147349358, -0.018836991861462593, 0.041380830109119415, 0.02695797197520733, -0.019604649394750595, 0.04326745867729187, -0.07475197315216064, -0.1334872990846634, -0.054143860936164856, 0.06553125381469727, 0.017458584159612656, 0.11945322155952454, 0.029418176040053368, 0.011752327904105186, -0.006094754673540592, 0.10876733064651489, -0.0355784147977829, -0.00789369735866785, -0.03302595019340515, 0.12614506483078003, -0.024553611874580383, 0.07700382173061371, -0.044153694063425064, -0.013512171804904938, -0.06386213004589081, 0.34805184602737427, 0.2701857388019562, -0.22256764769554138, -0.01062600128352642, 0.022153565660119057, 0.03951650857925415, 0.07594668120145798, 0.07380612194538116, 0.09235379844903946, 0.18633915483951569, -0.0073436712846159935, -0.06528104841709137, -0.01721859537065029, -0.011342030018568039, -0.03307433798909187, 0.027294030413031578, 0.022127315402030945, 0.026680070906877518, -0.03703376650810242, 0.08235153555870056, -0.24074700474739075, -0.02176794782280922, -0.09340114891529083, -0.1238890290260315, -0.08477602154016495, 0.002191786654293537, 0.05251701921224594, 0.025646956637501717, 0.06586536765098572, -0.04795120656490326, -0.036510169506073, 0.01702013984322548, 0.011351143941283226, -0.12730731070041656, 0.00797489657998085, 0.03996807336807251, -0.032432105392217636, 0.15500713884830475, -0.05072397738695145, 0.06981721520423889, 0.07965207099914551, 0.03946740925312042, -0.05172331631183624, 0.05849885940551758, -0.013159962370991707, -0.10534793138504028, 0.017998062074184418, 0.17956231534481049, 0.005916789174079895, -0.03387945517897606, 0.11179207265377045, -0.14646442234516144, 0.03924766927957535, -0.04168642312288284, -0.04234037548303604, 0.000797561660874635, 0.06956997513771057, -0.005478630308061838, 0.09471674263477325, 0.06952501833438873, -0.022888246923685074, -0.04853752255439758, -0.025447571650147438, -0.10873017460107803, -0.00954199954867363, -0.12102226167917252, -0.07982965558767319, -0.1314944326877594, -0.0867825448513031, 0.039008982479572296, 0.04940960183739662, -0.26354876160621643, 0.03616208955645561, -0.11325432360172272, -0.026768773794174194, -0.07191430032253265, 0.08301790803670883, 0.035934533923864365, -0.014440936967730522, -0.040520139038562775, -0.0901193618774414, 0.010057935491204262, 0.09985789656639099, -0.18152162432670593, -0.1365983933210373 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2128 - Accuracy: 0.928 - F1: 0.9280 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8151 | 1.0 | 250 | 0.3043 | 0.907 | 0.9035 | | 0.24 | 2.0 | 500 | 0.2128 | 0.928 | 0.9280 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["emotion"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "distilbert-base-uncased-finetuned-emotion", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "emotion", "type": "emotion", "args": "default"}, "metrics": [{"type": "accuracy", "value": 0.928, "name": "Accuracy"}, {"type": "f1", "value": 0.9280065074208208, "name": "F1"}]}]}]}
text-classification
ActivationAI/distilbert-base-uncased-finetuned-emotion
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #dataset-emotion #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased-finetuned-emotion ========================================= This model is a fine-tuned version of distilbert-base-uncased on the emotion dataset. It achieves the following results on the evaluation set: * Loss: 0.2128 * Accuracy: 0.928 * F1: 0.9280 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 64 * eval\_batch\_size: 64 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 2 ### Training results ### Framework versions * Transformers 4.11.3 * Pytorch 1.10.0+cu111 * Datasets 1.16.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #dataset-emotion #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ 67, 98, 4, 33 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #dataset-emotion #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2### Training results### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ -0.10365526378154755, 0.11108539253473282, -0.0026109113823622465, 0.1317654550075531, 0.16546793282032013, 0.045472968369722366, 0.1148209348320961, 0.12493137270212173, -0.08185860514640808, 0.032128069549798965, 0.10837704688310623, 0.1617085337638855, 0.02285127155482769, 0.09674810618162155, -0.05789001286029816, -0.2760312557220459, -0.013312868773937225, 0.05033736675977707, -0.015638014301657677, 0.13228055834770203, 0.09348677843809128, -0.12362140417098999, 0.09650623053312302, 0.003427819348871708, -0.17494015395641327, 0.003667527576908469, 0.0020847665145993233, -0.04351482167840004, 0.1478479653596878, 0.0203389972448349, 0.10677221417427063, 0.008356831967830658, 0.08522238582372665, -0.2250649482011795, 0.018061498180031776, 0.03874968737363815, 0.0002561478759162128, 0.08761061728000641, 0.03720410540699959, -0.015301057137548923, 0.15303263068199158, -0.06405466049909592, 0.05445051193237305, 0.021798426285386086, -0.11284452676773071, -0.2199874073266983, -0.08077996224164963, 0.041833750903606415, 0.06329819560050964, 0.11930888146162033, -0.019842874258756638, 0.12837383151054382, -0.09601787477731705, 0.09610112756490707, 0.23596636950969696, -0.2448965162038803, -0.06858085840940475, 0.020751558244228363, 0.014530576765537262, 0.043537914752960205, -0.11989867687225342, -0.039740413427352905, 0.050211407244205475, 0.05117671564221382, 0.11863920837640762, -0.03312069922685623, -0.0999940037727356, 0.00910378061234951, -0.12911130487918854, -0.04672069475054741, 0.16751150786876678, 0.0594206377863884, -0.02597641386091709, -0.05425291508436203, -0.056162502616643906, -0.1675000786781311, -0.031035728752613068, -0.016450364142656326, 0.054442595690488815, -0.01592334546148777, -0.06372737884521484, 0.010441784746944904, -0.12011896073818207, -0.04583032429218292, -0.06421378999948502, 0.10641534626483917, 0.021976949647068977, 0.006818883586674929, -0.017207900062203407, 0.10352788120508194, 0.0009800537955015898, -0.12149646133184433, 0.0210917666554451, 0.02099326066672802, 0.026333261281251907, -0.03047778643667698, -0.06905151158571243, -0.055389244109392166, -0.004919437691569328, 0.10190358012914658, -0.06666407734155655, 0.045935261994600296, 0.04524286091327667, 0.037766341120004654, -0.06852026283740997, 0.19527418911457062, -0.03294919803738594, -0.03212658688426018, -0.012501158751547337, 0.06016761064529419, 0.020768651738762856, -0.006436762399971485, -0.12171690911054611, 0.02350432053208351, 0.08950570225715637, -0.00007678163092350587, -0.09379716217517853, 0.08152900636196136, -0.07605183124542236, -0.01949211396276951, -0.021253660321235657, -0.0765935555100441, 0.028752928599715233, 0.02075762115418911, -0.07241667807102203, 0.0030450790654867887, 0.030792895704507828, 0.008529079146683216, -0.015946075320243835, 0.0917603150010109, -0.0787631943821907, 0.025490665808320045, -0.0946962907910347, -0.1045740470290184, 0.02897842787206173, -0.09482478350400925, 0.033921513706445694, -0.09247273951768875, -0.19394199550151825, -0.024185366928577423, 0.0686044692993164, -0.021704984828829765, -0.0471469946205616, -0.07331191003322601, -0.06313978135585785, 0.01850917749106884, -0.002557029016315937, 0.09711819887161255, -0.06576484441757202, 0.09101833403110504, 0.027181919664144516, 0.08311154693365097, -0.031909260898828506, 0.056395988911390305, -0.11463139951229095, 0.004114741925150156, -0.13587668538093567, 0.049997471272945404, -0.047578345984220505, 0.07202952355146408, -0.06358253955841064, -0.11173929274082184, 0.015572934411466122, -0.006378253921866417, 0.06443363428115845, 0.10948903113603592, -0.19403833150863647, -0.09464851766824722, 0.16610102355480194, -0.07067948579788208, -0.10680301487445831, 0.12891265749931335, -0.06742480397224426, 0.06976816058158875, 0.06998448073863983, 0.17836694419384003, 0.05879383906722069, -0.07357979565858841, -0.016340071335434914, 0.011599463410675526, 0.050163306295871735, -0.031123390421271324, 0.052572306245565414, 0.02624650113284588, 0.03453371301293373, 0.03880535066127777, -0.01196232344955206, 0.07060033828020096, -0.09326792508363724, -0.10062386095523834, -0.03427024930715561, -0.09134482592344284, 0.04848787933588028, 0.09255674481391907, 0.06272212415933609, -0.10717325657606125, -0.073724165558815, 0.028808284550905228, 0.09422781318426132, -0.06488901376724243, 0.028829196467995644, -0.0596344880759716, 0.0622246228158474, 0.0027249802369624376, -0.015573904849588871, -0.17582817375659943, 0.013070456683635712, 0.006194745190441608, 0.027181124314665794, 0.006623989902436733, 0.03696899861097336, 0.06610392779111862, 0.04349454119801521, -0.05583404377102852, -0.024697057902812958, -0.04591572657227516, -0.002911053132265806, -0.11217767000198364, -0.222952201962471, -0.01753520965576172, -0.024884168058633804, 0.17654204368591309, -0.21061822772026062, 0.04510215297341347, -0.006178705487400293, 0.055832020938396454, 0.014611254446208477, -0.01919422671198845, -0.033304933458566666, 0.06556599587202072, -0.054479777812957764, -0.042237140238285065, 0.07778333127498627, 0.01036946102976799, -0.08646371960639954, -0.037160664796829224, -0.10661646723747253, 0.14299476146697998, 0.13010098040103912, -0.11318360269069672, -0.07107231020927429, -0.016780277714133263, -0.06628571450710297, -0.01899905502796173, -0.03863293677568436, 0.03865957632660866, 0.19597330689430237, -0.007075474597513676, 0.13832490146160126, -0.06229453533887863, -0.02452687919139862, 0.02397817187011242, -0.04459702596068382, 0.005227315239608288, 0.13486889004707336, 0.12143418937921524, -0.06046079099178314, 0.15041641891002655, 0.13522854447364807, -0.08931641280651093, 0.16353555023670197, -0.03590400516986847, -0.05880224332213402, -0.025102846324443817, -0.04856446385383606, -0.018963899463415146, 0.10565771162509918, -0.18460632860660553, -0.011765911243855953, 0.02307305857539177, 0.0011658030562102795, 0.006093000527471304, -0.2260960191488266, -0.05179370567202568, 0.04856545850634575, -0.04331237077713013, -0.006302523892372847, -0.010050495155155659, 0.00567513657733798, 0.1050773411989212, -0.0037724007852375507, -0.08540020883083344, 0.030277138575911522, -0.001458055805414915, -0.08583482354879379, 0.20442630350589752, -0.0918363556265831, -0.17275619506835938, -0.1108991801738739, -0.07250522077083588, -0.047569986432790756, 0.00643935427069664, 0.07166393846273422, -0.11759302020072937, -0.019171783700585365, -0.07828955352306366, 0.0264158733189106, 0.011945844627916813, 0.020029593259096146, 0.028738269582390785, -0.0024876517709344625, 0.047073788940906525, -0.10855920612812042, -0.019495608285069466, -0.06457715481519699, -0.04853179305791855, 0.054971616715192795, 0.019171450287103653, 0.11925762891769409, 0.16973093152046204, -0.005927021149545908, 0.011735835112631321, -0.03866672143340111, 0.22641333937644958, -0.072452612221241, -0.019722480326890945, 0.13654112815856934, -0.012618577107787132, 0.05264660716056824, 0.11521118134260178, 0.06805716454982758, -0.09154286980628967, 0.014333990402519703, 0.04578052833676338, -0.037165895104408264, -0.22064699232578278, -0.04134365916252136, -0.04843695089221001, 0.025485754013061523, 0.06965936720371246, 0.021163061261177063, 0.0463443286716938, 0.07631208002567291, 0.04127596318721771, 0.04955020546913147, -0.04838881269097328, 0.05194804072380066, 0.1304904669523239, 0.018573161214590073, 0.10156048089265823, -0.03687027096748352, -0.05285428836941719, 0.05776938423514366, -0.019366687163710594, 0.21297587454319, 0.001861072494648397, 0.14540186524391174, 0.05809827521443367, 0.16863800585269928, -0.03068048506975174, 0.07258651405572891, -0.014496046118438244, -0.04065464809536934, -0.03182343393564224, -0.028970252722501755, -0.06382753700017929, 0.03464755788445473, -0.05723574012517929, 0.08380259573459625, -0.13994887471199036, 0.01241863239556551, 0.06259757280349731, 0.2786177396774292, 0.027485299855470657, -0.31776177883148193, -0.11263156682252884, 0.005084906704723835, -0.03786880522966385, -0.005435932893306017, 0.02235650084912777, 0.09276892989873886, -0.09591041505336761, 0.0349600613117218, -0.06057644262909889, 0.08381333947181702, -0.07126171886920929, 0.06418641656637192, 0.046352777630090714, 0.0721132755279541, 0.010117967613041401, 0.0875658169388771, -0.2863155007362366, 0.26768237352371216, -0.010248835198581219, 0.05953718349337578, -0.08695551007986069, -0.0006002221489325166, 0.06266553699970245, 0.06651800870895386, 0.06717213243246078, -0.007731396239250898, 0.0020543483551591635, -0.182090163230896, -0.03915363922715187, 0.029793573543429375, 0.06323503702878952, -0.03606581315398216, 0.08719656616449356, -0.02526232600212097, 0.008744700811803341, 0.07756873965263367, 0.03433313965797424, -0.04849676042795181, -0.10168127715587616, -0.010243501514196396, 0.033136118203401566, -0.053475815802812576, -0.05309470370411873, -0.128390833735466, -0.10907188057899475, 0.14396999776363373, -0.003665628144517541, -0.023246966302394867, -0.10303903371095657, 0.0824100524187088, 0.04088747873902321, -0.088455930352211, 0.027437539771199226, 0.009255582466721535, 0.08022436499595642, 0.020462913438677788, -0.06966151297092438, 0.106208935379982, -0.07627078890800476, -0.1729302853345871, -0.06904780864715576, 0.09420742839574814, 0.05349254980683327, 0.07726606726646423, -0.0060472674667835236, -0.010492062196135521, -0.04896660894155502, -0.08469203859567642, 0.03883951157331467, 0.030602402985095978, 0.060137249529361725, 0.015432341024279594, -0.05169805884361267, 0.006301424000412226, -0.07002141326665878, -0.037205908447504044, 0.19957755506038666, 0.23401984572410583, -0.088113933801651, 0.030145883560180664, 0.032210662961006165, -0.0741310715675354, -0.1937704235315323, 0.04973391443490982, 0.059615232050418854, 0.009831813164055347, 0.041455693542957306, -0.19466006755828857, 0.12152144312858582, 0.08430802822113037, -0.01133981067687273, 0.09791947156190872, -0.30057990550994873, -0.11297563463449478, 0.13992652297019958, 0.1440286636352539, 0.12114910036325455, -0.14069239795207977, -0.002414488699287176, -0.030839765444397926, -0.12448009848594666, 0.11540801078081131, -0.08373696357011795, 0.1239585131406784, -0.024087201803922653, 0.11903462558984756, 0.008925092406570911, -0.046338435262441635, 0.11534544825553894, 0.021625714376568794, 0.09919611364603043, -0.07103241235017776, -0.0303041934967041, 0.022858066484332085, -0.040134724229574203, 0.02944108098745346, -0.09900438040494919, 0.017833665013313293, -0.11792459338903427, -0.03237378969788551, -0.08853314816951752, 0.03513661399483681, -0.040174245834350586, -0.07397525757551193, -0.050041165202856064, 0.02816113457083702, 0.07622185349464417, -0.004667900502681732, 0.08376561850309372, 0.01950220949947834, 0.11442000418901443, 0.09925757348537445, 0.09666679054498672, -0.05519923195242882, -0.07141568511724472, -0.022381464019417763, -0.009976433590054512, 0.048478029668331146, -0.14822426438331604, 0.01608099974691868, 0.13894839584827423, 0.019480889663100243, 0.1673259288072586, 0.08592981100082397, -0.0385739766061306, 0.017456399276852608, 0.06034190207719803, -0.1507411003112793, -0.08740292489528656, -0.02028888277709484, -0.07070736587047577, -0.12298166751861572, 0.031328827142715454, 0.08302098512649536, -0.07266725599765778, -0.00016929450794123113, -0.015392606146633625, 0.01725717820227146, -0.04057107865810394, 0.16434220969676971, 0.048006441444158554, 0.029739059507846832, -0.10324610769748688, 0.07677920162677765, 0.02069034054875374, -0.10905935615301132, 0.029330000281333923, 0.07366786152124405, -0.07665736973285675, -0.05674770846962929, 0.06659182161092758, 0.21424585580825806, -0.060438938438892365, -0.049563173204660416, -0.1491101235151291, -0.12783226370811462, 0.08513522893190384, 0.1479852944612503, 0.1134083941578865, 0.008781511336565018, -0.08621153980493546, 0.024828435853123665, -0.11682089418172836, 0.08967143297195435, 0.05856127291917801, 0.04151647537946701, -0.13298381865024567, 0.12173733115196228, 0.00987596157938242, 0.04105108231306076, -0.020841378718614578, 0.010980355553328991, -0.09201997518539429, 0.008116669952869415, -0.11870959401130676, -0.027281617745757103, -0.04016470909118652, 0.011824891902506351, 0.0021165378857403994, -0.04331228882074356, -0.0449797622859478, 0.003677732776850462, -0.11604902893304825, -0.015674734488129616, 0.03586804121732712, 0.07664954662322998, -0.113495834171772, -0.03808976709842682, 0.028106754645705223, -0.06515103578567505, 0.09211961925029755, 0.06284593045711517, 0.013682783581316471, 0.05738198012113571, -0.16451308131217957, 0.02591823786497116, 0.09183235466480255, 0.015367215499281883, 0.05428994446992874, -0.08173952251672745, -0.01165669783949852, -0.010551336221396923, 0.039947234094142914, 0.016846122220158577, 0.08105680346488953, -0.12655404210090637, 0.018837958574295044, 0.005064732860773802, -0.08740627020597458, -0.06847129762172699, 0.03200390934944153, 0.08091627061367035, 0.009806549176573753, 0.19735103845596313, -0.07809913903474808, 0.046744346618652344, -0.21774250268936157, 0.007651552092283964, 0.00039223834755830467, -0.10069233924150467, -0.12886367738246918, -0.07508815824985504, 0.05666074901819229, -0.05609523504972458, 0.1320609599351883, 0.04614754393696785, 0.009946395643055439, 0.010845249518752098, -0.009018459357321262, 0.023153048008680344, 0.003420208115130663, 0.18353857100009918, 0.035507675260305405, -0.05026087164878845, 0.06071584299206734, 0.05424007400870323, 0.11871401220560074, 0.12723422050476074, 0.19787128269672394, 0.1401710957288742, 0.025031769648194313, 0.10930082201957703, 0.03284158185124397, -0.03587397560477257, -0.14979085326194763, 0.030222611501812935, -0.0520317442715168, 0.11461912095546722, -0.017922502011060715, 0.24583737552165985, 0.06318626552820206, -0.15751786530017853, 0.0627346932888031, -0.0622653029859066, -0.080485038459301, -0.10323148965835571, -0.062278345227241516, -0.07988351583480835, -0.14291183650493622, 0.0025185495615005493, -0.1344880908727646, 0.005178164690732956, 0.0950811505317688, 0.010578589513897896, -0.041072338819503784, 0.13897496461868286, 0.01453063078224659, 0.020731834694743156, 0.08987818658351898, 0.008688630536198616, -0.06495719403028488, -0.13327042758464813, -0.0563986711204052, -0.012872141785919666, -0.01658868044614792, 0.040306270122528076, -0.050967987626791, -0.06254465132951736, 0.0255191158503294, -0.017901567742228508, -0.1019640564918518, 0.008450163528323174, 0.00674017146229744, 0.06198660656809807, 0.045322615653276443, 0.0007392247207462788, 0.02236340567469597, 0.0022965685930103064, 0.19070175290107727, -0.07466679811477661, -0.02867077849805355, -0.10520850121974945, 0.22406406700611115, 0.02177613228559494, -0.014602554962038994, 0.03250817582011223, -0.0718652755022049, -0.005044568330049515, 0.24970677495002747, 0.20883415639400482, -0.08701977133750916, -0.005430365912616253, 0.0030840749386698008, 0.002857531188055873, -0.046956535428762436, 0.0954923927783966, 0.15175102651119232, 0.02246778830885887, -0.09816353768110275, -0.02384945936501026, -0.058102697134017944, -0.023486129939556122, -0.016953278332948685, 0.05730053782463074, 0.062264759093523026, 0.012224104255437851, -0.04443337395787239, 0.050532374531030655, -0.08826623111963272, -0.10048242658376694, 0.07598186284303665, -0.21897344291210175, -0.15388427674770355, -0.017186596989631653, 0.09836289286613464, 0.028858967125415802, 0.07270942628383636, -0.017048347741365433, -0.0037730636540800333, 0.1151106208562851, -0.02014276571571827, -0.11828415095806122, -0.07104312628507614, 0.09810949116945267, -0.13000449538230896, 0.20294146239757538, -0.06483820080757141, 0.0402655303478241, 0.12451666593551636, 0.07169801741838455, -0.05337971821427345, 0.07340917736291885, 0.048565737903118134, -0.055177778005599976, 0.006028510630130768, 0.10180963575839996, -0.0313725620508194, 0.07693233340978622, 0.04867885634303093, -0.15307050943374634, 0.025778576731681824, -0.0403456836938858, -0.06710763275623322, -0.04520198702812195, -0.00809670053422451, -0.06513381749391556, 0.12103945016860962, 0.22164419293403625, -0.02433830127120018, -0.002707727486267686, -0.07023309171199799, 0.006103829480707645, 0.04813467711210251, 0.00954868271946907, -0.05603432282805443, -0.20643669366836548, 0.012327268719673157, 0.06683766096830368, -0.013608798384666443, -0.2591656446456909, -0.10369356721639633, 0.0030699747148901224, -0.06895381212234497, -0.09046507626771927, 0.061003975570201874, 0.06755086034536362, 0.059811607003211975, -0.04745471104979515, -0.05766627937555313, -0.06149698793888092, 0.1691356599330902, -0.13927510380744934, -0.08477252721786499 ]
null
null
adapter-transformers
# Adapter `AdapterHub/bert-base-uncased-pf-anli_r3` for bert-base-uncased An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [anli](https://huggingface.co/datasets/anli/) dataset and includes a prediction head for classification. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("bert-base-uncased") adapter_name = model.load_adapter("AdapterHub/bert-base-uncased-pf-anli_r3", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
{"language": ["en"], "tags": ["text-classification", "bert", "adapter-transformers"], "datasets": ["anli"]}
text-classification
AdapterHub/bert-base-uncased-pf-anli_r3
[ "adapter-transformers", "bert", "text-classification", "en", "dataset:anli", "arxiv:2104.08247", "region:us" ]
2022-03-02T23:29:04+00:00
[ "2104.08247" ]
[ "en" ]
TAGS #adapter-transformers #bert #text-classification #en #dataset-anli #arxiv-2104.08247 #region-us
# Adapter 'AdapterHub/bert-base-uncased-pf-anli_r3' for bert-base-uncased An adapter for the 'bert-base-uncased' model that was trained on the anli dataset and includes a prediction head for classification. This adapter was created for usage with the adapter-transformers library. ## Usage First, install 'adapter-transformers': _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_ Now, the adapter can be loaded and activated like this: ## Architecture & Training The training code for this adapter is available at URL In particular, training configurations for all tasks can be found here. ## Evaluation results Refer to the paper for more information on results. If you use this adapter, please cite our paper "What to Pre-Train on? Efficient Intermediate Task Selection":
[ "# Adapter 'AdapterHub/bert-base-uncased-pf-anli_r3' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the anli dataset and includes a prediction head for classification.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ "TAGS\n#adapter-transformers #bert #text-classification #en #dataset-anli #arxiv-2104.08247 #region-us \n", "# Adapter 'AdapterHub/bert-base-uncased-pf-anli_r3' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the anli dataset and includes a prediction head for classification.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ 34, 83, 57, 30, 45 ]
[ "passage: TAGS\n#adapter-transformers #bert #text-classification #en #dataset-anli #arxiv-2104.08247 #region-us \n# Adapter 'AdapterHub/bert-base-uncased-pf-anli_r3' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the anli dataset and includes a prediction head for classification.\n\nThis adapter was created for usage with the adapter-transformers library.## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ -0.060997553169727325, -0.02165103517472744, -0.0028114498127251863, 0.059509895741939545, 0.19203327596187592, 0.026307489722967148, 0.18563374876976013, 0.04678478464484215, 0.08582951873540878, 0.015614373609423637, 0.03765048459172249, 0.09434476494789124, 0.047018587589263916, 0.06509590148925781, -0.009720567613840103, -0.139105424284935, 0.0060397363267838955, 0.02096640318632126, -0.04867534339427948, 0.08784112334251404, 0.08587539941072464, -0.0953158289194107, 0.09326483309268951, 0.012728351168334484, -0.11140158772468567, 0.05448952317237854, -0.01192520558834076, -0.08791700750589371, 0.08292394131422043, 0.0770813375711441, 0.16731122136116028, 0.025046752765774727, 0.04240253567695618, -0.14669232070446014, 0.01570211350917816, 0.09389621764421463, 0.031011631712317467, 0.08260080963373184, -0.00899083074182272, -0.028381256386637688, -0.0025749304331839085, 0.010075023397803307, 0.058284588158130646, 0.05364745110273361, -0.09733766317367554, -0.19008606672286987, -0.023934951052069664, 0.0832403376698494, 0.015155389904975891, 0.06288142502307892, 0.01167570985853672, 0.03238121420145035, -0.002934659831225872, 0.0413837656378746, 0.17581382393836975, -0.20671899616718292, 0.0031902380287647247, -0.028253335505723953, 0.03516389802098274, 0.07177457213401794, -0.047598108649253845, -0.011346223764121532, 0.04222317039966583, 0.007478285580873489, 0.061495184898376465, -0.023496082052588463, -0.028121300041675568, -0.013189846649765968, -0.15773482620716095, -0.020180881023406982, 0.23745514452457428, -0.011470832861959934, -0.09152258932590485, -0.016569487750530243, -0.045057911425828934, 0.08169642835855484, 0.04627171531319618, -0.07574625313282013, -0.013785588555037975, -0.002340544480830431, 0.008066700771450996, -0.11042354255914688, -0.0973629280924797, -0.10038981586694717, -0.07427450269460678, 0.33259695768356323, 0.00421588309109211, 0.028972547501325607, 0.0031962182838469744, 0.13194435834884644, -0.027716729789972305, -0.08968624472618103, -0.03292623907327652, -0.06582021713256836, -0.06939183175563812, -0.02328672632575035, -0.022764885798096657, -0.25243493914604187, -0.024097345769405365, 0.13727888464927673, 0.07964877784252167, 0.007567103952169418, -0.08975456655025482, 0.0707990750670433, 0.030121907591819763, 0.1740177571773529, -0.07132995873689651, 0.05751124396920204, -0.03438686951994896, -0.015780260786414146, -0.027404997497797012, -0.10985442996025085, -0.0671585202217102, -0.017624910920858383, 0.02170650288462639, 0.04073366895318031, -0.002335570752620697, 0.09580913186073303, -0.08642644435167313, -0.07187473028898239, 0.0864691436290741, -0.1315772980451584, -0.027776483446359634, 0.015151236206293106, -0.03944063559174538, 0.07080944627523422, 0.13437621295452118, -0.004272622987627983, -0.04497668519616127, 0.08057592064142227, -0.05384048819541931, -0.06620433181524277, -0.08197075128555298, -0.1495390385389328, 0.0019694804213941097, -0.04724816232919693, -0.007936440408229828, -0.1523449420928955, -0.12260470539331436, 0.007180193439126015, 0.07682229578495026, -0.000497578177601099, 0.10918659716844559, 0.03616896644234657, 0.048358283936977386, -0.008553024381399155, -0.03010532259941101, -0.03120788000524044, -0.03260285034775734, 0.06872110813856125, 0.04900501295924187, 0.05950479209423065, -0.031357113271951675, 0.09540724009275436, -0.05733839049935341, 0.013664621859788895, -0.16488738358020782, 0.10094302147626877, -0.15491409599781036, 0.010102267377078533, -0.12756945192813873, -0.008005879819393158, -0.0027540423907339573, 0.02376307174563408, 0.07435550540685654, 0.09366141259670258, -0.10069271177053452, -0.07139641791582108, 0.0015484453178942204, -0.18505844473838806, -0.11034457385540009, 0.06819707155227661, -0.019593294709920883, 0.14168453216552734, 0.06308773159980774, 0.10910727083683014, 0.06718303263187408, -0.04918460547924042, -0.08911871910095215, 0.04206358268857002, -0.06498732417821884, -0.03683382645249367, 0.07536724954843521, 0.03699038550257683, -0.14185373485088348, 0.01051213126629591, -0.15155327320098877, 0.008782723918557167, -0.047678142786026, -0.031183922663331032, -0.031160805374383926, -0.0505894310772419, 0.10335779935121536, 0.03627476841211319, -0.030418720096349716, 0.048972707241773605, -0.1381935328245163, 0.1864880472421646, 0.053043071180582047, -0.087501160800457, 0.04848145693540573, -0.11108862608671188, 0.10670275241136551, -0.12654833495616913, 0.004836828447878361, -0.20143239200115204, -0.02395228110253811, 0.008990314789116383, 0.0039565651677548885, 0.08645877987146378, 0.03972487151622772, 0.04857092723250389, 0.042144324630498886, 0.02085818350315094, -0.009018495678901672, -0.04519962519407272, 0.04029136523604393, -0.048991743475198746, -0.14393986761569977, -0.08830490708351135, -0.05364500358700752, -0.0005939602851867676, -0.17484311759471893, 0.040293969213962555, 0.0682324692606926, 0.06814588606357574, 0.03201272711157799, -0.009333636611700058, -0.024145131930708885, -0.013819675892591476, -0.03685208782553673, -0.033882081508636475, 0.029004408046603203, 0.0018277168273925781, -0.08624739199876785, 0.020820055156946182, -0.08785980194807053, 0.05754730477929115, 0.058771293610334396, -0.06911437213420868, -0.07433116436004639, -0.010689551010727882, 0.0068513574078679085, -0.02091563306748867, -0.023969031870365143, -0.07532834261655807, 0.2638135552406311, 0.06803712248802185, 0.07741153985261917, -0.0338301919400692, 0.04008379951119423, -0.007723322603851557, -0.025266312062740326, 0.018444813787937164, 0.04200635477900505, 0.023853469640016556, -0.11488807946443558, 0.038158196955919266, 0.1638253778219223, -0.0527212992310524, 0.09105576574802399, 0.011143305338919163, -0.11716944724321365, 0.002579428255558014, -0.04790101200342178, 0.04220978170633316, 0.04290313273668289, -0.14346827566623688, -0.006349832750856876, 0.06540269404649734, -0.01225237175822258, 0.01239846833050251, -0.06919801980257034, 0.039187606424093246, 0.08712182939052582, -0.0003295295173302293, -0.06898003816604614, -0.039879072457551956, -0.03399069979786873, 0.06922969967126846, 0.03764280304312706, 0.08187822252511978, 0.03062867373228073, -0.027641622349619865, -0.07144337147474289, 0.1836085170507431, -0.037071626633405685, -0.20815835893154144, -0.1988687813282013, -0.15274439752101898, -0.014082235284149647, 0.019673924893140793, 0.04432760551571846, -0.11205240339040756, -0.09895994514226913, -0.018795225769281387, 0.1574479639530182, -0.005205593071877956, 0.010636180639266968, 0.03768021613359451, -0.05825697258114815, 0.05549030378460884, -0.14946788549423218, 0.03512867912650108, 0.011785805225372314, -0.1001439094543457, -0.004568370990455151, 0.017175918444991112, 0.08835692703723907, 0.1465996503829956, -0.024299178272485733, 0.014648033306002617, 0.0005398109788075089, 0.08272510021924973, -0.07136376202106476, 0.014720520004630089, 0.13567668199539185, -0.17330792546272278, 0.032217323780059814, 0.08404499292373657, 0.06088109314441681, -0.039611585438251495, 0.056914202868938446, 0.02757810428738594, -0.06235373765230179, -0.296604186296463, -0.01488963421434164, 0.012271957471966743, -0.0075018033385276794, 0.0883556604385376, 0.021951664239168167, 0.022162510082125664, 0.07682601362466812, 0.049248840659856796, -0.002652905648574233, -0.04736588895320892, 0.06473644077777863, 0.19157110154628754, -0.037891652435064316, 0.11852408945560455, -0.0726725161075592, 0.027846800163388252, 0.10800368338823318, -0.014635086990892887, 0.16543076932430267, -0.0364077165722847, 0.11120827496051788, 0.06433039903640747, -0.03937149420380592, 0.04330948740243912, 0.1425912231206894, -0.04548806697130203, 0.0013636329676955938, -0.006848855409771204, -0.04166173189878464, -0.08124104887247086, 0.039651043713092804, -0.034441087394952774, 0.011818398721516132, -0.05251563340425491, -0.03192593902349472, 0.0349249541759491, 0.10434393584728241, 0.013751712627708912, -0.24584674835205078, -0.13155552744865417, -0.021101076155900955, -0.030881168320775032, -0.07594290375709534, 0.00360954855568707, 0.052587274461984634, -0.05980288237333298, -0.012373681180179119, -0.042491719126701355, 0.08541598916053772, -0.17982794344425201, -0.00650204811245203, 0.03687574341893196, 0.1303645372390747, -0.052277691662311554, 0.1066359281539917, -0.20421940088272095, 0.11501077562570572, 0.02654307149350643, 0.044712409377098083, -0.049465611577034, 0.01203788910061121, 0.031370796263217926, 0.13629268109798431, 0.07548658549785614, -0.03375028818845749, 0.09226837009191513, -0.19009429216384888, -0.07701973617076874, 0.026563676074147224, 0.06793975830078125, -0.07918681204319, 0.039093561470508575, -0.040468476712703705, 0.05330917239189148, 0.051217079162597656, 0.019463619217276573, -0.14024406671524048, -0.1446092128753662, 0.0887342244386673, 0.01139560341835022, 0.1094006821513176, -0.048685431480407715, -0.12395572662353516, 0.0554797388613224, 0.21142849326133728, -0.11260034143924713, -0.07823449373245239, -0.15839695930480957, 0.02938205748796463, 0.06888798624277115, -0.06852643936872482, 0.03509454429149628, -0.013034391216933727, 0.0947168841958046, 0.0006144650978967547, -0.09382056444883347, 0.07498341053724289, -0.08807418495416641, -0.047836337238550186, -0.03252130374312401, -0.032042860984802246, 0.13189594447612762, 0.03180129453539848, -0.018101032823324203, -0.01725955493748188, 0.011141772381961346, -0.08551532030105591, -0.0063225277699530125, 0.033842023462057114, -0.005572951398789883, 0.05372660234570503, -0.09266447275876999, 0.05653085187077522, -0.07673244178295135, 0.015104064717888832, 0.12864737212657928, 0.11309698224067688, -0.03691054508090019, 0.058941952884197235, 0.2003544270992279, -0.10060761123895645, -0.2648640275001526, 0.002910686656832695, 0.03757398575544357, -0.0007089014980010688, 0.03374074026942253, -0.2645241618156433, 0.1673005223274231, 0.04736775904893875, 0.004695796873420477, 0.05282995104789734, -0.12708891928195953, -0.07753152400255203, 0.22651460766792297, 0.09260354936122894, 0.0627838745713234, -0.1139867901802063, -0.06397449970245361, -0.014297954738140106, -0.11761327087879181, 0.11209650337696075, -0.032627955079078674, 0.07819448411464691, -0.010746242478489876, 0.015812966972589493, 0.023901935666799545, -0.0249688308686018, 0.0729965940117836, 0.001785701490007341, 0.018081044778227806, -0.0913623794913292, -0.0246256273239851, 0.04584121331572533, -0.057987529784440994, 0.08459044992923737, -0.019860802218317986, 0.05414167046546936, -0.0852499008178711, -0.08526962995529175, 0.0268855057656765, 0.0884433314204216, 0.013539465144276619, -0.07821676135063171, -0.03894045948982239, 0.010542553849518299, -0.02261045202612877, -0.015401894226670265, 0.07207975536584854, -0.06039208918809891, 0.03665076196193695, 0.16343219578266144, 0.15618343651294708, -0.027375606819987297, -0.08573437482118607, -0.021990880370140076, -0.014319115318357944, 0.13044996559619904, -0.15519192814826965, 0.07341571152210236, 0.1062813401222229, 0.022133486345410347, 0.12270838022232056, 0.05445169284939766, -0.1313265711069107, -0.006081516854465008, 0.05083601176738739, -0.07568901777267456, -0.03296227008104324, -0.0011649075895547867, 0.09268821030855179, -0.1362888365983963, 0.055802516639232635, 0.13607273995876312, -0.07425691932439804, 0.014037752524018288, 0.03649338707327843, -0.005743512883782387, -0.05462213233113289, 0.09686481952667236, 0.1326655000448227, 0.0352189876139164, -0.03695637360215187, 0.11466632038354874, 0.10291144251823425, -0.07926244288682938, 0.05616472288966179, -0.07369948923587799, -0.08033840358257294, -0.055339667946100235, -0.08056729286909103, 0.10554095357656479, -0.08790168911218643, -0.10997460037469864, -0.016526078805327415, -0.0352124385535717, 0.028669966384768486, 0.17093923687934875, 0.061238329857587814, -0.008101681247353554, -0.08919300138950348, 0.05234329774975777, -0.07229604572057724, 0.07209858298301697, -0.021874291822314262, 0.06251391023397446, -0.07645753771066666, -0.018125006929039955, 0.050308890640735626, 0.0627775639295578, -0.057015031576156616, -0.06061467528343201, -0.10368437319993973, -0.008676612749695778, -0.15022923052310944, -0.02230191044509411, -0.0037089455872774124, -0.009821295738220215, 0.015018344856798649, -0.10646215081214905, -0.03253071382641792, 0.024772999808192253, -0.029270848259329796, 0.01737620308995247, 0.06968777626752853, 0.06291826069355011, -0.20052605867385864, -0.03266197070479393, 0.0731910988688469, -0.049733906984329224, 0.06247948110103607, 0.04170486703515053, -0.02361810766160488, 0.027223262935876846, -0.1176125779747963, 0.01946129836142063, -0.013375134207308292, 0.02937537431716919, 0.030416199937462807, -0.11690986156463623, 0.015346087515354156, -0.030444534495472908, -0.006158640142530203, -0.008106881752610207, 0.22071215510368347, -0.05286327004432678, 0.0641513541340828, -0.01976865902543068, 0.007022701669484377, -0.053670164197683334, 0.09539703279733658, 0.07156271487474442, 0.14050813019275665, 0.1353193074464798, -0.05602465569972992, 0.06421251595020294, -0.07283679395914078, 0.02718704752624035, 0.04151231795549393, -0.03310596942901611, 0.10491344332695007, -0.11955184489488602, -0.013089107349514961, -0.054081887006759644, 0.22635655105113983, -0.013040999881923199, 0.012400761246681213, 0.03676046058535576, -0.017521589994430542, -0.05369046702980995, -0.058259185403585434, 0.1747116893529892, 0.04796136915683746, 0.04631160572171211, -0.0011818535858765244, 0.056907542049884796, 0.026845119893550873, 0.03169170394539833, 0.17742010951042175, 0.12129909545183182, -0.11748138815164566, 0.02265998348593712, 0.004793873056769371, -0.04633907973766327, -0.11481853574514389, -0.05000843480229378, -0.023476259782910347, 0.0794791504740715, 0.002825596369802952, 0.18617017567157745, 0.07717826217412949, -0.010929735377430916, 0.07076841592788696, 0.011059052310883999, -0.0730900913476944, -0.08959648013114929, -0.09142687171697617, -0.00733447540551424, -0.15851695835590363, -0.02180355228483677, -0.09330542385578156, -0.007224910892546177, 0.14882010221481323, 0.007999042980372906, 0.03117382898926735, 0.24501895904541016, -0.06141515076160431, -0.006146108731627464, 0.035900555551052094, -0.06305570900440216, -0.05085187777876854, -0.09516582638025284, 0.035085491836071014, 0.02428007312119007, 0.11416671425104141, 0.044773321598768234, 0.0396820604801178, 0.004591657314449549, 0.05493515729904175, -0.003996696323156357, -0.12000355124473572, -0.04450426995754242, 0.03070908971130848, -0.056295931339263916, 0.08175096660852432, 0.001288105151616037, -0.0023932745680212975, -0.007748658303171396, 0.17172500491142273, -0.05130261555314064, -0.04193730279803276, -0.136308491230011, 0.17287862300872803, -0.019829479977488518, 0.014827675186097622, -0.0409432053565979, -0.1312493234872818, -0.03932590037584305, 0.20202168822288513, 0.06913888454437256, -0.037119023501873016, 0.02812359109520912, 0.04324500635266304, 0.022903967648744583, 0.009520357474684715, 0.09542721509933472, 0.010809282772243023, 0.05127472057938576, -0.017736561596393585, -0.05571798235177994, -0.04138790816068649, -0.03727462515234947, 0.06362500786781311, 0.11942172795534134, 0.024568555876612663, -0.0316288061439991, -0.09071037173271179, 0.08173660188913345, -0.03699241578578949, -0.28384020924568176, -0.012202711775898933, -0.004831549245864153, -0.08569177985191345, -0.07552504539489746, 0.05603323504328728, -0.02999863214790821, 0.026687059551477432, -0.008546947501599789, -0.04264925792813301, 0.1559409499168396, 0.061551179736852646, -0.057626113295555115, -0.02515283413231373, 0.08505882322788239, -0.02980603091418743, 0.17361190915107727, -0.000848772469907999, 0.04706065356731415, 0.05794009938836098, 0.03261229023337364, -0.08622414618730545, 0.024793384596705437, 0.013992803171277046, -0.06565681099891663, -0.005594425834715366, 0.05144715681672096, -0.039228927344083786, 0.11010579019784927, 0.03712022304534912, -0.18197001516819, 0.044270649552345276, -0.033004503697156906, -0.10556778311729431, -0.06957750022411346, -0.052098214626312256, -0.08647941797971725, 0.14540337026119232, 0.14253446459770203, 0.00879351794719696, -0.07412557303905487, -0.11401145905256271, 0.038286205381155014, 0.03366981819272041, 0.06283506751060486, -0.039102569222450256, -0.08289825171232224, -0.02492748200893402, -0.01043974794447422, 0.059798482805490494, -0.2932511866092682, -0.0057199252769351006, 0.05679512023925781, -0.03994659706950188, 0.006992603652179241, 0.0431276299059391, 0.10150700807571411, 0.06245339289307594, -0.04492790251970291, -0.03370044752955437, 0.019340556114912033, 0.10581541061401367, -0.18177737295627594, -0.04035681486129761 ]
null
null
adapter-transformers
# Adapter `AdapterHub/bert-base-uncased-pf-art` for bert-base-uncased An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [art](https://huggingface.co/datasets/art/) dataset and includes a prediction head for multiple choice. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("bert-base-uncased") adapter_name = model.load_adapter("AdapterHub/bert-base-uncased-pf-art", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-what-to-pre-train-on, title={What to Pre-Train on? Efficient Intermediate Task Selection}, author={Clifton Poth and Jonas Pfeiffer and Andreas Rücklé and Iryna Gurevych}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (EMNLP)", month = nov, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/2104.08247", pages = "to appear", } ```
{"language": ["en"], "tags": ["bert", "adapter-transformers"], "datasets": ["art"]}
null
AdapterHub/bert-base-uncased-pf-art
[ "adapter-transformers", "bert", "en", "dataset:art", "arxiv:2104.08247", "region:us" ]
2022-03-02T23:29:04+00:00
[ "2104.08247" ]
[ "en" ]
TAGS #adapter-transformers #bert #en #dataset-art #arxiv-2104.08247 #region-us
# Adapter 'AdapterHub/bert-base-uncased-pf-art' for bert-base-uncased An adapter for the 'bert-base-uncased' model that was trained on the art dataset and includes a prediction head for multiple choice. This adapter was created for usage with the adapter-transformers library. ## Usage First, install 'adapter-transformers': _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_ Now, the adapter can be loaded and activated like this: ## Architecture & Training The training code for this adapter is available at URL In particular, training configurations for all tasks can be found here. ## Evaluation results Refer to the paper for more information on results. If you use this adapter, please cite our paper "What to Pre-Train on? Efficient Intermediate Task Selection":
[ "# Adapter 'AdapterHub/bert-base-uncased-pf-art' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the art dataset and includes a prediction head for multiple choice.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ "TAGS\n#adapter-transformers #bert #en #dataset-art #arxiv-2104.08247 #region-us \n", "# Adapter 'AdapterHub/bert-base-uncased-pf-art' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the art dataset and includes a prediction head for multiple choice.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ 28, 78, 57, 30, 45 ]
[ "passage: TAGS\n#adapter-transformers #bert #en #dataset-art #arxiv-2104.08247 #region-us \n# Adapter 'AdapterHub/bert-base-uncased-pf-art' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the art dataset and includes a prediction head for multiple choice.\n\nThis adapter was created for usage with the adapter-transformers library.## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ -0.05836805701255798, -0.016129881143569946, -0.0012639745837077498, 0.038258086889982224, 0.18027223646640778, 0.0383332222700119, 0.10476774722337723, 0.05918099358677864, 0.06616906076669693, 0.0383734256029129, 0.04387135058641434, 0.06531771272420883, 0.05052924528717995, 0.036878570914268494, 0.02328885719180107, -0.11463017016649246, 0.0022629464510828257, 0.01611880585551262, -0.014837321825325489, 0.07992225885391235, 0.08694849908351898, -0.0939851626753807, 0.06268513947725296, 0.01478252001106739, -0.10845441371202469, 0.03679900988936424, -0.07056303322315216, -0.054714128375053406, 0.06998444348573685, 0.036648593842983246, 0.14985407888889313, 0.039771247655153275, 0.03281310573220253, -0.12151006609201431, 0.00888522993773222, 0.07246062904596329, 0.02558179572224617, 0.06168413907289505, 0.02292860485613346, 0.015763014554977417, -0.04393760487437248, 0.02932838164269924, 0.05928068235516548, 0.034292396157979965, -0.09528199583292007, -0.21039272844791412, -0.03970947861671448, 0.08801025152206421, 0.05211227387189865, 0.09536516666412354, -0.0029394752345979214, 0.04785635694861412, -0.0005716232699342072, 0.03663495555520058, 0.1265605092048645, -0.2464093416929245, -0.010629297234117985, -0.02836187556385994, 0.08894691616296768, 0.08578146249055862, -0.05899185314774513, -0.03701643645763397, 0.017962105572223663, 0.03982720524072647, 0.03072994388639927, -0.042716819792985916, -0.06409426778554916, -0.01986190304160118, -0.17471762001514435, 0.004409224726259708, 0.2772200107574463, -0.03155272454023361, -0.07022203505039215, 0.0016261792043223977, -0.009598850272595882, 0.08659384399652481, 0.011783027090132236, -0.1002831757068634, 0.021394826471805573, -0.0001217157841892913, 0.028903236612677574, -0.14504671096801758, -0.09363600611686707, -0.08743169903755188, -0.03467560559511185, 0.2836335599422455, -0.007795254234224558, 0.02602093666791916, -0.004055613186210394, 0.12481620907783508, -0.06691260635852814, -0.09840044379234314, -0.0321228913962841, -0.05482000112533569, -0.04998437687754631, -0.07032370567321777, -0.03175077214837074, -0.2637820541858673, -0.021618863567709923, 0.16264556348323822, 0.09235507249832153, 0.04325071722269058, -0.07398498058319092, 0.09291931986808777, 0.07019506394863129, 0.14439664781093597, -0.10948207974433899, -0.005396517459303141, -0.03955424204468727, 0.03429887443780899, -0.05058273300528526, -0.08259546756744385, -0.11220237612724304, -0.028396790847182274, 0.04196722432971001, 0.01002520602196455, 0.06454150378704071, 0.05938787758350372, -0.050186898559331894, -0.08859407901763916, 0.07107933610677719, -0.12149743735790253, 0.006285033188760281, -0.01219934318214655, -0.02707732655107975, 0.03037441521883011, 0.1394188106060028, 0.012151471339166164, -0.033046770840883255, 0.09821717441082001, -0.07163775712251663, -0.03968067839741707, -0.1073760837316513, -0.14961889386177063, 0.013170840218663216, -0.07629485428333282, -0.014643595553934574, -0.12019120156764984, -0.12953324615955353, -0.0253654383122921, 0.10068563371896744, -0.02539832331240177, 0.08134280890226364, 0.04992181807756424, 0.01816967874765396, 0.001800422789528966, -0.018172772601246834, 0.03463960066437721, -0.021828657016158104, 0.06968597322702408, 0.00855228491127491, 0.05907329171895981, -0.05274675786495209, 0.09768100082874298, -0.07166752219200134, 0.024858122691512108, -0.17589981853961945, 0.07285146415233612, -0.13659457862377167, 0.03275848925113678, -0.10430479049682617, 0.013199265114963055, -0.06161583214998245, 0.02924324944615364, 0.08632863312959671, 0.08414848893880844, -0.0898808017373085, -0.03338373452425003, 0.033536817878484726, -0.18264013528823853, -0.1080857589840889, 0.04205731675028801, -0.004415515344589949, 0.1596979796886444, 0.020874863490462303, 0.12128099799156189, 0.07629299908876419, -0.08936580270528793, -0.05395342782139778, 0.09838379919528961, -0.08162792026996613, -0.02871488593518734, 0.07119134068489075, -0.003760749474167824, -0.19405806064605713, 0.0011725573567673564, -0.10981518775224686, 0.024738209322094917, -0.03636698052287102, -0.02832457423210144, -0.0066717821173369884, -0.05399243161082268, 0.07907889783382416, 0.04951805621385574, -0.005160239990800619, 0.056544214487075806, -0.12399610131978989, 0.22711384296417236, 0.03801513463258743, -0.05531729757785797, 0.012134004384279251, -0.07492049038410187, 0.10887069255113602, -0.1386871635913849, 0.005793175660073757, -0.19688521325588226, -0.002316930564120412, 0.025283727794885635, 0.06786694377660751, 0.04874444007873535, 0.06393605470657349, 0.06815604865550995, 0.046889860183000565, -0.0034001010935753584, -0.018416516482830048, -0.07341579347848892, 0.040131598711013794, -0.06102709844708443, -0.15172675251960754, -0.08357252925634384, -0.09030551463365555, 0.010439731180667877, -0.16095368564128876, 0.037569236010313034, 0.011722405441105366, 0.045793622732162476, 0.030621327459812164, -0.017634233459830284, -0.02844516560435295, 0.008001478388905525, -0.0292313601821661, -0.04126186668872833, 0.05497817322611809, 0.044873468577861786, -0.022746821865439415, -0.019943956285715103, -0.06612217426300049, -0.02848382666707039, 0.07554910331964493, -0.07638507336378098, -0.1156390905380249, -0.026686811819672585, 0.003672886872664094, -0.06109031289815903, 0.0013981434749439359, -0.1103120967745781, 0.21628572046756744, 0.044927842915058136, 0.0647125169634819, -0.03225259855389595, 0.007224247325211763, -0.009603827260434628, -0.027519308030605316, -0.002665203530341387, 0.0015459738206118345, 0.051826126873493195, -0.07274577766656876, 0.08491098135709763, 0.1769881695508957, -0.08656595647335052, 0.113986074924469, -0.008087493479251862, -0.12255005538463593, -0.006813813000917435, -0.007350837346166372, 0.021547216922044754, 0.10752355307340622, -0.21058280766010284, -0.012538167648017406, 0.0507960245013237, -0.02469530887901783, 0.04117922484874725, -0.07461032271385193, 0.05237782001495361, 0.06160303205251694, 0.036741502583026886, 0.022862091660499573, -0.05639515817165375, -0.040808819234371185, 0.04298374801874161, 0.06098690629005432, 0.10031776130199432, 0.0381077378988266, -0.01740272156894207, -0.08286948502063751, 0.1642119288444519, -0.05894496291875839, -0.17469459772109985, -0.15274913609027863, -0.1040373370051384, 0.03255174681544304, 0.0141755947843194, 0.03074035793542862, -0.05255822837352753, -0.0711899995803833, -0.03150799870491028, 0.10477657616138458, -0.07475360482931137, -0.013196227140724659, 0.01727641373872757, -0.054819878190755844, 0.06382086127996445, -0.12072154879570007, 0.041274577379226685, 0.04734380170702934, -0.05771750956773758, -0.006183517165482044, 0.058494605123996735, 0.0952463299036026, 0.13530881702899933, -0.0449003241956234, 0.013004382140934467, 0.014870290644466877, 0.13890095055103302, -0.057396285235881805, 0.03468461334705353, 0.07580427825450897, -0.15229672193527222, 0.035095833241939545, 0.12403896450996399, 0.03933725506067276, -0.0031300773844122887, 0.025495944544672966, 0.02807782217860222, -0.03305578976869583, -0.24199463427066803, -0.00963961984962225, -0.011141950264573097, -0.006643780041486025, 0.10553538799285889, 0.036913808435201645, 0.03306253254413605, 0.10116463154554367, 0.059458158910274506, 0.031078502535820007, -0.04423125088214874, 0.07254822552204132, 0.1242760717868805, -0.030297115445137024, 0.10793764889240265, -0.05001663416624069, 0.022187018766999245, 0.07844822108745575, -0.016458986327052116, 0.15543776750564575, -0.0034862770698964596, 0.06368321925401688, 0.0634159967303276, -0.005722402594983578, 0.04504137486219406, 0.11871872842311859, -0.09824416786432266, -0.007366024889051914, -0.006338540930300951, -0.04431261494755745, -0.021371306851506233, 0.050244610756635666, 0.02763824164867401, -0.01631247065961361, -0.028791597113013268, -0.08189716190099716, 0.014303045347332954, 0.10814377665519714, 0.018830349668860435, -0.19883014261722565, -0.06294544786214828, -0.012191593647003174, 0.003644303884357214, -0.11667992174625397, 0.00001547239298815839, 0.08796072751283646, -0.0625523030757904, -0.002609504386782646, -0.048301346600055695, 0.09717617183923721, -0.11261869221925735, -0.024976875633001328, 0.09123945236206055, 0.09586035460233688, -0.030359864234924316, 0.10996704548597336, -0.18923801183700562, 0.07178962975740433, 0.04605742543935776, 0.03742906078696251, -0.0425027497112751, 0.03386517986655235, 0.017520088702440262, 0.12757663428783417, 0.08394888788461685, -0.022155439481139183, 0.1039937362074852, -0.12008584290742874, -0.060406025499105453, 0.0033488767221570015, 0.06529968976974487, -0.08584701269865036, 0.03653176128864288, -0.015360542573034763, 0.04991062730550766, 0.027232330292463303, 0.027363881468772888, -0.16353309154510498, -0.16139274835586548, 0.0881304144859314, -0.03669701889157295, 0.13287243247032166, -0.03883782774209976, -0.10490860044956207, 0.041394542902708054, 0.21190080046653748, -0.11467577517032623, -0.06033100187778473, -0.1397087126970291, 0.019145788624882698, 0.07155103981494904, -0.026360735297203064, 0.05016595497727394, -0.01682826317846775, 0.0642242506146431, -0.02777235582470894, -0.06600792706012726, 0.084531769156456, -0.0982365533709526, -0.02521440200507641, -0.06153632327914238, -0.027110742405056953, 0.11982418596744537, 0.03284689038991928, -0.029414214193820953, -0.0027359311934560537, 0.002170994644984603, -0.0956750363111496, 0.007110185455530882, -0.013447058387100697, 0.018620096147060394, 0.02839100919663906, -0.11997388303279877, 0.03685518354177475, -0.03560766205191612, 0.022089364007115364, 0.1483655720949173, 0.14390350878238678, -0.07445681840181351, 0.05428481847047806, 0.23176728188991547, -0.08948326110839844, -0.31066837906837463, 0.04680337384343147, 0.07077605277299881, 0.0018308114958927035, 0.012136507779359818, -0.29602164030075073, 0.14494609832763672, 0.03953489288687706, -0.012888060882687569, 0.1103055328130722, -0.1218477413058281, -0.061666179448366165, 0.21993836760520935, 0.10026348382234573, 0.027602214366197586, -0.1580766886472702, -0.09018950909376144, 0.010199479758739471, -0.08509618043899536, 0.09544508904218674, -0.07543235272169113, 0.06324567645788193, -0.002620179671794176, -0.03369998559355736, 0.028928562998771667, -0.0383058525621891, 0.09473490715026855, -0.00010149551962967962, 0.016829442232847214, -0.09591014683246613, 0.010453296825289726, 0.07753530144691467, -0.04900109022855759, 0.09494985640048981, 0.011689662002027035, 0.035738661885261536, -0.08725094795227051, -0.06672161817550659, -0.01627345383167267, 0.10589838773012161, -0.0008902028785087168, -0.096399687230587, -0.02534843422472477, 0.046683039516210556, -0.046426549553871155, -0.02710937336087227, 0.015153572894632816, -0.04372458904981613, 0.025929860770702362, 0.1940147578716278, 0.13535040616989136, -0.02908969484269619, -0.08633800595998764, 0.03799149766564369, -0.03285824880003929, 0.14212660491466522, -0.04881910979747772, 0.023669157177209854, 0.0824660062789917, 0.038387835025787354, 0.13946008682250977, 0.05674395710229874, -0.13590659201145172, -0.03452576324343681, 0.06246200203895569, -0.111272431910038, -0.0348251536488533, -0.029865603893995285, 0.09289214760065079, -0.17115476727485657, -0.0201262217015028, 0.09443405270576477, -0.0513419546186924, 0.020923230797052383, 0.031465284526348114, -0.020562846213579178, -0.061339858919382095, 0.07039708644151688, 0.14048859477043152, 0.031380925327539444, -0.012559349648654461, 0.10784681141376495, 0.11114426702260971, -0.11751069873571396, 0.0474751740694046, -0.026110023260116577, -0.053277939558029175, -0.07939321547746658, -0.046754032373428345, 0.1434991955757141, 0.021941212937235832, -0.09023399651050568, 0.048459555953741074, -0.03400833159685135, 0.022266250103712082, 0.13940264284610748, 0.035898637026548386, -0.02137707732617855, -0.038711998611688614, 0.06900274008512497, -0.10406816005706787, 0.09642253071069717, -0.027729356661438942, 0.07171186059713364, -0.06872240453958511, -0.05686810612678528, 0.06147259473800659, 0.060281407088041306, -0.059998203068971634, -0.06865382194519043, -0.1399705708026886, -0.01928839646279812, -0.10385584831237793, -0.017793292179703712, -0.058430928736925125, -0.031610265374183655, 0.02589365653693676, -0.08472327888011932, -0.029014425352215767, -0.0019549818243831396, -0.039586734026670456, -0.0008531570201739669, 0.056785427033901215, 0.05712467059493065, -0.13733868300914764, -0.03264719992876053, 0.062344711273908615, -0.0521208681166172, 0.06270095705986023, 0.04494476318359375, 0.013757250271737576, -0.023590054363012314, -0.06055912747979164, 0.0029262450989335775, -0.03368154540657997, 0.016808761283755302, 0.011833702214062214, -0.1053028404712677, 0.0009785641450434923, -0.052911318838596344, -0.004124087747186422, -0.023234250023961067, 0.22570359706878662, -0.07974100112915039, 0.06535717844963074, -0.019213750958442688, -0.03398730605840683, -0.049183428287506104, 0.08114533871412277, 0.08245353400707245, 0.1052309051156044, 0.12210429459810257, -0.06724504381418228, 0.07508884370326996, -0.06886444985866547, 0.02394797094166279, 0.02060765214264393, 0.02803618088364601, 0.10811669379472733, -0.10925617069005966, -0.005282466299831867, -0.04711350426077843, 0.2033936232328415, -0.0011801571818068624, 0.023338571190834045, 0.022071579471230507, -0.04779716208577156, -0.04465216025710106, -0.034078001976013184, 0.16801336407661438, 0.023820221424102783, 0.0025853002443909645, -0.046990200877189636, 0.10344386845827103, -0.01567803882062435, 0.028581924736499786, 0.13510145246982574, 0.1856667548418045, -0.09108208119869232, 0.009063712321221828, 0.025199096649885178, -0.10140953958034515, -0.10416537523269653, 0.017863774672150612, 0.04654824733734131, 0.07856498658657074, -0.04304107278585434, 0.2254168689250946, 0.06240133196115494, -0.028429236263036728, 0.05373993515968323, 0.009648109786212444, -0.07246478646993637, -0.07399318367242813, -0.05934904143214226, -0.0034162458032369614, -0.13965974748134613, -0.017448632046580315, -0.07166354358196259, -0.0007415763102471828, 0.12704257667064667, 0.017908360809087753, 0.009724360890686512, 0.25887176394462585, -0.06526975333690643, -0.045526426285505295, 0.02509460039436817, -0.041061654686927795, 0.012885065749287605, -0.1712159812450409, 0.03562595322728157, 0.02634352259337902, 0.09109949320554733, 0.02992931567132473, 0.03568120673298836, -0.011819188483059406, 0.03812331333756447, 0.038819365203380585, -0.12080803513526917, -0.035902053117752075, 0.044026438146829605, -0.035463135689496994, 0.08814690262079239, -0.010450504720211029, -0.010407954454421997, -0.03227386996150017, 0.1446913480758667, -0.06643319875001907, -0.06839638948440552, -0.10940451174974442, 0.08201221376657486, -0.05034109205007553, 0.01136548537760973, -0.05326827988028526, -0.13558821380138397, -0.028135832399129868, 0.20717750489711761, 0.05581870302557945, -0.05516667664051056, 0.01453218050301075, 0.08153674006462097, 0.014911139383912086, 0.015539981424808502, 0.060799043625593185, -0.007854454219341278, 0.07302583009004593, -0.04261351749300957, -0.05734022706747055, -0.08155976980924606, -0.029105650261044502, 0.02649468556046486, 0.0945148691534996, 0.04774988815188408, -0.028342142701148987, -0.10005486756563187, 0.05035428702831268, -0.022626442834734917, -0.2573795020580292, 0.02719171904027462, 0.0006365056033246219, -0.08025122433900833, -0.05493810772895813, 0.08340286463499069, -0.05972640588879585, -0.003360732225701213, -0.00218672351911664, -0.021224157884716988, 0.10967757552862167, 0.033800311386585236, -0.052324775606393814, -0.04874959960579872, 0.08686927706003189, 0.002844404662027955, 0.19977229833602905, -0.02200922928750515, 0.026855312287807465, 0.052443958818912506, 0.06825366616249084, -0.11071392893791199, -0.0031754113733768463, 0.02547384798526764, -0.05259062349796295, -0.014385423623025417, 0.06877806037664413, -0.022919846698641777, 0.1322399228811264, 0.04038490727543831, -0.2016172558069229, 0.02865714579820633, -0.04675384238362312, -0.1128314882516861, -0.09517119079828262, -0.049940336495637894, -0.0657108724117279, 0.16064724326133728, 0.12688007950782776, 0.0267788115888834, -0.09150753915309906, -0.08621726930141449, 0.029305212199687958, 0.027761975303292274, 0.1200544610619545, -0.054519426077604294, -0.09350737184286118, -0.027195261791348457, -0.020705221220850945, 0.03856318071484566, -0.27526193857192993, -0.037082064896821976, 0.050404082983732224, -0.0200449600815773, -0.005319806281477213, 0.02677018567919731, 0.08021464198827744, 0.05305608734488487, -0.05463125929236412, -0.05400698259472847, 0.004525815136730671, 0.10162033885717392, -0.19289685785770416, -0.030044594779610634 ]
null
null
adapter-transformers
# Adapter `AdapterHub/bert-base-uncased-pf-boolq` for bert-base-uncased An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [qa/boolq](https://adapterhub.ml/explore/qa/boolq/) dataset and includes a prediction head for classification. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("bert-base-uncased") adapter_name = model.load_adapter("AdapterHub/bert-base-uncased-pf-boolq", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
{"language": ["en"], "tags": ["text-classification", "bert", "adapterhub:qa/boolq", "adapter-transformers"], "datasets": ["boolq"]}
text-classification
AdapterHub/bert-base-uncased-pf-boolq
[ "adapter-transformers", "bert", "text-classification", "adapterhub:qa/boolq", "en", "dataset:boolq", "arxiv:2104.08247", "region:us" ]
2022-03-02T23:29:04+00:00
[ "2104.08247" ]
[ "en" ]
TAGS #adapter-transformers #bert #text-classification #adapterhub-qa/boolq #en #dataset-boolq #arxiv-2104.08247 #region-us
# Adapter 'AdapterHub/bert-base-uncased-pf-boolq' for bert-base-uncased An adapter for the 'bert-base-uncased' model that was trained on the qa/boolq dataset and includes a prediction head for classification. This adapter was created for usage with the adapter-transformers library. ## Usage First, install 'adapter-transformers': _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_ Now, the adapter can be loaded and activated like this: ## Architecture & Training The training code for this adapter is available at URL In particular, training configurations for all tasks can be found here. ## Evaluation results Refer to the paper for more information on results. If you use this adapter, please cite our paper "What to Pre-Train on? Efficient Intermediate Task Selection":
[ "# Adapter 'AdapterHub/bert-base-uncased-pf-boolq' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the qa/boolq dataset and includes a prediction head for classification.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ "TAGS\n#adapter-transformers #bert #text-classification #adapterhub-qa/boolq #en #dataset-boolq #arxiv-2104.08247 #region-us \n", "# Adapter 'AdapterHub/bert-base-uncased-pf-boolq' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the qa/boolq dataset and includes a prediction head for classification.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ 42, 82, 57, 30, 45 ]
[ "passage: TAGS\n#adapter-transformers #bert #text-classification #adapterhub-qa/boolq #en #dataset-boolq #arxiv-2104.08247 #region-us \n# Adapter 'AdapterHub/bert-base-uncased-pf-boolq' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the qa/boolq dataset and includes a prediction head for classification.\n\nThis adapter was created for usage with the adapter-transformers library.## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ -0.08009015768766403, 0.025012627243995667, -0.0031497282907366753, 0.026109052821993828, 0.17533522844314575, -0.00008857827924657613, 0.12279533594846725, 0.07660476863384247, 0.06595240533351898, 0.03541136533021927, 0.019806064665317535, 0.1014779657125473, 0.048795219510793686, 0.045166607946157455, 0.013356105424463749, -0.1207243949174881, 0.007782971486449242, 0.026965307071805, -0.072211854159832, 0.108565554022789, 0.10087435692548752, -0.09834268689155579, 0.09688335657119751, 0.05872565880417824, -0.08114735037088394, 0.04015684500336647, -0.01354130357503891, -0.09821446985006332, 0.09237094223499298, 0.09813230484724045, 0.13337373733520508, 0.042381882667541504, 0.005434055346995592, -0.170955091714859, 0.020821161568164825, 0.07788347452878952, 0.020834485068917274, 0.07195855677127838, -0.015783200040459633, 0.004798226524144411, -0.024290136992931366, -0.017212288454174995, 0.05925169214606285, 0.07436901330947876, -0.07328151911497116, -0.22657659649848938, -0.02055036835372448, 0.1100689172744751, 0.03812598064541817, 0.0726899802684784, -0.006913504097610712, 0.05663308873772621, 0.02915719710290432, 0.04539576172828674, 0.1956086903810501, -0.2727816104888916, -0.004608748946338892, -0.00502959406003356, 0.0605890266597271, 0.04648170992732048, -0.061428606510162354, 0.004674323368817568, 0.021751826629042625, 0.0085811298340559, 0.035657577216625214, -0.031062768772244453, -0.0047574397176504135, 0.008663610555231571, -0.14907437562942505, -0.008835136890411377, 0.21258094906806946, -0.02021680399775505, -0.11263775080442429, -0.05700668692588806, -0.026480600237846375, 0.09454727172851562, 0.028428709134459496, -0.0869910717010498, 0.006625334266573191, 0.007237602025270462, -0.0062753865495324135, -0.08112049847841263, -0.10265009850263596, -0.07513221353292465, -0.09241906553506851, 0.25263428688049316, -0.012276281602680683, 0.032500796020030975, -0.021282698959112167, 0.1314825415611267, -0.014867899008095264, -0.1073223203420639, -0.09441162645816803, -0.07576508820056915, -0.06535077095031738, -0.037593282759189606, -0.02635469287633896, -0.2494969516992569, -0.0005981223657727242, 0.12802909314632416, 0.11211737245321274, 0.04236626252532005, -0.07640697807073593, 0.0465177446603775, 0.04933492839336395, 0.23825813829898834, -0.06662382930517197, 0.03487864136695862, -0.03324199095368385, -0.0008894260390661657, -0.04489319398999214, -0.10156191140413284, -0.06145119667053223, -0.0254753939807415, 0.04813803732395172, 0.05202756077051163, 0.006700537633150816, 0.08999335020780563, -0.040524013340473175, -0.06286285072565079, 0.07918359339237213, -0.1327519416809082, -0.015550002455711365, 0.017107384279370308, -0.04732944443821907, 0.05769983306527138, 0.13609720766544342, 0.0017184701282531023, -0.03752032667398453, 0.06642183661460876, -0.06748797744512558, -0.059845391660928726, -0.05077732354402542, -0.1421898752450943, -0.0036886625457555056, -0.015709564089775085, -0.0053041004575788975, -0.1447165161371231, -0.07740902900695801, 0.0005180382286198437, 0.05275435000658035, 0.006455905735492706, 0.08278892934322357, 0.037985436618328094, 0.030578816309571266, 0.015309957787394524, -0.018023386597633362, -0.015643510967493057, -0.027414290234446526, 0.08747944980859756, 0.030031118541955948, 0.04446657747030258, -0.036679767072200775, 0.07916432619094849, -0.06758467108011246, 0.019330712035298347, -0.18454663455486298, 0.11598977446556091, -0.14507634937763214, 0.007292408496141434, -0.14985570311546326, -0.027047092095017433, 0.03381918743252754, 0.031111670657992363, 0.07196106016635895, 0.08171316236257553, -0.1254802793264389, -0.05457494780421257, 0.06786887347698212, -0.1556815207004547, -0.14763081073760986, 0.04930747300386429, -0.023860497400164604, 0.1527179628610611, 0.05983082950115204, 0.07833097875118256, 0.15038609504699707, -0.08946160227060318, -0.13333700597286224, 0.05812356248497963, -0.058008622378110886, -0.011892499402165413, 0.05790425091981888, 0.012714511714875698, -0.133928582072258, 0.023286720737814903, -0.10287214070558548, -0.019685015082359314, -0.021946968510746956, -0.044550806283950806, -0.03462489694356918, -0.03400785103440285, 0.09107781201601028, -0.006307216361165047, -0.017895616590976715, 0.06515780091285706, -0.13169878721237183, 0.1853075474500656, 0.05704256147146225, -0.06578698754310608, 0.016985978931188583, -0.1253402829170227, 0.0968821793794632, -0.11633863300085068, 0.010745018720626831, -0.20154467225074768, -0.006046214606612921, 0.008114893920719624, -0.04630530625581741, 0.0533372238278389, 0.04825111851096153, 0.04624786600470543, 0.00820404663681984, 0.029693512246012688, 0.001898608054034412, -0.05261559411883354, 0.022036567330360413, -0.06708922982215881, -0.07534855604171753, -0.05696489289402962, -0.057184796780347824, 0.02986356057226658, -0.15940552949905396, 0.058890245854854584, 0.11113543063402176, 0.024699512869119644, 0.02620919980108738, -0.010445303283631802, -0.006225988734513521, -0.027704112231731415, -0.03200507536530495, -0.023025833070278168, 0.03543249890208244, 0.009397863410413265, -0.11626950651407242, 0.0034439617302268744, -0.10151749849319458, 0.006747258361428976, 0.06908410042524338, 0.0013596604112535715, -0.04546264559030533, -0.06891056150197983, -0.019663330167531967, -0.019413573667407036, -0.011846031993627548, -0.09997541457414627, 0.27635008096694946, 0.07781247794628143, 0.06893797963857651, -0.05404844135046005, -0.01626257412135601, 0.011680708266794682, 0.0005766419344581664, -0.0037044489290565252, 0.015043219551444054, 0.030826060101389885, -0.0896894708275795, 0.011982446536421776, 0.19181609153747559, 0.009940210729837418, 0.10098603367805481, -0.011972074396908283, -0.09503050893545151, -0.004062441643327475, -0.04539203643798828, 0.03644362837076187, 0.059837456792593, -0.11162417382001877, 0.016650963574647903, 0.06931473314762115, -0.010047000832855701, 0.00593679491430521, -0.0693834125995636, 0.03794829174876213, 0.058549556881189346, 0.002582455985248089, -0.06498535722494125, -0.003160012187436223, -0.01310908142477274, 0.05208734795451164, 0.059499774128198624, 0.11821535229682922, 0.017625896260142326, -0.027961308136582375, -0.08525054156780243, 0.1964714229106903, -0.06543491780757904, -0.24009273946285248, -0.20380830764770508, -0.0977795273065567, -0.038101788610219955, -0.0038322426844388247, 0.052176520228385925, -0.10921415686607361, -0.08831879496574402, -0.04736892133951187, 0.15676048398017883, -0.024003615602850914, 0.019043877720832825, 0.024830209091305733, -0.048914842307567596, 0.09334109723567963, -0.17129382491111755, 0.028349624946713448, 0.016054725274443626, -0.10528357326984406, -0.019031500443816185, 0.035678233951330185, 0.07889509946107864, 0.13833436369895935, -0.03723197430372238, 0.008070654235780239, -0.010613604448735714, 0.17334941029548645, -0.07476522773504257, 0.03213467821478844, 0.1401779055595398, -0.1578010469675064, 0.03826058283448219, 0.08367332816123962, 0.045059964060783386, -0.0507669672369957, 0.04646798595786095, 0.04079526662826538, -0.046457212418317795, -0.26442888379096985, -0.007559432648122311, 0.018372656777501106, 0.006455450318753719, 0.07490900158882141, 0.04049468785524368, 0.011226492002606392, 0.07751878350973129, 0.03605395555496216, -0.01953791454434395, -0.0375111922621727, 0.07290386408567429, 0.19823825359344482, -0.015785718336701393, 0.10583969205617905, -0.08316530287265778, 0.023973487317562103, 0.09066198021173477, 0.01910342276096344, 0.1282545030117035, -0.030276060104370117, 0.057997290045022964, 0.08525663614273071, -0.04564478248357773, 0.06723639369010925, 0.13339468836784363, -0.0679478719830513, -0.007567478809505701, -0.009222294203937054, -0.06381445378065109, -0.09063231945037842, 0.03792545199394226, -0.02171928994357586, 0.03393865004181862, -0.06678274273872375, -0.017851732671260834, 0.03939966857433319, 0.1351708024740219, 0.022699424996972084, -0.15582601726055145, -0.14242197573184967, -0.0150919109582901, -0.0350361168384552, -0.07885587215423584, 0.008555315434932709, 0.04224289953708649, -0.08650197088718414, 0.029827237129211426, -0.043107062578201294, 0.09927753359079361, -0.14000172913074493, 0.0032916769850999117, 0.049388524144887924, 0.08212762326002121, -0.04731317237019539, 0.09682456403970718, -0.21991460025310516, 0.0689714178442955, 0.0443502813577652, 0.03579495847225189, -0.05048484355211258, 0.03497295826673508, 0.025349130854010582, 0.10465697944164276, 0.0654633566737175, -0.02737780660390854, 0.09465645253658295, -0.16318881511688232, -0.08946556597948074, 0.05049766227602959, 0.04006166011095047, -0.08924158662557602, 0.058305785059928894, -0.03833981975913048, 0.0551886223256588, 0.025999044999480247, 0.03957221657037735, -0.1182650551199913, -0.16672325134277344, 0.06163535639643669, -0.027907222509384155, 0.12337354570627213, -0.06747221946716309, -0.10067746788263321, 0.007924327626824379, 0.17952381074428558, -0.20243224501609802, -0.0865742638707161, -0.132895365357399, 0.015552589669823647, 0.05576720088720322, -0.07392626255750656, 0.03596324846148491, -0.02115115150809288, 0.11555930227041245, 0.0019620656967163086, -0.0902494341135025, 0.06538112461566925, -0.06266678124666214, -0.06485302001237869, -0.03336331620812416, 0.016358552500605583, 0.08150824159383774, 0.022768434137105942, -0.006628676317632198, -0.03152332827448845, -0.005357128567993641, -0.11322379112243652, -0.015330337919294834, 0.06234631687402725, -0.02828129567205906, 0.047220923006534576, -0.08363565057516098, 0.014040238223969936, -0.07778248935937881, 0.015909280627965927, 0.1526748538017273, 0.10838989168405533, -0.07148168236017227, 0.061626825481653214, 0.16698110103607178, -0.07907593995332718, -0.24656158685684204, 0.014670906588435173, 0.04743240401148796, -0.002480914816260338, 0.03386231139302254, -0.22983317077159882, 0.15404246747493744, 0.037623219192028046, -0.002726176055148244, 0.04285265877842903, -0.13223566114902496, -0.09413061290979385, 0.19590817391872406, 0.09308725595474243, 0.019911523908376694, -0.11878487467765808, -0.07447353005409241, -0.00844388548284769, -0.16496486961841583, 0.09596770256757736, -0.05952274799346924, 0.06473813205957413, -0.026345722377300262, 0.03300509974360466, 0.03353377431631088, -0.02032996155321598, 0.08534269779920578, 0.014371206983923912, 0.022504355758428574, -0.08242753893136978, -0.01890779659152031, 0.051429543644189835, -0.0587240532040596, 0.0796269103884697, -0.023355577141046524, 0.0669310986995697, -0.12488751858472824, -0.061356011778116226, 0.013347302563488483, 0.09147379547357559, -0.02735261432826519, -0.08635079860687256, -0.060804612934589386, 0.027677999809384346, -0.022698452696204185, -0.03656051307916641, 0.05912487953901291, -0.0882343053817749, 0.05638131871819496, 0.16958087682724, 0.15904100239276886, 0.0005389946163631976, -0.10244771093130112, 0.011072791181504726, -0.010554456152021885, 0.12950438261032104, -0.1674938201904297, 0.07973215728998184, 0.10917285829782486, 0.02028595842421055, 0.12502886354923248, 0.05051739886403084, -0.11663880944252014, 0.014398650266230106, 0.051814429461956024, -0.0784463956952095, -0.06470538675785065, -0.024054164066910744, 0.09403351694345474, -0.18609027564525604, 0.05832020565867424, 0.15797606110572815, -0.03388018533587456, 0.00702650798484683, 0.04217739775776863, -0.006921915337443352, -0.04226861894130707, 0.09012193232774734, 0.10854977369308472, 0.05686135217547417, -0.03036251664161682, 0.08797021955251694, 0.09671863913536072, -0.07176975160837173, 0.04260281100869179, -0.09157583862543106, -0.07265035808086395, -0.05375302582979202, -0.08016667515039444, 0.11889031529426575, -0.06674809008836746, -0.07571142166852951, 0.010260943323373795, -0.07037696987390518, 0.038238994777202606, 0.19405502080917358, 0.03575018420815468, 0.008723849430680275, -0.06783689558506012, 0.043237049132585526, -0.06663450598716736, 0.08726630359888077, -0.05508342757821083, 0.048865754157304764, -0.10097933560609818, -0.022965116426348686, 0.04070335626602173, 0.08214467018842697, -0.04791172221302986, -0.07960128039121628, -0.11416365951299667, -0.024470416828989983, -0.18726298213005066, -0.011924642138183117, -0.012792984023690224, 0.007791052106767893, 0.003592841327190399, -0.08612293004989624, -0.033242929726839066, 0.025170190259814262, -0.02125544846057892, -0.0014398281928151846, 0.04707276448607445, 0.08492926508188248, -0.184939906001091, -0.006309675984084606, 0.06485145539045334, -0.04427669569849968, 0.10791231691837311, 0.015924690291285515, -0.02895752526819706, 0.03190840035676956, -0.060916703194379807, 0.026071367785334587, -0.023284869268536568, 0.04228716343641281, 0.013229276984930038, -0.08426760882139206, 0.02777199260890484, -0.049309927970170975, -0.03800481557846069, 0.0009477461571805179, 0.21374893188476562, -0.05992075800895691, 0.03375791013240814, 0.002675662050023675, 0.043474189937114716, -0.05121755599975586, 0.07102455943822861, 0.07977884262800217, 0.11673873662948608, 0.117921382188797, -0.06337513029575348, 0.05960434675216675, -0.11233887076377869, 0.002980786608532071, 0.03214427828788757, -0.008941847831010818, 0.11633492261171341, -0.12523163855075836, -0.0015817928360775113, -0.059413522481918335, 0.20647971332073212, -0.021136106923222542, 0.06971366703510284, 0.0533643513917923, -0.02484154887497425, -0.08246166259050369, -0.04093867167830467, 0.18528524041175842, 0.04624069482088089, 0.04701996594667435, 0.02564150281250477, 0.0450197272002697, -0.010211662389338017, 0.045844823122024536, 0.1305074542760849, 0.11432145535945892, -0.09273380786180496, 0.022498873993754387, 0.03767574951052666, -0.011371503584086895, -0.09951749444007874, -0.04568858817219734, -0.026235349476337433, 0.0645373985171318, -0.022833751514554024, 0.12732525169849396, 0.07321175187826157, -0.014294074848294258, 0.06876189261674881, 0.002002335386350751, -0.06811968982219696, -0.09568336606025696, -0.05012710765004158, -0.011930773966014385, -0.12727269530296326, -0.017949137836694717, -0.08433391898870468, -0.009671960026025772, 0.07110747694969177, 0.013890177942812443, 0.006303810980170965, 0.24477273225784302, -0.09386920928955078, -0.035692863166332245, 0.06212517246603966, -0.03443969413638115, -0.03685932233929634, -0.10587900131940842, 0.08350551128387451, 0.05388520658016205, 0.1243751123547554, 0.03922475874423981, 0.05811477452516556, 0.011921803466975689, 0.034302856773138046, -0.022132575511932373, -0.11229675263166428, -0.035412680357694626, 0.042406439781188965, -0.05282505974173546, 0.07623903453350067, 0.01702679693698883, -0.0037778590340167284, -0.017420750111341476, 0.16906441748142242, -0.05316319316625595, -0.0439683236181736, -0.11539797484874725, 0.13109327852725983, -0.012754389084875584, 0.028432572260499, -0.03150615468621254, -0.12089482694864273, -0.04451457038521767, 0.19980385899543762, 0.046429507434368134, -0.055951233953237534, 0.038573771715164185, 0.04397635534405708, 0.025978969410061836, 0.0349656343460083, 0.09913696348667145, 0.02831004187464714, 0.11564641445875168, -0.012247266247868538, -0.03796824440360069, -0.042449019849300385, -0.03551829978823662, 0.07130243629217148, 0.1411418914794922, -0.0013195344945415854, -0.030970918014645576, -0.07415439933538437, 0.07267851382493973, -0.06531727313995361, -0.2628759741783142, -0.06351035833358765, -0.03300398960709572, -0.08544893562793732, -0.0596042275428772, 0.0535123348236084, -0.03214781731367111, -0.008216681890189648, 0.020023467019200325, -0.029315583407878876, 0.1806950718164444, 0.03407754376530647, -0.04484369605779648, -0.01672157272696495, 0.09389803558588028, -0.04427226260304451, 0.16038094460964203, 0.013286406174302101, 0.013937658630311489, 0.07727167755365372, 0.054385341703891754, -0.07299303263425827, 0.01984788104891777, 0.021003425121307373, -0.07926340401172638, -0.010886556468904018, 0.04084987938404083, 0.009218060411512852, 0.09445998817682266, 0.06757064163684845, -0.1553538590669632, 0.04197424650192261, -0.031966399401426315, -0.09019973874092102, -0.09033151715993881, -0.008488234132528305, -0.07093776762485504, 0.1414753496646881, 0.13056150078773499, -0.004133960232138634, -0.06613380461931229, -0.08633256703615189, 0.03722052648663521, -0.003791839350014925, 0.09679561853408813, -0.0188198983669281, -0.09371335059404373, -0.003376586362719536, -0.05043584480881691, 0.03430148959159851, -0.3248627781867981, -0.029404329136013985, 0.07234946638345718, -0.027978314086794853, 0.02206631936132908, 0.08072251081466675, 0.07681095600128174, 0.06257009506225586, -0.05408180505037308, -0.040136951953172684, -0.0032744798809289932, 0.11622623354196548, -0.18825003504753113, -0.03616627678275108 ]
null
null
adapter-transformers
# Adapter `AdapterHub/bert-base-uncased-pf-cola` for bert-base-uncased An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [lingaccept/cola](https://adapterhub.ml/explore/lingaccept/cola/) dataset and includes a prediction head for classification. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("bert-base-uncased") adapter_name = model.load_adapter("AdapterHub/bert-base-uncased-pf-cola", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
{"language": ["en"], "tags": ["text-classification", "bert", "adapterhub:lingaccept/cola", "adapter-transformers"]}
text-classification
AdapterHub/bert-base-uncased-pf-cola
[ "adapter-transformers", "bert", "text-classification", "adapterhub:lingaccept/cola", "en", "arxiv:2104.08247", "region:us" ]
2022-03-02T23:29:04+00:00
[ "2104.08247" ]
[ "en" ]
TAGS #adapter-transformers #bert #text-classification #adapterhub-lingaccept/cola #en #arxiv-2104.08247 #region-us
# Adapter 'AdapterHub/bert-base-uncased-pf-cola' for bert-base-uncased An adapter for the 'bert-base-uncased' model that was trained on the lingaccept/cola dataset and includes a prediction head for classification. This adapter was created for usage with the adapter-transformers library. ## Usage First, install 'adapter-transformers': _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_ Now, the adapter can be loaded and activated like this: ## Architecture & Training The training code for this adapter is available at URL In particular, training configurations for all tasks can be found here. ## Evaluation results Refer to the paper for more information on results. If you use this adapter, please cite our paper "What to Pre-Train on? Efficient Intermediate Task Selection":
[ "# Adapter 'AdapterHub/bert-base-uncased-pf-cola' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the lingaccept/cola dataset and includes a prediction head for classification.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ "TAGS\n#adapter-transformers #bert #text-classification #adapterhub-lingaccept/cola #en #arxiv-2104.08247 #region-us \n", "# Adapter 'AdapterHub/bert-base-uncased-pf-cola' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the lingaccept/cola dataset and includes a prediction head for classification.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ 37, 82, 57, 30, 45 ]
[ "passage: TAGS\n#adapter-transformers #bert #text-classification #adapterhub-lingaccept/cola #en #arxiv-2104.08247 #region-us \n# Adapter 'AdapterHub/bert-base-uncased-pf-cola' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the lingaccept/cola dataset and includes a prediction head for classification.\n\nThis adapter was created for usage with the adapter-transformers library.## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ -0.05057975649833679, -0.0180866327136755, -0.0033590008970350027, 0.04290704056620598, 0.17661334574222565, 0.012858504429459572, 0.13297739624977112, 0.03554709628224373, 0.056126609444618225, 0.04108665511012077, 0.03707744553685188, 0.09924179315567017, 0.026194410398602486, 0.05632592737674713, 0.006402438040822744, -0.126125767827034, 0.007695085369050503, 0.03204713761806488, -0.02167329005897045, 0.10972248762845993, 0.09040050953626633, -0.09902701526880264, 0.10435710102319717, 0.037435419857501984, -0.09887689352035522, 0.030049288645386696, -0.021304961293935776, -0.09525275230407715, 0.08082792907953262, 0.0776485726237297, 0.1970023363828659, 0.04547501727938652, 0.0046584163792431355, -0.13100329041481018, 0.016736101359128952, 0.07303747534751892, 0.04407680779695511, 0.08870269358158112, -0.038764290511608124, -0.001347424928098917, -0.00456223264336586, -0.004242419730871916, 0.09265260398387909, 0.0700952559709549, -0.0956236720085144, -0.1645549088716507, -0.032207705080509186, 0.10388186573982239, 0.03650932013988495, 0.06714951246976852, 0.007893916219472885, 0.037618301808834076, -0.00007845738582545891, 0.04541527107357979, 0.22257709503173828, -0.26558637619018555, -0.00707477331161499, 0.020337743684649467, 0.039303362369537354, 0.05534448102116585, -0.034275319427251816, 0.00612920057028532, 0.037384986877441406, 0.0046585965901613235, 0.019484708085656166, -0.0336773544549942, -0.027509493753314018, -0.022414404898881912, -0.1414646953344345, -0.014685195870697498, 0.2234119325876236, -0.026558171957731247, -0.11420763283967972, -0.053653594106435776, -0.025029420852661133, 0.07649698853492737, 0.022388026118278503, -0.09060336649417877, 0.015816617757081985, 0.007684542331844568, 0.01368978712707758, -0.09829410165548325, -0.08477489650249481, -0.09744078665971756, -0.08214039355516434, 0.3062150180339813, -0.01873031072318554, 0.016173839569091797, 0.017069466412067413, 0.13449189066886902, 0.018575463443994522, -0.1015525683760643, -0.0763767808675766, -0.057515695691108704, -0.048001959919929504, -0.06720884144306183, -0.03378714248538017, -0.22103984653949738, -0.02959256060421467, 0.10032287240028381, 0.1125139519572258, 0.046570856124162674, -0.10530149936676025, 0.0540136881172657, 0.019990965723991394, 0.20322906970977783, -0.06022488325834274, 0.0332711897790432, -0.0454290434718132, -0.007201094646006823, -0.03082568198442459, -0.1027236133813858, -0.08646002411842346, -0.012658861465752125, -0.0010469156550243497, 0.05135982483625412, 0.0052902898751199245, 0.10121331363916397, -0.08345679938793182, -0.06931088864803314, 0.09849775582551956, -0.13593930006027222, 0.00447531184181571, 0.014653499238193035, -0.062170855700969696, 0.11987651139497757, 0.14615966379642487, -0.010637424886226654, -0.04005858302116394, 0.10168296098709106, -0.08409930020570755, -0.04300219938158989, -0.08775589615106583, -0.11051534861326218, 0.003380231326445937, -0.011205061338841915, -0.02810368873178959, -0.1352647989988327, -0.10842783004045486, -0.010030500590801239, 0.06739767640829086, -0.0077945152297616005, 0.07758738100528717, 0.016995754092931747, 0.05119878426194191, 0.002441846299916506, -0.01800539530813694, -0.028090547770261765, -0.015175051987171173, 0.0774252787232399, 0.01861986331641674, 0.04813414067029953, -0.013070114888250828, 0.08322098851203918, -0.08691982924938202, 0.018166759982705116, -0.25712743401527405, 0.09157734364271164, -0.13798019289970398, 0.04583306983113289, -0.1554207056760788, -0.024139581248164177, -0.02533777616918087, 0.017711438238620758, 0.05838895961642265, 0.09923699498176575, -0.10492254793643951, -0.05637938156723976, 0.046998534351587296, -0.18056261539459229, -0.10894937813282013, 0.035721469670534134, -0.011832949705421925, 0.1405469924211502, 0.08117871731519699, 0.05412833392620087, 0.09714534878730774, -0.11659209430217743, -0.08086178451776505, 0.02527509070932865, -0.05886419862508774, 0.0011452891631051898, 0.04162558540701866, -0.012151791714131832, -0.16551585495471954, 0.026441149413585663, -0.10620264708995819, -0.003935142885893583, -0.02299368754029274, -0.02781524322926998, -0.02161715179681778, -0.025893859565258026, 0.11128711700439453, 0.013463701121509075, -0.012119037099182606, 0.05550270900130272, -0.13308650255203247, 0.1991075873374939, 0.058744899928569794, -0.06074334308505058, 0.020007368177175522, -0.12293775379657745, 0.13206958770751953, -0.08462218195199966, -0.0018134823767468333, -0.18671536445617676, -0.014745421707630157, 0.010915584862232208, 0.0019414664711803198, 0.0710357278585434, 0.04001254960894585, 0.04501662403345108, 0.02933245524764061, 0.023728612810373306, 0.015183510258793831, -0.060557425022125244, 0.025160815566778183, -0.04571814090013504, -0.11409522593021393, -0.04733775556087494, -0.042305126786231995, 0.031630050390958786, -0.17042109370231628, 0.04192935675382614, 0.11393808573484421, 0.0724152997136116, 0.037422895431518555, -0.03287133947014809, -0.018773607909679413, 0.007272311951965094, -0.025379180908203125, -0.0307193323969841, 0.041974421590566635, 0.002346818568184972, -0.06438761949539185, 0.005427159834653139, -0.08503518998622894, -0.018007874488830566, 0.09064485877752304, -0.0365646667778492, -0.09850933402776718, -0.09041398018598557, 0.016422227025032043, -0.012848812155425549, -0.0060675921849906445, -0.07996292412281036, 0.3060464560985565, 0.0593799464404583, 0.0875907689332962, -0.03684251755475998, 0.010827981866896152, 0.0007771223899908364, -0.002767542377114296, -0.018295088782906532, 0.002390089677646756, 0.029209380969405174, -0.10191214829683304, 0.030095037072896957, 0.18110057711601257, 0.0027142593171447515, 0.10296209156513214, 0.009071819484233856, -0.099100761115551, -0.010376755148172379, -0.0329366959631443, 0.04236950725317001, 0.05514553561806679, -0.13090217113494873, 0.009579765610396862, 0.050870828330516815, -0.02913004159927368, 0.01869218982756138, -0.05237753316760063, 0.04496721550822258, 0.07483240216970444, 0.002369409892708063, 0.010349951684474945, -0.04453562572598457, -0.014051721431314945, 0.05890081450343132, 0.06349845975637436, 0.0723443254828453, 0.027678510174155235, -0.00811931025236845, -0.06028261035680771, 0.17052830755710602, -0.07127879559993744, -0.22057050466537476, -0.20742973685264587, -0.10215959697961807, -0.0034667488653212786, 0.01882774755358696, 0.02172965183854103, -0.07708151638507843, -0.094194695353508, -0.04512854665517807, 0.16484488546848297, -0.017060330137610435, 0.0025700090918689966, 0.055387306958436966, -0.04849151521921158, 0.0555708222091198, -0.16115836799144745, 0.028306931257247925, 0.014794419519603252, -0.10924001783132553, -0.026098640635609627, 0.004289894364774227, 0.06227830424904823, 0.1819988489151001, -0.032326649874448776, 0.008785012178122997, -0.0011770684504881501, 0.09572603553533554, -0.07791338860988617, 0.02777901291847229, 0.11197535693645477, -0.13783836364746094, 0.03536935895681381, 0.07634072005748749, 0.04171784222126007, -0.06773359328508377, 0.05730857327580452, 0.016393505036830902, -0.05001256614923477, -0.2488250434398651, -0.03951587155461311, 0.008665762841701508, -0.004323991946876049, 0.09731217473745346, 0.01944490149617195, 0.047845255583524704, 0.07849714905023575, 0.04037928953766823, 0.02594299055635929, -0.028707800433039665, 0.06572283059358597, 0.21639637649059296, -0.03808330371975899, 0.10074752569198608, -0.07788043469190598, 0.004455051384866238, 0.08500596880912781, -0.038123175501823425, 0.14305804669857025, -0.010385503992438316, 0.11600852012634277, 0.06099288910627365, -0.06305564939975739, 0.07409593462944031, 0.14945991337299347, -0.05767376720905304, -0.008854475803673267, -0.006269405595958233, -0.0676729679107666, -0.09963194280862808, 0.03202357515692711, -0.000779813330154866, 0.010600111447274685, -0.03962547332048416, -0.05084626376628876, 0.029609812423586845, 0.14432159066200256, -0.0073271822184324265, -0.21578356623649597, -0.10571157932281494, -0.024380484595894814, -0.011440299451351166, -0.07608678936958313, 0.0016358706634491682, 0.07061174511909485, -0.07205512374639511, 0.020733429118990898, -0.02493145316839218, 0.08800365030765533, -0.14181579649448395, -0.009658600203692913, 0.042218469083309174, 0.08700528740882874, -0.04819542169570923, 0.08590079098939896, -0.21245892345905304, 0.07172846049070358, 0.03983164206147194, 0.03173733875155449, -0.059172384440898895, 0.031035074964165688, 0.014603089541196823, 0.13880133628845215, 0.06471522152423859, -0.01689997874200344, 0.08914121985435486, -0.177189439535141, -0.10701609402894974, 0.011134724132716656, 0.053126946091651917, -0.09868450462818146, 0.03696001321077347, -0.03077266924083233, 0.04932792857289314, 0.02742711454629898, 0.030061999335885048, -0.13347725570201874, -0.16823065280914307, 0.06602754443883896, -0.02793208137154579, 0.11649467796087265, -0.06575281918048859, -0.11049001663923264, 0.05901375040411949, 0.20727667212486267, -0.16267022490501404, -0.059467654675245285, -0.13815711438655853, -0.031063759699463844, 0.06542325764894485, -0.05808296799659729, 0.03883587568998337, -0.01669478602707386, 0.09564702957868576, -0.009495419450104237, -0.082480289041996, 0.08642144501209259, -0.043869566172361374, -0.07361166924238205, -0.05306302011013031, 0.01942770928144455, 0.0933368057012558, 0.029975049197673798, 0.003547945059835911, -0.006073430646210909, 0.03219527378678322, -0.10624250769615173, -0.05657617375254631, 0.0655570849776268, 0.014585038647055626, 0.06910791248083115, -0.0750236064195633, 0.038803938776254654, -0.05159316211938858, 0.04028754681348801, 0.13347357511520386, 0.10602933913469315, -0.06624586880207062, 0.05869622156023979, 0.1611415594816208, -0.08400261402130127, -0.25086694955825806, 0.021427767351269722, 0.022592514753341675, -0.0034928317181766033, 0.013386969454586506, -0.2585756182670593, 0.1554953157901764, 0.05680528283119202, -0.012785249389708042, 0.08127298206090927, -0.14660534262657166, -0.095609650015831, 0.19634969532489777, 0.10420800000429153, 0.061965327709913254, -0.10964734852313995, -0.08257091045379639, -0.003204815788194537, -0.13224856555461884, 0.12470569461584091, -0.0435379259288311, 0.08130340278148651, -0.016387125477194786, 0.0200892873108387, 0.045936670154333115, -0.02512243390083313, 0.08458728343248367, -0.006232067476958036, 0.017413562163710594, -0.10429641604423523, -0.019653959199786186, 0.030056500807404518, -0.04330218583345413, 0.08700301498174667, -0.024418717250227928, 0.040200766175985336, -0.09568894654512405, -0.07083246856927872, 0.02593359537422657, 0.12703172862529755, -0.03380826115608215, -0.07650879770517349, -0.06466961652040482, 0.03547477349638939, -0.054002948105335236, -0.0233779139816761, 0.06695917993783951, -0.08296462893486023, 0.056276753544807434, 0.1831766963005066, 0.14777062833309174, -0.015572980046272278, -0.07914625108242035, 0.023143600672483444, -0.0012969676172360778, 0.13013842701911926, -0.1504552662372589, 0.06879445910453796, 0.10562501847743988, 0.0315762497484684, 0.12585972249507904, 0.048533979803323746, -0.11550656706094742, -0.020622504875063896, 0.06389866024255753, -0.09607184678316116, -0.017183834686875343, -0.02168275974690914, 0.06487860530614853, -0.14592014253139496, 0.014523292891681194, 0.15945011377334595, -0.0519549734890461, 0.014719062484800816, 0.0338369682431221, -0.021476682275533676, -0.05036965012550354, 0.09152684360742569, 0.10254515707492828, 0.05199413746595383, -0.03126323223114014, 0.08204754441976547, 0.13200998306274414, -0.0739225223660469, 0.022330278530716896, -0.0699474960565567, -0.06128673255443573, -0.057598963379859924, -0.08428133279085159, 0.11266029626131058, -0.018650395795702934, -0.06674576550722122, -0.01115850917994976, -0.07378043234348297, 0.026484118774533272, 0.16884437203407288, 0.05054626613855362, 0.040396567434072495, -0.05739980936050415, 0.033195484429597855, -0.07202586531639099, 0.054010748863220215, -0.07352276146411896, 0.054524727165699005, -0.09259582310914993, 0.03226654976606369, 0.05643976479768753, 0.030145183205604553, -0.0543024018406868, -0.06717108190059662, -0.11552543938159943, -0.030427318066358566, -0.11953060328960419, -0.013258532620966434, -0.03704892471432686, -0.00786636583507061, 0.009579014033079147, -0.07836498320102692, -0.01057390309870243, 0.02357775904238224, -0.026003779843449593, 0.015948444604873657, 0.0512433685362339, 0.09019964188337326, -0.18415948748588562, -0.008712643757462502, 0.07998291403055191, -0.061633072793483734, 0.07002847641706467, 0.01711193099617958, -0.021113023161888123, 0.006507732905447483, -0.10404492169618607, 0.04651173576712608, -0.016691947355866432, 0.04081098362803459, 0.021013932302594185, -0.09414426982402802, 0.01685863360762596, -0.04072762653231621, 0.021262748166918755, 0.0008327692048624158, 0.21667885780334473, -0.08896927535533905, 0.03851646929979324, 0.0026200844440609217, -0.015960756689310074, -0.031959570944309235, 0.06017068028450012, 0.1011686697602272, 0.09727003425359726, 0.12335730344057083, -0.06257166713476181, 0.06329654157161713, -0.07437825947999954, 0.008443846367299557, 0.02767074480652809, 0.0033480662386864424, 0.1390801966190338, -0.10945673286914825, -0.01682966947555542, -0.03870541974902153, 0.18807697296142578, -0.009869124740362167, 0.040507104247808456, 0.05747558921575546, -0.018165448680520058, -0.05275064334273338, -0.018680544570088387, 0.11638154089450836, 0.036846380680799484, 0.04905208200216293, 0.012358607724308968, 0.04746866598725319, 0.0014951586490496993, 0.02690509893000126, 0.13429591059684753, 0.14718247950077057, -0.11367283016443253, 0.009201861917972565, 0.022815264761447906, -0.02407982386648655, -0.1232135146856308, -0.021020354703068733, -0.023456620052456856, 0.07042417675256729, -0.022539867088198662, 0.14521442353725433, 0.048317622393369675, -0.039101243019104004, 0.0586971789598465, 0.019402042031288147, -0.08020949363708496, -0.07685989141464233, -0.059844642877578735, -0.012045027688145638, -0.14849598705768585, -0.0158929955214262, -0.07887089252471924, -0.015260943211615086, 0.10942801833152771, -0.001517984550446272, 0.014809759333729744, 0.2636508047580719, -0.09740576893091202, -0.022561965510249138, 0.06972090154886246, -0.023004911839962006, -0.03436478227376938, -0.16142477095127106, 0.040160782635211945, 0.01366476807743311, 0.12413038313388824, 0.03286135941743851, 0.05716981738805771, 0.01101143378764391, 0.02710803598165512, 0.0050476971082389355, -0.10057259351015091, -0.030774766579270363, 0.03645172715187073, -0.03506014123558998, 0.0688265711069107, 0.005225125700235367, -0.013528583571314812, -0.02755879797041416, 0.1592129021883011, -0.05673269182443619, -0.05645444616675377, -0.11417057365179062, 0.12290037423372269, -0.005638822913169861, 0.032002344727516174, -0.02802216447889805, -0.08333627879619598, -0.03930705785751343, 0.2099890261888504, 0.03106222301721573, -0.03955718129873276, 0.03682524338364601, 0.029679981991648674, 0.024700138717889786, 0.05041259899735451, 0.08951417356729507, 0.03192434459924698, 0.08262059092521667, 0.0025604257825762033, -0.05259804055094719, -0.048140350729227066, -0.03426320105791092, 0.031206326559185982, 0.08125539869070053, -0.0024150353856384754, -0.03976375609636307, -0.08082109689712524, 0.08056551218032837, -0.06057652458548546, -0.26558178663253784, 0.014539636671543121, -0.05969098210334778, -0.0750698447227478, -0.06545915454626083, 0.07439278811216354, -0.047889988869428635, 0.017384031787514687, 0.012575190514326096, -0.05155409500002861, 0.14511778950691223, 0.04545607790350914, -0.07985162734985352, -0.03517290577292442, 0.07664874941110611, -0.09687303751707077, 0.2079494595527649, 0.008747465908527374, 0.022205572575330734, 0.06903569400310516, 0.0694209486246109, -0.07696638256311417, -0.002579220337793231, 0.013917582109570503, -0.09274692088365555, 0.001991237746551633, 0.023587487637996674, -0.004913760349154472, 0.12052835524082184, 0.05227738991379738, -0.18028758466243744, 0.05598185583949089, 0.008330893702805042, -0.0707349106669426, -0.07439723610877991, -0.041599590331315994, -0.08553878217935562, 0.15342412889003754, 0.1554574966430664, -0.0024690674617886543, -0.06405532360076904, -0.07916273921728134, 0.036141537129879, -0.012426192872226238, 0.0642133429646492, -0.04676283523440361, -0.1097860038280487, -0.035062696784734726, -0.04186875373125076, 0.03877760469913483, -0.3035491406917572, -0.030860040336847305, 0.045575641095638275, -0.0324135385453701, -0.013771523721516132, 0.06139347702264786, 0.0805261954665184, 0.05730046331882477, -0.03545713797211647, -0.06316487491130829, -0.0010172758484259248, 0.11216072738170624, -0.1782938539981842, -0.028773028403520584 ]
null
null
adapter-transformers
# Adapter `AdapterHub/bert-base-uncased-pf-commonsense_qa` for bert-base-uncased An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [comsense/csqa](https://adapterhub.ml/explore/comsense/csqa/) dataset and includes a prediction head for multiple choice. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("bert-base-uncased") adapter_name = model.load_adapter("AdapterHub/bert-base-uncased-pf-commonsense_qa", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-what-to-pre-train-on, title={What to Pre-Train on? Efficient Intermediate Task Selection}, author={Clifton Poth and Jonas Pfeiffer and Andreas Rücklé and Iryna Gurevych}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (EMNLP)", month = nov, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/2104.08247", pages = "to appear", } ```
{"language": ["en"], "tags": ["bert", "adapterhub:comsense/csqa", "adapter-transformers"], "datasets": ["commonsense_qa"]}
null
AdapterHub/bert-base-uncased-pf-commonsense_qa
[ "adapter-transformers", "bert", "adapterhub:comsense/csqa", "en", "dataset:commonsense_qa", "arxiv:2104.08247", "region:us" ]
2022-03-02T23:29:04+00:00
[ "2104.08247" ]
[ "en" ]
TAGS #adapter-transformers #bert #adapterhub-comsense/csqa #en #dataset-commonsense_qa #arxiv-2104.08247 #region-us
# Adapter 'AdapterHub/bert-base-uncased-pf-commonsense_qa' for bert-base-uncased An adapter for the 'bert-base-uncased' model that was trained on the comsense/csqa dataset and includes a prediction head for multiple choice. This adapter was created for usage with the adapter-transformers library. ## Usage First, install 'adapter-transformers': _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_ Now, the adapter can be loaded and activated like this: ## Architecture & Training The training code for this adapter is available at URL In particular, training configurations for all tasks can be found here. ## Evaluation results Refer to the paper for more information on results. If you use this adapter, please cite our paper "What to Pre-Train on? Efficient Intermediate Task Selection":
[ "# Adapter 'AdapterHub/bert-base-uncased-pf-commonsense_qa' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the comsense/csqa dataset and includes a prediction head for multiple choice.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ "TAGS\n#adapter-transformers #bert #adapterhub-comsense/csqa #en #dataset-commonsense_qa #arxiv-2104.08247 #region-us \n", "# Adapter 'AdapterHub/bert-base-uncased-pf-commonsense_qa' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the comsense/csqa dataset and includes a prediction head for multiple choice.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ 41, 86, 57, 30, 45 ]
[ "passage: TAGS\n#adapter-transformers #bert #adapterhub-comsense/csqa #en #dataset-commonsense_qa #arxiv-2104.08247 #region-us \n# Adapter 'AdapterHub/bert-base-uncased-pf-commonsense_qa' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the comsense/csqa dataset and includes a prediction head for multiple choice.\n\nThis adapter was created for usage with the adapter-transformers library.## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ -0.08003511279821396, -0.005911387037485838, -0.003213708521798253, 0.007182664703577757, 0.16886401176452637, 0.004110119305551052, 0.1408555954694748, 0.05776885896921158, 0.0748690515756607, 0.04646134749054909, 0.012176153250038624, 0.08266710489988327, 0.06562143564224243, 0.024434775114059448, 0.034830670803785324, -0.07163967192173004, 0.018544701859354973, 0.02112361416220665, -0.1045428141951561, 0.10607267171144485, 0.09994854032993317, -0.10099636018276215, 0.09741761535406113, 0.06340890377759933, -0.09089556336402893, 0.02840661071240902, -0.01857299730181694, -0.08194725215435028, 0.10084588080644608, 0.10877199470996857, 0.15962141752243042, 0.05939466506242752, 0.004326376132667065, -0.16355666518211365, 0.020908288657665253, 0.06815717369318008, 0.013719173148274422, 0.05023859068751335, -0.02584923431277275, 0.03477315604686737, -0.04312795773148537, -0.006368719972670078, 0.03842722997069359, 0.066538006067276, -0.0697573870420456, -0.15645410120487213, -0.030551720410585403, 0.09022951871156693, 0.038348011672496796, 0.06838854402303696, -0.0009552123956382275, 0.06238304823637009, -0.011792377568781376, 0.037248097360134125, 0.16863201558589935, -0.28114041686058044, 0.003135043429210782, -0.002539274748414755, 0.06894520670175552, 0.04470689594745636, -0.03693613409996033, 0.0016037317691370845, 0.013346178457140923, 0.0069471062161028385, 0.019280895590782166, -0.046130914241075516, -0.0074913389980793, 0.0036712721921503544, -0.1490471363067627, -0.015089829452335835, 0.2233302891254425, -0.007183682639151812, -0.09878081828355789, -0.049805305898189545, -0.042902279645204544, 0.08804340660572052, 0.016815925016999245, -0.08027926087379456, 0.009690044447779655, 0.005111098755151033, -0.0032558150123804808, -0.07532994449138641, -0.12156865000724792, -0.0732240155339241, -0.10446983575820923, 0.21266482770442963, -0.012840536423027515, 0.03621857613325119, -0.01724262163043022, 0.10909146815538406, 0.002540468005463481, -0.0978710800409317, -0.0919797420501709, -0.05929969623684883, -0.09815087169408798, -0.04326479509472847, -0.025581201538443565, -0.2520252764225006, 0.012894286774098873, 0.11011649668216705, 0.14043177664279938, 0.03531374782323837, -0.06273450702428818, 0.0516260527074337, 0.04524191468954086, 0.2218760997056961, -0.09022665023803711, 0.051760487258434296, -0.037147704511880875, 0.009199757128953934, -0.02937885746359825, -0.10149988532066345, -0.05832870677113533, -0.016935037449002266, 0.024234913289546967, 0.062481027096509933, -0.0022285585291683674, 0.06827878206968307, -0.04751204326748848, -0.05486077815294266, 0.14445291459560394, -0.11311811953783035, -0.02484535239636898, 0.024262163788080215, -0.009044148027896881, 0.09633855521678925, 0.12736432254314423, 0.017844783142209053, -0.019141079857945442, 0.05405164882540703, -0.07667034864425659, -0.056094940751791, -0.035787101835012436, -0.13548597693443298, 0.01407952606678009, -0.004387803375720978, -0.0046419561840593815, -0.17359955608844757, -0.04653115198016167, 0.005221573635935783, 0.034640878438949585, 0.01612776704132557, 0.08473582565784454, 0.059922464191913605, 0.020971091464161873, 0.005964840296655893, -0.012975146062672138, -0.003679675282910466, -0.03664995729923248, 0.08019261807203293, 0.016514942049980164, 0.03836265578866005, -0.018913572654128075, 0.05781630054116249, -0.059718482196331024, 0.027993449941277504, -0.16872507333755493, 0.09817125648260117, -0.14608779549598694, 0.004805682692676783, -0.13058185577392578, 0.005306711886078119, 0.039065681397914886, 0.03558347374200821, 0.06401487439870834, 0.09167319536209106, -0.14595770835876465, -0.051828499883413315, 0.08422128856182098, -0.15431274473667145, -0.1518034040927887, 0.05101974308490753, -0.0009312264155596495, 0.11875484138727188, 0.04202532768249512, 0.04713984578847885, 0.13005612790584564, -0.1201750710606575, -0.12598516047000885, 0.06789607554674149, -0.04318784922361374, -0.025623781606554985, 0.06841819733381271, 0.010677973739802837, -0.1059509664773941, 0.0178842693567276, -0.09594674408435822, 0.0017694460693746805, -0.024102238938212395, -0.0461336113512516, -0.03640976920723915, -0.05166269838809967, 0.05980699881911278, -0.015920277684926987, -0.021918322890996933, 0.07365981489419937, -0.11087363213300705, 0.1410335749387741, 0.06644479930400848, -0.055498622357845306, 0.018820393830537796, -0.12958142161369324, 0.1052415519952774, -0.1369812935590744, 0.01151342038065195, -0.19589199125766754, -0.01709774136543274, 0.03160794824361801, -0.06216852366924286, 0.03562519699335098, 0.07079536467790604, 0.04824518412351608, 0.02341643162071705, 0.0375463142991066, 0.008608458563685417, -0.04698197543621063, 0.024279046803712845, -0.06904811412096024, -0.07615526020526886, -0.050497621297836304, -0.05215171352028847, 0.08807298541069031, -0.12521396577358246, 0.043512411415576935, 0.10718175023794174, 0.055827490985393524, 0.027583003044128418, -0.014682348817586899, -0.00581298116594553, -0.011371755041182041, -0.02438717521727085, -0.016848305240273476, 0.026501327753067017, 0.021757425740361214, -0.10925016552209854, 0.033867914229631424, -0.10800109058618546, -0.0009532248368486762, 0.07698838412761688, 0.011296123266220093, -0.0472872257232666, -0.0607227087020874, -0.012420717626810074, -0.02049490623176098, -0.00278700259514153, -0.10223932564258575, 0.24349051713943481, 0.08011417835950851, 0.06533969938755035, -0.049776606261730194, -0.009770420379936695, 0.024491513147950172, 0.005244547966867685, 0.0005620521260425448, 0.011072603985667229, 0.067435622215271, -0.0924149602651596, 0.013976871967315674, 0.21399860084056854, 0.018008820712566376, 0.08032625168561935, -0.03136030212044716, -0.11461634188890457, -0.015515456907451153, -0.024930665269494057, 0.04691930115222931, 0.08425197005271912, -0.10965162515640259, 0.0009896081173792481, 0.06853961199522018, -0.022558052092790604, -0.007374386303126812, -0.07779078185558319, 0.03747907653450966, 0.06878796219825745, 0.004039975348860025, -0.05041399970650673, 0.000251453195232898, -0.019871871918439865, 0.04877138510346413, 0.0514039546251297, 0.10989004373550415, 0.002569756004959345, -0.02898431196808815, -0.08649171888828278, 0.18841524422168732, -0.07962322235107422, -0.23844775557518005, -0.18672454357147217, -0.05805935710668564, -0.020114803686738014, -0.0018709355499595404, 0.047445569187402725, -0.09468391537666321, -0.08582022786140442, -0.060449276119470596, 0.11281110346317291, -0.0015730250161141157, 0.022924667224287987, 0.03293575346469879, -0.05183835327625275, 0.0817277655005455, -0.16768059134483337, 0.02691098302602768, 0.01495970506221056, -0.10801418870687485, -0.02387857809662819, 0.03744807094335556, 0.1077665314078331, 0.13328959047794342, -0.009563853964209557, -0.012119497172534466, 0.0029808362014591694, 0.18739575147628784, -0.08331681042909622, 0.0322982557117939, 0.13630813360214233, -0.13431619107723236, 0.026655763387680054, 0.10013045370578766, 0.050449661910533905, -0.027422696352005005, 0.03089210018515587, 0.03408922627568245, -0.04527638480067253, -0.24285010993480682, -0.009413940832018852, 0.008829612284898758, -0.019075684249401093, 0.03544393181800842, 0.04865723475813866, -0.0007337875431403518, 0.07399147748947144, 0.023199649527668953, -0.012698394246399403, -0.05323232337832451, 0.0546041838824749, 0.17430508136749268, -0.01092115230858326, 0.10463206470012665, -0.09105779230594635, 0.02513437159359455, 0.09200611710548401, 0.03330182656645775, 0.11374569684267044, -0.00991965550929308, 0.10597315430641174, 0.08824529498815536, -0.021643489599227905, 0.07677736133337021, 0.12915177643299103, -0.0464157909154892, -0.019129307940602303, -0.009578506462275982, -0.06043114513158798, -0.09940078854560852, 0.04201892018318176, 0.03298652544617653, 0.021425548940896988, -0.06000113487243652, -0.014006410725414753, 0.047937583178281784, 0.17140154540538788, 0.026574889197945595, -0.13892222940921783, -0.14033888280391693, -0.01298854686319828, -0.03565705940127373, -0.05362500622868538, 0.0040591624565422535, 0.06642962992191315, -0.08680550009012222, 0.007009698078036308, -0.02822391875088215, 0.09150218963623047, -0.16193850338459015, 0.0003899155999533832, 0.05435710772871971, 0.05814400315284729, -0.0332908034324646, 0.07600467652082443, -0.245149627327919, 0.07971879839897156, 0.05194280296564102, 0.024515468627214432, -0.04939553141593933, 0.0366646945476532, 0.013718653470277786, 0.11044472455978394, 0.06718867272138596, -0.01790318265557289, 0.10915911942720413, -0.18331082165241241, -0.09571482986211777, 0.06099969148635864, 0.038137778639793396, -0.08810961246490479, 0.05735339969396591, -0.0315864272415638, 0.03834971413016319, 0.013804925605654716, 0.07549998909235, -0.14057427644729614, -0.18219439685344696, 0.08235030621290207, -0.005764286033809185, 0.09164001792669296, -0.0764249637722969, -0.09353472292423248, -0.0043420251458883286, 0.16142910718917847, -0.23105938732624054, -0.07896850258111954, -0.1303282231092453, -0.0403134822845459, 0.07017740607261658, -0.07720272988080978, 0.040527451783418655, -0.045519325882196426, 0.12377951294183731, -0.00041827806853689253, -0.07509096711874008, 0.05707471817731857, -0.08371616899967194, -0.07533160597085953, -0.05223982781171799, 0.016114244237542152, 0.06872274726629257, 0.03825629502534866, -0.0041212840005755424, -0.03623751923441887, -0.002086571417748928, -0.1013503223657608, -0.023738864809274673, 0.07995380461215973, -0.055541012436151505, 0.03651949763298035, -0.07537384331226349, 0.049433205276727676, -0.05808762460947037, 0.0003261646197643131, 0.14363743364810944, 0.12878680229187012, -0.06276455521583557, 0.05992785841226578, 0.20392099022865295, -0.06576619297266006, -0.2516718804836273, -0.024159157648682594, 0.03802238777279854, 0.018019896000623703, 0.02010815590620041, -0.20466110110282898, 0.13877294957637787, 0.04742712154984474, -0.004724455997347832, 0.033087071031332016, -0.14685454964637756, -0.08978891372680664, 0.15819647908210754, 0.0832245871424675, 0.022497626021504402, -0.13383819162845612, -0.08070074021816254, 0.005489921197295189, -0.19041134417057037, 0.0822521299123764, -0.08011047542095184, 0.06504832208156586, -0.013326375745236874, 0.028517140075564384, 0.02505817450582981, -0.027463316917419434, 0.10332337766885757, 0.01905355416238308, 0.007973850704729557, -0.06627766788005829, -0.008958541788160801, 0.05675111711025238, -0.05036721006035805, 0.036166880279779434, -0.020719941705465317, 0.0624709315598011, -0.08046191930770874, -0.04635755345225334, -0.0051543437875807285, 0.07688398659229279, -0.02556794136762619, -0.07489670813083649, -0.054406192153692245, 0.012990687042474747, -0.020389845594763756, -0.03803826496005058, 0.054643698036670685, -0.07778698951005936, 0.040277380496263504, 0.1676955223083496, 0.14899657666683197, -0.0425318144261837, -0.10763561725616455, 0.0018580085597932339, -0.02087567374110222, 0.1277989149093628, -0.1307479590177536, 0.07436232268810272, 0.10398761183023453, 0.013046535663306713, 0.11253824084997177, 0.04439513757824898, -0.13178011775016785, 0.025633277371525764, 0.0522964671254158, -0.07095423340797424, -0.055920250713825226, -0.0014431766467168927, 0.1012226939201355, -0.1635453999042511, 0.04433503746986389, 0.16810663044452667, -0.01918431930243969, 0.007962001487612724, 0.03402067720890045, -0.013186454772949219, -0.0420968271791935, 0.09385807812213898, 0.0851483941078186, 0.057886648923158646, -0.036890819668769836, 0.07553759217262268, 0.09217950701713562, -0.10845537483692169, 0.01961895264685154, -0.10865968465805054, -0.0916966050863266, -0.06666974723339081, -0.0892091915011406, 0.08849965035915375, -0.07888714224100113, -0.0722527876496315, 0.007973795756697655, -0.08204688131809235, 0.026137661188840866, 0.1849992275238037, 0.031344130635261536, 0.01703391596674919, -0.04110623896121979, 0.03505174070596695, -0.059639979153871536, 0.08012332767248154, -0.0746365562081337, 0.05124114081263542, -0.0946236252784729, -0.04113176092505455, 0.03302343934774399, 0.08905481547117233, -0.044598788022994995, -0.060279443860054016, -0.10309574007987976, -0.02621476911008358, -0.1965639740228653, -0.024358579888939857, -0.03891833499073982, -0.019408440217375755, 0.02132738009095192, -0.08997063338756561, -0.038732901215553284, 0.02102179266512394, -0.021168626844882965, -0.00022960902424529195, 0.03527984023094177, 0.08594503253698349, -0.17291653156280518, -0.017994603142142296, 0.06431397795677185, -0.05274380370974541, 0.09796931594610214, 0.021045450121164322, -0.022553084418177605, 0.03723106533288956, -0.06555875390768051, 0.008604719303548336, -0.023254357278347015, 0.06458432227373123, 0.02526557631790638, -0.06374821066856384, 0.0325765386223793, -0.03734360635280609, -0.042554572224617004, -0.012325458228588104, 0.209806889295578, -0.033402219414711, 0.020978158339858055, 0.0011177288834005594, 0.043280765414237976, -0.05450963228940964, 0.05302930250763893, 0.10742518305778503, 0.1152670755982399, 0.10473760962486267, -0.06344272196292877, 0.0587986558675766, -0.08811909705400467, 0.0016618688823655248, 0.02230241522192955, 0.005391696467995644, 0.08522379398345947, -0.12813998758792877, -0.00033488476765342057, -0.05435691773891449, 0.2268044650554657, -0.06828666478395462, 0.1371813416481018, 0.05203193426132202, -0.03634658828377724, -0.06278911978006363, -0.02523990534245968, 0.16223633289337158, 0.07110035419464111, 0.0464022122323513, 0.010607331991195679, 0.032564565539360046, -0.01467021182179451, 0.011188349686563015, 0.10497430711984634, 0.10376737266778946, -0.0826597735285759, 0.0389302596449852, 0.04346044361591339, -0.04145034775137901, -0.06987276673316956, -0.0912846177816391, -0.06581059098243713, 0.05835064873099327, -0.02911371923983097, 0.142449289560318, 0.062032949179410934, -0.0021102759055793285, 0.05189564451575279, -0.002826572395861149, -0.058450184762477875, -0.08513049781322479, -0.014564987272024155, -0.014248816296458244, -0.10392855852842331, -0.02569434605538845, -0.06854148209095001, -0.01784154772758484, 0.09442486613988876, 0.02205588109791279, 0.019289949908852577, 0.23578457534313202, -0.06147921085357666, -0.022377358749508858, 0.050502143800258636, -0.02072710357606411, -0.018672320991754532, -0.10449893027544022, 0.07042135298252106, 0.0478144995868206, 0.1146935448050499, 0.030471758916974068, 0.06695558875799179, 0.004669015761464834, 0.04426959529519081, -0.010209177620708942, -0.1219894140958786, -0.03304862603545189, 0.02360394597053528, -0.07362372428178787, 0.05604024603962898, 0.020642200484871864, 0.02540246769785881, -0.015263698995113373, 0.12893462181091309, -0.04552154988050461, -0.03179796040058136, -0.1313151717185974, 0.09514759480953217, -0.03554482012987137, 0.04938436299562454, -0.022028548642992973, -0.11025648564100266, -0.06766034662723541, 0.23183465003967285, 0.037443049252033234, -0.08540179580450058, 0.04877026379108429, 0.05591559037566185, 0.022292781621217728, 0.005985127296298742, 0.0925658717751503, 0.02226346917450428, 0.13325420022010803, -0.015510501340031624, -0.04154583439230919, -0.04185548797249794, -0.046218883246183395, 0.05332062020897865, 0.12523341178894043, -0.01619940996170044, -0.020632464438676834, -0.06984710693359375, 0.04631667956709862, -0.041556790471076965, -0.2607038617134094, -0.03352814540266991, -0.028444530442357063, -0.07162827253341675, -0.05354057997465134, 0.05651059374213219, -0.02189961075782776, -0.01062636449933052, 0.006100254599004984, -0.03190214931964874, 0.21969571709632874, 0.02915571630001068, -0.04139632359147072, -0.004162135533988476, 0.08922086656093597, -0.026341333985328674, 0.1551404744386673, 0.01703646406531334, 0.027713004499673843, 0.08028675615787506, 0.07533019036054611, -0.08363640308380127, 0.015988562256097794, 0.05643780156970024, -0.12441703677177429, -0.01978384703397751, 0.03753989189863205, 0.0028743597213178873, 0.09500546753406525, 0.06987990438938141, -0.17179244756698608, 0.06691467761993408, -0.03376520797610283, -0.0673152431845665, -0.08177275210618973, -0.015408039093017578, -0.06287236511707306, 0.14392414689064026, 0.11154171824455261, 0.0027128257788717747, -0.06615129113197327, -0.0710572749376297, 0.03279299661517143, 0.010437589138746262, 0.11110202968120575, -0.029776055365800858, -0.10135749727487564, 0.008721939288079739, -0.0854744166135788, 0.0488760881125927, -0.2769422233104706, -0.04049404338002205, 0.075670525431633, -0.02838142029941082, 0.025265756994485855, 0.08130309730768204, 0.07017584145069122, 0.05784739926457405, -0.048686541616916656, -0.023893240839242935, 0.0030751631129533052, 0.10883858799934387, -0.18698008358478546, -0.05412610247731209 ]
null
null
adapter-transformers
# Adapter `AdapterHub/bert-base-uncased-pf-comqa` for bert-base-uncased An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [com_qa](https://huggingface.co/datasets/com_qa/) dataset and includes a prediction head for question answering. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("bert-base-uncased") adapter_name = model.load_adapter("AdapterHub/bert-base-uncased-pf-comqa", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
{"language": ["en"], "tags": ["question-answering", "bert", "adapter-transformers"], "datasets": ["com_qa"]}
question-answering
AdapterHub/bert-base-uncased-pf-comqa
[ "adapter-transformers", "bert", "question-answering", "en", "dataset:com_qa", "arxiv:2104.08247", "region:us" ]
2022-03-02T23:29:04+00:00
[ "2104.08247" ]
[ "en" ]
TAGS #adapter-transformers #bert #question-answering #en #dataset-com_qa #arxiv-2104.08247 #region-us
# Adapter 'AdapterHub/bert-base-uncased-pf-comqa' for bert-base-uncased An adapter for the 'bert-base-uncased' model that was trained on the com_qa dataset and includes a prediction head for question answering. This adapter was created for usage with the adapter-transformers library. ## Usage First, install 'adapter-transformers': _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_ Now, the adapter can be loaded and activated like this: ## Architecture & Training The training code for this adapter is available at URL In particular, training configurations for all tasks can be found here. ## Evaluation results Refer to the paper for more information on results. If you use this adapter, please cite our paper "What to Pre-Train on? Efficient Intermediate Task Selection":
[ "# Adapter 'AdapterHub/bert-base-uncased-pf-comqa' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the com_qa dataset and includes a prediction head for question answering.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ "TAGS\n#adapter-transformers #bert #question-answering #en #dataset-com_qa #arxiv-2104.08247 #region-us \n", "# Adapter 'AdapterHub/bert-base-uncased-pf-comqa' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the com_qa dataset and includes a prediction head for question answering.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ 36, 82, 57, 30, 45 ]
[ "passage: TAGS\n#adapter-transformers #bert #question-answering #en #dataset-com_qa #arxiv-2104.08247 #region-us \n# Adapter 'AdapterHub/bert-base-uncased-pf-comqa' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the com_qa dataset and includes a prediction head for question answering.\n\nThis adapter was created for usage with the adapter-transformers library.## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ -0.08429394662380219, -0.01947433315217495, -0.0027758972719311714, 0.019041793420910835, 0.15931561589241028, 0.02989649400115013, 0.1285819113254547, 0.058574870228767395, 0.07099133729934692, 0.032627493143081665, 0.040478989481925964, 0.07366455346345901, 0.06437762826681137, 0.019848251715302467, 0.020189398899674416, -0.0792202576994896, 0.0020583360455930233, 0.04642663896083832, -0.1065581738948822, 0.10425019264221191, 0.09432543069124222, -0.10999520868062973, 0.09139646589756012, 0.05630826577544212, -0.07588959485292435, 0.03163737803697586, -0.019569015130400658, -0.08193836361169815, 0.09925978630781174, 0.10197117179632187, 0.1548997163772583, 0.05457967147231102, 0.013256869278848171, -0.14638954401016235, 0.025951679795980453, 0.07463392615318298, 0.013401118107140064, 0.07418937981128693, -0.02145303599536419, 0.040409155189991, -0.07300055772066116, 0.017859967425465584, 0.04480705410242081, 0.07136233896017075, -0.07870305329561234, -0.201279878616333, -0.029174713417887688, 0.07705695182085037, 0.054510585963726044, 0.08804817497730255, -0.004537338390946388, 0.04775214195251465, -0.005613440647721291, 0.03936903551220894, 0.17506536841392517, -0.26947036385536194, -0.006489043589681387, -0.023819640278816223, 0.07007063925266266, 0.03886828571557999, -0.03848639875650406, -0.001106598530896008, 0.024829737842082977, 0.011862258426845074, 0.02810119092464447, -0.04816925525665283, -0.013214842416346073, -0.003780258819460869, -0.15464580059051514, -0.012101494707167149, 0.21964934468269348, -0.01709074340760708, -0.09513802081346512, -0.013481365516781807, -0.036331675946712494, 0.10608645528554916, 0.021105511114001274, -0.09298887103796005, 0.0012641766807064414, -0.0008932199561968446, -0.031271789222955704, -0.08971691131591797, -0.10241097211837769, -0.11718534678220749, -0.10470674932003021, 0.22103317081928253, -0.0008438537479378283, 0.02904265746474266, -0.030951207503676414, 0.114374078810215, -0.025903213769197464, -0.1111578568816185, -0.08490478992462158, -0.049528349190950394, -0.07275481522083282, -0.02860184758901596, -0.040025874972343445, -0.2424764186143875, 0.013376638293266296, 0.1189199835062027, 0.11939861625432968, 0.039289284497499466, -0.07270906865596771, 0.05088350176811218, 0.042490404099226, 0.21947555243968964, -0.1084144338965416, 0.02869538962841034, -0.03201446682214737, 0.0024287591222673655, -0.05526243895292282, -0.10828575491905212, -0.07002101838588715, -0.012482581660151482, 0.035138703882694244, 0.04958898574113846, 0.02767379768192768, 0.08825862407684326, -0.031094783917069435, -0.06991523504257202, 0.10596144944429398, -0.11526862531900406, -0.028719544410705566, 0.016841232776641846, -0.02925047278404236, 0.05460486188530922, 0.11557845026254654, 0.023221401497721672, -0.024502767249941826, 0.04227270185947418, -0.06909126788377762, -0.0742611289024353, -0.05217306688427925, -0.13557229936122894, 0.002987588755786419, -0.01056694146245718, 0.0000399214040953666, -0.15819470584392548, -0.07248605042695999, 0.006226350553333759, 0.06660331785678864, -0.00015719258226454258, 0.08646440505981445, 0.05614367499947548, 0.039191845804452896, 0.0025864820927381516, -0.02063329890370369, 0.03471618518233299, -0.022659581154584885, 0.09632471203804016, 0.03919229283928871, 0.04952498897910118, -0.034303512424230576, 0.07814057171344757, -0.0568276084959507, 0.026462959125638008, -0.14470890164375305, 0.08862856030464172, -0.14941474795341492, -0.024445023387670517, -0.1423048973083496, -0.005609251093119383, 0.02818475477397442, 0.026359798386693, 0.09498517215251923, 0.08013182133436203, -0.1168656125664711, -0.03990006446838379, 0.06794746965169907, -0.14735567569732666, -0.16831347346305847, 0.05156300216913223, -0.009189446456730366, 0.11950411647558212, 0.034016408026218414, 0.05200048163533211, 0.12991151213645935, -0.10281606018543243, -0.10957487672567368, 0.056763336062431335, -0.043196454644203186, -0.037544336169958115, 0.06977462023496628, 0.012992042116820812, -0.16855588555335999, 0.01084082294255495, -0.13122843205928802, 0.003180836793035269, -0.040921833366155624, -0.052049364894628525, -0.019580835476517677, -0.056198567152023315, 0.08887187391519547, 0.004653559997677803, -0.022626342251896858, 0.08506898581981659, -0.13065822422504425, 0.1472594141960144, 0.054222945123910904, -0.05725971981883049, 0.008349505253136158, -0.13402590155601501, 0.10668355226516724, -0.1712997555732727, 0.017111260443925858, -0.18904109299182892, -0.02244545891880989, 0.005173609592020512, -0.010216539725661278, 0.044663164764642715, 0.052007678896188736, 0.05666806548833847, 0.02024202048778534, 0.016897426918148994, -0.004725671838968992, -0.06928927451372147, 0.0258661899715662, -0.08264975994825363, -0.07794131338596344, -0.05574411526322365, -0.053000692278146744, 0.017071403563022614, -0.10842057317495346, 0.03410134091973305, 0.073033407330513, 0.03656817227602005, 0.01110980287194252, 0.0015482631279155612, -0.026117561385035515, -0.0014471141621470451, -0.018799804151058197, -0.010689759626984596, 0.03405996039509773, 0.007147143594920635, -0.10239254683256149, 0.018613945692777634, -0.0962056815624237, 0.006120741367340088, 0.0738726258277893, -0.03183727338910103, -0.05201418697834015, -0.06132453680038452, 0.00032128728344105184, -0.02610638551414013, -0.007043520454317331, -0.10115215927362442, 0.279903769493103, 0.07276751101016998, 0.060934100300073624, -0.04249165579676628, -0.008157449774444103, 0.017319196835160255, 0.004513177555054426, 0.012638594023883343, 0.009263422340154648, 0.07427298277616501, -0.08282124996185303, 0.023316077888011932, 0.22900255024433136, -0.014171245507895947, 0.0725727528333664, -0.033025696873664856, -0.11928670853376389, -0.014677474275231361, -0.052372947335243225, 0.0399397574365139, 0.09642408788204193, -0.11803577840328217, 0.019053202122449875, 0.07405619323253632, -0.013722673989832401, 0.00903822761029005, -0.0671616867184639, 0.03307666629552841, 0.06478788703680038, -0.0005170436343178153, -0.07491633296012878, -0.01636752486228943, -0.02266562730073929, 0.047586310654878616, 0.062197767198085785, 0.11532947421073914, 0.018145689740777016, -0.028480330482125282, -0.06993423402309418, 0.19766117632389069, -0.05105872452259064, -0.20616289973258972, -0.16644726693630219, -0.08841028809547424, -0.007596463430672884, 0.0013169038575142622, 0.04521247372031212, -0.1068158745765686, -0.07609833031892776, -0.03367377817630768, 0.13588880002498627, -0.011671592481434345, 0.01782885007560253, 0.027057139202952385, -0.08460541069507599, 0.0940956398844719, -0.16116885840892792, 0.04027017578482628, 0.010553021915256977, -0.10889381915330887, -0.014869052916765213, 0.03939037024974823, 0.10601485520601273, 0.13113714754581451, -0.031163470819592476, 0.008034017868340015, -0.0028886874206364155, 0.1908140331506729, -0.08179762959480286, 0.026353979483246803, 0.13283251225948334, -0.13706541061401367, 0.029299302026629448, 0.09534557163715363, 0.04972803592681885, -0.03559335321187973, 0.0333264023065567, 0.04704875499010086, -0.04798213765025139, -0.25339677929878235, 0.002629146445542574, 0.011189332231879234, -0.013653506524860859, 0.05980407074093819, 0.02409917674958706, 0.02642505057156086, 0.09806948900222778, 0.0379413403570652, -0.001387384138070047, -0.07102624326944351, 0.04705910012125969, 0.17716966569423676, -0.015493723563849926, 0.11508510261774063, -0.06328024715185165, 0.018676351755857468, 0.07697354257106781, 0.02720373123884201, 0.13519129157066345, -0.02396070584654808, 0.0767594575881958, 0.08383369445800781, 0.004642561078071594, 0.05951150879263878, 0.13858985900878906, -0.07961902022361755, -0.01846696063876152, -0.011170981451869011, -0.0485602542757988, -0.08419695496559143, 0.027357304468750954, 0.020639318972826004, 0.020804451778531075, -0.05702032893896103, -0.018984755501151085, 0.022952629253268242, 0.15258176624774933, 0.004380656871944666, -0.14901813864707947, -0.11666076630353928, -0.024804338812828064, -0.011200608685612679, -0.06814716011285782, 0.011254697106778622, 0.057220760732889175, -0.07025748491287231, -0.016784610226750374, -0.04691677168011665, 0.11213644593954086, -0.12796106934547424, -0.000926838256418705, 0.05988501012325287, 0.09075741469860077, -0.03211876377463341, 0.09425581246614456, -0.24097026884555817, 0.10068466514348984, 0.050936900079250336, 0.0335746593773365, -0.052302610129117966, 0.019550293684005737, 0.01640891097486019, 0.09804397821426392, 0.07217095047235489, -0.02990248240530491, 0.11398836970329285, -0.1967683881521225, -0.09091024845838547, 0.07237197458744049, 0.036884814500808716, -0.09453321248292923, 0.05616861209273338, -0.034791383892297745, 0.05736276134848595, 0.03346753865480423, 0.09311497211456299, -0.1383366882801056, -0.1683344691991806, 0.07265649735927582, -0.008970817551016808, 0.13976582884788513, -0.07013143599033356, -0.09933987259864807, 0.016629809513688087, 0.1533617377281189, -0.19074714183807373, -0.07623342424631119, -0.13935065269470215, -0.015234202146530151, 0.07025064527988434, -0.08645620197057724, 0.03865781053900719, -0.020195847377181053, 0.09433818608522415, 0.007123143412172794, -0.08176428824663162, 0.0784694030880928, -0.09055668860673904, -0.05751324072480202, -0.038361210376024246, 0.000483783456729725, 0.09253110736608505, 0.03874053806066513, 0.004217988811433315, -0.01910441555082798, -0.01637956313788891, -0.10996214300394058, -0.011543232947587967, 0.026331478729844093, -0.02294951304793358, 0.009837349876761436, -0.05809670686721802, 0.0859118327498436, -0.0675111785531044, 0.016151033341884613, 0.15414148569107056, 0.10524339228868484, -0.06907815486192703, 0.04351060464978218, 0.20671474933624268, -0.05881817266345024, -0.2673254609107971, -0.02040509134531021, 0.05050771310925484, -0.0002908094902522862, 0.031429629772901535, -0.2221922129392624, 0.14334183931350708, 0.03567126765847206, -0.010778211988508701, 0.025370722636580467, -0.12373114377260208, -0.08142200857400894, 0.21271231770515442, 0.10278547555208206, 0.03205780312418938, -0.12880976498126984, -0.07464567571878433, 0.00905038695782423, -0.17850738763809204, 0.0898737907409668, -0.07522246986627579, 0.07062093168497086, -0.013587179593741894, 0.026523098349571228, 0.01945066824555397, -0.031982649117708206, 0.09617454558610916, -0.012442478910088539, -0.0006951983086764812, -0.07026925683021545, -0.01838602125644684, 0.02990907058119774, -0.03743423521518707, 0.041758377104997635, -0.0240230243653059, 0.08059009164571762, -0.09090612083673477, -0.05951806902885437, -0.0017552977660670877, 0.07995177060365677, -0.020002055913209915, -0.09324073791503906, -0.033160582184791565, 0.019929878413677216, -0.02958718128502369, -0.03941160440444946, 0.03934206813573837, -0.08292627334594727, 0.049431756138801575, 0.1837109476327896, 0.1588449329137802, -0.027542049065232277, -0.11240357160568237, 0.008102948777377605, -0.024478605017066002, 0.1558547019958496, -0.12733793258666992, 0.08474692702293396, 0.1058669164776802, 0.019333727657794952, 0.11262604594230652, 0.048435602337121964, -0.11236438155174255, 0.020678192377090454, 0.03772410750389099, -0.06122168153524399, -0.08375395834445953, -0.013872218318283558, 0.1077551543712616, -0.1936672031879425, 0.052752457559108734, 0.13744191825389862, -0.03255051374435425, 0.007719637360423803, 0.04702150076627731, -0.01822780817747116, -0.03942655026912689, 0.1139368861913681, 0.12160642445087433, 0.05694258213043213, -0.031154856085777283, 0.07217185944318771, 0.0942276269197464, -0.08993270993232727, 0.04889803007245064, -0.1201297864317894, -0.06378622353076935, -0.06806835532188416, -0.07601188123226166, 0.10630764067173004, -0.06717350333929062, -0.0785372406244278, 0.007344501093029976, -0.06532016396522522, 0.029384883120656013, 0.16849729418754578, 0.025013210251927376, -0.007531349081546068, -0.04524458199739456, 0.05487878993153572, -0.06774410605430603, 0.08971787244081497, -0.06771652400493622, 0.050552453845739365, -0.07419294863939285, -0.05321705341339111, 0.0435522198677063, 0.1067994013428688, -0.057866714894771576, -0.056480638682842255, -0.11243192106485367, -0.017617257311940193, -0.2169538289308548, -0.023461032658815384, -0.024356113746762276, -0.010859190486371517, 0.009235769510269165, -0.11108769476413727, -0.04228303208947182, 0.023288564756512642, -0.01816684938967228, 0.0004477484035305679, 0.05144932121038437, 0.06238492950797081, -0.1776258945465088, -0.011189193464815617, 0.07474450021982193, -0.030130751430988312, 0.0782523900270462, 0.00638971570879221, -0.00950383860617876, 0.026569578796625137, -0.06335961818695068, 0.014618681743741035, -0.06331764161586761, 0.0513363741338253, 0.031154291704297066, -0.08286727964878082, 0.01463970448821783, -0.05335870757699013, -0.0369289256632328, -0.016676897183060646, 0.20567122101783752, -0.059122610837221146, 0.0477910041809082, -0.01899092085659504, 0.039161354303359985, -0.05305831879377365, 0.061080560088157654, 0.07410983741283417, 0.11133384704589844, 0.09967946261167526, -0.06458726525306702, 0.08709508180618286, -0.0987280011177063, 0.014143192209303379, 0.03842226788401604, 0.01703464239835739, 0.09930773079395294, -0.1330113410949707, 0.0027083544991910458, -0.07061506062746048, 0.20708118379116058, -0.05314946174621582, 0.10670141130685806, 0.0448034442961216, -0.02140728384256363, -0.045531172305345535, -0.05068973824381828, 0.19411805272102356, 0.05643612518906593, 0.04248921945691109, 0.0008911871700547636, 0.06552986055612564, -0.02982380986213684, 0.04834723100066185, 0.12396146357059479, 0.1185893639922142, -0.07940483838319778, 0.005298422183841467, 0.03950592875480652, -0.036710355430841446, -0.07386521995067596, -0.06722046434879303, -0.024387706071138382, 0.04678776487708092, -0.012524817138910294, 0.1540955901145935, 0.06616728752851486, -0.011415446177124977, 0.054199304431676865, -0.0006346805603243411, -0.060826003551483154, -0.08587948977947235, -0.023598546162247658, -0.013893716037273407, -0.1362932175397873, -0.01915699616074562, -0.08510056883096695, -0.030178634449839592, 0.11100804060697556, 0.014371540397405624, 0.020056936889886856, 0.2660761773586273, -0.06079620495438576, -0.020427849143743515, 0.030293820425868034, -0.032166093587875366, -0.01215649675577879, -0.12174490839242935, 0.07741477340459824, 0.05981810390949249, 0.12427225708961487, 0.04258579760789871, 0.052949145436286926, -0.020720921456813812, 0.05053531378507614, -0.005743280053138733, -0.12194588035345078, -0.0464390330016613, 0.04244162514805794, -0.03168681263923645, 0.06388313323259354, -0.001015220070257783, 0.029296083375811577, -0.02391747012734413, 0.14718686044216156, -0.0580492727458477, -0.04629822447896004, -0.1303701549768448, 0.10808607935905457, -0.0407225526869297, 0.02985215187072754, -0.028891948983073235, -0.116984061896801, -0.051019590348005295, 0.2620449364185333, 0.03470875695347786, -0.08590514212846756, 0.03674275800585747, 0.06844092160463333, 0.024972563609480858, 0.010832231491804123, 0.08442214876413345, 0.031836871057748795, 0.10962488502264023, -0.031689975410699844, -0.056991349905729294, -0.04880278557538986, -0.043300457298755646, 0.07137520611286163, 0.12576700747013092, 0.013740135356783867, -0.031193329021334648, -0.06768753379583359, 0.055991899222135544, -0.043501123785972595, -0.2603464424610138, -0.055755484849214554, -0.012853013351559639, -0.08278829604387283, -0.06283067166805267, 0.06956741958856583, -0.014795460738241673, -0.01273822970688343, 0.010811015963554382, -0.007542461156845093, 0.18140855431556702, 0.04372962936758995, -0.0289992094039917, -0.013548704795539379, 0.10056307911872864, -0.01312995608896017, 0.1692078411579132, 0.01224329974502325, 0.023492470383644104, 0.07402727007865906, 0.05629870668053627, -0.07953348010778427, 0.025514502078294754, 0.05580032616853714, -0.12827980518341064, -0.00810521375387907, 0.022404462099075317, 0.010595619678497314, 0.08317247778177261, 0.0659073069691658, -0.17568250000476837, 0.05115145072340965, -0.03767874464392662, -0.06740949302911758, -0.07791650295257568, -0.010318242013454437, -0.06338754296302795, 0.15468572080135345, 0.12302659451961517, -0.0038249939680099487, -0.07705290615558624, -0.08838645368814468, 0.04621579870581627, 0.003525682259351015, 0.09292947500944138, -0.03982493653893471, -0.08853001892566681, -0.0011223643086850643, -0.0597870871424675, 0.01888321340084076, -0.28768008947372437, -0.021073106676340103, 0.07348164170980453, -0.0377187617123127, 0.0380539633333683, 0.06068357825279236, 0.10066191107034683, 0.060702916234731674, -0.051704246550798416, -0.023579172790050507, -0.00859922543168068, 0.09360340237617493, -0.1931379735469818, -0.03596051409840584 ]
null
null
adapter-transformers
# Adapter `AdapterHub/bert-base-uncased-pf-conll2000` for bert-base-uncased An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [chunk/conll2000](https://adapterhub.ml/explore/chunk/conll2000/) dataset and includes a prediction head for tagging. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("bert-base-uncased") adapter_name = model.load_adapter("AdapterHub/bert-base-uncased-pf-conll2000", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
{"language": ["en"], "tags": ["token-classification", "bert", "adapterhub:chunk/conll2000", "adapter-transformers"], "datasets": ["conll2000"]}
token-classification
AdapterHub/bert-base-uncased-pf-conll2000
[ "adapter-transformers", "bert", "token-classification", "adapterhub:chunk/conll2000", "en", "dataset:conll2000", "arxiv:2104.08247", "region:us" ]
2022-03-02T23:29:04+00:00
[ "2104.08247" ]
[ "en" ]
TAGS #adapter-transformers #bert #token-classification #adapterhub-chunk/conll2000 #en #dataset-conll2000 #arxiv-2104.08247 #region-us
# Adapter 'AdapterHub/bert-base-uncased-pf-conll2000' for bert-base-uncased An adapter for the 'bert-base-uncased' model that was trained on the chunk/conll2000 dataset and includes a prediction head for tagging. This adapter was created for usage with the adapter-transformers library. ## Usage First, install 'adapter-transformers': _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_ Now, the adapter can be loaded and activated like this: ## Architecture & Training The training code for this adapter is available at URL In particular, training configurations for all tasks can be found here. ## Evaluation results Refer to the paper for more information on results. If you use this adapter, please cite our paper "What to Pre-Train on? Efficient Intermediate Task Selection":
[ "# Adapter 'AdapterHub/bert-base-uncased-pf-conll2000' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the chunk/conll2000 dataset and includes a prediction head for tagging.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ "TAGS\n#adapter-transformers #bert #token-classification #adapterhub-chunk/conll2000 #en #dataset-conll2000 #arxiv-2104.08247 #region-us \n", "# Adapter 'AdapterHub/bert-base-uncased-pf-conll2000' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the chunk/conll2000 dataset and includes a prediction head for tagging.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ 46, 85, 57, 30, 45 ]
[ "passage: TAGS\n#adapter-transformers #bert #token-classification #adapterhub-chunk/conll2000 #en #dataset-conll2000 #arxiv-2104.08247 #region-us \n# Adapter 'AdapterHub/bert-base-uncased-pf-conll2000' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the chunk/conll2000 dataset and includes a prediction head for tagging.\n\nThis adapter was created for usage with the adapter-transformers library.## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ -0.07606091350317001, -0.002257005078718066, -0.0021144866477698088, 0.02533949725329876, 0.1479262411594391, 0.028836091980338097, 0.15827929973602295, 0.051306698471307755, 0.0603700689971447, 0.05995500460267067, 0.007360696326941252, 0.10852662473917007, 0.03753936290740967, 0.05568810552358627, 0.022422825917601585, -0.06009618937969208, 0.011197696439921856, 0.03916153311729431, -0.04564036428928375, 0.09292297810316086, 0.08695463836193085, -0.09440036863088608, 0.07454429566860199, 0.03163347765803337, -0.14140154421329498, 0.047642454504966736, -0.010638398118317127, -0.06809841096401215, 0.10618558526039124, 0.09809257835149765, 0.202166348695755, 0.006567653734236956, -0.00017958946409635246, -0.12412339448928833, 0.006425418891012669, 0.08498568087816238, 0.026927955448627472, 0.06692188233137131, -0.02763107791543007, 0.004105918109416962, -0.009697391651570797, -0.011063284240663052, 0.07258966565132141, 0.06427977234125137, -0.08452661335468292, -0.1640789657831192, -0.043764736503362656, 0.13512979447841644, 0.05230281502008438, 0.08082562685012817, 0.017711879685521126, 0.1190497949719429, 0.012068512849509716, 0.0641215518116951, 0.17512395977973938, -0.2060534656047821, -0.008045624941587448, 0.057415299117565155, 0.039278022944927216, 0.02909114956855774, -0.043248001486063004, -0.01565949246287346, 0.017592232674360275, 0.011515434831380844, 0.03660965710878372, -0.07127425074577332, -0.10675876587629318, -0.013552817516028881, -0.14201824367046356, -0.029312029480934143, 0.19954876601696014, -0.009247771464288235, -0.09708242863416672, -0.08249475806951523, -0.053157296031713486, 0.05875951796770096, 0.0027784807607531548, -0.06835957616567612, 0.0014526009326800704, 0.0015367887681350112, 0.004265215247869492, -0.09449201822280884, -0.10532999038696289, -0.09747537970542908, -0.06993818283081055, 0.2810773551464081, -0.019908875226974487, 0.01976277120411396, -0.016379065811634064, 0.1269027590751648, -0.019833415746688843, -0.08305052667856216, -0.06803395599126816, -0.0408591702580452, -0.12092120945453644, -0.06728436797857285, -0.009890047833323479, -0.26471126079559326, -0.01572922058403492, 0.1777743399143219, 0.08668643981218338, 0.03677970916032791, -0.07478747516870499, 0.07051875442266464, 0.045448947697877884, 0.21667887270450592, -0.04278392344713211, 0.020099245011806488, -0.019173908978700638, -0.02041790820658207, -0.006534431129693985, -0.08377600461244583, -0.0458991713821888, -0.026358209550380707, 0.029797246679663658, 0.04659529775381088, 0.04255882278084755, 0.08985450118780136, -0.0764894038438797, -0.060642827302217484, 0.1280379742383957, -0.1304289996623993, 0.010310068726539612, 0.01265050284564495, -0.037516362965106964, 0.08079240471124649, 0.1431097537279129, -0.014154082164168358, -0.028486989438533783, 0.08413947373628616, -0.10305408388376236, -0.06371378153562546, -0.057718679308891296, -0.15885721147060394, 0.030629204586148262, -0.03300711512565613, -0.010887077078223228, -0.1586386114358902, -0.12325258553028107, -0.033055830746889114, 0.06028212234377861, 0.022284651175141335, 0.10000301897525787, 0.042301006615161896, 0.02069404348731041, 0.0008113121730275452, -0.026535596698522568, 0.0009642488439567387, -0.030983660370111465, 0.06808042526245117, 0.014402155764400959, 0.030756166204810143, -0.035405032336711884, 0.04882047697901726, -0.08626004308462143, 0.010438178665935993, -0.24723339080810547, 0.06142675504088402, -0.16176927089691162, 0.07568123936653137, -0.148403137922287, 0.016176750883460045, -0.010817186906933784, 0.05414896085858345, 0.0658818781375885, 0.1103999987244606, -0.0802517756819725, -0.06707189977169037, 0.07354900985956192, -0.16866135597229004, -0.13561001420021057, 0.025722771883010864, -0.001653779181651771, 0.16864390671253204, 0.055173616856336594, 0.08154993504285812, 0.13875742256641388, -0.11313721537590027, -0.1077909991145134, 0.05364178493618965, -0.058536551892757416, -0.04131358116865158, 0.023834601044654846, -0.009864906780421734, -0.05564122647047043, 0.008687063120305538, -0.07882753014564514, 0.0005007934523746371, 0.008406974375247955, -0.027957182377576828, -0.029546594247221947, -0.03188857063651085, 0.04617953300476074, 0.020571956411004066, -0.019045570865273476, 0.04174201935529709, -0.13316138088703156, 0.16142016649246216, 0.08608070760965347, -0.05912277102470398, 0.037662483751773834, -0.09835623949766159, 0.07075344771146774, -0.09230513125658035, 0.008285526186227798, -0.19751615822315216, -0.09344810247421265, 0.03077920712530613, 0.01391226053237915, 0.055875957012176514, 0.02805798314511776, 0.05967600643634796, 0.009264403022825718, 0.027444569393992424, -0.022995274513959885, -0.05736511945724487, 0.012090014293789864, -0.06653950363397598, -0.09810271859169006, -0.09488293528556824, -0.05789317935705185, 0.05888928845524788, -0.175497367978096, 0.044041626155376434, 0.13041935861110687, 0.06681535392999649, 0.06182996183633804, -0.04892916604876518, -0.008405135944485664, 0.004919904284179211, -0.05794847384095192, -0.047381289303302765, 0.02361336350440979, 0.024640223011374474, -0.0931401178240776, 0.0063620968721807, -0.10313334316015244, -0.062394458800554276, 0.08308123052120209, -0.001119146472774446, -0.08901569992303848, -0.04619826003909111, -0.02499791420996189, -0.03507780656218529, -0.02017912082374096, -0.1357584148645401, 0.1986817866563797, 0.08030831813812256, 0.07483707368373871, -0.013920057564973831, -0.013155889697372913, -0.010065681301057339, 0.008879851549863815, 0.011403224430978298, 0.0005339801427908242, 0.03638438135385513, -0.0945349857211113, 0.05769070237874985, 0.11023002862930298, -0.04268456995487213, 0.06848512589931488, -0.013628365471959114, -0.0920247882604599, 0.007308866363018751, 0.009556738659739494, 0.06820350885391235, 0.0686950609087944, -0.1302475929260254, 0.00034849424264393747, 0.05716927722096443, -0.005689318757504225, -0.0005201819003559649, -0.0857943743467331, 0.05782422050833702, 0.06597953289747238, 0.013418103568255901, 0.012174727395176888, -0.006237721536308527, -0.01319912075996399, 0.02959703840315342, 0.0378505140542984, 0.07198768109083176, 0.011719046160578728, -0.024321377277374268, -0.0934082493185997, 0.1893303096294403, -0.05942836403846741, -0.19285748898983002, -0.22550976276397705, -0.07680252194404602, -0.0153954504057765, 0.009077607654035091, 0.041170634329319, -0.04903240501880646, -0.10412126779556274, -0.05806621536612511, 0.11738550662994385, -0.005997339263558388, -0.004045730456709862, 0.024752624332904816, -0.05665435642004013, 0.035685840994119644, -0.17556767165660858, 0.016536379233002663, 0.039571456611156464, -0.09632008522748947, -0.013519227504730225, 0.02962750755250454, 0.08542056381702423, 0.16448552906513214, -0.0017139024566859007, -0.010077250190079212, -0.012227724306285381, 0.12214982509613037, -0.09559573233127594, 0.06838313490152359, 0.11650063097476959, -0.12721483409404755, 0.0322018601000309, 0.07056459784507751, 0.04120373725891113, -0.049451794475317, 0.04708929732441902, 0.045656584203243256, -0.05517444387078285, -0.25992289185523987, -0.03896092623472214, -0.02075725980103016, 0.04668273404240608, 0.0990367904305458, 0.04457714408636093, 0.09168777614831924, 0.07904814183712006, 0.011375674977898598, 0.06591885536909103, -0.011792361736297607, 0.09881982952356339, 0.16223306953907013, -0.011035558767616749, 0.08567216992378235, -0.08870289474725723, 0.026134110987186432, 0.09143657982349396, 0.005914687644690275, 0.13865812122821808, -0.0053741540759801865, 0.15025700628757477, 0.060582153499126434, -0.0807519480586052, 0.014491839334368706, 0.15593785047531128, -0.06127892807126045, -0.01106612104922533, 0.007484577130526304, -0.07886650413274765, -0.06620103120803833, 0.08063075691461563, 0.01291822362691164, 0.011102710850536823, -0.029231470078229904, -0.0839402973651886, 0.02611744962632656, 0.1092044860124588, 0.036036696285009384, -0.19903786480426788, -0.12263523787260056, -0.004278169479221106, -0.036943744868040085, -0.06648062914609909, -0.009433946572244167, 0.08047895133495331, -0.08299494534730911, 0.01611138880252838, -0.04035145044326782, 0.09451817721128464, -0.1402018815279007, -0.026267556473612785, 0.022683802992105484, 0.06140044331550598, -0.026754604652523994, 0.05396294593811035, -0.17886315286159515, 0.09084071964025497, 0.05849666893482208, 0.034708715975284576, -0.052615854889154434, 0.05366268754005432, 0.01582694798707962, 0.0920104905962944, 0.07173562049865723, -0.026613282039761543, 0.10397900640964508, -0.14852558076381683, -0.07807566225528717, -0.006435191258788109, 0.027987707406282425, -0.08383168280124664, 0.05234213545918465, -0.02177487686276436, 0.025253240019083023, 0.04176658019423485, 0.06378714740276337, -0.13090194761753082, -0.16009634733200073, 0.05303657427430153, 0.056163717061281204, 0.08104872703552246, -0.06332721561193466, -0.07052502781152725, 0.036114491522312164, 0.2436579316854477, -0.13362477719783783, -0.06384116411209106, -0.14898087084293365, 0.00004155495116719976, 0.06525743007659912, -0.06531333178281784, 0.04015081375837326, -0.028445666655898094, 0.08168726414442062, -0.020309017971158028, -0.07109689712524414, 0.08584452420473099, -0.0758204385638237, -0.03289517015218735, -0.06277304887771606, 0.009704184718430042, 0.07111737877130508, 0.021866166964173317, -0.00933503732085228, 0.0027427233289927244, 0.025428147986531258, -0.08874387294054031, -0.029958831146359444, 0.10214851796627045, -0.011989115737378597, 0.07156746834516525, -0.10070574283599854, 0.030177105218172073, -0.03516014665365219, 0.006724017672240734, 0.15087153017520905, 0.1288575530052185, -0.05352117493748665, 0.015537443570792675, 0.15987065434455872, -0.08226471394300461, -0.29609215259552, 0.03672867268323898, 0.02536342665553093, 0.021379822865128517, 0.02580755203962326, -0.21940363943576813, 0.1493547260761261, 0.05716496333479881, -0.009615023620426655, 0.092607781291008, -0.21332822740077972, -0.0947827398777008, 0.14275310933589935, 0.11083953827619553, -0.0030763212125748396, -0.13584408164024353, -0.07889771461486816, 0.0012192042777314782, -0.20934957265853882, 0.09207142889499664, -0.08504500985145569, 0.07263690233230591, -0.007807618472725153, 0.023296544328331947, 0.023581858724355698, -0.059906117618083954, 0.052930328994989395, 0.04239429906010628, 0.03679211437702179, -0.057746633887290955, -0.007028915919363499, 0.11337380111217499, -0.05540884658694267, 0.08923602104187012, -0.023906365036964417, 0.04765805974602699, -0.1190294474363327, -0.04868294298648834, -0.0004005478403996676, 0.12684239447116852, -0.036696527153253555, -0.08516371995210648, -0.06189577281475067, 0.026432326063513756, -0.0193122997879982, -0.021218683570623398, 0.12945201992988586, -0.036428965628147125, 0.07958488911390305, 0.176969975233078, 0.0885363295674324, -0.024331076070666313, -0.14429552853107452, 0.005972397979348898, -0.016814330592751503, 0.1274356096982956, -0.13714005053043365, 0.06696803867816925, 0.09916435182094574, 0.070048026740551, 0.10592515021562576, 0.05435219779610634, -0.1415267288684845, -0.02324683405458927, 0.06120159849524498, -0.07908382266759872, -0.01750379614531994, 0.003156341379508376, 0.06763973832130432, -0.12402556836605072, 0.050280824303627014, 0.18009063601493835, -0.03327268734574318, 0.014786318875849247, 0.051560088992118835, -0.03249809145927429, -0.0570184662938118, 0.125141903758049, 0.06426842510700226, 0.05440395697951317, -0.01991439238190651, 0.07326951622962952, 0.10612669587135315, -0.09697625786066055, 0.020042266696691513, -0.027973957359790802, -0.0888928696513176, -0.06382369250059128, -0.0730324536561966, 0.0645766407251358, -0.06522951275110245, -0.05017334222793579, -0.009447718970477581, -0.0328470803797245, 0.006735395174473524, 0.20529118180274963, 0.03920245170593262, 0.05153254047036171, -0.05577967315912247, 0.03990185633301735, -0.07511843740940094, 0.06402315944433212, -0.057787857949733734, 0.09606022387742996, -0.11058119684457779, 0.01628274843096733, 0.04769216105341911, -0.003921861760318279, -0.03217947855591774, -0.049241937696933746, -0.1550586074590683, -0.018075600266456604, -0.10162241011857986, -0.037107065320014954, -0.017203835770487785, -0.022181805223226547, 0.02560611069202423, -0.0654415488243103, -0.016660576686263084, 0.03287186473608017, -0.0246855691075325, -0.0288684219121933, 0.0287496205419302, 0.08322130888700485, -0.18243856728076935, -0.021357158198952675, 0.06116379797458649, -0.07491596043109894, 0.06302443891763687, 0.025102125480771065, -0.009288506582379341, 0.04010570049285889, -0.07084367424249649, 0.02620312012732029, 0.016871731728315353, 0.05161544680595398, 0.051232628524303436, -0.06966827064752579, 0.014075570739805698, -0.04171103611588478, 0.015687549486756325, -0.0004209906910546124, 0.17428773641586304, -0.07240104675292969, 0.022672703489661217, -0.031604986637830734, -0.016125665977597237, -0.06153592839837074, 0.05921345576643944, 0.10486263781785965, 0.10927920788526535, 0.12763221561908722, -0.05147428438067436, 0.06019891798496246, -0.09827893227338791, 0.012013282626867294, 0.026364436373114586, -0.013713681139051914, 0.109676793217659, -0.09852122515439987, -0.013058171607553959, -0.05096442997455597, 0.14236199855804443, -0.07327958941459656, 0.047861915081739426, 0.06717678159475327, -0.04721907898783684, -0.07801246643066406, -0.04225251451134682, 0.16738079488277435, 0.05278078466653824, 0.03450608253479004, 0.023565206676721573, 0.05626196414232254, 0.039358124136924744, 0.004909250885248184, 0.1715937703847885, 0.09927058219909668, -0.12489872425794601, 0.06392154097557068, 0.034154538065195084, -0.05374513193964958, -0.12329423427581787, -0.08405309170484543, -0.025672314688563347, 0.06583254039287567, -0.05858650431036949, 0.20191173255443573, 0.07755989581346512, -0.024191033095121384, 0.0671384334564209, 0.019719157367944717, -0.07125160098075867, -0.06973790377378464, -0.05826444923877716, -0.01570938341319561, -0.11658046394586563, -0.021637121215462685, -0.059010688215494156, -0.00863745715469122, 0.08463168144226074, 0.01849323697388172, 0.03087494894862175, 0.2753978967666626, -0.07304568588733673, -0.011336584575474262, 0.023321649059653282, -0.02294861152768135, -0.05266689881682396, -0.09754163026809692, 0.05403464660048485, 0.003542129183188081, 0.11486946046352386, 0.05288461223244667, 0.05799058452248573, 0.01065767090767622, 0.05664897337555885, 0.013858170248568058, -0.10233908146619797, -0.0551656074821949, 0.03485046699643135, -0.06525582075119019, 0.06903741508722305, 0.02835996076464653, 0.004984401632100344, -0.029150640591979027, 0.16348642110824585, -0.07614326477050781, -0.06678818166255951, -0.10289614647626877, 0.18728114664554596, 0.002015552716329694, 0.00553042022511363, -0.02806524559855461, -0.12819164991378784, -0.05150139331817627, 0.2178761065006256, 0.03554125502705574, -0.0016514499438926578, 0.0427103266119957, 0.05537005513906479, 0.01880183257162571, -0.023800084367394447, 0.08945915848016739, 0.013988066464662552, 0.15018194913864136, 0.0035148293245583773, -0.04202702268958092, -0.02679569274187088, -0.05700082704424858, 0.02007749117910862, 0.08046280592679977, -0.02324162982404232, -0.028083303943276405, -0.07951574772596359, 0.054524753242731094, -0.04019785299897194, -0.2590618133544922, 0.026122955605387688, -0.053942933678627014, -0.06408092379570007, -0.05895465612411499, 0.07946565747261047, -0.05588071420788765, 0.038716938346624374, 0.011776009574532509, -0.044288359582424164, 0.15490320324897766, 0.026794807985424995, -0.0727146714925766, -0.07058586925268173, 0.07307744026184082, -0.06416743993759155, 0.19477997720241547, -0.023130787536501884, 0.05851278826594353, 0.09084857255220413, 0.05064263567328453, -0.08413956314325333, 0.0068251523189246655, 0.039338618516922, -0.13730359077453613, -0.027263028547167778, 0.037680868059396744, -0.03903571516275406, 0.1483508050441742, 0.020335732027888298, -0.21850667893886566, 0.028134392574429512, 0.003576948307454586, -0.04172670468688011, -0.09958846122026443, -0.05968599021434784, -0.07904122769832611, 0.1460944563150406, 0.12409570813179016, 0.0014097678940743208, -0.07249812036752701, -0.07755259424448013, 0.03721142187714577, 0.020543474704027176, 0.09977845102548599, -0.04958055540919304, -0.14466771483421326, 0.007207041140645742, -0.08351965248584747, 0.044464968144893646, -0.28920120000839233, -0.035553228110075, 0.06375452876091003, -0.028672166168689728, -0.009031943045556545, 0.07279995828866959, 0.08816031366586685, 0.04573625698685646, -0.03975631669163704, -0.1254500448703766, 0.004729826003313065, 0.11702937632799149, -0.16964884102344513, -0.06987543404102325 ]
null
null
adapter-transformers
# Adapter `AdapterHub/bert-base-uncased-pf-conll2003` for bert-base-uncased An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [ner/conll2003](https://adapterhub.ml/explore/ner/conll2003/) dataset and includes a prediction head for tagging. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("bert-base-uncased") adapter_name = model.load_adapter("AdapterHub/bert-base-uncased-pf-conll2003", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
{"language": ["en"], "tags": ["token-classification", "bert", "adapterhub:ner/conll2003", "adapter-transformers"], "datasets": ["conll2003"]}
token-classification
AdapterHub/bert-base-uncased-pf-conll2003
[ "adapter-transformers", "bert", "token-classification", "adapterhub:ner/conll2003", "en", "dataset:conll2003", "arxiv:2104.08247", "region:us" ]
2022-03-02T23:29:04+00:00
[ "2104.08247" ]
[ "en" ]
TAGS #adapter-transformers #bert #token-classification #adapterhub-ner/conll2003 #en #dataset-conll2003 #arxiv-2104.08247 #region-us
# Adapter 'AdapterHub/bert-base-uncased-pf-conll2003' for bert-base-uncased An adapter for the 'bert-base-uncased' model that was trained on the ner/conll2003 dataset and includes a prediction head for tagging. This adapter was created for usage with the adapter-transformers library. ## Usage First, install 'adapter-transformers': _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_ Now, the adapter can be loaded and activated like this: ## Architecture & Training The training code for this adapter is available at URL In particular, training configurations for all tasks can be found here. ## Evaluation results Refer to the paper for more information on results. If you use this adapter, please cite our paper "What to Pre-Train on? Efficient Intermediate Task Selection":
[ "# Adapter 'AdapterHub/bert-base-uncased-pf-conll2003' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the ner/conll2003 dataset and includes a prediction head for tagging.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ "TAGS\n#adapter-transformers #bert #token-classification #adapterhub-ner/conll2003 #en #dataset-conll2003 #arxiv-2104.08247 #region-us \n", "# Adapter 'AdapterHub/bert-base-uncased-pf-conll2003' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the ner/conll2003 dataset and includes a prediction head for tagging.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ 45, 84, 57, 30, 45 ]
[ "passage: TAGS\n#adapter-transformers #bert #token-classification #adapterhub-ner/conll2003 #en #dataset-conll2003 #arxiv-2104.08247 #region-us \n# Adapter 'AdapterHub/bert-base-uncased-pf-conll2003' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the ner/conll2003 dataset and includes a prediction head for tagging.\n\nThis adapter was created for usage with the adapter-transformers library.## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ -0.05573133006691933, 0.026048246771097183, -0.0023946613073349, 0.03199859336018562, 0.14949557185173035, 0.004119238816201687, 0.13960497081279755, 0.04515539109706879, 0.002041463041678071, 0.06360745429992676, 0.021692151203751564, 0.11077336966991425, 0.027136215940117836, 0.04803358390927315, 0.02361164055764675, -0.08231836557388306, 0.019370807334780693, 0.02403603121638298, -0.011303342878818512, 0.1046440526843071, 0.08911298960447311, -0.0955546498298645, 0.08368836343288422, 0.06080710142850876, -0.11942846328020096, 0.06578084826469421, -0.02317877858877182, -0.08379225432872772, 0.09245451539754868, 0.09214480966329575, 0.1910053938627243, -0.0007748472853563726, 0.009014688432216644, -0.1578698456287384, 0.007416266016662121, 0.08143478631973267, 0.019812550395727158, 0.06506995111703873, -0.008218390867114067, -0.011039466597139835, 0.026356955990195274, -0.015411186963319778, 0.07178402692079544, 0.06556186079978943, -0.08827445656061172, -0.17312631011009216, -0.05314599350094795, 0.14244979619979858, 0.04240579530596733, 0.08655773103237152, 0.010336141102015972, 0.10252455621957779, 0.021060951054096222, 0.05059294402599335, 0.21234004199504852, -0.22159577906131744, -0.018379023298621178, 0.03794879838824272, 0.030263889580965042, 0.013764604926109314, -0.03929274529218674, -0.0025687911547720432, 0.028920261189341545, 0.00674218125641346, 0.04500802233815193, -0.039225541055202484, -0.08693006634712219, 0.013983159326016903, -0.16941480338573456, -0.02211787924170494, 0.18790780007839203, 0.001709083910100162, -0.09166693687438965, -0.07065815478563309, -0.04301761835813522, 0.06211390346288681, 0.023260846734046936, -0.08437982946634293, 0.0005373688763938844, -0.014125307090580463, -0.00683889165520668, -0.1121232733130455, -0.1097923219203949, -0.08696123212575912, -0.09658897668123245, 0.30785247683525085, -0.013073043897747993, 0.024622760713100433, -0.0071663386188447475, 0.12237057834863663, -0.009327792562544346, -0.07553022354841232, -0.07544060796499252, -0.04507599398493767, -0.10328231006860733, -0.05972125753760338, -0.019520370289683342, -0.25005701184272766, -0.017077036201953888, 0.1885417252779007, 0.09841509908437729, 0.030727582052350044, -0.05221126973628998, 0.058348286896944046, 0.03292836993932724, 0.19931107759475708, -0.059145402163267136, 0.02905241586267948, -0.03358978033065796, -0.020784053951501846, 0.0061403061263263226, -0.08587374538183212, -0.047170333564281464, -0.012987312860786915, 0.021795203909277916, 0.03055731952190399, 0.024744156748056412, 0.08716501295566559, -0.06892146915197372, -0.047617893666028976, 0.10472165048122406, -0.13407595455646515, 0.005979363806545734, 0.015570160001516342, -0.041456203907728195, 0.09671210497617722, 0.14784371852874756, -0.00946143176406622, -0.020511014387011528, 0.0789400115609169, -0.09257004410028458, -0.07285311073064804, -0.06050531193614006, -0.14098776876926422, 0.03854113817214966, -0.016818199306726456, -0.018634473904967308, -0.17438103258609772, -0.11764893680810928, -0.01470497902482748, 0.06769713759422302, 0.017266813665628433, 0.0997534915804863, 0.026452207937836647, 0.01438898779451847, 0.004868298303335905, -0.02510209195315838, -0.030406702309846878, -0.028098544105887413, 0.05165054649114609, 0.04035012423992157, 0.030838387086987495, -0.0308842733502388, 0.047850463539361954, -0.08380966633558273, 0.008768439292907715, -0.18394018709659576, 0.05343903601169586, -0.15272919833660126, 0.041805166751146317, -0.15419740974903107, -0.008974996395409107, -0.012165560387074947, 0.03904278576374054, 0.08205699920654297, 0.08934129774570465, -0.07961426675319672, -0.06690545380115509, 0.037378810346126556, -0.16695740818977356, -0.1293002963066101, 0.034133430570364, -0.007793878670781851, 0.14405809342861176, 0.04511464014649391, 0.08113516122102737, 0.13326089084148407, -0.12045031785964966, -0.11526977270841599, 0.04126827418804169, -0.06425399333238602, -0.039463695138692856, 0.030150581151247025, 0.002975135575979948, -0.0789107158780098, 0.015686172991991043, -0.10513278841972351, -0.002781354123726487, -0.007868551649153233, -0.043077509850263596, -0.01992105320096016, -0.031300194561481476, 0.06393347680568695, 0.011593807488679886, -0.023008933290839195, 0.03905985876917839, -0.1285652220249176, 0.22675447165966034, 0.08059664815664291, -0.07265300303697586, 0.044565193355083466, -0.10315302759408951, 0.10752587020397186, -0.10771709680557251, -0.0066847908310592175, -0.1987358182668686, -0.08261014521121979, 0.004231520462781191, -0.04247567057609558, 0.06520344316959381, 0.036992914974689484, 0.06122744828462601, 0.022079790011048317, 0.032315924763679504, -0.005381010938435793, -0.0771108940243721, 0.02626817487180233, -0.04590170457959175, -0.09265384078025818, -0.08086138218641281, -0.049237050116062164, 0.050553493201732635, -0.1766824871301651, 0.04006368666887283, 0.11087331175804138, 0.07870500534772873, 0.037552230060100555, -0.053789105266332626, -0.014262725599110126, -0.003200911683961749, -0.058915480971336365, -0.031126150861382484, 0.03420015051960945, 0.020914116874337196, -0.0929170548915863, 0.0002634582051541656, -0.10416298359632492, -0.05147909000515938, 0.07641463726758957, -0.020648304373025894, -0.08581254631280899, -0.0547090508043766, -0.035463910549879074, -0.033436987549066544, -0.01014446746557951, -0.10946868360042572, 0.23676227033138275, 0.0691366121172905, 0.06997421383857727, -0.029111074283719063, -0.0395113006234169, 0.0015664389356970787, -0.00555375637486577, -0.02210206910967827, 0.013854636810719967, 0.05402560159564018, -0.09447132796049118, 0.05707560479640961, 0.14178182184696198, -0.06625634431838989, 0.06971608847379684, 0.002912914613261819, -0.09637709707021713, 0.0031349239870905876, -0.012451610527932644, 0.06579972058534622, 0.04938042163848877, -0.09319405257701874, 0.003396672196686268, 0.05526124686002731, -0.0044821216724812984, 0.013689489103853703, -0.08307504653930664, 0.0499192476272583, 0.07363581657409668, 0.007905294187366962, 0.03356014937162399, 0.004799149464815855, -0.03272711858153343, 0.04009517654776573, 0.042503755539655685, 0.06706205010414124, 0.010653686709702015, -0.02091040462255478, -0.08586562424898148, 0.1861681491136551, -0.0675073191523552, -0.196079283952713, -0.22855384647846222, -0.09144517779350281, -0.04621059074997902, 0.000523132155649364, 0.029665613546967506, -0.059034690260887146, -0.09737692028284073, -0.0756354033946991, 0.10379429906606674, -0.03151324391365051, -0.003983823116868734, 0.03786967694759369, -0.058863021433353424, 0.05649805814027786, -0.18103639781475067, 0.023155715316534042, 0.023172568529844284, -0.10572338104248047, -0.03389783948659897, 0.03410353884100914, 0.10587333142757416, 0.15195779502391815, -0.012811394408345222, -0.002095527248457074, -0.0007031551795080304, 0.12550018727779388, -0.07391432672739029, 0.03469553217291832, 0.13130472600460052, -0.13866999745368958, 0.035365164279937744, 0.05728616192936897, 0.042441971600055695, -0.047158174216747284, 0.04959598928689957, 0.05660131573677063, -0.05847310274839401, -0.26039746403694153, -0.03432472422719002, -0.016290277242660522, 0.019835548475384712, 0.08722824603319168, 0.046747755259275436, 0.06775715202093124, 0.06053829938173294, 0.03118206560611725, 0.004339858889579773, -0.006519536953419447, 0.09926028549671173, 0.21782582998275757, -0.010796742513775826, 0.08540257811546326, -0.08127135038375854, 0.01763210818171501, 0.0935959592461586, -0.0015273374738171697, 0.12239160388708115, -0.007090725004673004, 0.11619576066732407, 0.07860397547483444, -0.07870691269636154, 0.02072850801050663, 0.13661174476146698, -0.06057869642972946, -0.007658019661903381, 0.00743495300412178, -0.08353524655103683, -0.05062900111079216, 0.06451724469661713, -0.02564433217048645, 0.030748121440410614, -0.033846475183963776, -0.07059866935014725, 0.04970596730709076, 0.08373391628265381, 0.0511711984872818, -0.22959208488464355, -0.11746486276388168, -0.017816098406910896, -0.03929072245955467, -0.044292014092206955, -0.002923740539699793, 0.048040956258773804, -0.07158655673265457, 0.0443546287715435, -0.033342085778713226, 0.08530726283788681, -0.1505400389432907, -0.019721880555152893, 0.04079952463507652, 0.10291644185781479, -0.026251258328557014, 0.07307100296020508, -0.1576986461877823, 0.09674624353647232, 0.04295537620782852, 0.03616931661963463, -0.032288238406181335, 0.03575293347239494, -0.0008852390456013381, 0.08081529289484024, 0.07392153143882751, -0.02119017206132412, 0.09869677573442459, -0.1290050894021988, -0.07787124067544937, 0.011194735765457153, 0.04040847718715668, -0.08191689103841782, 0.0531051903963089, -0.02932257018983364, 0.025527965277433395, 0.03600926697254181, 0.07016406208276749, -0.14190557599067688, -0.1779257357120514, 0.053042225539684296, 0.03165682405233383, 0.06047859415411949, -0.06957480311393738, -0.09950809180736542, -0.006586303934454918, 0.2761252224445343, -0.14769306778907776, -0.048258453607559204, -0.14988046884536743, 0.0175938680768013, 0.07208383083343506, -0.06680826097726822, 0.0488303117454052, -0.03101872280240059, 0.09187065064907074, -0.01472214050590992, -0.09462392330169678, 0.05726303532719612, -0.07555682212114334, -0.04666435718536377, -0.047090087085962296, 0.006286398507654667, 0.09462590515613556, 0.015228509902954102, -0.007681983523070812, 0.003577216062694788, 0.026009591296315193, -0.1027894839644432, -0.028123367577791214, 0.14441217482089996, -0.005433269310742617, 0.039765018969774246, -0.0703345462679863, 0.033970773220062256, -0.03754992038011551, 0.009787719696760178, 0.15787522494792938, 0.12000027298927307, -0.0533057264983654, 0.024899017065763474, 0.1840933859348297, -0.0909368097782135, -0.27646759152412415, 0.03241394832730293, 0.04102463647723198, 0.011232876218855381, 0.027089450508356094, -0.19939514994621277, 0.15782351791858673, 0.07940132915973663, -0.009847704321146011, 0.03400861844420433, -0.1959427148103714, -0.09832155704498291, 0.13949787616729736, 0.11852364987134933, 0.012131626717746258, -0.1128801479935646, -0.0710330605506897, -0.0000037355209769884823, -0.20819494128227234, 0.10679762065410614, -0.06541699916124344, 0.0630202665925026, -0.008251710794866085, 0.0280085951089859, 0.02670467272400856, -0.05549538508057594, 0.0679769217967987, 0.02859535440802574, 0.02963077276945114, -0.07187962532043457, 0.000962349702604115, 0.07312320172786713, -0.06297129392623901, 0.09158921986818314, -0.014589224010705948, 0.056960128247737885, -0.08270405232906342, -0.0651310458779335, -0.000995191396214068, 0.1309615820646286, -0.02262173965573311, -0.08305962383747101, -0.07291732728481293, 0.028350865468382835, -0.02429405227303505, -0.027097010985016823, 0.1331874281167984, -0.04831792414188385, 0.07462090253829956, 0.15439127385616302, 0.1250116527080536, 0.015000452287495136, -0.1233094334602356, 0.006081940606236458, -0.02535928040742874, 0.11074046045541763, -0.143980473279953, 0.055778536945581436, 0.1186123713850975, 0.05742911621928215, 0.10814721882343292, 0.05353868752717972, -0.15579922497272491, -0.027316082268953323, 0.07218301296234131, -0.09792978316545486, -0.0062467907555401325, -0.009101483970880508, 0.060976605862379074, -0.1411972939968109, 0.06651235371828079, 0.17517726123332977, -0.05750158801674843, 0.016713369637727737, 0.05157731473445892, -0.023409046232700348, -0.06348776072263718, 0.10299023240804672, 0.08182764053344727, 0.03886738047003746, -0.012338843196630478, 0.08372397720813751, 0.09680883586406708, -0.07447649538516998, 0.027014225721359253, -0.05283156782388687, -0.0814591646194458, -0.05208125337958336, -0.06234778091311455, 0.06812545657157898, -0.09616709500551224, -0.06844624876976013, 0.0037611883599311113, -0.031157884746789932, 0.017586754634976387, 0.20637786388397217, 0.056365080177783966, 0.03404751420021057, -0.05784980207681656, 0.0431717224419117, -0.0724419355392456, 0.06882955878973007, -0.054936449974775314, 0.08596912026405334, -0.1147407814860344, 0.007392677012830973, 0.04650682210922241, 0.007825223729014397, -0.03220689296722412, -0.04482751712203026, -0.1487315595149994, -0.020724935457110405, -0.11445045471191406, -0.04585745558142662, -0.037970367819070816, -0.010206708684563637, 0.030819306150078773, -0.06968999654054642, -0.03719574958086014, 0.04037420079112053, -0.018852021545171738, -0.01690639927983284, 0.03762756660580635, 0.08107421547174454, -0.1944206953048706, -0.01283728051930666, 0.06778272241353989, -0.06783505529165268, 0.06766646355390549, 0.01795739307999611, 0.0027136539574712515, 0.04880363121628761, -0.1126294955611229, 0.023939548060297966, 0.01813388057053089, 0.05694976821541786, 0.03520220145583153, -0.07528398185968399, 0.01785454899072647, -0.022788556292653084, -0.0005452836630865932, -0.010283051058650017, 0.16529986262321472, -0.06820908933877945, 0.01203284040093422, -0.02770772948861122, -0.009711279533803463, -0.06002387776970863, 0.04968073591589928, 0.10010085999965668, 0.12470202893018723, 0.1252676546573639, -0.054883167147636414, 0.05385148152709007, -0.08340781927108765, 0.015375729650259018, 0.025575697422027588, -0.022751985117793083, 0.10308779031038284, -0.09679511189460754, -0.008298694156110287, -0.0542123019695282, 0.17146730422973633, -0.06348887085914612, 0.052272994071245193, 0.0581347830593586, -0.05746997892856598, -0.06382568180561066, -0.034211836755275726, 0.1521565318107605, 0.05234484001994133, 0.03904653713107109, 0.021042607724666595, 0.04030837118625641, 0.020823098719120026, -0.008953097276389599, 0.16739149391651154, 0.10603451728820801, -0.15143747627735138, 0.06194723770022392, 0.05108710750937462, -0.05142504349350929, -0.10620058327913284, -0.07377590984106064, -0.04168936237692833, 0.0764642134308815, -0.0431152768433094, 0.17170412838459015, 0.10102459788322449, -0.01748235709965229, 0.05003909766674042, 0.02685672976076603, -0.06563551723957062, -0.09232433885335922, -0.09857804328203201, -0.021704956889152527, -0.10781197994947433, -0.005338212009519339, -0.06414566934108734, -0.005294058937579393, 0.05681467801332474, 0.03155411034822464, 0.024957699701189995, 0.24987611174583435, -0.05335567146539688, -0.01712396740913391, 0.020289015024900436, -0.0349218025803566, -0.04752868041396141, -0.09457018226385117, 0.050839927047491074, 0.01213801372796297, 0.11901106685400009, 0.05000806972384453, 0.0546431690454483, 0.027077369391918182, 0.0568230003118515, 0.011814604513347149, -0.10156894475221634, -0.059266138821840286, 0.03078978881239891, -0.05992450192570686, 0.05201473459601402, 0.030366670340299606, 0.004355733748525381, -0.023438671603798866, 0.14031441509723663, -0.0637197494506836, -0.05339895933866501, -0.10411020368337631, 0.19168958067893982, 0.001500139944255352, 0.02847220003604889, -0.03366120904684067, -0.12008379399776459, -0.05699857324361801, 0.22914540767669678, 0.05713547021150589, -0.0049444688484072685, 0.04468270018696785, 0.057684820145368576, 0.02185615710914135, -0.0014736265875399113, 0.06546170264482498, 0.013522482477128506, 0.15837343037128448, 0.010880710557103157, -0.06380872428417206, -0.04192516207695007, -0.028623787686228752, 0.05028160288929939, 0.08537259697914124, -0.009074423462152481, -0.031145192682743073, -0.07847718894481659, 0.05466661602258682, -0.059380047023296356, -0.26305967569351196, 0.0013037152821198106, -0.026822322979569435, -0.07219012826681137, -0.046551961451768875, 0.08990132808685303, -0.05834982544183731, 0.026342274621129036, 0.0063727558590471745, -0.0505916103720665, 0.14109724760055542, 0.039392922073602676, -0.08950823545455933, -0.04053984954953194, 0.07568532228469849, -0.014007870107889175, 0.193638414144516, -0.007521120365709066, 0.06074942275881767, 0.08469940721988678, 0.047276511788368225, -0.08913349360227585, 0.02530817873775959, 0.04100055247545242, -0.13067205250263214, -0.022660739719867706, 0.027464525774121284, -0.030122995376586914, 0.13166269659996033, 0.039905305951833725, -0.18277238309383392, 0.04023304954171181, -0.003592754015699029, -0.05996237322688103, -0.08526187390089035, -0.042717237025499344, -0.08085807412862778, 0.15229174494743347, 0.12817776203155518, -0.004325763322412968, -0.074555903673172, -0.08354964852333069, 0.042170215398073196, 0.0030608128290623426, 0.09893801063299179, -0.016042038798332214, -0.12855416536331177, -0.0013705481542274356, -0.10358183830976486, 0.0418093241751194, -0.2737545371055603, -0.039862535893917084, 0.07876583933830261, -0.02634076587855816, -0.002197951078414917, 0.06673195213079453, 0.09625411033630371, 0.04302408546209335, -0.04389229789376259, -0.07330655306577682, -0.0026171545032411814, 0.10926058143377304, -0.1772558093070984, -0.05684367194771767 ]
null
null
adapter-transformers
# Adapter `AdapterHub/bert-base-uncased-pf-conll2003_pos` for bert-base-uncased An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [pos/conll2003](https://adapterhub.ml/explore/pos/conll2003/) dataset and includes a prediction head for tagging. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("bert-base-uncased") adapter_name = model.load_adapter("AdapterHub/bert-base-uncased-pf-conll2003_pos", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
{"language": ["en"], "tags": ["token-classification", "bert", "adapterhub:pos/conll2003", "adapter-transformers"], "datasets": ["conll2003"]}
token-classification
AdapterHub/bert-base-uncased-pf-conll2003_pos
[ "adapter-transformers", "bert", "token-classification", "adapterhub:pos/conll2003", "en", "dataset:conll2003", "arxiv:2104.08247", "region:us" ]
2022-03-02T23:29:04+00:00
[ "2104.08247" ]
[ "en" ]
TAGS #adapter-transformers #bert #token-classification #adapterhub-pos/conll2003 #en #dataset-conll2003 #arxiv-2104.08247 #region-us
# Adapter 'AdapterHub/bert-base-uncased-pf-conll2003_pos' for bert-base-uncased An adapter for the 'bert-base-uncased' model that was trained on the pos/conll2003 dataset and includes a prediction head for tagging. This adapter was created for usage with the adapter-transformers library. ## Usage First, install 'adapter-transformers': _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_ Now, the adapter can be loaded and activated like this: ## Architecture & Training The training code for this adapter is available at URL In particular, training configurations for all tasks can be found here. ## Evaluation results Refer to the paper for more information on results. If you use this adapter, please cite our paper "What to Pre-Train on? Efficient Intermediate Task Selection":
[ "# Adapter 'AdapterHub/bert-base-uncased-pf-conll2003_pos' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the pos/conll2003 dataset and includes a prediction head for tagging.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ "TAGS\n#adapter-transformers #bert #token-classification #adapterhub-pos/conll2003 #en #dataset-conll2003 #arxiv-2104.08247 #region-us \n", "# Adapter 'AdapterHub/bert-base-uncased-pf-conll2003_pos' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the pos/conll2003 dataset and includes a prediction head for tagging.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ 45, 86, 57, 30, 45 ]
[ "passage: TAGS\n#adapter-transformers #bert #token-classification #adapterhub-pos/conll2003 #en #dataset-conll2003 #arxiv-2104.08247 #region-us \n# Adapter 'AdapterHub/bert-base-uncased-pf-conll2003_pos' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the pos/conll2003 dataset and includes a prediction head for tagging.\n\nThis adapter was created for usage with the adapter-transformers library.## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ -0.07241908460855484, -0.009041129611432552, -0.002200418384745717, 0.025261467322707176, 0.15555880963802338, 0.018586518242955208, 0.15931209921836853, 0.05340324342250824, 0.05159808322787285, 0.053003422915935516, 0.0017033793264999986, 0.1180972307920456, 0.03738030791282654, 0.047634024173021317, 0.03511333465576172, -0.08080673962831497, 0.01987748220562935, 0.030982505530118942, -0.04249192029237747, 0.10263360291719437, 0.0884813740849495, -0.08911152929067612, 0.07534707337617874, 0.03858006000518799, -0.11135674268007278, 0.04882775619626045, -0.015839165076613426, -0.07707522809505463, 0.1042361706495285, 0.0947633609175682, 0.19083982706069946, 0.00022834219271317124, 0.0025803514290601015, -0.12944714725017548, 0.002839345019310713, 0.08734527975320816, 0.023302605375647545, 0.059366390109062195, -0.004104393068701029, -0.0059995269402861595, -0.01590658351778984, -0.014522013254463673, 0.07801061868667603, 0.06628801673650742, -0.09126806259155273, -0.14906993508338928, -0.05350751429796219, 0.14322800934314728, 0.060125790536403656, 0.09640996158123016, 0.015566995367407799, 0.1316756308078766, 0.0005819664802402258, 0.061316583305597305, 0.19549556076526642, -0.20372061431407928, -0.013475682586431503, 0.05024271085858345, 0.04535263404250145, 0.025806250050663948, -0.03239617124199867, -0.016492070630192757, 0.011842377483844757, 0.014033831655979156, 0.03792452812194824, -0.06931270658969879, -0.07239784300327301, -0.008849220350384712, -0.15598025918006897, -0.040870632976293564, 0.20258860290050507, -0.004944933578372002, -0.10214739292860031, -0.08706550300121307, -0.05179009586572647, 0.05075628310441971, 0.00800861045718193, -0.06884738802909851, 0.0017572920769453049, 0.005727734882384539, 0.007760818116366863, -0.10129927843809128, -0.11037535220384598, -0.09172822535037994, -0.06135464459657669, 0.28840503096580505, -0.014520269818603992, 0.016646401956677437, -0.013630523346364498, 0.13233336806297302, -0.000699218362569809, -0.07448278367519379, -0.062154367566108704, -0.051669150590896606, -0.11653508245944977, -0.07053972780704498, -0.011697633191943169, -0.2549667954444885, -0.02686341665685177, 0.18575122952461243, 0.09476521611213684, 0.025923749431967735, -0.06740590929985046, 0.06776901334524155, 0.05288174748420715, 0.21757325530052185, -0.05567853897809982, 0.0301889106631279, -0.03232359141111374, -0.020729146897792816, -0.011268398724496365, -0.07756896317005157, -0.030738262459635735, -0.016968751326203346, 0.02773207426071167, 0.04960983991622925, 0.04672639071941376, 0.09050465375185013, -0.08225030452013016, -0.06873543560504913, 0.12240206450223923, -0.13849008083343506, 0.004154668655246496, 0.003092784434556961, -0.029139425605535507, 0.10337013751268387, 0.14368382096290588, -0.008533050306141376, -0.045199163258075714, 0.09257862716913223, -0.09665483981370926, -0.054368238896131516, -0.06316421180963516, -0.14488255977630615, 0.02694919891655445, -0.028963731601834297, -0.018484465777873993, -0.1583963930606842, -0.13240794837474823, -0.039603255689144135, 0.05907845124602318, 0.02617676556110382, 0.09538088738918304, 0.053574007004499435, 0.027601154521107674, -0.01120205968618393, -0.029617279767990112, -0.0055971029214560986, -0.031086184084415436, 0.06813763827085495, 0.011640523560345173, 0.01736505888402462, -0.031250905245542526, 0.05268183723092079, -0.09393807500600815, 0.00885318685323, -0.24921804666519165, 0.0560825876891613, -0.16030927002429962, 0.07174422591924667, -0.15105725824832916, 0.00535213528200984, 0.0031206822022795677, 0.06223210319876671, 0.05728544667363167, 0.11214631795883179, -0.06714285910129547, -0.06250391155481339, 0.08085589110851288, -0.17583292722702026, -0.13333545625209808, 0.033667657524347305, 0.004819371737539768, 0.16364634037017822, 0.0533660426735878, 0.06997943669557571, 0.13472317159175873, -0.11528225988149643, -0.09701861441135406, 0.044427093118429184, -0.054618410766124725, -0.039732128381729126, 0.042649272829294205, -0.021107390522956848, -0.06940490752458572, 0.010987438261508942, -0.10033117234706879, -0.006394329946488142, 0.005177730228751898, -0.027816345915198326, -0.0225263349711895, -0.02653401531279087, 0.034192487597465515, 0.02052195928990841, -0.021272175014019012, 0.04079259932041168, -0.13003398478031158, 0.18371374905109406, 0.0844746083021164, -0.05957562476396561, 0.042865775525569916, -0.09785331040620804, 0.07965204864740372, -0.08035540580749512, -0.004870316945016384, -0.20230650901794434, -0.08229231834411621, 0.01632075384259224, 0.024079453200101852, 0.05443393066525459, 0.023829534649848938, 0.05957185849547386, 0.012950826436281204, 0.026651820167899132, -0.025162348523736, -0.07064789533615112, 0.011103883385658264, -0.06339015066623688, -0.08722370862960815, -0.10045617818832397, -0.053300198167562485, 0.04364227131009102, -0.1478651612997055, 0.046737827360630035, 0.10885287076234818, 0.06793853640556335, 0.05665288865566254, -0.053533587604761124, -0.007846390828490257, 0.011915786191821098, -0.052297160029411316, -0.041710447520017624, 0.02861691825091839, 0.02831355854868889, -0.07069213688373566, 0.010077817365527153, -0.09680286049842834, -0.04701623320579529, 0.08502545207738876, -0.019142989069223404, -0.0901414304971695, -0.05211669206619263, -0.03361956775188446, -0.02724291943013668, -0.04407697170972824, -0.13997364044189453, 0.19300909340381622, 0.08081208169460297, 0.06944142282009125, -0.017301753163337708, -0.011061708442866802, -0.013895777985453606, -0.0017127885948866606, 0.00601869635283947, 0.006654912140220404, 0.06249971687793732, -0.08975783735513687, 0.06471507996320724, 0.11214346438646317, -0.032054729759693146, 0.05965117737650871, -0.015321768820285797, -0.09872075170278549, 0.009985320270061493, 0.010661032982170582, 0.0630764439702034, 0.05868513882160187, -0.1367424875497818, 0.005284629762172699, 0.05817229673266411, -0.0005141208530403674, 0.00010199601820204407, -0.08513099700212479, 0.04817141965031624, 0.07168073207139969, 0.01970047503709793, 0.023443136364221573, -0.007355266250669956, -0.00958583690226078, 0.03496285155415535, 0.031134651973843575, 0.06912536919116974, 0.003694636980071664, -0.020022772252559662, -0.09935557842254639, 0.18368983268737793, -0.05334226042032242, -0.20129165053367615, -0.22945058345794678, -0.07836886495351791, -0.022140415385365486, 0.010106697678565979, 0.04655838757753372, -0.047374177724123, -0.10686910897493362, -0.0658421441912651, 0.11803287267684937, -0.015732090920209885, -0.0053167217411100864, 0.024564970284700394, -0.052236832678318024, 0.03220003470778465, -0.1675904244184494, 0.007114548236131668, 0.03540125489234924, -0.11358754336833954, -0.01404998917132616, 0.029631653800606728, 0.0833698958158493, 0.14658695459365845, 0.0022736124228686094, -0.010796988382935524, -0.016739897429943085, 0.12128643691539764, -0.08608182519674301, 0.05714722350239754, 0.137104332447052, -0.1180589348077774, 0.03539934381842613, 0.056299276649951935, 0.038440875709056854, -0.05443114787340164, 0.04739570617675781, 0.05567871406674385, -0.055632736533880234, -0.27080073952674866, -0.04866349697113037, -0.020586680620908737, 0.057090070098638535, 0.10235917568206787, 0.04153478890657425, 0.08232952654361725, 0.0823458656668663, 0.004861969500780106, 0.04839026555418968, -0.016247494146227837, 0.10318653285503387, 0.1558237224817276, -0.01996389590203762, 0.09223534911870956, -0.08847610652446747, 0.022307302802801132, 0.09641105681657791, 0.004409473855048418, 0.12572817504405975, -0.0048215920105576515, 0.12237142026424408, 0.07047373056411743, -0.07539552450180054, 0.007648427505046129, 0.16025178134441376, -0.05047035217285156, -0.006913978606462479, 0.0042875041253864765, -0.08140937238931656, -0.0756579339504242, 0.07451166212558746, 0.01981869339942932, 0.009271753020584583, -0.040581513196229935, -0.08575001358985901, 0.03216668218374252, 0.1292765885591507, 0.030199838802218437, -0.1960197538137436, -0.1110813170671463, -0.007315886672586203, -0.04181744530797005, -0.05606700852513313, 0.00038006124668754637, 0.05408300459384918, -0.0967886745929718, 0.023210592567920685, -0.04148278012871742, 0.09615210443735123, -0.13564744591712952, -0.025364849716424942, 0.044511403888463974, 0.041173264384269714, -0.025546664372086525, 0.05436014384031296, -0.17485755681991577, 0.11089490354061127, 0.05125967785716057, 0.02814708650112152, -0.051577597856521606, 0.055829454213380814, 0.012048689648509026, 0.08016568422317505, 0.08568026125431061, -0.02071414515376091, 0.12459161877632141, -0.14763328433036804, -0.08570495992898941, -0.006864350754767656, 0.023419655859470367, -0.10143081843852997, 0.05462481826543808, -0.02720869891345501, 0.029588399454951286, 0.0308074951171875, 0.07645763456821442, -0.13454443216323853, -0.1594693660736084, 0.052544862031936646, 0.030016375705599785, 0.08495365083217621, -0.06508833169937134, -0.07984201610088348, 0.0018254440510645509, 0.2570282220840454, -0.10020682215690613, -0.0663921982049942, -0.15156978368759155, -0.006295886356383562, 0.054020948708057404, -0.06317710131406784, 0.02883952669799328, -0.019861700013279915, 0.06844501942396164, -0.01757662370800972, -0.06569896638393402, 0.08354373276233673, -0.08260272443294525, -0.03861477971076965, -0.05511621758341789, 0.026509851217269897, 0.0785134881734848, 0.0236069206148386, -0.013818187639117241, 0.00038698050775565207, 0.033380672335624695, -0.09334230422973633, -0.02734445594251156, 0.1170305386185646, 0.010421086102724075, 0.07706154882907867, -0.0975940003991127, 0.03122914582490921, -0.04077848419547081, 0.004072863608598709, 0.15389271080493927, 0.12883888185024261, -0.04336179047822952, 0.01766568422317505, 0.14869213104248047, -0.08092229813337326, -0.286742627620697, 0.03017950803041458, 0.01995745673775673, 0.012524191290140152, 0.04874761775135994, -0.21613764762878418, 0.14752748608589172, 0.07285013794898987, -0.009565217420458794, 0.03970649465918541, -0.21819482743740082, -0.09698257595300674, 0.14207887649536133, 0.12200064212083817, -0.017636824399232864, -0.13987021148204803, -0.06660160422325134, 0.010061998851597309, -0.21311941742897034, 0.0953240767121315, -0.06636469066143036, 0.06955994665622711, -0.005498310085386038, 0.014768080785870552, 0.023297498002648354, -0.06365691870450974, 0.05785883963108063, 0.03743092715740204, 0.027247706428170204, -0.057914476841688156, 0.014699965715408325, 0.10429961234331131, -0.05159155651926994, 0.08783283829689026, -0.0016866577789187431, 0.045255545526742935, -0.14278335869312286, -0.05565336346626282, -0.0033060673158615828, 0.11190202832221985, -0.03265351057052612, -0.09257542341947556, -0.0563688762485981, 0.033707525581121445, -0.010758300311863422, -0.022552242502570152, 0.13500332832336426, -0.041347939521074295, 0.08102535456418991, 0.16826850175857544, 0.0988583192229271, -0.009482773952186108, -0.17790652811527252, -0.011092160828411579, -0.01904124580323696, 0.11947207897901535, -0.11656831204891205, 0.0643010213971138, 0.09452477842569351, 0.06746301800012589, 0.10434729605913162, 0.055029235780239105, -0.13829392194747925, -0.02504226379096508, 0.05909467115998268, -0.0842076763510704, -0.026459744200110435, -0.00283880066126585, 0.0810730829834938, -0.12134383618831635, 0.05595148727297783, 0.18215197324752808, -0.03869757801294327, 0.004073861986398697, 0.049173157662153244, -0.01798989251255989, -0.06148204207420349, 0.1219436377286911, 0.04384537413716316, 0.04989893361926079, -0.021981477737426758, 0.08369317650794983, 0.09525155276060104, -0.10583708435297012, 0.014940680004656315, -0.027973594143986702, -0.08383142203092575, -0.06576108932495117, -0.060959342867136, 0.033775556832551956, -0.07655429095029831, -0.04966067895293236, -0.006762005854398012, -0.032772574573755264, 0.021985890343785286, 0.1923997402191162, 0.04654659330844879, 0.042371716350317, -0.055014319717884064, 0.03841400519013405, -0.06335888057947159, 0.04524591192603111, -0.05311345309019089, 0.0863671749830246, -0.10910316556692123, 0.010733794420957565, 0.04615014046430588, -0.007039195392280817, -0.030472688376903534, -0.05636155232787132, -0.1591441035270691, -0.009119792841374874, -0.10160445421934128, -0.048555582761764526, -0.03266214579343796, -0.022428398951888084, 0.026318509131669998, -0.06259306520223618, -0.012512321583926678, 0.02758730761706829, -0.024929752573370934, -0.02677975222468376, 0.030114671215415, 0.08888225257396698, -0.18577033281326294, -0.006332044489681721, 0.06756510585546494, -0.07657673954963684, 0.058335091918706894, 0.02640329860150814, -0.010829148814082146, 0.031410638242959976, -0.06515847146511078, 0.02379654161632061, 0.01867486536502838, 0.04411819577217102, 0.04539062827825546, -0.07482396066188812, 0.017245057970285416, -0.033436741679906845, 0.009960370138287544, 0.005740517284721136, 0.17552442848682404, -0.07833511382341385, 0.04158888757228851, -0.010791173204779625, -0.01893680915236473, -0.06033029779791832, 0.045481711626052856, 0.10078718513250351, 0.11383242160081863, 0.12476532906293869, -0.046426139771938324, 0.06564778834581375, -0.10694285482168198, 0.013758602552115917, 0.02194426767528057, 0.0006377347745001316, 0.10912133008241653, -0.09855687618255615, -0.01394998375326395, -0.04331593215465546, 0.15592902898788452, -0.05645906552672386, 0.05819263681769371, 0.07220153510570526, -0.04061414301395416, -0.05567941442131996, -0.042657699435949326, 0.15520308911800385, 0.04632653295993805, 0.03698429837822914, 0.03448178991675377, 0.04688119515776634, 0.035763129591941833, 0.009541940875351429, 0.18896739184856415, 0.11090879887342453, -0.1267203986644745, 0.05772522836923599, 0.02115023136138916, -0.04562833905220032, -0.14398115873336792, -0.12968158721923828, -0.006023311521857977, 0.06394017487764359, -0.06228562071919441, 0.1793501377105713, 0.07811016589403152, -0.02992069534957409, 0.06960488855838776, 0.01820601150393486, -0.057832393795251846, -0.07802337408065796, -0.07339619845151901, -0.007179307285696268, -0.11459951847791672, -0.017990441992878914, -0.06120522692799568, -0.0072818235494196415, 0.0964619591832161, 0.024330491200089455, 0.035637266933918, 0.25678715109825134, -0.08817461878061295, -0.017402341589331627, 0.012078588828444481, -0.0234010461717844, -0.0398591049015522, -0.10369172692298889, 0.05203381925821304, -0.0058234985917806625, 0.11626521497964859, 0.05749569088220596, 0.0575314462184906, 0.0032424209639430046, 0.05490754172205925, 0.005371067672967911, -0.09796357154846191, -0.05798571929335594, 0.02686915174126625, -0.06454014033079147, 0.09509524703025818, 0.02787742391228676, 0.007335979025810957, -0.023625731468200684, 0.1824725717306137, -0.08130459487438202, -0.06061341241002083, -0.11205820739269257, 0.1959201842546463, 0.005706490017473698, 0.0052920151501894, -0.021997487172484398, -0.12133681774139404, -0.05267384275794029, 0.22534728050231934, 0.048581674695014954, 0.007615527603775263, 0.04708760231733322, 0.053769998252391815, 0.019809283316135406, -0.015461455099284649, 0.08934231847524643, 0.015346781350672245, 0.15725311636924744, -0.00672953762114048, -0.03504441678524017, -0.027941349893808365, -0.06062231957912445, 0.02106393128633499, 0.07391168922185898, -0.020348146557807922, -0.028360843658447266, -0.0711861252784729, 0.06978381425142288, -0.047964371740818024, -0.24447385966777802, 0.02058878168463707, -0.04157450050115585, -0.06862304359674454, -0.052086878567934036, 0.08212409913539886, -0.05045609548687935, 0.04908846318721771, 0.021654948592185974, -0.047302693128585815, 0.15572644770145416, 0.03689240291714668, -0.0788956955075264, -0.0753333792090416, 0.08641240000724792, -0.02697952836751938, 0.19365336000919342, -0.01461789384484291, 0.05494249239563942, 0.08143879473209381, 0.04954952746629715, -0.08646054565906525, -0.00028902749181725085, 0.04113059863448143, -0.1402183175086975, -0.028139082714915276, 0.029961854219436646, -0.0374910794198513, 0.14379525184631348, 0.017624342814087868, -0.22207605838775635, 0.029763560742139816, -0.0047766766510903835, -0.028430327773094177, -0.09742512553930283, -0.05116192623972893, -0.090320885181427, 0.14648354053497314, 0.125160813331604, -0.003859840100631118, -0.06928788125514984, -0.07808639109134674, 0.042088430374860764, 0.013687249273061752, 0.08577454835176468, -0.0470193549990654, -0.1496816724538803, -0.004712035413831472, -0.09473031014204025, 0.04258183762431145, -0.2774352431297302, -0.038216277956962585, 0.07791407406330109, -0.03258875757455826, -0.02206256240606308, 0.06995047628879547, 0.07404018193483353, 0.04320014640688896, -0.03770644590258598, -0.11717413365840912, 0.0065367757342755795, 0.11792121827602386, -0.16318447887897491, -0.06119944900274277 ]
null
null
adapter-transformers
# Adapter `AdapterHub/bert-base-uncased-pf-copa` for bert-base-uncased An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [comsense/copa](https://adapterhub.ml/explore/comsense/copa/) dataset and includes a prediction head for multiple choice. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("bert-base-uncased") adapter_name = model.load_adapter("AdapterHub/bert-base-uncased-pf-copa", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-what-to-pre-train-on, title={What to Pre-Train on? Efficient Intermediate Task Selection}, author={Clifton Poth and Jonas Pfeiffer and Andreas Rücklé and Iryna Gurevych}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (EMNLP)", month = nov, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/2104.08247", pages = "to appear", } ```
{"language": ["en"], "tags": ["bert", "adapterhub:comsense/copa", "adapter-transformers"]}
null
AdapterHub/bert-base-uncased-pf-copa
[ "adapter-transformers", "bert", "adapterhub:comsense/copa", "en", "arxiv:2104.08247", "region:us" ]
2022-03-02T23:29:04+00:00
[ "2104.08247" ]
[ "en" ]
TAGS #adapter-transformers #bert #adapterhub-comsense/copa #en #arxiv-2104.08247 #region-us
# Adapter 'AdapterHub/bert-base-uncased-pf-copa' for bert-base-uncased An adapter for the 'bert-base-uncased' model that was trained on the comsense/copa dataset and includes a prediction head for multiple choice. This adapter was created for usage with the adapter-transformers library. ## Usage First, install 'adapter-transformers': _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_ Now, the adapter can be loaded and activated like this: ## Architecture & Training The training code for this adapter is available at URL In particular, training configurations for all tasks can be found here. ## Evaluation results Refer to the paper for more information on results. If you use this adapter, please cite our paper "What to Pre-Train on? Efficient Intermediate Task Selection":
[ "# Adapter 'AdapterHub/bert-base-uncased-pf-copa' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the comsense/copa dataset and includes a prediction head for multiple choice.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ "TAGS\n#adapter-transformers #bert #adapterhub-comsense/copa #en #arxiv-2104.08247 #region-us \n", "# Adapter 'AdapterHub/bert-base-uncased-pf-copa' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the comsense/copa dataset and includes a prediction head for multiple choice.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ 32, 83, 57, 30, 45 ]
[ "passage: TAGS\n#adapter-transformers #bert #adapterhub-comsense/copa #en #arxiv-2104.08247 #region-us \n# Adapter 'AdapterHub/bert-base-uncased-pf-copa' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the comsense/copa dataset and includes a prediction head for multiple choice.\n\nThis adapter was created for usage with the adapter-transformers library.## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ -0.05988139659166336, -0.041318658739328384, -0.002947726519778371, 0.008126992732286453, 0.16489844024181366, 0.041419804096221924, 0.1524876207113266, 0.041865769773721695, 0.037036534398794174, 0.0339941643178463, 0.0470198430120945, 0.09813429415225983, 0.0662112906575203, 0.0037155072204768658, 0.01732809841632843, -0.09255287051200867, 0.005461385007947683, 0.03137393295764923, -0.0628805160522461, 0.10314983874559402, 0.10436100512742996, -0.09402356296777725, 0.09332997351884842, 0.050257667899131775, -0.0856003686785698, 0.025794949382543564, -0.03021085634827614, -0.08385982364416122, 0.09162899851799011, 0.0796126127243042, 0.19441404938697815, 0.0409628264605999, 0.014890416525304317, -0.12811899185180664, 0.010861589573323727, 0.08463500440120697, 0.026551062241196632, 0.081358902156353, -0.019773168489336967, 0.012527616694569588, -0.047817476093769073, -0.0011188937351107597, 0.07015907019376755, 0.05384901165962219, -0.08433637768030167, -0.18377900123596191, -0.032742906361818314, 0.08780381083488464, 0.056020453572273254, 0.06848368793725967, 0.009603838436305523, 0.06910807639360428, -0.015576059930026531, 0.01873614452779293, 0.16547447443008423, -0.23690766096115112, 0.0008439217926934361, 0.003823443315923214, 0.06684190034866333, 0.032295528799295425, -0.03331897780299187, -0.01839280314743519, 0.030530652031302452, 0.012271080166101456, 0.04039018228650093, -0.03589509055018425, 0.01342516578733921, -0.021951230242848396, -0.15764343738555908, -0.02901763841509819, 0.2056746929883957, -0.046577852219343185, -0.09330692142248154, -0.05320991948246956, -0.01989743299782276, 0.07663550227880478, 0.02026892639696598, -0.08446945995092392, 0.012969785369932652, 0.014041908085346222, 0.03176076337695122, -0.07900641113519669, -0.10897678881883621, -0.10766664892435074, -0.07153814285993576, 0.2688066363334656, -0.01607871800661087, 0.031803131103515625, 0.006994698196649551, 0.13419044017791748, -0.026066021993756294, -0.08722607046365738, -0.03680902346968651, -0.03821021318435669, -0.059234850108623505, -0.046276722103357315, -0.029724517837166786, -0.2546009421348572, -0.009635216556489468, 0.1365438848733902, 0.12738460302352905, 0.028972402215003967, -0.0753641277551651, 0.08807240426540375, 0.06312676519155502, 0.1694621741771698, -0.08911118656396866, 0.05984082445502281, -0.04638393223285675, -0.028629032894968987, -0.02076147310435772, -0.10447009652853012, -0.06579272449016571, 0.011558101512491703, 0.025579480454325676, 0.03995002806186676, 0.030378704890608788, 0.08396420627832413, -0.06773744523525238, -0.06435183435678482, 0.1727679967880249, -0.12235044687986374, -0.003799071069806814, 0.0027216216549277306, -0.022785020992159843, 0.11094195395708084, 0.12861588597297668, 0.012176069431006908, -0.024734005331993103, 0.13703656196594238, -0.07934755831956863, -0.07182082533836365, -0.0668906420469284, -0.14136743545532227, 0.02663019858300686, -0.05649386718869209, -0.01415634248405695, -0.1525217741727829, -0.08724578469991684, -0.007713809609413147, 0.08061539381742477, -0.01187315583229065, 0.09740478545427322, 0.05215940624475479, 0.03654252737760544, 0.0049712276086211205, -0.01817387528717518, -0.0002725385711528361, -0.02758963592350483, 0.07437733560800552, -0.0050182342529296875, 0.04047327861189842, -0.04333120957016945, 0.0751827284693718, -0.07971055805683136, 0.03162752091884613, -0.20146016776561737, 0.05596069246530533, -0.15912923216819763, 0.03483184054493904, -0.1310904324054718, -0.0059571461752057076, -0.015594566240906715, 0.02427079901099205, 0.06787948310375214, 0.09301944077014923, -0.08767125755548477, -0.05778995901346207, 0.05272201821208, -0.1966836154460907, -0.11658909916877747, 0.03129657357931137, 0.010234568268060684, 0.1158258318901062, 0.05113597959280014, 0.0529140867292881, 0.12019267678260803, -0.13398045301437378, -0.0597185455262661, 0.05684228241443634, -0.060860440135002136, -0.039835378527641296, 0.06488998979330063, -0.016628222540020943, -0.18299464881420135, 0.009696544148027897, -0.12876057624816895, -0.0037611389998346567, -0.023860158398747444, -0.03607337921857834, -0.004271841142326593, -0.037410542368888855, 0.05864977464079857, 0.01909319870173931, -0.025973264127969742, 0.03693106397986412, -0.132644921541214, 0.16018129885196686, 0.05527900531888008, -0.05305798724293709, 0.02035333402454853, -0.09628472477197647, 0.11016121506690979, -0.13778838515281677, 0.007988983765244484, -0.16940397024154663, -0.00852151308208704, 0.019901422783732414, -0.01151855755597353, 0.04751499369740486, 0.03992946818470955, 0.0568525604903698, 0.03405153378844261, 0.01806478574872017, 0.014555416069924831, -0.040443871170282364, 0.04024169594049454, -0.04998568445444107, -0.10768722742795944, -0.07049010694026947, -0.045459553599357605, 0.05432245507836342, -0.13471448421478271, 0.035955049097537994, 0.08170155435800552, 0.06421013921499252, 0.020695243030786514, -0.019388696178793907, -0.050442174077034, -0.002522209892049432, -0.027327874675393105, -0.02208789996802807, 0.030439486727118492, 0.018988149240612984, -0.07446588575839996, 0.04835161566734314, -0.09227148443460464, -0.0205291286110878, 0.09739412367343903, -0.06198485568165779, -0.09491805732250214, -0.04372984915971756, 0.009072975255548954, -0.037515729665756226, -0.010233242996037006, -0.11676561087369919, 0.23720748722553253, 0.05519675835967064, 0.06455349177122116, -0.02636285126209259, 0.008866569958627224, 0.0164220929145813, -0.009163609705865383, 0.00429028132930398, -0.0084228515625, 0.06752409040927887, -0.07050006091594696, 0.045280225574970245, 0.21204017102718353, -0.030213739722967148, 0.05709005147218704, -0.013971629552543163, -0.11568158119916916, -0.0036100572906434536, -0.03627125173807144, 0.047955453395843506, 0.06253406405448914, -0.1158069297671318, 0.0015321625396609306, 0.059949252754449844, -0.011857335455715656, 0.01628420688211918, -0.08301086723804474, 0.047821156680583954, 0.08166296035051346, 0.01243489421904087, -0.033958323299884796, -0.04574921727180481, -0.044138066470623016, 0.04616091027855873, 0.06383400410413742, 0.09052510559558868, 0.024796346202492714, -0.02316429279744625, -0.07242416590452194, 0.17054417729377747, -0.0676816776394844, -0.20344878733158112, -0.1913963109254837, -0.0755528062582016, 0.03509433940052986, 0.03693940490484238, 0.02775929681956768, -0.06466260552406311, -0.08260298520326614, -0.04895244911313057, 0.1234867125749588, -0.02625269442796707, 0.014085527509450912, 0.025941111147403717, -0.06604065001010895, 0.05978657677769661, -0.1525425910949707, 0.025873785838484764, 0.035781342536211014, -0.0772271454334259, -0.00548642547801137, 0.032185010612010956, 0.07612702250480652, 0.17505493760108948, -0.016132371500134468, -0.002006254391744733, -0.00835686456412077, 0.10816500335931778, -0.07585720717906952, 0.023286117240786552, 0.078773133456707, -0.15247875452041626, 0.024319017305970192, 0.07706327736377716, 0.053458817303180695, -0.027704063802957535, 0.027224762365221977, 0.022525455802679062, -0.052303023636341095, -0.2516583204269409, -0.02393196150660515, 0.012799723073840141, 0.012426583096385002, 0.09927333146333694, 0.031567059457302094, 0.05904205143451691, 0.10138613730669022, 0.050637681037187576, 0.019068168476223946, -0.032624177634716034, 0.05132134631276131, 0.16450779139995575, -0.03552266210317612, 0.1010766252875328, -0.06835924834012985, -0.013751092366874218, 0.08116237819194794, -0.020649349316954613, 0.09384642541408539, 0.006884611211717129, 0.10302834212779999, 0.06778787076473236, -0.03348219022154808, 0.03421280160546303, 0.16187378764152527, -0.04852509871125221, -0.017906662076711655, -0.01454424113035202, -0.06510115414857864, -0.08198798447847366, 0.05095365643501282, 0.05346960946917534, 0.0028498247265815735, -0.04180041328072548, -0.1038007065653801, 0.02492932230234146, 0.13618360459804535, 0.022004105150699615, -0.2026282399892807, -0.0867932140827179, -0.015303975902497768, -0.005370074417442083, -0.06506567448377609, 0.008287066593766212, 0.045761723071336746, -0.06784311681985855, 0.01808169297873974, -0.02829660475254059, 0.10223347693681717, -0.1615685224533081, -0.023147502914071083, 0.04908464103937149, 0.086340993642807, -0.03513038903474808, 0.09416007250547409, -0.18682675063610077, 0.07654774934053421, 0.03797993063926697, 0.018680278211832047, -0.08605097979307175, 0.029218873009085655, -0.0003387005708646029, 0.10016797482967377, 0.06892447918653488, -0.02913455292582512, 0.1090950071811676, -0.15376827120780945, -0.1082744300365448, 0.013406363315880299, 0.054363913834095, -0.12415691465139389, 0.028166096657514572, -0.02361256815493107, 0.03554869443178177, 0.04072268307209015, 0.02992379106581211, -0.1345207542181015, -0.1449958235025406, 0.09240780025720596, 0.008059917949140072, 0.0970771387219429, -0.060637425631284714, -0.11687851697206497, 0.026508936658501625, 0.2133486121892929, -0.14629562199115753, -0.05795301869511604, -0.14455708861351013, -0.04417739808559418, 0.08365999162197113, -0.04360564053058624, 0.053062789142131805, -0.0038123009726405144, 0.09265398979187012, -0.011483286507427692, -0.0615408830344677, 0.10423620045185089, -0.09201506525278091, -0.054312899708747864, -0.06134389340877533, 0.03337813913822174, 0.09767752140760422, 0.0357152558863163, -0.013746972195804119, -0.0014576376415789127, 0.016756320372223854, -0.09876706451177597, -0.006862116511911154, 0.03859817981719971, -0.013952430337667465, 0.06739682704210281, -0.04119126871228218, 0.07042153924703598, -0.045922718942165375, 0.008993755094707012, 0.13882744312286377, 0.15093474090099335, -0.06080305948853493, 0.05612598732113838, 0.1885218620300293, -0.07498166710138321, -0.2902126908302307, -0.007075013127177954, 0.03600823134183884, -0.00023615850659552962, 0.023857897147536278, -0.21048320829868317, 0.136588916182518, 0.059435050934553146, -0.023992488160729408, 0.10187161713838577, -0.15104258060455322, -0.08183418214321136, 0.20987102389335632, 0.08447262644767761, 0.028718695044517517, -0.13706545531749725, -0.093052439391613, -0.020255498588085175, -0.1565628945827484, 0.11858994513750076, -0.05735993757843971, 0.0517759807407856, 0.010242047719657421, -0.015260674059391022, 0.024192798882722855, -0.04810129478573799, 0.10544273257255554, -0.0014896729262545705, -0.003723995992913842, -0.09314899891614914, 0.0016608296427875757, 0.05098629370331764, -0.028430437669157982, 0.07417984306812286, -0.024977345019578934, 0.04009981080889702, -0.050245508551597595, -0.0604332871735096, 0.009705880656838417, 0.10793361812829971, -0.01570005528628826, -0.0756148025393486, -0.05475039780139923, 0.017735661938786507, -0.0445551723241806, -0.03967689350247383, 0.07915887981653214, -0.05982403829693794, 0.04765382409095764, 0.1847330778837204, 0.12023470550775528, -0.02845393493771553, -0.10197081416845322, 0.014165927655994892, -0.03898066282272339, 0.1438005566596985, -0.11681482195854187, 0.05976388603448868, 0.0932595357298851, 0.027083134278655052, 0.13135789334774017, 0.05413229390978813, -0.14164984226226807, -0.03967013210058212, 0.06250137090682983, -0.08998230844736099, 0.019012609496712685, -0.0014159473357722163, 0.09145929664373398, -0.1436348557472229, 0.013363009318709373, 0.1355268508195877, -0.06641265004873276, 0.02123178541660309, 0.05054309219121933, -0.0032474054023623466, -0.07331100106239319, 0.1264728456735611, 0.11788306385278702, 0.037383418530225754, -0.030794519931077957, 0.09991445392370224, 0.12157198786735535, -0.11865430325269699, 0.026324106380343437, -0.10318822413682938, -0.05629102513194084, -0.0706380233168602, -0.07186964899301529, 0.05901695042848587, -0.021699801087379456, -0.0920788049697876, 0.018183264881372452, -0.06688130646944046, 0.02359570562839508, 0.1110200434923172, 0.05010955035686493, 0.03822571784257889, -0.041837792843580246, 0.05546945706009865, -0.09017499536275864, 0.05271049961447716, -0.049800362437963486, 0.0693785771727562, -0.07083208113908768, -0.0330841951072216, 0.06837327033281326, 0.05654757097363472, -0.05342442914843559, -0.03770451992750168, -0.12740327417850494, -0.014050706289708614, -0.10519535094499588, -0.02233893796801567, -0.050510141998529434, -0.03142277151346207, 0.043905243277549744, -0.07575471699237823, -0.02466859295964241, -0.0016737254336476326, -0.031048426404595375, -0.003927331417798996, 0.04009239748120308, 0.0595599040389061, -0.16308215260505676, -0.03218696638941765, 0.09090320020914078, -0.0563187301158905, 0.044577017426490784, 0.02676108106970787, 0.006814251653850079, 0.013204888440668583, -0.10553562641143799, 0.027010055258870125, -0.0033792187459766865, 0.026783201843500137, 0.012612545862793922, -0.11720407009124756, -0.0014282554620876908, -0.02698378451168537, -0.019492795690894127, -0.018600819632411003, 0.19355441629886627, -0.06958074867725372, 0.04454554244875908, -0.016635414212942123, -0.017058027908205986, -0.03390203043818474, 0.04083888977766037, 0.09807506203651428, 0.09141284227371216, 0.11393815279006958, -0.05928073078393936, 0.0967869684100151, -0.06264181435108185, 0.01952698454260826, 0.005468310322612524, 0.007415386848151684, 0.12844879925251007, -0.10252423584461212, -0.013133752159774303, -0.05402335524559021, 0.24100691080093384, -0.037042904645204544, 0.05282348021864891, 0.03971662372350693, -0.006277226842939854, -0.03335390239953995, -0.019716305658221245, 0.1926308125257492, 0.05511415749788284, 0.015937482938170433, -0.03949028253555298, 0.05886734277009964, -0.004061389248818159, -0.026990631595253944, 0.10889021307229996, 0.11979205906391144, -0.10713960975408554, 0.03614843636751175, 0.044510502368211746, -0.06140546873211861, -0.07213887572288513, -0.05526980385184288, -0.0027569939848035574, 0.06798110902309418, -0.014205573126673698, 0.21243080496788025, 0.036766327917575836, -0.016130613163113594, 0.04404052346944809, 0.0046226875856518745, -0.0585181787610054, -0.08137013763189316, -0.05529853701591492, 0.0008622923633083701, -0.1445987969636917, -0.03483806177973747, -0.057939160615205765, -0.02914159558713436, 0.14055511355400085, 0.0034735866356641054, 0.02118638902902603, 0.2774220407009125, -0.07861535251140594, -0.032521024346351624, 0.0344751738011837, -0.026047684252262115, -0.03166892006993294, -0.15789414942264557, 0.044579144567251205, 0.026465127244591713, 0.13592930138111115, 0.04891512170433998, 0.037534505128860474, 0.0017901569372043014, 0.06771330535411835, 0.02063324674963951, -0.12594343721866608, -0.04532742127776146, 0.034929342567920685, -0.038047101348638535, 0.03789008781313896, -0.005581099074333906, 0.021441522985696793, -0.03146401792764664, 0.10639463365077972, -0.07265815883874893, -0.05600889399647713, -0.10465941578149796, 0.13757836818695068, -0.024185141548514366, 0.03725467249751091, -0.034727659076452255, -0.11528913676738739, -0.03935948759317398, 0.23699583113193512, 0.10652675479650497, -0.03340914472937584, 0.035816192626953125, 0.07307864725589752, 0.020743167027831078, 0.0197234358638525, 0.07723087817430496, -0.0021192252170294523, 0.07951486855745316, -0.01257287710905075, -0.03644431382417679, -0.06297043710947037, -0.03766089677810669, 0.048374779522418976, 0.07329103350639343, 0.005218080244958401, -0.04740070179104805, -0.060607146471738815, 0.07155606150627136, -0.02715289779007435, -0.29217812418937683, 0.018117647618055344, -0.01752493344247341, -0.06303645670413971, -0.04325345903635025, 0.06294127553701401, -0.020831555128097534, 0.021442431956529617, 0.0007551321759819984, -0.03667822852730751, 0.17476487159729004, 0.03882955014705658, -0.06425244361162186, -0.04257484897971153, 0.05871414393186569, -0.04205567389726639, 0.19390900433063507, -0.0048554870299994946, 0.05816802754998207, 0.054553691297769547, 0.07830790430307388, -0.07280310988426208, 0.009098592214286327, 0.04486369714140892, -0.10643667727708817, -0.0048579559661448, 0.015631210058927536, -0.024011893197894096, 0.08599555492401123, 0.05442175269126892, -0.20745675265789032, 0.048563096672296524, -0.015233141370117664, -0.06304727494716644, -0.0747295543551445, -0.060532230883836746, -0.08994750678539276, 0.15415306389331818, 0.11520718783140182, 0.007612358778715134, -0.08083143085241318, -0.0801534429192543, 0.036673445254564285, 0.003785153152421117, 0.08608447015285492, -0.045070990920066833, -0.1099603995680809, -0.025547537952661514, -0.05420053377747536, 0.049588579684495926, -0.2882266640663147, -0.0159154012799263, 0.04849311336874962, -0.04876934364438057, 0.010930252261459827, 0.023340603336691856, 0.05472007021307945, 0.061471495777368546, -0.055636875331401825, -0.05561519041657448, 0.009954256936907768, 0.10087401419878006, -0.1832268238067627, -0.04132591187953949 ]
null
null
adapter-transformers
# Adapter `AdapterHub/bert-base-uncased-pf-cosmos_qa` for bert-base-uncased An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [comsense/cosmosqa](https://adapterhub.ml/explore/comsense/cosmosqa/) dataset and includes a prediction head for multiple choice. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("bert-base-uncased") adapter_name = model.load_adapter("AdapterHub/bert-base-uncased-pf-cosmos_qa", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-what-to-pre-train-on, title={What to Pre-Train on? Efficient Intermediate Task Selection}, author={Clifton Poth and Jonas Pfeiffer and Andreas Rücklé and Iryna Gurevych}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (EMNLP)", month = nov, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/2104.08247", pages = "to appear", } ```
{"language": ["en"], "tags": ["bert", "adapterhub:comsense/cosmosqa", "adapter-transformers"], "datasets": ["cosmos_qa"]}
null
AdapterHub/bert-base-uncased-pf-cosmos_qa
[ "adapter-transformers", "bert", "adapterhub:comsense/cosmosqa", "en", "dataset:cosmos_qa", "arxiv:2104.08247", "region:us" ]
2022-03-02T23:29:04+00:00
[ "2104.08247" ]
[ "en" ]
TAGS #adapter-transformers #bert #adapterhub-comsense/cosmosqa #en #dataset-cosmos_qa #arxiv-2104.08247 #region-us
# Adapter 'AdapterHub/bert-base-uncased-pf-cosmos_qa' for bert-base-uncased An adapter for the 'bert-base-uncased' model that was trained on the comsense/cosmosqa dataset and includes a prediction head for multiple choice. This adapter was created for usage with the adapter-transformers library. ## Usage First, install 'adapter-transformers': _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_ Now, the adapter can be loaded and activated like this: ## Architecture & Training The training code for this adapter is available at URL In particular, training configurations for all tasks can be found here. ## Evaluation results Refer to the paper for more information on results. If you use this adapter, please cite our paper "What to Pre-Train on? Efficient Intermediate Task Selection":
[ "# Adapter 'AdapterHub/bert-base-uncased-pf-cosmos_qa' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the comsense/cosmosqa dataset and includes a prediction head for multiple choice.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ "TAGS\n#adapter-transformers #bert #adapterhub-comsense/cosmosqa #en #dataset-cosmos_qa #arxiv-2104.08247 #region-us \n", "# Adapter 'AdapterHub/bert-base-uncased-pf-cosmos_qa' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the comsense/cosmosqa dataset and includes a prediction head for multiple choice.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ 41, 86, 57, 30, 45 ]
[ "passage: TAGS\n#adapter-transformers #bert #adapterhub-comsense/cosmosqa #en #dataset-cosmos_qa #arxiv-2104.08247 #region-us \n# Adapter 'AdapterHub/bert-base-uncased-pf-cosmos_qa' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the comsense/cosmosqa dataset and includes a prediction head for multiple choice.\n\nThis adapter was created for usage with the adapter-transformers library.## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ -0.07311957329511642, -0.027938606217503548, -0.0037979057524353266, 0.004727288149297237, 0.16952380537986755, -0.0041707465425133705, 0.1652962863445282, 0.05034941807389259, 0.06497528403997421, 0.04155777767300606, 0.0019795296248048544, 0.07708828896284103, 0.06741926074028015, 0.04661219194531441, 0.027384035289287567, -0.058414846658706665, 0.01771259494125843, 0.002635389566421509, -0.11755204945802689, 0.10046271234750748, 0.09199271351099014, -0.1000262126326561, 0.10696060955524445, 0.05508004128932953, -0.08327408134937286, 0.027064569294452667, -0.0248128529638052, -0.08551760762929916, 0.08088331669569016, 0.11196588724851608, 0.17220424115657806, 0.06036927551031113, -0.002436179667711258, -0.15790598094463348, 0.02407292276620865, 0.07535751909017563, 0.022471139207482338, 0.0514284148812294, -0.022201405838131905, 0.032522909343242645, -0.0485805980861187, -0.014584190212190151, 0.03372173756361008, 0.0629430040717125, -0.07899908721446991, -0.120360367000103, -0.03923279419541359, 0.0774664580821991, 0.039938896894454956, 0.08015409857034683, -0.0021128980442881584, 0.07466769218444824, -0.005077009554952383, 0.03543287143111229, 0.1852351874113083, -0.2517000138759613, -0.010477686300873756, -0.0024081594310700893, 0.0657208040356636, 0.055779628455638885, -0.03857967630028725, 0.013438407331705093, 0.012550783343613148, -0.000014423203538171947, 0.002031971700489521, -0.05346138775348663, 0.011393201537430286, -0.01168227382004261, -0.14962486922740936, -0.015229825861752033, 0.22614894807338715, -0.006643214263021946, -0.11019545048475266, -0.030535798519849777, -0.04008372873067856, 0.08322429656982422, 0.011745613999664783, -0.08288472145795822, 0.002258698455989361, 0.006562304683029652, -0.007637411821633577, -0.07406529784202576, -0.13185547292232513, -0.05626221001148224, -0.11995890736579895, 0.24621541798114777, -0.023539822548627853, 0.04055195674300194, -0.021253526210784912, 0.10442579537630081, 0.002809275407344103, -0.10059960931539536, -0.08498625457286835, -0.059719160199165344, -0.10603024065494537, -0.04000222310423851, -0.02614336647093296, -0.2523679733276367, 0.020046578720211983, 0.09750328212976456, 0.13796094059944153, 0.025032974779605865, -0.06270189583301544, 0.06198956072330475, 0.04161900654435158, 0.21159271895885468, -0.06836710125207901, 0.04769696667790413, -0.041157688945531845, -0.002235135994851589, -0.02372501790523529, -0.10300897061824799, -0.04747674614191055, -0.012152393348515034, 0.0061369542963802814, 0.05268413946032524, 0.01912274956703186, 0.06491173803806305, -0.04540594294667244, -0.06866414099931717, 0.13380210101604462, -0.10697126388549805, -0.01890934444963932, 0.020175432786345482, -0.015878969803452492, 0.08416283130645752, 0.1301123946905136, 0.028711864724755287, -0.024800730869174004, 0.05591300129890442, -0.0728193148970604, -0.047402799129486084, -0.03988517448306084, -0.13101468980312347, 0.014375791884958744, -0.011558514088392258, -0.007175913080573082, -0.18576477468013763, -0.04379693791270256, -0.004634845536202192, 0.0320824533700943, 0.01789979450404644, 0.08851610124111176, 0.05252765119075775, 0.014510402455925941, 0.010561698116362095, -0.014376082457602024, 0.01807590015232563, -0.03370494022965431, 0.07139614969491959, 0.005732805468142033, 0.02342863380908966, -0.01309271715581417, 0.05774560198187828, -0.0561211071908474, 0.015256439335644245, -0.17007160186767578, 0.1003497987985611, -0.14557534456253052, 0.008121427148580551, -0.14317487180233002, 0.010937029495835304, 0.025448307394981384, 0.029947660863399506, 0.06001895293593407, 0.09843234717845917, -0.11213576793670654, -0.05679892748594284, 0.06991226971149445, -0.16211853921413422, -0.13329899311065674, 0.05735362693667412, -0.0020624559838324785, 0.11459439992904663, 0.035948269069194794, 0.027305295690894127, 0.15360333025455475, -0.13532792031764984, -0.11433211714029312, 0.054766107350587845, -0.04045993834733963, -0.015199107117950916, 0.07389167696237564, 0.009611879475414753, -0.09476487338542938, 0.014341413974761963, -0.09929496049880981, 0.010275949724018574, -0.023793566972017288, -0.04762152582406998, -0.029836341738700867, -0.04588935151696205, 0.05706799775362015, -0.008190469816327095, -0.009370720945298672, 0.07089151442050934, -0.11291567236185074, 0.11543679237365723, 0.0630045011639595, -0.04387626424431801, 0.021868111565709114, -0.12843123078346252, 0.09872884303331375, -0.13649289309978485, 0.014337449334561825, -0.18391075730323792, -0.019504690542817116, 0.023928845301270485, -0.02486465312540531, 0.052548494189977646, 0.07622836530208588, 0.051972534507513046, 0.02532809041440487, 0.03629424050450325, 0.011412185616791248, -0.04138636961579323, 0.015140295028686523, -0.06960999965667725, -0.08360318094491959, -0.03898898884654045, -0.051685631275177, 0.1085832267999649, -0.11868728697299957, 0.045669183135032654, 0.08278105407953262, 0.0526946559548378, 0.031935758888721466, -0.019188107922673225, -0.009090138599276543, -0.005208891816437244, -0.025956636294722557, -0.018004491925239563, 0.024217385798692703, 0.022817770019173622, -0.11533203721046448, 0.03554058074951172, -0.13559547066688538, 0.0004025089438073337, 0.08282249420881271, 0.004486833233386278, -0.04789724573493004, -0.06402051448822021, -0.01177323516458273, -0.019274797290563583, -0.01274949498474598, -0.08761747181415558, 0.2472192645072937, 0.07407502830028534, 0.05636479705572128, -0.0401001013815403, -0.003280143951997161, 0.028645046055316925, -0.008742652833461761, 0.012501648627221584, 0.01698760688304901, 0.045084692537784576, -0.10948267579078674, 0.020034020766615868, 0.21616576611995697, 0.007678788620978594, 0.07187522202730179, -0.03560250625014305, -0.10785150527954102, -0.014121298678219318, -0.01765887811779976, 0.05617550015449524, 0.06735458225011826, -0.09822311997413635, 0.011258656159043312, 0.06963557749986649, -0.026248127222061157, -0.015798967331647873, -0.07750159502029419, 0.034084632992744446, 0.07062991708517075, 0.01629570499062538, -0.04744694009423256, -0.005578181240707636, -0.015071190893650055, 0.04015286639332771, 0.040517665445804596, 0.09744598716497421, -0.004411731846630573, -0.02876446768641472, -0.08450836688280106, 0.18510973453521729, -0.07793016731739044, -0.23352886736392975, -0.18842603266239166, -0.06221875175833702, -0.025663193315267563, 0.0062792301177978516, 0.06038865074515343, -0.09030303359031677, -0.08481139689683914, -0.05822833999991417, 0.12822361290454865, 0.003917538095265627, 0.03147010877728462, 0.028287822380661964, -0.05075548216700554, 0.06692288815975189, -0.15439459681510925, 0.020432841032743454, 0.008178194053471088, -0.1044779121875763, -0.00844027940183878, 0.029071269556879997, 0.0944061204791069, 0.1358974575996399, -0.0068232216872274876, -0.0212855227291584, -0.0028796889819204807, 0.15779073536396027, -0.1025434359908104, 0.02973407693207264, 0.14171719551086426, -0.1289902925491333, 0.02931128814816475, 0.09742535650730133, 0.04287368804216385, -0.01873761974275112, 0.03881625458598137, 0.035506319254636765, -0.051418837159872055, -0.24683861434459686, -0.010283013805747032, -0.0044388547539711, -0.017557229846715927, 0.041269659996032715, 0.04251061752438545, 0.029954781755805016, 0.08938725292682648, 0.013186872936785221, -0.02173096500337124, -0.03419649973511696, 0.05559605732560158, 0.14944808185100555, -0.002208431949838996, 0.11749166995286942, -0.096418097615242, 0.010406802408397198, 0.09328371286392212, 0.021904416382312775, 0.13836970925331116, -0.00006843951996415854, 0.09168583899736404, 0.08791124075651169, -0.03722960501909256, 0.07363453507423401, 0.1287769228219986, -0.02300291135907173, -0.02123895287513733, -0.016095798462629318, -0.07069516181945801, -0.10839710384607315, 0.05429259315133095, 0.04261315241456032, 0.011547832749783993, -0.061549149453639984, 0.0032601365819573402, 0.03307605907320976, 0.16800247132778168, 0.014260145835578442, -0.14018848538398743, -0.141988143324852, -0.012749401852488518, -0.03452954441308975, -0.04066651314496994, -0.007518615573644638, 0.07716081291437149, -0.08829616010189056, 0.02001655101776123, -0.028324976563453674, 0.09609102457761765, -0.136197030544281, -0.0044358898885548115, 0.02850184217095375, 0.055070728063583374, -0.03319716453552246, 0.06581518054008484, -0.23679488897323608, 0.09188858419656754, 0.04383423924446106, 0.0207853764295578, -0.052432216703891754, 0.04237093776464462, 0.025483226403594017, 0.12335532158613205, 0.06477243453264236, -0.00934969075024128, 0.0856788381934166, -0.1723320335149765, -0.10279439389705658, 0.053594671189785004, 0.04023941606283188, -0.09603853523731232, 0.05500863865017891, -0.033215656876564026, 0.042997464537620544, 0.012466590851545334, 0.10193110257387161, -0.13404999673366547, -0.17965149879455566, 0.08054954558610916, -0.014284268021583557, 0.0781039223074913, -0.07451529055833817, -0.09830684959888458, -0.00889700185507536, 0.16451746225357056, -0.20107263326644897, -0.06832247972488403, -0.13938580453395844, -0.02617719955742359, 0.057730674743652344, -0.07966288179159164, 0.02949104830622673, -0.04214469715952873, 0.10559651255607605, -0.0034232300240546465, -0.07914304733276367, 0.05353028327226639, -0.08128226548433304, -0.07186175137758255, -0.05190569907426834, 0.005866247229278088, 0.07549242675304413, 0.04010944440960884, -0.004694534000009298, -0.03636078163981438, -0.0001900738279800862, -0.09650857001543045, -0.018737034872174263, 0.09219830483198166, -0.039092984050512314, 0.04556524381041527, -0.053564123809337616, 0.03595096617937088, -0.07244612276554108, -0.007785605266690254, 0.12949994206428528, 0.1363428831100464, -0.0515686459839344, 0.051106300204992294, 0.1710774153470993, -0.07632561773061752, -0.24845823645591736, -0.03482566773891449, 0.051182735711336136, 0.023325243964791298, 0.006001526024192572, -0.18837356567382812, 0.14922086894512177, 0.049866702407598495, -0.008013379760086536, 0.03191050887107849, -0.14241518080234528, -0.09446808695793152, 0.1796843558549881, 0.07510501891374588, 0.05236096307635307, -0.14279621839523315, -0.07571162283420563, 0.010682720690965652, -0.16829317808151245, 0.09320501238107681, -0.09464309364557266, 0.07491101324558258, -0.0051323287189006805, 0.027588438242673874, 0.028295425698161125, -0.022793998941779137, 0.10949090868234634, 0.012897038832306862, 0.010249494574964046, -0.07118216156959534, -0.004675702657550573, 0.051828984171152115, -0.05628381669521332, 0.01936466060578823, -0.011084580793976784, 0.05334539711475372, -0.07633242011070251, -0.03769509121775627, -0.0026748934760689735, 0.09544765949249268, -0.016559459269046783, -0.07179620862007141, -0.05861328914761543, 0.012042633257806301, -0.0131515609100461, -0.029016153886914253, 0.08962763845920563, -0.0785478800535202, 0.054865192621946335, 0.1838289201259613, 0.14350652694702148, -0.02803097851574421, -0.0998920202255249, -0.009124329313635826, -0.01831219531595707, 0.1271839141845703, -0.1266779601573944, 0.07029518485069275, 0.10398846119642258, 0.011376816779375076, 0.106406569480896, 0.03934694826602936, -0.12217462807893753, 0.02300390601158142, 0.0579470694065094, -0.06170333921909332, -0.06781797111034393, -0.0017214218387380242, 0.1271253228187561, -0.1530376374721527, 0.04303412884473801, 0.18892362713813782, -0.020328782498836517, 0.007964772172272205, 0.03295154869556427, -0.008603701367974281, -0.050413090735673904, 0.10901334136724472, 0.06904115527868271, 0.05784022808074951, -0.037938643246889114, 0.07784710079431534, 0.10002981871366501, -0.10251978784799576, 0.01994141936302185, -0.10468801110982895, -0.0921144112944603, -0.06671731919050217, -0.07024860382080078, 0.08140444755554199, -0.09385564178228378, -0.07113436609506607, 0.013885004445910454, -0.08031868934631348, 0.02268439158797264, 0.17059850692749023, 0.027031907811760902, 0.01085966918617487, -0.04287612438201904, 0.0409853458404541, -0.04617565870285034, 0.06523651629686356, -0.0630604475736618, 0.055890507996082306, -0.09405583888292313, -0.0389992855489254, 0.03099321760237217, 0.08133964985609055, -0.052090369164943695, -0.06551588326692581, -0.10094407945871353, -0.02369173802435398, -0.16960828006267548, -0.012122119776904583, -0.033496517688035965, -0.02189459837973118, 0.02492046356201172, -0.10432052612304688, -0.040323469787836075, 0.0223024170845747, -0.02460232377052307, 0.002737689297646284, 0.030849561095237732, 0.08319306373596191, -0.16465003788471222, -0.02871343120932579, 0.06665654480457306, -0.04828726872801781, 0.08620511740446091, 0.04166514426469803, -0.021173834800720215, 0.02407524175941944, -0.07425303757190704, 0.016929158940911293, -0.003457417478784919, 0.06863371282815933, 0.02465941570699215, -0.07272382825613022, 0.02777783013880253, -0.0357215516269207, -0.0370270274579525, -0.012044277042150497, 0.21808761358261108, -0.038386277854442596, 0.02165139652788639, -0.0009184478549286723, 0.03759527951478958, -0.06570834666490555, 0.056345369666814804, 0.09504523873329163, 0.11365144699811935, 0.10432660579681396, -0.06427717953920364, 0.06648792326450348, -0.09174103289842606, 0.0052880761213600636, 0.030062360689044, -0.009746517986059189, 0.1034708321094513, -0.1376829296350479, 0.005959058180451393, -0.047536544501781464, 0.19174030423164368, -0.06270869821310043, 0.1484432965517044, 0.04179711267352104, -0.048071037977933884, -0.035431087017059326, -0.02345140092074871, 0.15889239311218262, 0.08064961433410645, 0.04112759977579117, 0.017181675881147385, 0.026738476008176804, 0.0041441950015723705, -0.0006177346804179251, 0.11836456507444382, 0.1104293167591095, -0.07618272304534912, 0.047273341566324234, 0.03341075778007507, -0.0442250557243824, -0.06396490335464478, -0.1001511961221695, -0.07359366863965988, 0.04886390641331673, -0.031952738761901855, 0.11644559353590012, 0.06810066848993301, -0.0023820442147552967, 0.05470176786184311, -0.0056078676134347916, -0.04648030549287796, -0.08330175280570984, -0.015377585776150227, -0.012643661350011826, -0.12266408652067184, -0.026997387409210205, -0.06807506084442139, -0.02159356325864792, 0.09322187304496765, 0.024016518145799637, 0.022261347621679306, 0.23130953311920166, -0.07855760306119919, -0.028975913301110268, 0.04029279202222824, -0.027662044391036034, -0.011701466515660286, -0.1085578054189682, 0.05209062993526459, 0.05049000307917595, 0.13203346729278564, 0.04369719699025154, 0.06389111280441284, 0.02209780178964138, 0.07060674577951431, -0.00782028865069151, -0.12595270574092865, -0.033843204379081726, 0.015435346402227879, -0.0739598199725151, 0.06297314912080765, 0.01977701298892498, 0.03415442630648613, -0.01189490221440792, 0.13900969922542572, -0.04887283965945244, -0.04832436144351959, -0.12900085747241974, 0.10952699929475784, -0.033984649926424026, 0.05019830912351608, -0.031086953356862068, -0.10662488639354706, -0.07951841503381729, 0.2185853123664856, 0.06121310591697693, -0.06746172904968262, 0.05037692189216614, 0.060406964272260666, 0.02140641026198864, 0.0002617878490127623, 0.0919426903128624, 0.018244953826069832, 0.11906907707452774, -0.025267375633120537, -0.026875151321291924, -0.02107447385787964, -0.04111802950501442, 0.04516785219311714, 0.11094515025615692, -0.01635006256401539, -0.01622544229030609, -0.060028061270713806, 0.049345340579748154, -0.053198084235191345, -0.26249992847442627, -0.02842738851904869, -0.030039358884096146, -0.0711006298661232, -0.05186787247657776, 0.054978787899017334, -0.019783368334174156, 0.0002134836686309427, 0.007814752869307995, -0.02978706918656826, 0.19385050237178802, 0.03600942716002464, -0.037943217903375626, -0.005595028400421143, 0.08446373045444489, -0.06263977289199829, 0.13513699173927307, 0.008936872705817223, 0.0219379011541605, 0.07930351048707962, 0.07315921783447266, -0.07659954577684402, 0.00571875786408782, 0.052266623824834824, -0.11792854219675064, -0.008208656683564186, 0.04035630077123642, -0.002263063797727227, 0.09183783829212189, 0.07765533030033112, -0.16659806668758392, 0.05452505499124527, -0.03991149365901947, -0.03765963390469551, -0.06784958392381668, -0.0156732015311718, -0.07658163458108902, 0.14406868815422058, 0.10175102204084396, 0.0105553874745965, -0.0650724545121193, -0.07164053618907928, 0.030785173177719116, 0.010809737257659435, 0.09555725753307343, -0.03222003951668739, -0.09788421541452408, 0.003290503518655896, -0.07892732322216034, 0.060171112418174744, -0.2792666256427765, -0.03357236832380295, 0.06741593033075333, -0.031650643795728683, 0.026153357699513435, 0.07001073658466339, 0.07329963892698288, 0.04989098012447357, -0.05243339389562607, -0.0972813293337822, 0.008950548246502876, 0.10524474829435349, -0.16930438578128815, -0.05016455054283142 ]
null
null
adapter-transformers
# Adapter `AdapterHub/bert-base-uncased-pf-cq` for bert-base-uncased An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [qa/cq](https://adapterhub.ml/explore/qa/cq/) dataset and includes a prediction head for question answering. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("bert-base-uncased") adapter_name = model.load_adapter("AdapterHub/bert-base-uncased-pf-cq", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
{"language": ["en"], "tags": ["question-answering", "bert", "adapterhub:qa/cq", "adapter-transformers"]}
question-answering
AdapterHub/bert-base-uncased-pf-cq
[ "adapter-transformers", "bert", "question-answering", "adapterhub:qa/cq", "en", "arxiv:2104.08247", "region:us" ]
2022-03-02T23:29:04+00:00
[ "2104.08247" ]
[ "en" ]
TAGS #adapter-transformers #bert #question-answering #adapterhub-qa/cq #en #arxiv-2104.08247 #region-us
# Adapter 'AdapterHub/bert-base-uncased-pf-cq' for bert-base-uncased An adapter for the 'bert-base-uncased' model that was trained on the qa/cq dataset and includes a prediction head for question answering. This adapter was created for usage with the adapter-transformers library. ## Usage First, install 'adapter-transformers': _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_ Now, the adapter can be loaded and activated like this: ## Architecture & Training The training code for this adapter is available at URL In particular, training configurations for all tasks can be found here. ## Evaluation results Refer to the paper for more information on results. If you use this adapter, please cite our paper "What to Pre-Train on? Efficient Intermediate Task Selection":
[ "# Adapter 'AdapterHub/bert-base-uncased-pf-cq' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the qa/cq dataset and includes a prediction head for question answering.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ "TAGS\n#adapter-transformers #bert #question-answering #adapterhub-qa/cq #en #arxiv-2104.08247 #region-us \n", "# Adapter 'AdapterHub/bert-base-uncased-pf-cq' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the qa/cq dataset and includes a prediction head for question answering.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ 37, 83, 57, 30, 45 ]
[ "passage: TAGS\n#adapter-transformers #bert #question-answering #adapterhub-qa/cq #en #arxiv-2104.08247 #region-us \n# Adapter 'AdapterHub/bert-base-uncased-pf-cq' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the qa/cq dataset and includes a prediction head for question answering.\n\nThis adapter was created for usage with the adapter-transformers library.## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ -0.08601219952106476, -0.022721845656633377, -0.0032341713085770607, 0.015087837353348732, 0.16563794016838074, 0.012257436290383339, 0.10703831166028976, 0.062446121126413345, 0.09911995381116867, 0.03623168170452118, 0.036450114101171494, 0.08161510527133942, 0.04805738478899002, 0.018604669719934464, 0.015052217058837414, -0.08577574044466019, 0.003331146202981472, 0.05118826404213905, -0.0965455174446106, 0.09937571734189987, 0.09429776668548584, -0.11148584634065628, 0.08804753422737122, 0.05947940796613693, -0.07349226623773575, 0.0362473800778389, -0.020226389169692993, -0.08459599316120148, 0.10486092418432236, 0.09461453557014465, 0.14827276766300201, 0.06420557200908661, 0.017726561054587364, -0.15252938866615295, 0.028854936361312866, 0.06540409475564957, 0.012478250078856945, 0.06978709995746613, -0.022649874910712242, 0.04170873388648033, -0.07546619325876236, 0.028872014954686165, 0.053795721381902695, 0.06997372955083847, -0.07140130549669266, -0.21510426700115204, -0.012580396607518196, 0.09478318691253662, 0.036596983671188354, 0.09294810891151428, -0.003808575449511409, 0.06539198011159897, -0.0008849562145769596, 0.040242671966552734, 0.2012432962656021, -0.2939363420009613, 0.0014459866797551513, 0.004883752204477787, 0.0912618637084961, 0.04425713047385216, -0.05194036290049553, -0.015255803242325783, 0.02666761353611946, 0.00838130060583353, 0.03607670217752457, -0.04642435908317566, -0.01577506773173809, 0.001122024143114686, -0.15539419651031494, -0.017648782581090927, 0.19440388679504395, -0.010346089489758015, -0.1044960618019104, -0.012393641285598278, -0.031187132000923157, 0.09808863699436188, 0.030894964933395386, -0.09750649333000183, 0.006086751818656921, -0.003174834419041872, -0.03137175738811493, -0.10306818038225174, -0.11145327985286713, -0.11804179847240448, -0.10179880261421204, 0.2329317331314087, 0.0014718436868861318, 0.02545834146440029, -0.024112805724143982, 0.1376868188381195, -0.04320419207215309, -0.1152205839753151, -0.10299896448850632, -0.05554179102182388, -0.08104611933231354, -0.04071468114852905, -0.030460413545370102, -0.22793108224868774, 0.003666896838694811, 0.12835879623889923, 0.11417379975318909, 0.032543689012527466, -0.07814071327447891, 0.049664206802845, 0.02930133417248726, 0.24122662842273712, -0.10573384910821915, 0.057913973927497864, -0.03451215848326683, 0.0035533274058252573, -0.07592420279979706, -0.11057067662477493, -0.06740544736385345, -0.0350780226290226, 0.028457609936594963, 0.055653586983680725, 0.013107777573168278, 0.09091519564390182, -0.02311164140701294, -0.06832447648048401, 0.09436219930648804, -0.10565154254436493, -0.034183476120233536, 0.021390818059444427, -0.039184004068374634, 0.05741569399833679, 0.12404102087020874, 0.02096179500222206, -0.025442257523536682, 0.05165321007370949, -0.07272905856370926, -0.07643594592809677, -0.05226931348443031, -0.13400284945964813, -0.0017406311817467213, 0.005723191890865564, 0.003148881020024419, -0.15336938202381134, -0.05752751976251602, 0.008877264335751534, 0.04239724576473236, 0.006191898602992296, 0.07472891360521317, 0.05835406482219696, 0.03493857756257057, -0.006114847492426634, -0.02122821845114231, 0.01715114898979664, -0.02683100663125515, 0.09269066900014877, 0.04797552898526192, 0.04921167343854904, -0.03330645337700844, 0.07038271427154541, -0.0561615489423275, 0.02980169653892517, -0.16726699471473694, 0.0695483610033989, -0.15902212262153625, -0.01503799483180046, -0.13426272571086884, -0.02901672199368477, 0.037021342664957047, 0.016215480864048004, 0.08568590134382248, 0.05505729094147682, -0.08869832754135132, -0.031365957111120224, 0.07537765055894852, -0.13864433765411377, -0.17213428020477295, 0.05136328190565109, -0.011485583148896694, 0.12941060960292816, 0.02379080466926098, 0.04901278391480446, 0.12832310795783997, -0.11958964914083481, -0.11804410815238953, 0.059191182255744934, -0.05477457866072655, -0.02678947150707245, 0.06387254595756531, 0.012451273389160633, -0.14433445036411285, 0.015568859875202179, -0.14006009697914124, -0.0210562814027071, -0.04818974435329437, -0.04492122679948807, -0.03551951423287392, -0.05221894010901451, 0.08924110233783722, -0.008998156525194645, -0.020792648196220398, 0.09434544295072556, -0.13044843077659607, 0.13946698606014252, 0.058208007365465164, -0.06216267868876457, 0.01510715577751398, -0.13599713146686554, 0.11256685107946396, -0.1535142958164215, 0.012248760089278221, -0.19322983920574188, -0.030227165669202805, 0.020006511360406876, -0.02589046023786068, 0.049755919724702835, 0.07579707354307175, 0.04882489889860153, 0.021974068135023117, 0.02590416744351387, -0.007364355958998203, -0.0847351923584938, 0.02056618221104145, -0.07610703259706497, -0.06361576169729233, -0.06436994671821594, -0.05514286085963249, 0.006398550234735012, -0.12446797639131546, 0.03467505797743797, 0.0896586999297142, 0.02774602547287941, 0.012442248873412609, 0.008133664727210999, -0.02485940419137478, -0.012073703110218048, -0.016606435179710388, -0.007433200720697641, 0.03207772225141525, 0.011645179241895676, -0.10030040889978409, 0.016606692224740982, -0.10021743178367615, 0.030737698078155518, 0.06876053661108017, -0.016862252727150917, -0.04784620180726051, -0.07885786145925522, -0.007821387611329556, -0.02595253475010395, -0.003564010141417384, -0.10061614960432053, 0.2863765060901642, 0.07295004278421402, 0.06480614840984344, -0.05222663655877113, -0.010268344543874264, 0.019497083500027657, 0.008587109856307507, 0.03033340349793434, 0.0025061755441129208, 0.0692003145813942, -0.07145866006612778, -0.0016201810212805867, 0.20672471821308136, -0.01695365272462368, 0.082756906747818, -0.02100864239037037, -0.12551303207874298, -0.017358584329485893, -0.04028189927339554, 0.04286994785070419, 0.09875467419624329, -0.11179893463850021, 0.024698587134480476, 0.07701482623815536, -0.01562722772359848, 0.004765085410326719, -0.06387756764888763, 0.03128206729888916, 0.05825939401984215, -0.009501577354967594, -0.08334046602249146, -0.008393796160817146, -0.008838791400194168, 0.05092645436525345, 0.06563024967908859, 0.10775502026081085, 0.011977897956967354, -0.03414348512887955, -0.06491891294717789, 0.19777315855026245, -0.04133550822734833, -0.17682699859142303, -0.18553447723388672, -0.09248627722263336, -0.007177828811109066, 0.0001876757014542818, 0.049352873116731644, -0.09111423045396805, -0.08556243032217026, -0.027418212965130806, 0.15413792431354523, -0.014060372486710548, 0.011440741829574108, 0.03014933317899704, -0.07134446501731873, 0.10015308111906052, -0.16680048406124115, 0.04040367528796196, 0.010414051823318005, -0.12473087757825851, -0.017029205337166786, 0.04767398536205292, 0.10388357937335968, 0.13042891025543213, -0.038169149309396744, 0.0013746909098699689, -0.007692921906709671, 0.18294847011566162, -0.07799430191516876, 0.012651408091187477, 0.12726140022277832, -0.15099668502807617, 0.03120339848101139, 0.08527935296297073, 0.05071093514561653, -0.03802913427352905, 0.046691469848155975, 0.04492699354887009, -0.046508949249982834, -0.25954705476760864, 0.008811844512820244, 0.018512576818466187, -0.0014658707659691572, 0.059015072882175446, 0.02786066010594368, 0.03305835649371147, 0.09225097298622131, 0.034368909895420074, -0.023191286250948906, -0.08320235460996628, 0.0662648007273674, 0.1976613700389862, -0.011404876597225666, 0.10620630532503128, -0.06040599197149277, 0.022813277319073677, 0.07278908044099808, 0.045234985649585724, 0.14203739166259766, -0.030763743445277214, 0.09174323081970215, 0.07983557879924774, 0.007624197751283646, 0.07032021880149841, 0.13606253266334534, -0.06987618654966354, -0.02359459549188614, -0.0034542365465313196, -0.045886218547821045, -0.06113847717642784, 0.024983255192637444, 0.024183819070458412, 0.027671456336975098, -0.07120432704687119, -0.013442253693938255, 0.017933562397956848, 0.17517374455928802, -0.0037900349125266075, -0.1368316411972046, -0.12969760596752167, -0.04258245974779129, -0.026110798120498657, -0.06856709718704224, 0.016215631738305092, 0.05379311367869377, -0.0926295667886734, -0.03713951259851456, -0.04007411375641823, 0.10945191979408264, -0.11954499036073685, 0.010040437802672386, 0.055243197828531265, 0.08792269229888916, -0.03836141154170036, 0.10025234520435333, -0.23399551212787628, 0.10509547591209412, 0.03979916870594025, 0.03254532068967819, -0.04108127951622009, 0.018332693725824356, 0.01405369769781828, 0.08736066520214081, 0.0810687392950058, -0.04203863814473152, 0.11771266162395477, -0.21203188598155975, -0.0888187438249588, 0.07155109196901321, 0.03938482329249382, -0.10367661714553833, 0.072474904358387, -0.03426692262291908, 0.053449567407369614, 0.03143419325351715, 0.08990944176912308, -0.11971177160739899, -0.14777791500091553, 0.07243756204843521, -0.023341840133070946, 0.1411898285150528, -0.07437673211097717, -0.09473314881324768, 0.01268442627042532, 0.14574383199214935, -0.19901156425476074, -0.07159494608640671, -0.12862694263458252, -0.016830159351229668, 0.06906644254922867, -0.09099002927541733, 0.05504888668656349, -0.017102526500821114, 0.10999499261379242, 0.00817899964749813, -0.07683534920215607, 0.07101999968290329, -0.08334164321422577, -0.07344729453325272, -0.029811879619956017, 0.010027823969721794, 0.07908838987350464, 0.03492044284939766, 0.006576878949999809, -0.03474683314561844, -0.019162699580192566, -0.11730995774269104, -0.017841538414359093, -0.0004040192870888859, -0.023205529898405075, 0.009224547073245049, -0.06986399739980698, 0.08794042468070984, -0.0722644105553627, 0.017855292186141014, 0.15940596163272858, 0.12328788638114929, -0.07352665066719055, 0.038573119789361954, 0.20102745294570923, -0.05444776266813278, -0.24477899074554443, -0.013003727421164513, 0.05265703797340393, -0.0026932123582810163, 0.03994114324450493, -0.21319104731082916, 0.14788025617599487, 0.03831849992275238, -0.009780765511095524, 0.029573805630207062, -0.11351008713245392, -0.084696464240551, 0.2133949100971222, 0.09692602604627609, 0.017505215480923653, -0.11974462866783142, -0.07289709150791168, 0.024474462494254112, -0.2270091027021408, 0.0805814191699028, -0.06754760444164276, 0.07267913967370987, -0.027098940685391426, 0.04590018466114998, 0.027651824057102203, -0.02932663820683956, 0.09251343458890915, -0.0017796576721593738, 0.0014421911910176277, -0.06971613317728043, -0.0219381432980299, 0.03792237862944603, -0.0450097881257534, 0.05088647082448006, -0.0068832337856292725, 0.08432337641716003, -0.09194505959749222, -0.06745219230651855, -0.004399259574711323, 0.07930251955986023, -0.023314666002988815, -0.09815999865531921, -0.038313478231430054, 0.020587723702192307, -0.032827503979206085, -0.03946888819336891, 0.03157373517751694, -0.09171154350042343, 0.06389021873474121, 0.19538836181163788, 0.1645435243844986, -0.01369473710656166, -0.12701983749866486, 0.018668638542294502, -0.019421087577939034, 0.15688148140907288, -0.11096832901239395, 0.08848999440670013, 0.11925017833709717, 0.023571910336613655, 0.09835115820169449, 0.05148700997233391, -0.11293376982212067, 0.03128105774521828, 0.032823361456394196, -0.06524447351694107, -0.07717616111040115, -0.013568276539444923, 0.1132306233048439, -0.1883564293384552, 0.05301811173558235, 0.14786428213119507, -0.029121799394488335, 0.0029424321837723255, 0.049178022891283035, -0.03767860308289528, -0.03638146072626114, 0.10048563033342361, 0.12486100941896439, 0.06794682145118713, -0.02383805438876152, 0.06796550005674362, 0.09115950763225555, -0.08264488726854324, 0.028879446908831596, -0.11752403527498245, -0.06664418429136276, -0.06314785778522491, -0.09204158186912537, 0.095972940325737, -0.09966991096735, -0.06904546916484833, 0.0046661170199513435, -0.06167798489332199, 0.027091851457953453, 0.1954151690006256, 0.028769223019480705, -0.008952959440648556, -0.04262588173151016, 0.06382858008146286, -0.07230663299560547, 0.08493051677942276, -0.07587866485118866, 0.05735955387353897, -0.08166192471981049, -0.04217500612139702, 0.03157951310276985, 0.11586679518222809, -0.05251229554414749, -0.06620952486991882, -0.11470655351877213, -0.01567702740430832, -0.23062723875045776, -0.020678557455539703, -0.010432887822389603, -0.012618687003850937, 0.005087780300527811, -0.10851579159498215, -0.0384989008307457, 0.03808911144733429, -0.022109415382146835, 0.0022328414488583803, 0.05762413516640663, 0.06807495653629303, -0.179052472114563, -0.0076764109544456005, 0.0753798708319664, -0.03380191698670387, 0.09317875653505325, 0.017690831795334816, -0.01912848837673664, 0.03548334166407585, -0.05912867560982704, 0.02382793463766575, -0.05865420401096344, 0.049941886216402054, 0.03408795967698097, -0.06591873615980148, 0.022205030545592308, -0.06249752640724182, -0.03768332675099373, -0.01734345220029354, 0.2039550542831421, -0.06367792189121246, 0.026486072689294815, -0.0008579011773690581, 0.04808458313345909, -0.050911810249090195, 0.04902288317680359, 0.06684119254350662, 0.11349668353796005, 0.08030933886766434, -0.0646970272064209, 0.08535394817590714, -0.09794781357049942, 0.009297841228544712, 0.043599795550107956, 0.02112729102373123, 0.11975578218698502, -0.13113896548748016, -0.001024784636683762, -0.07432776689529419, 0.1984940618276596, -0.0769941583275795, 0.12339931726455688, 0.04917024075984955, -0.041347768157720566, -0.05241435393691063, -0.04982301592826843, 0.19243104755878448, 0.053136080503463745, 0.04826509952545166, 0.01720183528959751, 0.05674012377858162, -0.031148292124271393, 0.04744100570678711, 0.13601180911064148, 0.10705321282148361, -0.07143521308898926, 0.002979238284751773, 0.05936462804675102, -0.028240684419870377, -0.09764941036701202, -0.07692432403564453, -0.01947006769478321, 0.05304160714149475, -0.017408374696969986, 0.12477529793977737, 0.07882891595363617, -0.006640087813138962, 0.06163933500647545, 0.0010414167772978544, -0.06089115887880325, -0.07831710577011108, -0.014359856955707073, -0.010276739485561848, -0.14175844192504883, -0.009410638362169266, -0.08649467676877975, -0.021580161526799202, 0.09653330594301224, 0.020875748246908188, 0.01129273883998394, 0.28032186627388, -0.06413818895816803, -0.025207627564668655, 0.041073188185691833, -0.03415842354297638, -0.01637699268758297, -0.1210312694311142, 0.08788789808750153, 0.06198986992239952, 0.1137102022767067, 0.029252368956804276, 0.04877421259880066, -0.020114386454224586, 0.03397636115550995, -0.006282147951424122, -0.11081741005182266, -0.04010297730565071, 0.04726243391633034, -0.04371054098010063, 0.08363279700279236, -0.00597253255546093, 0.028231672942638397, -0.024402132257819176, 0.1656494289636612, -0.05350074544548988, -0.04443290829658508, -0.13035297393798828, 0.1174817904829979, -0.023440726101398468, 0.026710260659456253, -0.023337122052907944, -0.10957200080156326, -0.05298096314072609, 0.23807580769062042, 0.0022690503392368555, -0.09164836257696152, 0.04544014111161232, 0.07737525552511215, 0.024760710075497627, 0.013142010197043419, 0.07995199412107468, 0.045572634786367416, 0.12666943669319153, -0.027292564511299133, -0.06628204882144928, -0.035320959985256195, -0.03323934227228165, 0.07873093336820602, 0.1294243037700653, 0.005963892675936222, -0.03014971688389778, -0.07317548990249634, 0.04335369914770126, -0.049932610243558884, -0.2546824514865875, -0.0738690122961998, -0.0029177842661738396, -0.07862012088298798, -0.060442809015512466, 0.04938241466879845, -0.027728691697120667, -0.011176439002156258, 0.00341438758186996, -0.029203539714217186, 0.18813976645469666, 0.04039550572633743, -0.023108728229999542, -0.010838455520570278, 0.10799703001976013, -0.013793549500405788, 0.1839747428894043, 0.009960487484931946, 0.029444631189107895, 0.06837525963783264, 0.05903211608529091, -0.08129055798053741, 0.028859645128250122, 0.0564790740609169, -0.15050597488880157, -0.020052675157785416, 0.04174598306417465, 0.00887390784919262, 0.08989520370960236, 0.053860973566770554, -0.18701213598251343, 0.05322466418147087, -0.026104291900992393, -0.06180495023727417, -0.08165035396814346, -0.014324506744742393, -0.06383512169122696, 0.14511996507644653, 0.12292924523353577, -0.0029849119018763304, -0.08412016183137894, -0.08112112432718277, 0.057134825736284256, 0.005136602558195591, 0.0943240076303482, -0.0373665951192379, -0.0832822248339653, 0.014294094406068325, -0.0713520497083664, 0.016731413081288338, -0.2963252663612366, -0.03743162378668785, 0.085531085729599, -0.029988599941134453, 0.03894053399562836, 0.06360172480344772, 0.09980882704257965, 0.06431051343679428, -0.04595659673213959, -0.0130458427593112, -0.024311402812600136, 0.10191325843334198, -0.21049033105373383, -0.05188705027103424 ]
null
null
adapter-transformers
# Adapter `AdapterHub/bert-base-uncased-pf-drop` for bert-base-uncased An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [drop](https://huggingface.co/datasets/drop/) dataset and includes a prediction head for question answering. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("bert-base-uncased") adapter_name = model.load_adapter("AdapterHub/bert-base-uncased-pf-drop", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
{"language": ["en"], "tags": ["question-answering", "bert", "adapter-transformers"], "datasets": ["drop"]}
question-answering
AdapterHub/bert-base-uncased-pf-drop
[ "adapter-transformers", "bert", "question-answering", "en", "dataset:drop", "arxiv:2104.08247", "region:us" ]
2022-03-02T23:29:04+00:00
[ "2104.08247" ]
[ "en" ]
TAGS #adapter-transformers #bert #question-answering #en #dataset-drop #arxiv-2104.08247 #region-us
# Adapter 'AdapterHub/bert-base-uncased-pf-drop' for bert-base-uncased An adapter for the 'bert-base-uncased' model that was trained on the drop dataset and includes a prediction head for question answering. This adapter was created for usage with the adapter-transformers library. ## Usage First, install 'adapter-transformers': _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_ Now, the adapter can be loaded and activated like this: ## Architecture & Training The training code for this adapter is available at URL In particular, training configurations for all tasks can be found here. ## Evaluation results Refer to the paper for more information on results. If you use this adapter, please cite our paper "What to Pre-Train on? Efficient Intermediate Task Selection":
[ "# Adapter 'AdapterHub/bert-base-uncased-pf-drop' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the drop dataset and includes a prediction head for question answering.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ "TAGS\n#adapter-transformers #bert #question-answering #en #dataset-drop #arxiv-2104.08247 #region-us \n", "# Adapter 'AdapterHub/bert-base-uncased-pf-drop' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the drop dataset and includes a prediction head for question answering.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ 34, 79, 57, 30, 45 ]
[ "passage: TAGS\n#adapter-transformers #bert #question-answering #en #dataset-drop #arxiv-2104.08247 #region-us \n# Adapter 'AdapterHub/bert-base-uncased-pf-drop' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the drop dataset and includes a prediction head for question answering.\n\nThis adapter was created for usage with the adapter-transformers library.## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ -0.0677952989935875, -0.03230288252234459, -0.002592234406620264, 0.03912556543946266, 0.15691590309143066, 0.032752133905887604, 0.12018798291683197, 0.07308772206306458, 0.09071703255176544, 0.03737544268369675, 0.05842987820506096, 0.1262783259153366, 0.040039341896772385, 0.037478186190128326, 0.00035925328847952187, -0.10909193009138107, 0.0016403741901740432, 0.026470646262168884, -0.00476599857211113, 0.09697313606739044, 0.08764106035232544, -0.09888934344053268, 0.07220162451267242, 0.024938233196735382, -0.06864561885595322, 0.030865859240293503, -0.049450553953647614, -0.04318540543317795, 0.07331354171037674, 0.06270148605108261, 0.15567949414253235, 0.03274913504719734, 0.0023388685658574104, -0.1404980719089508, 0.01637377217411995, 0.07339519262313843, 0.031786102801561356, 0.07489653676748276, -0.028331341221928596, 0.0075040534138679504, -0.07101134955883026, 0.021292611956596375, 0.058185648173093796, 0.05511076748371124, -0.10708988457918167, -0.2171643227338791, -0.04411781206727028, 0.06443873047828674, 0.05338615924119949, 0.0933985710144043, -0.011733004823327065, 0.08365990221500397, 0.002377669094130397, 0.04797948896884918, 0.16182538866996765, -0.23973391950130463, -0.006097499281167984, -0.006303080823272467, 0.05704973265528679, 0.04081137105822563, -0.051350001245737076, -0.02631915919482708, 0.027934225276112556, 0.023122340440750122, 0.004518474917858839, -0.03481458127498627, -0.046421244740486145, -0.0029370260890573263, -0.1647586226463318, -0.016115788370370865, 0.25980323553085327, -0.019482016563415527, -0.0827411562204361, -0.0437658466398716, -0.02813725173473358, 0.11481153219938278, 0.011476481333374977, -0.10759643465280533, 0.01000117976218462, 0.01680668815970421, 0.013275177218019962, -0.1065303310751915, -0.0862550437450409, -0.09692346304655075, -0.07686743140220642, 0.28195393085479736, -0.013755996711552143, 0.03177177533507347, -0.01431591808795929, 0.12838362157344818, -0.024118347093462944, -0.12465915828943253, -0.056009914726018906, -0.04929732531309128, -0.04419654980301857, -0.0541592501103878, -0.03863043710589409, -0.24478307366371155, 0.002910946263000369, 0.19361330568790436, 0.1011137068271637, 0.02889142744243145, -0.07923542708158493, 0.06497466564178467, 0.06770097464323044, 0.17085109651088715, -0.09034215658903122, -0.003157640341669321, -0.04774949699640274, 0.01599900797009468, -0.036262862384319305, -0.10494885593652725, -0.07563019543886185, 0.008364974521100521, 0.011830667965114117, 0.026830527931451797, 0.084625743329525, 0.0848948284983635, -0.06200491636991501, -0.08257231116294861, 0.1112397238612175, -0.12336837500333786, -0.0053478810004889965, 0.0008243992924690247, -0.04472145810723305, 0.0962899774312973, 0.13811248540878296, 0.009801623411476612, -0.04195050150156021, 0.07664986699819565, -0.06354203820228577, -0.04001261666417122, -0.0714380294084549, -0.12555621564388275, 0.018190981820225716, -0.03151259198784828, -0.014206665568053722, -0.11812374740839005, -0.14623259007930756, -0.026811836287379265, 0.0958758071064949, -0.02382839471101761, 0.08761779218912125, 0.03536874055862427, 0.039102137088775635, 0.002270172582939267, -0.018850909546017647, -0.02197934500873089, -0.027108673006296158, 0.07719691097736359, 0.025406191125512123, 0.05880199745297432, -0.050178151577711105, 0.08457232266664505, -0.0879155844449997, 0.009671376086771488, -0.18994933366775513, 0.10524068027734756, -0.14838916063308716, 0.03118850290775299, -0.13533954322338104, 0.010627998039126396, -0.03461487591266632, 0.031629279255867004, 0.09886305034160614, 0.11620622873306274, -0.12336128205060959, -0.03862174227833748, 0.004089644178748131, -0.17241224646568298, -0.12296518683433533, 0.03826916590332985, -0.018465422093868256, 0.16615469753742218, 0.03875128552317619, 0.10958823561668396, 0.06314655393362045, -0.10206638276576996, -0.07077986747026443, 0.06914017349481583, -0.09648200124502182, 0.007454609964042902, 0.04796590656042099, -0.031603049486875534, -0.16353176534175873, 0.01958799734711647, -0.11736594885587692, 0.0005503848078660667, -0.029454795643687248, -0.04405473172664642, -0.0216146782040596, -0.03144964948296547, 0.09712730348110199, 0.0444168820977211, -0.02349850907921791, 0.05879753455519676, -0.12965776026248932, 0.26244091987609863, 0.04681229963898659, -0.051265817135572433, 0.021506471559405327, -0.10747664421796799, 0.1254100203514099, -0.15146152675151825, 0.013679294846951962, -0.19501249492168427, -0.024112530052661896, -0.00022262618585955352, 0.04973532259464264, 0.03641901910305023, 0.06117623671889305, 0.07382170855998993, 0.007877707481384277, 0.017514023929834366, -0.004838533233851194, -0.04328657686710358, 0.03751276060938835, -0.05497986823320389, -0.12567304074764252, -0.06280133128166199, -0.06459280103445053, -0.005720547866076231, -0.14604799449443817, 0.035123251378536224, 0.03418653830885887, 0.06486336886882782, 0.01720305159687996, -0.032172735780477524, -0.015606503933668137, -0.011126743629574776, -0.021611515432596207, -0.028401054441928864, 0.0539797767996788, 0.02660885453224182, -0.06296955794095993, -0.009548640809953213, -0.059982988983392715, -0.03219939395785332, 0.08702555298805237, -0.09245339781045914, -0.07996866106987, -0.03212300315499306, -0.00048650731332600117, -0.045835115015506744, -0.011092397384345531, -0.08407880365848541, 0.24034307897090912, 0.05960441753268242, 0.043602246791124344, -0.032925158739089966, -0.004114625044167042, -0.014978556893765926, -0.03174672648310661, 0.021009068936109543, 0.01168280653655529, -0.004370957612991333, -0.056796107441186905, 0.05234195664525032, 0.1891297549009323, -0.04535679519176483, 0.09378038346767426, -0.03837254270911217, -0.11895125359296799, -0.02358769066631794, -0.011375423520803452, 0.028721733018755913, 0.08746028691530228, -0.17514434456825256, 0.024032387882471085, 0.07208981364965439, -0.014677285216748714, 0.022696098312735558, -0.05195365846157074, 0.04038607329130173, 0.06942864507436752, 0.008476822637021542, -0.028753727674484253, -0.025427384302020073, -0.030162222683429718, 0.03774617239832878, 0.037849005311727524, 0.12472311407327652, 0.038563381880521774, -0.011506486684083939, -0.068656787276268, 0.17784157395362854, -0.04529744014143944, -0.17686815559864044, -0.1653544157743454, -0.10334710031747818, 0.0068594301119446754, 0.004570300225168467, 0.035638466477394104, -0.08173629641532898, -0.07094717025756836, -0.03399115428328514, 0.11580406129360199, -0.015487122349441051, -0.024805640801787376, 0.02921435423195362, -0.09074880182743073, 0.08761035650968552, -0.15049156546592712, 0.032160308212041855, 0.022200793027877808, -0.05957907810807228, -0.0037247082218527794, 0.06085336580872536, 0.0797508955001831, 0.13919660449028015, -0.0209327582269907, 0.009749107994139194, 0.019130194559693336, 0.14638660848140717, -0.07652799040079117, 0.03206837549805641, 0.11473580449819565, -0.17122651636600494, 0.040234725922346115, 0.107390858232975, 0.05027308687567711, -0.04887637868523598, 0.02134070172905922, 0.04433555155992508, -0.04149540513753891, -0.25166139006614685, -0.01799900457262993, -0.006719799246639013, 0.01089763268828392, 0.09007943421602249, 0.015051521360874176, 0.058567192405462265, 0.09156903624534607, 0.05214811488986015, -0.012352220714092255, -0.06560088694095612, 0.0696519985795021, 0.19198501110076904, -0.03539080172777176, 0.11734909564256668, -0.05971769243478775, 0.005750535521656275, 0.08692166209220886, -0.033726856112480164, 0.11572280526161194, -0.016769450157880783, 0.0647498071193695, 0.07685668766498566, -0.022979585453867912, 0.042683836072683334, 0.13968141376972198, -0.08122175186872482, -0.03082234039902687, -0.004360388033092022, -0.05379990488290787, -0.059737108647823334, 0.03477349877357483, 0.01222046185284853, -0.0038057351484894753, -0.010687662288546562, -0.05836864560842514, 0.04747525230050087, 0.12192767858505249, 0.03842608258128166, -0.18189288675785065, -0.09309782087802887, -0.020794231444597244, -0.007573836948722601, -0.08845490962266922, -0.004597594030201435, 0.044467926025390625, -0.06339675188064575, 0.0056139323860406876, -0.0409628264605999, 0.09775429219007492, -0.1390034556388855, -0.010248498059809208, 0.03805477172136307, 0.09666436165571213, -0.04173777624964714, 0.09403529763221741, -0.19566772878170013, 0.05951128900051117, 0.042156562209129333, 0.03544009104371071, -0.04664850980043411, 0.023202938959002495, 0.02780001051723957, 0.08389225602149963, 0.08894877135753632, -0.011115098372101784, 0.09830115735530853, -0.111581951379776, -0.08769521862268448, 0.019276199862360954, 0.023069895803928375, -0.09014346450567245, 0.03753384202718735, -0.02379218488931656, 0.061085041612386703, 0.03198082372546196, 0.04687346890568733, -0.1409924328327179, -0.14844299852848053, 0.07553253322839737, -0.05071170628070831, 0.12497370690107346, -0.034514762461185455, -0.09446396678686142, 0.05316653475165367, 0.19729290902614594, -0.10435610264539719, -0.07214541733264923, -0.1491079330444336, 0.009979978203773499, 0.07499642670154572, -0.04368210583925247, 0.037897609174251556, -0.0008121142163872719, 0.04197469353675842, -0.011354691348969936, -0.07349124550819397, 0.09110765904188156, -0.08990777283906937, -0.035653259605169296, -0.045319683849811554, -0.0229002945125103, 0.1033131554722786, 0.018657254055142403, -0.018319256603717804, -0.0063969786278903484, 0.0014437860809266567, -0.09972512722015381, 0.006430203095078468, 0.015434779226779938, 0.001992361154407263, 0.03376593068242073, -0.06204433739185333, 0.0629313662648201, -0.05581512302160263, 0.028887677937746048, 0.14502602815628052, 0.1349087953567505, -0.06514263153076172, 0.04867890477180481, 0.20994950830936432, -0.06492474675178528, -0.28537043929100037, 0.0032007317058742046, 0.04072880372405052, -0.02997489646077156, 0.04234447330236435, -0.24191540479660034, 0.18087215721607208, 0.04370323196053505, -0.01777464896440506, 0.08065143972635269, -0.12558026611804962, -0.082552969455719, 0.224014550447464, 0.07546135038137436, 0.09304093569517136, -0.1394343078136444, -0.08799578249454498, 0.011602498590946198, -0.15184339880943298, 0.07590103149414062, -0.05084463581442833, 0.055329907685518265, -0.016199275851249695, -0.012719055637717247, 0.031191891059279442, -0.038463570177555084, 0.09747690707445145, 0.005750511307269335, 0.02006378397345543, -0.0996580570936203, -0.018508614972233772, 0.028506573289632797, -0.043175067752599716, 0.10441435128450394, -0.009556212462484837, 0.0607718750834465, -0.11834093183279037, -0.06095099076628685, 0.003361049108207226, 0.11644855886697769, -0.016967518255114555, -0.09146135300397873, -0.02072565071284771, 0.029597287997603416, -0.03546721860766411, -0.022101854905486107, 0.030028248205780983, -0.07515665143728256, 0.0312763974070549, 0.1911521703004837, 0.12900669872760773, -0.010931101627647877, -0.109101302921772, 0.02521023340523243, -0.029074715450406075, 0.13663677871227264, -0.12616461515426636, 0.05061197280883789, 0.08179713040590286, 0.040215056389570236, 0.12680163979530334, 0.04671623930335045, -0.12024562805891037, -0.02147473581135273, 0.04805903881788254, -0.08741770684719086, -0.06392083317041397, -0.011627237312495708, 0.04402795806527138, -0.16897881031036377, 0.01607883721590042, 0.12039066851139069, -0.023015877231955528, 0.02389584667980671, 0.04947861656546593, -0.014513352885842323, -0.05731196701526642, 0.08543838560581207, 0.11932992190122604, 0.04146047681570053, -0.038087937980890274, 0.09732761979103088, 0.09273402392864227, -0.07337050884962082, 0.056607455015182495, -0.08772491663694382, -0.050787340849637985, -0.07049157470464706, -0.06592060625553131, 0.13328368961811066, -0.014841802418231964, -0.07116803526878357, 0.014587401412427425, -0.03404172882437706, 0.02311372011899948, 0.12967640161514282, 0.05000908672809601, -0.0012888851342722774, -0.04423350468277931, 0.05249286815524101, -0.07776374369859695, 0.08293589949607849, -0.00019329834321979433, 0.056461069732904434, -0.05863846093416214, -0.07237062603235245, 0.05145038291811943, 0.04859738051891327, -0.058311350643634796, -0.06662803143262863, -0.13884855806827545, -0.025398822501301765, -0.13817541301250458, -0.031845130026340485, -0.04494984447956085, -0.017623882740736008, 0.03103153593838215, -0.09378188848495483, -0.025583570823073387, 0.009731895290315151, -0.02710629254579544, -0.0037746012676507235, 0.07562343776226044, 0.057942554354667664, -0.1706850677728653, -0.02178138867020607, 0.07788059115409851, -0.053907137364149094, 0.05809952691197395, 0.05864758789539337, -0.0028186677955091, -0.0047059026546776295, -0.0717383623123169, -0.0006855048704892397, -0.046586714684963226, 0.028340371325612068, 0.023664256557822227, -0.09007399529218674, -0.005016977433115244, -0.03903811424970627, -0.004545516334474087, -0.022010328248143196, 0.21857322752475739, -0.08163667470216751, 0.0681929886341095, -0.009349637664854527, -0.012042478658258915, -0.05422386899590492, 0.048493072390556335, 0.09025295078754425, 0.11082743853330612, 0.14070037007331848, -0.06473018229007721, 0.09246402233839035, -0.10685596615076065, 0.016573110595345497, 0.04521552845835686, 0.005005616694688797, 0.14596733450889587, -0.12007027119398117, -0.005943797994405031, -0.05860748887062073, 0.21097928285598755, -0.04637361690402031, 0.019059443846344948, 0.03149641305208206, -0.004324562847614288, -0.03166675940155983, -0.05595182254910469, 0.17177100479602814, 0.02367214486002922, 0.022168954834342003, -0.05233060196042061, 0.08116865158081055, -0.014999630860984325, 0.01825578324496746, 0.1195722371339798, 0.1673564314842224, -0.1200217679142952, 0.0115888062864542, 0.020498717203736305, -0.041076697409152985, -0.09003089368343353, -0.0077195134945213795, 0.006666359957307577, 0.07577667385339737, -0.02157549560070038, 0.1676047444343567, 0.07440823316574097, -0.018201807513833046, 0.06988722831010818, 0.015175841748714447, -0.06197594106197357, -0.08862810581922531, -0.07879094034433365, -0.002359006553888321, -0.1826755553483963, -0.007879624143242836, -0.07991953194141388, -0.005336264614015818, 0.13970930874347687, 0.012472989037632942, 0.01717192865908146, 0.274287611246109, -0.0548231266438961, -0.018068110570311546, 0.016917046159505844, -0.06519510596990585, -0.022998584434390068, -0.13073724508285522, 0.05465123802423477, 0.03338956832885742, 0.09967797994613647, 0.04464230313897133, 0.04281672462821007, -0.009995108470320702, 0.04875623434782028, 0.016456300392746925, -0.13184279203414917, -0.047146767377853394, 0.05124730244278908, -0.0416826456785202, 0.11772891879081726, 0.01769210398197174, 0.02074490673840046, -0.03431897237896919, 0.13362088799476624, -0.06347151845693588, -0.101770780980587, -0.14042598009109497, 0.10647525638341904, -0.03700393810868263, 0.02367553859949112, -0.05573207885026932, -0.1311546266078949, -0.017168695107102394, 0.2198868840932846, 0.03563818708062172, -0.0442357175052166, 0.02642967738211155, 0.09342996776103973, 0.019380366429686546, 0.012879861518740654, 0.043357785791158676, -0.006617708131670952, 0.07655660063028336, -0.017281459644436836, -0.06123106926679611, -0.0737699344754219, -0.0658649429678917, 0.05061441659927368, 0.10248076915740967, 0.0351627953350544, -0.048858486115932465, -0.06780285388231277, 0.07582733780145645, -0.06296905875205994, -0.2676815986633301, 0.008354440331459045, -0.017539871856570244, -0.06368589401245117, -0.07028799504041672, 0.07336670160293579, -0.03323103114962578, 0.011370186693966389, 0.0017957728123292327, -0.017489789053797722, 0.15265053510665894, 0.02829352207481861, -0.0491233766078949, -0.02927337773144245, 0.07571512460708618, -0.06461314111948013, 0.16120381653308868, -0.0011679086601361632, 0.04331802576780319, 0.07067106664180756, 0.06521734595298767, -0.07766702771186829, 0.03223637118935585, 0.021540816873311996, -0.08554920554161072, -0.014235700480639935, 0.03331027179956436, -0.0018703237874433398, 0.08975722640752792, 0.0633331760764122, -0.18515850603580475, 0.046130359172821045, -0.003579123876988888, -0.09195878356695175, -0.0913129672408104, -0.04133142903447151, -0.070877306163311, 0.1558161973953247, 0.1382639855146408, 0.010499316267669201, -0.06996799260377884, -0.08950575441122055, 0.045889317989349365, 0.01894463412463665, 0.07134632766246796, -0.06005025655031204, -0.09030367434024811, -0.00913385208696127, -0.03041369840502739, 0.028554560616612434, -0.25346535444259644, -0.027631515637040138, 0.06535595655441284, -0.05320348963141441, 0.018708324059844017, 0.035523753613233566, 0.10597030818462372, 0.06721136718988419, -0.03764200955629349, -0.026543205603957176, 0.009381012991070747, 0.10052809864282608, -0.1644238978624344, -0.020107654854655266 ]
null
null
adapter-transformers
# Adapter `AdapterHub/bert-base-uncased-pf-duorc_p` for bert-base-uncased An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [duorc](https://huggingface.co/datasets/duorc/) dataset and includes a prediction head for question answering. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("bert-base-uncased") adapter_name = model.load_adapter("AdapterHub/bert-base-uncased-pf-duorc_p", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
{"language": ["en"], "tags": ["question-answering", "bert", "adapter-transformers"], "datasets": ["duorc"]}
question-answering
AdapterHub/bert-base-uncased-pf-duorc_p
[ "adapter-transformers", "bert", "question-answering", "en", "dataset:duorc", "arxiv:2104.08247", "region:us" ]
2022-03-02T23:29:04+00:00
[ "2104.08247" ]
[ "en" ]
TAGS #adapter-transformers #bert #question-answering #en #dataset-duorc #arxiv-2104.08247 #region-us
# Adapter 'AdapterHub/bert-base-uncased-pf-duorc_p' for bert-base-uncased An adapter for the 'bert-base-uncased' model that was trained on the duorc dataset and includes a prediction head for question answering. This adapter was created for usage with the adapter-transformers library. ## Usage First, install 'adapter-transformers': _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_ Now, the adapter can be loaded and activated like this: ## Architecture & Training The training code for this adapter is available at URL In particular, training configurations for all tasks can be found here. ## Evaluation results Refer to the paper for more information on results. If you use this adapter, please cite our paper "What to Pre-Train on? Efficient Intermediate Task Selection":
[ "# Adapter 'AdapterHub/bert-base-uncased-pf-duorc_p' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the duorc dataset and includes a prediction head for question answering.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ "TAGS\n#adapter-transformers #bert #question-answering #en #dataset-duorc #arxiv-2104.08247 #region-us \n", "# Adapter 'AdapterHub/bert-base-uncased-pf-duorc_p' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the duorc dataset and includes a prediction head for question answering.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ 35, 83, 57, 30, 45 ]
[ "passage: TAGS\n#adapter-transformers #bert #question-answering #en #dataset-duorc #arxiv-2104.08247 #region-us \n# Adapter 'AdapterHub/bert-base-uncased-pf-duorc_p' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the duorc dataset and includes a prediction head for question answering.\n\nThis adapter was created for usage with the adapter-transformers library.## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ -0.06836381554603577, -0.008645700290799141, -0.0034914924763143063, 0.02984936535358429, 0.15950927138328552, 0.03787956386804581, 0.15004298090934753, 0.04978448897600174, 0.0658622682094574, 0.0400506891310215, 0.051501549780368805, 0.0888567790389061, 0.032561011612415314, 0.03334790840744972, 0.003522600280120969, -0.12197287380695343, 0.003951174672693014, 0.04756894335150719, -0.05208846181631088, 0.09296879172325134, 0.09811551868915558, -0.10792191326618195, 0.08029966801404953, 0.037560462951660156, -0.09320951998233795, 0.03465089946985245, -0.022562295198440552, -0.07612571865320206, 0.09489405155181885, 0.07474491000175476, 0.16698648035526276, 0.04209582507610321, 0.02104480378329754, -0.12257249653339386, 0.018256260082125664, 0.0807027742266655, 0.035269349813461304, 0.09486135095357895, -0.02931598387658596, 0.017505455762147903, -0.03509070724248886, 0.03027077205479145, 0.08833984285593033, 0.04496655985713005, -0.08270172774791718, -0.26222237944602966, -0.036473557353019714, 0.09949938952922821, 0.035112474113702774, 0.08250762522220612, 0.00856053363531828, 0.07713019102811813, 0.010622808709740639, 0.03480309620499611, 0.18162907660007477, -0.22113223373889923, -0.002941426821053028, -0.016822664067149162, 0.054382361471652985, 0.04506688937544823, -0.041619814932346344, -0.017640918493270874, 0.01130224671214819, 0.0250311940908432, 0.03948362544178963, -0.03919299691915512, -0.045572973787784576, -0.011048737913370132, -0.15526360273361206, -0.02292453870177269, 0.23950602114200592, -0.02442573383450508, -0.09350115060806274, -0.02186819165945053, -0.05088005214929581, 0.1446259319782257, 0.026685168966650963, -0.11577054858207703, 0.0020540920086205006, -0.004845236428081989, -0.026336979120969772, -0.10561423003673553, -0.10188067704439163, -0.11525654792785645, -0.10850446671247482, 0.2772781550884247, -0.0010176242794841528, 0.04108920320868492, -0.017717959359288216, 0.12841902673244476, -0.028709223493933678, -0.11092314124107361, -0.06149732694029808, -0.04749962314963341, -0.049279097467660904, -0.03978428617119789, -0.03289776295423508, -0.233599454164505, -0.006124528124928474, 0.18057556450366974, 0.10464122891426086, 0.016569754108786583, -0.08816441893577576, 0.04892941936850548, 0.05027718469500542, 0.18198168277740479, -0.10957680642604828, 0.05393807962536812, -0.041379597038030624, -0.01413530483841896, -0.026285802945494652, -0.10034070163965225, -0.07050216197967529, -0.009524449706077576, 0.027663175016641617, 0.03090461529791355, 0.05190155655145645, 0.0857149064540863, -0.04960579052567482, -0.07451306283473969, 0.12749773263931274, -0.11565139889717102, -0.001208472065627575, 0.017835762351751328, -0.043461356312036514, 0.09808715432882309, 0.1320008635520935, -0.0003787185123655945, -0.030785512179136276, 0.08860469609498978, -0.06933549046516418, -0.06435102224349976, -0.0790119618177414, -0.1485227346420288, 0.031127212569117546, -0.012780875898897648, -0.003782189218327403, -0.1441466063261032, -0.097867950797081, -0.0015987424412742257, 0.07973183691501617, -0.010867380537092686, 0.09649781882762909, 0.0447772853076458, 0.03605068102478981, 0.011583036743104458, -0.03744611144065857, 0.01107557862997055, -0.0102267200127244, 0.0842418298125267, 0.028771745041012764, 0.05394275113940239, -0.04050200432538986, 0.0789056122303009, -0.07290510833263397, 0.01629125513136387, -0.17072424292564392, 0.06026218459010124, -0.14560405910015106, -0.029628850519657135, -0.14046594500541687, -0.007825078442692757, -0.008624903857707977, 0.02514779381453991, 0.09528183937072754, 0.08399245142936707, -0.07786315679550171, -0.03749466687440872, 0.048725675791502, -0.1712041050195694, -0.13104914128780365, 0.05114356800913811, -0.01332149375230074, 0.1290726363658905, 0.045212630182504654, 0.04571240395307541, 0.10773301869630814, -0.11235707253217697, -0.08271979540586472, 0.05526446923613548, -0.0653858333826065, -0.01573019288480282, 0.07142694294452667, -0.004540684632956982, -0.14446215331554413, 0.01225088071078062, -0.12455882877111435, -0.0073526473715901375, -0.04711207374930382, -0.025492560118436813, -0.015991054475307465, -0.022317936643958092, 0.10756900906562805, 0.026622161269187927, -0.027747223153710365, 0.06165603548288345, -0.14549744129180908, 0.2195788323879242, 0.06415004283189774, -0.0674760490655899, 0.021831775084137917, -0.11413592100143433, 0.09070683270692825, -0.16417735815048218, 0.011101807467639446, -0.19606688618659973, -0.041995346546173096, 0.004822603426873684, 0.015895865857601166, 0.035658616572618484, 0.0562586672604084, 0.057693496346473694, 0.02146194502711296, 0.0124433021992445, -0.004919223953038454, -0.07721000164747238, 0.030084554105997086, -0.05489683523774147, -0.0947486162185669, -0.07781555503606796, -0.05694841966032982, -0.005571582354605198, -0.13207463920116425, 0.03579140827059746, 0.05088985338807106, 0.07027927041053772, 0.023607347160577774, -0.007798121776431799, -0.03769630566239357, -0.0009385917219333351, -0.028035013005137444, -0.022800691425800323, 0.03709833696484566, 0.004928231704980135, -0.05894775688648224, 0.02480224333703518, -0.09007757157087326, 0.0043663159012794495, 0.08381269127130508, -0.05530418083071709, -0.06599656492471695, -0.021831227466464043, 0.008240447379648685, -0.03249076008796692, -0.029867738485336304, -0.10869256407022476, 0.23937349021434784, 0.0692945197224617, 0.05601315200328827, -0.03046015091240406, -0.0009991046972572803, 0.005714524071663618, -0.017683103680610657, 0.007429218385368586, -0.0024913649540394545, 0.05054686591029167, -0.07646835595369339, 0.04607757553458214, 0.19414158165454865, -0.038286447525024414, 0.061477743089199066, -0.015372848138213158, -0.12605299055576324, -0.020075976848602295, -0.05935882031917572, 0.03529287502169609, 0.07805542647838593, -0.11585578322410583, 0.025782780721783638, 0.08108517527580261, -0.002546013565734029, 0.006111771333962679, -0.07050267606973648, 0.04750651493668556, 0.06371527910232544, 0.005134571343660355, -0.052338823676109314, -0.016719842329621315, -0.017595063894987106, 0.0497453436255455, 0.049850355833768845, 0.10635051131248474, 0.03418157622218132, -0.011127057485282421, -0.06976944208145142, 0.18760240077972412, -0.05246051773428917, -0.19075413048267365, -0.18022094666957855, -0.0915941596031189, 0.007267140317708254, 0.017178021371364594, 0.038390133529901505, -0.0550185889005661, -0.08534745872020721, -0.035255491733551025, 0.16974107921123505, -0.02778014913201332, -0.0013013872085139155, 0.02726677432656288, -0.08552208542823792, 0.07133426517248154, -0.15958106517791748, 0.03728087246417999, 0.018170055001974106, -0.0875832661986351, 0.004211907275021076, 0.04537498950958252, 0.07994676381349564, 0.13179108500480652, -0.024884555488824844, -0.006760713644325733, 0.00806450191885233, 0.10218285024166107, -0.06785055249929428, 0.02338872291147709, 0.15487124025821686, -0.15367358922958374, 0.03785349428653717, 0.07602187991142273, 0.05073055997490883, -0.03496157377958298, 0.03673918545246124, 0.032293424010276794, -0.04743426293134689, -0.24967001378536224, -0.009080485440790653, 0.008855728432536125, -0.00019354341202415526, 0.09033443033695221, 0.013129482045769691, 0.028664937242865562, 0.09825918823480606, 0.02739248238503933, -0.0049854726530611515, -0.04874173924326897, 0.06668242067098618, 0.23089487850666046, -0.03117903508245945, 0.10786990076303482, -0.06024850159883499, 0.0034398382995277643, 0.07980120927095413, -0.007485547568649054, 0.13932067155838013, -0.02492463029921055, 0.08321534097194672, 0.06541410088539124, -0.0307149738073349, 0.03989792987704277, 0.16466674208641052, -0.0657319650053978, -0.004468628205358982, -0.012958014383912086, -0.044518545269966125, -0.060681819915771484, 0.01775825396180153, 0.005542416591197252, 0.011020696721971035, -0.04190476983785629, -0.05524095520377159, 0.017033448442816734, 0.11443013697862625, 0.029316168278455734, -0.21030685305595398, -0.12440619617700577, -0.03683082014322281, -0.014646072871983051, -0.08555412292480469, -0.00796570722013712, 0.06908272951841354, -0.0728851705789566, -0.009975518099963665, -0.04314536973834038, 0.09019680321216583, -0.12525928020477295, -0.014284424483776093, 0.04301462322473526, 0.11446628719568253, -0.028898200020194054, 0.10009308904409409, -0.21900232136249542, 0.08256492018699646, 0.03544381633400917, 0.02976447530090809, -0.05770408734679222, 0.017429249361157417, 0.007399064488708973, 0.09352173656225204, 0.05460857227444649, -0.03115292266011238, 0.10228852927684784, -0.14150254428386688, -0.10096151381731033, 0.03793390467762947, 0.04241716116666794, -0.10734964162111282, 0.050645314157009125, -0.030268540605902672, 0.05071652680635452, 0.05061880126595497, 0.05224641412496567, -0.12726297974586487, -0.15645940601825714, 0.07570645958185196, -0.01757657714188099, 0.1138245016336441, -0.05914057791233063, -0.1130128800868988, 0.07703196257352829, 0.16185398399829865, -0.1266891211271286, -0.06646085530519485, -0.1473957598209381, 0.018325867131352425, 0.09190615266561508, -0.07479141652584076, 0.041641104966402054, -0.007560746278613806, 0.09137670695781708, 0.005261392332613468, -0.09175241738557816, 0.09001263231039047, -0.08131792396306992, -0.06636089086532593, -0.048859573900699615, 0.008130036294460297, 0.10218717902898788, 0.02698242850601673, -0.014355175197124481, 0.0022359348367899656, 0.00004077592529938556, -0.09802564978599548, -0.013322383165359497, 0.05392345041036606, 0.01579570397734642, 0.02934708632528782, -0.055922821164131165, 0.07641811668872833, -0.03968201205134392, 0.020281612873077393, 0.13775208592414856, 0.10442386567592621, -0.06359990686178207, 0.04802531376481056, 0.20162197947502136, -0.06320232152938843, -0.28641384840011597, -0.0115165114402771, 0.04952360689640045, -0.007980096153914928, 0.03597729280591011, -0.24469321966171265, 0.16847802698612213, 0.03994430974125862, -0.014866569079458714, 0.05297378450632095, -0.1204206645488739, -0.082396499812603, 0.21974226832389832, 0.09648134559392929, 0.044233255088329315, -0.11303598433732986, -0.06203658878803253, 0.004014607518911362, -0.18805672228336334, 0.1370718777179718, -0.05739280581474304, 0.05540907010436058, -0.018620599061250687, 0.03761959448456764, 0.033285677433013916, -0.035680241882801056, 0.08753302693367004, -0.010137003846466541, 0.01599326729774475, -0.08204218000173569, -0.018706515431404114, 0.054037053138017654, -0.02655920945107937, 0.09389284998178482, 0.005902514792978764, 0.06638015806674957, -0.06860228627920151, -0.07587709277868271, -0.000851024582516402, 0.09702857583761215, -0.019958700984716415, -0.08820394426584244, -0.034674908965826035, 0.01422919798642397, -0.049170155078172684, -0.04408686235547066, 0.062260061502456665, -0.050610050559043884, 0.03050914779305458, 0.17068354785442352, 0.1496300995349884, -0.0007296970579773188, -0.09299533814191818, 0.00943258497864008, -0.03262302279472351, 0.14841915667057037, -0.12602153420448303, 0.0758909285068512, 0.09971272200345993, 0.032210394740104675, 0.11107654124498367, 0.050229597836732864, -0.13198189437389374, -0.008878453634679317, 0.03717682138085365, -0.08134724199771881, -0.06725484877824783, -0.0018370054895058274, 0.07874352484941483, -0.1774151623249054, 0.04621390625834465, 0.14923185110092163, -0.047630030661821365, 0.006086153443902731, 0.03773481771349907, -0.018056076020002365, -0.0475083664059639, 0.10479217767715454, 0.12014767527580261, 0.046678170561790466, -0.025781890377402306, 0.09205736964941025, 0.10353843867778778, -0.10780466347932816, 0.04319993779063225, -0.10522957891225815, -0.05556339770555496, -0.06371688842773438, -0.07982701063156128, 0.1066063717007637, -0.06495586782693863, -0.08413150906562805, 0.00525303278118372, -0.04604465886950493, 0.025955623015761375, 0.14374253153800964, 0.040627460926771164, 0.013770737685263157, -0.05591663345694542, 0.059627942740917206, -0.089613176882267, 0.08065438270568848, -0.03992924839258194, 0.06832847744226456, -0.07547620683908463, -0.025396278128027916, 0.042930345982313156, 0.053712017834186554, -0.058708831667900085, -0.05230841040611267, -0.12153418362140656, -0.02391018718481064, -0.1622309535741806, -0.03497665375471115, -0.029576361179351807, -0.016357041895389557, 0.030391931533813477, -0.11307559162378311, -0.020552562549710274, 0.023300684988498688, -0.02465270832180977, -0.0013973144814372063, 0.053978919982910156, 0.05525195598602295, -0.1910484880208969, -0.023535732179880142, 0.07400376349687576, -0.048196565359830856, 0.07530278712511063, 0.056221261620521545, -0.0011421289527788758, 0.01991519331932068, -0.0933680459856987, 0.0036300516221672297, -0.04140641912817955, 0.045043788850307465, 0.031412363052368164, -0.10603035241365433, 0.010301928967237473, -0.030282581225037575, -0.012208160944283009, -0.020227400586009026, 0.20429913699626923, -0.0711834505200386, 0.03641626983880997, -0.034720998257398605, -0.0006455617258325219, -0.06088876724243164, 0.05295727029442787, 0.05915306508541107, 0.126230850815773, 0.13012315332889557, -0.05837639048695564, 0.08068490773439407, -0.0991625115275383, 0.015208707191050053, 0.02868352271616459, 0.004153790418058634, 0.12709595263004303, -0.11394636332988739, -0.00027139484882354736, -0.05665494501590729, 0.1929723173379898, -0.04437624663114548, 0.057845525443553925, 0.037550318986177444, -0.03252096846699715, -0.04786834120750427, -0.0446845181286335, 0.1745060235261917, 0.03243790194392204, 0.03092682547867298, -0.02706615813076496, 0.07053405046463013, -0.015829401090741158, 0.028841307386755943, 0.13058555126190186, 0.14348100125789642, -0.09898557513952255, 0.0026419234927743673, 0.04293101653456688, -0.039525050669908524, -0.10301989316940308, -0.07014667242765427, -0.0003830720961559564, 0.05403734743595123, -0.007644630968570709, 0.1760302633047104, 0.05833796411752701, -0.012403830885887146, 0.05085129290819168, -0.0013193100458011031, -0.05624911189079285, -0.0884702280163765, -0.05965840816497803, -0.02394208498299122, -0.1632072776556015, -0.018842201679944992, -0.0832749530673027, -0.014494132250547409, 0.13433316349983215, 0.012398580089211464, 0.011737029999494553, 0.2500269114971161, -0.06466446071863174, -0.023618360981345177, 0.01266265194863081, -0.03759778290987015, -0.019078299403190613, -0.10262642800807953, 0.05989709869027138, 0.04292069002985954, 0.13080574572086334, 0.054613519459962845, 0.039648160338401794, 0.0016867059748619795, 0.050279680639505386, -0.007340223994106054, -0.1270408034324646, -0.05043690279126167, 0.04588592052459717, -0.034784357994794846, 0.07430575042963028, 0.0043360344134271145, 0.017413567751646042, -0.026775751262903214, 0.15166856348514557, -0.06510163098573685, -0.06868594139814377, -0.1382012516260147, 0.1612614393234253, -0.02650100365281105, 0.02539307251572609, -0.019702209159731865, -0.11180994659662247, -0.05506352707743645, 0.18665750324726105, 0.04992316663265228, -0.037244416773319244, 0.02682255208492279, 0.08185005933046341, 0.018492843955755234, 0.006023070774972439, 0.08485038578510284, 0.036358773708343506, 0.10863851755857468, -0.010838700458407402, -0.06686460226774216, -0.05029674246907234, -0.024066079407930374, 0.05610824376344681, 0.09140083193778992, 0.0019978340715169907, -0.03652625530958176, -0.0691484585404396, 0.06074291467666626, -0.014263909310102463, -0.29376229643821716, -0.019203105941414833, -0.014848947525024414, -0.06787335127592087, -0.05661369115114212, 0.06616618484258652, -0.040656790137290955, 0.011230344884097576, 0.003344082972034812, -0.017502930015325546, 0.18930521607398987, 0.05132146179676056, -0.056283336132764816, -0.0024207939859479666, 0.0951644703745842, -0.04875880107283592, 0.1635742485523224, 0.000057443539844825864, 0.06068802252411842, 0.0697881430387497, 0.05171990022063255, -0.08514239639043808, 0.028902770951390266, 0.037625059485435486, -0.0967930480837822, 0.005640917923301458, 0.0295913927257061, -0.006770956330001354, 0.08964481949806213, 0.053114958107471466, -0.19972193241119385, 0.03756973147392273, -0.018402397632598877, -0.07946208864450455, -0.07380961626768112, -0.033333033323287964, -0.07155687361955643, 0.14830943942070007, 0.1279199868440628, -0.0004674634838011116, -0.07929257303476334, -0.09010784327983856, 0.051971256732940674, 0.011934328824281693, 0.0773129016160965, -0.036769382655620575, -0.08452882617712021, -0.008495965972542763, -0.049015115946531296, 0.032755009829998016, -0.2764807641506195, -0.01753578893840313, 0.06571976840496063, -0.049769334495067596, 0.01869187504053116, 0.028719428926706314, 0.07204169780015945, 0.06456949561834335, -0.05469275638461113, -0.04979625716805458, -0.011519930325448513, 0.10270760953426361, -0.18697184324264526, -0.03294064849615097 ]
null
null
adapter-transformers
# Adapter `AdapterHub/bert-base-uncased-pf-duorc_s` for bert-base-uncased An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [duorc](https://huggingface.co/datasets/duorc/) dataset and includes a prediction head for question answering. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("bert-base-uncased") adapter_name = model.load_adapter("AdapterHub/bert-base-uncased-pf-duorc_s", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
{"language": ["en"], "tags": ["question-answering", "bert", "adapter-transformers"], "datasets": ["duorc"]}
question-answering
AdapterHub/bert-base-uncased-pf-duorc_s
[ "adapter-transformers", "bert", "question-answering", "en", "dataset:duorc", "arxiv:2104.08247", "region:us" ]
2022-03-02T23:29:04+00:00
[ "2104.08247" ]
[ "en" ]
TAGS #adapter-transformers #bert #question-answering #en #dataset-duorc #arxiv-2104.08247 #region-us
# Adapter 'AdapterHub/bert-base-uncased-pf-duorc_s' for bert-base-uncased An adapter for the 'bert-base-uncased' model that was trained on the duorc dataset and includes a prediction head for question answering. This adapter was created for usage with the adapter-transformers library. ## Usage First, install 'adapter-transformers': _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_ Now, the adapter can be loaded and activated like this: ## Architecture & Training The training code for this adapter is available at URL In particular, training configurations for all tasks can be found here. ## Evaluation results Refer to the paper for more information on results. If you use this adapter, please cite our paper "What to Pre-Train on? Efficient Intermediate Task Selection":
[ "# Adapter 'AdapterHub/bert-base-uncased-pf-duorc_s' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the duorc dataset and includes a prediction head for question answering.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ "TAGS\n#adapter-transformers #bert #question-answering #en #dataset-duorc #arxiv-2104.08247 #region-us \n", "# Adapter 'AdapterHub/bert-base-uncased-pf-duorc_s' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the duorc dataset and includes a prediction head for question answering.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ 35, 83, 57, 30, 45 ]
[ "passage: TAGS\n#adapter-transformers #bert #question-answering #en #dataset-duorc #arxiv-2104.08247 #region-us \n# Adapter 'AdapterHub/bert-base-uncased-pf-duorc_s' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the duorc dataset and includes a prediction head for question answering.\n\nThis adapter was created for usage with the adapter-transformers library.## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ -0.06480386108160019, -0.009418697096407413, -0.00346206477843225, 0.029971061274409294, 0.1585463583469391, 0.03818304464221001, 0.15517280995845795, 0.04898108169436455, 0.06943102926015854, 0.0419064499437809, 0.05138804763555527, 0.081756092607975, 0.030663784593343735, 0.030805708840489388, -0.0006436267867684364, -0.11691521108150482, 0.007098123896867037, 0.042450785636901855, -0.060696788132190704, 0.08673955500125885, 0.09802564978599548, -0.10506140440702438, 0.08447659015655518, 0.03640807792544365, -0.09459256380796432, 0.03725147619843483, -0.019757075235247612, -0.07349617034196854, 0.09309682250022888, 0.08087905496358871, 0.1668422818183899, 0.041861336678266525, 0.02240743115544319, -0.12478014081716537, 0.018121793866157532, 0.0809546411037445, 0.03341952711343765, 0.09305763989686966, -0.03385871276259422, 0.018848920240998268, -0.037137310951948166, 0.027861731126904488, 0.08858133852481842, 0.04653652384877205, -0.0853656455874443, -0.2549019455909729, -0.03753211721777916, 0.08929076045751572, 0.03847279027104378, 0.08120480924844742, 0.008915557526051998, 0.07461773604154587, 0.01480865478515625, 0.03430015593767166, 0.1788327842950821, -0.21865640580654144, -0.006198585964739323, -0.01051922608166933, 0.057542722672224045, 0.048079315572977066, -0.043898358941078186, -0.011052475310862064, 0.015126408077776432, 0.02352156676352024, 0.03728412836790085, -0.04101099818944931, -0.042540017515420914, -0.009294752962887287, -0.15257610380649567, -0.0186308640986681, 0.23922157287597656, -0.022520434111356735, -0.09363019466400146, -0.01923373155295849, -0.05068562924861908, 0.14935830235481262, 0.026546336710453033, -0.11684246361255646, 0.004722385201603174, -0.001661078305914998, -0.029167987406253815, -0.10908623784780502, -0.10121454298496246, -0.11506184935569763, -0.10789716243743896, 0.275896281003952, -0.006552957929670811, 0.03977053984999657, -0.018075279891490936, 0.12261629104614258, -0.03128397837281227, -0.11179303377866745, -0.06592116504907608, -0.04589354619383812, -0.05625908076763153, -0.043345749378204346, -0.03411165997385979, -0.2339440882205963, -0.0029993844218552113, 0.18627025187015533, 0.10904908180236816, 0.02062489464879036, -0.09137830138206482, 0.04571198299527168, 0.049833692610263824, 0.18076474964618683, -0.10503586381673813, 0.047545164823532104, -0.04206685721874237, -0.01651073433458805, -0.026881234720349312, -0.10223694145679474, -0.07364774495363235, -0.009700421243906021, 0.021649856120347977, 0.03034479171037674, 0.05279911682009697, 0.08455180376768112, -0.046995505690574646, -0.07064848393201828, 0.12536972761154175, -0.1140209212899208, 0.0032529437448829412, 0.01512845978140831, -0.04052866995334625, 0.09468597918748856, 0.130431666970253, 0.002681649988517165, -0.022371860221028328, 0.08624444156885147, -0.07145252823829651, -0.06533075124025345, -0.07647336274385452, -0.15023580193519592, 0.03085412085056305, -0.010108998976647854, -0.002509711543098092, -0.14367534220218658, -0.09377593547105789, -0.0034640494268387556, 0.08373724669218063, -0.014652911573648453, 0.10225368291139603, 0.042003583163022995, 0.034184541553258896, 0.01688622497022152, -0.034262802451848984, 0.008665264584124088, -0.009400404058396816, 0.07746711373329163, 0.030558396130800247, 0.05434420332312584, -0.04422909766435623, 0.07575942575931549, -0.07132968306541443, 0.02022547647356987, -0.1696360558271408, 0.06113816052675247, -0.14806458353996277, -0.022939035668969154, -0.14242537319660187, -0.002144284313544631, -0.007161586545407772, 0.02793743833899498, 0.09542132169008255, 0.0858621746301651, -0.07872551679611206, -0.03519134968519211, 0.044894758611917496, -0.17009231448173523, -0.13463743031024933, 0.05029239133000374, -0.015208844095468521, 0.13420382142066956, 0.04665173217654228, 0.04297171160578728, 0.10769379138946533, -0.11303897202014923, -0.08215197175741196, 0.05447547510266304, -0.0638129934668541, -0.008270285092294216, 0.06883448362350464, -0.0027329199947416782, -0.14621542394161224, 0.010400393977761269, -0.12418258190155029, -0.008990732952952385, -0.04450551047921181, -0.025091826915740967, -0.015853365883231163, -0.02156728319823742, 0.10276759415864944, 0.021757550537586212, -0.028746183961629868, 0.060788728296756744, -0.14325225353240967, 0.22258508205413818, 0.06144757196307182, -0.06741178035736084, 0.023017074912786484, -0.11491899192333221, 0.08303704112768173, -0.16649100184440613, 0.012583180330693722, -0.1925705075263977, -0.04769016057252884, 0.004283010959625244, 0.014070586301386356, 0.03968866169452667, 0.06021347641944885, 0.06111212074756622, 0.020002475008368492, 0.010059659369289875, -0.002194839995354414, -0.07120475172996521, 0.033050116151571274, -0.05489211156964302, -0.09976600855588913, -0.07504326105117798, -0.058918800204992294, -0.0037178308703005314, -0.14077071845531464, 0.03569100424647331, 0.056138888001441956, 0.06911031901836395, 0.026776403188705444, -0.007648753933608532, -0.039176903665065765, -0.005397108383476734, -0.032298605889081955, -0.02591141313314438, 0.031074898317456245, 0.005222505424171686, -0.06364142894744873, 0.023950820788741112, -0.09384560585021973, 0.0028850007802248, 0.08067350834608078, -0.05061010643839836, -0.06758435815572739, -0.02244189754128456, 0.012428701855242252, -0.03378114849328995, -0.02850993350148201, -0.1110386848449707, 0.23244260251522064, 0.06760340929031372, 0.054123423993587494, -0.02736273594200611, 0.0012292212340980768, 0.0074258241802453995, -0.020012857392430305, 0.004156379494816065, -0.007004788611084223, 0.04578859359025955, -0.08521778881549835, 0.044746071100234985, 0.19591447710990906, -0.03948356956243515, 0.059435855597257614, -0.012315446510910988, -0.12283620238304138, -0.0236674714833498, -0.060715097934007645, 0.03968866541981697, 0.0783669501543045, -0.11530612409114838, 0.02416999824345112, 0.0767645388841629, 0.0002477129455655813, 0.002695208415389061, -0.0659860372543335, 0.04940113052725792, 0.06754475831985474, 0.005668556783348322, -0.05122284218668938, -0.019345611333847046, -0.02341042086482048, 0.046884775161743164, 0.05218524485826492, 0.10740793496370316, 0.03426903486251831, -0.012744887731969357, -0.06950352340936661, 0.18716388940811157, -0.05362705513834953, -0.1833011358976364, -0.18449467420578003, -0.1014239639043808, 0.007462398149073124, 0.020431527867913246, 0.03870389610528946, -0.05730123445391655, -0.08939618617296219, -0.03658856078982353, 0.17268358170986176, -0.029277989640831947, 0.0006516497232951224, 0.030479921028017998, -0.08308728039264679, 0.07300441712141037, -0.16050337255001068, 0.03837760537862778, 0.023853935301303864, -0.08833492547273636, -0.00022841659665573388, 0.04245422035455704, 0.08275341987609863, 0.12744560837745667, -0.02161715365946293, -0.008799313567578793, 0.010556531138718128, 0.10615268349647522, -0.06972448527812958, 0.02676526829600334, 0.14485153555870056, -0.15562106668949127, 0.03593125194311142, 0.08134371042251587, 0.05166724696755409, -0.03912175074219704, 0.03993334248661995, 0.034129612147808075, -0.04846978560090065, -0.24961607158184052, -0.005609886255115271, 0.008036240004003048, -0.002023763954639435, 0.09082221984863281, 0.0134483827278018, 0.031868234276771545, 0.09714687615633011, 0.028495797887444496, 0.0010137686040252447, -0.04570407792925835, 0.06818612664937973, 0.2316761612892151, -0.02714834362268448, 0.10583474487066269, -0.0611744225025177, 0.007056312635540962, 0.0816958099603653, -0.007269406691193581, 0.13831061124801636, -0.015979448333382607, 0.09365766495466232, 0.06227842718362808, -0.03974909335374832, 0.04015190154314041, 0.1625003069639206, -0.06367357075214386, -0.0063547780737280846, -0.011506267823278904, -0.043980780988931656, -0.05518613010644913, 0.022821485996246338, 0.0013487787218764424, 0.0075408392585814, -0.038010917603969574, -0.04911781847476959, 0.017422854900360107, 0.1102091446518898, 0.032408252358436584, -0.2108316272497177, -0.12444393336772919, -0.032399486750364304, -0.015743140131235123, -0.08729536086320877, -0.01051517017185688, 0.07341528683900833, -0.0685621052980423, -0.006505447439849377, -0.0422198548913002, 0.0906115397810936, -0.1221759095788002, -0.013276579789817333, 0.04367809742689133, 0.11439140141010284, -0.03212272748351097, 0.09748482704162598, -0.21959814429283142, 0.08263291418552399, 0.038449499756097794, 0.029389334842562675, -0.05485409125685692, 0.017978420481085777, 0.008496423251926899, 0.09747059643268585, 0.05427156761288643, -0.030504988506436348, 0.08634620159864426, -0.142747163772583, -0.09762676060199738, 0.03729455918073654, 0.04610347002744675, -0.10927921533584595, 0.05457324907183647, -0.032261352986097336, 0.04796522110700607, 0.054225508123636246, 0.051091909408569336, -0.12882100045681, -0.16155695915222168, 0.07498319447040558, -0.01486219372600317, 0.11647666245698929, -0.058899540454149246, -0.10749442875385284, 0.0809231624007225, 0.1639777570962906, -0.12904103100299835, -0.05926692858338356, -0.1493973582983017, 0.019958574324846268, 0.09299468994140625, -0.0742538645863533, 0.042518068104982376, -0.0074778590351343155, 0.09479266405105591, 0.007102542091161013, -0.09137850999832153, 0.09424060583114624, -0.08124267309904099, -0.06319831311702728, -0.05159745737910271, 0.0020786437671631575, 0.10223439335823059, 0.02659064531326294, -0.010477960109710693, 0.005551346577703953, 0.0035050269216299057, -0.09707650542259216, -0.01258094236254692, 0.053185317665338516, 0.007713891100138426, 0.027424737811088562, -0.052796587347984314, 0.07962076365947723, -0.03866211324930191, 0.01856905408203602, 0.13206763565540314, 0.11007912456989288, -0.06370548903942108, 0.044266462326049805, 0.20044301450252533, -0.06674406677484512, -0.2848398983478546, -0.005533259827643633, 0.045824822038412094, -0.006826438475400209, 0.036328598856925964, -0.24560126662254333, 0.17056864500045776, 0.03799048438668251, -0.014498375356197357, 0.05347300320863724, -0.1133221685886383, -0.08321145176887512, 0.21418850123882294, 0.09080549329519272, 0.04614214971661568, -0.11465369910001755, -0.06434257328510284, -0.0021030681673437357, -0.18654455244541168, 0.13580889999866486, -0.06098325178027153, 0.05371890962123871, -0.013946783728897572, 0.03441891819238663, 0.032041434198617935, -0.03299861401319504, 0.09304072707891464, -0.009159555658698082, 0.020266029983758926, -0.08249460905790329, -0.018314965069293976, 0.05874600261449814, -0.0298827663064003, 0.09144458919763565, 0.002303687622770667, 0.06506384164094925, -0.06294160336256027, -0.07545141875743866, 0.00628191651776433, 0.09610585123300552, -0.02075035311281681, -0.08700796216726303, -0.03695964068174362, 0.012713110074400902, -0.048097167164087296, -0.045513760298490524, 0.06964119523763657, -0.05166241154074669, 0.028034904971718788, 0.17216655611991882, 0.15147429704666138, -0.0013395353453233838, -0.0829809308052063, 0.015053927898406982, -0.03290214017033577, 0.14780054986476898, -0.13070106506347656, 0.07907520234584808, 0.09646106511354446, 0.030273713171482086, 0.11320202052593231, 0.04911847785115242, -0.13081662356853485, -0.006792375352233648, 0.038215819746255875, -0.07633575052022934, -0.07250148057937622, -0.0008111549541354179, 0.08044254034757614, -0.18009421229362488, 0.042863089591264725, 0.1538514792919159, -0.04704007878899574, 0.010124354623258114, 0.039393600076436996, -0.0179708581417799, -0.048953860998153687, 0.10350917279720306, 0.11568962782621384, 0.04627436771988869, -0.02386626973748207, 0.0902448445558548, 0.10397584736347198, -0.10795285552740097, 0.04468562453985214, -0.10521429032087326, -0.05456126481294632, -0.06247696280479431, -0.07967869192361832, 0.1122177466750145, -0.06982967257499695, -0.08181239664554596, 0.005909329745918512, -0.04581646993756294, 0.021511346101760864, 0.14843802154064178, 0.0401519238948822, 0.016306279227137566, -0.05379071086645126, 0.062350980937480927, -0.08806125074625015, 0.07946016639471054, -0.041356150060892105, 0.07206232845783234, -0.07719670236110687, -0.03272145614027977, 0.038477007299661636, 0.046508099883794785, -0.05888095870614052, -0.05144764110445976, -0.12417713552713394, -0.027257492765784264, -0.16662299633026123, -0.032254159450531006, -0.029077645391225815, -0.014751647599041462, 0.03275242820382118, -0.11604750901460648, -0.022273410111665726, 0.020975496619939804, -0.023067377507686615, -0.0029843244701623917, 0.05235205963253975, 0.0572497621178627, -0.19023580849170685, -0.02313859388232231, 0.0762389749288559, -0.05076073110103607, 0.07309115678071976, 0.05336756631731987, 0.0005177788552828133, 0.019829994067549706, -0.09846018254756927, 0.004464622586965561, -0.04048037901520729, 0.04370572417974472, 0.03341600298881531, -0.1070340946316719, 0.006284452509135008, -0.0313737615942955, -0.005284649785608053, -0.02122238650918007, 0.20061585307121277, -0.06729389727115631, 0.03345949575304985, -0.038859788328409195, -0.001648487406782806, -0.05723188444972038, 0.0529370941221714, 0.06500346213579178, 0.12412407994270325, 0.13353540003299713, -0.059084512293338776, 0.07769032567739487, -0.0973847284913063, 0.01663224957883358, 0.03015170246362686, 0.0021145713981240988, 0.12692426145076752, -0.11752859503030777, -0.0007698467816226184, -0.05822107568383217, 0.1916712522506714, -0.048956241458654404, 0.06069398298859596, 0.040552861988544464, -0.03482748940587044, -0.050040893256664276, -0.042600423097610474, 0.1756039708852768, 0.03665617108345032, 0.030510976910591125, -0.02995174005627632, 0.06967899948358536, -0.01207053940743208, 0.028507545590400696, 0.1272505223751068, 0.14190417528152466, -0.10165040194988251, 0.006209424696862698, 0.043760910630226135, -0.040279507637023926, -0.10097548365592957, -0.06275413185358047, -0.0051005869172513485, 0.05403624102473259, -0.008744641207158566, 0.16574914753437042, 0.06062297895550728, -0.013340376317501068, 0.04712379723787308, -0.004129967652261257, -0.056950174272060394, -0.09057348221540451, -0.058725129812955856, -0.029187755659222603, -0.16492317616939545, -0.02138279192149639, -0.08340375870466232, -0.010685021989047527, 0.13152538239955902, 0.013013103976845741, 0.016545094549655914, 0.2537897825241089, -0.06580350548028946, -0.02030060812830925, 0.010856044478714466, -0.03970758244395256, -0.021135864779353142, -0.09702172875404358, 0.05897973105311394, 0.04266933724284172, 0.13056087493896484, 0.05182384327054024, 0.04223627597093582, 0.005695626139640808, 0.05233544856309891, -0.008103692904114723, -0.13011543452739716, -0.05109427869319916, 0.04813448712229729, -0.041533876210451126, 0.06874190270900726, 0.00528535945340991, 0.015610947273671627, -0.02473173663020134, 0.1543656289577484, -0.06889831274747849, -0.06603917479515076, -0.14295674860477448, 0.15440644323825836, -0.029882922768592834, 0.03028651513159275, -0.027003390714526176, -0.11242230236530304, -0.053094763308763504, 0.18179434537887573, 0.04778879135847092, -0.03771553561091423, 0.025833966210484505, 0.07961509376764297, 0.018812915310263634, 0.005019795149564743, 0.08397452533245087, 0.028728801757097244, 0.09968745708465576, -0.008394491858780384, -0.06930828839540482, -0.04651691019535065, -0.02687763422727585, 0.058906830847263336, 0.09113964438438416, -0.00020116892119403929, -0.033386100083589554, -0.06834206730127335, 0.06334208697080612, -0.011488132178783417, -0.2968863248825073, -0.019900111481547356, -0.014150765724480152, -0.06574665009975433, -0.05661782622337341, 0.06745913624763489, -0.04102795571088791, 0.011717605404555798, 0.002885272027924657, -0.019557788968086243, 0.18804313242435455, 0.04916682094335556, -0.054880592972040176, -0.005062311887741089, 0.09498532116413116, -0.048183102160692215, 0.16370904445648193, 0.0007669104961678386, 0.053783755749464035, 0.07099491357803345, 0.050162531435489655, -0.08761884272098541, 0.02574310451745987, 0.039572861045598984, -0.09642616659402847, 0.006269501987844706, 0.03202885389328003, -0.009550471790134907, 0.09806395322084427, 0.055304691195487976, -0.20143570005893707, 0.03898245096206665, -0.015932446345686913, -0.0814068391919136, -0.07425589114427567, -0.037941668182611465, -0.07157296687364578, 0.15005694329738617, 0.12943467497825623, -0.0014960028929635882, -0.07748503237962723, -0.08424629271030426, 0.05262390151619911, 0.012531743384897709, 0.07965245842933655, -0.039454326033592224, -0.0868794396519661, -0.009315358474850655, -0.04699128121137619, 0.03393031284213066, -0.27683934569358826, -0.019778776913881302, 0.06569547951221466, -0.044655799865722656, 0.02275395207107067, 0.032794155180454254, 0.08066507428884506, 0.06449572741985321, -0.05593795329332352, -0.05788081884384155, -0.008848616853356361, 0.10489121079444885, -0.18312877416610718, -0.03511617332696915 ]
null
null
adapter-transformers
# Adapter `AdapterHub/bert-base-uncased-pf-emo` for bert-base-uncased An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [emo](https://huggingface.co/datasets/emo/) dataset and includes a prediction head for classification. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("bert-base-uncased") adapter_name = model.load_adapter("AdapterHub/bert-base-uncased-pf-emo", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
{"language": ["en"], "tags": ["text-classification", "bert", "adapter-transformers"], "datasets": ["emo"]}
text-classification
AdapterHub/bert-base-uncased-pf-emo
[ "adapter-transformers", "bert", "text-classification", "en", "dataset:emo", "arxiv:2104.08247", "region:us" ]
2022-03-02T23:29:04+00:00
[ "2104.08247" ]
[ "en" ]
TAGS #adapter-transformers #bert #text-classification #en #dataset-emo #arxiv-2104.08247 #region-us
# Adapter 'AdapterHub/bert-base-uncased-pf-emo' for bert-base-uncased An adapter for the 'bert-base-uncased' model that was trained on the emo dataset and includes a prediction head for classification. This adapter was created for usage with the adapter-transformers library. ## Usage First, install 'adapter-transformers': _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_ Now, the adapter can be loaded and activated like this: ## Architecture & Training The training code for this adapter is available at URL In particular, training configurations for all tasks can be found here. ## Evaluation results Refer to the paper for more information on results. If you use this adapter, please cite our paper "What to Pre-Train on? Efficient Intermediate Task Selection":
[ "# Adapter 'AdapterHub/bert-base-uncased-pf-emo' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the emo dataset and includes a prediction head for classification.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ "TAGS\n#adapter-transformers #bert #text-classification #en #dataset-emo #arxiv-2104.08247 #region-us \n", "# Adapter 'AdapterHub/bert-base-uncased-pf-emo' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the emo dataset and includes a prediction head for classification.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ 33, 78, 57, 30, 45 ]
[ "passage: TAGS\n#adapter-transformers #bert #text-classification #en #dataset-emo #arxiv-2104.08247 #region-us \n# Adapter 'AdapterHub/bert-base-uncased-pf-emo' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the emo dataset and includes a prediction head for classification.\n\nThis adapter was created for usage with the adapter-transformers library.## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ -0.02701437845826149, -0.0506429485976696, -0.0019794744439423084, 0.0030898062977939844, 0.1835860162973404, 0.06260914355516434, 0.12962926924228668, 0.0461985319852829, 0.08866125345230103, 0.01384005043655634, 0.05992849916219711, 0.13380500674247742, 0.04947569593787193, 0.01682644709944725, 0.0001690321514615789, -0.13799326121807098, 0.00409774761646986, 0.04610469937324524, -0.010166043415665627, 0.06091921404004097, 0.09350038319826126, -0.0947868674993515, 0.09371721744537354, 0.031066009774804115, -0.041318897157907486, 0.04595552012324333, -0.08305814117193222, -0.0734943151473999, 0.059266120195388794, 0.07990208268165588, 0.1465630829334259, 0.023709435015916824, 0.01932651549577713, -0.15461479127407074, 0.00955914705991745, 0.0656789168715477, -0.01939736120402813, 0.04716551676392555, 0.00029553211061283946, -0.01990339532494545, 0.008698265999555588, -0.033000145107507706, 0.07595451176166534, 0.03726060315966606, -0.06567972153425217, -0.20196384191513062, -0.0036906336899846792, 0.04069965332746506, 0.06970737874507904, 0.09678943455219269, -0.019968131557106972, 0.04933786764740944, -0.01759960874915123, 0.05153494328260422, 0.13456502556800842, -0.1799919605255127, 0.01596706546843052, -0.06892786920070648, 0.11823629587888718, 0.06301404535770416, -0.033767007291316986, -0.033083476126194, 0.03482753783464432, 0.03181222453713417, 0.013273211196064949, -0.032426293939352036, -0.02764061465859413, 0.007122762501239777, -0.17459876835346222, 0.022566869854927063, 0.30668336153030396, -0.010101021267473698, -0.06910017877817154, 0.000717077637091279, -0.008923457004129887, 0.09430544823408127, 0.06361687183380127, -0.11246388405561447, 0.03989456593990326, 0.01260126382112503, 0.05310424789786339, -0.10171251744031906, -0.10455905646085739, -0.06976954638957977, -0.08670346438884735, 0.28352612257003784, 0.007045077625662088, 0.01351970061659813, -0.03212830051779747, 0.08948758244514465, -0.051213424652814865, -0.08844567090272903, -0.03151747211813927, -0.03913324698805809, -0.029867302626371384, -0.04872700572013855, -0.04989837855100632, -0.26363420486450195, -0.01517297513782978, 0.1892404705286026, 0.13599564135074615, 0.05988062918186188, -0.047335587441921234, 0.08816444128751755, 0.09735216945409775, 0.16700465977191925, -0.06386357545852661, 0.014500712044537067, -0.049957118928432465, -0.008255988359451294, -0.038681644946336746, -0.09502766281366348, -0.1263810247182846, 0.0027456802781671286, 0.07285701483488083, 0.0007290421053767204, 0.01613359898328781, 0.06213459372520447, -0.06060827150940895, -0.07968789339065552, 0.06906694918870926, -0.10362279415130615, 0.010265783406794071, -0.010991081595420837, -0.042584702372550964, 0.061272893100976944, 0.15010391175746918, 0.026138905435800552, -0.04409390315413475, 0.13067209720611572, -0.06656890362501144, -0.051978059113025665, -0.09053163230419159, -0.15364614129066467, 0.0226744394749403, -0.1200871542096138, 0.03605155274271965, -0.15472522377967834, -0.13820813596248627, -0.04045926406979561, 0.09610545635223389, 0.009728804230690002, 0.10044421255588531, -0.006185378413647413, 0.027507895603775978, 0.0164785273373127, -0.018151644617319107, 0.021865801885724068, -0.04007194936275482, 0.042018111795186996, -0.014130241237580776, 0.03344464674592018, -0.08639609813690186, 0.10206664353609085, -0.050178468227386475, 0.0011239292798563838, -0.15290626883506775, 0.08230157196521759, -0.09710166603326797, 0.008498662151396275, -0.11341693252325058, 0.015389607287943363, -0.03734115883708, 0.07162697613239288, 0.06795848906040192, 0.06067810580134392, -0.15324434638023376, -0.05108167976140976, 0.009362614713609219, -0.1596290022134781, -0.1244831457734108, 0.0376206710934639, -0.017878998070955276, 0.11972636729478836, 0.05427873507142067, 0.14113034307956696, 0.04978802427649498, -0.0555683970451355, -0.08046754449605942, 0.053826265037059784, -0.09312649071216583, -0.01311811339110136, 0.09415845572948456, -0.019508713856339455, -0.17249834537506104, -0.02949405275285244, -0.07899601757526398, 0.0059710158966481686, -0.02033180557191372, -0.009024582803249359, 0.012203948572278023, -0.01781584322452545, 0.04665624722838402, 0.0001565221609780565, -0.028172681108117104, 0.014160988852381706, -0.16222386062145233, 0.23154957592487335, 0.05594698712229729, -0.06716252863407135, 0.02003253623843193, -0.12042944878339767, 0.08052122592926025, -0.11903703212738037, 0.026237165555357933, -0.16603073477745056, 0.023418039083480835, 0.005568644963204861, 0.04959686100482941, 0.06988532841205597, 0.04997575283050537, 0.03827228397130966, 0.03703458234667778, 0.03269154950976372, -0.049731746315956116, -0.04747726023197174, 0.04690110683441162, -0.08967849612236023, -0.14999480545520782, -0.040048979222774506, -0.06918356567621231, -0.02450210601091385, -0.1714438945055008, 0.04877437651157379, 0.006476990412920713, 0.040489453822374344, 0.021690456196665764, 0.00946493074297905, -0.07817058265209198, -0.009836521930992603, -0.059372249990701675, -0.030446158722043037, 0.030019229277968407, 0.007148683071136475, -0.09731900691986084, 0.012468928471207619, -0.12145817279815674, -0.04622787982225418, 0.10630985349416733, -0.09474902600049973, -0.05216440185904503, -0.025774607434868813, 0.026196999475359917, -0.04382672533392906, 0.02432749606668949, -0.11670760810375214, 0.31086188554763794, 0.037709180265665054, 0.04971258342266083, -0.06078866124153137, -0.015729887410998344, -0.018309375271201134, -0.04025302454829216, -0.0025955745950341225, 0.04013817012310028, 0.09112002700567245, -0.13425341248512268, 0.06055508553981781, 0.20812557637691498, -0.06516806036233902, 0.11793513596057892, -0.0007888259715400636, -0.09612789005041122, -0.01887117698788643, -0.06415443867444992, 0.013032009825110435, 0.051327772438526154, -0.26448556780815125, -0.005908017512410879, 0.039803847670555115, 0.002224365249276161, 0.0631791353225708, -0.062270406633615494, 0.05633889511227608, 0.09015189111232758, 0.05355216935276985, -0.017799124121665955, -0.04194279760122299, -0.04736711457371712, 0.0404348261654377, 0.02699035033583641, 0.1027708426117897, 0.028645046055316925, -0.0031272131018340588, -0.11165449768304825, 0.18797671794891357, -0.10414730757474899, -0.151381716132164, -0.16721275448799133, -0.10227429866790771, 0.0430527999997139, 0.0377611480653286, 0.0912805125117302, -0.09355761855840683, -0.07920006662607193, -0.03217749297618866, 0.14247602224349976, -0.07033177465200424, 0.012980644591152668, 0.032601498067379, -0.0657486543059349, 0.02593163028359413, -0.14102253317832947, -0.0006737876101396978, 0.02281229943037033, -0.0512533113360405, 0.017755672335624695, 0.027677437290549278, 0.08663156628608704, 0.13102233409881592, -0.03873300924897194, -0.0017981757409870625, 0.0017067859880626202, 0.09610973298549652, -0.050983648747205734, 0.010641805827617645, 0.1014113798737526, -0.17962047457695007, 0.031693119555711746, 0.0547601543366909, 0.012713568285107613, -0.03428179770708084, 0.03254639357328415, 0.047835756093263626, -0.027715669944882393, -0.3051069676876068, -0.01325176004320383, 0.018280459567904472, -0.030060119926929474, 0.09212686866521835, 0.028350830078125, 0.030486345291137695, 0.0984235629439354, 0.062282390892505646, 0.02563650719821453, -0.03305980563163757, 0.07096543908119202, 0.11054784804582596, -0.03285521641373634, 0.10802805423736572, -0.03297185152769089, 0.011450890451669693, 0.08743827044963837, -0.07178883999586105, 0.15885601937770844, 0.03302450105547905, 0.029057178646326065, 0.09015379846096039, -0.1132652759552002, 0.013312721624970436, 0.15677742660045624, -0.07203274220228195, 0.0006801766576245427, -0.04577695205807686, -0.015061834827065468, -0.06029735133051872, 0.0756373181939125, 0.04396401718258858, -0.01229256670922041, -0.05780097469687462, 0.02488166093826294, 0.04534967988729477, 0.07075329124927521, -0.03025195188820362, -0.2383061647415161, -0.039157621562480927, 0.005057123955339193, -0.014161643572151661, -0.0973740741610527, 0.00016672843776177615, 0.08650420606136322, -0.042101889848709106, 0.030707072466611862, 0.008815612643957138, 0.09832797944545746, -0.1343764066696167, -0.013158611953258514, 0.029471656307578087, 0.12907874584197998, -0.03526737540960312, 0.13283392786979675, -0.20342549681663513, 0.029912631958723068, 0.03037017397582531, 0.0517299622297287, -0.09015792608261108, 0.013635626994073391, 0.017455436289310455, 0.09796618670225143, 0.07180032134056091, -0.014815871603786945, 0.0758892223238945, -0.09528721868991852, -0.06682895123958588, 0.03926616534590721, 0.07833798229694366, -0.12528935074806213, 0.04245942085981369, -0.027495134621858597, 0.07496751844882965, 0.05329294130206108, 0.059083689004182816, -0.15337060391902924, -0.1696595698595047, 0.03708823397755623, -0.01817977987229824, 0.12474122643470764, -0.037525616586208344, -0.09366873651742935, 0.05196775123476982, 0.16709938645362854, -0.15443357825279236, -0.061074983328580856, -0.11413764208555222, -0.0012737633660435677, 0.05759458988904953, -0.06162187084555626, 0.017315829172730446, 0.033081360161304474, 0.06459486484527588, -0.027553724125027657, -0.05168526992201805, 0.10351982712745667, -0.10309682786464691, -0.02431696280837059, -0.07472873479127884, -0.04771209880709648, 0.13917098939418793, 0.03529725968837738, -0.017445869743824005, -0.0355440117418766, -0.011651290580630302, -0.08856915682554245, 0.002019392792135477, 0.07345747947692871, 0.06325047463178635, 0.0681069865822792, -0.121885284781456, 0.026675870642066002, -0.06480631232261658, -0.019121749326586723, 0.16555647552013397, 0.15424944460391998, -0.030072297900915146, 0.009417686611413956, 0.20657460391521454, -0.11238878220319748, -0.24800024926662445, -0.001086571952328086, 0.06879276782274246, -0.014616409316658974, -0.010986646637320518, -0.24486462771892548, 0.1690472960472107, 0.06857089698314667, 0.03498862311244011, 0.08147310465574265, -0.08700202405452728, -0.09026915580034256, 0.24547000229358673, 0.06036381050944328, 0.06084688752889633, -0.1522270292043686, -0.06453534960746765, -0.052185434848070145, -0.029371285811066628, 0.14617381989955902, -0.08032643795013428, 0.06394150108098984, 0.005430478136986494, -0.03782973438501358, 0.005243073683232069, -0.02070464752614498, 0.10539733618497849, 0.02267790585756302, 0.028584249317646027, -0.09866268187761307, -0.05123712494969368, 0.022069036960601807, -0.05603935196995735, 0.07551472634077072, -0.07178303599357605, 0.008209318853914738, -0.13269466161727905, -0.07717343419790268, 0.032517846673727036, 0.11036062985658646, 0.004172679502516985, -0.079145647585392, -0.026188574731349945, -0.005675915163010359, -0.01669257879257202, -0.02346864901483059, 0.04248567298054695, -0.052963804453611374, -0.02841712348163128, 0.08537060022354126, 0.168450266122818, -0.07019160687923431, -0.06101752445101738, 0.017561543732881546, -0.012477315030992031, 0.128265842795372, -0.05931513011455536, 0.03469657897949219, 0.0940563827753067, -0.01461869291961193, 0.1969611942768097, 0.06670592725276947, -0.12928129732608795, -0.028325719758868217, 0.056384019553661346, -0.07616884261369705, -0.0038731314707547426, -0.03335609659552574, 0.1301913857460022, -0.14454077184200287, -0.0021255947649478912, 0.10041474550962448, -0.012923277914524078, 0.011817880906164646, 0.007580149453133345, 0.009529083035886288, -0.06421728432178497, 0.09382861107587814, 0.11715241521596909, 0.021585222333669662, -0.024820275604724884, 0.12362396717071533, 0.09496866911649704, -0.1032789871096611, 0.11376394331455231, -0.06504113972187042, -0.038167282938957214, -0.07399152964353561, -0.02752729132771492, 0.25008219480514526, -0.0238106157630682, -0.1403295397758484, 0.05809267982840538, -0.04613165557384491, 0.0449659489095211, 0.15258224308490753, 0.0449913814663887, -0.0371236652135849, -0.0347675196826458, 0.060027964413166046, -0.08193003386259079, 0.054659534245729446, 0.006022497545927763, 0.06129203364253044, -0.06678790599107742, -0.07804588228464127, 0.0814070850610733, 0.04119356721639633, -0.0448787584900856, -0.034671612083911896, -0.14681534469127655, -0.03462686017155647, -0.12141229957342148, 0.03908821567893028, -0.030106196179986, -0.01461506262421608, 0.07059446722269058, -0.07241582125425339, -0.03811779245734215, -0.014712421223521233, -0.03016323782503605, -0.010957833379507065, 0.0751633495092392, 0.08775559812784195, -0.14084984362125397, -0.06519228965044022, 0.047521695494651794, -0.058151569217443466, 0.052451666444540024, 0.057165272533893585, 0.016598651185631752, -0.01611870899796486, -0.08940604329109192, 0.020293613895773888, 0.013146333396434784, 0.044214919209480286, 0.004466727841645479, -0.10841137915849686, 0.003085281001403928, -0.033882759511470795, -0.025062575936317444, -0.042977478355169296, 0.22465604543685913, -0.06462478637695312, 0.07121048122644424, -0.025135187432169914, -0.05122962221503258, -0.05113377049565315, 0.05450073629617691, 0.050850577652454376, 0.10654217004776001, 0.18990716338157654, -0.04496446251869202, 0.07306697219610214, -0.06411515921354294, 0.04918409511446953, 0.0389556884765625, 0.03154977783560753, 0.19035427272319794, -0.11392268538475037, -0.014418205246329308, -0.0735192820429802, 0.21363124251365662, 0.002383939689025283, 0.05116751044988632, 0.0074497004970908165, 0.009531114250421524, -0.08422542363405228, -0.04590901359915733, 0.1503896415233612, -0.0027590675745159388, 0.03168083354830742, -0.08960025757551193, 0.0833958312869072, 0.06250958144664764, -0.05925034359097481, 0.1293848752975464, 0.16467183828353882, -0.1200966015458107, 0.050710972398519516, 0.02063816413283348, -0.08533889800310135, -0.14088261127471924, -0.014831475913524628, 0.059584569185972214, 0.05632777884602547, 0.026301205158233643, 0.25207170844078064, 0.041894424706697464, -0.03340745344758034, 0.02503644861280918, 0.0186269823461771, -0.05863041803240776, -0.1013035848736763, -0.09899771213531494, -0.025365447625517845, -0.13505661487579346, -0.022065704688429832, -0.09585259109735489, -0.03282720223069191, 0.09774366021156311, 0.016743002459406853, 0.015469079837203026, 0.1994052529335022, -0.1173117533326149, -0.06516002118587494, -0.01089995726943016, -0.039302799850702286, -0.027477597817778587, -0.14455503225326538, 0.021480904892086983, 0.0444144643843174, 0.10380050539970398, 0.044301021844148636, 0.025165101513266563, -0.020350558683276176, 0.059899184852838516, 0.013045890256762505, -0.09766456484794617, -0.04573982208967209, 0.03580692782998085, -0.06493441015481949, 0.0681101456284523, -0.0005394395557232201, -0.020273281261324883, -0.006303529255092144, 0.11612927168607712, -0.04722557216882706, -0.08175662159919739, -0.08223190158605576, 0.08168342709541321, 0.003121718065813184, 0.05209182947874069, -0.04675309732556343, -0.1421360969543457, -0.03476226329803467, 0.19597984850406647, 0.05656086280941963, -0.026714345440268517, 0.00818003062158823, 0.0739300474524498, 0.026708463206887245, 0.031195031479001045, 0.03202774375677109, 0.022210849449038506, 0.040559835731983185, -0.01209931168705225, -0.00795556791126728, -0.08531925827264786, 0.021831097081303596, 0.0709495097398758, 0.06563649326562881, 0.037717390805482864, -0.05361342802643776, -0.0288076251745224, 0.04084482043981552, -0.03634777292609215, -0.2726861238479614, -0.008542560040950775, 0.001312802080065012, -0.04739047959446907, -0.06150195747613907, 0.12579038739204407, -0.055632803589105606, 0.027140449732542038, 0.01571762189269066, -0.07246687263250351, 0.07553009688854218, 0.04008306562900543, -0.10665272176265717, -0.0006300337263382971, 0.0540853850543499, -0.034752652049064636, 0.19784189760684967, -0.018544655293226242, 0.05905334651470184, 0.07454217970371246, 0.10913912206888199, -0.03451186418533325, 0.05231252685189247, -0.011277914047241211, -0.0007630321779288352, 0.04505498707294464, 0.016631243750452995, -0.05184890702366829, 0.08814053237438202, 0.06706906110048294, -0.2147655040025711, 0.02944568358361721, -0.020946893841028214, -0.11838901787996292, -0.0523235909640789, 0.00302171241492033, -0.12410230189561844, 0.15615397691726685, 0.09271267801523209, 0.0237885732203722, -0.08912637829780579, -0.07920974493026733, 0.044465478509664536, 0.03112022392451763, 0.08851222693920135, -0.03790978714823723, -0.08785586804151535, -0.031231332570314407, -0.014048664830625057, 0.06272537261247635, -0.27562960982322693, -0.010631822049617767, 0.013665100559592247, -0.060305316001176834, -0.013152284547686577, 0.0017683969344943762, 0.09476079046726227, 0.06823089718818665, -0.09509578347206116, -0.025347258895635605, -0.002242638962343335, 0.10562437027692795, -0.1923741102218628, -0.03255713731050491 ]
null
null
adapter-transformers
# Adapter `AdapterHub/bert-base-uncased-pf-emotion` for bert-base-uncased An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [emotion](https://huggingface.co/datasets/emotion/) dataset and includes a prediction head for classification. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("bert-base-uncased") adapter_name = model.load_adapter("AdapterHub/bert-base-uncased-pf-emotion", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
{"language": ["en"], "tags": ["text-classification", "bert", "adapter-transformers"], "datasets": ["emotion"]}
text-classification
AdapterHub/bert-base-uncased-pf-emotion
[ "adapter-transformers", "bert", "text-classification", "en", "dataset:emotion", "arxiv:2104.08247", "region:us" ]
2022-03-02T23:29:04+00:00
[ "2104.08247" ]
[ "en" ]
TAGS #adapter-transformers #bert #text-classification #en #dataset-emotion #arxiv-2104.08247 #region-us
# Adapter 'AdapterHub/bert-base-uncased-pf-emotion' for bert-base-uncased An adapter for the 'bert-base-uncased' model that was trained on the emotion dataset and includes a prediction head for classification. This adapter was created for usage with the adapter-transformers library. ## Usage First, install 'adapter-transformers': _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_ Now, the adapter can be loaded and activated like this: ## Architecture & Training The training code for this adapter is available at URL In particular, training configurations for all tasks can be found here. ## Evaluation results Refer to the paper for more information on results. If you use this adapter, please cite our paper "What to Pre-Train on? Efficient Intermediate Task Selection":
[ "# Adapter 'AdapterHub/bert-base-uncased-pf-emotion' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the emotion dataset and includes a prediction head for classification.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ "TAGS\n#adapter-transformers #bert #text-classification #en #dataset-emotion #arxiv-2104.08247 #region-us \n", "# Adapter 'AdapterHub/bert-base-uncased-pf-emotion' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the emotion dataset and includes a prediction head for classification.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ 34, 79, 57, 30, 45 ]
[ "passage: TAGS\n#adapter-transformers #bert #text-classification #en #dataset-emotion #arxiv-2104.08247 #region-us \n# Adapter 'AdapterHub/bert-base-uncased-pf-emotion' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the emotion dataset and includes a prediction head for classification.\n\nThis adapter was created for usage with the adapter-transformers library.## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ -0.06666062772274017, -0.02281641960144043, -0.002817473839968443, 0.048429958522319794, 0.18548668920993805, 0.05733742564916611, 0.08845143020153046, 0.062496479600667953, 0.10187183320522308, 0.041000667959451675, 0.024165673181414604, 0.09621437638998032, 0.05510709807276726, -0.0049979533068835735, -0.01417523343116045, -0.16953808069229126, -0.004123069811612368, 0.028791416436433792, 0.06354793906211853, 0.08999000489711761, 0.08211099356412888, -0.09934814274311066, 0.10230054706335068, 0.01889115758240223, -0.08213847130537033, 0.026798054575920105, -0.036110058426856995, -0.0275515578687191, 0.0874997228384018, 0.05292121693491936, 0.13561969995498657, 0.040306948125362396, -0.0003996560990344733, -0.19715186953544617, 0.021673452109098434, 0.05072113499045372, 0.04129946604371071, 0.07183974236249924, -0.003991251345723867, -0.03499400243163109, 0.05605824664235115, -0.009910475462675095, 0.05973435565829277, 0.06594376266002655, -0.08958902209997177, -0.22820352017879486, -0.031122377142310143, 0.07914311438798904, 0.031374070793390274, 0.090762197971344, -0.038451213389635086, 0.07615486532449722, -0.014258728362619877, 0.05583507567644119, 0.19003640115261078, -0.18127307295799255, -0.01310025155544281, -0.06768891960382462, 0.05700080096721649, 0.009456923231482506, -0.08824131637811661, -0.0031799613498151302, 0.033342599868774414, 0.02703111618757248, 0.045057084411382675, -0.05002244561910629, -0.028121156617999077, -0.007142225746065378, -0.15118229389190674, -0.0039594704285264015, 0.2401747852563858, 0.022609563544392586, -0.0773647278547287, -0.044980186969041824, -0.01590834930539131, 0.061208926141262054, 0.02796253375709057, -0.10043995082378387, 0.03301457688212395, 0.008174685761332512, 0.01395658403635025, -0.08969486504793167, -0.11074447631835938, -0.04190915450453758, -0.04553598910570145, 0.2587743103504181, -0.03901074081659317, 0.01863175258040428, 0.031247716397047043, 0.10500901937484741, -0.056871894747018814, -0.1016959398984909, -0.04786631464958191, -0.061692554503679276, -0.024654867127537727, -0.05022604763507843, -0.07779552787542343, -0.25264230370521545, -0.03919800743460655, 0.09466196596622467, 0.071212038397789, 0.03760895878076553, -0.07747340947389603, 0.04907246306538582, 0.10045529156923294, 0.1990176886320114, -0.07071790844202042, 0.03954586014151573, -0.06093467399477959, 0.012884873896837234, -0.03387480229139328, -0.07834085077047348, -0.07128726691007614, 0.01736309751868248, 0.026075255125761032, 0.014264305122196674, -0.03362477943301201, 0.10722239315509796, -0.10519061982631683, -0.06054152175784111, 0.04977088049054146, -0.10704177618026733, 0.012469419278204441, 0.04270388185977936, -0.04033112898468971, 0.11949699372053146, 0.13467630743980408, -0.009997974149882793, -0.026400715112686157, 0.07451603561639786, -0.03904445469379425, -0.036464624106884, -0.09088005125522614, -0.13301323354244232, 0.034236934036016464, -0.036230117082595825, 0.010508879087865353, -0.1349107176065445, -0.15423418581485748, -0.03292233124375343, 0.08968760073184967, -0.012046589516103268, 0.10994672030210495, -0.007234131917357445, 0.05551625415682793, 0.023222463205456734, -0.019506439566612244, -0.051780588924884796, -0.01961885392665863, 0.04484821483492851, 0.013414926826953888, 0.09117734432220459, -0.03734356164932251, 0.07890518009662628, -0.1138790026307106, 0.008601889945566654, -0.1560068428516388, 0.11265586316585541, -0.12406415492296219, 0.06330783665180206, -0.09091228246688843, -0.003605155274271965, -0.0009495793492533267, 0.03334830701351166, 0.06508490443229675, 0.1418275684118271, -0.14072328805923462, -0.08204526454210281, 0.04613576456904411, -0.16461805999279022, -0.10563888400793076, 0.06407684832811356, -0.024232598021626472, 0.16308696568012238, 0.0767153725028038, 0.14150334894657135, 0.039427489042282104, -0.06733325123786926, -0.11944063752889633, 0.07109244912862778, -0.09401088207960129, 0.045468270778656006, 0.03880418464541435, 0.03912293538451195, -0.1550799161195755, 0.02468424290418625, -0.05815393477678299, 0.04545668512582779, -0.03193306550383568, -0.04643385857343674, -0.014991692267358303, -0.051111336797475815, 0.09421046823263168, 0.059997331351041794, -0.02696376107633114, 0.014682793989777565, -0.1184847503900528, 0.15779395401477814, 0.0595792718231678, -0.07628555595874786, 0.0277079027146101, -0.10100164264440536, 0.0836297944188118, -0.07029561698436737, 0.027338119223713875, -0.19122332334518433, 0.055539172142744064, 0.008932415395975113, 0.06380753964185715, 0.03760976344347, 0.05140857771039009, 0.0621022991836071, -0.012333136051893234, -0.005410133395344019, -0.019827650859951973, -0.028791731223464012, 0.026280460879206657, -0.023345544934272766, -0.17213799059391022, -0.03928133472800255, -0.07462900876998901, 0.04291699826717377, -0.17552971839904785, 0.052166108042001724, 0.08602294325828552, 0.029210155829787254, 0.026998959481716156, -0.03412032127380371, -0.003997983410954475, -0.011215535923838615, -0.04337947815656662, -0.019011937081813812, 0.07125546783208847, 0.016222694888710976, -0.0861453115940094, 0.03968753293156624, -0.08388564735651016, -0.0661858543753624, 0.08644036948680878, -0.0894513949751854, -0.09718397259712219, -0.03517751768231392, 0.002664341824129224, -0.007731346413493156, 0.02305043302476406, -0.055731840431690216, 0.2857736349105835, 0.057587359100580215, 0.055688194930553436, -0.027016345411539078, 0.0352039635181427, 0.005660274066030979, -0.04582509770989418, -0.008707287721335888, 0.04101559519767761, 0.0007553609902970493, -0.08846693485975266, 0.0323847196996212, 0.17616336047649384, -0.038803521543741226, 0.12731172144412994, -0.0013627674197778106, -0.0861050933599472, -0.024754978716373444, -0.06755183637142181, 0.011418378911912441, 0.05696607753634453, -0.21574360132217407, -0.016851508989930153, 0.05160032957792282, -0.04824582114815712, -0.005029493942856789, -0.0634252056479454, 0.03863946348428726, 0.09835042804479599, 0.031615592539310455, -0.005441885907202959, -0.024923400953412056, -0.033948566764593124, 0.044470347464084625, 0.03795374184846878, 0.11136377602815628, 0.00652358727529645, -0.016594402492046356, -0.10201311856508255, 0.17668269574642181, -0.0725347250699997, -0.22283799946308136, -0.14180855453014374, -0.09825967252254486, 0.006759115029126406, 0.028894366696476936, 0.046262674033641815, -0.1422334760427475, -0.06090373173356056, -0.04882346838712692, 0.15297526121139526, -0.011327558197081089, -0.005201023072004318, 0.03995782509446144, -0.09091585874557495, 0.04657549783587456, -0.1287335902452469, 0.01507983822375536, 0.009953278116881847, -0.07307910919189453, 0.003658166155219078, 0.03458995744585991, 0.09392212331295013, 0.17046646773815155, -0.00969041045755148, 0.001690736855380237, -0.017782067880034447, 0.11352640390396118, -0.0791151151061058, 0.011820952408015728, 0.07893626391887665, -0.1815226674079895, 0.03529670462012291, 0.10257741808891296, 0.046102020889520645, -0.06341657042503357, 0.037659093737602234, 0.05246352776885033, -0.03795383498072624, -0.2424159198999405, -0.021822689101099968, 0.023429518565535545, 0.058482881635427475, 0.05836262181401253, 0.01656678318977356, 0.03716516122221947, 0.0952242761850357, 0.0572088360786438, -0.05740984529256821, -0.07855445146560669, 0.07751227915287018, 0.1940903514623642, -0.06153324246406555, 0.0706961527466774, -0.03586708381772041, 0.020448658615350723, 0.10427721589803696, -0.08136142045259476, 0.12455952167510986, -0.014578710310161114, 0.08499065041542053, 0.05958367884159088, -0.04976390674710274, -0.0006001320434734225, 0.15185432136058807, -0.09067295491695404, -0.029841937124729156, -0.03582897409796715, -0.036185964941978455, -0.08566217869520187, 0.057906053960323334, 0.002293928526341915, 0.05692166090011597, -0.09418300539255142, -0.07528932392597198, 0.06325126439332962, 0.15997226536273956, 0.012829678133130074, -0.19900856912136078, -0.10153907537460327, -0.010168392211198807, -0.023736244067549706, -0.06703301519155502, -0.009721475653350353, 0.047983646392822266, -0.0629979595541954, 0.060059577226638794, -0.024804316461086273, 0.07581096887588501, -0.18150357902050018, 0.02631617709994316, -0.01830173470079899, 0.06871184706687927, -0.03665687516331673, 0.09371122717857361, -0.19531041383743286, 0.07688112556934357, 0.02572341449558735, 0.022328071296215057, -0.05780528113245964, -0.0016090890858322382, 0.07854637503623962, 0.1340961903333664, 0.07781525701284409, -0.010970684699714184, 0.13143707811832428, -0.13629423081874847, -0.04206657409667969, 0.036703865975141525, 0.040228281170129776, -0.08718394488096237, 0.03730012848973274, -0.012377138249576092, 0.04450584948062897, 0.03285471349954605, 0.08281272649765015, -0.13619717955589294, -0.13292713463306427, 0.0530678890645504, 0.013822921551764011, 0.10888846963644028, -0.00894088577479124, -0.12210214883089066, 0.038348302245140076, 0.21869654953479767, -0.06010604649782181, -0.035176992416381836, -0.13287857174873352, 0.01997615024447441, 0.022202108055353165, -0.049641627818346024, 0.0047738137654960155, 0.006526221986860037, 0.08893145620822906, -0.02039470709860325, -0.0703795999288559, 0.10030224174261093, -0.0795312449336052, -0.04556449502706528, -0.0463075116276741, -0.04040174186229706, 0.12491097301244736, 0.04070037230849266, -0.013764547184109688, -0.032905373722314835, 0.0056075165048241615, -0.0899462178349495, 0.04115527495741844, 0.08982964605093002, -0.04348602145910263, 0.04669676348567009, -0.06753306090831757, 0.021236039698123932, -0.08734311163425446, 0.002546000061556697, 0.1727076917886734, 0.16132134199142456, -0.04667104408144951, 0.05326945334672928, 0.1879233717918396, -0.09691819548606873, -0.2775138020515442, 0.041624076664447784, 0.04521859064698219, 0.0021798762027174234, 0.05498877167701721, -0.25571104884147644, 0.13809454441070557, 0.008109978400170803, -0.0040114945732057095, 0.05552824214100838, -0.01938875950872898, -0.07654692232608795, 0.23701727390289307, 0.09308572113513947, 0.1071569100022316, -0.12985415756702423, -0.051085278391838074, -0.03205861523747444, -0.07633674144744873, 0.11233987659215927, -0.06540132313966751, 0.07111304253339767, 0.004847649019211531, 0.05093132704496384, 0.041768740862607956, -0.008515915833413601, 0.09370134770870209, 0.01658310554921627, 0.04322061687707901, -0.1014007031917572, -0.022342834621667862, -0.0003621018840931356, -0.05281669273972511, 0.10197561979293823, -0.048363007605075836, 0.006866466719657183, -0.12851232290267944, -0.0813838392496109, -0.0213378444314003, 0.10198384523391724, 0.0026734350249171257, -0.07907546311616898, -0.061858709901571274, 0.035546522587537766, 0.0171499103307724, -0.02064923755824566, -0.052793677896261215, -0.09949041903018951, -0.031065039336681366, 0.18400652706623077, 0.19315017759799957, -0.006605572532862425, -0.05614209920167923, 0.024205269291996956, -0.023017320781946182, 0.12257484346628189, -0.15012191236019135, 0.03873313590884209, 0.09179463982582092, 0.005272014066576958, 0.17820432782173157, 0.05415483936667442, -0.14354141056537628, -0.0004704981402028352, 0.06039433181285858, -0.07837220281362534, -0.027330758050084114, -0.03987063467502594, 0.021604524925351143, -0.17129164934158325, -0.020744498819112778, 0.10146857798099518, -0.06461085379123688, 0.029214054346084595, 0.02237507328391075, -0.016271084547042847, -0.04794342443346977, 0.03465631231665611, 0.07252319157123566, 0.01285034790635109, -0.042600277811288834, 0.10275447368621826, 0.045826297253370285, -0.19594693183898926, 0.0971527099609375, -0.057719048112630844, -0.04741893336176872, -0.07827388495206833, -0.038240544497966766, 0.22762662172317505, -0.040926191955804825, -0.08677788078784943, 0.004354482050985098, -0.07798335701227188, 0.037411656230688095, 0.16690123081207275, 0.055114418268203735, -0.0030489591881632805, -0.09022080153226852, 0.0719790980219841, -0.09915102273225784, 0.06533636152744293, 0.0157278161495924, 0.02254738099873066, -0.06854572892189026, -0.06172417104244232, 0.049030326306819916, 0.039723750203847885, -0.06076808273792267, -0.07302249222993851, -0.11062571406364441, -0.03864580765366554, -0.13117587566375732, -0.027828320860862732, -0.04154790937900543, -0.005309769883751869, 0.04184570908546448, -0.048329729586839676, -0.004467592108994722, -0.020478932186961174, -0.043603263795375824, 0.020146140828728676, 0.07337205857038498, 0.07750816643238068, -0.15130819380283356, -0.053390905261039734, 0.057963933795690536, -0.0425361767411232, 0.08580312877893448, 0.06734336167573929, -0.01575440540909767, 0.022341527044773102, -0.15818023681640625, 0.01525567751377821, 0.020974772050976753, -0.004329886753112078, -0.0009943349286913872, -0.06080896779894829, -0.011865275911986828, -0.04545991122722626, 0.0007188282324932516, -0.018088197335600853, 0.22222571074962616, -0.04447566345334053, 0.08223871141672134, 0.049144480377435684, -0.020305249840021133, -0.05486966297030449, 0.06056924909353256, 0.044993527233600616, 0.103444904088974, 0.1431058645248413, -0.07290486991405487, 0.0810534656047821, -0.1028541624546051, 0.03153562545776367, 0.037173692137002945, -0.006938583217561245, 0.07131253182888031, -0.13124443590641022, 0.0013570652808994055, -0.050060417503118515, 0.19664166867733002, 0.002639962127432227, 0.008691697381436825, 0.005488076712936163, -0.005764666944742203, -0.0563659705221653, -0.05421573668718338, 0.13756278157234192, 0.04015529528260231, -0.016410157084465027, -0.035942621529102325, 0.09591387212276459, 0.035680267959833145, 0.03770025447010994, 0.12748074531555176, 0.13552726805210114, -0.038015834987163544, 0.06449592858552933, 0.006310838274657726, 0.0009775279322639108, -0.08109277486801147, -0.047840479761362076, -0.016958503052592278, 0.11138802021741867, -0.011551862582564354, 0.2527855336666107, 0.0491415373980999, -0.014173048548400402, 0.09737130999565125, -0.002115322044119239, -0.06014139577746391, -0.09787759929895401, -0.10506049543619156, -0.009739973582327366, -0.1800427883863449, -0.0037276651710271835, -0.10232033580541611, -0.015094252303242683, 0.061513591557741165, 0.009148819372057915, -0.005929396487772465, 0.24368278682231903, -0.08502864092588425, -0.02781800366938114, 0.1187940463423729, -0.05804857984185219, -0.0830317810177803, -0.13724234700202942, 0.056445203721523285, 0.044348061084747314, 0.09024759382009506, 0.048203203827142715, 0.044322483241558075, -0.03710302338004112, 0.038202498108148575, -0.002265611896291375, -0.1394186019897461, -0.04045318439602852, 0.0466955341398716, -0.02250855416059494, 0.060003653168678284, -0.019905027002096176, -0.01664349064230919, -0.02826358936727047, 0.11321958899497986, -0.08055011928081512, 0.015169373713433743, -0.12425225228071213, 0.14045998454093933, -0.0487699918448925, 0.023096168413758278, -0.058580368757247925, -0.12330605089664459, -0.03437502309679985, 0.22049885988235474, 0.07157415896654129, -0.036782246083021164, 0.0266911368817091, 0.036723148077726364, 0.04027243331074715, -0.02091832272708416, 0.0633932426571846, 0.026795387268066406, -0.013998684473335743, -0.039935898035764694, 0.0009961128234863281, -0.05999372899532318, -0.05652258172631264, 0.0801059678196907, 0.058770377188920975, 0.06530343741178513, -0.011142912320792675, -0.07275699824094772, 0.05719628930091858, -0.07625732570886612, -0.24166496098041534, 0.04930754378437996, -0.03681209310889244, -0.03862205147743225, -0.06866022199392319, 0.056148674339056015, 0.033621422946453094, 0.03902045637369156, 0.01930367574095726, -0.04064707085490227, 0.17967510223388672, 0.023082254454493523, -0.10768590122461319, -0.031664811074733734, 0.0845363661646843, -0.11471137404441833, 0.15332333743572235, -0.035075441002845764, 0.006240909919142723, 0.07094020396471024, 0.05880727246403694, -0.05274323374032974, 0.024507073685526848, 0.013810121454298496, -0.07526793330907822, -0.013505264185369015, 0.11275582015514374, -0.01917002722620964, 0.11834569275379181, 0.05117087811231613, -0.23441962897777557, 0.05090088024735451, -0.018144186586141586, -0.10989708453416824, -0.0685865581035614, -0.003726392751559615, -0.0778418779373169, 0.1349153071641922, 0.17076443135738373, 0.02173595502972603, -0.05852232128381729, -0.08043275773525238, 0.014459628611803055, 0.017670441418886185, 0.07261411100625992, -0.043415844440460205, -0.07412448525428772, -0.026235708966851234, 0.06565643101930618, 0.04451712593436241, -0.3361373245716095, -0.03837066888809204, 0.034090157598257065, -0.03589972108602524, 0.007572035770863295, 0.019662506878376007, 0.056472666561603546, 0.07157155871391296, -0.03432660922408104, -0.09815520793199539, 0.043078891932964325, 0.13706597685813904, -0.1669512540102005, -0.01642904430627823 ]
null
null
adapter-transformers
# Adapter `AdapterHub/bert-base-uncased-pf-fce_error_detection` for bert-base-uncased An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [ged/fce](https://adapterhub.ml/explore/ged/fce/) dataset and includes a prediction head for tagging. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("bert-base-uncased") adapter_name = model.load_adapter("AdapterHub/bert-base-uncased-pf-fce_error_detection", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
{"language": ["en"], "tags": ["token-classification", "bert", "adapterhub:ged/fce", "adapter-transformers"], "datasets": ["fce_error_detection"]}
token-classification
AdapterHub/bert-base-uncased-pf-fce_error_detection
[ "adapter-transformers", "bert", "token-classification", "adapterhub:ged/fce", "en", "dataset:fce_error_detection", "arxiv:2104.08247", "region:us" ]
2022-03-02T23:29:04+00:00
[ "2104.08247" ]
[ "en" ]
TAGS #adapter-transformers #bert #token-classification #adapterhub-ged/fce #en #dataset-fce_error_detection #arxiv-2104.08247 #region-us
# Adapter 'AdapterHub/bert-base-uncased-pf-fce_error_detection' for bert-base-uncased An adapter for the 'bert-base-uncased' model that was trained on the ged/fce dataset and includes a prediction head for tagging. This adapter was created for usage with the adapter-transformers library. ## Usage First, install 'adapter-transformers': _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_ Now, the adapter can be loaded and activated like this: ## Architecture & Training The training code for this adapter is available at URL In particular, training configurations for all tasks can be found here. ## Evaluation results Refer to the paper for more information on results. If you use this adapter, please cite our paper "What to Pre-Train on? Efficient Intermediate Task Selection":
[ "# Adapter 'AdapterHub/bert-base-uncased-pf-fce_error_detection' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the ged/fce dataset and includes a prediction head for tagging.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ "TAGS\n#adapter-transformers #bert #token-classification #adapterhub-ged/fce #en #dataset-fce_error_detection #arxiv-2104.08247 #region-us \n", "# Adapter 'AdapterHub/bert-base-uncased-pf-fce_error_detection' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the ged/fce dataset and includes a prediction head for tagging.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ 48, 87, 57, 30, 45 ]
[ "passage: TAGS\n#adapter-transformers #bert #token-classification #adapterhub-ged/fce #en #dataset-fce_error_detection #arxiv-2104.08247 #region-us \n# Adapter 'AdapterHub/bert-base-uncased-pf-fce_error_detection' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the ged/fce dataset and includes a prediction head for tagging.\n\nThis adapter was created for usage with the adapter-transformers library.## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ -0.08894431591033936, -0.03785998374223709, -0.0023186183534562588, 0.019648313522338867, 0.18893414735794067, 0.0482783243060112, 0.15592119097709656, 0.07392500340938568, 0.13213586807250977, 0.044608306139707565, -0.028007900342345238, 0.09239660948514938, 0.036122556775808334, 0.07703772187232971, 0.0352182500064373, -0.025412466377019882, -2.435850490201119e-7, 0.0397159606218338, -0.07638448476791382, 0.07559288293123245, 0.09690587967634201, -0.08209127932786942, 0.0626208707690239, 0.029087848961353302, -0.16691723465919495, 0.049161575734615326, -0.022498011589050293, -0.03875300660729408, 0.10531371831893921, 0.08118914812803268, 0.18190288543701172, 0.0197830218821764, -0.0035293144173920155, -0.1288386434316635, 0.009224075824022293, 0.10277540981769562, 0.0011195637052878737, 0.047806184738874435, -0.012448996305465698, -0.005397190805524588, -0.03293516859412193, -0.0019785561598837376, 0.07390507310628891, 0.07446272671222687, -0.07219147682189941, -0.18070538341999054, -0.02883905917406082, 0.09263428300619125, 0.05375039204955101, 0.08418707549571991, 0.013987195678055286, 0.0736689567565918, -0.017591945827007294, 0.055735211819410324, 0.11726408451795578, -0.1480139195919037, 0.011996845714747906, 0.03270157426595688, 0.03377717360854149, 0.0171816386282444, -0.06203371658921242, -0.0228517334908247, 0.021646521985530853, 0.040427304804325104, 0.06315885484218597, -0.06715025752782822, -0.09177414327859879, -0.042541053146123886, -0.13543881475925446, 0.003992909099906683, 0.21896617114543915, -0.014028825797140598, -0.11140669882297516, -0.1042463481426239, -0.0429639108479023, 0.04839840158820152, 0.012383592315018177, -0.05595649406313896, -0.002089564921334386, 0.006755809765309095, 0.076729916036129, -0.1205250546336174, -0.11152034997940063, -0.10574187338352203, -0.03232322633266449, 0.2637242376804352, -0.008439176715910435, -0.00264712143689394, -0.005380452610552311, 0.13496831059455872, -0.057193074375391006, -0.07157744467258453, -0.08091133832931519, -0.04552249610424042, -0.15424081683158875, -0.0807124450802803, -0.02378629893064499, -0.25310084223747253, -0.011188383214175701, 0.2227131724357605, 0.09774786233901978, 0.038695450872182846, -0.04305512458086014, 0.07163617759943008, 0.04474006965756416, 0.1535787582397461, -0.03595857694745064, 0.040995046496391296, 0.0022251948248595, -0.018050221726298332, -0.022818269208073616, -0.06935785710811615, -0.05221071094274521, -0.06196819245815277, 0.02098836936056614, 0.042015351355075836, 0.058192215859889984, 0.08532122522592545, -0.051030877977609634, -0.09251032024621964, 0.17411157488822937, -0.12445348501205444, -0.010681675747036934, 0.0381067655980587, -0.03144771233201027, 0.007486186921596527, 0.14608584344387054, -0.02350696735084057, -0.05636012181639671, 0.10026924312114716, -0.08899878710508347, -0.029262971132993698, -0.05115634202957153, -0.1305261254310608, 0.009204461239278316, -0.06420505791902542, -0.00029310944955796003, -0.1587446630001068, -0.15815085172653198, -0.03477806970477104, 0.040055107325315475, 0.0041746459901332855, 0.09777885675430298, 0.0594257153570652, 0.055824074894189835, -0.01179586537182331, -0.028985904529690742, 0.02125827968120575, -0.04589435085654259, 0.05400119349360466, 0.02056083455681801, 0.004353868309408426, -0.020268205553293228, 0.057770758867263794, -0.06874239444732666, -0.004382407292723656, -0.235599547624588, 0.08628852665424347, -0.150823175907135, 0.07105090469121933, -0.11870919913053513, 0.03456702455878258, 0.004357001278549433, 0.07320253551006317, 0.0370185561478138, 0.1363086849451065, -0.051891881972551346, -0.0682709738612175, 0.08614006638526917, -0.17815737426280975, -0.12132932990789413, 0.01957627944648266, 0.011060199700295925, 0.1260416954755783, 0.03621026128530502, 0.10187538713216782, 0.21245479583740234, -0.0932576060295105, -0.07700636982917786, 0.057615455240011215, -0.04896528646349907, -0.06371700763702393, 0.02872689999639988, -0.015555065125226974, -0.05646079406142235, 0.01561454776674509, -0.09647321701049805, 0.04637371003627777, 0.018534746021032333, -0.009481488727033138, -0.038037851452827454, -0.06554026156663895, 0.05667455866932869, 0.007892021909356117, 0.006185048725455999, 0.0349787101149559, -0.12395735085010529, 0.13834252953529358, 0.1040368378162384, -0.06470554322004318, 0.021167036145925522, -0.0784773901104927, 0.060062065720558167, -0.07702801376581192, 0.011816916987299919, -0.19251270592212677, -0.09280101954936981, 0.039896558970212936, 0.02121986635029316, 0.042846281081438065, 0.01562923938035965, 0.06456911563873291, 0.02519204095005989, -0.016708603128790855, -0.05069222301244736, -0.04937291890382767, 0.010601838119328022, -0.030220873653888702, -0.10086198896169662, -0.08811761438846588, -0.08380372822284698, 0.03303287550806999, -0.2187023013830185, 0.06423094123601913, 0.10556352883577347, 0.08593783527612686, 0.06778780370950699, -0.0602714940905571, 0.00047765966155566275, -0.013531011529266834, -0.06072947755455971, -0.04861242696642876, 0.016192898154258728, 0.033750299364328384, -0.06160922721028328, 0.018214819952845573, -0.1057271882891655, -0.02583477273583412, 0.07566787302494049, -0.01213925052434206, -0.11816441267728806, -0.05282940715551376, -0.01816904917359352, -0.04195229336619377, -0.05782490596175194, -0.1336965560913086, 0.16951370239257812, 0.06568457931280136, 0.09554892778396606, 0.011947889812290668, -0.015319138765335083, -0.0043214899487793446, 0.029173754155635834, 0.02235657162964344, -0.015168494544923306, 0.029550079256296158, -0.062308166176080704, 0.08050793409347534, 0.06042955070734024, -0.039793405681848526, 0.08093148469924927, -0.002191904466599226, -0.08900152146816254, 0.026805149391293526, 0.03846801072359085, 0.048978712409734726, 0.08504120260477066, -0.17543703317642212, -0.003983271308243275, 0.044968098402023315, -0.00679398700594902, 0.02048337273299694, -0.06329847127199173, 0.04862654581665993, 0.06791852414608002, -0.005881529301404953, 0.019926337525248528, -0.017098428681492805, -0.010303180664777756, 0.025819160044193268, 0.002795998239889741, 0.08198419213294983, 0.02175804041326046, -0.01948242262005806, -0.12889206409454346, 0.18194596469402313, -0.060077082365751266, -0.19482922554016113, -0.21094128489494324, -0.04080364853143692, -0.018313195556402206, 0.032032471150159836, 0.061307769268751144, -0.055290356278419495, -0.09312883764505386, -0.04709828644990921, 0.09150076657533646, 0.0002805264375638217, -0.009526879526674747, 0.012109826318919659, -0.043703801929950714, 0.07980550080537796, -0.1521800011396408, 0.024298030883073807, 0.05903207138180733, -0.054504189640283585, -0.00881738867610693, 0.07546226680278778, 0.04930239915847778, 0.13210666179656982, 0.010915705002844334, -0.011788706295192242, -0.012478163465857506, 0.13682293891906738, -0.09978510439395905, 0.08026886731386185, 0.13876162469387054, -0.09689687192440033, 0.0230177640914917, 0.08659282326698303, 0.03775842860341072, -0.04162003844976425, 0.038224805146455765, 0.05046312138438225, -0.03649381920695305, -0.245150625705719, -0.05613172799348831, -0.03515030816197395, -0.031144455075263977, 0.10866234451532364, 0.07710420340299606, 0.0938655361533165, 0.07917237281799316, -0.021820222958922386, 0.03276881203055382, 0.00009138379391515628, 0.09469729661941528, 0.11752346158027649, -0.006086834706366062, 0.08303669840097427, -0.0820385217666626, 0.03220658376812935, 0.08957702666521072, 0.0017640335718169808, 0.17572611570358276, -0.03556766360998154, 0.14482805132865906, 0.041901033371686935, -0.08812163770198822, 0.006655318196862936, 0.13855266571044922, -0.04504519701004028, -0.0015807905001565814, 0.019466955214738846, -0.055435821413993835, -0.03508744388818741, 0.06882661581039429, 0.035338424146175385, -0.026581231504678726, -0.04527640715241432, -0.16842171549797058, 0.029642919078469276, 0.11611796170473099, 0.043870676308870316, -0.17384196817874908, -0.11055920273065567, -0.019243493676185608, -0.026534637436270714, -0.07364681363105774, -0.03690093755722046, 0.09835320711135864, -0.08872342109680176, 0.039594411849975586, -0.03459121286869049, 0.08859575539827347, -0.11675023287534714, -0.031015809625387192, 0.06318481266498566, 0.0587930753827095, -0.029796825721859932, 0.05000189691781998, -0.23077651858329773, 0.05682184547185898, 0.0451238751411438, 0.051087237894535065, -0.04850741848349571, 0.06915759295225143, 0.03714557737112045, 0.1311715841293335, 0.08146066963672638, -0.007745543494820595, 0.09414225816726685, -0.16183681786060333, -0.05317413806915283, -0.01712127961218357, 0.011765075847506523, -0.11058585345745087, 0.01793023571372032, -0.01222307700663805, 0.020149890333414078, 0.036695174872875214, 0.02790524624288082, -0.13720887899398804, -0.16447049379348755, 0.06339654326438904, 0.0294432882219553, 0.07841190695762634, -0.05515396222472191, -0.06506200134754181, 0.0265728160738945, 0.2191166877746582, -0.14024682343006134, -0.07691708952188492, -0.14987976849079132, -0.04091566801071167, 0.023164091631770134, -0.05508340522646904, 0.04821282997727394, 0.00011690406972775236, 0.08413901180028915, -0.027714360505342484, -0.07759375125169754, 0.06299484521150589, -0.09383855760097504, -0.02379782870411873, -0.06359787285327911, -0.0025877775624394417, 0.09110795706510544, -0.006973442155867815, -0.016847211867570877, -0.028011353686451912, 0.04730590060353279, -0.0803636759519577, 0.0018909793579950929, 0.09393315017223358, 0.014669672586023808, 0.10567096620798111, -0.10893212258815765, -0.00023782819334883243, -0.040660180151462555, -0.011856446042656898, 0.1015801653265953, 0.18332135677337646, -0.04852893203496933, 0.01573311723768711, 0.13732610642910004, -0.08108818531036377, -0.2726064622402191, 0.02735879272222519, 0.02523883804678917, 0.01026053074747324, 0.012485331855714321, -0.2521103620529175, 0.1344253569841385, 0.0578237920999527, -0.004052931442856789, 0.1868603378534317, -0.1599505990743637, -0.10347572714090347, 0.16161520779132843, 0.11267528682947159, -0.020307956263422966, -0.11607461422681808, -0.0685260072350502, 0.02910209260880947, -0.12404134124517441, 0.11624167859554291, -0.05018939450383186, 0.08443915098905563, -0.01580185256898403, -0.027203766629099846, 0.024507807567715645, -0.05949588492512703, 0.06579505652189255, 0.02610769122838974, 0.04594619572162628, -0.04703573137521744, 0.06096119433641434, 0.0732346624135971, -0.06354988366365433, 0.07512351870536804, -0.06056561321020126, 0.026841768994927406, -0.13957510888576508, -0.05550427734851837, -0.018941210582852364, 0.14995379745960236, -0.021895721554756165, -0.08169518411159515, -0.04157614707946777, 0.03593066707253456, -0.017695274204015732, -0.024005286395549774, 0.06706127524375916, -0.03493567183613777, 0.05770937353372574, 0.20709578692913055, 0.06051957234740257, -0.02591036446392536, -0.2041102647781372, -0.002646191045641899, -0.010792670771479607, 0.1336568146944046, -0.08252689242362976, 0.08368107676506042, 0.07379698753356934, 0.06720060855150223, 0.11942663043737411, 0.05203504487872124, -0.12941555678844452, -0.031522806733846664, 0.0720532163977623, -0.05244174972176552, -0.0508524514734745, -0.02164066769182682, -0.003362810704857111, -0.09091631323099136, 0.032941922545433044, 0.16300468146800995, -0.02984626032412052, 0.0033369881566613913, 0.04272834211587906, -0.02505735494196415, -0.042989034205675125, 0.14302392303943634, 0.07538070529699326, 0.062087878584861755, -0.024394206702709198, 0.08999789506196976, 0.09676384180784225, -0.10361862182617188, 0.02890784479677677, -0.017021114006638527, -0.10141802579164505, -0.08566460013389587, -0.06437144428491592, 0.06961455941200256, -0.04984523355960846, -0.045227181166410446, -0.004297300241887569, -0.016786815598607063, 0.005615442991256714, 0.16764767467975616, 0.031063327565789223, 0.024447552859783173, -0.027876175940036774, 0.045914176851511, -0.07124509662389755, 0.06035711616277695, -0.03930875286459923, 0.11735217273235321, -0.1393520087003708, 0.01536480337381363, 0.042056214064359665, 0.01512826420366764, -0.04338900372385979, -0.04409392178058624, -0.13931116461753845, -0.02921241521835327, -0.10297906398773193, -0.0054520731791853905, -0.03900986164808273, -0.010944217443466187, 0.026805326342582703, -0.05863920599222183, 0.005582098383456469, 0.040080565959215164, -0.022485150024294853, -0.030665725469589233, 0.0432078093290329, 0.06254051625728607, -0.1667807251214981, -0.0463346429169178, 0.035348549485206604, -0.09430807083845139, 0.06720105558633804, 0.059156328439712524, -0.025558020919561386, 0.02230147086083889, -0.055284786969423294, 0.013936460949480534, 0.014110005460679531, 0.0459374338388443, 0.022735297679901123, -0.10131106525659561, 0.045885778963565826, -0.05063030868768692, -0.0017695038113743067, 0.0023520670365542173, 0.16990506649017334, -0.09130922704935074, 0.00666302815079689, -0.026247648522257805, -0.013406901620328426, -0.07500535994768143, 0.05844856798648834, 0.11170007288455963, 0.10175302624702454, 0.1324322372674942, -0.06334468722343445, 0.07096096128225327, -0.09722378104925156, 0.007619251497089863, 0.0290868878364563, -0.0017084553837776184, 0.11609609425067902, -0.07077902555465698, -0.017019599676132202, -0.058811355382204056, 0.1537889540195465, -0.08635938167572021, 0.024195680394768715, 0.06741185486316681, -0.07745710760354996, -0.0940004214644432, -0.02787381410598755, 0.17356747388839722, 0.005847573280334473, 0.021739628165960312, 0.0022357150446623564, 0.07680436223745346, 0.052723415195941925, 0.01629948988556862, 0.13093404471874237, 0.12488983571529388, -0.1494966745376587, 0.03275163471698761, 0.002657522214576602, -0.13287873566150665, -0.13548517227172852, -0.07929105311632156, -0.02361302264034748, 0.06333132833242416, -0.05907067656517029, 0.1568368822336197, 0.08026210963726044, -0.052664969116449356, 0.09648076444864273, 0.013707760721445084, -0.07371163368225098, -0.04593942314386368, -0.07429000735282898, 0.0025573514867573977, -0.13353686034679413, -0.020040037110447884, -0.04257359728217125, -0.03242309018969536, 0.10074878484010696, 0.014717011712491512, 0.008025307208299637, 0.2508618235588074, -0.03508111461997032, -0.019758662208914757, 0.022345207631587982, -0.021872660145163536, -0.03559928014874458, -0.07903033494949341, 0.0489109568297863, 0.03604097664356232, 0.10851504653692245, 0.05147046595811844, 0.0470971018075943, 0.008173998445272446, 0.061869148164987564, 0.016254357993602753, -0.07941218465566635, -0.029869114980101585, 0.023731032386422157, -0.07142433524131775, 0.0996454581618309, 0.01827937923371792, -0.009862415492534637, -0.03284745663404465, 0.20499835908412933, -0.07351861894130707, -0.05505715683102608, -0.10844998806715012, 0.17652542889118195, 0.02727721817791462, 0.006477710325270891, -0.018595488741993904, -0.14224405586719513, -0.057214073836803436, 0.1961323469877243, 0.06531441956758499, 0.037568408995866776, 0.04846249148249626, 0.048929378390312195, 0.004841451533138752, 0.00998740829527378, 0.07647934556007385, 0.013358804397284985, 0.09705130010843277, 0.00588401360437274, 0.004539878107607365, 0.009659175761044025, -0.03927824646234512, 0.002243751659989357, 0.13211843371391296, -0.022391503676772118, -0.0006368497270159423, -0.08116336166858673, 0.03660605102777481, -0.0015533610712736845, -0.2437421977519989, 0.06887573003768921, -0.005964023992419243, -0.06961830705404282, -0.06023314222693443, 0.023945597931742668, -0.06759844720363617, 0.011736488901078701, 0.01354133803397417, -0.03736240044236183, 0.14187461137771606, 0.005474787205457687, -0.059230513870716095, -0.101311095058918, 0.05376461520791054, -0.05296771228313446, 0.2130310982465744, -0.03358509764075279, 0.04670614376664162, 0.08040124177932739, 0.04891999810934067, -0.10194814950227737, -0.004390607122331858, 0.010306727141141891, -0.11053281277418137, 0.006707892753183842, 0.0861586183309555, -0.048266179859638214, 0.12873458862304688, -0.0068520307540893555, -0.2382076531648636, 0.008172347210347652, 0.01895582117140293, -0.03533138707280159, -0.09339027106761932, -0.03467915207147598, -0.0783483013510704, 0.1327468603849411, 0.09912759810686111, 0.011516102589666843, -0.06363298743963242, -0.07527292519807816, 0.023943420499563217, 0.05321450158953667, 0.12415990233421326, -0.04078090563416481, -0.16281236708164215, 0.02965768799185753, -0.021499143913388252, 0.06059977784752846, -0.2926194965839386, -0.03204572573304176, 0.05247357115149498, -0.04228946566581726, -0.0016973571619018912, 0.09223103523254395, 0.06729941815137863, 0.07682393491268158, -0.06019756570458412, -0.12191503494977951, -0.011397073976695538, 0.10595771670341492, -0.16880327463150024, -0.0834343284368515 ]
null
null
adapter-transformers
# Adapter `AdapterHub/bert-base-uncased-pf-hellaswag` for bert-base-uncased An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [comsense/hellaswag](https://adapterhub.ml/explore/comsense/hellaswag/) dataset and includes a prediction head for multiple choice. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("bert-base-uncased") adapter_name = model.load_adapter("AdapterHub/bert-base-uncased-pf-hellaswag", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-what-to-pre-train-on, title={What to Pre-Train on? Efficient Intermediate Task Selection}, author={Clifton Poth and Jonas Pfeiffer and Andreas Rücklé and Iryna Gurevych}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (EMNLP)", month = nov, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/2104.08247", pages = "to appear", } ```
{"language": ["en"], "tags": ["bert", "adapterhub:comsense/hellaswag", "adapter-transformers"], "datasets": ["hellaswag"]}
null
AdapterHub/bert-base-uncased-pf-hellaswag
[ "adapter-transformers", "bert", "adapterhub:comsense/hellaswag", "en", "dataset:hellaswag", "arxiv:2104.08247", "region:us" ]
2022-03-02T23:29:04+00:00
[ "2104.08247" ]
[ "en" ]
TAGS #adapter-transformers #bert #adapterhub-comsense/hellaswag #en #dataset-hellaswag #arxiv-2104.08247 #region-us
# Adapter 'AdapterHub/bert-base-uncased-pf-hellaswag' for bert-base-uncased An adapter for the 'bert-base-uncased' model that was trained on the comsense/hellaswag dataset and includes a prediction head for multiple choice. This adapter was created for usage with the adapter-transformers library. ## Usage First, install 'adapter-transformers': _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_ Now, the adapter can be loaded and activated like this: ## Architecture & Training The training code for this adapter is available at URL In particular, training configurations for all tasks can be found here. ## Evaluation results Refer to the paper for more information on results. If you use this adapter, please cite our paper "What to Pre-Train on? Efficient Intermediate Task Selection":
[ "# Adapter 'AdapterHub/bert-base-uncased-pf-hellaswag' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the comsense/hellaswag dataset and includes a prediction head for multiple choice.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ "TAGS\n#adapter-transformers #bert #adapterhub-comsense/hellaswag #en #dataset-hellaswag #arxiv-2104.08247 #region-us \n", "# Adapter 'AdapterHub/bert-base-uncased-pf-hellaswag' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the comsense/hellaswag dataset and includes a prediction head for multiple choice.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ 40, 85, 57, 30, 45 ]
[ "passage: TAGS\n#adapter-transformers #bert #adapterhub-comsense/hellaswag #en #dataset-hellaswag #arxiv-2104.08247 #region-us \n# Adapter 'AdapterHub/bert-base-uncased-pf-hellaswag' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the comsense/hellaswag dataset and includes a prediction head for multiple choice.\n\nThis adapter was created for usage with the adapter-transformers library.## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ -0.08323977142572403, -0.04182260110974312, -0.0036496310494840145, 0.025907311588525772, 0.16924454271793365, 0.035445790737867355, 0.12068334966897964, 0.024176279082894325, 0.025773542001843452, 0.04952065274119377, 0.004901639651507139, 0.08958639204502106, 0.05095302686095238, -0.03596370667219162, 0.04518945887684822, -0.06772822141647339, 0.019517434760928154, 0.01436575036495924, -0.0922146588563919, 0.09930168092250824, 0.10063479095697403, -0.09996507316827774, 0.1067231148481369, 0.05041225254535675, -0.1495576649904251, 0.027770860120654106, -0.0250149704515934, -0.046559885144233704, 0.07427090406417847, 0.08587932586669922, 0.1613112986087799, 0.0021660674829035997, 0.0036024253349751234, -0.08983919024467468, 0.017796436324715614, 0.07595309615135193, 0.025037584826350212, 0.06722278147935867, -0.029466092586517334, 0.03793497756123543, -0.06876808404922485, -0.011137162335216999, 0.08278075605630875, 0.05678662285208702, -0.06336481869220734, -0.21828828752040863, -0.021609541028738022, 0.12292357534170151, 0.08781316131353378, 0.07061665505170822, -0.0026946316938847303, 0.04272979870438576, 0.02606986276805401, 0.04447627440094948, 0.21228277683258057, -0.20164436101913452, -0.02881036512553692, 0.055551301687955856, 0.05577461048960686, 0.0455319918692112, -0.06381780654191971, 0.019037842750549316, 0.02468467317521572, 0.044258762151002884, 0.020115073770284653, -0.04240506887435913, 0.002162541961297393, 0.001712637022137642, -0.14419437944889069, -0.014341101050376892, 0.21070951223373413, -0.037006817758083344, -0.10011440515518188, -0.07230506092309952, -0.015341443009674549, 0.05066217482089996, 0.018303850665688515, -0.10445105284452438, -0.0029804331716150045, 0.014228308573365211, 0.026234107092022896, -0.058636050671339035, -0.12709537148475647, -0.0834006741642952, -0.09416092932224274, 0.3120547831058502, -0.04946760833263397, 0.03661511093378067, -0.028582613915205002, 0.12372550368309021, 0.018040228635072708, -0.0953766480088234, -0.08491718769073486, -0.03550359979271889, -0.08765407651662827, -0.028119519352912903, -0.037121232599020004, -0.26842570304870605, 0.008206643164157867, 0.12762174010276794, 0.13931971788406372, 0.04259462654590607, -0.0440724678337574, 0.05504927784204483, 0.051647432148456573, 0.16316550970077515, -0.048295702785253525, 0.03499561920762062, -0.03997023031115532, -0.00591278076171875, -0.023027140647172928, -0.09535759687423706, -0.04286874458193779, -0.03548820689320564, 0.09404009580612183, 0.042858440428972244, 0.03781084343791008, 0.06304024159908295, -0.06579938530921936, -0.07614853978157043, 0.11185505241155624, -0.12903806567192078, -0.010490336455404758, -0.0023564815055578947, 0.002728179097175598, 0.10624592006206512, 0.11343561857938766, -0.0004661992425099015, -0.011895701289176941, 0.1367410272359848, -0.09490135312080383, -0.055505216121673584, -0.040689244866371155, -0.09987723082304001, 0.031509220600128174, -0.018253261223435402, -0.0025284632574766874, -0.1518939733505249, -0.06245158612728119, -0.0012992845149710774, 0.05867194011807442, 0.012120360508561134, 0.08130160719156265, 0.054161835461854935, 0.03099866397678852, 0.037717822939157486, -0.03566153347492218, 0.038909539580345154, -0.009925613179802895, 0.06209126487374306, 0.0072429911233484745, 0.004063103813678026, -0.003806309774518013, 0.05933206155896187, -0.047531936317682266, 0.0058970823884010315, -0.2381161004304886, 0.07364833354949951, -0.1368592381477356, 0.07310497760772705, -0.14344467222690582, -0.0016407055081799626, -0.00916904117912054, 0.0448065847158432, 0.07101526856422424, 0.1360815465450287, -0.1489124447107315, -0.05800620838999748, 0.0600912868976593, -0.21110595762729645, -0.1485612690448761, 0.044917117804288864, 0.004418231081217527, 0.11257201433181763, 0.05066703259944916, 0.0433584526181221, 0.10749993473291397, -0.123984694480896, -0.0868055671453476, 0.02661748044192791, -0.06304572522640228, 0.005749547854065895, 0.046958886086940765, -0.027744121849536896, -0.1290600299835205, 0.04507642984390259, -0.08313190191984177, -0.026063842698931694, -0.012098819948732853, -0.024101395159959793, -0.04406126216053963, -0.012393987737596035, 0.0643787533044815, 0.004643057938665152, -0.043913524597883224, 0.048610616475343704, -0.11634767800569534, 0.18768322467803955, 0.08399121463298798, -0.028858041390776634, 0.016587654128670692, -0.10351184010505676, 0.06805428862571716, -0.15718160569667816, 0.02161773480474949, -0.19124387204647064, -0.03817243501543999, -0.013092407025396824, -0.02894308790564537, 0.050118960440158844, 0.0723365843296051, 0.0922425240278244, 0.0014474729541689157, 0.03222385793924332, -0.002020228421315551, -0.047668274492025375, 0.03611672669649124, -0.06877411901950836, -0.09629376232624054, -0.061728283762931824, -0.04437210038304329, 0.057106371968984604, -0.17322151362895966, 0.04247231036424637, 0.13959774374961853, 0.07529908418655396, 0.039514750242233276, -0.06264003366231918, -0.02755887620151043, -0.05962412431836128, -0.021335603669285774, -0.019807245582342148, -0.004690887406468391, -0.0018184459768235683, -0.11325014382600784, 0.015580350533127785, -0.1100194975733757, 0.06305450201034546, 0.08739404380321503, -0.0011820608051493764, -0.06822311133146286, -0.05011605843901634, 0.002603837987408042, -0.030631758272647858, -0.01655580662190914, -0.13339610397815704, 0.23682554066181183, 0.07626663148403168, 0.03593791276216507, -0.02582494169473648, 0.009165816940367222, 0.02585868164896965, 0.00533262686803937, -0.010271669365465641, 0.008325116708874702, -0.028026554733514786, -0.06785242259502411, 0.027542952448129654, 0.2110995203256607, 0.0018581233453005552, 0.055354658514261246, -0.025653216987848282, -0.08088982105255127, -0.03704752027988434, -0.0421333834528923, 0.04536639153957367, 0.0702824592590332, -0.1503557562828064, 0.020542150363326073, 0.06909792870283127, 0.023066790774464607, -0.0055831605568528175, -0.057540301233530045, 0.033831335604190826, 0.05981728062033653, 0.0220015961676836, 0.030808409675955772, 0.00408140616491437, -0.028023559600114822, 0.03232638165354729, 0.033799804747104645, 0.12465352565050125, 0.005648768041282892, -0.02025662735104561, -0.08454890549182892, 0.16587816178798676, -0.06942303478717804, -0.2278386503458023, -0.22149240970611572, -0.004700345452874899, -0.04443429037928581, -0.0024072087835520506, 0.06730488687753677, -0.09221483021974564, -0.10377239435911179, -0.05798234045505524, 0.15883144736289978, -0.060447487980127335, 0.032096754759550095, 0.05261167883872986, -0.08066018670797348, 0.07559596002101898, -0.1747134029865265, 0.04067561775445938, 0.029187383130192757, -0.0836699977517128, -0.008868730627000332, 0.05858141556382179, 0.07785773277282715, 0.11817341297864914, 0.024017198011279106, -0.007082174997776747, 0.0206400565803051, 0.17204448580741882, -0.09628677368164062, 0.034444812685251236, 0.13606584072113037, -0.1572251170873642, 0.027630697935819626, 0.05513577535748482, 0.05470714345574379, -0.04969979077577591, 0.014534296467900276, 0.0397992767393589, -0.03873581811785698, -0.21106502413749695, 0.010942623019218445, -0.009889010339975357, -0.034056153148412704, 0.08617965131998062, 0.06301397830247879, -0.006428394932299852, 0.09263911098241806, 0.03627894073724747, -0.017283029854297638, -0.006206221412867308, 0.0743010863661766, 0.13871602714061737, -0.015180663205683231, 0.10439301282167435, -0.0696348175406456, 0.0201584380120039, 0.10548443347215652, -0.03690537065267563, 0.11667651683092117, 0.006567326840013266, 0.04034537822008133, 0.07931796461343765, -0.06897618621587753, 0.055917516350746155, 0.16006922721862793, -0.05728429928421974, -0.03532066196203232, -0.00600225618109107, -0.07166877388954163, -0.12785033881664276, 0.04481883347034454, -0.007953150197863579, 0.04383060708642006, -0.04790562391281128, -0.0788658857345581, 0.03874611482024193, 0.172419473528862, 0.003540988778695464, -0.14764034748077393, -0.1633233278989792, -0.009388907812535763, -0.039849620312452316, -0.06538482755422592, -0.019855231046676636, 0.047891419380903244, -0.057247061282396317, 0.0409281849861145, -0.04901265725493431, 0.09655812382698059, -0.12845738232135773, -0.0028473364654928446, -0.001231140922755003, 0.09356382489204407, -0.04703792929649353, 0.07300090044736862, -0.22864559292793274, 0.018957456573843956, 0.04853672534227371, 0.024975089356303215, -0.05118107050657272, 0.03940429165959358, -0.001415671082213521, 0.15889066457748413, 0.05541779845952988, 0.008387246169149876, 0.058168116956949234, -0.1019606813788414, -0.0656048133969307, 0.04010330140590668, 0.0663469135761261, -0.13577856123447418, 0.03273395821452141, -0.03687484562397003, 0.06138588488101959, 0.03435222804546356, 0.0724635198712349, -0.10047873109579086, -0.1545431911945343, 0.10108490288257599, -0.010475782677531242, 0.10020808130502701, -0.07809397578239441, -0.09924092143774033, 0.02303038351237774, 0.18593566119670868, -0.20076513290405273, -0.0584615096449852, -0.17162726819515228, -0.04222987964749336, 0.09666930884122849, -0.05606259033083916, 0.043340012431144714, -0.03356480598449707, 0.10363894701004028, 0.01516918558627367, -0.06777521967887878, 0.08324862271547318, -0.08932462334632874, -0.06200854852795601, -0.03340159356594086, 0.012124242261052132, 0.08773178607225418, -0.00028456110158003867, -0.011760417371988297, -0.012850291095674038, -0.009735936298966408, -0.12133204191923141, -0.005063667427748442, 0.13093209266662598, -0.05220704898238182, 0.06348860263824463, -0.054286256432533264, -0.032961368560791016, -0.019141746684908867, -0.016131576150655746, 0.0704362615942955, 0.14845766127109528, -0.046795014292001724, 0.033860012888908386, 0.18556375801563263, -0.07126402854919434, -0.2397538274526596, 0.0027352350298315287, 0.02833590656518936, -0.0004282892041373998, 0.047964856028556824, -0.17295995354652405, 0.20022651553153992, 0.07180583477020264, -0.008443678729236126, 0.12496598809957504, -0.15321214497089386, -0.09206868708133698, 0.14542324841022491, 0.0892961323261261, 0.10020097345113754, -0.12540684640407562, -0.08623107522726059, 0.007655535824596882, -0.2293219119310379, 0.08991793543100357, -0.09039677679538727, 0.04639800637960434, -0.01374922413378954, 0.066925548017025, 0.04323102906346321, -0.0417952686548233, 0.10665372014045715, 0.032550469040870667, 0.058725081384181976, -0.09431733936071396, 0.016705289483070374, 0.03367768973112106, -0.05155964195728302, 0.08770408481359482, -0.08383055776357651, 0.04172881692647934, -0.12708300352096558, -0.03875318914651871, 0.011412249878048897, 0.10934668034315109, -0.0416954830288887, -0.07036885619163513, -0.04496172070503235, 0.009078002534806728, -0.04666747525334358, -0.04999522492289543, 0.09111551940441132, -0.06093887239694595, 0.0585593581199646, 0.150092214345932, 0.1052832305431366, -0.06809262931346893, -0.14652176201343536, -0.01219271868467331, -0.013545834459364414, 0.13511119782924652, -0.12452884018421173, 0.09311394393444061, 0.08590207993984222, 0.0183306485414505, 0.12024558335542679, 0.04060903936624527, -0.12971046566963196, -0.020079733803868294, 0.06122860684990883, -0.09999999403953552, -0.07604805380105972, 0.004684613086283207, 0.06845422089099884, -0.1695544570684433, 0.0772656574845314, 0.1869320124387741, -0.01969403773546219, 0.02147044613957405, 0.04611261188983917, 0.028686074540019035, -0.051871202886104584, 0.11564094573259354, 0.05977742746472359, 0.05604465678334236, -0.030177151784300804, 0.08439157903194427, 0.0823918953537941, -0.11322717368602753, 0.02833184413611889, -0.0830826684832573, -0.06589366495609283, -0.06789971143007278, -0.09642741084098816, 0.08820431679487228, -0.06361781805753708, -0.04994606226682663, 0.03538060188293457, -0.06516579538583755, -0.007772119715809822, 0.06391111761331558, 0.04506789147853851, 0.0232978668063879, -0.018508564680814743, 0.06663604825735092, -0.041860729455947876, 0.06819111853837967, -0.032252237200737, 0.07194662094116211, -0.08927047252655029, -0.006348513066768646, 0.04410020262002945, 0.019678518176078796, -0.04666086658835411, -0.04092204570770264, -0.11464227735996246, -0.034983742982149124, -0.11189904808998108, -0.03160550817847252, -0.03863764926791191, 0.00562092661857605, 0.04299810156226158, -0.10192660242319107, -0.020662574097514153, 0.010935633443295956, -0.005844717845320702, 0.0008534328662790358, 0.03172529861330986, 0.054412394762039185, -0.170523539185524, -0.028997452929615974, 0.07558568567037582, -0.05109577998518944, 0.08843334764242172, 0.04620741680264473, -0.020220449194312096, 0.04620856046676636, -0.1071309968829155, 0.04537663236260414, 0.003914277534931898, 0.022359292954206467, 0.01723494939506054, -0.08514848351478577, -0.0028791914228349924, -0.022847266867756844, 0.01475951261818409, -0.0012491343077272177, 0.20195388793945312, -0.06543229520320892, -0.014902884140610695, 0.01207195408642292, -0.005416794214397669, -0.05874808132648468, 0.03845970332622528, 0.10613064467906952, 0.11181125789880753, 0.1488121598958969, -0.049531836062669754, 0.08059227466583252, -0.0974896177649498, 0.00691249081864953, 0.02973097190260887, -0.013720911927521229, 0.1571437418460846, -0.10910161584615707, -0.015261419117450714, -0.08086257427930832, 0.1566757708787918, -0.05007142201066017, 0.0780821144580841, 0.049139514565467834, -0.0382196269929409, -0.07240769267082214, -0.039951492100954056, 0.14477133750915527, 0.0303969569504261, 0.04187551140785217, -0.03139625862240791, 0.04283219575881958, 0.011675785295665264, -0.019063357263803482, 0.11391332745552063, 0.1366930454969406, -0.18167226016521454, 0.04947734624147415, 0.02634534053504467, -0.04594513028860092, -0.12755142152309418, -0.09438798576593399, -0.058318283408880234, 0.06425938010215759, -0.024705493822693825, 0.17286556959152222, 0.09137989580631256, 0.008272288367152214, 0.05632241815328598, -0.019995590671896935, -0.03851453959941864, -0.05361040309071541, -0.04941439628601074, -0.00988052412867546, -0.12299977242946625, -0.022773846983909607, -0.06229154393076897, -0.0017057545483112335, 0.08073142915964127, 0.015517544001340866, 0.024979034438729286, 0.25383079051971436, -0.006874425802379847, -0.01540755107998848, 0.045069336891174316, -0.021928733214735985, -0.053689680993556976, -0.0530332513153553, 0.06537837535142899, 0.029480556026101112, 0.14168624579906464, 0.05113707482814789, 0.04175719618797302, 0.0015063739847391844, 0.03377610817551613, -0.0042396970093250275, -0.13260626792907715, -0.0400264598429203, 0.01605944335460663, -0.08670556545257568, 0.02295197732746601, 0.024048155173659325, 0.02655511163175106, -0.03528919070959091, 0.1283419281244278, -0.06531600654125214, -0.04905260354280472, -0.08391526341438293, 0.03896463289856911, -0.035300422459840775, 0.041549116373062134, -0.0427250899374485, -0.11952094733715057, -0.02706287056207657, 0.17355766892433167, 0.0404297299683094, -0.0513324998319149, 0.04814554378390312, 0.049014583230018616, 0.02220940589904785, 0.006601078901439905, 0.08869298547506332, 0.0005099574918858707, 0.11695396900177002, 0.017882559448480606, 0.05291632562875748, -0.044217027723789215, -0.048100098967552185, 0.06743350625038147, 0.07281453162431717, -0.04561252146959305, -0.01204015500843525, -0.06604239344596863, 0.06276046484708786, -0.018745165318250656, -0.3012038767337799, 0.0071585471741855145, 0.0002478570968378335, -0.07051610946655273, -0.06118546798825264, 0.11008843779563904, -0.036859460175037384, 0.014024164527654648, 0.02075340785086155, -0.03711169958114624, 0.19901646673679352, 0.026989199221134186, -0.04919996112585068, -0.08582442253828049, 0.1059357300400734, -0.017661159858107567, 0.1383887678384781, 0.017949208617210388, 0.03070450946688652, 0.06156095489859581, 0.06039192155003548, -0.10122590512037277, -0.01819039136171341, 0.008955124765634537, -0.11490478366613388, -0.01564113423228264, 0.05801660194993019, 0.0011992136714980006, 0.061191752552986145, 0.05468196049332619, -0.15333540737628937, -0.004092077724635601, 0.009117648005485535, -0.040245819836854935, -0.07160723954439163, -0.03889324516057968, -0.07287969440221786, 0.12789767980575562, 0.10158274322748184, 0.007839558646082878, -0.07893326133489609, -0.0908307358622551, 0.05165082961320877, -0.01675853319466114, 0.1287766546010971, -0.02977645955979824, -0.12597109377384186, -0.008294983766973019, -0.0020147778559476137, 0.04178435355424881, -0.2848968505859375, -0.05022439733147621, 0.06908761709928513, -0.04498537257313728, 0.029586419463157654, 0.07259343564510345, 0.08078963309526443, 0.06645519286394119, -0.04105967655777931, -0.0667487382888794, 0.005907603073865175, 0.12031490355730057, -0.16216573119163513, -0.03806263208389282 ]
null
null
adapter-transformers
# Adapter `AdapterHub/bert-base-uncased-pf-hotpotqa` for bert-base-uncased An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [hotpot_qa](https://huggingface.co/datasets/hotpot_qa/) dataset and includes a prediction head for question answering. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("bert-base-uncased") adapter_name = model.load_adapter("AdapterHub/bert-base-uncased-pf-hotpotqa", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
{"language": ["en"], "tags": ["question-answering", "bert", "adapter-transformers"], "datasets": ["hotpot_qa"]}
question-answering
AdapterHub/bert-base-uncased-pf-hotpotqa
[ "adapter-transformers", "bert", "question-answering", "en", "dataset:hotpot_qa", "arxiv:2104.08247", "region:us" ]
2022-03-02T23:29:04+00:00
[ "2104.08247" ]
[ "en" ]
TAGS #adapter-transformers #bert #question-answering #en #dataset-hotpot_qa #arxiv-2104.08247 #region-us
# Adapter 'AdapterHub/bert-base-uncased-pf-hotpotqa' for bert-base-uncased An adapter for the 'bert-base-uncased' model that was trained on the hotpot_qa dataset and includes a prediction head for question answering. This adapter was created for usage with the adapter-transformers library. ## Usage First, install 'adapter-transformers': _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_ Now, the adapter can be loaded and activated like this: ## Architecture & Training The training code for this adapter is available at URL In particular, training configurations for all tasks can be found here. ## Evaluation results Refer to the paper for more information on results. If you use this adapter, please cite our paper "What to Pre-Train on? Efficient Intermediate Task Selection":
[ "# Adapter 'AdapterHub/bert-base-uncased-pf-hotpotqa' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the hotpot_qa dataset and includes a prediction head for question answering.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ "TAGS\n#adapter-transformers #bert #question-answering #en #dataset-hotpot_qa #arxiv-2104.08247 #region-us \n", "# Adapter 'AdapterHub/bert-base-uncased-pf-hotpotqa' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the hotpot_qa dataset and includes a prediction head for question answering.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ 37, 84, 57, 30, 45 ]
[ "passage: TAGS\n#adapter-transformers #bert #question-answering #en #dataset-hotpot_qa #arxiv-2104.08247 #region-us \n# Adapter 'AdapterHub/bert-base-uncased-pf-hotpotqa' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the hotpot_qa dataset and includes a prediction head for question answering.\n\nThis adapter was created for usage with the adapter-transformers library.## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ -0.09529922902584076, -0.023692937567830086, -0.0025819079019129276, 0.027944810688495636, 0.15874074399471283, 0.03327721729874611, 0.12470590323209763, 0.0713641494512558, 0.09280839562416077, 0.029594000428915024, 0.028688618913292885, 0.09401710331439972, 0.05842495709657669, 0.028873737901449203, 0.02761038765311241, -0.07533510774374008, -0.007936735637485981, 0.027756616473197937, -0.06274767965078354, 0.10704750567674637, 0.08708776533603668, -0.1024058386683464, 0.09224880486726761, 0.06674722582101822, -0.08480649441480637, 0.03675546124577522, -0.01927388273179531, -0.09419436007738113, 0.10729862749576569, 0.08710096031427383, 0.13340163230895996, 0.04597320407629013, -0.004090891685336828, -0.14651674032211304, 0.027861695736646652, 0.06602713465690613, 0.022291935980319977, 0.07333321869373322, -0.000012074639926140662, 0.019513338804244995, -0.10826101154088974, 0.003577539464458823, 0.0471917986869812, 0.07375369966030121, -0.07147829234600067, -0.23026850819587708, -0.03640317544341087, 0.1151561439037323, 0.016695601865649223, 0.08087290823459625, -0.007028242107480764, 0.08804807811975479, 0.005775574594736099, 0.02710733935236931, 0.19564834237098694, -0.2862284481525421, -0.01193880382925272, -0.03557625040411949, 0.055737804621458054, 0.04823235049843788, -0.057806093245744705, -0.0014807620318606496, 0.02159566804766655, 0.010567445307970047, 0.016522234305739403, -0.040674999356269836, -0.03263723850250244, 0.002451831242069602, -0.138545960187912, 0.002618194557726383, 0.19385291635990143, -0.009908453561365604, -0.11337798833847046, -0.025923775508999825, -0.03853536769747734, 0.11934413760900497, 0.025859443470835686, -0.09036809951066971, -0.0014613933162763715, 0.0027759422082453966, -0.019593313336372375, -0.08648499846458435, -0.10392782837152481, -0.11306378245353699, -0.09535269439220428, 0.2537883222103119, 0.003364294534549117, 0.028750289231538773, -0.034495893865823746, 0.11979944258928299, -0.011229121126234531, -0.125529482960701, -0.08296210318803787, -0.059053219854831696, -0.0688231810927391, -0.035663723945617676, -0.02502419427037239, -0.22108791768550873, 0.01467912271618843, 0.11625710129737854, 0.14204420149326324, 0.03828961402177811, -0.0792052373290062, 0.03609556332230568, 0.05419982597231865, 0.20137906074523926, -0.09778998792171478, 0.01751607656478882, -0.035759277641773224, -0.008343357592821121, -0.05100525915622711, -0.11468619853258133, -0.04017391800880432, -0.03497471287846565, 0.05090982839465141, 0.06277035921812057, 0.04300055280327797, 0.07984568923711777, -0.03065291978418827, -0.06863326579332352, 0.07771667093038559, -0.12025976181030273, -0.03200222924351692, 0.023084528744220734, -0.04252118617296219, 0.08472993224859238, 0.1049213707447052, 0.021362273022532463, -0.022175677120685577, 0.05421220883727074, -0.07745367288589478, -0.07274863868951797, -0.048928387463092804, -0.11298591643571854, 0.0025749774649739265, -0.006758182309567928, -0.00231677433475852, -0.1459645926952362, -0.08857700228691101, 0.006822170224040747, 0.06440699100494385, -0.012709017843008041, 0.08356831222772598, 0.07188528776168823, 0.04329034313559532, 0.011346696875989437, -0.018134530633687973, 0.05930574983358383, -0.02487051673233509, 0.09969426691532135, 0.052656445652246475, 0.045932792127132416, -0.006690964102745056, 0.07310007512569427, -0.06632638722658157, 0.02087032049894333, -0.18065215647220612, 0.08253367990255356, -0.14771665632724762, -0.0057126902975142, -0.14772769808769226, -0.012802363373339176, 0.024727709591388702, 0.014994814991950989, 0.08088671416044235, 0.10122249275445938, -0.13567666709423065, -0.03659355267882347, 0.061112724244594574, -0.15390190482139587, -0.18735761940479279, 0.049712568521499634, -0.016975700855255127, 0.15413963794708252, 0.04160311073064804, 0.08011721074581146, 0.10581861436367035, -0.10740435868501663, -0.12397358566522598, 0.04660894349217415, -0.059698935598134995, -0.02185731753706932, 0.06448829174041748, 0.0010842283954843879, -0.15824760496616364, 0.02130180411040783, -0.12467148154973984, -0.01291233766824007, -0.0401313342154026, -0.050725340843200684, -0.04579698294401169, -0.05444299802184105, 0.0822252705693245, -0.009102488867938519, -0.01510635670274496, 0.0782453864812851, -0.12207167595624924, 0.1753319799900055, 0.055225834250450134, -0.03189627453684807, 0.010894548147916794, -0.12394202500581741, 0.09984493255615234, -0.13840891420841217, 0.014023666270077229, -0.1831122636795044, -0.028913531452417374, 0.00125299789942801, -0.04650373011827469, 0.05039035528898239, 0.03622642904520035, 0.05637446045875549, 0.013588023371994495, 0.024966923519968987, -0.009102694690227509, -0.06754088401794434, 0.03069092519581318, -0.07398926466703415, -0.0928688645362854, -0.06559011340141296, -0.042792536318302155, 0.041196394711732864, -0.10148704797029495, 0.031615640968084335, 0.047816202044487, 0.04000444710254669, 0.011964136734604836, -0.0007828720263205469, -0.01170058362185955, -0.035931434482336044, -0.008198728784918785, -0.016264500096440315, 0.02787143550813198, 0.015383515506982803, -0.08812282979488373, 0.01537669450044632, -0.0764830932021141, 0.028682604432106018, 0.08441787958145142, -0.019794775173068047, -0.050851158797740936, -0.05596578121185303, -0.007519348058849573, -0.032419588416814804, -0.022917361930012703, -0.08430424332618713, 0.23028752207756042, 0.08260130882263184, 0.04222645238041878, -0.04782276228070259, -0.008997919037938118, 0.008365091867744923, -0.0010368706425651908, 0.015144306235015392, 0.0010662303538993, 0.06289371103048325, -0.08659988641738892, 0.018369631841778755, 0.2158757746219635, 0.0060339635238051414, 0.09377402067184448, -0.022709934040904045, -0.11540944129228592, -0.022990714758634567, -0.0522259846329689, 0.0336943194270134, 0.09431345760822296, -0.12250690162181854, 0.03861761465668678, 0.08498189598321915, -0.014606445096433163, 0.006943560671061277, -0.052404023706912994, 0.027391185984015465, 0.05072901397943497, -0.001212062779814005, -0.08662786334753036, -0.0029211631044745445, -0.007664620876312256, 0.050855569541454315, 0.058314114809036255, 0.14164431393146515, 0.0233188234269619, -0.023032018914818764, -0.07135200500488281, 0.18086865544319153, -0.05725662410259247, -0.16941821575164795, -0.1743476837873459, -0.07247816771268845, -0.02612793818116188, -0.012375429272651672, 0.048253413289785385, -0.09554231911897659, -0.0672912672162056, -0.019011469557881355, 0.15152235329151154, -0.019147507846355438, 0.021968258544802666, 0.011704097501933575, -0.07277774065732956, 0.08820958435535431, -0.16263048350811005, 0.03959842026233673, 0.008730129338800907, -0.09928760677576065, -0.008865752257406712, 0.05734880268573761, 0.09209859371185303, 0.11854609847068787, -0.0210427138954401, 0.0048910765908658504, 0.011057435534894466, 0.18457116186618805, -0.0724671259522438, 0.046191662549972534, 0.14303718507289886, -0.13262297213077545, 0.03747650608420372, 0.09571953117847443, 0.04973956570029259, -0.03679218143224716, 0.04154188185930252, 0.059210773557424545, -0.03258901089429855, -0.27234670519828796, 0.01658780872821808, 0.014019198715686798, -0.016867710277438164, 0.039220962673425674, 0.029217185452580452, 0.01866280846297741, 0.112064890563488, 0.02923118881881237, -0.034123651683330536, -0.09177957475185394, 0.05286641791462898, 0.19931820034980774, -0.0046853236854076385, 0.10276158154010773, -0.07523450255393982, 0.025717930868268013, 0.08715631812810898, 0.023610753938555717, 0.1387777030467987, -0.02342079021036625, 0.06452655792236328, 0.0917816162109375, 0.027131937444210052, 0.06619079411029816, 0.13808152079582214, -0.061553873121738434, -0.025666646659374237, -0.007777384482324123, -0.05775584280490875, -0.08075783401727676, 0.02673455886542797, -0.0023025497794151306, 0.04359694570302963, -0.04533812031149864, -0.00681794248521328, 0.040028929710388184, 0.1601962447166443, -0.015946604311466217, -0.12600132822990417, -0.120149627327919, -0.024280153214931488, -0.025195837020874023, -0.08022820204496384, -0.009645910933613777, 0.021692166104912758, -0.10037316381931305, -0.007856975309550762, -0.043253764510154724, 0.1019357442855835, -0.11832158267498016, 0.005313190631568432, 0.052010633051395416, 0.08767407387495041, -0.044705748558044434, 0.10600333660840988, -0.22982123494148254, 0.08636581152677536, 0.0525997057557106, 0.04400792717933655, -0.05429293215274811, 0.0157824344933033, 0.02439156547188759, 0.06672191619873047, 0.07144955545663834, -0.03177546709775925, 0.13045120239257812, -0.16659389436244965, -0.0923251062631607, 0.0727616548538208, 0.035241201519966125, -0.09482193738222122, 0.06108487397432327, -0.03424578905105591, 0.06296586245298386, 0.028620608150959015, 0.1202608123421669, -0.1659162938594818, -0.152112677693367, 0.07475458085536957, -0.032897718250751495, 0.12352404743432999, -0.07415010035037994, -0.10705729573965073, 0.023701388388872147, 0.1424964964389801, -0.14904175698757172, -0.09154324233531952, -0.14165924489498138, -0.026372723281383514, 0.08700627833604813, -0.08818677812814713, 0.041729457676410675, -0.020757678896188736, 0.10201571136713028, 0.009625107981264591, -0.08616086095571518, 0.07399410009384155, -0.09371103346347809, -0.06059182062745094, -0.037948451936244965, 0.004458399955183268, 0.09480935335159302, 0.025968099012970924, 0.006474762689322233, -0.02663121558725834, -0.027176938951015472, -0.12864290177822113, -0.005149621516466141, 0.006845004390925169, -0.049671802669763565, 0.00010439191828481853, -0.06525401771068573, 0.043781839311122894, -0.06158997491002083, -0.0026667495258152485, 0.15048398077487946, 0.1118483766913414, -0.06865451484918594, 0.053550347685813904, 0.2041471302509308, -0.05766424909234047, -0.22372514009475708, -0.004281225614249706, 0.04782203212380409, -0.01966724544763565, 0.05242019146680832, -0.23645365238189697, 0.1784626543521881, 0.044586144387722015, -0.01669277809560299, 0.03245638683438301, -0.1384042501449585, -0.08241098374128342, 0.210492342710495, 0.09822933375835419, 0.03617149218916893, -0.1307390034198761, -0.09438902139663696, 0.006858060602098703, -0.2293582707643509, 0.09644217789173126, -0.10638400912284851, 0.0662475973367691, -0.02974640019237995, 0.0545891672372818, 0.024078702554106712, -0.03302575647830963, 0.09197783470153809, 0.030683569610118866, 0.007116830907762051, -0.07476440072059631, -0.011396681889891624, 0.021996809169650078, -0.03745463117957115, 0.059775762259960175, -0.01103648915886879, 0.07726260274648666, -0.11838173121213913, -0.05769093334674835, -0.01255814079195261, 0.10257644206285477, -0.03486998379230499, -0.10045957565307617, -0.01684441976249218, 0.023450780659914017, -0.034263573586940765, -0.05288608744740486, -0.007227259688079357, -0.0660022646188736, 0.0626923218369484, 0.17169742286205292, 0.1371600478887558, -0.039167169481515884, -0.13384124636650085, 0.001885704812593758, -0.02229064702987671, 0.13693681359291077, -0.09218289703130722, 0.0798020139336586, 0.09749985486268997, 0.038359757512807846, 0.09297438710927963, 0.042652327567338943, -0.11649469286203384, 0.014919068664312363, 0.03899988904595375, -0.07945621758699417, -0.07552662491798401, -0.00734289176762104, 0.11225026845932007, -0.197676420211792, 0.04234055057168007, 0.13563193380832672, -0.014475129544734955, -0.002478543668985367, 0.04613516107201576, -0.02182905189692974, -0.03374500572681427, 0.11024720221757889, 0.13430741429328918, 0.056802403181791306, -0.03540073335170746, 0.08996159583330154, 0.08506113290786743, -0.07102729380130768, 0.0390549972653389, -0.09448977559804916, -0.06502117961645126, -0.06103786081075668, -0.05852101743221283, 0.1218922957777977, -0.10530076920986176, -0.06751450896263123, 0.011726167984306812, -0.06866803020238876, 0.018939673900604248, 0.1490049511194229, 0.030491260811686516, -0.0020575548987835646, -0.051839083433151245, 0.05381166934967041, -0.05580150708556175, 0.09100417792797089, -0.038559604436159134, 0.05034189671278, -0.08199923485517502, -0.04205964133143425, 0.04379631206393242, 0.09179826825857162, -0.04798847809433937, -0.06223287433385849, -0.10782170295715332, -0.019519362598657608, -0.22017470002174377, -0.02379768341779709, -0.022442853078246117, -0.006490042898803949, 0.0006387524190358818, -0.10950987040996552, -0.04128007963299751, 0.021729398518800735, -0.02223905734717846, -0.010875470004975796, 0.053931064903736115, 0.07916472107172012, -0.21029174327850342, -0.0001555714407004416, 0.09124067425727844, -0.04365893080830574, 0.08897409588098526, 0.05067530646920204, -0.012127548456192017, 0.026861634105443954, -0.060542814433574677, -0.001815331052057445, -0.07307107001543045, 0.03342891111969948, 0.04269206523895264, -0.10395292192697525, 0.020802844315767288, -0.052527595311403275, -0.019648674875497818, -0.009112415835261345, 0.21721221506595612, -0.07639434188604355, 0.03661219775676727, -0.004222959745675325, 0.046258166432380676, -0.05764973163604736, 0.049707554280757904, 0.09458203613758087, 0.09764933586120605, 0.0996614545583725, -0.05597126856446266, 0.08305375277996063, -0.11842452734708786, 0.00917787291109562, 0.021595651283860207, 0.020398812368512154, 0.11295919865369797, -0.1209268644452095, -0.0038621751591563225, -0.06355615705251694, 0.20186692476272583, -0.05999217927455902, 0.09822297841310501, 0.05119636282324791, -0.018334493041038513, -0.07688186317682266, -0.06312357634305954, 0.21066290140151978, 0.04774283990263939, 0.06129109486937523, 0.03385503217577934, 0.04631095752120018, -0.03629639744758606, 0.03280755877494812, 0.1521395742893219, 0.13599717617034912, -0.07991714030504227, 0.006963459774851799, 0.05123773589730263, -0.030959341675043106, -0.10000551491975784, -0.05941816046833992, -0.025528669357299805, 0.04812106490135193, -0.015574229881167412, 0.14570683240890503, 0.06922876834869385, -0.016410205513238907, 0.051528990268707275, -0.005859311670064926, -0.06029737740755081, -0.08393138647079468, -0.005359229631721973, -0.003887192578986287, -0.13705390691757202, -0.007751372177153826, -0.07802595943212509, -0.008390945382416248, 0.11424403637647629, 0.012486019171774387, 0.014913301914930344, 0.2774694561958313, -0.05379856750369072, -0.03536849841475487, 0.03474816307425499, -0.026905491948127747, -0.036638349294662476, -0.13046163320541382, 0.08583798259496689, 0.03689121827483177, 0.1422332227230072, 0.024275600910186768, 0.058493178337812424, -0.021481892094016075, 0.03571448102593422, -0.014624461531639099, -0.1201084777712822, -0.048050738871097565, 0.03088778257369995, -0.027912024408578873, 0.07809608429670334, 0.0003348990867380053, 0.023200655356049538, -0.02791489101946354, 0.17866714298725128, -0.05244036391377449, -0.06536335498094559, -0.1197962686419487, 0.09161553531885147, -0.03972943127155304, 0.009548068977892399, -0.019053367897868156, -0.11880727857351303, -0.045253951102495193, 0.23557908833026886, 0.030836479738354683, -0.08572275191545486, 0.034416381269693375, 0.06368956714868546, 0.022968435660004616, 0.012817909009754658, 0.07922093570232391, 0.04260293394327164, 0.09510891139507294, -0.03532431647181511, -0.0029383988585323095, -0.05690786615014076, -0.045310139656066895, 0.06772710382938385, 0.1673877239227295, -0.006533889565616846, -0.028634056448936462, -0.06940076500177383, 0.07342549413442612, -0.056536417454481125, -0.2908285856246948, -0.07667357474565506, 0.010250185616314411, -0.09267167747020721, -0.06837006658315659, 0.07474561035633087, -0.016089145094156265, -0.004826882854104042, 0.023038551211357117, -0.008660498075187206, 0.1905258595943451, 0.05411519110202789, -0.03786568343639374, -0.04154549911618233, 0.12640570104122162, -0.012362748384475708, 0.17844359576702118, 0.02080046571791172, 0.024349946528673172, 0.07381369918584824, 0.05615951120853424, -0.10834522545337677, 0.017471134662628174, 0.049908868968486786, -0.12836290895938873, -0.016354486346244812, 0.022194260731339455, 0.02702387608587742, 0.06097472831606865, 0.06106581166386604, -0.16529075801372528, 0.040728650987148285, -0.018952960148453712, -0.05503610149025917, -0.10119383037090302, -0.003890635445713997, -0.07168254256248474, 0.15097135305404663, 0.1234082281589508, -0.018889611586928368, -0.07813536375761032, -0.09341930598020554, 0.05680633708834648, 0.009953945875167847, 0.07700813561677933, -0.03880675137042999, -0.09897344559431076, 0.010919748805463314, -0.06330717355012894, 0.02200477384030819, -0.2855202555656433, -0.03408247232437134, 0.07152862101793289, -0.037819113582372665, 0.039675191044807434, 0.05791151523590088, 0.10141602158546448, 0.06806471943855286, -0.04492364078760147, -0.02114315889775753, -0.01988670602440834, 0.10356883704662323, -0.1923334002494812, -0.03084229677915573 ]
null
null
adapter-transformers
# Adapter `AdapterHub/bert-base-uncased-pf-imdb` for bert-base-uncased An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [sentiment/imdb](https://adapterhub.ml/explore/sentiment/imdb/) dataset and includes a prediction head for classification. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("bert-base-uncased") adapter_name = model.load_adapter("AdapterHub/bert-base-uncased-pf-imdb", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
{"language": ["en"], "tags": ["text-classification", "bert", "adapterhub:sentiment/imdb", "adapter-transformers"], "datasets": ["imdb"]}
text-classification
AdapterHub/bert-base-uncased-pf-imdb
[ "adapter-transformers", "bert", "text-classification", "adapterhub:sentiment/imdb", "en", "dataset:imdb", "arxiv:2104.08247", "region:us" ]
2022-03-02T23:29:04+00:00
[ "2104.08247" ]
[ "en" ]
TAGS #adapter-transformers #bert #text-classification #adapterhub-sentiment/imdb #en #dataset-imdb #arxiv-2104.08247 #region-us
# Adapter 'AdapterHub/bert-base-uncased-pf-imdb' for bert-base-uncased An adapter for the 'bert-base-uncased' model that was trained on the sentiment/imdb dataset and includes a prediction head for classification. This adapter was created for usage with the adapter-transformers library. ## Usage First, install 'adapter-transformers': _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_ Now, the adapter can be loaded and activated like this: ## Architecture & Training The training code for this adapter is available at URL In particular, training configurations for all tasks can be found here. ## Evaluation results Refer to the paper for more information on results. If you use this adapter, please cite our paper "What to Pre-Train on? Efficient Intermediate Task Selection":
[ "# Adapter 'AdapterHub/bert-base-uncased-pf-imdb' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the sentiment/imdb dataset and includes a prediction head for classification.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ "TAGS\n#adapter-transformers #bert #text-classification #adapterhub-sentiment/imdb #en #dataset-imdb #arxiv-2104.08247 #region-us \n", "# Adapter 'AdapterHub/bert-base-uncased-pf-imdb' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the sentiment/imdb dataset and includes a prediction head for classification.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ 43, 82, 57, 30, 45 ]
[ "passage: TAGS\n#adapter-transformers #bert #text-classification #adapterhub-sentiment/imdb #en #dataset-imdb #arxiv-2104.08247 #region-us \n# Adapter 'AdapterHub/bert-base-uncased-pf-imdb' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the sentiment/imdb dataset and includes a prediction head for classification.\n\nThis adapter was created for usage with the adapter-transformers library.## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ -0.0756290853023529, 0.001093953032977879, -0.003225023625418544, 0.018876222893595695, 0.17026397585868835, 0.006392668467015028, 0.17352858185768127, 0.06613791733980179, 0.08152066171169281, 0.047276031225919724, 0.010348938405513763, 0.10951226204633713, 0.048071641474962234, 0.016828542575240135, 0.0034183585084974766, -0.13193172216415405, 0.026465827599167824, 0.0114792725071311, -0.022592205554246902, 0.10832317173480988, 0.10531690716743469, -0.08451597392559052, 0.10195848345756531, 0.05191603675484657, -0.10178031027317047, 0.029282694682478905, -0.00398981524631381, -0.0870060995221138, 0.07943880558013916, 0.08161720633506775, 0.145888552069664, 0.033804867416620255, -0.007796537596732378, -0.14782406389713287, 0.014228565618395805, 0.08263055235147476, 0.040933653712272644, 0.07852662354707718, -0.015114808455109596, -0.0010246288729831576, 0.04278077557682991, -0.022465243935585022, 0.07354076951742172, 0.06548319011926651, -0.08839283883571625, -0.2157435566186905, -0.039380427449941635, 0.1019570603966713, 0.01892102137207985, 0.08276480436325073, -0.021062681451439857, 0.07692262530326843, 0.027933845296502113, 0.04910770058631897, 0.1887853741645813, -0.22140373289585114, 0.0034837478306144476, 0.010384420864284039, 0.036289032548666, 0.0636710375547409, -0.05668723210692406, 0.019102560356259346, 0.008776511996984482, 0.006057568360120058, 0.03887375444173813, -0.013857913203537464, 0.018963996320962906, 0.0012974615674465895, -0.1592860072851181, -0.020569240674376488, 0.24931858479976654, -0.0032294902484863997, -0.11465287953615189, -0.09625338762998581, -0.024454215541481972, 0.10774865001440048, 0.016533441841602325, -0.10575657337903976, 0.014255459420382977, 0.008744858205318451, 0.005442231427878141, -0.06720191240310669, -0.1033599004149437, -0.05193262919783592, -0.10497051477432251, 0.2680075168609619, -0.027289386838674545, 0.033381473273038864, -0.007823627442121506, 0.10023676604032516, -0.003450700780376792, -0.10528410971164703, -0.09214749932289124, -0.06489002704620361, -0.05569396913051605, -0.06476488709449768, -0.03670212998986244, -0.25713467597961426, -0.02213863842189312, 0.13758401572704315, 0.09105398505926132, 0.038567397743463516, -0.08299564570188522, 0.04739171639084816, 0.071635901927948, 0.2095606029033661, -0.06480486690998077, 0.05915643647313118, -0.05609554797410965, -0.012910430319607258, -0.01679009199142456, -0.10312142968177795, -0.04828555881977081, -0.005469567142426968, 0.06007057800889015, 0.032360974699258804, 0.004421343561261892, 0.10262526571750641, -0.06962984800338745, -0.06444211304187775, 0.10497397929430008, -0.1299237161874771, 0.010436015203595161, 0.0136606115847826, -0.057212866842746735, 0.11747033894062042, 0.14855684340000153, -0.003125056391581893, -0.03584739938378334, 0.09065663814544678, -0.07048019021749496, -0.03456974774599075, -0.06805835664272308, -0.14476390182971954, 0.02574358880519867, 0.0014430013252422214, -0.011517739854753017, -0.14436593651771545, -0.0764109268784523, -0.01272865291684866, 0.06467082351446152, -0.008841849863529205, 0.10732100158929825, 0.032537635415792465, 0.02699897438287735, 0.032182395458221436, -0.02109573222696781, -0.045468349009752274, -0.026283638551831245, 0.061138223856687546, 0.013743594288825989, 0.049629658460617065, -0.015690499916672707, 0.07746689021587372, -0.09094220399856567, 0.004855368752032518, -0.24485784769058228, 0.0978417918086052, -0.157219797372818, 0.026926184073090553, -0.14200079441070557, -0.008288045413792133, -0.0013247664319351315, 0.04444730654358864, 0.05835264176130295, 0.11700885742902756, -0.10789100080728531, -0.06710349023342133, 0.040313974022865295, -0.1742849349975586, -0.14687220752239227, 0.060638926923274994, -0.015876179561018944, 0.15317052602767944, 0.06668268889188766, 0.08324537426233292, 0.08312983810901642, -0.11555676907300949, -0.12981010973453522, 0.056561920791864395, -0.06632792949676514, 0.01254638098180294, 0.053870610892772675, 0.005160017870366573, -0.10742228478193283, 0.01706716977059841, -0.0642092153429985, -0.008672112599015236, -0.015175295993685722, -0.021653110161423683, -0.026235835626721382, -0.007039590738713741, 0.07414816319942474, 0.024604560807347298, -0.022465605288743973, 0.032471105456352234, -0.12871134281158447, 0.21731898188591003, 0.05497667193412781, -0.05109858140349388, 0.021332072094082832, -0.12048804759979248, 0.08297642320394516, -0.1045551598072052, 0.007040847092866898, -0.21449564397335052, -0.009069227613508701, 0.00814417190849781, -0.018655596300959587, 0.07163125276565552, 0.050191622227430344, 0.05731319636106491, 0.0023367293179035187, 0.01970352604985237, 0.013828428462147713, -0.027825478464365005, 0.0312032513320446, -0.049054745584726334, -0.12166684865951538, -0.0519828200340271, -0.05510438606142998, 0.08076831698417664, -0.17938943207263947, 0.06083330884575844, 0.12203661352396011, 0.04686921834945679, 0.04003012925386429, -0.04640500620007515, -0.011530549265444279, -0.038868434727191925, -0.045930761843919754, -0.028682639822363853, 0.03462464362382889, 0.012301990762352943, -0.09812284260988235, 0.030460642650723457, -0.11170694977045059, -0.006312173325568438, 0.09581287205219269, -0.0335770882666111, -0.06582066416740417, -0.0549268014729023, -0.007952832616865635, -0.008909918367862701, -0.005307678133249283, -0.09804482758045197, 0.23657523095607758, 0.06825114041566849, 0.06683076918125153, -0.04221942648291588, -0.01082115899771452, 0.005282461643218994, -0.02639755792915821, -0.027964206412434578, 0.009087957441806793, 0.03208191692829132, -0.11393281817436218, 0.04101165011525154, 0.1796124428510666, 0.010390442796051502, 0.09654293954372406, -0.015093978494405746, -0.09256221354007721, -0.010410930961370468, -0.04944874718785286, 0.04392600059509277, 0.04177754744887352, -0.1499628722667694, 0.0018567693186923862, 0.07095059007406235, 0.0014545615995302796, 0.00032369198743253946, -0.06103011220693588, 0.05447116866707802, 0.07864207774400711, 0.01423090510070324, -0.04030155763030052, 0.0025723979342728853, -0.015146669931709766, 0.0605386346578598, 0.03745805844664574, 0.11626110970973969, 0.012418623082339764, -0.020727120339870453, -0.10345519334077835, 0.17585723102092743, -0.06711215525865555, -0.24318790435791016, -0.1952957659959793, -0.10268295556306839, -0.04572836682200432, 0.016271110624074936, 0.03317958489060402, -0.10580946505069733, -0.09052013605833054, -0.0767323300242424, 0.15933535993099213, -0.023680245503783226, 0.01076795719563961, 0.04100807383656502, -0.05602363124489784, 0.08047214150428772, -0.17399962246418, 0.009549672715365887, 0.024777647107839584, -0.06902121752500534, -0.01277787797152996, 0.02570793218910694, 0.07142480462789536, 0.1498057097196579, -0.0048488592728972435, -0.000010889122677326668, 0.0063647017814219, 0.14584186673164368, -0.08420267701148987, 0.046288151293992996, 0.15109018981456757, -0.14789754152297974, 0.035522814840078354, 0.07526642829179764, 0.04924589395523071, -0.0621158629655838, 0.0464819073677063, 0.03318549320101738, -0.04320681840181351, -0.24386489391326904, -0.0249446090310812, 0.006425448693335056, 0.009909316897392273, 0.07312417030334473, 0.027438681572675705, 0.053266171365976334, 0.08347698301076889, 0.02451174706220627, -0.008587869815528393, -0.0017786696553230286, 0.08396490663290024, 0.18101157248020172, -0.030858071520924568, 0.10828123986721039, -0.08336369693279266, 0.013225588947534561, 0.10391463339328766, -0.06871030479669571, 0.10868463665246964, -0.004918564576655626, 0.09138679504394531, 0.0732949823141098, -0.06183842569589615, 0.04855869337916374, 0.14477422833442688, -0.060352493077516556, -0.021904492750763893, -0.014297273010015488, -0.07144086807966232, -0.09583282470703125, 0.0440140962600708, -0.026091396808624268, 0.02575269341468811, -0.059676703065633774, -0.04514121636748314, 0.05102583020925522, 0.07943740487098694, 0.03512698411941528, -0.21275876462459564, -0.1442035734653473, -0.006125244311988354, -0.03516767546534538, -0.09484398365020752, -0.017377229407429695, 0.037388306111097336, -0.06680140644311905, 0.0519634410738945, -0.043141260743141174, 0.0870981365442276, -0.15397882461547852, 0.0003797370009124279, 0.03210238739848137, 0.10206566751003265, -0.05018039047718048, 0.08527417480945587, -0.20806331932544708, 0.056000661104917526, 0.03412475436925888, 0.02373758889734745, -0.08732440322637558, 0.03724316135048866, 0.03797442838549614, 0.13822124898433685, 0.05215126648545265, -0.014179365709424019, 0.07076546549797058, -0.13375765085220337, -0.06941991299390793, 0.005426808260381222, 0.0627816841006279, -0.09454319626092911, 0.054182857275009155, -0.03411316126585007, 0.049545373767614365, 0.04157404601573944, 0.04145831987261772, -0.1478491723537445, -0.1747196912765503, 0.07635854184627533, -0.006686164531856775, 0.11220534145832062, -0.05732758343219757, -0.09901196509599686, 0.007419967092573643, 0.21625441312789917, -0.12005136162042618, -0.06409399211406708, -0.15315574407577515, 0.03372630476951599, 0.05140500143170357, -0.054983992129564285, 0.007671724539250135, -0.021949803456664085, 0.13338246941566467, 0.00387582671828568, -0.09006082266569138, 0.08743086457252502, -0.07674094289541245, -0.05047479271888733, -0.049669791013002396, 0.007230592891573906, 0.09629084914922714, 0.027440270408988, -0.01985599473118782, -0.008561869151890278, 0.02597235143184662, -0.09973052144050598, -0.0023494630586355925, 0.08974240720272064, -0.02711867168545723, 0.07678835093975067, -0.059841420501470566, 0.025786500424146652, -0.07054867595434189, -0.000017723294149618596, 0.12007022649049759, 0.11517694592475891, -0.04961196705698967, 0.04783476144075394, 0.14760711789131165, -0.08308228850364685, -0.26431405544281006, 0.04274266958236694, 0.0356973297894001, -0.004980097524821758, 0.05085786059498787, -0.23079021275043488, 0.16900357604026794, 0.03056246228516102, -0.009012595750391483, 0.046301521360874176, -0.11348617076873779, -0.10190880298614502, 0.17788401246070862, 0.09281765669584274, 0.044343046844005585, -0.120709627866745, -0.07463427633047104, -0.01453043520450592, -0.11694158613681793, 0.11359511315822601, -0.06614232063293457, 0.051094599068164825, 0.0007302999147213995, 0.032318584620952606, 0.04239708185195923, -0.027576275169849396, 0.09790480136871338, 0.02155393362045288, 0.057826947420835495, -0.11326002329587936, 0.004064351320266724, 0.05392463505268097, -0.050580333918333054, 0.12185467779636383, -0.02413180284202099, 0.039162054657936096, -0.10962168127298355, -0.06273695081472397, 0.004537023138254881, 0.09169966727495193, -0.02588828280568123, -0.07167651504278183, -0.07358181476593018, 0.034143563359975815, -0.0302716214209795, -0.04989597946405411, 0.1001756563782692, -0.08148053288459778, 0.03885070979595184, 0.16379527747631073, 0.16855835914611816, -0.026316963136196136, -0.07025723904371262, 0.011787261813879013, -0.007845964282751083, 0.10557004809379578, -0.1628478616476059, 0.06439024209976196, 0.08554781973361969, 0.015142891556024551, 0.15493519604206085, 0.04398033395409584, -0.14401444792747498, -0.027278710156679153, 0.06336621940135956, -0.0812564268708229, -0.056744761765003204, -0.02217172458767891, 0.0940345972776413, -0.1675160527229309, 0.032426293939352036, 0.1623084843158722, -0.043587323278188705, 0.03184200078248978, 0.039679110050201416, 0.0040902611799538136, -0.03555477783083916, 0.06358947604894638, 0.08021736890077591, 0.04090868681669235, -0.03204699978232384, 0.09454435110092163, 0.0919732004404068, -0.124162457883358, 0.04677794128656387, -0.08309192210435867, -0.0735861137509346, -0.05917426943778992, -0.07911456376314163, 0.14178577065467834, -0.04877021536231041, -0.07078251242637634, -0.0005234581185504794, -0.09204424172639847, 0.03547633811831474, 0.14791417121887207, 0.050084538757801056, 0.013692192733287811, -0.07384905219078064, 0.05039045959711075, -0.08125118911266327, 0.0745484009385109, -0.03132782131433487, 0.05190698802471161, -0.10528058558702469, -0.019289955496788025, 0.03348914906382561, 0.008598764427006245, -0.05167974904179573, -0.0680575743317604, -0.10934486240148544, -0.03485563024878502, -0.1474805623292923, -0.0427110530436039, -0.03870447352528572, -0.008666731417179108, 0.03458619490265846, -0.08939632773399353, -0.012033834122121334, 0.002268059179186821, -0.02931525558233261, 0.002534173894673586, 0.045129403471946716, 0.08908591419458389, -0.17914503812789917, -0.021804867312312126, 0.06816215813159943, -0.06824914366006851, 0.09260300546884537, 0.05962659791111946, -0.02599521353840828, 0.024351410567760468, -0.09360598027706146, 0.01936582289636135, 0.01239737682044506, 0.04125263914465904, 0.016022052615880966, -0.10723986476659775, 0.012621148489415646, -0.029886864125728607, -0.013352478854358196, 0.006539002060890198, 0.1857098788022995, -0.046572279185056686, 0.03201240673661232, 0.012480257079005241, 0.018008219078183174, -0.06729486584663391, 0.08328656852245331, 0.09415231645107269, 0.10474396497011185, 0.15332724153995514, -0.06086045876145363, 0.046407654881477356, -0.11686544120311737, 0.021902283653616905, 0.03008480928838253, -0.023188605904579163, 0.13464781641960144, -0.13149820268154144, 0.009971058927476406, -0.05081716924905777, 0.19837570190429688, -0.007234805729240179, 0.0361005924642086, 0.05739431828260422, 0.0015858944971114397, -0.06151871383190155, -0.04082069918513298, 0.1393921822309494, 0.049154698848724365, 0.030840732157230377, 0.012434995733201504, 0.04427914693951607, 0.02256055735051632, 0.010239920578897, 0.14106117188930511, 0.12950921058654785, -0.11549383401870728, 0.04620689898729324, 0.01981949247419834, -0.0134864067658782, -0.08330992609262466, -0.04484381154179573, -0.03490203619003296, 0.07206883281469345, -0.016814226284623146, 0.15904001891613007, 0.06499668210744858, -0.016802288591861725, 0.0764189064502716, -0.00941101461648941, -0.062475066632032394, -0.09478948265314102, -0.10108184069395065, -0.008065874688327312, -0.1461714655160904, -0.018326524645090103, -0.0872979611158371, 0.01137519907206297, 0.05946747958660126, 0.027155183255672455, 0.013449140824377537, 0.23424148559570312, -0.12201759964227676, -0.03937685862183571, 0.07149947434663773, -0.05513528361916542, -0.06617417931556702, -0.11325466632843018, 0.061337534338235855, 0.041753675788640976, 0.13280852138996124, 0.055957309901714325, 0.06091729924082756, 0.010298102162778378, 0.04009760916233063, -0.007227823603898287, -0.14320100843906403, -0.045420195907354355, 0.021495692431926727, -0.06819602102041245, 0.07587362825870514, 0.00974961556494236, 0.005536161363124847, -0.027373455464839935, 0.1477050632238388, -0.07417652755975723, -0.04250684753060341, -0.11776972562074661, 0.14196741580963135, -0.01945589669048786, 0.035041891038417816, -0.03947915881872177, -0.12290682643651962, -0.055766716599464417, 0.186713308095932, 0.058175455778837204, -0.03732730820775032, 0.029816940426826477, 0.0368059016764164, 0.024936050176620483, 0.018350128084421158, 0.08586705476045609, 0.019961224868893623, 0.09157529473304749, 0.005609104409813881, -0.00033996006823144853, -0.053035758435726166, -0.04373382031917572, 0.07829313725233078, 0.1253478080034256, 0.008137514814734459, -0.02629612199962139, -0.07104704529047012, 0.07591021060943604, -0.04758765920996666, -0.2981152832508087, -0.024068225175142288, -0.020460782572627068, -0.06165925785899162, -0.05735718458890915, 0.06368191540241241, -0.019261693581938744, 0.016869714483618736, 0.026501864194869995, -0.03220858797430992, 0.16989965736865997, 0.042073678225278854, -0.06822163611650467, -0.0018740202067419887, 0.08905746042728424, -0.06368019431829453, 0.1360708624124527, 0.009049871005117893, 0.0400918647646904, 0.0902681052684784, 0.04007590189576149, -0.08412791043519974, 0.009172740392386913, 0.011211586184799671, -0.07141420245170593, -0.008368232287466526, 0.07458341866731644, 0.005642313975840807, 0.08685311675071716, 0.06686238944530487, -0.2074088454246521, 0.03825622797012329, -0.037221767008304596, -0.11317108571529388, -0.083282969892025, -0.024559833109378815, -0.0747520923614502, 0.1398109644651413, 0.1438835710287094, 0.006206359248608351, -0.059923090040683746, -0.07980131357908249, 0.025903161615133286, 0.007061944808810949, 0.06554077565670013, -0.02399737574160099, -0.10358762741088867, -0.015538371168076992, -0.035189203917980194, 0.04570971056818962, -0.3199164569377899, -0.032345470041036606, 0.07027863711118698, -0.03949195146560669, 0.0004190725740045309, 0.05458888038992882, 0.08029758930206299, 0.0658377930521965, -0.05123653635382652, -0.05963796004652977, 0.02154177986085415, 0.14134110510349274, -0.16789360344409943, -0.018251653760671616 ]
null
null
adapter-transformers
# Adapter `AdapterHub/bert-base-uncased-pf-mit_movie_trivia` for bert-base-uncased An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [ner/mit_movie_trivia](https://adapterhub.ml/explore/ner/mit_movie_trivia/) dataset and includes a prediction head for tagging. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("bert-base-uncased") adapter_name = model.load_adapter("AdapterHub/bert-base-uncased-pf-mit_movie_trivia", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
{"language": ["en"], "tags": ["token-classification", "bert", "adapterhub:ner/mit_movie_trivia", "adapter-transformers"]}
token-classification
AdapterHub/bert-base-uncased-pf-mit_movie_trivia
[ "adapter-transformers", "bert", "token-classification", "adapterhub:ner/mit_movie_trivia", "en", "arxiv:2104.08247", "region:us" ]
2022-03-02T23:29:04+00:00
[ "2104.08247" ]
[ "en" ]
TAGS #adapter-transformers #bert #token-classification #adapterhub-ner/mit_movie_trivia #en #arxiv-2104.08247 #region-us
# Adapter 'AdapterHub/bert-base-uncased-pf-mit_movie_trivia' for bert-base-uncased An adapter for the 'bert-base-uncased' model that was trained on the ner/mit_movie_trivia dataset and includes a prediction head for tagging. This adapter was created for usage with the adapter-transformers library. ## Usage First, install 'adapter-transformers': _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_ Now, the adapter can be loaded and activated like this: ## Architecture & Training The training code for this adapter is available at URL In particular, training configurations for all tasks can be found here. ## Evaluation results Refer to the paper for more information on results. If you use this adapter, please cite our paper "What to Pre-Train on? Efficient Intermediate Task Selection":
[ "# Adapter 'AdapterHub/bert-base-uncased-pf-mit_movie_trivia' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the ner/mit_movie_trivia dataset and includes a prediction head for tagging.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ "TAGS\n#adapter-transformers #bert #token-classification #adapterhub-ner/mit_movie_trivia #en #arxiv-2104.08247 #region-us \n", "# Adapter 'AdapterHub/bert-base-uncased-pf-mit_movie_trivia' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the ner/mit_movie_trivia dataset and includes a prediction head for tagging.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ 41, 90, 57, 30, 45 ]
[ "passage: TAGS\n#adapter-transformers #bert #token-classification #adapterhub-ner/mit_movie_trivia #en #arxiv-2104.08247 #region-us \n# Adapter 'AdapterHub/bert-base-uncased-pf-mit_movie_trivia' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the ner/mit_movie_trivia dataset and includes a prediction head for tagging.\n\nThis adapter was created for usage with the adapter-transformers library.## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ -0.06728016585111618, -0.027926914393901825, -0.001842428115196526, 0.023197481408715248, 0.18482151627540588, 0.017976775765419006, 0.177022784948349, 0.07692977041006088, 0.091158427298069, 0.05131422355771065, -0.04181302711367607, 0.10296674817800522, 0.03913160413503647, 0.04168137535452843, 0.05653060972690582, -0.10712727904319763, -0.008162149228155613, 0.01654028333723545, -0.009249069727957249, 0.10102342069149017, 0.09785713255405426, -0.08402971923351288, 0.07540830224752426, 0.03636889532208443, -0.14003820717334747, 0.06464679539203644, 0.010476666502654552, -0.0701458752155304, 0.1322624236345291, 0.08251705765724182, 0.16463583707809448, 0.004228997975587845, 0.014414001256227493, -0.12252426147460938, 0.00978799257427454, 0.07562144100666046, 0.037998002022504807, 0.03460730239748955, 0.014817135408520699, 0.013833207078278065, 0.024654148146510124, 0.018720503896474838, 0.08310088515281677, 0.06679065525531769, -0.07670867443084717, -0.1867268681526184, -0.009458210319280624, 0.09230926632881165, 0.005039521027356386, 0.0898112952709198, -0.004470971878618002, 0.11010090261697769, -0.02725784294307232, 0.05879129096865654, 0.20933781564235687, -0.15293452143669128, -0.02122812159359455, 0.029175790026783943, 0.08609342575073242, 0.05181729421019554, -0.08047547191381454, -0.0005594755639322102, 0.011998781934380531, 0.01006016880273819, 0.04777543246746063, -0.06360775977373123, -0.09447857737541199, -0.037346888333559036, -0.14238595962524414, -0.01804049126803875, 0.1794258952140808, 0.0070588067173957825, -0.10971277952194214, -0.06461270153522491, -0.02644122764468193, 0.10078772157430649, -0.029078003019094467, -0.04931643605232239, 0.006787961348891258, -0.020109670236706734, 0.0018575805006548762, -0.08258271217346191, -0.08573652803897858, -0.09893151372671127, 0.003660599933937192, 0.25604549050331116, -0.011027484200894833, 0.02210530824959278, -0.06520523130893707, 0.12124413251876831, -0.0362672433257103, -0.0950307697057724, -0.053843919187784195, -0.04205971956253052, -0.08608121424913406, -0.060747746378183365, 0.0037620998919010162, -0.2537299394607544, -0.05577457323670387, 0.19715240597724915, 0.11857983469963074, 0.049915384501218796, -0.11126888543367386, 0.0905740037560463, 0.0339178703725338, 0.22474153339862823, -0.06422154605388641, 0.008088364265859127, -0.003717786632478237, 0.005107707343995571, -0.01643436588346958, -0.07786022126674652, -0.05703887343406677, -0.021171415224671364, 0.04310018569231033, 0.05592206120491028, 0.057440947741270065, 0.08087491989135742, -0.08712930977344513, -0.0690675675868988, 0.1296980232000351, -0.11410979926586151, 0.005050587933510542, 0.008522624149918556, -0.05748266726732254, 0.09875328093767166, 0.12021094560623169, -0.032717738300561905, -0.03974786400794983, 0.1284775584936142, -0.10161368548870087, -0.027072245255112648, -0.06421341747045517, -0.14568257331848145, 0.04344901815056801, -0.02180686965584755, -0.015769848600029945, -0.15896910429000854, -0.08390078693628311, -0.013652097433805466, 0.06193876639008522, 0.0012087469222024083, 0.10316797345876694, 0.03697492554783821, 0.06290285289287567, 0.009150944650173187, -0.023916618898510933, -0.021652337163686752, -0.030142709612846375, 0.052295055240392685, 0.010006597265601158, 0.040682148188352585, 0.0014165248721837997, 0.06481949239969254, -0.08540976792573929, 0.019638897851109505, -0.31425583362579346, 0.055290281772613525, -0.1614357829093933, 0.045848991721868515, -0.12327471375465393, -0.002130019711330533, 0.007236658129841089, 0.04798664525151253, 0.03850514441728592, 0.13552352786064148, -0.0713462084531784, -0.09458297491073608, 0.06331900507211685, -0.1665453314781189, -0.14790686964988708, 0.06018070504069328, 0.0035631959326565266, 0.13428948819637299, 0.02800973504781723, 0.13594293594360352, 0.1284034252166748, -0.13414151966571808, -0.0801410973072052, 0.08305887132883072, -0.07362601906061172, -0.019902249798178673, 0.046492770314216614, 0.030437804758548737, -0.055117685347795486, 0.005394297186285257, -0.11665613949298859, 0.02710132859647274, -0.013980111107230186, -0.011975645087659359, 0.00022460387845057994, -0.02277887426316738, 0.06981485337018967, 0.013969020918011665, 0.009534644894301891, 0.03941976651549339, -0.12023397535085678, 0.15533463656902313, 0.08319591730833054, -0.04819917306303978, 0.07045610249042511, -0.09562655538320541, 0.09229021519422531, -0.06924654543399811, 0.010329549200832844, -0.19762060046195984, -0.08168480545282364, 0.03286788985133171, -0.03559206798672676, 0.049463141709566116, 0.005066435784101486, 0.0330066978931427, 0.03360665589570999, -0.01055265311151743, -0.0066322521306574345, -0.08464675396680832, 0.017807330936193466, -0.004276886582374573, -0.10544642806053162, -0.088131844997406, -0.05632161349058151, 0.029243772849440575, -0.1753969043493271, 0.029453372582793236, 0.08582521229982376, 0.08045318722724915, 0.055464472621679306, -0.0677247941493988, -0.003901074640452862, -0.0008923704735934734, -0.04411489516496658, -0.05776253715157509, 0.029668793082237244, 0.019953863695263863, -0.047432683408260345, 0.04671663045883179, -0.06888297945261002, -0.043061982840299606, 0.0693942978978157, -0.08444944024085999, -0.08605776727199554, 0.018756654113531113, -0.022975042462348938, -0.03433464094996452, -0.02642112225294113, -0.11343170702457428, 0.16714145243167877, 0.09762012213468552, 0.086225725710392, -0.011650055646896362, 0.017707418650388718, 0.016967926174402237, -0.019440768286585808, 0.0004977955250069499, -0.00685749389231205, 0.07703158259391785, -0.10029064118862152, 0.05797586590051651, 0.11683309823274612, -0.043255068361759186, 0.11513252556324005, 0.008242681622505188, -0.09808384627103806, 0.027667436748743057, -0.00809148233383894, 0.07267574965953827, 0.05756521597504616, -0.18195167183876038, -0.01284677255898714, 0.04724951088428497, -0.019822072237730026, -0.012523559853434563, -0.0732228085398674, 0.02039625123143196, 0.050304606556892395, 0.029361555352807045, -0.005985591094940901, 0.010203962214291096, -0.02565937303006649, 0.04145210236310959, 0.05724285915493965, 0.056401461362838745, 0.01379880029708147, -0.028410211205482483, -0.10657305270433426, 0.16249734163284302, -0.04969821870326996, -0.23493164777755737, -0.23525413870811462, -0.07429896295070648, -0.005823190789669752, 0.002304335357621312, 0.04038261994719505, -0.05138983950018883, -0.07050710916519165, -0.03128022700548172, 0.12508481740951538, -0.05056920275092125, -0.0401836559176445, -0.00679237674921751, -0.04287165030837059, 0.045889731496572495, -0.1394999921321869, 0.013151195831596851, 0.05609273910522461, -0.12188829481601715, -0.0038516507484018803, 0.015725351870059967, 0.08728428930044174, 0.1396861970424652, -0.017972616478800774, -0.01626383699476719, -0.021213704720139503, 0.13592159748077393, -0.11819832772016525, 0.06682933866977692, 0.14852501451969147, -0.12137772142887115, 0.044691551476716995, 0.0726027712225914, 0.042244989424943924, -0.0326443649828434, 0.041004832834005356, 0.04002914950251579, -0.05937521904706955, -0.2460290640592575, -0.012448289431631565, -0.030809056013822556, 0.04852437227964401, 0.09662425518035889, 0.040151409804821014, 0.09008516371250153, 0.05630088597536087, 0.009459991939365864, 0.01830911636352539, -0.0032456088811159134, 0.12169136106967926, 0.1746010035276413, -0.007784122135490179, 0.07769961655139923, -0.06241590157151222, 0.02695002406835556, 0.0877961739897728, -0.0014163595624268055, 0.1385202258825302, 0.009072494693100452, 0.13819827139377594, 0.0487448014318943, -0.0847715511918068, 0.045215506106615067, 0.12628114223480225, -0.03442376106977463, -0.015730079263448715, -0.005176249425858259, -0.0651005208492279, -0.051849741488695145, 0.06375663727521896, 0.018862513825297356, -0.05126463621854782, -0.01606629602611065, -0.07459171116352081, 0.036389563232660294, 0.09321633726358414, 0.02139052003622055, -0.18778014183044434, -0.09169893711805344, -0.026983173564076424, -0.019436001777648926, -0.05311907082796097, -0.009938888251781464, 0.0740351676940918, -0.12936361134052277, 0.05902939289808273, -0.04300269857048988, 0.08686700463294983, -0.12666302919387817, -0.011781363748013973, 0.023740069940686226, 0.03754003718495369, -0.02710353583097458, 0.07471158355474472, -0.2079937756061554, 0.0552237443625927, 0.020122718065977097, 0.026712778955698013, -0.032002974301576614, 0.005305374041199684, 0.03009345382452011, 0.12816894054412842, 0.12281060218811035, -0.0029221379663795233, 0.1260063350200653, -0.12882976233959198, -0.031572870910167694, 0.003262721234932542, 0.04819338396191597, -0.0880337506532669, 0.02748130075633526, -0.03362523764371872, 0.015899458900094032, 0.024664998054504395, 0.07208641618490219, -0.10541126132011414, -0.13023531436920166, 0.04459112137556076, -0.004649816546589136, 0.05312474071979523, -0.0694006159901619, -0.0822749212384224, 0.06400647759437561, 0.21523985266685486, -0.10171302407979965, -0.03051123023033142, -0.13778182864189148, -0.013488181866705418, 0.03204747289419174, -0.08067591488361359, 0.05555242300033569, -0.026828674599528313, 0.11545570939779282, -0.051799874752759933, -0.08588913083076477, 0.09992417693138123, -0.09079577028751373, -0.018904488533735275, -0.0626615509390831, -0.0026722289621829987, 0.049605801701545715, 0.024388756603002548, -0.0430321991443634, -0.011840727180242538, 0.048447128385305405, -0.07627890259027481, -0.041373688727617264, 0.07796584814786911, -0.0338943749666214, 0.02622135728597641, -0.10347195714712143, 0.06659885495901108, -0.05968766286969185, -0.02086601033806801, 0.14905910193920135, 0.14441999793052673, -0.05385885760188103, -0.02129320055246353, 0.1839190423488617, -0.07012919336557388, -0.31483447551727295, 0.03421397879719734, 0.04633687436580658, -0.04000133275985718, 0.08130887150764465, -0.2337527871131897, 0.12999846041202545, 0.04792307689785957, -0.010782245546579361, 0.1104702278971672, -0.17854982614517212, -0.10534977912902832, 0.12719625234603882, 0.1406583935022354, 0.015743283554911613, -0.10230346024036407, -0.03746449574828148, 0.015610919333994389, -0.16195648908615112, 0.07998831570148468, -0.038783833384513855, 0.08298833668231964, -0.01773352362215519, 0.007298581302165985, 0.009303364902734756, -0.061071284115314484, 0.027022479102015495, 0.023854855448007584, 0.027729477733373642, -0.0472218319773674, -0.04292834922671318, 0.11359993368387222, -0.06196132302284241, 0.08313274383544922, -0.033404093235731125, 0.023231716826558113, -0.09239394217729568, -0.05496438965201378, -0.021843096241354942, 0.1124877855181694, -0.01874653436243534, -0.08647970855236053, -0.07172005623579025, 0.05951744318008423, -0.04893774166703224, -0.012580309063196182, 0.13182970881462097, -0.06338272243738174, 0.04427790641784668, 0.19096677005290985, 0.06997142732143402, -0.00801144354045391, -0.17946791648864746, -0.0021055755205452442, -0.006077338010072708, 0.13963459432125092, -0.09215148538351059, 0.058932796120643616, 0.10113885253667831, 0.05870154872536659, 0.14639721810817719, 0.04555889219045639, -0.14436599612236023, -0.01136390957981348, 0.08589545637369156, -0.03609862178564072, -0.0666968896985054, -0.0319812148809433, 0.058948714286088943, -0.09999900311231613, -0.009051808156073093, 0.1262887865304947, -0.08855341374874115, 0.018829545006155968, 0.027310336008667946, -0.022912271320819855, -0.06722918897867203, 0.09642170369625092, 0.07523580640554428, 0.06660519540309906, -0.026218177750706673, 0.12497065216302872, 0.08743523061275482, -0.0925387367606163, 0.008146528154611588, 0.02214507944881916, -0.087623231112957, -0.0617983341217041, -0.08100059628486633, 0.09170424938201904, -0.07956506311893463, -0.06015915423631668, -0.009494832716882229, -0.017424730584025383, 0.014202886261045933, 0.14441460371017456, 0.01776675134897232, 0.0310925655066967, -0.07898755371570587, 0.044907961040735245, -0.07331597805023193, 0.05859432369470596, -0.05673174932599068, 0.10151490569114685, -0.12933611869812012, -0.034845758229494095, 0.07068603485822678, 0.02572871930897236, -0.04539766162633896, -0.06519290804862976, -0.12059549242258072, -0.00018642534269019961, -0.08508559316396713, -0.03769848123192787, -0.023506680503487587, -0.01188022643327713, 0.00031758766272105277, -0.05756109207868576, -0.01350485160946846, 0.03368070721626282, -0.02862737514078617, -0.043663833290338516, 0.01509405579417944, 0.0649639368057251, -0.18806426227092743, -0.01347608957439661, 0.07400088012218475, -0.08620534092187881, 0.05454365164041519, 0.04954563081264496, -0.013685996644198895, 0.06433107703924179, -0.07147904485464096, -0.0343305878341198, 0.00691602798178792, 0.04839841276407242, 0.019093075767159462, -0.04040311649441719, 0.013213315047323704, -0.05159642919898033, 0.020280299708247185, -0.022072698920965195, 0.11329498887062073, -0.0894496887922287, 0.022568924352526665, 0.001157606253400445, -0.03494447097182274, -0.041459593921899796, 0.07728200405836105, 0.06991514563560486, 0.10691449046134949, 0.10622701048851013, -0.06056783348321915, 0.05793078616261482, -0.11479264497756958, -0.005162079352885485, 0.038073550909757614, -0.016143057495355606, 0.14009568095207214, -0.1111246719956398, -0.022632911801338196, -0.044402942061424255, 0.12517988681793213, -0.03359566256403923, 0.033512186259031296, 0.07806386798620224, -0.0546136237680912, -0.11677704006433487, -0.05265917629003525, 0.12378103286027908, 0.06140079349279404, 0.021946407854557037, -0.02988654188811779, 0.03578317537903786, 0.028385143727064133, 0.0567307211458683, 0.1493426263332367, 0.1477963924407959, -0.16930289566516876, 0.023890554904937744, 0.04341307654976845, -0.02915996126830578, -0.18207994103431702, -0.07695254683494568, -0.022683389484882355, 0.08714349567890167, -0.05491117760539055, 0.17107489705085754, 0.13384313881397247, -0.004834460560232401, 0.09039532393217087, 0.019684819504618645, -0.06584063917398453, -0.06962805241346359, -0.08885423094034195, -0.008666404522955418, -0.1614929884672165, 0.0037677097134292126, -0.05287935584783554, 0.041861362755298615, 0.10190026462078094, 0.06349832564592361, -0.00791903492063284, 0.310932993888855, -0.04951660707592964, -0.05429080128669739, 0.07087498903274536, -0.023781990632414818, -0.05673249065876007, -0.07638420164585114, 0.07290180772542953, 0.018412290140986443, 0.1028096079826355, 0.0704578384757042, 0.06039982661604881, -0.029217228293418884, 0.07162366807460785, 0.015522848814725876, -0.11343184858560562, -0.032429397106170654, 0.035441767424345016, -0.09431976824998856, 0.0890238881111145, 0.004975423216819763, 0.01716328226029873, -0.017324665561318398, 0.18531325459480286, -0.06781023740768433, -0.06794438511133194, -0.07905397564172745, 0.23485656082630157, 0.00012340705143287778, 0.021682381629943848, -0.053765323013067245, -0.11809089034795761, -0.07785225659608841, 0.19270427525043488, 0.04927225410938263, -0.011548757553100586, 0.021199287846684456, 0.04586867243051529, 0.019310282543301582, -0.019385388121008873, 0.10806573927402496, 0.0006166888633742929, 0.11074813455343246, -0.01209712028503418, 0.011433802545070648, -0.033710286021232605, -0.053908102214336395, 0.05428894981741905, 0.06372705101966858, 0.003923984710127115, -0.0043622893281280994, -0.1390228271484375, 0.04551433399319649, -0.0539344921708107, -0.26405632495880127, 0.030556781217455864, -0.03092525713145733, -0.059754401445388794, -0.06391996890306473, 0.05467316880822182, -0.045329634100198746, 0.046509869396686554, 0.025790665298700333, -0.05408218875527382, 0.09185665845870972, 0.04351351410150528, -0.047012194991111755, -0.1170448437333107, 0.09738792479038239, -0.044665440917015076, 0.18473252654075623, -0.04241393506526947, 0.03399631381034851, 0.053515415638685226, 0.05594835430383682, -0.07157572358846664, 0.014451575465500355, 0.02737363986670971, -0.10576464235782623, -0.053711362183094025, 0.0915362536907196, -0.046229518949985504, 0.11827956140041351, 0.008443518541753292, -0.2083326280117035, 0.024778027087450027, -0.015938982367515564, -0.043733689934015274, -0.10329554229974747, -0.06182228401303291, -0.08380825817584991, 0.14539939165115356, 0.12070578336715698, 0.009865804575383663, -0.057497818022966385, -0.09789019078016281, 0.013059419579803944, 0.07141762971878052, 0.10559184104204178, -0.028691602870821953, -0.13407227396965027, -0.009250904433429241, -0.0706716924905777, 0.049436479806900024, -0.2722262442111969, -0.005706003867089748, 0.05738324671983719, -0.02018374390900135, 0.01684706285595894, 0.06071409955620766, 0.05290805175900459, 0.04889369755983353, -0.04639521241188049, -0.19510164856910706, 0.01260710321366787, 0.12690100073814392, -0.16074298322200775, -0.04416671767830849 ]
null
null
adapter-transformers
# Adapter `AdapterHub/bert-base-uncased-pf-mnli` for bert-base-uncased An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [nli/multinli](https://adapterhub.ml/explore/nli/multinli/) dataset and includes a prediction head for classification. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("bert-base-uncased") adapter_name = model.load_adapter("AdapterHub/bert-base-uncased-pf-mnli", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
{"language": ["en"], "tags": ["text-classification", "bert", "adapterhub:nli/multinli", "adapter-transformers"], "datasets": ["multi_nli"]}
text-classification
AdapterHub/bert-base-uncased-pf-mnli
[ "adapter-transformers", "bert", "text-classification", "adapterhub:nli/multinli", "en", "dataset:multi_nli", "arxiv:2104.08247", "region:us" ]
2022-03-02T23:29:04+00:00
[ "2104.08247" ]
[ "en" ]
TAGS #adapter-transformers #bert #text-classification #adapterhub-nli/multinli #en #dataset-multi_nli #arxiv-2104.08247 #region-us
# Adapter 'AdapterHub/bert-base-uncased-pf-mnli' for bert-base-uncased An adapter for the 'bert-base-uncased' model that was trained on the nli/multinli dataset and includes a prediction head for classification. This adapter was created for usage with the adapter-transformers library. ## Usage First, install 'adapter-transformers': _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_ Now, the adapter can be loaded and activated like this: ## Architecture & Training The training code for this adapter is available at URL In particular, training configurations for all tasks can be found here. ## Evaluation results Refer to the paper for more information on results. If you use this adapter, please cite our paper "What to Pre-Train on? Efficient Intermediate Task Selection":
[ "# Adapter 'AdapterHub/bert-base-uncased-pf-mnli' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the nli/multinli dataset and includes a prediction head for classification.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ "TAGS\n#adapter-transformers #bert #text-classification #adapterhub-nli/multinli #en #dataset-multi_nli #arxiv-2104.08247 #region-us \n", "# Adapter 'AdapterHub/bert-base-uncased-pf-mnli' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the nli/multinli dataset and includes a prediction head for classification.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ 46, 84, 57, 30, 45 ]
[ "passage: TAGS\n#adapter-transformers #bert #text-classification #adapterhub-nli/multinli #en #dataset-multi_nli #arxiv-2104.08247 #region-us \n# Adapter 'AdapterHub/bert-base-uncased-pf-mnli' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the nli/multinli dataset and includes a prediction head for classification.\n\nThis adapter was created for usage with the adapter-transformers library.## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ -0.055667489767074585, -0.02241385355591774, -0.0027240572962909937, 0.030470946803689003, 0.16987644135951996, 0.01909445971250534, 0.21448704600334167, 0.04974238574504852, 0.07144055515527725, 0.052399955689907074, -0.005643308162689209, 0.11584603041410446, 0.017118044197559357, 0.04094693809747696, 0.03610241785645485, -0.09375616908073425, 0.00903693214058876, 0.01670844480395317, -0.03195579722523689, 0.09020242094993591, 0.09832455217838287, -0.0830221176147461, 0.06643836200237274, 0.04071973264217377, -0.11438178271055222, 0.05453924089670181, -0.014765877276659012, -0.08445844799280167, 0.11373567581176758, 0.09649405628442764, 0.15534931421279907, 0.02808476611971855, -0.006908800452947617, -0.18214793503284454, 0.009173760190606117, 0.08874307572841644, 0.02610573172569275, 0.0438971146941185, -0.0047511085867881775, -0.00840972363948822, 0.023564361035823822, -0.007854930125176907, 0.07724274694919586, 0.06805235892534256, -0.06705304235219955, -0.17940199375152588, -0.02507607825100422, 0.11062338948249817, 0.040040768682956696, 0.07253514230251312, 0.0064749219454824924, 0.10495239496231079, 0.010679254308342934, 0.07163701951503754, 0.16482983529567719, -0.22315049171447754, -0.005147336982190609, 0.023394573479890823, 0.04216492921113968, 0.06689208745956421, -0.02323850430548191, 0.01778601109981537, 0.028323333710432053, 0.03161432966589928, 0.018186764791607857, -0.039173658937215805, -0.009917891584336758, -0.011339228600263596, -0.16025367379188538, 0.001834352035075426, 0.22126485407352448, -0.00006831024802522734, -0.09928806871175766, -0.07677579671144485, -0.02706366591155529, 0.1453961730003357, 0.014655659906566143, -0.06987497955560684, -0.015232621692121029, -0.013572070747613907, 0.0014662494650110602, -0.09189360588788986, -0.09966965019702911, -0.06331449747085571, -0.0598585270345211, 0.28166788816452026, -0.004347359761595726, 0.024880455806851387, -0.0160320196300745, 0.0988447517156601, -0.04003528133034706, -0.0843222364783287, -0.0432833693921566, -0.04311763867735863, -0.10618292540311813, -0.05841434374451637, -0.027491828426718712, -0.2829352021217346, 0.00594746321439743, 0.1577630639076233, 0.10609234124422073, 0.03591964393854141, -0.10811316967010498, 0.05667418614029884, 0.05908491462469101, 0.1687421053647995, -0.06542259454727173, 0.02256610430777073, -0.03164497762918472, -0.018688704818487167, 0.0013854155549779534, -0.09341510385274887, -0.05681085214018822, 0.0022608479484915733, 0.0357673279941082, 0.05417989566922188, 0.04213796183466911, 0.07940172404050827, -0.06217702105641365, -0.07412831485271454, 0.07117225229740143, -0.13700231909751892, 0.009120305068790913, 0.017750393599271774, -0.01660853624343872, 0.10627811402082443, 0.11537867039442062, -0.023197432979941368, -0.047780755907297134, 0.08068190515041351, -0.09016096591949463, -0.05362088978290558, -0.06008375063538551, -0.15441013872623444, 0.050675228238105774, -0.009586323983967304, -0.022750865668058395, -0.15682974457740784, -0.10307829827070236, -0.017695507034659386, 0.05805688723921776, 0.0008603703463450074, 0.09186433255672455, 0.03866451978683472, 0.035542599856853485, 0.008552555926144123, -0.02141430974006653, -0.008695817552506924, -0.026848509907722473, 0.05835980921983719, 0.0405392162501812, 0.046560633927583694, -0.006326816976070404, 0.057158179581165314, -0.057199373841285706, 0.011209871619939804, -0.2088322639465332, 0.08544173836708069, -0.15886849164962769, 0.028678271919488907, -0.144034743309021, -0.007023951038718224, 0.017656344920396805, 0.04596174880862236, 0.06703222543001175, 0.09669502079486847, -0.07205431908369064, -0.07637260109186172, 0.04017510637640953, -0.1774258017539978, -0.13013534247875214, 0.06958013027906418, 0.005442478694021702, 0.12234104424715042, 0.07187826186418533, 0.08227618783712387, 0.13767287135124207, -0.08426027745008469, -0.08823031187057495, 0.06513798981904984, -0.06072061508893967, -0.028901055455207825, 0.0520804338157177, 0.043047185987234116, -0.09768478572368622, 0.00810356717556715, -0.05499197915196419, 0.020681872963905334, -0.031203124672174454, -0.026130640879273415, -0.028206277638673782, -0.030367117375135422, 0.052697956562042236, 0.00281775975599885, -0.0067305234260857105, 0.021848633885383606, -0.11854203790426254, 0.191880464553833, 0.07603278756141663, -0.072154700756073, 0.04323800653219223, -0.10747052729129791, 0.08069701492786407, -0.11390356719493866, 0.01979946345090866, -0.20718427002429962, -0.08523769676685333, 0.025554487481713295, -0.0460902638733387, 0.048401832580566406, 0.04031261429190636, 0.033343423157930374, 0.04031916707754135, 0.008308107033371925, 0.004164183512330055, -0.07360377907752991, 0.01779111661016941, -0.03454028442502022, -0.12803272902965546, -0.08000528067350388, -0.057647984474897385, 0.03106665052473545, -0.17692448198795319, 0.056923508644104004, 0.08313371241092682, 0.06918025016784668, 0.035808075219392776, -0.02321893721818924, -0.020631588995456696, 0.027899619191884995, -0.060523148626089096, -0.027873538434505463, 0.031236588954925537, 0.01438799500465393, -0.10059715807437897, 0.032258108258247375, -0.09400255233049393, -0.024737706407904625, 0.06263312697410583, -0.046774525195360184, -0.050112687051296234, 0.013655575923621655, -0.013756133615970612, -0.043719518929719925, -0.056002188473939896, -0.09693842381238937, 0.17883798480033875, 0.08059034496545792, 0.0668904185295105, -0.03139977902173996, -0.000572544930037111, 0.0060472264885902405, -0.01037519983947277, -0.02527916058897972, 0.029566854238510132, 0.04942408576607704, -0.12404657900333405, 0.044199567288160324, 0.1382383108139038, -0.03434931859374046, 0.10341431200504303, -0.01878606528043747, -0.08925416320562363, -0.004078872036188841, -0.0061544449999928474, 0.05558425560593605, 0.0318978875875473, -0.14483056962490082, 0.018340958282351494, 0.057740166783332825, 0.008518686518073082, 0.006965856999158859, -0.07520925998687744, 0.04719987511634827, 0.06224975362420082, 0.006746106315404177, -0.014587180688977242, -0.015616257674992085, -0.007664030883461237, 0.0565202496945858, 0.02320658229291439, 0.09593324363231659, 0.024098431691527367, -0.022491833195090294, -0.11046925187110901, 0.19824495911598206, -0.07716391235589981, -0.2419658750295639, -0.23468467593193054, -0.09684696048498154, -0.06936335563659668, -0.004416926298290491, 0.04994428530335426, -0.06693164259195328, -0.07399620115756989, -0.061602674424648285, 0.1724783033132553, -0.026337238028645515, -0.007881253957748413, 0.05123868212103844, -0.04391004517674446, 0.06467274576425552, -0.17369651794433594, 0.018352627754211426, 0.04789264127612114, -0.08088725805282593, -0.006278446409851313, 0.043544474989175797, 0.07806817442178726, 0.1536649763584137, 0.004188832826912403, -0.019336571916937828, 0.00685851788148284, 0.1090511903166771, -0.07152368128299713, 0.0340229757130146, 0.15147238969802856, -0.10661695152521133, 0.02847103588283062, 0.04460074380040169, 0.062291525304317474, -0.05225073918700218, 0.05150342360138893, 0.06742481142282486, -0.05907484143972397, -0.27695631980895996, -0.05241468921303749, -0.0033794818446040154, 0.03297802433371544, 0.05772911384701729, 0.0457136295735836, 0.03539291396737099, 0.04614710807800293, 0.019693655893206596, 0.02721242420375347, -0.010853208601474762, 0.08587638288736343, 0.22856901586055756, -0.032498765736818314, 0.09723587334156036, -0.09877822548151016, 0.008868247270584106, 0.10090744495391846, -0.0024391920305788517, 0.1306108683347702, -0.006482800003141165, 0.1125749722123146, 0.09415461868047714, -0.11981116235256195, 0.030826402828097343, 0.14282254874706268, -0.04278474673628807, -0.013791453093290329, 0.0021791134495288134, -0.07193063199520111, -0.028611410409212112, 0.049940355122089386, 0.008275886997580528, -0.001506452914327383, -0.040954235941171646, -0.044346246868371964, 0.045648977160453796, 0.12314040213823318, 0.03724643215537071, -0.19059348106384277, -0.12228623032569885, -0.015171784907579422, -0.05841716006398201, -0.051079388707876205, -0.0032724763732403517, 0.0887969508767128, -0.08221420645713806, 0.06196226179599762, -0.04333671182394028, 0.0945206955075264, -0.15043991804122925, -0.014175250194966793, 0.033165812492370605, 0.07580272108316422, -0.0382843054831028, 0.09432784467935562, -0.2212907075881958, 0.07877609878778458, 0.04684162139892578, 0.030708642676472664, -0.05617070943117142, 0.029412532225251198, -0.009721655398607254, 0.15286745131015778, 0.043933968991041183, -0.016899751499295235, 0.09703455120325089, -0.14532415568828583, -0.0639331117272377, 0.010450182482600212, 0.054140184074640274, -0.06116272881627083, 0.046769578009843826, -0.0061039673164486885, 0.044621340930461884, 0.02851301059126854, 0.06676027178764343, -0.16158545017242432, -0.1699160635471344, 0.06870747357606888, 0.042034316807985306, 0.026911919936537743, -0.06446601450443268, -0.11561133712530136, 0.04425283148884773, 0.2267100065946579, -0.10475793480873108, -0.05676690489053726, -0.151126429438591, 0.022359542548656464, 0.053849074989557266, -0.0634509027004242, 0.003918644040822983, -0.02237907238304615, 0.10081641376018524, -0.04488512501120567, -0.08370625972747803, 0.05969073623418808, -0.08285637944936752, -0.04600989446043968, -0.04943257197737694, 0.020560873672366142, 0.08339361846446991, 0.011112899519503117, -0.028137166053056717, -0.037958379834890366, 0.0580170676112175, -0.10177751630544662, -0.030260702595114708, 0.10330908000469208, -0.03328794986009598, 0.07305194437503815, -0.10836027562618256, 0.05353491008281708, -0.04566296935081482, -0.014702280052006245, 0.14937402307987213, 0.14155322313308716, -0.03579409793019295, 0.0442839078605175, 0.20228712260723114, -0.09646737575531006, -0.26539117097854614, -0.0028630883898586035, 0.0352214016020298, 0.010651083663105965, 0.03939683735370636, -0.23280352354049683, 0.17551001906394958, 0.05505061894655228, 0.0003389064804650843, 0.07729250937700272, -0.21223659813404083, -0.09286636114120483, 0.1144910603761673, 0.11536431312561035, 0.035139236599206924, -0.12721848487854004, -0.06320672482252121, -0.01804722100496292, -0.15438272058963776, 0.10847422480583191, -0.06252491474151611, 0.08382347971200943, -0.013557560741901398, 0.01884634606540203, 0.022000886499881744, -0.04629044607281685, 0.0821247324347496, 0.04365989938378334, 0.026961376890540123, -0.06609293073415756, 0.03551475331187248, 0.10931628197431564, -0.046277061104774475, 0.09147363901138306, -0.03795059397816658, 0.03464080020785332, -0.09291517734527588, -0.07990966737270355, -0.005548941902816296, 0.11503399163484573, -0.034815285354852676, -0.07190036028623581, -0.034215524792671204, 0.03190269321203232, -0.02626367285847664, -0.03446619585156441, 0.10624855756759644, -0.0475090891122818, 0.06309396773576736, 0.15769805014133453, 0.11946311593055725, -0.02926263026893139, -0.13730153441429138, -0.020054897293448448, -0.01857328787446022, 0.11986739188432693, -0.13364006578922272, 0.07853368669748306, 0.08825886994600296, 0.038309451192617416, 0.13200680911540985, 0.05187838524580002, -0.15987879037857056, -0.01840352639555931, 0.07778117805719376, -0.07846777141094208, -0.0623166523873806, -0.01708507165312767, 0.041023995727300644, -0.10940680652856827, 0.06911678612232208, 0.19169658422470093, -0.03634427860379219, 0.021473350003361702, 0.029193799942731857, -0.00959433987736702, -0.07249034941196442, 0.11713285744190216, 0.07240352779626846, 0.06265575438737869, -0.015108888037502766, 0.10125701129436493, 0.10400157421827316, -0.10368508100509644, 0.02799270860850811, -0.02499822899699211, -0.07198238372802734, -0.07515029609203339, -0.06714817881584167, 0.09997747093439102, -0.06613870710134506, -0.08803590387105942, -0.022648774087429047, -0.04757995530962944, 0.049206241965293884, 0.17441727221012115, 0.038254514336586, 0.0201004296541214, -0.0804188922047615, 0.013455934822559357, -0.07857941091060638, 0.07408945262432098, -0.058758869767189026, 0.07010728865861893, -0.11573886126279831, -0.016552815213799477, 0.06319306790828705, 0.04840565845370293, -0.03983808308839798, -0.06685148924589157, -0.14303337037563324, -0.014628849923610687, -0.12811647355556488, -0.046371977776288986, -0.04119715839624405, -0.008305358700454235, 0.025523506104946136, -0.07080948352813721, -0.033093810081481934, 0.034567903727293015, -0.02369868755340576, -0.029797682538628578, 0.022923434153199196, 0.11371562629938126, -0.18366947770118713, -0.028280386701226234, 0.03417864069342613, -0.07502015680074692, 0.07705683261156082, 0.013464834541082382, -0.02170763909816742, 0.04957279935479164, -0.08603983372449875, 0.03196418657898903, 0.005686053540557623, 0.05466620624065399, 0.01104444358497858, -0.11499228328466415, 0.031101960688829422, -0.018656648695468903, 0.015358283184468746, 0.008118921890854836, 0.13930487632751465, -0.06486381590366364, 0.02750440314412117, -0.02729765698313713, -0.036374352872371674, -0.054841719567775726, 0.057531099766492844, 0.0671200305223465, 0.11003650724887848, 0.13834822177886963, -0.07210872322320938, 0.0686447024345398, -0.09028507769107819, 0.0009602184290997684, 0.03361530229449272, -0.010351036675274372, 0.1331813484430313, -0.10761535167694092, -0.01348385214805603, -0.05976369231939316, 0.17887544631958008, -0.05373556911945343, 0.051156483590602875, 0.06187640503048897, -0.045812446624040604, -0.1009049341082573, -0.04254074767231941, 0.16248640418052673, 0.034800123423337936, 0.04823765531182289, 0.010559315793216228, 0.04006863385438919, 0.029019782319664955, 0.08297571539878845, 0.14550885558128357, 0.14208847284317017, -0.12026932090520859, 0.05686323717236519, 0.06794614344835281, -0.03589252755045891, -0.14392761886119843, -0.07086245715618134, -0.039491064846515656, 0.0995965301990509, -0.041425611823797226, 0.14634455740451813, 0.0761546641588211, -0.020939312875270844, 0.06278299540281296, 0.023172983899712563, -0.06824794411659241, -0.09189064800739288, -0.1060837134718895, -0.024856537580490112, -0.1307716816663742, -0.014480550773441792, -0.08130250126123428, -0.00019342494488228112, 0.09995289891958237, 0.03966030851006508, 0.008313453756272793, 0.2287469506263733, -0.06217457354068756, -0.018146250396966934, 0.04090721905231476, -0.04130630940198898, -0.03456968441605568, -0.06559783220291138, 0.06314704567193985, 0.008265470154583454, 0.10300686210393906, 0.041821375489234924, 0.05835216864943504, 0.0052385469898581505, 0.06378941982984543, -0.018842585384845734, -0.11080723255872726, -0.040772244334220886, 0.0034280247054994106, -0.03969276323914528, 0.09315304458141327, 0.023319948464632034, -0.029500620439648628, -0.020104635506868362, 0.16102665662765503, -0.041365958750247955, -0.08252564817667007, -0.12559692561626434, 0.23477217555046082, -0.004658272955566645, 0.01875731348991394, -0.035000041127204895, -0.10604629665613174, -0.08650093525648117, 0.1744685173034668, 0.06290081143379211, 0.010118559002876282, 0.03176474943757057, 0.05555875599384308, 0.013221554458141327, 0.010521773248910904, 0.11728335171937943, 0.007750554475933313, 0.11362531036138535, 0.007879559881985188, -0.023343434557318687, -0.07379105687141418, -0.03864160552620888, 0.0172194205224514, 0.1177559345960617, 0.00335678574629128, -0.026013318449258804, -0.07598259299993515, 0.08192037045955658, -0.013193318620324135, -0.24386979639530182, 0.009590129368007183, -0.021935492753982544, -0.0826321616768837, -0.06219074875116348, 0.0709676742553711, -0.07570452243089676, 0.02951558493077755, 0.007091394159942865, -0.04330108314752579, 0.13651369512081146, 0.027992991730570793, -0.06687142699956894, -0.050048958510160446, 0.07935286313295364, -0.047467757016420364, 0.14678052067756653, -0.007482339162379503, 0.0507916659116745, 0.10200385749340057, 0.04700211435556412, -0.061412010341882706, 0.047148559242486954, 0.022073660045862198, -0.09213359653949738, -0.01052776351571083, 0.057714685797691345, -0.031710587441921234, 0.14077240228652954, 0.03235378488898277, -0.20372948050498962, 0.029674828052520752, -0.006602812092751265, -0.06531045585870743, -0.08781672269105911, -0.029567519202828407, -0.08746489137411118, 0.14127874374389648, 0.13853654265403748, -0.002806292148306966, -0.0859367623925209, -0.07909924536943436, 0.060446012765169144, 0.0059281084686517715, 0.10169152915477753, -0.03482678905129433, -0.16892370581626892, 0.005340298172086477, -0.1100798174738884, 0.06577316671609879, -0.30281558632850647, -0.039522819221019745, 0.09074798971414566, -0.030469674617052078, -0.021477561444044113, 0.07314333319664001, 0.09081196039915085, 0.035749442875385284, -0.05318401753902435, -0.2197212427854538, 0.004768673796206713, 0.11280297487974167, -0.17298704385757446, -0.061885081231594086 ]
null
null
adapter-transformers
# Adapter `AdapterHub/bert-base-uncased-pf-mrpc` for bert-base-uncased An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [sts/mrpc](https://adapterhub.ml/explore/sts/mrpc/) dataset and includes a prediction head for classification. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("bert-base-uncased") adapter_name = model.load_adapter("AdapterHub/bert-base-uncased-pf-mrpc", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
{"language": ["en"], "tags": ["text-classification", "bert", "adapterhub:sts/mrpc", "adapter-transformers"]}
text-classification
AdapterHub/bert-base-uncased-pf-mrpc
[ "adapter-transformers", "bert", "text-classification", "adapterhub:sts/mrpc", "en", "arxiv:2104.08247", "region:us" ]
2022-03-02T23:29:04+00:00
[ "2104.08247" ]
[ "en" ]
TAGS #adapter-transformers #bert #text-classification #adapterhub-sts/mrpc #en #arxiv-2104.08247 #region-us
# Adapter 'AdapterHub/bert-base-uncased-pf-mrpc' for bert-base-uncased An adapter for the 'bert-base-uncased' model that was trained on the sts/mrpc dataset and includes a prediction head for classification. This adapter was created for usage with the adapter-transformers library. ## Usage First, install 'adapter-transformers': _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_ Now, the adapter can be loaded and activated like this: ## Architecture & Training The training code for this adapter is available at URL In particular, training configurations for all tasks can be found here. ## Evaluation results Refer to the paper for more information on results. If you use this adapter, please cite our paper "What to Pre-Train on? Efficient Intermediate Task Selection":
[ "# Adapter 'AdapterHub/bert-base-uncased-pf-mrpc' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the sts/mrpc dataset and includes a prediction head for classification.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ "TAGS\n#adapter-transformers #bert #text-classification #adapterhub-sts/mrpc #en #arxiv-2104.08247 #region-us \n", "# Adapter 'AdapterHub/bert-base-uncased-pf-mrpc' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the sts/mrpc dataset and includes a prediction head for classification.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ 37, 83, 57, 30, 45 ]
[ "passage: TAGS\n#adapter-transformers #bert #text-classification #adapterhub-sts/mrpc #en #arxiv-2104.08247 #region-us \n# Adapter 'AdapterHub/bert-base-uncased-pf-mrpc' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the sts/mrpc dataset and includes a prediction head for classification.\n\nThis adapter was created for usage with the adapter-transformers library.## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ -0.07484020292758942, -0.017599472776055336, -0.002444884739816189, 0.028674708679318428, 0.19968575239181519, 0.024499638006091118, 0.13842375576496124, 0.02961345762014389, 0.046421315521001816, 0.04196861386299133, 0.06553839892148972, 0.11059202998876572, 0.02588162012398243, 0.05064720660448074, 0.026129305362701416, -0.11651256680488586, 0.004514515399932861, 0.014109529554843903, -0.07056903839111328, 0.10760650038719177, 0.09557454288005829, -0.09451626241207123, 0.11608634889125824, 0.027538174763321877, -0.08491883426904678, 0.02054002694785595, -0.0022855636198073626, -0.07933250069618225, 0.08737632632255554, 0.06810849159955978, 0.14322476089000702, 0.05105489119887352, 0.04291035979986191, -0.11898355931043625, 0.019167767837643623, 0.08542530983686447, 0.047510359436273575, 0.09512573480606079, -0.005758302286267281, 0.0014171068323776126, -0.017394069582223892, -0.006203395780175924, 0.08545006066560745, 0.07003258913755417, -0.07122241705656052, -0.20626665651798248, -0.04749887064099312, 0.07060457766056061, 0.026127779856324196, 0.08153687417507172, 0.01874951645731926, 0.08601231873035431, 0.023149827495217323, 0.03905343636870384, 0.20294451713562012, -0.22209638357162476, 0.012731246650218964, 0.01406148262321949, 0.047540083527565, 0.06979050487279892, -0.04332621395587921, 0.01515462901443243, 0.01580343395471573, 0.02139691449701786, 0.0878593772649765, -0.02823864109814167, 0.022675637155771255, 0.011948712170124054, -0.17047442495822906, -0.015637289732694626, 0.2579193711280823, -0.023897726088762283, -0.08955585956573486, -0.04067639261484146, -0.03219994530081749, 0.07907170802354813, 0.027752308174967766, -0.08573691546916962, -0.0075520845130085945, 0.006455359980463982, -0.03961045667529106, -0.09581111371517181, -0.08970373868942261, -0.09274595230817795, -0.09090618789196014, 0.2544253468513489, -0.0164354108273983, 0.019631223753094673, 0.018698228523135185, 0.12211024016141891, -0.011095833964645863, -0.08895657956600189, -0.05346482992172241, -0.06760790199041367, -0.059219326823949814, -0.06244741752743721, -0.04211736470460892, -0.2891424298286438, -0.033083006739616394, 0.0801689401268959, 0.10108831524848938, 0.03820410370826721, -0.06190093234181404, 0.06353233754634857, 0.024012688547372818, 0.1777377724647522, -0.13670192658901215, 0.06740439683198929, -0.03946062549948692, -0.016174891963601112, -0.050797589123249054, -0.11079519987106323, -0.056207623332738876, 0.007459183689206839, 0.036466196179389954, 0.027533061802387238, -0.0011112423380836844, 0.13085298240184784, -0.0354422852396965, -0.0693768858909607, 0.0576135627925396, -0.14414873719215393, -0.012986033223569393, 0.026923594996333122, -0.05890167877078056, 0.09971757233142853, 0.1549699455499649, -0.018463313579559326, -0.044460270553827286, 0.1300615817308426, -0.07337085157632828, -0.04009374603629112, -0.08005814254283905, -0.14633497595787048, 0.022194691002368927, -0.0025797770358622074, -0.0356760136783123, -0.14000831544399261, -0.08093971759080887, -0.007467180490493774, 0.0657077431678772, 0.022271405905485153, 0.1262698620557785, 0.03157015144824982, 0.03299866244196892, 0.018223902210593224, -0.027935929596424103, 0.0017164001474156976, -0.016862671822309494, 0.070860855281353, 0.0008265683427453041, 0.04066280275583267, -0.006510579027235508, 0.08183202892541885, -0.04538315162062645, 0.006916023325175047, -0.20834234356880188, 0.06665468215942383, -0.158527672290802, 0.02747531048953533, -0.13068720698356628, -0.0351283922791481, -0.006010304670780897, 0.028399813920259476, 0.06295637041330338, 0.09352618455886841, -0.07903587073087692, -0.05056764557957649, 0.029030151665210724, -0.15658386051654816, -0.10639987140893936, 0.04112696275115013, -0.01925944723188877, 0.11681246012449265, 0.05257531628012657, 0.027471674606204033, 0.12455755472183228, -0.09488323330879211, -0.06374285370111465, 0.03791305050253868, -0.0825054869055748, -0.026919720694422722, 0.08292912691831589, 0.00645718676969409, -0.17803286015987396, 0.02846256084740162, -0.13230325281620026, -0.02813665010035038, -0.04176028445363045, -0.016071239486336708, -0.023797180503606796, -0.025145361199975014, 0.10442853718996048, 0.02430136129260063, -0.002047532005235553, 0.042811911553144455, -0.11660845577716827, 0.2466832399368286, 0.05364970862865448, -0.06455840915441513, 0.023358849808573723, -0.12013532966375351, 0.06094876676797867, -0.13221654295921326, 0.010033191181719303, -0.22119179368019104, -0.014628907665610313, -0.00964573584496975, -0.018650025129318237, 0.08674293756484985, 0.04458807408809662, 0.07288315892219543, 0.048228032886981964, 0.005074127111583948, 0.03194936737418175, -0.07103176414966583, 0.040201663970947266, -0.04271446913480759, -0.11266423761844635, -0.07477753609418869, -0.05177338421344757, -0.002339333761483431, -0.14853864908218384, 0.04402082413434982, 0.0999331995844841, 0.07460416853427887, 0.029844461008906364, -0.032457828521728516, -0.01528032124042511, -0.006546883378177881, -0.027208635583519936, -0.025601405650377274, 0.039687808603048325, 0.006856030318886042, -0.0618414506316185, 0.03462154045701027, -0.13299499452114105, 0.021212687715888023, 0.1046876534819603, -0.06121125444769859, -0.08866631239652634, -0.0332951620221138, 0.014828579500317574, -0.0096984738484025, -0.03517074137926102, -0.1163112223148346, 0.23720887303352356, 0.06643053144216537, 0.09091585129499435, -0.0350494459271431, -0.023080555722117424, 0.008204727433621883, -0.0037207561545073986, -0.02408825047314167, 0.018313022330403328, 0.07637979835271835, -0.1010456308722496, 0.038513343781232834, 0.14592242240905762, -0.005372634157538414, 0.07971633225679398, 0.0022553279995918274, -0.10316133499145508, -0.02027195319533348, -0.053661175072193146, 0.055756825953722, 0.032703906297683716, -0.09894009679555893, -0.0025921070482581854, 0.07600495219230652, 0.009701716713607311, 0.019844383001327515, -0.06501366198062897, 0.048247743397951126, 0.07810404896736145, 0.015242612920701504, -0.053050946444272995, -0.02751259133219719, -0.010132365860044956, 0.07114612311124802, 0.040127500891685486, 0.12541057169437408, 0.022773990407586098, -0.021341614425182343, -0.0944104790687561, 0.16840951144695282, -0.10441184043884277, -0.21212781965732574, -0.23985426127910614, -0.10461623966693878, -0.04428084194660187, 0.026084603741765022, 0.01544169895350933, -0.08590655028820038, -0.09681004285812378, -0.06578841805458069, 0.15654824674129486, -0.04878769814968109, 0.003444006433710456, 0.045663367956876755, -0.03655928000807762, 0.08431266248226166, -0.15724532306194305, 0.037021152675151825, 0.03641046583652496, -0.05559331178665161, -0.014013221487402916, 0.043452899903059006, 0.07067012786865234, 0.15102450549602509, -0.02930763177573681, 0.01918933168053627, 0.004221392795443535, 0.08204562216997147, -0.04087129235267639, 0.014884687960147858, 0.1392289698123932, -0.1409888118505478, 0.017142392694950104, 0.05598859861493111, 0.0563824325799942, -0.04718842729926109, 0.06024884805083275, 0.014137663878500462, -0.06812705844640732, -0.26405277848243713, -0.030372019857168198, -0.0071296184323728085, -0.020990142598748207, 0.09330612421035767, 0.019413530826568604, 0.014791841618716717, 0.07505767792463303, 0.031526464968919754, -0.009858534671366215, -0.007740319706499577, 0.06601598858833313, 0.19056949019432068, -0.03318415582180023, 0.08514786511659622, -0.09167066961526871, 0.017894700169563293, 0.09389742463827133, -0.05857410654425621, 0.14144685864448547, -0.02073141187429428, 0.09259361773729324, 0.08290104568004608, -0.06493914127349854, 0.05108516663312912, 0.1630265861749649, -0.03464255854487419, -0.0019425544887781143, -0.005405731033533812, -0.06541330367326736, -0.08395928889513016, 0.02350240759551525, -0.0015340395038947463, 0.01592756062746048, -0.06472276896238327, -0.033029500395059586, 0.023941265419125557, 0.1102641224861145, -0.023717345669865608, -0.2450377345085144, -0.10179489105939865, -0.03662875294685364, 0.005150496028363705, -0.05379565432667732, 0.0014261907199397683, 0.07574676722288132, -0.060718078166246414, 0.027469083666801453, -0.043932169675827026, 0.09420375525951385, -0.11669023334980011, -0.010621326044201851, 0.07149715721607208, 0.13839036226272583, -0.04018457233905792, 0.09171907603740692, -0.20628365874290466, 0.11290300637483597, 0.038973841816186905, 0.033180221915245056, -0.05073891580104828, 0.017899204045534134, 0.03217779099941254, 0.150689035654068, 0.04685109481215477, -0.014926993288099766, -0.01503205019980669, -0.16477349400520325, -0.07568756490945816, 0.004161655902862549, 0.08324974030256271, -0.11185984313488007, 0.035101357847452164, -0.04570656269788742, 0.0358363576233387, 0.04030180722475052, 0.0338335856795311, -0.12303803861141205, -0.16429388523101807, 0.0803382396697998, -0.01110044214874506, 0.09234337508678436, -0.06550132483243942, -0.11359933018684387, 0.00536228297278285, 0.19730496406555176, -0.1308550238609314, -0.04315416142344475, -0.1720486730337143, -0.005568815395236015, 0.0608501173555851, -0.06627635657787323, 0.007146813441067934, 0.002030296018347144, 0.12473024427890778, 0.008767824620008469, -0.10319381952285767, 0.08499022573232651, -0.06385965645313263, -0.0739995464682579, -0.04127870872616768, 0.033735815435647964, 0.08379717171192169, 0.03561732545495033, -0.019158709794282913, 0.00266042398288846, 0.04262696951627731, -0.10647159814834595, -0.01836598664522171, 0.09280063211917877, 0.026851531118154526, 0.04920528829097748, -0.0833740383386612, 0.06873621046543121, -0.04237097129225731, 0.0054368991404771805, 0.16842781007289886, 0.09348104149103165, -0.08072726428508759, 0.05939968302845955, 0.19106435775756836, -0.07640983909368515, -0.29410234093666077, 0.027238430455327034, 0.030751297250390053, -0.014001435600221157, 0.035184476524591446, -0.2245752364397049, 0.1429336667060852, 0.03463336080312729, 0.007794230245053768, 0.018334945663809776, -0.15394559502601624, -0.10320550948381424, 0.16840991377830505, 0.11899736523628235, 0.031160125508904457, -0.0974847748875618, -0.07037197053432465, -0.026842879131436348, -0.16861343383789062, 0.10671213269233704, -0.06468924880027771, 0.07782641053199768, 0.012701675295829773, 0.03152299299836159, 0.016392935067415237, -0.051187530159950256, 0.09752111881971359, 0.005508985370397568, 0.02774529531598091, -0.0906805768609047, 0.024458101019263268, 0.04236713424324989, -0.04546324536204338, 0.09777005016803741, 0.005383944138884544, 0.04021400213241577, -0.10009881108999252, -0.08149100840091705, 0.023197529837489128, 0.09763645380735397, -0.012980046682059765, -0.07140412926673889, -0.044865917414426804, 0.027185672894120216, -0.031975261867046356, -0.0683235302567482, 0.043097030371427536, -0.09293899685144424, 0.0679616779088974, 0.1921948343515396, 0.16752851009368896, -0.03787269815802574, -0.10930560529232025, 0.01491134986281395, -0.017073435708880424, 0.11971453577280045, -0.12480967491865158, 0.07074033468961716, 0.10527306795120239, 0.03286555036902428, 0.12514913082122803, 0.051401522010564804, -0.10928872972726822, -0.009598799049854279, 0.04326878860592842, -0.09137512743473053, -0.04030461236834526, -0.01945674605667591, 0.10454963892698288, -0.14562614262104034, 0.04837137833237648, 0.16261406242847443, -0.056830994784832, 0.02896343171596527, 0.03062218427658081, -0.004518930334597826, -0.04279756546020508, 0.12436764687299728, 0.1174689307808876, 0.057277873158454895, -0.030961357057094574, 0.10912792384624481, 0.09971404820680618, -0.09423860907554626, 0.028195422142744064, -0.07197795808315277, -0.0912230908870697, -0.0554836131632328, -0.06949537992477417, 0.07715076953172684, -0.013008132576942444, -0.07641512900590897, -0.00806240364909172, -0.07432408630847931, 0.05315013229846954, 0.17250436544418335, 0.037043094635009766, 0.0150237325578928, -0.08367705345153809, 0.031205546110868454, -0.09521302580833435, 0.05352014675736427, -0.04532163217663765, 0.054174426943063736, -0.09399067610502243, 0.04694057255983353, 0.03693409264087677, 0.037859078496694565, -0.060276418924331665, -0.05146223306655884, -0.11928403377532959, -0.019537461921572685, -0.11090972274541855, -0.04109332337975502, -0.03508622199296951, -0.02364395000040531, 0.024876978248357773, -0.09582358598709106, -0.043167561292648315, 0.03619549795985222, -0.03760276362299919, -0.005919600836932659, 0.04165562987327576, 0.08132462203502655, -0.15903712809085846, -0.01381662953644991, 0.06565592437982559, -0.051646530628204346, 0.049634434282779694, 0.04173163324594498, -0.042063646018505096, 0.03128200024366379, -0.07930043339729309, -0.0004528090648818761, -0.026499193161725998, 0.05282790586352348, 0.02546383999288082, -0.10830775648355484, 0.030677689239382744, -0.03668060898780823, 0.00017886317800730467, 0.003821678226813674, 0.2117132693529129, -0.06393914669752121, 0.03782391548156738, -0.019984496757388115, 0.030195506289601326, -0.05551176145672798, 0.04457638040184975, 0.10052166134119034, 0.11518624424934387, 0.1299319565296173, -0.061340101063251495, 0.07756537199020386, -0.09573229402303696, 0.021876374259591103, 0.02514631487429142, -0.02472718432545662, 0.09965874999761581, -0.0930158719420433, 0.019047953188419342, -0.048702288419008255, 0.2096932977437973, -0.03931349888443947, 0.017495421692728996, 0.07015360891819, 0.0009706121636554599, -0.06536444276571274, -0.03394811227917671, 0.13086822628974915, 0.02684864029288292, 0.041326023638248444, 0.022340962663292885, 0.06526374071836472, 0.004286825191229582, -0.025598173961043358, 0.16862796247005463, 0.144984632730484, -0.09414423257112503, 0.018649853765964508, 0.03834060952067375, -0.008862899616360664, -0.09533928334712982, -0.02168516255915165, -0.008754409849643707, 0.08579567819833755, -0.03002217598259449, 0.13587582111358643, 0.08695808053016663, -0.029742570593953133, 0.07371554523706436, -0.01786334067583084, -0.06023341044783592, -0.09173706918954849, -0.06427314877510071, -0.026884447783231735, -0.15412598848342896, -0.020283443853259087, -0.06948404014110565, -0.02933967113494873, 0.12277297675609589, 0.02864096313714981, 0.029187392443418503, 0.23668767511844635, -0.13984458148479462, -0.027147773653268814, 0.021657615900039673, -0.05510174483060837, -0.04581356793642044, -0.12134676426649094, 0.031228967010974884, 0.06043188273906708, 0.11322370916604996, 0.0522887222468853, 0.04236163571476936, 0.010936714708805084, 0.0258957426995039, -0.0022103777155280113, -0.10553184896707535, -0.04211166501045227, 0.020035969093441963, -0.043847136199474335, 0.0730208307504654, -0.005656437017023563, -0.023574555292725563, -0.02506614476442337, 0.15586112439632416, -0.06678763031959534, -0.056260257959365845, -0.14678418636322021, 0.14228641986846924, 0.01948634535074234, 0.03639380261301994, -0.022282849997282028, -0.08798978477716446, -0.056310318410396576, 0.20441733300685883, 0.08354418724775314, -0.036668241024017334, 0.02844144217669964, 0.04233931750059128, 0.026333503425121307, 0.030830787494778633, 0.11633948981761932, 0.027881814166903496, 0.051474086940288544, 0.010486449114978313, -0.051126886159181595, -0.07235799729824066, -0.016995659098029137, 0.05943980813026428, 0.09312070906162262, 0.0017559397965669632, -0.03330546244978905, -0.05371945723891258, 0.07517053186893463, -0.018618157133460045, -0.2715979218482971, -0.0577976293861866, -0.009973247535526752, -0.04986381530761719, -0.053880684077739716, 0.06250395625829697, -0.04674214869737625, -0.00868434738367796, 0.025791993364691734, -0.02485431358218193, 0.1404562145471573, 0.055338844656944275, -0.07287149876356125, -0.014008676633238792, 0.09108185023069382, -0.043805964291095734, 0.18396097421646118, -0.0118563212454319, 0.017795147374272346, 0.07187628000974655, 0.030757129192352295, -0.08318249136209488, 0.028013765811920166, 0.02518884278833866, -0.09873578697443008, 0.008380700834095478, 0.04213807359337807, -0.022878140211105347, 0.11392932385206223, 0.019287539646029472, -0.19122730195522308, 0.04191207140684128, -0.04891987144947052, -0.07607978582382202, -0.04999414086341858, -0.024883948266506195, -0.07972021400928497, 0.15289436280727386, 0.13998284935951233, 0.007362139876931906, -0.0813463106751442, -0.09550811350345612, 0.03717707470059395, -0.022953638806939125, 0.05624816194176674, -0.028690576553344727, -0.1300012171268463, -0.04064978286623955, -0.08638879656791687, 0.04223041608929634, -0.31745004653930664, -0.04664471000432968, 0.06870292127132416, -0.048822417855262756, 0.0265696719288826, 0.04938597232103348, 0.06922711431980133, 0.06053692474961281, -0.06313919275999069, -0.07166939228773117, 0.012579021975398064, 0.12362048029899597, -0.20393496751785278, -0.03217053413391113 ]
null
null
adapter-transformers
# Adapter `AdapterHub/bert-base-uncased-pf-multirc` for bert-base-uncased An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [rc/multirc](https://adapterhub.ml/explore/rc/multirc/) dataset and includes a prediction head for classification. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("bert-base-uncased") adapter_name = model.load_adapter("AdapterHub/bert-base-uncased-pf-multirc", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
{"language": ["en"], "tags": ["text-classification", "adapterhub:rc/multirc", "bert", "adapter-transformers"]}
text-classification
AdapterHub/bert-base-uncased-pf-multirc
[ "adapter-transformers", "bert", "text-classification", "adapterhub:rc/multirc", "en", "arxiv:2104.08247", "region:us" ]
2022-03-02T23:29:04+00:00
[ "2104.08247" ]
[ "en" ]
TAGS #adapter-transformers #bert #text-classification #adapterhub-rc/multirc #en #arxiv-2104.08247 #region-us
# Adapter 'AdapterHub/bert-base-uncased-pf-multirc' for bert-base-uncased An adapter for the 'bert-base-uncased' model that was trained on the rc/multirc dataset and includes a prediction head for classification. This adapter was created for usage with the adapter-transformers library. ## Usage First, install 'adapter-transformers': _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_ Now, the adapter can be loaded and activated like this: ## Architecture & Training The training code for this adapter is available at URL In particular, training configurations for all tasks can be found here. ## Evaluation results Refer to the paper for more information on results. If you use this adapter, please cite our paper "What to Pre-Train on? Efficient Intermediate Task Selection":
[ "# Adapter 'AdapterHub/bert-base-uncased-pf-multirc' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the rc/multirc dataset and includes a prediction head for classification.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ "TAGS\n#adapter-transformers #bert #text-classification #adapterhub-rc/multirc #en #arxiv-2104.08247 #region-us \n", "# Adapter 'AdapterHub/bert-base-uncased-pf-multirc' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the rc/multirc dataset and includes a prediction head for classification.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ 36, 83, 57, 30, 45 ]
[ "passage: TAGS\n#adapter-transformers #bert #text-classification #adapterhub-rc/multirc #en #arxiv-2104.08247 #region-us \n# Adapter 'AdapterHub/bert-base-uncased-pf-multirc' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the rc/multirc dataset and includes a prediction head for classification.\n\nThis adapter was created for usage with the adapter-transformers library.## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ -0.056546974927186966, -0.04545219987630844, -0.002678577322512865, 0.038605302572250366, 0.18843859434127808, 0.042826712131500244, 0.19662299752235413, 0.0224478617310524, 0.03658852353692055, 0.035585545003414154, 0.04839418828487396, 0.1142050102353096, 0.01902354136109352, 0.01815454289317131, 0.012161465361714363, -0.12488774955272675, 0.01694501005113125, 0.010768624022603035, -0.029224270954728127, 0.0852343961596489, 0.09672098606824875, -0.09581707417964935, 0.08904373645782471, 0.034536316990852356, -0.12209413945674896, 0.028470156714320183, -0.01989864557981491, -0.0861077532172203, 0.09939561039209366, 0.08704475313425064, 0.16600288450717926, 0.05745963379740715, 0.03197062760591507, -0.14017744362354279, 0.022508174180984497, 0.09223143756389618, 0.024573806673288345, 0.0886041522026062, -0.019836081191897392, -0.009107406251132488, 0.015558314509689808, 0.018356017768383026, 0.11059413105249405, 0.05621577054262161, -0.06323709338903427, -0.1865721195936203, -0.03751300647854805, 0.11466597765684128, 0.028453579172492027, 0.05939425155520439, 0.029059307649731636, 0.06035224348306656, 0.01629313826560974, 0.053271666169166565, 0.17637424170970917, -0.24185192584991455, 0.001202284824103117, 0.050560276955366135, 0.05965205281972885, 0.07718420028686523, -0.04638798162341118, 0.0016906807431951165, 0.02530221827328205, 0.03548648953437805, 0.03238125890493393, -0.02643740177154541, -0.021486029028892517, -0.025460414588451385, -0.16407422721385956, -0.007197852246463299, 0.22605270147323608, -0.026002326980233192, -0.10852951556444168, -0.03299720957875252, -0.022422296926379204, 0.11926247924566269, 0.024371953681111336, -0.05933810770511627, -0.010019922628998756, -0.002847707364708185, -0.03924740105867386, -0.10886792838573456, -0.09480259567499161, -0.10257775336503983, -0.09781236946582794, 0.2971054017543793, 0.001103704096749425, 0.04100395366549492, 0.006304722744971514, 0.1286526471376419, -0.02226155437529087, -0.08207180351018906, -0.04700062796473503, -0.060239553451538086, -0.07653535902500153, -0.057043321430683136, -0.047348879277706146, -0.21511663496494293, 0.0026372307911515236, 0.1444532424211502, 0.08683884143829346, 0.048820290714502335, -0.09751734882593155, 0.06031571701169014, 0.04841719940304756, 0.15370044112205505, -0.10599377751350403, 0.0959579348564148, -0.03893371671438217, -0.022626427933573723, -0.035705506801605225, -0.09981946647167206, -0.09117332845926285, 0.017484460026025772, 0.02685241773724556, 0.03890369459986687, 0.004510737024247646, 0.10166533291339874, -0.03488096967339516, -0.06963697075843811, 0.11973708868026733, -0.11995350569486618, 0.0043779402039945126, 0.02489057183265686, -0.017247505486011505, 0.13782896101474762, 0.12570664286613464, -0.015666348859667778, -0.02769501693546772, 0.10770498961210251, -0.07722700387239456, -0.04275551438331604, -0.0805358961224556, -0.15917205810546875, 0.032865241169929504, -0.0054471720941364765, -0.022085893899202347, -0.13440436124801636, -0.09385599195957184, -0.016090763732790947, 0.0773131400346756, -0.01217365451157093, 0.09538083523511887, 0.045822083950042725, 0.025980180129408836, 0.03294491767883301, -0.01678108051419258, 0.009805909357964993, -0.015098660252988338, 0.05962909013032913, 0.0033198834862560034, 0.04797389730811119, -0.028983863070607185, 0.07376699894666672, -0.029250960797071457, 0.008674154989421368, -0.21255986392498016, 0.08176087588071823, -0.15178225934505463, 0.004198658280074596, -0.14859555661678314, -0.024941373616456985, -0.008810745552182198, 0.03316577523946762, 0.05859532207250595, 0.06207134947180748, -0.06536033749580383, -0.03715688735246658, 0.047036707401275635, -0.18247348070144653, -0.09560297429561615, 0.04829805716872215, -0.028407014906406403, 0.08713024109601974, 0.05991915613412857, -0.010836871340870857, 0.12974406778812408, -0.09490719437599182, -0.06850437074899673, 0.08500845730304718, -0.07820429652929306, -0.02839035354554653, 0.0782424658536911, 0.018252406269311905, -0.16697746515274048, 0.0024518645368516445, -0.07606735825538635, 0.00021317147184163332, -0.05043895170092583, 0.005643821321427822, -0.02730407752096653, -0.017831725999712944, 0.05965123325586319, -0.0007026584935374558, -0.011602925136685371, 0.04278993606567383, -0.13168558478355408, 0.2072574347257614, 0.08631293475627899, -0.07345032691955566, 0.028559360653162003, -0.11333949863910675, 0.05813443288207054, -0.16921785473823547, 0.014948961324989796, -0.21952559053897858, -0.0467388890683651, 0.001145535963587463, -0.011498400941491127, 0.051783669739961624, 0.07888335734605789, 0.03921609744429588, 0.0525500625371933, 0.016644658520817757, 0.018328199163079262, -0.055437374860048294, 0.02471129409968853, -0.04344223439693451, -0.14151784777641296, -0.0923483818769455, -0.0747465044260025, 0.017632175236940384, -0.15833425521850586, 0.05930158123373985, 0.07859212160110474, 0.0565897561609745, 0.011062039993703365, -0.008079362101852894, -0.027794091030955315, 0.013941408134996891, -0.04363466426730156, -0.03396688774228096, 0.03657592087984085, 0.015270506031811237, -0.07557268440723419, 0.02810780331492424, -0.09551456570625305, -0.0032056053169071674, 0.08241291344165802, -0.05254333093762398, -0.07729773223400116, -0.0037755253724753857, 0.024458149448037148, -0.022855713963508606, -0.04130566865205765, -0.09217865765094757, 0.2718002498149872, 0.07270393520593643, 0.08723601698875427, -0.03207043558359146, 0.006141560152173042, 0.01602509245276451, -0.01108207181096077, -0.01008901372551918, 0.012568110600113869, 0.07281447947025299, -0.13251809775829315, 0.03241334855556488, 0.15427245199680328, -0.024702301248908043, 0.06596257537603378, -0.007020806428045034, -0.09949290752410889, -0.00784232933074236, -0.03988397866487503, 0.039342250674963, 0.03085480071604252, -0.09316495805978775, 0.004441294819116592, 0.0675668865442276, -0.0005592071102000773, 0.011757804080843925, -0.0808674693107605, 0.06527061760425568, 0.06106467545032501, 0.017198853194713593, -0.040660031139850616, -0.035819146782159805, -0.008502716198563576, 0.0715189129114151, 0.04154501482844353, 0.09037341922521591, 0.03369656950235367, -0.009791919030249119, -0.08371926844120026, 0.21259045600891113, -0.06105517968535423, -0.18471816182136536, -0.21437731385231018, -0.12832388281822205, -0.02921142429113388, 0.008910523727536201, 0.025149399414658546, -0.0747869536280632, -0.0790797546505928, -0.05046609416604042, 0.1786295771598816, -0.06294291466474533, -0.0004558459622785449, 0.0719110518693924, -0.05339058116078377, 0.07325088977813721, -0.16823846101760864, 0.031109625473618507, 0.03464813157916069, -0.10076140612363815, -0.008761798962950706, 0.05373796820640564, 0.04287119209766388, 0.16264384984970093, -0.011109787970781326, -0.007383735850453377, 0.010792127810418606, 0.06058139353990555, -0.04509902745485306, -0.010485265403985977, 0.13098746538162231, -0.15307928621768951, 0.02523042820394039, 0.039890699088573456, 0.0801648497581482, -0.045781224966049194, 0.04223397374153137, 0.033299244940280914, -0.06650158017873764, -0.2600236237049103, -0.03168167546391487, 0.012123619206249714, -0.01848781667649746, 0.08044431358575821, 0.03601401299238205, 0.0019918414764106274, 0.07870853692293167, 0.02924359403550625, 0.015422546304762363, -0.023563968017697334, 0.07581742107868195, 0.20110149681568146, -0.0358753576874733, 0.10613633692264557, -0.10233685374259949, 0.013120115734636784, 0.08632931113243103, -0.03335893526673317, 0.1417297124862671, -0.006244954653084278, 0.07847429811954498, 0.08559232950210571, -0.1051420122385025, 0.058106642216444016, 0.17847634851932526, -0.05846567451953888, -0.011783905327320099, -0.012328208424150944, -0.03130907565355301, -0.04084334149956703, 0.01070547103881836, -0.007420276291668415, -0.002591150114312768, -0.05832339823246002, -0.05018322542309761, 0.021713679656386375, 0.12612584233283997, 0.003951939754188061, -0.2320280373096466, -0.1257690042257309, -0.03186386451125145, -0.040083255618810654, -0.06900998204946518, -0.005101814866065979, 0.06673683971166611, -0.08400586992502213, 0.037196774035692215, -0.030050531029701233, 0.09608303010463715, -0.17351022362709045, -0.014532597735524178, 0.039311494678258896, 0.12278435379266739, -0.04878300428390503, 0.09664090722799301, -0.20327751338481903, 0.07874235510826111, 0.03945924714207649, 0.013527996838092804, -0.06841375678777695, 0.028027836233377457, 0.008244832046329975, 0.163985475897789, 0.021918222308158875, -0.03424573317170143, 0.03588035702705383, -0.1486952006816864, -0.08130016922950745, 0.02023480460047722, 0.07056048512458801, -0.10134056210517883, 0.05455116927623749, -0.019078847020864487, 0.04258634150028229, 0.03350980579853058, 0.005761709529906511, -0.13641320168972015, -0.17776767909526825, 0.07576067745685577, -0.003116194624453783, 0.043109018355607986, -0.05670807510614395, -0.12976156175136566, 0.04918475076556206, 0.1882612258195877, -0.13074755668640137, -0.04904753714799881, -0.1545494645833969, 0.026693809777498245, 0.0858338251709938, -0.0574469156563282, 0.03217821195721626, -0.025156766176223755, 0.10891369730234146, -0.020874900743365288, -0.10089194029569626, 0.07200892269611359, -0.08792009949684143, -0.07999982684850693, -0.03687487170100212, 0.02077992632985115, 0.08618291467428207, 0.020821278914809227, -0.03746980428695679, -0.017808299511671066, 0.041815388947725296, -0.12054241448640823, -0.03028884157538414, 0.07423583418130875, 0.009079134091734886, 0.06823571771383286, -0.07996939867734909, 0.04078776016831398, -0.016937563195824623, 0.011947265826165676, 0.15786169469356537, 0.12234185636043549, -0.05798357352614403, 0.05388151481747627, 0.19098789989948273, -0.07287899404764175, -0.2607261538505554, -0.013501354493200779, 0.0342126339673996, -0.010276341810822487, 0.0038298210129141808, -0.2579838037490845, 0.16471193730831146, 0.03522433713078499, -0.008627830073237419, 0.041284531354904175, -0.149967759847641, -0.0879744440317154, 0.1866208016872406, 0.07839950174093246, 0.07172378152608871, -0.11640706658363342, -0.061502810567617416, -0.0386856272816658, -0.15185044705867767, 0.12268414348363876, -0.06767261028289795, 0.07823248207569122, -0.013689872808754444, 0.010914430022239685, 0.022138582542538643, -0.0392635203897953, 0.09205068647861481, 0.02204318344593048, 0.022737083956599236, -0.08963946998119354, -0.010153312236070633, 0.056590259075164795, -0.03045828826725483, 0.10103557258844376, -0.02435457333922386, 0.048752911388874054, -0.06734240055084229, -0.07983710616827011, 0.01764356531202793, 0.08174562454223633, -0.019755957648158073, -0.04843485727906227, -0.033727701753377914, 0.010731585323810577, -0.06398705393075943, -0.05592118203639984, 0.08241242170333862, -0.0604558102786541, 0.05268878489732742, 0.16582073271274567, 0.14702263474464417, 0.004462065640836954, -0.09714633226394653, -0.0014226362109184265, -0.027282752096652985, 0.13504137098789215, -0.16884955763816833, 0.07307521253824234, 0.07223302870988846, 0.009285002946853638, 0.1333499550819397, 0.061741266399621964, -0.13274699449539185, -0.0008334963931702077, 0.05645473673939705, -0.07829400897026062, -0.028199240565299988, 0.007291626650840044, 0.09268892556428909, -0.14896057546138763, 0.08781317621469498, 0.17870160937309265, -0.04193175956606865, 0.009252592921257019, 0.019292740151286125, -0.008072040975093842, -0.06982653588056564, 0.09744547307491302, 0.10328368097543716, 0.05932242423295975, -0.03667068108916283, 0.09943930804729462, 0.12168805301189423, -0.10013734549283981, 0.028884069994091988, -0.07950642704963684, -0.06841935962438583, -0.07872230559587479, -0.061018433421850204, 0.12257720530033112, -0.06207228824496269, -0.09035894274711609, 0.003349076025187969, -0.06710714101791382, 0.056527815759181976, 0.18575285375118256, 0.040331922471523285, 0.02468961291015148, -0.07588585466146469, 0.02799188531935215, -0.10146187245845795, 0.04425317421555519, -0.07025270909070969, 0.05824340507388115, -0.10554672032594681, -0.005090201739221811, 0.07119664549827576, 0.06003419682383537, -0.04992583766579628, -0.05213664099574089, -0.1304013580083847, -0.03038794733583927, -0.13331463932991028, -0.03851328417658806, -0.04956219345331192, 0.001712852157652378, 0.04614710435271263, -0.09027881920337677, -0.020300650969147682, 0.02855309098958969, -0.03304750844836235, -0.004901980049908161, 0.03944637253880501, 0.10738691687583923, -0.1559128314256668, -0.014121163636446, 0.043570876121520996, -0.06102338433265686, 0.07987234741449356, 0.042637746781110764, -0.01162644848227501, 0.02834225445985794, -0.11480890214443207, 0.03508860617876053, -0.021899202838540077, 0.03098396211862564, 0.01035761646926403, -0.10586320608854294, 0.03791304677724838, -0.036225296556949615, 0.005285369232296944, -0.005259983707219362, 0.19895970821380615, -0.05827214941382408, 0.02923065796494484, -0.029840409755706787, -0.00754146371036768, -0.05181356519460678, 0.05389384552836418, 0.09426308423280716, 0.11326006054878235, 0.1299283355474472, -0.07213953137397766, 0.07313394546508789, -0.08174141496419907, 0.006615998223423958, 0.022529179230332375, -0.014627347700297832, 0.12808354198932648, -0.1288534700870514, 0.004126058891415596, -0.054647475481033325, 0.224335178732872, -0.05365175008773804, 0.043816570192575455, 0.040721453726291656, 0.017399515956640244, -0.06444785743951797, -0.019729334861040115, 0.12772707641124725, 0.027980929240584373, 0.04330410063266754, -0.020222103223204613, 0.0578569732606411, 0.018600601702928543, 0.018132535740733147, 0.12524470686912537, 0.14440913498401642, -0.11334767192602158, 0.02203165367245674, 0.07145646214485168, -0.052224185317754745, -0.06409978121519089, -0.035780150443315506, -0.03129061684012413, 0.06676985323429108, -0.0341138057410717, 0.12273648381233215, 0.0616525337100029, -0.002227193210273981, 0.04155171290040016, 0.021285997703671455, -0.04587991535663605, -0.09566200524568558, -0.05538807436823845, -0.03221938759088516, -0.15031857788562775, -0.012940526008605957, -0.0816035270690918, -0.012546197511255741, 0.1721409112215042, 0.02629946358501911, 0.03547343611717224, 0.2343938946723938, -0.06849521398544312, -0.021100999787449837, 0.027524400502443314, -0.04003569856286049, -0.014160973951220512, -0.09999486804008484, 0.04901916906237602, 0.05144400894641876, 0.0964006558060646, 0.05583503097295761, 0.03786119818687439, 0.027844637632369995, 0.06768333911895752, -0.020636355504393578, -0.13002796471118927, -0.0360398106276989, 0.010521044954657555, -0.023488160222768784, 0.08912187814712524, 0.0013742673909291625, -0.018809016793966293, -0.03200790286064148, 0.1251021921634674, -0.05440042167901993, -0.065678171813488, -0.14093443751335144, 0.19584517180919647, 0.0020112821366637945, 0.020320821553468704, -0.029407288879156113, -0.0872742161154747, -0.06115521118044853, 0.15513627231121063, 0.09244561940431595, -0.02705179527401924, 0.03220978379249573, 0.07104381173849106, 0.012906941585242748, 0.04225687310099602, 0.11603357642889023, 0.0210550706833601, 0.0595896951854229, -0.0006744758575223386, -0.0600380040705204, -0.06264743953943253, -0.008833100087940693, 0.05735019966959953, 0.10224638879299164, -0.0035192628856748343, -0.03475392609834671, -0.04655110836029053, 0.08817178755998611, -0.0016495403833687305, -0.293670117855072, 0.003621564246714115, -0.01124898437410593, -0.07140098512172699, -0.05456533282995224, 0.06992005556821823, -0.04279220476746559, 0.012908549048006535, -0.0059473104774951935, -0.04304688051342964, 0.1437249630689621, 0.03920124098658562, -0.06938502192497253, -0.02839016541838646, 0.07621163129806519, -0.06391813606023788, 0.14333248138427734, -0.0034375053364783525, 0.05529716610908508, 0.0914805606007576, 0.04081323370337486, -0.07371121644973755, 0.041465017944574356, 0.003066222881898284, -0.08395220339298248, 0.01827375777065754, 0.05172639340162277, -0.02566707879304886, 0.13152362406253815, 0.035891108214855194, -0.2121371179819107, 0.05670332908630371, -0.030273543670773506, -0.08343449234962463, -0.0622749850153923, -0.028064807876944542, -0.08087389171123505, 0.15417858958244324, 0.14681263267993927, 0.0065940432250499725, -0.08831340074539185, -0.07503152638673782, 0.05578605458140373, -0.0042674788273870945, 0.08025006949901581, -0.0488656610250473, -0.14295648038387299, 0.011394917033612728, -0.11165144294500351, 0.06556159257888794, -0.3044033944606781, -0.026201825588941574, 0.08583172410726547, -0.03213930502533913, -0.02539697103202343, 0.03853689134120941, 0.079869344830513, 0.06531910598278046, -0.06095413118600845, -0.10549183189868927, -0.008145065978169441, 0.09681636840105057, -0.19938312470912933, -0.042764388024806976 ]
null
null
adapter-transformers
# Adapter `AdapterHub/bert-base-uncased-pf-newsqa` for bert-base-uncased An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [newsqa](https://huggingface.co/datasets/newsqa/) dataset and includes a prediction head for question answering. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("bert-base-uncased") adapter_name = model.load_adapter("AdapterHub/bert-base-uncased-pf-newsqa", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
{"language": ["en"], "tags": ["question-answering", "bert", "adapter-transformers"], "datasets": ["newsqa"]}
question-answering
AdapterHub/bert-base-uncased-pf-newsqa
[ "adapter-transformers", "bert", "question-answering", "en", "dataset:newsqa", "arxiv:2104.08247", "region:us" ]
2022-03-02T23:29:04+00:00
[ "2104.08247" ]
[ "en" ]
TAGS #adapter-transformers #bert #question-answering #en #dataset-newsqa #arxiv-2104.08247 #region-us
# Adapter 'AdapterHub/bert-base-uncased-pf-newsqa' for bert-base-uncased An adapter for the 'bert-base-uncased' model that was trained on the newsqa dataset and includes a prediction head for question answering. This adapter was created for usage with the adapter-transformers library. ## Usage First, install 'adapter-transformers': _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_ Now, the adapter can be loaded and activated like this: ## Architecture & Training The training code for this adapter is available at URL In particular, training configurations for all tasks can be found here. ## Evaluation results Refer to the paper for more information on results. If you use this adapter, please cite our paper "What to Pre-Train on? Efficient Intermediate Task Selection":
[ "# Adapter 'AdapterHub/bert-base-uncased-pf-newsqa' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the newsqa dataset and includes a prediction head for question answering.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ "TAGS\n#adapter-transformers #bert #question-answering #en #dataset-newsqa #arxiv-2104.08247 #region-us \n", "# Adapter 'AdapterHub/bert-base-uncased-pf-newsqa' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the newsqa dataset and includes a prediction head for question answering.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ 35, 81, 57, 30, 45 ]
[ "passage: TAGS\n#adapter-transformers #bert #question-answering #en #dataset-newsqa #arxiv-2104.08247 #region-us \n# Adapter 'AdapterHub/bert-base-uncased-pf-newsqa' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the newsqa dataset and includes a prediction head for question answering.\n\nThis adapter was created for usage with the adapter-transformers library.## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ -0.06382467597723007, 0.00004553420876618475, -0.0027437719982117414, 0.007998292334377766, 0.15380030870437622, 0.029713958501815796, 0.15872126817703247, 0.0588369183242321, 0.05361460521817207, 0.024160336703062057, 0.0700095146894455, 0.06472714245319366, 0.046474434435367584, 0.03129062056541443, 0.017471037805080414, -0.10344795882701874, 0.022631989791989326, 0.02362467534840107, -0.00422784686088562, 0.10075235366821289, 0.08020517975091934, -0.08667567372322083, 0.07290103286504745, 0.02517065964639187, -0.07187145203351974, 0.0475621372461319, -0.050793737173080444, -0.07215244323015213, 0.09034989029169083, 0.0975213572382927, 0.120270736515522, 0.038800571113824844, -0.012405501678586006, -0.16690045595169067, 0.03261968493461609, 0.07296408712863922, 0.01647009700536728, 0.07271840423345566, -0.022770870476961136, 0.027225356549024582, -0.056330181658267975, -0.020381586626172066, 0.02821364626288414, 0.05057133361697197, -0.10471020638942719, -0.22272975742816925, -0.04331037774682045, 0.09042719751596451, 0.04568210244178772, 0.12114353477954865, -0.01793075166642666, 0.05839512497186661, 0.0024752586614340544, 0.03750394657254219, 0.1830635517835617, -0.2457035630941391, -0.013037307187914848, -0.03730294108390808, 0.0526103600859642, 0.05549002066254616, -0.03975355997681618, 0.01628301665186882, 0.032376762479543686, 0.017127567902207375, -0.02462044171988964, -0.029096169397234917, -0.01647063158452511, -0.013076122850179672, -0.14755773544311523, -0.02906826324760914, 0.2128235399723053, -0.009667960926890373, -0.07487054914236069, -0.03365373983979225, -0.020962176844477654, 0.14872071146965027, 0.018941719084978104, -0.08541133254766464, -0.012291491031646729, 0.00503833731636405, -0.015740832313895226, -0.11842232197523117, -0.10160257667303085, -0.08882425725460052, -0.11839806288480759, 0.266433447599411, -0.007653580512851477, 0.04631222039461136, -0.033066943287849426, 0.12154979258775711, -0.013953699730336666, -0.13212735950946808, -0.0718560740351677, -0.049477383494377136, -0.03333662077784538, -0.024401338770985603, -0.030176693573594093, -0.2325289100408554, 0.005101419985294342, 0.11220161616802216, 0.03662991151213646, 0.028027961030602455, -0.09530068933963776, 0.05724913999438286, 0.05424151569604874, 0.14484348893165588, -0.13667501509189606, 0.024332214146852493, -0.04871760308742523, 0.006501935888081789, -0.04345761239528656, -0.10447461158037186, -0.056849751621484756, 0.006672006566077471, -0.00785954762250185, 0.04110647737979889, 0.07406207174062729, 0.1011672243475914, -0.033697351813316345, -0.05550762638449669, 0.10629367083311081, -0.1218523234128952, -0.02214568667113781, 0.014510011300444603, -0.03054165653884411, 0.06915147602558136, 0.11786824464797974, 0.022012244910001755, -0.03581608459353447, 0.06360321491956711, -0.0633583813905716, -0.06367958337068558, -0.05020998418331146, -0.10841193050146103, 0.01708032377064228, 0.007566011976450682, -0.01952439546585083, -0.13796785473823547, -0.111080601811409, -0.01118424627929926, 0.06703823059797287, -0.021208861842751503, 0.09464217722415924, 0.030295925214886665, 0.032928649336099625, 0.02374999038875103, -0.03286466747522354, 0.019579635933041573, -0.03980771079659462, 0.0956883579492569, 0.022887013852596283, 0.05145559832453728, -0.04269915446639061, 0.07476100325584412, -0.07287658751010895, 0.01965145952999592, -0.11043672263622284, 0.11497006565332413, -0.15144659578800201, 0.0028218168299645185, -0.14448170363903046, 0.015375389717519283, -0.029552029445767403, 0.039512909948825836, 0.08772585541009903, 0.12157385051250458, -0.10898478329181671, -0.04577905312180519, 0.04827231541275978, -0.14522160589694977, -0.12291403114795685, 0.046211712062358856, -0.02280413918197155, 0.15849992632865906, 0.06905028969049454, 0.061934661120176315, 0.07686179876327515, -0.08069373667240143, -0.10180243104696274, 0.04744858294725418, -0.06244330853223801, 0.02192230522632599, 0.05911675840616226, 0.0069390577264130116, -0.17602044343948364, 0.015921881422400475, -0.12598983943462372, 0.017973819747567177, -0.04731526970863342, -0.036194417625665665, 0.007131106220185757, -0.02969471365213394, 0.09401330351829529, 0.025364428758621216, -0.018094878643751144, 0.06410808861255646, -0.14083033800125122, 0.1833629459142685, 0.0383041612803936, -0.040089335292577744, 0.01961357705295086, -0.12301620095968246, 0.09558384865522385, -0.17026115953922272, 0.02942732349038124, -0.17657619714736938, -0.01753423735499382, -0.01770785264670849, 0.020239250734448433, 0.042766544967889786, 0.053473569452762604, 0.05477067828178406, -0.013811658136546612, 0.0028509977273643017, 0.007406244054436684, -0.048196762800216675, 0.02753710374236107, -0.049617327749729156, -0.10359980165958405, -0.022499216720461845, -0.06811459362506866, 0.01453490648418665, -0.1398841291666031, 0.032321397215127945, 0.043142031878232956, 0.048278190195560455, 0.011923429556190968, -0.01383002195507288, -0.0010387161746621132, -0.0012245929101482034, -0.012531343847513199, -0.0014169594505801797, 0.03484170138835907, 0.01310773752629757, -0.08223624527454376, 0.04604559764266014, -0.0836835503578186, -0.00034292982309125364, 0.06962677836418152, -0.07768698036670685, -0.05803408846259117, -0.018256403505802155, 0.0057870796881616116, -0.03141734004020691, -0.01856529898941517, -0.08664638549089432, 0.2617449462413788, 0.05646393448114395, 0.0423160195350647, -0.041709545999765396, -0.006270475685596466, 0.002110956236720085, -0.020687183365225792, 0.003290455089882016, 0.01461782306432724, 0.015299553982913494, -0.11324682086706161, 0.04971356317400932, 0.2079685479402542, -0.005868840496987104, 0.11551255732774734, -0.01564859040081501, -0.12569786608219147, -0.008994023315608501, -0.04860793054103851, 0.016584690660238266, 0.05917947739362717, -0.13378138840198517, 0.04138283059000969, 0.06730203330516815, -0.011930265463888645, 0.02183796465396881, -0.03237186372280121, 0.016022706404328346, 0.05901516601443291, -0.008578956127166748, -0.07831587642431259, -0.02035566419363022, -0.022215554490685463, 0.05012990161776543, 0.06923186033964157, 0.13495662808418274, 0.034944429993629456, -0.025665638968348503, -0.07348617911338806, 0.17550764977931976, -0.0324786901473999, -0.24485629796981812, -0.16998730599880219, -0.12039608508348465, 0.004247406963258982, -0.0032469339203089476, 0.05768797919154167, -0.10794031620025635, -0.056925274431705475, -0.05249899625778198, 0.13923607766628265, 0.012051090598106384, -0.0038022748194634914, 0.0570359006524086, -0.08766674995422363, 0.08169273287057877, -0.14595180749893188, 0.045097216963768005, 0.0059220753610134125, -0.08479319512844086, -0.018354006111621857, 0.03265650197863579, 0.09284879267215729, 0.09346121549606323, 0.0032428002450615168, 0.00738685904070735, 0.0021174547728151083, 0.1887771040201187, -0.09581831097602844, 0.026855772361159325, 0.11055011302232742, -0.16064384579658508, 0.038386695086956024, 0.13399150967597961, 0.052534300833940506, -0.031708262860774994, 0.032458458095788956, 0.05518553406000137, -0.03380254656076431, -0.2586868703365326, 0.0029582481365650892, 0.0113847516477108, -0.02446480467915535, 0.05143824592232704, 0.029130419716238976, 0.03266088664531708, 0.08656461536884308, 0.007333377841860056, -0.03117615543305874, -0.04716098681092262, 0.05037355795502663, 0.2021271139383316, -0.02428741380572319, 0.1043253242969513, -0.07611286640167236, 0.004229607526212931, 0.09046546369791031, -0.017522336915135384, 0.1165914386510849, -0.005447416566312313, 0.0816011130809784, 0.07879892736673355, -0.048863306641578674, 0.07472024112939835, 0.12725116312503815, -0.0779971331357956, -0.025831295177340508, -0.009794779121875763, -0.05114021524786949, -0.05783810839056969, 0.021878041326999664, -0.003404262475669384, 0.015893565490841866, -0.0029451358132064342, -0.062159791588783264, 0.023067131638526917, 0.1539762318134308, 0.02778250351548195, -0.1723967045545578, -0.09901895374059677, -0.01917426474392414, -0.03562597557902336, -0.09554435312747955, -0.012109912000596523, 0.06988690793514252, -0.056644827127456665, 0.03237089887261391, -0.014957653358578682, 0.10637768357992172, -0.13574056327342987, 0.004852151032537222, 0.05185948684811592, 0.026727158576250076, -0.06375394016504288, 0.11455957591533661, -0.24020880460739136, 0.11524398624897003, 0.04463501274585724, 0.027641434222459793, -0.04350782185792923, 0.0034720448311418295, 0.024354640394449234, 0.09706462919712067, 0.0707918182015419, -0.03073171153664589, 0.12894244492053986, -0.14493753015995026, -0.11428439617156982, 0.051016878336668015, 0.018209481611847878, -0.09765629470348358, 0.05358414724469185, -0.011522192507982254, 0.05419318005442619, 0.023882033303380013, 0.0624980628490448, -0.1490301936864853, -0.16481542587280273, 0.07844642549753189, -0.0076255518943071365, 0.16073830425739288, -0.056041568517684937, -0.11525055021047592, 0.04683270305395126, 0.13902586698532104, -0.1530069261789322, -0.08357154577970505, -0.13280287384986877, 0.010890129953622818, 0.05545279011130333, -0.06671316176652908, 0.01071217656135559, 0.001455951714888215, 0.0817025899887085, 0.014306186698377132, -0.0868319720029831, 0.069989413022995, -0.07672126591205597, -0.06929619610309601, -0.03744129091501236, -0.009351746179163456, 0.12331068515777588, 0.028929023072123528, -0.0002954640658572316, -0.011954115703701973, -0.0002544584858696908, -0.09088040143251419, -0.010209672152996063, 0.018311798572540283, -0.032401762902736664, 0.029360292479395866, -0.037443552166223526, 0.039143722504377365, -0.07707052677869797, 0.0029584411531686783, 0.1487896591424942, 0.13811172544956207, -0.05744043365120888, 0.04753280058503151, 0.2430490255355835, -0.07290773838758469, -0.27852365374565125, -0.03310944139957428, 0.0567208006978035, -0.024302678182721138, 0.04953451827168465, -0.23096342384815216, 0.14926809072494507, 0.04964286834001541, -0.012616283260285854, 0.06164413318037987, -0.12740014493465424, -0.06257116049528122, 0.20934328436851501, 0.04725456237792969, 0.10813932865858078, -0.1403616964817047, -0.08487355709075928, 0.0006084628985263407, -0.1335875540971756, 0.09869997948408127, -0.07064308971166611, 0.06683500111103058, -0.013157215900719166, 0.02187061682343483, 0.018794845789670944, -0.03194716200232506, 0.1006915345788002, -0.0002573647943791002, 0.004576281178742647, -0.116444431245327, -0.0033970882650464773, 0.03725303336977959, -0.036849088966846466, 0.07176034897565842, -0.02060941606760025, 0.05386018007993698, -0.12765847146511078, -0.07059106975793839, -0.006096260156482458, 0.07784108817577362, -0.017462359741330147, -0.060594525188207626, -0.0264928936958313, 0.02399676851928234, -0.02620108239352703, -0.020803697407245636, 0.06490272283554077, -0.10185712575912476, 0.0669003427028656, 0.14226771891117096, 0.15444286167621613, -0.02956029586493969, -0.08507207036018372, -0.0038755808491259813, -0.035164155066013336, 0.145115926861763, -0.1196688562631607, 0.056385256350040436, 0.07816094160079956, 0.017253121361136436, 0.11124864220619202, 0.03815489262342453, -0.1378493309020996, 0.027975287288427353, 0.04628651216626167, -0.10213134437799454, -0.07315037399530411, -0.007400981616228819, 0.1081603467464447, -0.17748084664344788, 0.015882713720202446, 0.13764822483062744, -0.024796605110168457, 0.01676323637366295, 0.05864433944225311, 0.0005555158131755888, -0.04142596572637558, 0.09771555662155151, 0.10816927254199982, 0.048217106610536575, -0.03595682606101036, 0.0913776308298111, 0.11134263873100281, -0.0793079063296318, 0.05930362269282341, -0.06875132024288177, -0.05424319580197334, -0.07793348282575607, -0.08887007087469101, 0.12028449028730392, -0.025877922773361206, -0.10195587575435638, 0.021328456699848175, -0.0417390838265419, 0.04370685666799545, 0.16846530139446259, 0.01996832713484764, -0.008261864073574543, -0.036614786833524704, 0.03985314816236496, -0.043244618922472, 0.09109162539243698, -0.04174888879060745, 0.04520486295223236, -0.048246122896671295, -0.11130519211292267, 0.053681880235672, 0.0928422212600708, -0.06980657577514648, -0.07310785353183746, -0.1209157407283783, 0.007726149633526802, -0.188618466258049, -0.01171004306524992, -0.03646683692932129, -0.01630432903766632, 0.0008491040207445621, -0.12515853345394135, -0.040742065757513046, -0.005397049244493246, -0.011823127046227455, 0.005340241361409426, 0.06665517389774323, 0.062302298843860626, -0.1846444010734558, -0.010045429691672325, 0.07502339035272598, -0.030050616711378098, 0.08168625086545944, 0.028575953096151352, -0.01876354031264782, 0.0137338200584054, -0.09287118166685104, 0.002666123677045107, -0.059750765562057495, 0.021099062636494637, 0.004397841636091471, -0.055763352662324905, 0.004139894153922796, -0.037204522639513016, -0.013655555434525013, -0.0008857142529450357, 0.19914402067661285, -0.0625682845711708, 0.07052472978830338, -0.006917545106261969, 0.021087748929858208, -0.042010169476270676, 0.05142570659518242, 0.08591442555189133, 0.10700975358486176, 0.14852836728096008, -0.07405422627925873, 0.06914886832237244, -0.08760424703359604, 0.022624587640166283, 0.03789057582616806, -0.007481827866286039, 0.13110674917697906, -0.11977443844079971, 0.007642301730811596, -0.061363328248262405, 0.22382304072380066, -0.06168726086616516, 0.03650598227977753, 0.04484127089381218, -0.037541985511779785, -0.04932400584220886, -0.06570889055728912, 0.16845177114009857, 0.06253340095281601, 0.032540079206228256, -0.03783099725842476, 0.04695485904812813, -0.039358317852020264, 0.02634025365114212, 0.11863666027784348, 0.15131767094135284, -0.05150643736124039, 0.02201361022889614, 0.03785073012113571, -0.029526427388191223, -0.044983480125665665, -0.06612427532672882, -0.037657927721738815, 0.050894033163785934, -0.015026506967842579, 0.14079192280769348, 0.09724936634302139, 0.002097712829709053, 0.05327232554554939, 0.00819479487836361, -0.03473280742764473, -0.08000080287456512, -0.07109357416629791, -0.00834830291569233, -0.1569536179304123, -0.009917405433952808, -0.08382082730531693, -0.005699670873582363, 0.18688265979290009, 0.022373484447598457, 0.018484266474843025, 0.2719199061393738, -0.012170487083494663, -0.045961275696754456, 0.05227307602763176, -0.06177455186843872, 0.00008088537288131192, -0.14703784883022308, 0.0839897096157074, 0.07517784833908081, 0.15632563829421997, 0.0391867496073246, 0.06705288589000702, -0.014408132992684841, 0.0591539591550827, -0.032994724810123444, -0.1383560597896576, -0.03922352194786072, 0.06863517314195633, -0.033123672008514404, 0.0768980011343956, 0.01818600669503212, 0.023707646876573563, -0.013565022498369217, 0.13345305621623993, -0.04473938047885895, -0.0759059488773346, -0.12317366898059845, 0.07616086304187775, -0.048673827201128006, 0.039419014006853104, -0.06967224925756454, -0.1294395476579666, -0.047336395829916, 0.22076654434204102, 0.0544697642326355, -0.06766112893819809, 0.03363625332713127, 0.06688421219587326, 0.03423550724983215, 0.02708437293767929, 0.07229408621788025, 0.026415178552269936, 0.11099999397993088, -0.034084808081388474, -0.07383301109075546, -0.04964039474725723, -0.045844074338674545, 0.051308922469615936, 0.09248219430446625, 0.011023790575563908, -0.022342218086123466, -0.08310121297836304, 0.09655795246362686, -0.07029489427804947, -0.27329427003860474, -0.07045363634824753, -0.0033426498994231224, -0.07662761956453323, -0.057079169899225235, 0.07996894419193268, -0.021149346604943275, -0.023652762174606323, 0.024138841778039932, -0.002282220171764493, 0.14610901474952698, 0.03161991760134697, -0.016238301992416382, -0.053326115012168884, 0.09298527240753174, -0.039081770926713943, 0.1795419156551361, 0.0039425683207809925, 0.017646262422204018, 0.05970163643360138, 0.031176550313830376, -0.07859057933092117, 0.04085428640246391, 0.04398191347718239, -0.07684741914272308, -0.014219819568097591, 0.020466072484850883, 0.023982401937246323, 0.08826915919780731, 0.10074559599161148, -0.16517509520053864, 0.056707415729761124, -0.056020691990852356, -0.08595704287290573, -0.0900995284318924, -0.017308475449681282, -0.04476069286465645, 0.15165694057941437, 0.13749417662620544, -0.012620502151548862, -0.061647966504096985, -0.08427313715219498, 0.0383741557598114, 0.0041474332101643085, 0.060445986688137054, -0.045415520668029785, -0.09928636997938156, -0.012403598055243492, -0.06295297294855118, 0.047377124428749084, -0.286121129989624, 0.000033051535865524784, 0.05509300157427788, -0.03754791244864464, 0.0583823025226593, 0.023390263319015503, 0.10291970521211624, 0.05768904089927673, -0.04590468481183052, -0.0757250040769577, 0.012408338487148285, 0.10221990197896957, -0.18570023775100708, -0.023875407874584198 ]
null
null
adapter-transformers
# Adapter `AdapterHub/bert-base-uncased-pf-pmb_sem_tagging` for bert-base-uncased An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [semtag/pmb](https://adapterhub.ml/explore/semtag/pmb/) dataset and includes a prediction head for tagging. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("bert-base-uncased") adapter_name = model.load_adapter("AdapterHub/bert-base-uncased-pf-pmb_sem_tagging", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
{"language": ["en"], "tags": ["token-classification", "bert", "adapterhub:semtag/pmb", "adapter-transformers"]}
token-classification
AdapterHub/bert-base-uncased-pf-pmb_sem_tagging
[ "adapter-transformers", "bert", "token-classification", "adapterhub:semtag/pmb", "en", "arxiv:2104.08247", "region:us" ]
2022-03-02T23:29:04+00:00
[ "2104.08247" ]
[ "en" ]
TAGS #adapter-transformers #bert #token-classification #adapterhub-semtag/pmb #en #arxiv-2104.08247 #region-us
# Adapter 'AdapterHub/bert-base-uncased-pf-pmb_sem_tagging' for bert-base-uncased An adapter for the 'bert-base-uncased' model that was trained on the semtag/pmb dataset and includes a prediction head for tagging. This adapter was created for usage with the adapter-transformers library. ## Usage First, install 'adapter-transformers': _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_ Now, the adapter can be loaded and activated like this: ## Architecture & Training The training code for this adapter is available at URL In particular, training configurations for all tasks can be found here. ## Evaluation results Refer to the paper for more information on results. If you use this adapter, please cite our paper "What to Pre-Train on? Efficient Intermediate Task Selection":
[ "# Adapter 'AdapterHub/bert-base-uncased-pf-pmb_sem_tagging' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the semtag/pmb dataset and includes a prediction head for tagging.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ "TAGS\n#adapter-transformers #bert #token-classification #adapterhub-semtag/pmb #en #arxiv-2104.08247 #region-us \n", "# Adapter 'AdapterHub/bert-base-uncased-pf-pmb_sem_tagging' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the semtag/pmb dataset and includes a prediction head for tagging.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ 38, 88, 57, 30, 45 ]
[ "passage: TAGS\n#adapter-transformers #bert #token-classification #adapterhub-semtag/pmb #en #arxiv-2104.08247 #region-us \n# Adapter 'AdapterHub/bert-base-uncased-pf-pmb_sem_tagging' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the semtag/pmb dataset and includes a prediction head for tagging.\n\nThis adapter was created for usage with the adapter-transformers library.## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ -0.06455903500318527, -0.02644280157983303, -0.003579622134566307, 0.010479917749762535, 0.17856314778327942, -0.0021869137417525053, 0.14723679423332214, 0.04617758467793465, 0.04631425067782402, 0.03906962275505066, 0.013586083427071571, 0.11936941742897034, 0.028938202187418938, 0.036913298070430756, 0.04436954855918884, -0.1103462427854538, 0.041415367275476456, 0.008040854707360268, -0.04468745365738869, 0.09162036329507828, 0.09767474979162216, -0.10437513887882233, 0.10051020234823227, 0.06047128513455391, -0.0793800801038742, 0.06576599925756454, -0.01779821328818798, -0.07952955365180969, 0.09487315267324448, 0.08076639473438263, 0.14597374200820923, 0.010060470551252365, 0.03617106005549431, -0.16303549706935883, 0.0020585977472364902, 0.07328285276889801, 0.04996323585510254, 0.05359833687543869, -0.023210691288113594, 0.010875450447201729, -0.0065552908927202225, -0.01660776138305664, 0.09116072207689285, 0.05546310171484947, -0.045433204621076584, -0.20483246445655823, -0.025821182876825333, 0.1112559363245964, 0.07488719373941422, 0.0658973753452301, 0.01195013802498579, 0.06414476782083511, -0.00007921018550405279, 0.03751949220895767, 0.2354794144630432, -0.19770300388336182, 0.015865616500377655, -0.02200395241379738, 0.02512706071138382, 0.03254976496100426, -0.022457921877503395, 0.0021482878364622593, 0.000612357456702739, 0.004223969765007496, 0.034824177622795105, -0.03133995085954666, 0.019385235384106636, 0.01284250058233738, -0.1786794364452362, -0.030743224546313286, 0.24895396828651428, -0.004365433473140001, -0.10533272475004196, -0.058009061962366104, -0.06620052456855774, 0.09470093995332718, 0.012821846641600132, -0.09207291901111603, 0.015797127038240433, 0.0005262152990326285, 0.01881393976509571, -0.08679477125406265, -0.10948255658149719, -0.1143958568572998, -0.07098152488470078, 0.2911452353000641, 0.008691783994436264, 0.04635284096002579, -0.01833738200366497, 0.09736070781946182, -0.028231244534254074, -0.059987351298332214, -0.05352194979786873, -0.0603046752512455, -0.10016640275716782, -0.020567724481225014, -0.024687862023711205, -0.3014879524707794, -0.01953824982047081, 0.20142753422260284, 0.09067309647798538, 0.04550306871533394, -0.01339105237275362, 0.05636690557003021, 0.0433625727891922, 0.1939493864774704, -0.0721316710114479, 0.0786629170179367, -0.06025846675038338, -0.03529350087046623, -0.009411702863872051, -0.10533642768859863, -0.07173362374305725, -0.02668856456875801, 0.06424595415592194, -0.0023999440018087626, -0.008291677571833134, 0.08529222756624222, -0.04943354055285454, -0.06165977194905281, 0.08732344955205917, -0.13386563956737518, -0.006683860439807177, -0.004308074712753296, -0.03200666978955269, 0.06551855802536011, 0.16669201850891113, 0.001765832188539207, -0.03216322511434555, 0.14219963550567627, -0.07650115340948105, -0.047268759459257126, -0.06968409568071365, -0.11684152483940125, 0.010242555290460587, -0.048314169049263, 0.003851668443530798, -0.16387008130550385, -0.13869772851467133, -0.010233733803033829, 0.03544319048523903, 0.027911584824323654, 0.09086702018976212, 0.038795001804828644, 0.04198369383811951, 0.014811025001108646, -0.03930279240012169, -0.03257313370704651, -0.031298790127038956, 0.0502203069627285, 0.022759364917874336, 0.012141983024775982, -0.029694445431232452, 0.05797349661588669, -0.08339086174964905, 0.018820015713572502, -0.1850021332502365, 0.08832573145627975, -0.15919692814350128, 0.03313117101788521, -0.127315953373909, -0.00006620979547733441, -0.024319972842931747, 0.06001191958785057, 0.07318002730607986, 0.11744765192270279, -0.12582358717918396, -0.08047979325056076, 0.07314109057188034, -0.1911962926387787, -0.11875373125076294, 0.055077675729990005, -0.017255211248993874, 0.10076320171356201, 0.0666707456111908, 0.12031402438879013, 0.12170170992612839, -0.08841612935066223, -0.0993497371673584, 0.06264717876911163, -0.053063809871673584, -0.03988576680421829, 0.07134008407592773, -0.024814048781991005, -0.12529996037483215, 0.029856152832508087, -0.09861858934164047, -0.016650915145874023, -0.012138077057898045, -0.02489442564547062, -0.03807748854160309, -0.02613149955868721, 0.08978055417537689, 0.014840788207948208, -0.0027236416935920715, 0.03826800733804703, -0.11502163112163544, 0.31228241324424744, 0.07778965681791306, -0.056943491101264954, 0.04029833897948265, -0.12662373483181, 0.08711852878332138, -0.09971483796834946, 0.008282315917313099, -0.18932682275772095, -0.01866830699145794, -0.005634329281747341, -0.003901852760463953, 0.06998304277658463, 0.03618258237838745, 0.06352562457323074, 0.01553982961922884, 0.04572499543428421, -0.009972414933145046, -0.07756074517965317, 0.049001406878232956, -0.055367037653923035, -0.08032450079917908, -0.0826946273446083, -0.02807682938873768, -6.792680551370722e-8, -0.11451660096645355, 0.07231487333774567, 0.09998783469200134, 0.06937269121408463, 0.027228938415646553, -0.05226704478263855, -0.03696800023317337, -0.011861961334943771, -0.036079034209251404, -0.003880632109940052, 0.024808112531900406, -0.0008101303246803582, -0.09413542598485947, 0.0012722815154120326, -0.10903709381818771, 0.006204294506460428, 0.07127561420202255, -0.03438044339418411, -0.060190051794052124, -0.04197392985224724, -0.01654171757400036, -0.021866964176297188, -0.02624550275504589, -0.1436149626970291, 0.20409250259399414, 0.06582623720169067, 0.070151187479496, -0.034749481827020645, -0.013413992710411549, -0.006433747708797455, -0.04254599288105965, 0.0012018606066703796, 0.02471180632710457, 0.08845190703868866, -0.024423524737358093, 0.053089410066604614, 0.1560784876346588, -0.03575330227613449, 0.06934548169374466, -0.022921334952116013, -0.10628747195005417, 0.0021024916786700487, -0.05813760682940483, 0.03253621980547905, 0.04174776375293732, -0.1719750463962555, -0.005849864333868027, 0.058262333273887634, 0.0238352008163929, 0.017146317288279533, -0.07300861179828644, 0.04056091606616974, 0.09279808402061462, 0.020967580378055573, 0.01628214120864868, -0.011502356268465519, -0.025611868128180504, 0.035007309168577194, 0.026066336780786514, 0.09811417758464813, 0.0027528938371688128, -0.011071296408772469, -0.09287483990192413, 0.17377997934818268, -0.09112972021102905, -0.19894185662269592, -0.24985463917255402, -0.07671010494232178, -0.06045687571167946, 0.03599870949983597, 0.04819753021001816, -0.09545557200908661, -0.09350907057523727, -0.07363905012607574, 0.14915426075458527, -0.054032281041145325, 0.04183858633041382, 0.044013310223817825, -0.058028694242239, 0.08208094537258148, -0.14626125991344452, 0.010418890044093132, 0.01677871309220791, -0.07129618525505066, -0.0385991632938385, 0.03560495749115944, 0.10489677637815475, 0.1515183001756668, -0.013416302390396595, 0.0027861157432198524, 0.014054997824132442, 0.1520995944738388, -0.03959695249795914, 0.011244651861488819, 0.17949725687503815, -0.17790648341178894, 0.023433247581124306, 0.05697384849190712, 0.04584473371505737, -0.04484986513853073, 0.04558756202459335, 0.06241337209939957, -0.0750962495803833, -0.2367740273475647, -0.0226077139377594, 0.022143468260765076, 0.037143342196941376, 0.0639774426817894, 0.0565265454351902, 0.004934749100357294, 0.07879927009344101, 0.03909948468208313, -0.017130045220255852, 0.01707693561911583, 0.07916447520256042, 0.20671363174915314, -0.03432561457157135, 0.10568816214799881, -0.0719195231795311, 0.008525505661964417, 0.09915870428085327, -0.005087854340672493, 0.0893128365278244, -0.00016809364024084061, 0.08755487948656082, 0.09079965204000473, -0.08761018514633179, 0.029070084914565086, 0.11805875599384308, -0.05501846969127655, -0.0037005858030170202, -0.010596982203423977, -0.04986242949962616, -0.10805811733007431, 0.0559709370136261, -0.0398126095533371, 0.03334888070821762, -0.07661145180463791, 0.0014133278746157885, 0.07168417423963547, 0.10915616899728775, 0.008273040875792503, -0.18392670154571533, -0.12686514854431152, 0.006091160234063864, -0.04634533450007439, -0.03972243517637253, 0.003796991426497698, 0.053978998214006424, -0.06902937591075897, 0.03830300271511078, -0.007483858149498701, 0.09539160877466202, -0.15112535655498505, 0.007996343076229095, 0.031471818685531616, 0.08274075388908386, -0.017723511904478073, 0.08483660221099854, -0.16411951184272766, 0.04709628224372864, 0.029945677146315575, 0.015149850398302078, -0.03529166057705879, 0.04446173459291458, -0.028304828330874443, 0.1598776876926422, 0.08103200048208237, -0.011011685244739056, 0.04315765202045441, -0.15158924460411072, -0.06923322379589081, 0.007758200168609619, 0.047611214220523834, -0.11958980560302734, 0.03680038824677467, -0.05798499658703804, 0.05054503679275513, 0.039915017783641815, 0.041532378643751144, -0.09938329458236694, -0.16519705951213837, 0.04553140327334404, -0.020405221730470657, 0.046614065766334534, -0.07768376916646957, -0.08533322066068649, -0.0011053988710045815, 0.2417590469121933, -0.15651799738407135, -0.0714297816157341, -0.14574791491031647, -0.029680894687771797, 0.0482037253677845, -0.06491178274154663, 0.03275872394442558, 0.0009527200600132346, 0.10100361704826355, -0.0037379746790975332, -0.08809659630060196, 0.07083172351121902, -0.07033703476190567, -0.06095335632562637, -0.03984024375677109, 0.013586382381618023, 0.08601363003253937, 0.007995271123945713, -0.02967113070189953, -0.01593368500471115, 0.02087743766605854, -0.11069250851869583, -0.0048529342748224735, 0.18926838040351868, -0.01585834100842476, 0.04343700036406517, -0.06850339472293854, 0.045045528560876846, -0.024212099611759186, -0.0018938357243314385, 0.12889626622200012, 0.16672015190124512, -0.06371157616376877, 0.055275484919548035, 0.16669367253780365, -0.09596608579158783, -0.2637616991996765, -0.0036957943812012672, 0.03573935106396675, -0.014941198751330376, 0.06266174465417862, -0.2029615342617035, 0.1544780731201172, 0.08036524057388306, -0.004401060752570629, -0.047014884650707245, -0.22185666859149933, -0.12151918560266495, 0.19885040819644928, 0.10049425065517426, 0.06722146272659302, -0.12306760251522064, -0.07871739566326141, -0.049788977950811386, -0.14274434745311737, 0.08304938673973083, -0.05405772849917412, 0.03816571086645126, -0.003603692864999175, 0.0370866097509861, 0.03787144273519516, -0.03726855292916298, 0.0985725149512291, 0.03496124595403671, 0.047334372997283936, -0.08457260578870773, 0.04309006780385971, 0.020552892237901688, -0.057942744344472885, 0.10752855241298676, -0.0024213469587266445, 0.053902529180049896, -0.12435479462146759, -0.07725480198860168, 0.0226433202624321, 0.11902575194835663, -0.012282134033739567, -0.07623343169689178, -0.06293197721242905, -0.008566660806536674, -0.033548079431056976, -0.04397349804639816, 0.11597974598407745, -0.0702449381351471, 0.0139192258939147, 0.14658835530281067, 0.1352681666612625, -0.034078359603881836, -0.136784628033638, 0.018036074936389923, -0.01800587773323059, 0.11312583088874817, -0.10247142612934113, 0.08312153071165085, 0.08755883574485779, 0.023331178352236748, 0.13087627291679382, 0.0499516986310482, -0.14574109017848969, -0.028211485594511032, 0.054999593645334244, -0.11032302677631378, -0.0750005841255188, -0.01914137601852417, 0.0962277427315712, -0.149515762925148, 0.09563560783863068, 0.16573001444339752, -0.04485783725976944, 0.01295194961130619, 0.04024754837155342, 0.006466977298259735, -0.059234973043203354, 0.11240677535533905, 0.10030092298984528, 0.03293181583285332, -0.0159815214574337, 0.12433193624019623, 0.07582823187112808, -0.05862431973218918, 0.044099338352680206, -0.08221312612295151, -0.081977978348732, -0.04004032909870148, -0.08681890368461609, 0.09156043827533722, -0.0808812826871872, -0.09582149237394333, -0.016975918784737587, -0.044844213873147964, 0.030101746320724487, 0.15040117502212524, 0.0636076107621193, 0.019440634176135063, -0.0485212467610836, 0.06787580251693726, -0.05351821333169937, 0.07675158977508545, -0.031244343146681786, 0.08244267106056213, -0.13439232110977173, -0.00993734784424305, 0.032523103058338165, 0.04391014203429222, -0.044648122042417526, -0.03500593081116676, -0.13796496391296387, -0.000849180156365037, -0.1408458650112152, -0.037667881697416306, -0.04213797673583031, -0.011286414228379726, 0.05037428438663483, -0.066463403403759, -0.015083241276443005, 0.02393784373998642, -0.019571578130126, -0.0036110347136855125, 0.034034132957458496, 0.06669438630342484, -0.19954654574394226, -0.005399903282523155, 0.08824869990348816, -0.06639452278614044, 0.06035267561674118, 0.04177341237664223, -0.002296455204486847, 0.0485236681997776, -0.06251133233308792, 0.01995270699262619, 0.02903049625456333, 0.042848970741033554, 0.005827463697642088, -0.05138210207223892, 0.00937987957149744, -0.020560001954436302, -0.024757342413067818, -0.024912185966968536, 0.20836782455444336, -0.05835874006152153, 0.027652133256196976, 0.014637109823524952, -0.008011005818843842, -0.06063535436987877, 0.035890527069568634, 0.09654618054628372, 0.15555459260940552, 0.131512850522995, -0.054481010884046555, 0.05020930618047714, -0.0805603489279747, 0.02097295969724655, 0.03673508018255234, -0.009376300498843193, 0.12466145306825638, -0.12343685328960419, -0.011379510164260864, -0.05012328922748566, 0.2097475826740265, -0.012713434174656868, 0.08457975089550018, 0.054189283400774, -0.03863289952278137, -0.03127818927168846, -0.007252552546560764, 0.1707829087972641, 0.02894136682152748, 0.052408117800951004, 0.01809776946902275, 0.04156707227230072, 0.010144547559320927, -0.011148465797305107, 0.12809835374355316, 0.12038622051477432, -0.19496962428092957, 0.03886439651250839, 0.03427443653345108, -0.008748674765229225, -0.1602129191160202, -0.09026894718408585, -0.044638801366090775, 0.04615681990981102, -0.045570336282253265, 0.21775877475738525, 0.08845365047454834, -0.010205814614892006, 0.06531039625406265, 0.029438545927405357, -0.07427895814180374, -0.14311790466308594, -0.08957187831401825, -0.028308046981692314, -0.15084169805049896, -0.009594668634235859, -0.06669123470783234, -0.03201677277684212, 0.08603992313146591, 0.0038201268762350082, 0.02443157322704792, 0.2424885630607605, -0.09993867576122284, -0.008659816347062588, -0.023595519363880157, -0.04939435422420502, -0.07877440750598907, -0.1085226833820343, 0.0328560508787632, 0.0636838898062706, 0.13026468455791473, 0.0416489876806736, 0.023231402039527893, -0.004143822472542524, 0.03561227396130562, 0.012145367451012135, -0.08764845877885818, -0.05729961395263672, 0.015648355707526207, -0.07025434076786041, 0.03779671713709831, 0.030894847586750984, -0.016786441206932068, -0.03256233036518097, 0.17389032244682312, -0.08128347992897034, -0.046985965222120285, -0.11595584452152252, 0.12453852593898773, 0.015988871455192566, 0.061651598662137985, -0.03429591283202171, -0.12932556867599487, -0.058409690856933594, 0.17522281408309937, 0.04158266633749008, -0.025134598836302757, 0.04340742528438568, 0.03574754297733307, 0.02737860381603241, 0.002883672947064042, 0.08568785339593887, 0.006073854863643646, 0.09593919664621353, 0.033809397369623184, -0.011187754571437836, -0.03492164611816406, -0.034638289362192154, 0.04839283972978592, 0.12496863305568695, -0.014351550489664078, -0.012967110611498356, -0.07530374079942703, 0.056579068303108215, -0.06004282087087631, -0.2979767322540283, -0.03358405455946922, 0.009591017849743366, -0.04181180149316788, -0.026170378550887108, 0.09694737195968628, -0.06184110790491104, -0.003680581459775567, 0.015129471197724342, -0.03217167779803276, 0.1719997674226761, 0.06530891358852386, -0.0936560109257698, -0.04933331534266472, 0.0920502245426178, 0.009696605615317822, 0.1786167323589325, -0.005404114257544279, 0.02188941277563572, 0.05176960676908493, 0.06352498382329941, -0.07927030324935913, 0.027803879231214523, 0.01641138456761837, -0.08065967261791229, -0.039198946207761765, 0.038643304258584976, -0.020731376484036446, 0.1222662404179573, 0.03296762332320213, -0.21288292109966278, 0.013731500133872032, -0.04938017204403877, -0.08239062130451202, -0.07225216180086136, -0.026973525062203407, -0.10499188303947449, 0.12705513834953308, 0.10014209896326065, 0.008199222385883331, -0.06893649697303772, -0.10133025050163269, 0.044518306851387024, -0.029413240030407906, 0.060168590396642685, -0.0040109711699187756, -0.1163841187953949, -0.0191350057721138, -0.026019524782896042, 0.046694714576005936, -0.25014594197273254, -0.04614882916212082, 0.07508303225040436, -0.013920757919549942, 0.015339048579335213, 0.06163710728287697, 0.07674551755189896, 0.052495479583740234, -0.06998560577630997, -0.06550803035497665, 0.01784622110426426, 0.12118927389383316, -0.17728640139102936, -0.04895009845495224 ]
null
null
adapter-transformers
# Adapter `AdapterHub/bert-base-uncased-pf-qnli` for bert-base-uncased An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [nli/qnli](https://adapterhub.ml/explore/nli/qnli/) dataset and includes a prediction head for classification. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("bert-base-uncased") adapter_name = model.load_adapter("AdapterHub/bert-base-uncased-pf-qnli", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
{"language": ["en"], "tags": ["text-classification", "bert", "adapterhub:nli/qnli", "adapter-transformers"]}
text-classification
AdapterHub/bert-base-uncased-pf-qnli
[ "adapter-transformers", "bert", "text-classification", "adapterhub:nli/qnli", "en", "arxiv:2104.08247", "region:us" ]
2022-03-02T23:29:04+00:00
[ "2104.08247" ]
[ "en" ]
TAGS #adapter-transformers #bert #text-classification #adapterhub-nli/qnli #en #arxiv-2104.08247 #region-us
# Adapter 'AdapterHub/bert-base-uncased-pf-qnli' for bert-base-uncased An adapter for the 'bert-base-uncased' model that was trained on the nli/qnli dataset and includes a prediction head for classification. This adapter was created for usage with the adapter-transformers library. ## Usage First, install 'adapter-transformers': _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_ Now, the adapter can be loaded and activated like this: ## Architecture & Training The training code for this adapter is available at URL In particular, training configurations for all tasks can be found here. ## Evaluation results Refer to the paper for more information on results. If you use this adapter, please cite our paper "What to Pre-Train on? Efficient Intermediate Task Selection":
[ "# Adapter 'AdapterHub/bert-base-uncased-pf-qnli' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the nli/qnli dataset and includes a prediction head for classification.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ "TAGS\n#adapter-transformers #bert #text-classification #adapterhub-nli/qnli #en #arxiv-2104.08247 #region-us \n", "# Adapter 'AdapterHub/bert-base-uncased-pf-qnli' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the nli/qnli dataset and includes a prediction head for classification.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ 38, 85, 57, 30, 45 ]
[ "passage: TAGS\n#adapter-transformers #bert #text-classification #adapterhub-nli/qnli #en #arxiv-2104.08247 #region-us \n# Adapter 'AdapterHub/bert-base-uncased-pf-qnli' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the nli/qnli dataset and includes a prediction head for classification.\n\nThis adapter was created for usage with the adapter-transformers library.## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ -0.0716300755739212, 0.015563433058559895, -0.0028344907332211733, 0.039634883403778076, 0.17043009400367737, 0.005544697400182486, 0.13880716264247894, 0.06451492011547089, 0.08222184330224991, 0.03594439849257469, 0.01301303505897522, 0.09273798763751984, 0.045093242079019547, 0.012695999816060066, 0.02162240445613861, -0.11104714125394821, 0.010196800343692303, 0.04004139080643654, -0.07692518085241318, 0.10372211039066315, 0.08979614824056625, -0.08438620716333389, 0.09089345484972, 0.06785985082387924, -0.08783184736967087, 0.03539268299937248, -0.004627400543540716, -0.09501481801271439, 0.09593787044286728, 0.08431641012430191, 0.14983588457107544, 0.056012410670518875, 0.02044132724404335, -0.17891928553581238, 0.017439473420381546, 0.08314703404903412, 0.02534649893641472, 0.07476525008678436, -0.005110872443765402, 0.022874705493450165, -0.007620705757290125, -0.005390918347984552, 0.060756124556064606, 0.07216567546129227, -0.06714456528425217, -0.21178999543190002, -0.01358781661838293, 0.11606065928936005, 0.021791232749819756, 0.07961929589509964, 0.0025527721736580133, 0.06546944379806519, 0.02524937503039837, 0.054237425327301025, 0.20154480636119843, -0.27442994713783264, -0.0015589280519634485, -0.013463002629578114, 0.05147239565849304, 0.04600386321544647, -0.0436127632856369, 0.017157763242721558, 0.02970365807414055, 0.0014824381796643138, 0.03184414654970169, -0.01883668079972267, 0.00877127330750227, -0.0014638694701716304, -0.16816817224025726, 0.009603694081306458, 0.1880112737417221, -0.0004971598391421139, -0.10472481697797775, -0.03419134020805359, -0.025755750015378, 0.08343597501516342, 0.027496404945850372, -0.10385754704475403, -0.007646722719073296, 0.0051895142532885075, 0.010272460989654064, -0.08538103103637695, -0.10246331989765167, -0.07984644174575806, -0.10342780500650406, 0.30065855383872986, -0.009280752390623093, 0.03352398797869682, 0.0003444327157922089, 0.11679889261722565, -0.023552557453513145, -0.10510669648647308, -0.08369147032499313, -0.06726930290460587, -0.0762391909956932, -0.053250089287757874, -0.016493404284119606, -0.25014692544937134, -0.0035130828619003296, 0.11586996912956238, 0.1165534183382988, 0.02993587590754032, -0.07069152593612671, 0.050764136016368866, 0.033838581293821335, 0.2184164673089981, -0.07001946121454239, 0.03411397710442543, -0.026156751438975334, -0.017802035436034203, -0.04510171338915825, -0.11818566918373108, -0.059531405568122864, -0.03602912276983261, 0.03461051359772682, 0.04098491743206978, 0.01862381212413311, 0.10293851047754288, -0.036914970725774765, -0.06801990419626236, 0.07694536447525024, -0.12716402113437653, -0.025931598618626595, 0.01054967101663351, -0.049297258257865906, 0.09123829752206802, 0.12814876437187195, -0.004901866894215345, -0.033989597111940384, 0.05699966847896576, -0.07424137741327286, -0.07497162371873856, -0.04579325020313263, -0.13302330672740936, 0.016447024419903755, -0.013645576313138008, -0.009262733161449432, -0.16186867654323578, -0.07139111310243607, 0.015377421863377094, 0.04864780977368355, 0.0023620720021426678, 0.09745310246944427, 0.03226518630981445, 0.040833186358213425, 0.014207199215888977, -0.016331864520907402, -0.024425694718956947, -0.028927000239491463, 0.07574966549873352, 0.04823227599263191, 0.059712544083595276, -0.030025439336895943, 0.06981617212295532, -0.062063734978437424, 0.013305088505148888, -0.1512335240840912, 0.09629594534635544, -0.15855848789215088, 0.005047897342592478, -0.1511247456073761, -0.03259694576263428, 0.031015098094940186, 0.01958082802593708, 0.07884791493415833, 0.08665440231561661, -0.09989013522863388, -0.06441159546375275, 0.0568385124206543, -0.1724504828453064, -0.14947713911533356, 0.059309735894203186, -0.008048011921346188, 0.13371728360652924, 0.0606033094227314, 0.0828307718038559, 0.1682165265083313, -0.09111993759870529, -0.1238863542675972, 0.05980965495109558, -0.07554978132247925, -0.027057766914367676, 0.043983396142721176, 0.05648723989725113, -0.146122545003891, 0.034212566912174225, -0.10317637026309967, 0.0035560696851462126, -0.04115300253033638, -0.04108164831995964, -0.039345432072877884, -0.04842130467295647, 0.11613868921995163, 0.005347924306988716, -0.012470623478293419, 0.07367133349180222, -0.13283495604991913, 0.172214075922966, 0.06213916838169098, -0.06650333851575851, 0.02756800875067711, -0.13386590778827667, 0.11374852806329727, -0.11788385361433029, 0.014600347727537155, -0.18852101266384125, -0.035620611160993576, 0.010473957285284996, -0.04799531027674675, 0.07239530980587006, 0.03477758541703224, 0.04894087836146355, 0.021805429831147194, 0.006520301103591919, -0.0024166861549019814, -0.0644051805138588, 0.03724069893360138, -0.04644220322370529, -0.09520871937274933, -0.05591052770614624, -0.0478174090385437, -0.0061864652670919895, -0.18644583225250244, 0.05220744386315346, 0.09454439580440521, 0.03836403414607048, 0.02223372645676136, -0.004663487430661917, -0.03839649260044098, -0.017779521644115448, -0.03974728658795357, -0.01809745840728283, 0.03487328439950943, 0.005372727755457163, -0.12349317967891693, 0.008490227162837982, -0.08952547609806061, 0.023889103904366493, 0.053202349692583084, -0.040635351091623306, -0.05311781167984009, -0.05383545905351639, -0.01641986519098282, -0.02691488340497017, -0.008271708153188229, -0.07373958826065063, 0.23912402987480164, 0.0740809515118599, 0.05382324010133743, -0.048425301909446716, -0.0026673993561416864, 0.023256801068782806, -0.002189800376072526, -0.0013819342711940408, 0.02718161791563034, 0.04473104700446129, -0.11790905147790909, 0.005653162486851215, 0.18517538905143738, -0.02615557424724102, 0.10262078791856766, -0.013423078693449497, -0.10359585285186768, -0.013445055112242699, -0.04670959338545799, 0.050892289727926254, 0.04511198401451111, -0.11075161397457123, 0.03284795582294464, 0.06554661691188812, -0.00032686276244930923, 0.004380548372864723, -0.06001640856266022, 0.030114363878965378, 0.06741269677877426, -0.0030961432494223118, -0.08488796651363373, -0.013530350290238857, -0.022848444059491158, 0.06170197203755379, 0.050437409430742264, 0.1076229140162468, 0.018476882949471474, -0.027691449970006943, -0.08090328425168991, 0.18498347699642181, -0.05819796398282051, -0.22275926172733307, -0.22813162207603455, -0.11528406292200089, -0.05477796867489815, -0.0044586677104234695, 0.03518219664692879, -0.11819068342447281, -0.08028718829154968, -0.04912513867020607, 0.15834560990333557, -0.01967960223555565, 0.02984645776450634, 0.02409234270453453, -0.04551781713962555, 0.09162591397762299, -0.1681510955095291, 0.036815937608480453, 0.017812557518482208, -0.09611854702234268, -0.01747981831431389, 0.024573763832449913, 0.08017882704734802, 0.167005717754364, -0.0403401181101799, 0.003776106983423233, -0.002494547516107559, 0.15143758058547974, -0.0839693546295166, 0.043603431433439255, 0.14262104034423828, -0.14678485691547394, 0.03404994308948517, 0.07198484987020493, 0.05541792884469032, -0.040729619562625885, 0.05226072296500206, 0.039106450974941254, -0.05372423678636551, -0.2864428162574768, -0.016018982976675034, 0.012955759651958942, 0.016579829156398773, 0.06241900473833084, 0.029546333476901054, 0.04022517800331116, 0.07086938619613647, 0.04643377289175987, -0.03289656713604927, -0.03452940285205841, 0.06974367797374725, 0.2299647331237793, -0.010285856202244759, 0.10795949399471283, -0.08373221009969711, 0.02157915197312832, 0.08950720727443695, 0.00949821900576353, 0.15541808307170868, -0.030078371986746788, 0.08808360993862152, 0.0803823247551918, -0.03340425714850426, 0.07695353776216507, 0.14147092401981354, -0.045401621609926224, -0.025012612342834473, 0.014286760240793228, -0.06419924646615982, -0.05876760184764862, 0.03737716004252434, -0.024239441379904747, 0.019214745610952377, -0.05922736972570419, -0.003743830369785428, 0.019045917317271233, 0.1202462911605835, 0.015701809898018837, -0.17159362137317657, -0.14007523655891418, -0.038011584430933, -0.025292815640568733, -0.06549230217933655, 0.013802425935864449, 0.052779704332351685, -0.059297386556863785, 0.034579623490571976, -0.034593235701322556, 0.09560659527778625, -0.15240129828453064, -0.007936177775263786, 0.04778843745589256, 0.10251981019973755, -0.04874303191900253, 0.10796774923801422, -0.18979129195213318, 0.09508664160966873, 0.04132164269685745, 0.03667881339788437, -0.03226320073008537, 0.018548721447587013, 0.011469793505966663, 0.1500774323940277, 0.06584011763334274, -0.019451815634965897, 0.06311482936143875, -0.2047242373228073, -0.08347664773464203, 0.034861769527196884, 0.06433724611997604, -0.0672103613615036, 0.050494030117988586, -0.03376399353146553, 0.05513953045010567, 0.04985468089580536, 0.05245797708630562, -0.13845907151699066, -0.16954746842384338, 0.07745020091533661, -0.00135806982871145, 0.11025694012641907, -0.06434912234544754, -0.11996786296367645, -0.020999567583203316, 0.19673222303390503, -0.16082492470741272, -0.06698436290025711, -0.14424729347229004, -0.0008787748520262539, 0.06359832733869553, -0.08599595725536346, 0.03592856600880623, -0.011985493823885918, 0.11201650649309158, 0.003932857885956764, -0.09748872369527817, 0.0593378059566021, -0.0592266209423542, -0.06521490961313248, -0.034475356340408325, 0.005006913095712662, 0.10252877324819565, 0.01782381348311901, 0.004856207873672247, -0.0432511568069458, 0.023640191182494164, -0.11936059594154358, -0.011831331998109818, 0.038697581738233566, -0.04772843420505524, 0.0222205501049757, -0.08300778269767761, 0.05597802251577377, -0.08274278044700623, 0.0020312590058892965, 0.1525006741285324, 0.12478429824113846, -0.07161175459623337, 0.044439803808927536, 0.1744852364063263, -0.09221760183572769, -0.24217620491981506, 0.0202268585562706, 0.0494593121111393, -0.014622809365391731, 0.0401499904692173, -0.21379132568836212, 0.18029429018497467, 0.05514349415898323, 0.0020567472092807293, 0.06736405193805695, -0.11246642470359802, -0.08449123054742813, 0.18507753312587738, 0.10182585567235947, 0.03507844731211662, -0.09200435131788254, -0.06866167485713959, 0.007560982834547758, -0.17130811512470245, 0.11595668643712997, -0.0401218980550766, 0.06327451765537262, -0.028076911345124245, 0.03639242425560951, 0.03148854151368141, -0.01956515572965145, 0.07552339136600494, 0.011443533934652805, 0.020903633907437325, -0.07923253625631332, -0.003588363528251648, 0.04778524115681648, -0.05873195827007294, 0.05874855816364288, -0.01413896307349205, 0.059666331857442856, -0.08300340175628662, -0.0747884139418602, 0.006516067311167717, 0.10676431655883789, -0.025453682988882065, -0.09244847297668457, -0.0490088053047657, 0.035194333642721176, -0.013222909532487392, -0.0389234833419323, 0.06626056879758835, -0.08103691041469574, 0.053140971809625626, 0.18244685232639313, 0.14630359411239624, -0.025962689891457558, -0.08686231821775436, 0.003453524550423026, -0.012774067930877209, 0.12818852066993713, -0.14496354758739471, 0.08154052495956421, 0.12066290527582169, 0.031964261084795, 0.10971645265817642, 0.05204428359866142, -0.11171889305114746, -0.008399204351007938, 0.05950707569718361, -0.06900187581777573, -0.06764252483844757, -0.032042719423770905, 0.06664464622735977, -0.1624753475189209, 0.08005029708147049, 0.1535421907901764, -0.05214004963636398, 0.025080112740397453, 0.05566735565662384, -0.016772057861089706, -0.047003813087940216, 0.08631987869739532, 0.11711961776018143, 0.058991823345422745, -0.019318383187055588, 0.08189023286104202, 0.10419251769781113, -0.08559177070856094, 0.02693881094455719, -0.099002905189991, -0.0773492231965065, -0.054985251277685165, -0.07456725090742111, 0.08152320981025696, -0.07734216004610062, -0.09070675075054169, 0.01191956177353859, -0.06692106276750565, 0.030444186180830002, 0.18473759293556213, 0.03408072888851166, 0.003853295696899295, -0.07413728535175323, 0.056352823972702026, -0.08392950892448425, 0.08705109357833862, -0.05075649917125702, 0.06295868754386902, -0.1095186322927475, -0.025866376236081123, 0.04003762826323509, 0.07750808447599411, -0.05603356286883354, -0.08230286836624146, -0.11200489848852158, -0.018302036449313164, -0.17654070258140564, -0.018519315868616104, -0.01470294501632452, 0.013834412209689617, -0.0036483891308307648, -0.0961763858795166, -0.043025486171245575, 0.03013739176094532, -0.014825263060629368, 0.005361746996641159, 0.0551179014146328, 0.08034256100654602, -0.17835910618305206, -0.01772054098546505, 0.06524795293807983, -0.04713251814246178, 0.08576145023107529, -0.0035530601162463427, -0.02459062822163105, 0.05058944225311279, -0.06861289590597153, 0.054993145167827606, -0.017666185274720192, 0.0567152164876461, 0.010407740250229836, -0.0908912941813469, 0.027751414105296135, -0.04029844328761101, -0.03452175855636597, -0.00019064408843405545, 0.16548456251621246, -0.055696453899145126, 0.0312865749001503, -0.016771679744124413, 0.031634263694286346, -0.056435901671648026, 0.06232229620218277, 0.0718856155872345, 0.10584423691034317, 0.12568050622940063, -0.06349056214094162, 0.06981698423624039, -0.09599881619215012, 0.01111301127821207, 0.05426638200879097, -0.009623250924050808, 0.14522072672843933, -0.11895287036895752, -0.00912631768733263, -0.07050863653421402, 0.19807976484298706, -0.06080080196261406, 0.06235576793551445, 0.05186377838253975, -0.035121601074934006, -0.10455282777547836, -0.046455275267362595, 0.19937413930892944, 0.06243765354156494, 0.04025838524103165, 0.02976764738559723, 0.04251191020011902, -0.003255285322666168, 0.06421689689159393, 0.14297689497470856, 0.11341479420661926, -0.12605905532836914, 0.028577785938978195, 0.038509830832481384, 0.0013486543903127313, -0.12616752088069916, -0.05098918080329895, -0.0446280799806118, 0.07237906754016876, -0.010412823408842087, 0.1432298719882965, 0.07779775559902191, -0.0035512829199433327, 0.06896834820508957, 0.017187129706144333, -0.07669878005981445, -0.0936911478638649, -0.0968078225851059, -0.009586132131516933, -0.15153422951698303, -0.013776912353932858, -0.07929232716560364, -0.013977816328406334, 0.06632639467716217, 0.024069514125585556, -0.011530645191669464, 0.23619279265403748, -0.07620749622583389, -0.02010856196284294, 0.06383039057254791, -0.041045818477869034, -0.0550580658018589, -0.09858458489179611, 0.07749494910240173, 0.035736504942178726, 0.12925395369529724, 0.029779845848679543, 0.06065867841243744, 0.0021982192993164062, 0.03572439029812813, -0.009805690497159958, -0.1180734857916832, -0.042544133961200714, 0.0334378220140934, -0.050903189927339554, 0.06558042019605637, 0.0021175232250243425, -0.009833958931267262, -0.020534714683890343, 0.1595960408449173, -0.0474121980369091, -0.054090145975351334, -0.10160164535045624, 0.14654745161533356, -0.02545873634517193, 0.02804403007030487, -0.04009295627474785, -0.11223382502794266, -0.06368211656808853, 0.2192840427160263, 0.03847317397594452, -0.020368186756968498, 0.034074317663908005, 0.0518677681684494, 0.020693302154541016, 0.024996744468808174, 0.10375483334064484, 0.01783750206232071, 0.09462787955999374, -0.004114785231649876, -0.05623325705528259, -0.05767451599240303, -0.024160897359251976, 0.07793550193309784, 0.15350842475891113, 0.014104141853749752, -0.025407560169696808, -0.10352788120508194, 0.06507036089897156, -0.09045585244894028, -0.2410399615764618, -0.05816689878702164, -0.0015967667568475008, -0.08493652939796448, -0.06684610992670059, 0.05170736461877823, -0.06327642500400543, -0.01455964706838131, 0.017304982990026474, -0.035503074526786804, 0.1491006463766098, 0.03693784773349762, -0.044402506202459335, -0.017227044329047203, 0.0903267189860344, -0.005108511541038752, 0.16207654774188995, 0.011271702125668526, 0.03334769606590271, 0.07378068566322327, 0.0644945502281189, -0.07933507859706879, 0.02055477350950241, 0.021727077662944794, -0.11505839228630066, -0.018886227160692215, 0.03970858454704285, 0.0020841858349740505, 0.08708499372005463, 0.05873588100075722, -0.17209693789482117, 0.03378261998295784, -0.03964275121688843, -0.08032266795635223, -0.08370105177164078, -0.017618512734770775, -0.06322850286960602, 0.14260044693946838, 0.12530960142612457, -0.0002855785423889756, -0.08789437264204025, -0.09530418366193771, 0.04015757516026497, -0.006054471712559462, 0.10046544671058655, -0.020223038271069527, -0.10559264570474625, -0.017664963379502296, -0.0514223575592041, 0.04169643670320511, -0.3068241477012634, -0.036017220467329025, 0.07867156714200974, -0.04079640284180641, 0.023012951016426086, 0.0802207663655281, 0.10963278263807297, 0.05840974301099777, -0.048824701458215714, -0.09894997626543045, 0.008648166432976723, 0.10715724527835846, -0.19051121175289154, -0.044122084975242615 ]
null
null
adapter-transformers
# Adapter `AdapterHub/bert-base-uncased-pf-qqp` for bert-base-uncased An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [sts/qqp](https://adapterhub.ml/explore/sts/qqp/) dataset and includes a prediction head for classification. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("bert-base-uncased") adapter_name = model.load_adapter("AdapterHub/bert-base-uncased-pf-qqp", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
{"language": ["en"], "tags": ["text-classification", "adapter-transformers", "adapterhub:sts/qqp", "bert"]}
text-classification
AdapterHub/bert-base-uncased-pf-qqp
[ "adapter-transformers", "bert", "text-classification", "adapterhub:sts/qqp", "en", "arxiv:2104.08247", "region:us" ]
2022-03-02T23:29:04+00:00
[ "2104.08247" ]
[ "en" ]
TAGS #adapter-transformers #bert #text-classification #adapterhub-sts/qqp #en #arxiv-2104.08247 #region-us
# Adapter 'AdapterHub/bert-base-uncased-pf-qqp' for bert-base-uncased An adapter for the 'bert-base-uncased' model that was trained on the sts/qqp dataset and includes a prediction head for classification. This adapter was created for usage with the adapter-transformers library. ## Usage First, install 'adapter-transformers': _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_ Now, the adapter can be loaded and activated like this: ## Architecture & Training The training code for this adapter is available at URL In particular, training configurations for all tasks can be found here. ## Evaluation results Refer to the paper for more information on results. If you use this adapter, please cite our paper "What to Pre-Train on? Efficient Intermediate Task Selection":
[ "# Adapter 'AdapterHub/bert-base-uncased-pf-qqp' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the sts/qqp dataset and includes a prediction head for classification.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ "TAGS\n#adapter-transformers #bert #text-classification #adapterhub-sts/qqp #en #arxiv-2104.08247 #region-us \n", "# Adapter 'AdapterHub/bert-base-uncased-pf-qqp' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the sts/qqp dataset and includes a prediction head for classification.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ 37, 83, 57, 30, 45 ]
[ "passage: TAGS\n#adapter-transformers #bert #text-classification #adapterhub-sts/qqp #en #arxiv-2104.08247 #region-us \n# Adapter 'AdapterHub/bert-base-uncased-pf-qqp' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the sts/qqp dataset and includes a prediction head for classification.\n\nThis adapter was created for usage with the adapter-transformers library.## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ -0.0847463458776474, 0.027039220556616783, -0.003209249582141638, 0.02822030335664749, 0.1775553971529007, 0.012232816778123379, 0.1157778725028038, 0.0679129883646965, 0.08767501264810562, 0.03378531336784363, 0.037216249853372574, 0.09023064374923706, 0.054993316531181335, 0.05040424317121506, 0.015890415757894516, -0.09945453703403473, 0.016656305640935898, 0.03211679309606552, -0.12286749482154846, 0.11148802936077118, 0.09092637896537781, -0.0989462286233902, 0.10286685824394226, 0.049456387758255005, -0.08103226870298386, 0.024478763341903687, -0.0067746383138000965, -0.08859191089868546, 0.10643709450960159, 0.09107508510351181, 0.14553233981132507, 0.07154510915279388, 0.03312298655509949, -0.15549758076667786, 0.025700896978378296, 0.08268481492996216, 0.013759097084403038, 0.08381906151771545, -0.010075862519443035, 0.011060589924454689, -0.08578833937644958, 0.0014648915966972709, 0.053220827132463455, 0.06616377085447311, -0.07046577334403992, -0.20326265692710876, -0.02909369394183159, 0.09819483757019043, 0.02615588717162609, 0.0726676732301712, 0.00740639865398407, 0.05498136579990387, 0.00669564725831151, 0.046812355518341064, 0.18869152665138245, -0.2883763313293457, 0.004406673368066549, -0.02650119923055172, 0.054486047476530075, 0.06935667991638184, -0.04599970951676369, -0.0013637426309287548, 0.025896497070789337, 0.012782149948179722, 0.04893030226230621, -0.03317850083112717, 0.0035179771948605776, 0.002429128857329488, -0.16578951478004456, -0.010753697715699673, 0.2081679105758667, -0.015420068055391312, -0.10911918431520462, -0.02223968878388405, -0.03146369755268097, 0.07359369099140167, 0.03414193540811539, -0.08839535713195801, -0.01155613549053669, 0.010957357473671436, -0.02264096774160862, -0.09124977141618729, -0.10753146559000015, -0.10648360103368759, -0.08206909894943237, 0.23753617703914642, 0.0032695785630494356, 0.031093088909983635, -0.011396968737244606, 0.13785284757614136, -0.06328912079334259, -0.09514814615249634, -0.08675751090049744, -0.08792078495025635, -0.07703721523284912, -0.03599562495946884, -0.027916714549064636, -0.2600613832473755, -0.009767746552824974, 0.1083945706486702, 0.11351476609706879, 0.05387940630316734, -0.04532429203391075, 0.058114055544137955, 0.030128758400678635, 0.22432973980903625, -0.07135358452796936, 0.023408545181155205, -0.029336055740714073, -0.0003729451564140618, -0.08245086669921875, -0.10704926401376724, -0.07004747539758682, -0.03190133348107338, 0.03732212632894516, 0.030901135876774788, 0.0018542326288297772, 0.10500847548246384, -0.021579856052994728, -0.06404908746480942, 0.08345265686511993, -0.11199453473091125, -0.030183108523488045, 0.021537138149142265, -0.03184971585869789, 0.07242678850889206, 0.14874154329299927, -0.006824946030974388, -0.037642236799001694, 0.07367248833179474, -0.05859135836362839, -0.05827832221984863, -0.04336777701973915, -0.1362665593624115, -0.014585277996957302, -0.017429018393158913, -0.016906654462218285, -0.14662355184555054, -0.07159700244665146, -0.0005588798085227609, 0.04315934330224991, 0.019337596371769905, 0.08549785614013672, 0.036553870886564255, 0.028477558866143227, 0.01338871382176876, -0.02251090668141842, -0.01585547626018524, -0.026675550267100334, 0.09973130375146866, 0.02296285703778267, 0.037813909351825714, -0.05795791372656822, 0.07594826072454453, -0.053722649812698364, 0.013020419515669346, -0.19869545102119446, 0.10228822380304337, -0.16133984923362732, -0.005082159303128719, -0.1329450160264969, -0.04905817657709122, 0.02305993065237999, 0.025341030210256577, 0.07002119719982147, 0.07926872372627258, -0.120580293238163, -0.05455785617232323, 0.07942331582307816, -0.15202519297599792, -0.13474532961845398, 0.052167996764183044, -0.025083351880311966, 0.1346229612827301, 0.041476115584373474, 0.06683753430843353, 0.20007483661174774, -0.07135888934135437, -0.11428346484899521, 0.06420611590147018, -0.07138709723949432, -0.029343629255890846, 0.04671640694141388, 0.02268029749393463, -0.15845860540866852, 0.02576180174946785, -0.1455952525138855, -0.021349705755710602, -0.028494320809841156, -0.02904292196035385, -0.0432887077331543, -0.04676558077335358, 0.11726771295070648, -0.012378256767988205, -0.0017914079362526536, 0.07959520816802979, -0.1285707652568817, 0.17242738604545593, 0.05091758444905281, -0.05953797698020935, 0.020263494923710823, -0.11938774585723877, 0.10457425564527512, -0.11028003692626953, 0.013746602460741997, -0.2137475311756134, -0.0001062259470927529, 0.010686512105166912, -0.029567372053861618, 0.07145155221223831, 0.04642771929502487, 0.0654945895075798, 0.03382452204823494, 0.023036649450659752, -0.004169218707829714, -0.06379039585590363, 0.017065905034542084, -0.07953975349664688, -0.06902306526899338, -0.06157778948545456, -0.055225908756256104, -0.002445828402414918, -0.1431610882282257, 0.05427568778395653, 0.1013040840625763, 0.029624471440911293, 0.018746497109532356, -0.005887238308787346, -0.034304045140743256, -0.013343190774321556, -0.026973262429237366, -0.016767660155892372, 0.028314484283328056, 0.01297230925410986, -0.09091726690530777, -0.0037593015003949404, -0.09608735144138336, 0.02399536594748497, 0.06911428272724152, -0.011848608031868935, -0.07304553687572479, -0.07022643834352493, 0.002006903989240527, -0.004103402607142925, -0.0028896103613078594, -0.09249112755060196, 0.2668790817260742, 0.07412121444940567, 0.07031221687793732, -0.045113638043403625, -0.0140717513859272, 0.01165214367210865, 0.012769737280905247, 0.025572072714567184, 0.016831669956445694, 0.06339190155267715, -0.08961337804794312, 0.014516007155179977, 0.17432931065559387, 0.006368353497236967, 0.07635036110877991, -0.008571680635213852, -0.09714101254940033, 0.0074468511156737804, -0.03653018921613693, 0.038278453052043915, 0.07113781571388245, -0.09621897339820862, 0.005863567348569632, 0.07048030197620392, 0.004844264592975378, -0.0026337660383433104, -0.08161510527133942, 0.04010649025440216, 0.0568867027759552, -0.0011436245404183865, -0.09894407540559769, -0.029552817344665527, -0.0008180377772077918, 0.060926344245672226, 0.0584149993956089, 0.11371123790740967, 0.020260265097022057, -0.027464084327220917, -0.08072949200868607, 0.1886560022830963, -0.07694488018751144, -0.21695195138454437, -0.23397935926914215, -0.08632763475179672, -0.019654707983136177, 0.008723231963813305, 0.05190585181117058, -0.11143367737531662, -0.08390640467405319, -0.027297988533973694, 0.15193377435207367, -0.0200593713670969, 0.028103111311793327, 0.010757443495094776, -0.04465854540467262, 0.09893429279327393, -0.15777388215065002, 0.043420977890491486, 0.00963137112557888, -0.08775118738412857, -0.01428098976612091, 0.043936148285865784, 0.07643994688987732, 0.14097927510738373, -0.032759200781583786, 0.00830826349556446, -0.009548230096697807, 0.1774977147579193, -0.07347474247217178, 0.03621922433376312, 0.1253146082162857, -0.17007558047771454, 0.04703877866268158, 0.07056201994419098, 0.050476111471652985, -0.03742928057909012, 0.05469502508640289, 0.03099239431321621, -0.05794599652290344, -0.2728182077407837, 0.005490161012858152, 0.014986388385295868, -0.004348133224993944, 0.06361958384513855, 0.03657858073711395, 0.012275776825845242, 0.09869275987148285, 0.048288844525814056, -0.010689479298889637, -0.04475344344973564, 0.06661801040172577, 0.17457610368728638, -0.01622871495783329, 0.10094702988862991, -0.08594518899917603, 0.02310848794877529, 0.0817849412560463, 0.004676749464124441, 0.14894448220729828, -0.043801020830869675, 0.06982208788394928, 0.07853379100561142, 0.019945301115512848, 0.07107645273208618, 0.14220470190048218, -0.0446324497461319, -0.010264423675835133, -0.0064210169948637486, -0.04073550924658775, -0.08760308474302292, 0.031666092574596405, -0.0005152593948878348, 0.02753927931189537, -0.06638259440660477, 0.003666948527097702, 0.024036286398768425, 0.17153601348400116, -0.012554842978715897, -0.15168875455856323, -0.12947878241539001, -0.03104509972035885, -0.024928396567702293, -0.06977452337741852, 0.013671311549842358, 0.07444334030151367, -0.08926496654748917, -0.0011015146737918258, -0.03786923736333847, 0.10103553533554077, -0.1244858130812645, 0.00577890919521451, 0.059367742389440536, 0.09733600914478302, -0.04782065376639366, 0.10118758678436279, -0.22084659337997437, 0.08571742475032806, 0.03889453038573265, 0.02803776226937771, -0.0434531643986702, 0.028351109474897385, 0.028506867587566376, 0.12351438403129578, 0.07090982049703598, -0.022197062149643898, 0.05134524777531624, -0.18850594758987427, -0.08554387092590332, 0.045080576092004776, 0.0738680362701416, -0.10141146928071976, 0.05707438662648201, -0.0433042086660862, 0.054018549621105194, 0.030734974890947342, 0.05274514481425285, -0.09232183545827866, -0.1597108542919159, 0.06161092221736908, -0.03956193849444389, 0.12221202254295349, -0.0747050940990448, -0.09479206800460815, -0.036167293787002563, 0.15885959565639496, -0.23430635035037994, -0.07468830049037933, -0.14001071453094482, -0.03689499571919441, 0.05136092007160187, -0.08915304392576218, 0.03459423780441284, -0.0019516443135216832, 0.11241628974676132, 0.005697214975953102, -0.09669865667819977, 0.06089455634355545, -0.06367915123701096, -0.08424703031778336, -0.03399288281798363, 0.022947875782847404, 0.08591864258050919, 0.03394777327775955, -0.006282889749854803, -0.03029678948223591, 0.007079503498971462, -0.12168560177087784, -0.018177632242441177, 0.025385968387126923, -0.021413512527942657, 0.03267828747630119, -0.06843537092208862, 0.05877993255853653, -0.08107434958219528, 0.031150221824645996, 0.181186705827713, 0.0990956723690033, -0.0898381918668747, 0.06715766340494156, 0.16179685294628143, -0.07145150750875473, -0.26465320587158203, 0.02358235791325569, 0.0648350641131401, -0.009915263392031193, 0.023469101637601852, -0.2309490293264389, 0.14403513073921204, 0.034592997282743454, 0.003627325175330043, 0.034333959221839905, -0.10636454820632935, -0.08597581833600998, 0.19704027473926544, 0.09372933954000473, 0.020579872652888298, -0.10141380876302719, -0.07969195395708084, 0.011298920959234238, -0.19210384786128998, 0.11316772550344467, -0.06266841292381287, 0.06827174127101898, -0.010454305447638035, 0.04315498471260071, 0.02330797351896763, -0.024473559111356735, 0.08868570625782013, 0.005275470204651356, 0.013248222880065441, -0.08111505210399628, -0.0061949375085532665, -0.009163755923509598, -0.06140376999974251, 0.04872870445251465, -0.00634784484282136, 0.06000756099820137, -0.11361536383628845, -0.05338543280959129, -0.004975747782737017, 0.07711785286664963, -0.012925458140671253, -0.08364070951938629, -0.049970272928476334, 0.016475534066557884, -0.03433816507458687, -0.046109504997730255, 0.06910547614097595, -0.08080600202083588, 0.06501536816358566, 0.19525884091854095, 0.15709377825260162, 0.0017263590125367045, -0.13627177476882935, 0.006885282229632139, -0.01597375050187111, 0.1252160370349884, -0.15053871273994446, 0.08278321474790573, 0.11931875348091125, 0.03188689053058624, 0.12067293375730515, 0.0591030977666378, -0.10349982231855392, 0.025038976222276688, 0.04757857695221901, -0.08512279391288757, -0.07331059128046036, -0.01711198128759861, 0.08773194253444672, -0.18356263637542725, 0.061829615384340286, 0.15080960094928741, -0.04040095955133438, 0.004593814257532358, 0.03295470401644707, -0.010776080191135406, -0.048907265067100525, 0.10927510261535645, 0.12265174090862274, 0.06643808633089066, -0.03835130110383034, 0.09270025044679642, 0.09026872366666794, -0.04318320006132126, 0.038310397416353226, -0.08890600502490997, -0.0890403464436531, -0.04736509174108505, -0.06151329353451729, 0.08047911524772644, -0.04886544868350029, -0.07359974831342697, 0.00460163364186883, -0.0844200924038887, 0.034802865236997604, 0.21399544179439545, 0.0241201464086771, -0.004228550009429455, -0.06955648958683014, 0.048478804528713226, -0.06984898447990417, 0.057895414531230927, -0.05755247175693512, 0.05925668030977249, -0.10338731855154037, 0.020737120881676674, 0.03258967027068138, 0.09741321206092834, -0.05256650596857071, -0.06710343807935715, -0.12190237641334534, -0.019412796944379807, -0.20280349254608154, -0.00900354702025652, -0.011405892670154572, 0.0004323963657952845, -0.0015979388263076544, -0.1044415533542633, -0.029972335323691368, 0.03001895546913147, -0.04163160175085068, 0.004548446275293827, 0.04600583389401436, 0.07713963836431503, -0.164069265127182, 0.007811804302036762, 0.07165764272212982, -0.042817212641239166, 0.08639602363109589, 0.01976337470114231, -0.03966190665960312, 0.0670449435710907, -0.02701941691339016, 0.01129373349249363, -0.03381624445319176, 0.052114903926849365, 0.025957193225622177, -0.05338018760085106, 0.026612088084220886, -0.06720320135354996, -0.03488815575838089, -0.003435371210798621, 0.20548750460147858, -0.05687570571899414, 0.05188495293259621, -0.010369256138801575, 0.056273698806762695, -0.04722418636083603, 0.05650333687663078, 0.08552669733762741, 0.10977797955274582, 0.11019925028085709, -0.06761088222265244, 0.07598795741796494, -0.10969361662864685, 0.004634735640138388, 0.04400073364377022, -0.011682274751365185, 0.10130299627780914, -0.12924790382385254, 0.006780198309570551, -0.04566264897584915, 0.18456526100635529, -0.062478967010974884, 0.06788405776023865, 0.046198032796382904, -0.02357952855527401, -0.09333139657974243, -0.04798314720392227, 0.1502629816532135, 0.049258071929216385, 0.038184188306331635, 0.016758503392338753, 0.05922633782029152, -0.005486009642481804, 0.005305543076246977, 0.1569259762763977, 0.10964782536029816, -0.07333870232105255, 0.02188502624630928, 0.04455550014972687, -0.0017844573594629765, -0.09033871442079544, -0.03568928688764572, -0.02171039767563343, 0.06431577354669571, -0.027820425108075142, 0.12054501473903656, 0.044133950024843216, -0.015586400404572487, 0.06620453298091888, -0.007575694937258959, -0.06556054204702377, -0.09530957788228989, -0.018630722537636757, -0.006234327796846628, -0.1449757069349289, -0.02485869638621807, -0.07956654578447342, -0.033508460968732834, 0.1050296351313591, 0.021331122145056725, 0.006789992097765207, 0.22947770357131958, -0.09734319150447845, -0.028309013694524765, 0.0515446774661541, -0.03247169405221939, -0.02927056886255741, -0.10548931360244751, 0.0632067620754242, 0.07553109526634216, 0.12839651107788086, 0.046272121369838715, 0.052301499992609024, 0.004302157089114189, 0.030097782611846924, -0.0054813576862216, -0.10555805265903473, -0.03425079584121704, 0.05326889455318451, -0.05663463473320007, 0.07741472125053406, 0.006013654172420502, 0.0030957155395299196, -0.027425643056631088, 0.17926232516765594, -0.06881453841924667, -0.038037754595279694, -0.13670708239078522, 0.13879269361495972, -0.01554149854928255, 0.03897806257009506, -0.017510712146759033, -0.11617092788219452, -0.04385466128587723, 0.22429220378398895, 0.027242537587881088, -0.07231645286083221, 0.03964761644601822, 0.05709120258688927, 0.024421419948339462, 0.04008590057492256, 0.10778294503688812, 0.04301883652806282, 0.09383149445056915, -0.014962512068450451, -0.042051736265420914, -0.043181248009204865, -0.020166568458080292, 0.0826900377869606, 0.13167645037174225, -0.002275425009429455, -0.02058597467839718, -0.08442814648151398, 0.058696500957012177, -0.07645843923091888, -0.26833879947662354, -0.07888701558113098, -0.017443649470806122, -0.09064071625471115, -0.05640032887458801, 0.060857634991407394, -0.028378194198012352, -0.015870004892349243, 0.02236444503068924, -0.014190570451319218, 0.17998753488063812, 0.03565267473459244, -0.02395768091082573, -0.022116903215646744, 0.09978793561458588, -0.0507475771009922, 0.16359418630599976, 0.01614387519657612, 0.007636731956154108, 0.06320760399103165, 0.05537670478224754, -0.07420383393764496, 0.009370054118335247, 0.02043464407324791, -0.11657131463289261, -0.03403158858418465, 0.03994424268603325, 0.00000779678794060601, 0.09709126502275467, 0.05434670299291611, -0.1811119168996811, 0.04072927311062813, -0.03398942947387695, -0.0897081047296524, -0.07983226329088211, -0.013746513985097408, -0.06597805768251419, 0.14605557918548584, 0.13705457746982574, 0.0014452593168243766, -0.06961091607809067, -0.08865370601415634, 0.03987675905227661, -0.006959869991987944, 0.08709309250116348, -0.030728286132216454, -0.10596475750207901, -0.017298975959420204, -0.06715725362300873, 0.028810953721404076, -0.3151508569717407, -0.03665802627801895, 0.06849132478237152, -0.02448306791484356, 0.03597385808825493, 0.07303231954574585, 0.08855324238538742, 0.06962472200393677, -0.055275339633226395, -0.022582698613405228, -0.020952174440026283, 0.11788146942853928, -0.18361517786979675, -0.03488330915570259 ]
null
null
adapter-transformers
# Adapter `AdapterHub/bert-base-uncased-pf-quail` for bert-base-uncased An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [quail](https://huggingface.co/datasets/quail/) dataset and includes a prediction head for multiple choice. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("bert-base-uncased") adapter_name = model.load_adapter("AdapterHub/bert-base-uncased-pf-quail", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-what-to-pre-train-on, title={What to Pre-Train on? Efficient Intermediate Task Selection}, author={Clifton Poth and Jonas Pfeiffer and Andreas Rücklé and Iryna Gurevych}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (EMNLP)", month = nov, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/2104.08247", pages = "to appear", } ```
{"language": ["en"], "tags": ["bert", "adapter-transformers"], "datasets": ["quail"]}
null
AdapterHub/bert-base-uncased-pf-quail
[ "adapter-transformers", "bert", "en", "dataset:quail", "arxiv:2104.08247", "region:us" ]
2022-03-02T23:29:04+00:00
[ "2104.08247" ]
[ "en" ]
TAGS #adapter-transformers #bert #en #dataset-quail #arxiv-2104.08247 #region-us
# Adapter 'AdapterHub/bert-base-uncased-pf-quail' for bert-base-uncased An adapter for the 'bert-base-uncased' model that was trained on the quail dataset and includes a prediction head for multiple choice. This adapter was created for usage with the adapter-transformers library. ## Usage First, install 'adapter-transformers': _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_ Now, the adapter can be loaded and activated like this: ## Architecture & Training The training code for this adapter is available at URL In particular, training configurations for all tasks can be found here. ## Evaluation results Refer to the paper for more information on results. If you use this adapter, please cite our paper "What to Pre-Train on? Efficient Intermediate Task Selection":
[ "# Adapter 'AdapterHub/bert-base-uncased-pf-quail' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the quail dataset and includes a prediction head for multiple choice.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ "TAGS\n#adapter-transformers #bert #en #dataset-quail #arxiv-2104.08247 #region-us \n", "# Adapter 'AdapterHub/bert-base-uncased-pf-quail' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the quail dataset and includes a prediction head for multiple choice.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ 29, 80, 57, 30, 45 ]
[ "passage: TAGS\n#adapter-transformers #bert #en #dataset-quail #arxiv-2104.08247 #region-us \n# Adapter 'AdapterHub/bert-base-uncased-pf-quail' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the quail dataset and includes a prediction head for multiple choice.\n\nThis adapter was created for usage with the adapter-transformers library.## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ -0.06141962856054306, 0.02149612084031105, -0.0018654053565114737, 0.03203333541750908, 0.18236218392848969, 0.026906387880444527, 0.11845558136701584, 0.0461234413087368, 0.0625784620642662, 0.014263185672461987, 0.05273230001330376, 0.07881125807762146, 0.04854791238903999, 0.0055718920193612576, 0.009755249135196209, -0.09168627858161926, 0.0044916304759681225, 0.014103444293141365, -0.05396261066198349, 0.08039901405572891, 0.08691000938415527, -0.09090252965688705, 0.07960288971662521, 0.013658033683896065, -0.08017409592866898, 0.039154302328825, -0.058657072484493256, -0.03951675444841385, 0.08006909489631653, 0.05942144617438316, 0.1493661105632782, 0.05216378718614578, 0.030387021601200104, -0.13370399177074432, 0.014363860711455345, 0.060306113213300705, 0.022385330870747566, 0.061244986951351166, 0.01084490679204464, 0.0388227179646492, -0.07428256422281265, 0.02878275141119957, 0.03231681510806084, 0.04202083498239517, -0.09365998208522797, -0.1911180466413498, -0.03700627386569977, 0.07515853643417358, 0.03996250033378601, 0.09438207000494003, -0.005574817303568125, 0.049023520201444626, 0.0013793266844004393, 0.04617268964648247, 0.14173316955566406, -0.27568554878234863, -0.011619051918387413, -0.03012688085436821, 0.0958554744720459, 0.05710730701684952, -0.050008852034807205, -0.028046388179063797, 0.01581207476556301, 0.04302508383989334, 0.021179363131523132, -0.053539153188467026, -0.06776920706033707, -0.008594982326030731, -0.18061335384845734, 0.012548760510981083, 0.25341275334358215, -0.02214135229587555, -0.07862212508916855, 0.016785671934485435, -0.015195517800748348, 0.12108679860830307, 0.020099708810448647, -0.1121831163764, 0.01942518539726734, 0.0055891904048621655, 0.007909559644758701, -0.13557198643684387, -0.08886000514030457, -0.0711345300078392, -0.07155518978834152, 0.25830158591270447, -0.006230304017663002, 0.015592408366501331, -0.00011326877574902028, 0.11326771974563599, -0.06078212708234787, -0.09914680570363998, -0.027884401381015778, -0.06021833047270775, -0.0529128722846508, -0.06527784466743469, -0.04343283176422119, -0.23827141523361206, 0.017885824665427208, 0.15817254781723022, 0.1036108136177063, 0.03610829636454582, -0.06130689010024071, 0.06469981372356415, 0.06326315551996231, 0.14877833425998688, -0.11682168394327164, -0.023596271872520447, -0.02890831232070923, 0.028411902487277985, -0.07014335691928864, -0.07785192877054214, -0.10267181694507599, -0.02042095735669136, 0.04578318074345589, 0.01897299662232399, 0.07258053123950958, 0.0608690120279789, -0.029198717325925827, -0.09128643572330475, 0.07067640125751495, -0.11287782341241837, -0.0019216496730223298, 0.0005659281159751117, -0.007797864731401205, 0.036317214369773865, 0.12090325355529785, 0.03219655901193619, -0.029953988268971443, 0.054876573383808136, -0.059878285974264145, -0.05325284227728844, -0.07144795358181, -0.15890224277973175, 0.0045447517186403275, -0.05859895050525665, -0.006869206670671701, -0.14333626627922058, -0.10390148311853409, -0.019925449043512344, 0.09887422621250153, -0.013991818763315678, 0.06246112287044525, 0.036374531686306, 0.025327498093247414, -0.002144476631656289, -0.01679966412484646, 0.034562863409519196, -0.018020037561655045, 0.06557118147611618, 0.017771920189261436, 0.0445692352950573, -0.06016787886619568, 0.08608729392290115, -0.06589843332767487, 0.026439229026436806, -0.14377115666866302, 0.09509144723415375, -0.1396605372428894, 0.01866491138935089, -0.1312558799982071, 0.0183249581605196, -0.0386740081012249, 0.026072124019265175, 0.09726942330598831, 0.09396927058696747, -0.11915586143732071, -0.023090260103344917, 0.016638202592730522, -0.16498194634914398, -0.10593488067388535, 0.05656477436423302, -0.013894502073526382, 0.15537996590137482, 0.031266000121831894, 0.10260327905416489, 0.1116333156824112, -0.0920979380607605, -0.08019339293241501, 0.08634677529335022, -0.07806418091058731, -0.030757419764995575, 0.07090579718351364, 0.0030295420438051224, -0.22311002016067505, -0.007496278267353773, -0.11518221348524094, 0.012995627708733082, -0.026862680912017822, -0.0451180525124073, -0.012164149433374405, -0.050749026238918304, 0.07367061823606491, 0.02072223834693432, -0.016060853376984596, 0.0799126848578453, -0.12063528597354889, 0.20759741961956024, 0.031094327569007874, -0.060418255627155304, 0.01798861473798752, -0.07802823930978775, 0.13071095943450928, -0.15879185497760773, 0.017943620681762695, -0.1887466013431549, -0.01993994601070881, 0.016880342736840248, 0.037582751363515854, 0.0590369775891304, 0.06459006667137146, 0.06926035135984421, 0.04272199794650078, -0.0016279087867587805, -0.007179955020546913, -0.03879128396511078, 0.041427697986364365, -0.06623557955026627, -0.13052567839622498, -0.06953468173742294, -0.07800057530403137, -0.00020009117724839598, -0.16443441808223724, 0.03937534615397453, 0.01853938400745392, 0.03432225435972214, 0.010568924248218536, -0.009867393411695957, -0.022480832412838936, -0.00026157000684179366, -0.02942480333149433, -0.03398122265934944, 0.05850854888558388, 0.03603960573673248, -0.045813560485839844, 0.007083609234541655, -0.06552780419588089, -0.04077491909265518, 0.07015558332204819, -0.06526447087526321, -0.10269279032945633, -0.051627181470394135, 0.013636721298098564, -0.05313310772180557, 0.0009495211998000741, -0.09496503323316574, 0.2515324652194977, 0.05897478759288788, 0.04508543014526367, -0.03229592368006706, 0.003987414296716452, -0.007830538786947727, -0.02564767189323902, 0.012844580225646496, 0.020135916769504547, 0.08026362210512161, -0.0878458246588707, 0.054958973079919815, 0.20212805271148682, -0.06755734235048294, 0.07128497958183289, -0.010909337550401688, -0.10168585926294327, -0.0239912997931242, -0.02019471302628517, 0.03059796616435051, 0.07964461296796799, -0.15093359351158142, 0.00972951203584671, 0.054493747651576996, -0.018614057451486588, 0.03252026066184044, -0.06241833418607712, 0.051239218562841415, 0.06671111285686493, 0.027031905949115753, -0.01625646837055683, -0.04767150059342384, -0.03828102722764015, 0.030443884432315826, 0.05802707001566887, 0.10436611622571945, 0.03898174315690994, -0.003604625351727009, -0.07708264142274857, 0.18183152377605438, -0.05221839249134064, -0.17472580075263977, -0.16080431640148163, -0.11552322655916214, 0.015988409519195557, 0.004411809612065554, 0.043694011867046356, -0.06063297390937805, -0.07156829535961151, -0.02334638684988022, 0.10554727911949158, -0.033060163259506226, -0.002951420610770583, 0.000700474891345948, -0.07317624986171722, 0.08493146300315857, -0.13161146640777588, 0.041887491941452026, 0.03840688243508339, -0.0683710128068924, -0.017228852957487106, 0.06302309781312943, 0.09403093159198761, 0.11539071798324585, -0.033199016004800797, 0.002178274095058441, 0.02111699804663658, 0.19007228314876556, -0.04320414736866951, 0.03383031487464905, 0.07298781722784042, -0.1479145586490631, 0.04702385887503624, 0.13632161915302277, 0.04333481937646866, -0.012921147048473358, 0.021474502980709076, 0.047246478497982025, -0.032222285866737366, -0.24643541872501373, 0.0029757062438875437, 0.004789386875927448, -0.024745071306824684, 0.09743259847164154, 0.019324330613017082, -0.003563988720998168, 0.10982850193977356, 0.06690486520528793, 0.009565360844135284, -0.07474719732999802, 0.07324539870023727, 0.16800561547279358, -0.013784322887659073, 0.1125674843788147, -0.04904249683022499, 0.020442692562937737, 0.08152744919061661, -0.0035726253408938646, 0.1554924100637436, -0.004927251487970352, 0.03549973666667938, 0.07208690792322159, -0.006839715875685215, 0.04125119373202324, 0.13020727038383484, -0.09587898850440979, -0.013688324950635433, -0.012516316026449203, -0.04355985298752785, -0.028188545256853104, 0.036773841828107834, 0.0353054478764534, -0.01690089888870716, -0.028408847749233246, -0.032230276614427567, 0.011237630620598793, 0.1392606794834137, 0.022793764248490334, -0.16481269896030426, -0.06389389932155609, -0.02493336610496044, -0.018150243908166885, -0.08760172128677368, 0.0037075458094477654, 0.08532864600419998, -0.05725320801138878, -0.013562790118157864, -0.03952471539378166, 0.09732155501842499, -0.10449342429637909, -0.008036252111196518, 0.06202135607600212, 0.11461829394102097, -0.03998921066522598, 0.10963315516710281, -0.19405999779701233, 0.08581280708312988, 0.045222729444503784, 0.018080662935972214, -0.030034327879548073, 0.02593538723886013, 0.027356227859854698, 0.09661249816417694, 0.0749090388417244, -0.00352222821675241, 0.09082840383052826, -0.12527552247047424, -0.09391731023788452, 0.025296097621321678, 0.03359176218509674, -0.09548404812812805, 0.0523032508790493, -0.015987668186426163, 0.0520000159740448, 0.023303281515836716, 0.05576770380139351, -0.14870654046535492, -0.1579720377922058, 0.06764702498912811, -0.019699037075042725, 0.14014224708080292, -0.02732347510755062, -0.11058339476585388, 0.012831319123506546, 0.18029259145259857, -0.1555226594209671, -0.05925846844911575, -0.12427781522274017, -0.004578041844069958, 0.07391145825386047, -0.045586541295051575, 0.0392228402197361, -0.02339996211230755, 0.05315979942679405, -0.02844170108437538, -0.061152540147304535, 0.07722970098257065, -0.09936365485191345, -0.025074807927012444, -0.04334786906838417, -0.020481551066040993, 0.10988219082355499, 0.03639474883675575, -0.009581790305674076, -0.0013861075276508927, -0.013263029046356678, -0.09939273446798325, -0.01905159093439579, -0.029569847509264946, 0.009960354305803776, 0.03297681733965874, -0.10903675109148026, 0.029162485152482986, -0.06842596083879471, 0.027693137526512146, 0.17711296677589417, 0.13963250815868378, -0.07264260202646255, 0.05338338017463684, 0.23293472826480865, -0.08781267702579498, -0.2914218306541443, -0.0015821314882487059, 0.07879512012004852, -0.018114354461431503, 0.026485543698072433, -0.27358031272888184, 0.18140405416488647, 0.03325825557112694, 0.002464023884385824, 0.06719981878995895, -0.07700543105602264, -0.07440951466560364, 0.2171754688024521, 0.08215145021677017, 0.06236984208226204, -0.14509765803813934, -0.08464937657117844, 0.00909238401800394, -0.08133673667907715, 0.10774678736925125, -0.042138468474149704, 0.07178851217031479, 0.008393052965402603, -0.003939647693186998, 0.023022573441267014, -0.03718893602490425, 0.0993071123957634, 0.02539442852139473, 0.0009677477646619081, -0.07591040432453156, -0.021200696006417274, 0.03455585986375809, -0.048054929822683334, 0.06481236219406128, -0.011816589161753654, 0.04154469445347786, -0.08608885854482651, -0.06296047568321228, -0.009843749925494194, 0.10620696097612381, -0.003244844265282154, -0.08674874901771545, -0.005490307696163654, 0.04256919398903847, -0.021825267001986504, -0.02745027467608452, -0.012604056857526302, -0.06658928096294403, 0.009367179125547409, 0.20319990813732147, 0.142066091299057, -0.0164936613291502, -0.09112834930419922, 0.025172393769025803, -0.0351601280272007, 0.13901866972446442, -0.04660359397530556, 0.03979995846748352, 0.09020914137363434, 0.023011477664113045, 0.12300547957420349, 0.04369903355836868, -0.11430312693119049, -0.02348809316754341, 0.04226529225707054, -0.10199542343616486, -0.04140867292881012, -0.02590256556868553, 0.09350623935461044, -0.19281238317489624, -0.012689949944615364, 0.12477463483810425, -0.026486476883292198, 0.01296664122492075, 0.03653862699866295, -0.012481395155191422, -0.06308261305093765, 0.09049049019813538, 0.12043200433254242, 0.04446537420153618, -0.025359386578202248, 0.08227185159921646, 0.10460823029279709, -0.0869496688246727, 0.0690164566040039, -0.060263995081186295, -0.04918702691793442, -0.07686501741409302, -0.0519251711666584, 0.14642885327339172, -0.009020715951919556, -0.0849827378988266, 0.04199402779340744, -0.03571108728647232, 0.033797942101955414, 0.16715361177921295, 0.04128313064575195, -0.017765425145626068, -0.04355524107813835, 0.03980448469519615, -0.09571774303913116, 0.08993564546108246, -0.0004671064671128988, 0.059235528111457825, -0.07769843190908432, -0.0774647518992424, 0.05509675294160843, 0.06403763592243195, -0.05704279989004135, -0.06253907084465027, -0.14481699466705322, -0.0421096496284008, -0.16171027719974518, 0.0038124273996800184, -0.04279974102973938, -0.006553002633154392, 0.019402222707867622, -0.0945819839835167, -0.0390898697078228, -0.0017057551303878427, -0.03518938645720482, 0.0012613992439582944, 0.06947384774684906, 0.06650413572788239, -0.13938669860363007, -0.0341857485473156, 0.06462722271680832, -0.0407516248524189, 0.054983463138341904, 0.0380023792386055, 0.003201636951416731, -0.019863715395331383, -0.03653072938323021, -0.01479228027164936, -0.052709467709064484, 0.03393346443772316, 0.008540991693735123, -0.14230898022651672, 0.005615729372948408, -0.044385071843862534, 0.0008489604806527495, -0.024258049204945564, 0.26392504572868347, -0.06626153737306595, 0.07202181965112686, -0.014157377183437347, -0.02209051139652729, -0.038959428668022156, 0.05645344778895378, 0.06882381439208984, 0.1038796454668045, 0.15294529497623444, -0.07925566285848618, 0.07829859107732773, -0.06747490912675858, 0.026644041761755943, 0.013945707120001316, 0.016604218631982803, 0.09591393917798996, -0.12206946313381195, -0.004915840458124876, -0.041443221271038055, 0.1991245448589325, -0.02957971766591072, 0.058117374777793884, 0.018111757934093475, -0.028083927929401398, -0.06729865074157715, -0.05276430398225784, 0.15870214998722076, 0.029036028310656548, 0.01664070412516594, -0.0423961840569973, 0.10296092182397842, -0.01374028529971838, 0.04169138893485069, 0.12188779562711716, 0.17983347177505493, -0.10148948431015015, 0.0007818557787686586, 0.04123948514461517, -0.07631293684244156, -0.08410350233316422, 0.021988585591316223, 0.014430353417992592, 0.07322005927562714, -0.04555116966366768, 0.20187422633171082, 0.03269391134381294, -0.023334864526987076, 0.05229019746184349, 0.011462007649242878, -0.0667693242430687, -0.09347663819789886, -0.05780743062496185, -0.009155158884823322, -0.12758806347846985, -0.025969451293349266, -0.07723549008369446, -0.020324813202023506, 0.12382087856531143, 0.019011519849300385, 0.025644317269325256, 0.2556047737598419, -0.08480851352214813, -0.031161583960056305, 0.010533235967159271, -0.04812348261475563, 0.004440168384462595, -0.14003954827785492, 0.037356819957494736, 0.04180680587887764, 0.11499781161546707, 0.028554676100611687, 0.03716825321316719, 0.01242399774491787, 0.03916749358177185, 0.0127715477719903, -0.11870701611042023, -0.04897550120949745, 0.048655543476343155, -0.03353767469525337, 0.09586262702941895, 0.003667352255433798, -0.006808364763855934, -0.023683205246925354, 0.12962883710861206, -0.0646241158246994, -0.11381788551807404, -0.1302817314863205, 0.11690917611122131, -0.061017390340566635, 0.02243657223880291, -0.06050673872232437, -0.11772199720144272, -0.020718080922961235, 0.22488278150558472, 0.06358684599399567, -0.07726453989744186, 0.011656401678919792, 0.07924069464206696, 0.019597172737121582, 0.028837399557232857, 0.06317120790481567, 0.009252217598259449, 0.05627536401152611, -0.048201221972703934, -0.08022760599851608, -0.07815448939800262, -0.023437844589352608, 0.020829370245337486, 0.09011497348546982, 0.040456581860780716, -0.02990885078907013, -0.07411610335111618, 0.060053713619709015, -0.033786240965127945, -0.26585838198661804, -0.03701576218008995, 0.0048042647540569305, -0.08014385402202606, -0.07367487996816635, 0.07014217227697372, -0.04100937396287918, -0.010999351739883423, 0.0017701683100312948, -0.015113884583115578, 0.13250797986984253, 0.026094498112797737, -0.03585274890065193, -0.01854407787322998, 0.09958039969205856, -0.029460245743393898, 0.17426063120365143, -0.012784195132553577, 0.02260015346109867, 0.07418598234653473, 0.06413421034812927, -0.09882122278213501, 0.009523044340312481, 0.02153153344988823, -0.07417399436235428, 0.0008964392472989857, 0.026715127751231194, -0.01924341917037964, 0.13470248878002167, 0.04307965189218521, -0.176787868142128, 0.03210500255227089, -0.03126455098390579, -0.09693917632102966, -0.07454771548509598, -0.020973334088921547, -0.06960316002368927, 0.1624859869480133, 0.13105887174606323, 0.014150839298963547, -0.0796688050031662, -0.09676207602024078, 0.029339181259274483, 0.025156738236546516, 0.08646043390035629, -0.05180572345852852, -0.10410469025373459, -0.023997623473405838, -0.050885338336229324, 0.04154840484261513, -0.2968975901603699, -0.03978942707180977, 0.04885010048747063, -0.0158081091940403, 0.010946151800453663, 0.03669986128807068, 0.08801117539405823, 0.05883799120783806, -0.048926934599876404, -0.019802866503596306, -0.018575802445411682, 0.09715986251831055, -0.18268384039402008, -0.029126862064003944 ]
null
null
adapter-transformers
# Adapter `AdapterHub/bert-base-uncased-pf-quartz` for bert-base-uncased An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [quartz](https://huggingface.co/datasets/quartz/) dataset and includes a prediction head for multiple choice. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("bert-base-uncased") adapter_name = model.load_adapter("AdapterHub/bert-base-uncased-pf-quartz", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-what-to-pre-train-on, title={What to Pre-Train on? Efficient Intermediate Task Selection}, author={Clifton Poth and Jonas Pfeiffer and Andreas Rücklé and Iryna Gurevych}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (EMNLP)", month = nov, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/2104.08247", pages = "to appear", } ```
{"language": ["en"], "tags": ["bert", "adapter-transformers"], "datasets": ["quartz"]}
null
AdapterHub/bert-base-uncased-pf-quartz
[ "adapter-transformers", "bert", "en", "dataset:quartz", "arxiv:2104.08247", "region:us" ]
2022-03-02T23:29:04+00:00
[ "2104.08247" ]
[ "en" ]
TAGS #adapter-transformers #bert #en #dataset-quartz #arxiv-2104.08247 #region-us
# Adapter 'AdapterHub/bert-base-uncased-pf-quartz' for bert-base-uncased An adapter for the 'bert-base-uncased' model that was trained on the quartz dataset and includes a prediction head for multiple choice. This adapter was created for usage with the adapter-transformers library. ## Usage First, install 'adapter-transformers': _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_ Now, the adapter can be loaded and activated like this: ## Architecture & Training The training code for this adapter is available at URL In particular, training configurations for all tasks can be found here. ## Evaluation results Refer to the paper for more information on results. If you use this adapter, please cite our paper "What to Pre-Train on? Efficient Intermediate Task Selection":
[ "# Adapter 'AdapterHub/bert-base-uncased-pf-quartz' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the quartz dataset and includes a prediction head for multiple choice.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ "TAGS\n#adapter-transformers #bert #en #dataset-quartz #arxiv-2104.08247 #region-us \n", "# Adapter 'AdapterHub/bert-base-uncased-pf-quartz' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the quartz dataset and includes a prediction head for multiple choice.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ 29, 80, 57, 30, 45 ]
[ "passage: TAGS\n#adapter-transformers #bert #en #dataset-quartz #arxiv-2104.08247 #region-us \n# Adapter 'AdapterHub/bert-base-uncased-pf-quartz' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the quartz dataset and includes a prediction head for multiple choice.\n\nThis adapter was created for usage with the adapter-transformers library.## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ -0.06762102991342545, -0.004624171182513237, -0.0017360174097120762, 0.03689789026975632, 0.17673854529857635, 0.03599271923303604, 0.13059136271476746, 0.04002678021788597, 0.09517233073711395, 0.039172250777482986, 0.06270283460617065, 0.08523861318826675, 0.04052644595503807, 0.013780026696622372, 0.001961339730769396, -0.09752044826745987, -0.004908610600978136, 0.023322386667132378, -0.02740900032222271, 0.07907798886299133, 0.08575552701950073, -0.09470972418785095, 0.08076400309801102, 0.008177705109119415, -0.07097136229276657, 0.03333650156855583, -0.04839859902858734, -0.038875870406627655, 0.08735744655132294, 0.054232705384492874, 0.149528369307518, 0.05748088285326958, 0.02587578073143959, -0.13232122361660004, 0.011788087897002697, 0.06547816097736359, 0.0275446604937315, 0.06856685131788254, 0.0016494945157319307, 0.03508392348885536, -0.06042028218507767, -0.0021642970386892557, 0.04455546662211418, 0.039438460022211075, -0.08875229209661484, -0.20022505521774292, -0.043479252606630325, 0.08750078827142715, 0.033364858478307724, 0.07403881102800369, -0.0002111319627147168, 0.06619655340909958, 0.018212970346212387, 0.04610968381166458, 0.1441723257303238, -0.2739105224609375, -0.008472628891468048, -0.025806069374084473, 0.0873229056596756, 0.08838485181331635, -0.040470223873853683, -0.015406635589897633, 0.008202028460800648, 0.04134958237409592, 0.025636179372668266, -0.053322914987802505, -0.06642080098390579, -0.007464478258043528, -0.1832018345594406, 0.01701357588171959, 0.2517244815826416, -0.019978715106844902, -0.07508387416601181, -0.00436836201697588, -0.02126440219581127, 0.12163687497377396, 0.010463234037160873, -0.10494738817214966, 0.015827877447009087, -0.0026558679528534412, 0.012299926951527596, -0.13994087278842926, -0.08581119030714035, -0.07678026705980301, -0.046588506549596786, 0.26985859870910645, -0.01062517985701561, 0.025029024109244347, 0.005416886415332556, 0.11234331130981445, -0.07462677359580994, -0.09741758555173874, -0.023800427094101906, -0.05985544994473457, -0.053210172802209854, -0.0753566175699234, -0.04193352535367012, -0.21932052075862885, 0.003052634187042713, 0.16663523018360138, 0.10859768092632294, 0.04409443214535713, -0.05913260579109192, 0.07006562501192093, 0.055685192346572876, 0.14228564500808716, -0.1150374487042427, -0.014026714488863945, -0.03965401276946068, 0.02631963975727558, -0.051565781235694885, -0.08741894364356995, -0.0981215313076973, -0.02691718563437462, 0.04357697069644928, 0.01323411613702774, 0.07130932062864304, 0.06523735076189041, -0.03393581509590149, -0.09910082817077637, 0.07540950179100037, -0.10586493462324142, 0.004983399994671345, 0.0002558524429332465, -0.011713612824678421, 0.05383989214897156, 0.12146134674549103, 0.02043447457253933, -0.026154406368732452, 0.07675513625144958, -0.06762798130512238, -0.0521700344979763, -0.07696779072284698, -0.14594480395317078, 0.015057596378028393, -0.08517257124185562, -0.0037095213774591684, -0.13672149181365967, -0.11531072109937668, -0.014345230534672737, 0.09763804078102112, -0.015121396631002426, 0.07397153973579407, 0.041758887469768524, 0.04576180502772331, 0.009380055591464043, -0.027172312140464783, 0.049369413405656815, -0.008975526317954063, 0.0652691051363945, 0.019391192123293877, 0.04471771791577339, -0.04705200716853142, 0.07995928078889847, -0.06548887491226196, 0.026417134329676628, -0.14416201412677765, 0.08180907368659973, -0.1389884203672409, 0.015468684956431389, -0.13496915996074677, 0.029263263568282127, -0.04208844155073166, 0.027254166081547737, 0.09525834023952484, 0.09178724139928818, -0.12201792001724243, -0.025332605466246605, 0.01256521511822939, -0.16560624539852142, -0.11627458781003952, 0.052333202213048935, -0.01386522501707077, 0.13697867095470428, 0.034803200513124466, 0.08913065493106842, 0.08147076517343521, -0.10053322464227676, -0.08262226730585098, 0.08154895901679993, -0.0772441104054451, -0.04088017717003822, 0.07457328587770462, -0.0032290229573845863, -0.21238373219966888, -0.010206605307757854, -0.1243206337094307, 0.011030253022909164, -0.035204336047172546, -0.03324985131621361, -0.020301179960370064, -0.05327165499329567, 0.09463875740766525, 0.025522243231534958, -0.01450068037956953, 0.07049883902072906, -0.13805583119392395, 0.2046791911125183, 0.04094583913683891, -0.06377857178449631, 0.013746460899710655, -0.08490873128175735, 0.14341598749160767, -0.15812189877033234, 0.014584915712475777, -0.19087344408035278, -0.02088414691388607, 0.025353675708174706, 0.0453023761510849, 0.05049986019730568, 0.04594649001955986, 0.07425393909215927, 0.05016990378499031, -0.010549629107117653, -0.006636706180870533, -0.036537885665893555, 0.04385029152035713, -0.060384225100278854, -0.13885580003261566, -0.08697839826345444, -0.07439909875392914, 0.006587947718799114, -0.1883809119462967, 0.035818926990032196, 0.023724647238850594, 0.04563253000378609, 0.013968613930046558, -0.007292472291737795, -0.03991128131747246, 0.0009944820776581764, -0.02296881191432476, -0.04240495339035988, 0.06215289980173111, 0.032303158193826675, -0.04952734336256981, -0.0012515679700300097, -0.06778332591056824, -0.0678204745054245, 0.06662614643573761, -0.06892731785774231, -0.09496743977069855, -0.060282811522483826, 0.01874563843011856, -0.05042446032166481, 0.003590730018913746, -0.08780281245708466, 0.24260547757148743, 0.06573832780122757, 0.044928330928087234, -0.03130198270082474, 0.018279537558555603, -0.00414481433108449, -0.02803819440305233, 0.004043523222208023, 0.009634171612560749, 0.08052751421928406, -0.0998561829328537, 0.0555393360555172, 0.19338907301425934, -0.06567308306694031, 0.08047792315483093, -0.019241997972130775, -0.10838109254837036, -0.023345282301306725, -0.02744668535888195, 0.028713682666420937, 0.07873792946338654, -0.1477975696325302, 0.0032906762789934874, 0.059977009892463684, -0.030271410942077637, 0.02940601296722889, -0.05548471957445145, 0.05848574638366699, 0.06975149363279343, 0.0414060615003109, -0.016490226611495018, -0.038805630058050156, -0.04757881537079811, 0.028696879744529724, 0.05065857246518135, 0.1113404780626297, 0.04036184772849083, 0.0029359841719269753, -0.08028111606836319, 0.17200206220149994, -0.039630401879549026, -0.1478552371263504, -0.16447530686855316, -0.1326315551996231, 0.028684448450803757, 0.008538166992366314, 0.025345660746097565, -0.04180944338440895, -0.06439380347728729, -0.02381499484181404, 0.12232697755098343, -0.019442183896899223, -0.0031382699962705374, 0.011261628940701485, -0.08132338523864746, 0.07385637611150742, -0.11910366266965866, 0.03458867222070694, 0.03383241593837738, -0.05179603397846222, -0.0088387131690979, 0.06242242082953453, 0.08198510855436325, 0.1265108287334442, -0.025363033637404442, 0.003784285858273506, 0.01985149085521698, 0.14947281777858734, -0.05298386141657829, 0.04165078327059746, 0.09383819997310638, -0.15075649321079254, 0.043772242963314056, 0.1199740394949913, 0.050843507051467896, -0.0078735938295722, 0.02000190131366253, 0.03919966146349907, -0.03319834917783737, -0.2392452359199524, -0.012784834019839764, -0.0009547221125103533, -0.0319879911839962, 0.10583898425102234, 0.013983231037855148, 0.016540000215172768, 0.11578305810689926, 0.0647473931312561, 0.014324876479804516, -0.07095541059970856, 0.07119182497262955, 0.1647948920726776, -0.01568843424320221, 0.11848782747983932, -0.04999985545873642, 0.02286907471716404, 0.07886118441820145, -0.021846771240234375, 0.1702861487865448, 0.007322954945266247, 0.06660978496074677, 0.07035233080387115, -0.030522862449288368, 0.053034815937280655, 0.13939210772514343, -0.08547946065664291, -0.01563277654349804, -0.01197236217558384, -0.05149940401315689, -0.026379255577921867, 0.039644502103328705, 0.04024219140410423, -0.027503076940774918, -0.031144840642809868, -0.04392377659678459, 0.011206584982573986, 0.14255736768245697, 0.026172161102294922, -0.19473828375339508, -0.07085781544446945, -0.019579051062464714, 0.002543074544519186, -0.0914570689201355, -0.008189146406948566, 0.07284443825483322, -0.053191184997558594, -0.005286229308694601, -0.04412790760397911, 0.09010180085897446, -0.12030743062496185, -0.011509477160871029, 0.06317371875047684, 0.11195920407772064, -0.03890727460384369, 0.1050180122256279, -0.18978750705718994, 0.08585195988416672, 0.05180518701672554, 0.01993340626358986, -0.043119534850120544, 0.0218481607735157, 0.02093203365802765, 0.10244573652744293, 0.08176117390394211, -0.008767949417233467, 0.08332393318414688, -0.13528254628181458, -0.08973532915115356, 0.010580583475530148, 0.048004813492298126, -0.09253660589456558, 0.04890361800789833, -0.01865272782742977, 0.04985587298870087, 0.02799062803387642, 0.03429000824689865, -0.15854424238204956, -0.1592055708169937, 0.07622719556093216, -0.021107880398631096, 0.10495312511920929, -0.030985668301582336, -0.11654539406299591, 0.034066103398799896, 0.14922791719436646, -0.12975163757801056, -0.05344859138131142, -0.13163435459136963, -0.006060497369617224, 0.0905260294675827, -0.05050982907414436, 0.05043324828147888, -0.0126449353992939, 0.059507764875888824, -0.03464725241065025, -0.0613517090678215, 0.07860713452100754, -0.09927795827388763, -0.02773762121796608, -0.0489719957113266, -0.00826412532478571, 0.11461124569177628, 0.027336785569787025, -0.023571796715259552, 0.011336059309542179, 0.003507198067381978, -0.093390092253685, -0.0031483322381973267, -0.025922035798430443, 0.010956717655062675, 0.016498366370797157, -0.10316934436559677, 0.06753714382648468, -0.06316572427749634, 0.02355867624282837, 0.16049225628376007, 0.1585819125175476, -0.07840121537446976, 0.04127106815576553, 0.23436059057712555, -0.08081717789173126, -0.2885035276412964, -0.0065026916563510895, 0.07198645919561386, -0.010260852985084057, 0.027361484244465828, -0.27891242504119873, 0.16665668785572052, 0.01685152016580105, -0.003155697602778673, 0.0874706357717514, -0.0758170336484909, -0.07197625190019608, 0.23345032334327698, 0.08374063670635223, 0.04435332864522934, -0.13868318498134613, -0.09087622910737991, 0.017470087856054306, -0.0691583901643753, 0.11048545688390732, -0.04065469652414322, 0.06606589257717133, -0.0007996312342584133, -0.0046838028356432915, 0.029278235509991646, -0.04234607517719269, 0.09980113804340363, 0.01515878178179264, 0.00851096399128437, -0.07877542823553085, -0.030411656945943832, 0.040293727070093155, -0.053662970662117004, 0.06277157366275787, -0.006673182360827923, 0.040178194642066956, -0.06394019722938538, -0.06931405514478683, -0.010553284548223019, 0.10908203572034836, -0.0067558977752923965, -0.08482825011014938, -0.0008025026181712747, 0.04371895641088486, -0.04466889053583145, -0.0326683484017849, 0.0030621150508522987, -0.05788668990135193, -0.005747285671532154, 0.20261582732200623, 0.13091027736663818, -0.0295833982527256, -0.08764380216598511, 0.02492729388177395, -0.035374946892261505, 0.13256137073040009, -0.055205024778842926, 0.036540914326906204, 0.0904904156923294, 0.03317003324627876, 0.12564808130264282, 0.0408615879714489, -0.12199841439723969, -0.04466761276125908, 0.0437714084982872, -0.1028054878115654, -0.05020894482731819, -0.030611244961619377, 0.07737776637077332, -0.18232721090316772, -0.015153667889535427, 0.12067461013793945, -0.02516116201877594, 0.014949340373277664, 0.030930595472455025, -0.020728878676891327, -0.06502538919448853, 0.08646811544895172, 0.12683510780334473, 0.04803478345274925, -0.01912398636341095, 0.07961242645978928, 0.11516603082418442, -0.08254256844520569, 0.051610104739665985, -0.06974256783723831, -0.05390698090195656, -0.07631567120552063, -0.05720556899905205, 0.13900695741176605, 0.0038897583726793528, -0.08724306523799896, 0.04404265061020851, -0.029224911704659462, 0.027133120223879814, 0.15601389110088348, 0.04298257827758789, -0.01507165189832449, -0.058635156601667404, 0.03898390755057335, -0.10043520480394363, 0.08712824434041977, -0.001651045517064631, 0.06568922847509384, -0.08567415922880173, -0.07949521392583847, 0.05638286843895912, 0.05450839176774025, -0.0573909617960453, -0.058125149458646774, -0.13270826637744904, -0.04184902831912041, -0.13113974034786224, -0.009465610608458519, -0.03578898310661316, -0.014224814251065254, 0.01808726042509079, -0.09723051637411118, -0.04201989248394966, -0.0011312459828332067, -0.029688110575079918, 0.004591437056660652, 0.0777454823255539, 0.07302135974168777, -0.13893721997737885, -0.0460340641438961, 0.0736909806728363, -0.04784770682454109, 0.05650489404797554, 0.04394376277923584, 0.009414990432560444, -0.010515627451241016, -0.04651990160346031, -0.0024940164294093847, -0.05404200777411461, 0.03741694986820221, 0.010003236122429371, -0.14974133670330048, 0.010956679470837116, -0.051757559180259705, 0.006616747006773949, -0.029319286346435547, 0.23848649859428406, -0.0605282299220562, 0.07168953865766525, -0.010192862711846828, -0.024122361093759537, -0.04529149457812309, 0.0683106929063797, 0.0654197633266449, 0.11092168837785721, 0.14332172274589539, -0.07138890773057938, 0.07645044475793839, -0.07012590020895004, 0.029733100906014442, 0.011475247330963612, 0.01439152006059885, 0.11944150924682617, -0.13018956780433655, -0.00555638549849391, -0.05114592984318733, 0.20340092480182648, -0.0394444540143013, 0.05007230490446091, 0.013469019904732704, -0.010937513783574104, -0.07043447345495224, -0.04818277060985565, 0.17087048292160034, 0.019764145836234093, 0.018327204510569572, -0.0440036877989769, 0.10665041953325272, -0.010550414212048054, 0.05512634292244911, 0.13024714589118958, 0.19153954088687897, -0.11504767090082169, -0.006122275721281767, 0.04333876073360443, -0.0846538096666336, -0.07971598207950592, 0.021738875657320023, 0.013505415990948677, 0.06254725158214569, -0.050320617854595184, 0.2367006242275238, 0.029182448983192444, -0.026546772569417953, 0.050492096692323685, 0.015157190151512623, -0.0757487416267395, -0.09070544689893723, -0.06806137412786484, -0.012453430332243443, -0.12681901454925537, -0.022454969584941864, -0.0635184571146965, -0.019787264987826347, 0.13485349714756012, 0.014547109603881836, 0.015948083251714706, 0.2592661380767822, -0.07299725711345673, -0.021996084600687027, 0.012379095889627934, -0.04777069762349129, -0.006685898173600435, -0.15546377003192902, 0.0257842056453228, 0.02832149714231491, 0.09651931375265121, 0.026462750509381294, 0.022703878581523895, 0.007143191061913967, 0.044130176305770874, 0.029016470536589622, -0.12311101704835892, -0.04994573816657066, 0.03885586932301521, -0.03354927524924278, 0.08557385206222534, -0.007673955522477627, 0.0003204655076842755, -0.03530357405543327, 0.13509686291217804, -0.0576166957616806, -0.10545583814382553, -0.10782154649496078, 0.11294516175985336, -0.055497996509075165, 0.02178235724568367, -0.05265142023563385, -0.11660881340503693, -0.01862574927508831, 0.20200619101524353, 0.057256050407886505, -0.055520009249448776, 0.012177161872386932, 0.08459364622831345, 0.01999136246740818, 0.02045748382806778, 0.07298342883586884, -0.004781534429639578, 0.03807886317372322, -0.037397291511297226, -0.0666811466217041, -0.07788172364234924, -0.015253878198564053, 0.028780657798051834, 0.11680787801742554, 0.04487405717372894, -0.02581663429737091, -0.06695275753736496, 0.056840263307094574, -0.020619897171854973, -0.25627562403678894, -0.02635413035750389, -0.009102231822907925, -0.07436078041791916, -0.0712444856762886, 0.06338687986135483, -0.056889764964580536, -0.0037219699006527662, -0.0013256960082799196, -0.02885458618402481, 0.12502723932266235, 0.038528528064489365, -0.04370667785406113, -0.022481733933091164, 0.09337053447961807, -0.04051999747753143, 0.183137908577919, -0.025579256936907768, 0.0398799404501915, 0.07815982401371002, 0.06251595169305801, -0.09223931282758713, 0.0171369519084692, 0.020789608359336853, -0.07324092090129852, 0.008126931264996529, 0.03234186768531799, -0.02644854225218296, 0.13563567399978638, 0.037398647516965866, -0.1965576708316803, 0.03663111478090286, -0.028908230364322662, -0.09752079099416733, -0.07732944935560226, -0.029466327279806137, -0.07030545920133591, 0.1649000495672226, 0.10921270400285721, 0.014657415449619293, -0.08340215682983398, -0.09595190733671188, 0.037944525480270386, 0.03552735596895218, 0.10304699093103409, -0.05101729929447174, -0.09683088958263397, -0.014244831167161465, -0.05143420398235321, 0.04622162505984306, -0.28626948595046997, -0.03740701824426651, 0.04462965577840805, -0.023151561617851257, 0.004727764520794153, 0.026925453916192055, 0.08873361349105835, 0.06069965288043022, -0.0517854280769825, -0.0409015417098999, -0.01540268212556839, 0.0985766351222992, -0.19563336670398712, -0.024288896471261978 ]
null
null
adapter-transformers
# Adapter `AdapterHub/bert-base-uncased-pf-quoref` for bert-base-uncased An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [quoref](https://huggingface.co/datasets/quoref/) dataset and includes a prediction head for question answering. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("bert-base-uncased") adapter_name = model.load_adapter("AdapterHub/bert-base-uncased-pf-quoref", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
{"language": ["en"], "tags": ["question-answering", "bert", "adapter-transformers"], "datasets": ["quoref"]}
question-answering
AdapterHub/bert-base-uncased-pf-quoref
[ "adapter-transformers", "bert", "question-answering", "en", "dataset:quoref", "arxiv:2104.08247", "region:us" ]
2022-03-02T23:29:04+00:00
[ "2104.08247" ]
[ "en" ]
TAGS #adapter-transformers #bert #question-answering #en #dataset-quoref #arxiv-2104.08247 #region-us
# Adapter 'AdapterHub/bert-base-uncased-pf-quoref' for bert-base-uncased An adapter for the 'bert-base-uncased' model that was trained on the quoref dataset and includes a prediction head for question answering. This adapter was created for usage with the adapter-transformers library. ## Usage First, install 'adapter-transformers': _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_ Now, the adapter can be loaded and activated like this: ## Architecture & Training The training code for this adapter is available at URL In particular, training configurations for all tasks can be found here. ## Evaluation results Refer to the paper for more information on results. If you use this adapter, please cite our paper "What to Pre-Train on? Efficient Intermediate Task Selection":
[ "# Adapter 'AdapterHub/bert-base-uncased-pf-quoref' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the quoref dataset and includes a prediction head for question answering.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ "TAGS\n#adapter-transformers #bert #question-answering #en #dataset-quoref #arxiv-2104.08247 #region-us \n", "# Adapter 'AdapterHub/bert-base-uncased-pf-quoref' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the quoref dataset and includes a prediction head for question answering.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ 35, 81, 57, 30, 45 ]
[ "passage: TAGS\n#adapter-transformers #bert #question-answering #en #dataset-quoref #arxiv-2104.08247 #region-us \n# Adapter 'AdapterHub/bert-base-uncased-pf-quoref' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the quoref dataset and includes a prediction head for question answering.\n\nThis adapter was created for usage with the adapter-transformers library.## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ -0.07469946891069412, 0.007003358565270901, -0.003153465921059251, 0.033292513340711594, 0.16727502644062042, 0.02214272879064083, 0.13517725467681885, 0.05700011923909187, 0.07351814955472946, 0.04472759738564491, 0.056770697236061096, 0.07517453283071518, 0.04088360816240311, 0.03444831073284149, 0.0037683139089494944, -0.11763612180948257, 0.00459010386839509, 0.027892502024769783, -0.02637251652777195, 0.0913228914141655, 0.09118881821632385, -0.11005071550607681, 0.0851818323135376, 0.03747233748435974, -0.09165014326572418, 0.04334256425499916, -0.036509349942207336, -0.06592221558094025, 0.08196090906858444, 0.07784299552440643, 0.1465858519077301, 0.03298056125640869, 0.009050216525793076, -0.13798770308494568, 0.019592029973864555, 0.07680527120828629, 0.032416004687547684, 0.08539335429668427, -0.013427958823740482, 0.022869346663355827, -0.047854699194431305, 0.04446109011769295, 0.0594741553068161, 0.06216562166810036, -0.09907002747058868, -0.23852494359016418, -0.04275757446885109, 0.0900706872344017, 0.027558419853448868, 0.09249671548604965, -0.006284275092184544, 0.06625092029571533, 0.011577634140849113, 0.04804650694131851, 0.19227635860443115, -0.24836120009422302, -0.016497954726219177, -0.02665894664824009, 0.06530698388814926, 0.0511728934943676, -0.055281493812799454, -0.007552494760602713, 0.025744762271642685, 0.021702593192458153, 0.021757200360298157, -0.03602059185504913, -0.03522520139813423, -0.010067696683108807, -0.15848569571971893, -0.00362243945710361, 0.23549363017082214, -0.002832442754879594, -0.09197152405977249, -0.030572418123483658, -0.0305955708026886, 0.12849777936935425, 0.023107603192329407, -0.10855820029973984, 0.005274249240756035, -0.0013036354212090373, -0.013213399797677994, -0.10721350461244583, -0.09367966651916504, -0.0984271764755249, -0.09261907637119293, 0.25782158970832825, -0.009656621143221855, 0.032131489366292953, -0.016812235116958618, 0.11393745988607407, -0.0496608167886734, -0.124298594892025, -0.07666999846696854, -0.056973155587911606, -0.053576383739709854, -0.04755168780684471, -0.033517446368932724, -0.23576411604881287, 0.0034127726685255766, 0.1767929047346115, 0.08083578944206238, 0.03453637287020683, -0.09623080492019653, 0.05309642478823662, 0.05738486349582672, 0.1829538196325302, -0.10465758293867111, 0.017995014786720276, -0.05447594076395035, -0.009042683057487011, -0.052581436932086945, -0.10033684223890305, -0.07476581633090973, -0.005343950353562832, 0.027647100389003754, 0.033815279603004456, 0.0529010146856308, 0.08130089193582535, -0.037624578922986984, -0.07179173827171326, 0.09079411625862122, -0.11694381386041641, 0.003460145555436611, 0.011561959981918335, -0.045403268188238144, 0.06953681260347366, 0.12170229107141495, 0.007101214025169611, -0.024996336549520493, 0.06542583554983139, -0.06705224514007568, -0.05697892978787422, -0.07125800848007202, -0.14405523240566254, 0.011588498018682003, -0.028590643778443336, -0.004340392537415028, -0.14043477177619934, -0.10823361575603485, -0.011706304736435413, 0.08252124488353729, -0.02916700392961502, 0.10014719516038895, 0.04621895030140877, 0.03387489914894104, 0.0042922161519527435, -0.03201479837298393, 0.015888987109065056, -0.017385104671120644, 0.07992997020483017, 0.03738458827137947, 0.04855671152472496, -0.04248053953051567, 0.0807000920176506, -0.07318299263715744, 0.014900295995175838, -0.17521004378795624, 0.07810600847005844, -0.15347883105278015, 0.007233456242829561, -0.14277319610118866, -0.008470842614769936, -0.024087922647595406, 0.02196545898914337, 0.0985344871878624, 0.0979912057518959, -0.09010857343673706, -0.03380894660949707, 0.042942922562360764, -0.16918359696865082, -0.1473718285560608, 0.044783540070056915, -0.013828669674694538, 0.15036141872406006, 0.04296638444066048, 0.09532435238361359, 0.09428486227989197, -0.10815080255270004, -0.09071563184261322, 0.05384112522006035, -0.06541028618812561, -0.0021591654513031244, 0.054909493774175644, -0.010395494289696217, -0.16277386248111725, 0.019075842574238777, -0.11508241295814514, 0.0009328531450591981, -0.04837920144200325, -0.03458436578512192, -0.014303441159427166, -0.038404982537031174, 0.08496716618537903, 0.03688932582736015, -0.022075526416301727, 0.05475322902202606, -0.1326698213815689, 0.19436849653720856, 0.03973248973488808, -0.06576722860336304, 0.013976329937577248, -0.11287124454975128, 0.11244861036539078, -0.1567802131175995, 0.006132697686553001, -0.19976238906383514, -0.03605639189481735, 0.005141208879649639, 0.03276121988892555, 0.04159941151738167, 0.05509795621037483, 0.06998436897993088, 0.019094791263341904, 0.008671466261148453, -0.0035872955340892076, -0.05232720449566841, 0.03214562311768532, -0.062061283737421036, -0.10322239995002747, -0.07066907733678818, -0.06697196513414383, 0.0034098986070603132, -0.1511772722005844, 0.032721444964408875, 0.06249100714921951, 0.057282205671072006, 0.019340913742780685, -0.023551814258098602, -0.031272731721401215, -0.01219252124428749, -0.02470717951655388, -0.02406323328614235, 0.04152892529964447, 0.01772399991750717, -0.06838268786668777, 0.013765883632004261, -0.08617211133241653, 0.013685830868780613, 0.07421357929706573, -0.044271960854530334, -0.08445809036493301, -0.05492445454001427, 0.0003873524838127196, -0.029623132199048996, -0.010965671390295029, -0.09708146005868912, 0.2499343305826187, 0.06063979119062424, 0.056551698595285416, -0.03108067996799946, -0.0003049851511605084, 0.00476008839905262, -0.016806069761514664, 0.013362702913582325, 0.01373122539371252, 0.04137967526912689, -0.09580612182617188, 0.04791576415300369, 0.18429328501224518, -0.019302794709801674, 0.08284837007522583, -0.02516133524477482, -0.11726249754428864, -0.017204158008098602, -0.041185177862644196, 0.032700713723897934, 0.08110908418893814, -0.13833673298358917, 0.025585629045963287, 0.07260575890541077, -0.008012554608285427, 0.0134460823610425, -0.04866544529795647, 0.043328799307346344, 0.0688653290271759, 0.00632593035697937, -0.04324968531727791, -0.016275236383080482, -0.02386004664003849, 0.043236151337623596, 0.05023519694805145, 0.11085034906864166, 0.02513173781335354, -0.018354279920458794, -0.07195261865854263, 0.18257687985897064, -0.04202337563037872, -0.18253083527088165, -0.1696493774652481, -0.11689730733633041, 0.0025377036072313786, 0.011845450848340988, 0.04701961576938629, -0.07822170853614807, -0.08405601978302002, -0.043054670095443726, 0.141524538397789, -0.028834698721766472, -0.0019349803915247321, 0.03645133599638939, -0.09131734818220139, 0.08091031759977341, -0.16074766218662262, 0.03603511303663254, 0.015472139231860638, -0.09309375286102295, -0.011419988237321377, 0.04653431102633476, 0.09825088828802109, 0.11728096753358841, -0.017615800723433495, 0.01460100244730711, 0.0069146291352808475, 0.16329066455364227, -0.07339470088481903, 0.026533430442214012, 0.12420947849750519, -0.14391833543777466, 0.040172506123781204, 0.09449304640293121, 0.05116117000579834, -0.038670897483825684, 0.039128292351961136, 0.04474709928035736, -0.04330313205718994, -0.24515609443187714, -0.0028923216741532087, 0.007542015518993139, -0.00791146606206894, 0.09500102698802948, 0.019599126651883125, 0.06323768198490143, 0.1003732830286026, 0.04238850250840187, -0.027637947350740433, -0.05398013815283775, 0.06978470832109451, 0.19279687106609344, -0.02645462192595005, 0.11344745755195618, -0.056860942393541336, 0.009325362741947174, 0.0825427994132042, -0.036467116326093674, 0.15464705228805542, -0.013151449151337147, 0.07318518310785294, 0.07005500048398972, -0.024683397263288498, 0.03533864766359329, 0.14362245798110962, -0.0811120867729187, -0.018490709364414215, -0.011870314367115498, -0.054826416075229645, -0.04790399596095085, 0.025876514613628387, 0.012386101298034191, 0.011783342808485031, -0.043406952172517776, -0.06151716038584709, 0.0248616524040699, 0.12265123426914215, 0.012527267448604107, -0.18463696539402008, -0.10566350072622299, -0.02972080372273922, -0.021119747310876846, -0.08705637603998184, -0.007698826026171446, 0.07475025951862335, -0.07309292256832123, 0.0038020857609808445, -0.04017186909914017, 0.10600598156452179, -0.10024453699588776, -0.0027364566922187805, 0.04434632882475853, 0.09977032989263535, -0.03975728899240494, 0.09573811292648315, -0.20625858008861542, 0.0880613848567009, 0.04268470034003258, 0.03402668982744217, -0.049298789352178574, 0.023010803386569023, 0.018522663041949272, 0.09441043436527252, 0.0773657038807869, -0.03135742247104645, 0.1063319742679596, -0.13886742293834686, -0.07947579026222229, 0.03058723919093609, 0.042698878794908524, -0.10837167501449585, 0.05159543454647064, -0.02365483157336712, 0.052660178393125534, 0.04022363945841789, 0.058617305010557175, -0.14601953327655792, -0.15628232061862946, 0.06862881779670715, -0.014905181713402271, 0.13505423069000244, -0.0534113310277462, -0.10396481305360794, 0.03339439630508423, 0.1714218407869339, -0.1275913566350937, -0.0605965182185173, -0.15249991416931152, 0.02812306582927704, 0.08683879673480988, -0.06776168942451477, 0.04087607190012932, -0.00988231971859932, 0.07860121130943298, 0.009826757945120335, -0.07737649977207184, 0.08700389415025711, -0.08113634586334229, -0.04018174111843109, -0.045519523322582245, -0.0042399330995976925, 0.11109643429517746, 0.018981367349624634, -0.009478019550442696, 0.004111365880817175, -0.004902055021375418, -0.10734014213085175, -0.00527469627559185, 0.01593771018087864, 0.012290309183299541, 0.026954196393489838, -0.062065087258815765, 0.08534751087427139, -0.05577193945646286, 0.02146817557513714, 0.14369666576385498, 0.113502137362957, -0.07230805605649948, 0.03983088210225105, 0.20166951417922974, -0.06510467082262039, -0.2727869749069214, 0.01242929045110941, 0.060179099440574646, -0.016176661476492882, 0.05219640955328941, -0.24571752548217773, 0.16805532574653625, 0.04032786563038826, -0.010418147780001163, 0.0654725581407547, -0.11175534874200821, -0.0802089273929596, 0.2116047739982605, 0.08849769830703735, 0.054853588342666626, -0.131693035364151, -0.0804317370057106, 0.015229943208396435, -0.17484934628009796, 0.0968315452337265, -0.06300704926252365, 0.05961817502975464, -0.006085752509534359, 0.008713164366781712, 0.029270611703395844, -0.040769416838884354, 0.09694382548332214, 0.0037106280215084553, 0.016439668834209442, -0.09410388767719269, -0.011845174245536327, 0.03708441182971001, -0.03537559509277344, 0.0955163836479187, 0.004410961177200079, 0.06212405115365982, -0.09094860404729843, -0.065920889377594, -0.0025040123146027327, 0.10724332183599472, -0.015368374064564705, -0.08019378036260605, -0.027381110936403275, 0.031121481209993362, -0.03782403841614723, -0.028940793126821518, 0.048610810190439224, -0.0875842347741127, 0.05370441824197769, 0.18897414207458496, 0.14448630809783936, -0.03098474256694317, -0.10389073938131332, 0.015395843423902988, -0.026072319597005844, 0.1392631083726883, -0.09775994718074799, 0.07078564167022705, 0.09510674327611923, 0.0299314484000206, 0.12302170693874359, 0.04801085218787193, -0.12270047515630722, -0.008810693398118019, 0.03954358771443367, -0.08531881123781204, -0.0825192779302597, -0.016834162175655365, 0.08534103631973267, -0.18215566873550415, 0.03200860694050789, 0.13437020778656006, -0.033542465418577194, 0.020396774634718895, 0.04298901930451393, -0.01892012357711792, -0.04097887501120567, 0.09556736797094345, 0.12591800093650818, 0.04211347922682762, -0.028782226145267487, 0.07795897126197815, 0.1050676479935646, -0.07532528042793274, 0.05264189466834068, -0.08160798996686935, -0.05019378289580345, -0.0667964443564415, -0.08493754267692566, 0.13897675275802612, -0.04017331078648567, -0.07966769486665726, 0.014582234434783459, -0.04355842247605324, 0.02582259476184845, 0.16060049831867218, 0.035479724407196045, -0.006257656961679459, -0.05078395828604698, 0.059678804129362106, -0.07986238598823547, 0.08144639432430267, -0.03372180834412575, 0.062001317739486694, -0.06839194148778915, -0.054674528539180756, 0.0434684157371521, 0.05585477501153946, -0.058704257011413574, -0.0645965188741684, -0.13018539547920227, -0.021467424929142, -0.15236717462539673, -0.03005378693342209, -0.03349825739860535, -0.016091780737042427, 0.01969795487821102, -0.11988991498947144, -0.03034454956650734, 0.016723589971661568, -0.024441750720143318, -0.00006268415745580569, 0.06669730693101883, 0.06014483794569969, -0.1885024607181549, -0.018629450350999832, 0.0779179111123085, -0.03941166028380394, 0.07210484147071838, 0.045333366841077805, -0.007058057934045792, 0.003948396071791649, -0.09566666185855865, 0.0006794106448069215, -0.04971877112984657, 0.03355487808585167, 0.026026243343949318, -0.09983603656291962, 0.0015182243660092354, -0.03755085542798042, -0.00010225445294054225, -0.017449935898184776, 0.20255079865455627, -0.07469503581523895, 0.043066468089818954, -0.01921757683157921, 0.0013570570154115558, -0.05570070073008537, 0.06565634161233902, 0.07324061542749405, 0.11307147890329361, 0.12496308237314224, -0.06293749064207077, 0.08207131177186966, -0.1023385226726532, 0.020156048238277435, 0.037680357694625854, 0.0004598429368343204, 0.13539351522922516, -0.12183696776628494, 0.0011181422742083669, -0.05970759689807892, 0.19381803274154663, -0.0353972502052784, 0.05118422210216522, 0.042928170412778854, -0.03640144690871239, -0.03697658330202103, -0.057367872446775436, 0.18449679017066956, 0.042054012417793274, 0.02855631150305271, -0.016841620206832886, 0.07650791853666306, -0.01871461607515812, 0.03029879368841648, 0.13520830869674683, 0.1443641632795334, -0.10264202952384949, -0.0013424137141555548, 0.03387505188584328, -0.04309583082795143, -0.07039643079042435, -0.032620545476675034, -0.00163908617105335, 0.06359812617301941, -0.02353510446846485, 0.1639091521501541, 0.0669809952378273, -0.018756303936243057, 0.06192619726061821, 0.005977736320346594, -0.05958942696452141, -0.09166278690099716, -0.05715140327811241, -0.01682751439511776, -0.15852075815200806, -0.008893909864127636, -0.08719467371702194, 0.000776547531131655, 0.11916925013065338, 0.015944072976708412, 0.019614756107330322, 0.2656926214694977, -0.058961860835552216, -0.021398788318037987, 0.026358813047409058, -0.052383724600076675, -0.01662786491215229, -0.1284487545490265, 0.06874867528676987, 0.04652649909257889, 0.13041239976882935, 0.04732026159763336, 0.04946500435471535, -0.010025006718933582, 0.04228935390710831, 0.0004611071490217, -0.12735287845134735, -0.05164619907736778, 0.0522579662501812, -0.039536938071250916, 0.08714740723371506, 0.0016431539552286267, 0.0180472731590271, -0.03253341093659401, 0.15836098790168762, -0.07037364691495895, -0.06459559500217438, -0.13734318315982819, 0.12077494710683823, -0.025265518575906754, 0.026752300560474396, -0.045721400529146194, -0.12516342103481293, -0.035071663558483124, 0.21599352359771729, 0.04425109550356865, -0.055632781237363815, 0.026099685579538345, 0.07938133180141449, 0.018424132838845253, 0.016370359808206558, 0.06971096992492676, 0.018734725192189217, 0.08729161322116852, -0.02070731297135353, -0.0415344275534153, -0.05066497623920441, -0.04001069813966751, 0.044270142912864685, 0.10591092705726624, 0.018787778913974762, -0.03064308874309063, -0.07561596482992172, 0.07260637730360031, -0.0269926805049181, -0.28366929292678833, -0.029127418994903564, -0.015647441148757935, -0.07652044296264648, -0.058082420378923416, 0.07814741134643555, -0.02601896971464157, 0.0024383270647376776, 0.0022593201138079166, -0.012141979299485683, 0.16269686818122864, 0.04134221374988556, -0.03688901290297508, -0.03872862458229065, 0.09586826711893082, -0.05647793039679527, 0.1797098070383072, -0.002683315658941865, 0.025460250675678253, 0.07417163997888565, 0.042006444185972214, -0.08580256253480911, 0.018698321655392647, 0.03833620995283127, -0.09836577624082565, -0.008915158919990063, 0.03317654877901077, -0.00026763748610392213, 0.09959932416677475, 0.050525739789009094, -0.19810844957828522, 0.04095292463898659, -0.01219035591930151, -0.07785298675298691, -0.08363831788301468, -0.028067203238606453, -0.07021093368530273, 0.1585133969783783, 0.12770764529705048, -0.0020910350140184164, -0.07813441008329391, -0.08957940340042114, 0.048040054738521576, 0.014256053604185581, 0.08003014326095581, -0.04694302752614021, -0.09358850121498108, -0.013743561692535877, -0.02793932519853115, 0.028536463156342506, -0.28957343101501465, -0.020580127835273743, 0.06428707391023636, -0.036749765276908875, 0.0305128525942564, 0.02841438539326191, 0.09464295953512192, 0.06525705754756927, -0.04788200184702873, -0.04643291234970093, -0.002053068717941642, 0.10570629686117172, -0.17864970862865448, -0.02398672327399254 ]
null
null
adapter-transformers
# Adapter `AdapterHub/bert-base-uncased-pf-race` for bert-base-uncased An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [rc/race](https://adapterhub.ml/explore/rc/race/) dataset and includes a prediction head for multiple choice. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("bert-base-uncased") adapter_name = model.load_adapter("AdapterHub/bert-base-uncased-pf-race", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-what-to-pre-train-on, title={What to Pre-Train on? Efficient Intermediate Task Selection}, author={Clifton Poth and Jonas Pfeiffer and Andreas Rücklé and Iryna Gurevych}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (EMNLP)", month = nov, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/2104.08247", pages = "to appear", } ```
{"language": ["en"], "tags": ["adapterhub:rc/race", "bert", "adapter-transformers"], "datasets": ["race"]}
null
AdapterHub/bert-base-uncased-pf-race
[ "adapter-transformers", "bert", "adapterhub:rc/race", "en", "dataset:race", "arxiv:2104.08247", "region:us" ]
2022-03-02T23:29:04+00:00
[ "2104.08247" ]
[ "en" ]
TAGS #adapter-transformers #bert #adapterhub-rc/race #en #dataset-race #arxiv-2104.08247 #region-us
# Adapter 'AdapterHub/bert-base-uncased-pf-race' for bert-base-uncased An adapter for the 'bert-base-uncased' model that was trained on the rc/race dataset and includes a prediction head for multiple choice. This adapter was created for usage with the adapter-transformers library. ## Usage First, install 'adapter-transformers': _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_ Now, the adapter can be loaded and activated like this: ## Architecture & Training The training code for this adapter is available at URL In particular, training configurations for all tasks can be found here. ## Evaluation results Refer to the paper for more information on results. If you use this adapter, please cite our paper "What to Pre-Train on? Efficient Intermediate Task Selection":
[ "# Adapter 'AdapterHub/bert-base-uncased-pf-race' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the rc/race dataset and includes a prediction head for multiple choice.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ "TAGS\n#adapter-transformers #bert #adapterhub-rc/race #en #dataset-race #arxiv-2104.08247 #region-us \n", "# Adapter 'AdapterHub/bert-base-uncased-pf-race' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the rc/race dataset and includes a prediction head for multiple choice.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ 35, 81, 57, 30, 45 ]
[ "passage: TAGS\n#adapter-transformers #bert #adapterhub-rc/race #en #dataset-race #arxiv-2104.08247 #region-us \n# Adapter 'AdapterHub/bert-base-uncased-pf-race' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the rc/race dataset and includes a prediction head for multiple choice.\n\nThis adapter was created for usage with the adapter-transformers library.## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ -0.09752549976110458, 0.0028916816227138042, -0.0016497289761900902, 0.0591721385717392, 0.16825316846370697, 0.04660987854003906, 0.14074592292308807, 0.06099995970726013, 0.0682573914527893, 0.033482033759355545, 0.06939789652824402, 0.07669036090373993, 0.059390146285295486, 0.026054872199892998, 0.02712629921734333, -0.12444115430116653, -0.018375739455223083, 0.02496192790567875, -0.01424485631287098, 0.10439316928386688, 0.10134425759315491, -0.09693977236747742, 0.1128176599740982, 0.0486229844391346, -0.13993221521377563, 0.041148729622364044, -0.024646040052175522, -0.0833701342344284, 0.08047770708799362, 0.06513962149620056, 0.15346772968769073, 0.030793150886893272, 0.04397217929363251, -0.12150881439447403, 0.009800799190998077, 0.07952234148979187, 0.05842217430472374, 0.09672193974256516, -0.019510280340909958, -0.02036413364112377, 0.006732093170285225, 0.06749004125595093, 0.08542350679636002, 0.05701855570077896, -0.11545222997665405, -0.19421176612377167, -0.03945724293589592, 0.07652103900909424, 0.026613272726535797, 0.0718332901597023, 0.0017648257780820131, 0.11430463939905167, -0.009934702888131142, 0.042583927512168884, 0.2048107385635376, -0.22481302917003632, -0.00017580953135620803, 0.0003366236633155495, 0.0910731703042984, 0.015030051581561565, -0.0996222123503685, -0.03331777825951576, 0.03728132322430611, 0.03024127334356308, 0.04127392917871475, -0.015795638784766197, 0.014449610374867916, -0.005985646974295378, -0.16319388151168823, -0.005628151819109917, 0.17186108231544495, -0.021965768188238144, -0.09515062719583511, -0.02209141105413437, -0.031541608273983, 0.016953710466623306, 0.033932074904441833, -0.06019826605916023, -0.029885943979024887, -0.00041132644400931895, -0.03516734018921852, -0.07743379473686218, -0.08358649909496307, -0.11348848044872284, -0.09169288724660873, 0.33532199263572693, 0.008846457116305828, 0.039649780839681625, -0.021525077521800995, 0.14415709674358368, 0.02175641432404518, -0.12305257469415665, -0.04761297628283501, -0.08846402913331985, -0.06130103021860123, -0.03513365983963013, -0.017080189660191536, -0.18218810856342316, -0.04545549675822258, 0.14400601387023926, 0.14862419664859772, 0.03986451402306557, -0.0866735577583313, 0.0581568218767643, 0.05312579497694969, 0.16240012645721436, -0.1224302425980568, 0.039226360619068146, -0.03353964537382126, -0.032263562083244324, -0.026271499693393707, -0.10257846862077713, -0.07123357057571411, 0.0248146653175354, 0.01156211644411087, 0.04383019357919693, 0.013827353715896606, 0.09574764221906662, -0.07061354070901871, -0.05531182512640953, 0.12366040050983429, -0.11480040848255157, 0.015196079388260841, -0.0033789256121963263, -0.07549060881137848, -0.0008401364902965724, 0.13367921113967896, -0.0009108969825319946, -0.021635523065924644, 0.08739818632602692, -0.08411337435245514, -0.05562474578619003, -0.10494464635848999, -0.16427598893642426, -0.004886285867542028, -0.01672663539648056, -0.010942265391349792, -0.1182357519865036, -0.15067245066165924, -0.007754757534712553, 0.05192190781235695, -0.035701680928468704, 0.07758467644453049, 0.04929687827825546, 0.045184094458818436, 0.018160218372941017, -0.005826247856020927, -0.004642461892217398, -0.014826830476522446, 0.08059915900230408, 0.02106935903429985, 0.0854911208152771, -0.005006248131394386, 0.08809737861156464, -0.08621897548437119, 0.010044864378869534, -0.20486201345920563, 0.08065658062696457, -0.16172650456428528, 0.012601400725543499, -0.10005438327789307, -0.027964064851403236, -0.06885170936584473, 0.016939058899879456, 0.0742620900273323, 0.08984136581420898, -0.09738799184560776, -0.04224051535129547, 0.09186964482069016, -0.17368140816688538, -0.09221486002206802, 0.03498910367488861, -0.030647875741124153, 0.10068041831254959, 0.03449789807200432, 0.07026248425245285, 0.11512915045022964, -0.11598227173089981, -0.05650559067726135, 0.04943147674202919, -0.0890405923128128, -0.015314350835978985, 0.05181385204195976, 0.001508345827460289, -0.1755652278661728, 0.01385718397796154, -0.04028293490409851, 0.030272282660007477, -0.057541485875844955, -0.01453882735222578, -0.001418967149220407, -0.03450607880949974, 0.1105421707034111, 0.05290081724524498, -0.02325275167822838, 0.01815301738679409, -0.14195914566516876, 0.17798270285129547, 0.08348354697227478, -0.03285623714327812, 0.018901456147432327, -0.11744274944067001, 0.06820989400148392, -0.12695705890655518, -0.020550305023789406, -0.1958063691854477, -0.005997899919748306, 0.024722998961806297, 0.0012418392580002546, 0.044226426631212234, 0.05033710598945618, 0.05197613313794136, 0.05073675140738487, 0.000049012302042683586, 0.019142786040902138, -0.01797708123922348, 0.02708319202065468, -0.05779993534088135, -0.11883746832609177, -0.05950601026415825, -0.05090356990695, 0.06039059907197952, -0.17640835046768188, 0.051789235323667526, 0.08283567428588867, 0.10930031538009644, 0.03834281489253044, -0.041579023003578186, 0.00497910100966692, -0.0008165464969351888, -0.03696882352232933, -0.05049917846918106, 0.014190062880516052, 0.03664914518594742, -0.04721342399716377, 0.035402730107307434, -0.10876301676034927, -0.006215043365955353, 0.09759830683469772, -0.015452521853148937, -0.10284356027841568, 0.018612992018461227, -0.0026373707223683596, -0.025643259286880493, -0.027738716453313828, -0.09802421182394028, 0.18837125599384308, 0.059138089418411255, 0.06933470815420151, -0.006459975615143776, -0.031027020886540413, 0.005242105107754469, 0.002149420790374279, 0.028989069163799286, -0.0015851574717089534, 0.06263945996761322, -0.11331919580698013, 0.04278522729873657, 0.13789208233356476, -0.013230008073151112, 0.09092268347740173, 0.015076927840709686, -0.10427409410476685, -0.01551354955881834, -0.06935129314661026, 0.029173601418733597, 0.07449974119663239, -0.12554261088371277, 0.0125193502753973, 0.05605839565396309, -0.020468084141612053, 0.018744561821222305, -0.0602743923664093, 0.04219382628798485, 0.08007516711950302, 0.029697567224502563, -0.046902239322662354, -0.020024079829454422, -0.022381355985999107, 0.03894488140940666, 0.03587983548641205, 0.07914642244577408, 0.04111335426568985, -0.012703892774879932, -0.07143740355968475, 0.16901451349258423, -0.06049859896302223, -0.15594318509101868, -0.1927357316017151, -0.11891251802444458, -0.00037763890577480197, 0.03617514669895172, 0.04264463484287262, -0.05509578064084053, -0.07823307067155838, -0.040499232709407806, 0.1458706110715866, -0.04060593992471695, 0.008935841731727123, 0.031758490949869156, -0.08464325219392776, 0.050518885254859924, -0.1712142676115036, 0.043040815740823746, 0.029363904148340225, -0.04804227128624916, 0.010295962914824486, 0.04272541031241417, 0.07572415471076965, 0.16111694276332855, -0.02352176420390606, -0.0025241549592465162, -0.008819447830319405, 0.12153767049312592, -0.08181873708963394, 0.016015443950891495, 0.05966653674840927, -0.14868828654289246, 0.03821250796318054, 0.09098789840936661, 0.04023432359099388, -0.045342277735471725, 0.05460675060749054, 0.035432230681180954, -0.042727433145046234, -0.25488266348838806, -0.00009871557995211333, 0.016851117834448814, -0.006336516235023737, 0.08084842562675476, 0.018441421911120415, 0.030189258977770805, 0.1087484285235405, 0.043546490371227264, 0.010455272160470486, -0.07367642968893051, 0.0622076578438282, 0.18739615380764008, -0.028056522831320763, 0.1118834912776947, -0.07947533577680588, -0.0040700421668589115, 0.09090686589479446, -0.06735475361347198, 0.1394321173429489, -0.02099279686808586, 0.0753076896071434, 0.07317578792572021, -0.016257287934422493, 0.064065121114254, 0.15731996297836304, -0.042032692581415176, -0.013050866313278675, 0.00038223026785999537, -0.0319398008286953, -0.05860845744609833, 0.003318346804007888, 0.012291294522583485, 0.033006083220243454, -0.026777120307087898, -0.03305908292531967, 0.017584536224603653, 0.10324938595294952, 0.02748829685151577, -0.2167878895998001, -0.10136700421571732, -0.023226648569107056, -0.021778032183647156, -0.10760164260864258, 0.01858329214155674, 0.06686145812273026, -0.0818178653717041, 0.02535388618707657, -0.017148779705166817, 0.0637754425406456, -0.14424586296081543, -0.01674819365143776, 0.04785805195569992, 0.11341235786676407, -0.06385064125061035, 0.09125076234340668, -0.19409729540348053, 0.09216981381177902, 0.03751867637038231, 0.02129160612821579, -0.05993194878101349, 0.016499044373631477, 0.03334103524684906, 0.10783233493566513, 0.04271695017814636, -0.02738840878009796, 0.03078954480588436, -0.15838536620140076, -0.08524679392576218, -0.0010150829330086708, 0.055247168987989426, -0.11528214067220688, 0.03269318863749504, -0.004012285266071558, 0.04318138584494591, 0.03487553820014, 0.009067477658390999, -0.1641799807548523, -0.1511717438697815, 0.07341032475233078, -0.024745812639594078, 0.08615287393331528, -0.06158905103802681, -0.1311527043581009, 0.05408691242337227, 0.1720661222934723, -0.12499064952135086, -0.054719049483537674, -0.1515180915594101, 0.03141040727496147, 0.07402972131967545, -0.06271336227655411, 0.022411251440644264, 0.00002597804086690303, 0.12702618539333344, 0.007651067338883877, -0.04553355649113655, 0.11417015641927719, -0.07130411267280579, -0.06860783696174622, -0.06450249999761581, 0.007809702772647142, 0.10664239525794983, 0.04195833578705788, -0.027817580848932266, 0.004409033339470625, 0.017094003036618233, -0.12406472861766815, 0.018985282629728317, 0.003261527745053172, -0.03006536141037941, 0.029474657028913498, -0.04285017400979996, 0.0777786448597908, -0.020538346841931343, -0.0070373970083892345, 0.14606927335262299, 0.1338585764169693, -0.07525300234556198, 0.04611331596970558, 0.19848614931106567, -0.0882757157087326, -0.29424867033958435, 0.030997512862086296, 0.028540510684251785, 0.007605230901390314, 0.06536369770765305, -0.24589891731739044, 0.15437716245651245, 0.03856772929430008, -0.014281881973147392, 0.07148630917072296, -0.11216839402914047, -0.09785912930965424, 0.24192768335342407, 0.07070047408342361, 0.02482636645436287, -0.11202576756477356, -0.08665138483047485, -0.036362890154123306, -0.2215319573879242, 0.07891868054866791, -0.058469031006097794, 0.07495531439781189, -0.02756606601178646, 0.013923624530434608, 0.01671791262924671, -0.028462214395403862, 0.08223962783813477, 0.02739867754280567, 0.0552842877805233, -0.11239244788885117, -0.02857000008225441, 0.06851046532392502, -0.03253989666700363, 0.07037683576345444, 0.010955254547297955, 0.063127301633358, -0.11266676336526871, -0.05631706491112709, 0.0018714580219238997, 0.1049957349896431, -0.029160374775528908, -0.08273359388113022, -0.04050888866186142, 0.02195996232330799, -0.05997975543141365, -0.06695841252803802, 0.003619301598519087, -0.05302204564213753, 0.05135009437799454, 0.18104541301727295, 0.1433975249528885, -0.005585485137999058, -0.04980878904461861, 0.012706146575510502, -0.027523765340447426, 0.1248600035905838, -0.09522371739149094, 0.05638936907052994, 0.08398596197366714, 0.03815581277012825, 0.12011533975601196, 0.04661250114440918, -0.1451251059770584, -0.007945787161588669, 0.06919825077056885, -0.07134309411048889, 0.0031066203955560923, -0.016286881640553474, 0.11812453716993332, -0.16482950747013092, 0.003086472861468792, 0.11329672485589981, -0.04386482387781143, 0.0030036289244890213, 0.029473643749952316, -0.015595339238643646, -0.03360453248023987, 0.10967729240655899, 0.13612157106399536, 0.06162755936384201, -0.03342907875776291, 0.09680862724781036, 0.11850472539663315, -0.07400759309530258, 0.023141751065850258, -0.061332277953624725, -0.0631217360496521, -0.05513154715299606, -0.08486148715019226, 0.1767638772726059, -0.023775670677423477, -0.07040505111217499, 0.011721689254045486, -0.05090758204460144, 0.02951580472290516, 0.16728684306144714, 0.03035220317542553, 0.0379391647875309, -0.04104484245181084, 0.06409328430891037, -0.10898030549287796, 0.08081395924091339, -0.01166648417711258, 0.0795784592628479, -0.07898081839084625, -0.029923759400844574, 0.0395701564848423, 0.04541727155447006, -0.052694160491228104, -0.05219114199280739, -0.11788034439086914, -0.02971884235739708, -0.14478124678134918, -0.05136118456721306, -0.0354139544069767, -0.009326450526714325, 0.03237742930650711, -0.10500195622444153, -0.03304918110370636, 0.017128970474004745, -0.050684355199337006, -0.005361778661608696, 0.05110742151737213, 0.05499296262860298, -0.15897177159786224, -0.021909791976213455, 0.09577059000730515, -0.04797961190342903, 0.07251787185668945, 0.048217594623565674, 0.01475401222705841, -0.0342218317091465, -0.05912182107567787, 0.005369248334318399, -0.051862385123968124, 0.0035790817346423864, 0.027285858988761902, -0.12641137838363647, 0.010258756577968597, -0.05108155682682991, 0.0013188110897317529, -0.012434998527169228, 0.18014122545719147, -0.08164244145154953, 0.06081944704055786, 0.007237628102302551, 0.0021853873040527105, -0.05131031945347786, 0.0624752938747406, 0.08625476807355881, 0.08670949935913086, 0.11779292672872543, -0.04961896687746048, 0.06649749726057053, -0.0956270694732666, 0.02758084051311016, 0.012446868233382702, 0.007755282334983349, 0.13978274166584015, -0.08349906653165817, 0.012312740087509155, -0.020324354991316795, 0.2353411465883255, -0.006088961381465197, -0.01929737813770771, 0.04277733340859413, 0.007736229337751865, -0.06372909992933273, -0.055574871599674225, 0.12479117512702942, 0.02952485717833042, 0.014172201976180077, 0.022073952481150627, 0.04292234405875206, -0.0008492633351124823, 0.005396145395934582, 0.13190871477127075, 0.10627350211143494, -0.07387691736221313, 0.0035296776331961155, 0.007810702081769705, -0.05706855282187462, -0.11200142651796341, -0.042662110179662704, -0.011796750128269196, 0.07136797904968262, -0.026564892381429672, 0.15502457320690155, 0.04830491915345192, 0.00018997321603819728, 0.04446301609277725, -0.022459939122200012, -0.0705597996711731, -0.11183105409145355, -0.047031812369823456, -0.0015303739346563816, -0.17170406877994537, 0.0009950165404006839, -0.07241033017635345, 0.01868181675672531, 0.1443362534046173, 0.02676829695701599, 0.03440103679895401, 0.27362361550331116, -0.10336785018444061, -0.004601084161549807, 0.004990395158529282, -0.04995359107851982, -0.05192781239748001, -0.15357552468776703, 0.06866560876369476, 0.018443139269948006, 0.12652447819709778, 0.052242178469896317, 0.009556803852319717, -0.01875552535057068, 0.05149988457560539, -0.006374317221343517, -0.11349499225616455, -0.03804395720362663, 0.03485608100891113, -0.01096433773636818, 0.08712005615234375, -0.004238402005285025, 0.032222505658864975, -0.03532795235514641, 0.15968580543994904, -0.07994028180837631, -0.08446796238422394, -0.13210169970989227, 0.12250588089227676, 0.009577554650604725, 0.01899876818060875, -0.05654340237379074, -0.1341484785079956, -0.013135763816535473, 0.20313598215579987, 0.06196245551109314, -0.007684540469199419, 0.019876468926668167, 0.08035718649625778, 0.009830763563513756, 0.006582664325833321, 0.043824248015880585, 0.023133477196097374, 0.014243530109524727, -0.032532498240470886, -0.05045785382390022, -0.042890358716249466, -0.05116720125079155, 0.03998512402176857, 0.10549838840961456, -0.002873144345358014, -0.006772965658456087, -0.07535339146852493, 0.055072035640478134, -0.0335751473903656, -0.30289700627326965, -0.02634008415043354, -0.0096005629748106, -0.06402365863323212, -0.02612888626754284, 0.056007012724876404, -0.0031451343093067408, 0.014782451093196869, 0.014804298989474773, -0.0379413440823555, 0.16916778683662415, 0.04310774430632591, -0.07221674919128418, -0.043592918664216995, 0.09002446383237839, -0.09425806999206543, 0.20304690301418304, -0.03504541888833046, 0.042530983686447144, 0.08250811696052551, 0.05118035525083542, -0.12684543430805206, 0.02524755150079727, 0.01658889837563038, -0.06445612013339996, -0.021624626591801643, 0.08593549579381943, -0.004216965287923813, 0.09219378232955933, 0.02075139991939068, -0.15993592143058777, 0.052524227648973465, -0.08730639517307281, -0.06132558360695839, -0.08303597569465637, -0.05345085635781288, -0.04064355790615082, 0.1634155958890915, 0.12434764206409454, -0.007410622667521238, -0.0834776982665062, -0.0908728837966919, -0.009907572530210018, 0.008498766459524632, 0.07895860821008682, -0.035780925303697586, -0.1305733323097229, 0.001489234040491283, 0.01731082797050476, 0.045461349189281464, -0.3198477029800415, -0.022630786523222923, 0.07102672010660172, -0.07372206449508667, 0.021891649812459946, 0.04869109392166138, 0.07281558960676193, 0.07985339313745499, -0.04798708111047745, -0.11319044977426529, -0.017018940299749374, 0.09844788908958435, -0.18429355323314667, -0.03595783933997154 ]
null
null
adapter-transformers
# Adapter `AdapterHub/bert-base-uncased-pf-record` for bert-base-uncased An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [rc/record](https://adapterhub.ml/explore/rc/record/) dataset and includes a prediction head for classification. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("bert-base-uncased") adapter_name = model.load_adapter("AdapterHub/bert-base-uncased-pf-record", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
{"language": ["en"], "tags": ["text-classification", "bert", "adapterhub:rc/record", "adapter-transformers"]}
text-classification
AdapterHub/bert-base-uncased-pf-record
[ "adapter-transformers", "bert", "text-classification", "adapterhub:rc/record", "en", "arxiv:2104.08247", "region:us" ]
2022-03-02T23:29:04+00:00
[ "2104.08247" ]
[ "en" ]
TAGS #adapter-transformers #bert #text-classification #adapterhub-rc/record #en #arxiv-2104.08247 #region-us
# Adapter 'AdapterHub/bert-base-uncased-pf-record' for bert-base-uncased An adapter for the 'bert-base-uncased' model that was trained on the rc/record dataset and includes a prediction head for classification. This adapter was created for usage with the adapter-transformers library. ## Usage First, install 'adapter-transformers': _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_ Now, the adapter can be loaded and activated like this: ## Architecture & Training The training code for this adapter is available at URL In particular, training configurations for all tasks can be found here. ## Evaluation results Refer to the paper for more information on results. If you use this adapter, please cite our paper "What to Pre-Train on? Efficient Intermediate Task Selection":
[ "# Adapter 'AdapterHub/bert-base-uncased-pf-record' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the rc/record dataset and includes a prediction head for classification.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ "TAGS\n#adapter-transformers #bert #text-classification #adapterhub-rc/record #en #arxiv-2104.08247 #region-us \n", "# Adapter 'AdapterHub/bert-base-uncased-pf-record' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the rc/record dataset and includes a prediction head for classification.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ 36, 83, 57, 30, 45 ]
[ "passage: TAGS\n#adapter-transformers #bert #text-classification #adapterhub-rc/record #en #arxiv-2104.08247 #region-us \n# Adapter 'AdapterHub/bert-base-uncased-pf-record' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the rc/record dataset and includes a prediction head for classification.\n\nThis adapter was created for usage with the adapter-transformers library.## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ -0.0631992444396019, 0.005081566981971264, -0.002711985493078828, 0.027401452884078026, 0.18088014423847198, 0.028224986046552658, 0.1443743109703064, 0.0505165196955204, 0.0634913444519043, 0.02837553806602955, 0.03721502795815468, 0.10489144176244736, 0.03266352042555809, 0.02123025804758072, -0.0035019100178033113, -0.13049966096878052, 0.011105208657681942, 0.03137141466140747, -0.03165441006422043, 0.09714051336050034, 0.09881598502397537, -0.09749975800514221, 0.09515254199504852, 0.028497714549303055, -0.11959030479192734, 0.037501707673072815, -0.011249289847910404, -0.08730599284172058, 0.08816565573215485, 0.07948481291532516, 0.17367471754550934, 0.04628363624215126, 0.029139667749404907, -0.12241850793361664, 0.020921213552355766, 0.09105996787548065, 0.02346768043935299, 0.10053671151399612, -0.03193904459476471, -0.007611869368702173, -0.006971920374780893, 0.011931456625461578, 0.08204101771116257, 0.06354477256536484, -0.07797205448150635, -0.23251786828041077, -0.020404981449246407, 0.09993690252304077, 0.027587890625, 0.07491462677717209, 0.009375518187880516, 0.05202137678861618, 0.0161882471293211, 0.04448474943637848, 0.20450863242149353, -0.20071546733379364, 0.005905912723392248, 0.016893094405531883, 0.05038534104824066, 0.06587114185094833, -0.0576171949505806, -0.002004162408411503, 0.025550954043865204, 0.013734806329011917, 0.04592106491327286, -0.02648693136870861, -0.028175977990031242, -0.008656611666083336, -0.15155960619449615, -0.022707102820277214, 0.23542417585849762, -0.028022293001413345, -0.0985247865319252, -0.03331686928868294, -0.04276589676737785, 0.0659336969256401, 0.030770625919103622, -0.06533046811819077, -0.0004666138265747577, 0.0022570888977497816, -0.031284499913454056, -0.0918685719370842, -0.09442535042762756, -0.11957885324954987, -0.08669701218605042, 0.27896153926849365, -0.008293923921883106, 0.031173503026366234, -0.005878383293747902, 0.14019586145877838, 0.002606125082820654, -0.1045462116599083, -0.06778959929943085, -0.055188409984111786, -0.0661938264966011, -0.04810500517487526, -0.039596982300281525, -0.22652567923069, -0.027430953457951546, 0.16901685297489166, 0.08880474418401718, 0.03587213158607483, -0.08168565481901169, 0.0663222223520279, 0.05487649887800217, 0.18205507099628448, -0.08839679509401321, 0.07427167892456055, -0.034938450902700424, -0.023202765733003616, -0.03917882964015007, -0.10272089391946793, -0.07208167761564255, -0.005976928863674402, 0.045910660177469254, 0.028685875236988068, 0.012545648962259293, 0.10293222218751907, -0.04305414482951164, -0.06818068027496338, 0.12600089609622955, -0.13043588399887085, -0.009688192047178745, 0.022227194160223007, -0.05080774426460266, 0.07368779182434082, 0.1638299822807312, -0.017409631982445717, -0.028057709336280823, 0.107804074883461, -0.06701729446649551, -0.06200023740530014, -0.07640378177165985, -0.1484147310256958, 0.01648847386240959, -0.03685716539621353, -0.004613890778273344, -0.14461486041545868, -0.10838168859481812, -0.009114905260503292, 0.07397813349962234, -0.002660214900970459, 0.09981167316436768, 0.027886446565389633, 0.02822589874267578, 0.02363559603691101, -0.03475987911224365, -0.015917597338557243, -0.018248358741402626, 0.07816039025783539, 0.01851365901529789, 0.053160328418016434, -0.032087571918964386, 0.08535569161176682, -0.06833796948194504, 0.0020720520988106728, -0.23746028542518616, 0.08283188194036484, -0.15670202672481537, 0.004758753348141909, -0.14663508534431458, -0.010784336365759373, -0.005489937029778957, 0.04096350818872452, 0.0658048763871193, 0.0706172063946724, -0.09784599393606186, -0.05660497024655342, 0.04886546730995178, -0.18268060684204102, -0.1016065925359726, 0.05334596708416939, -0.024774258956313133, 0.12513932585716248, 0.052127089351415634, 0.044494517147541046, 0.1261598914861679, -0.08602279424667358, -0.09555750340223312, 0.05144708231091499, -0.07674682140350342, -0.029984423890709877, 0.056921809911727905, 0.008760940283536911, -0.13836511969566345, -0.00009232655429514125, -0.09239763021469116, -0.01044552493840456, -0.036137018352746964, -0.014067565090954304, -0.019971230998635292, -0.019526921212673187, 0.09583037346601486, 0.025646034628152847, -0.023242326453328133, 0.0568682961165905, -0.15166020393371582, 0.20681002736091614, 0.07191595435142517, -0.07265619188547134, 0.028051620349287987, -0.11248178780078888, 0.08307790756225586, -0.1404760628938675, 0.006397231947630644, -0.21358948945999146, -0.012874494306743145, 0.0017034467309713364, -0.007732452359050512, 0.06888141483068466, 0.050793398171663284, 0.050425637513399124, 0.027977533638477325, 0.0192183218896389, -0.006562456488609314, -0.048663098365068436, 0.030965780839323997, -0.04444027692079544, -0.10880687832832336, -0.07286002486944199, -0.05865588039159775, -0.002468930557370186, -0.17620949447155, 0.04161335155367851, 0.09576085209846497, 0.06854427605867386, 0.027707932516932487, -0.022902298718690872, -0.029008686542510986, -0.012577413581311703, -0.04437469318509102, -0.027406014502048492, 0.031179698184132576, 0.010555616579949856, -0.07294883579015732, 0.023083090782165527, -0.0988868996500969, -0.018167952075600624, 0.08744030445814133, -0.05522729456424713, -0.0864032581448555, -0.030609510838985443, 0.01234739925712347, -0.018137898296117783, -0.018423406407237053, -0.11569922417402267, 0.29560914635658264, 0.06376424431800842, 0.08456108719110489, -0.03296414390206337, -0.002426204038783908, 0.010823873803019524, -0.011279239319264889, 0.014402681961655617, 0.013127385638654232, 0.05663040280342102, -0.11977570503950119, 0.03572038933634758, 0.15713277459144592, -0.03540359437465668, 0.0980798676609993, -0.01033754926174879, -0.10383854806423187, 0.004664056468755007, -0.06147511675953865, 0.04125397652387619, 0.04718910902738571, -0.10241671651601791, 0.00327922566793859, 0.06626313924789429, 0.00064546411158517, 0.00832066684961319, -0.06841809302568436, 0.06114339828491211, 0.07570310682058334, 0.013416611589491367, -0.05919826403260231, -0.023372221738100052, -0.015519900247454643, 0.04577505216002464, 0.04022986441850662, 0.08214927464723587, 0.03102562017738819, -0.01989302597939968, -0.07001467794179916, 0.19139404594898224, -0.06075021252036095, -0.1843424290418625, -0.2226749062538147, -0.11337397992610931, 0.009292790666222572, 0.02714858576655388, 0.04096188023686409, -0.09216485172510147, -0.09029409289360046, -0.040803343057632446, 0.17020128667354584, -0.0332513228058815, -0.005628608167171478, 0.04186253249645233, -0.05614113062620163, 0.06764015555381775, -0.16548214852809906, 0.0299523938447237, 0.019951634109020233, -0.10069140046834946, -0.005654248874634504, 0.038031741976737976, 0.056201089173555374, 0.14837075769901276, -0.026256510987877846, -0.0014937900705263019, 0.003079951275140047, 0.08375012129545212, -0.0703548863530159, 0.022869745269417763, 0.1370140016078949, -0.17491288483142853, 0.02741399221122265, 0.06735067069530487, 0.05450625717639923, -0.0434492789208889, 0.04405106604099274, 0.02739419788122177, -0.05614103376865387, -0.2675786316394806, -0.0213730838149786, 0.013273900374770164, 0.005704010836780071, 0.10205624252557755, 0.021847661584615707, 0.04483294486999512, 0.08187596499919891, 0.03349249064922333, 0.0002024257992161438, -0.02367940917611122, 0.07496047019958496, 0.18294492363929749, -0.028237350285053253, 0.10457045584917068, -0.07628665119409561, 0.027012839913368225, 0.07721642404794693, -0.04217814654111862, 0.15229445695877075, -0.017124664038419724, 0.11964129656553268, 0.06381287425756454, -0.07513565570116043, 0.0710383951663971, 0.1691274642944336, -0.06180841475725174, -0.006644506473094225, -0.009598550386726856, -0.04451753571629524, -0.07979604601860046, 0.019216112792491913, -0.025624699890613556, 0.015690650790929794, -0.060307301580905914, -0.04734556004405022, 0.014087661169469357, 0.10892746597528458, 0.011072695255279541, -0.23540091514587402, -0.12878243625164032, -0.034760914742946625, -0.022872328758239746, -0.08343467116355896, 0.005257836543023586, 0.06108901649713516, -0.06414810568094254, -0.00012996357691008598, -0.03352402150630951, 0.0943751335144043, -0.1772271692752838, -0.007577304262667894, 0.04464653879404068, 0.1300175040960312, -0.04545564576983452, 0.08741997182369232, -0.15802744030952454, 0.10064797103404999, 0.03757985308766365, 0.02570691704750061, -0.05369297042489052, 0.025961264967918396, 0.01882036402821541, 0.1123972237110138, 0.05132612586021423, -0.03058297000825405, 0.03606785833835602, -0.152590811252594, -0.09138061851263046, 0.02152840606868267, 0.06232808902859688, -0.1226019561290741, 0.04324577376246452, -0.04046913608908653, 0.0404534786939621, 0.05059587210416794, 0.001642188522964716, -0.11981680989265442, -0.15763697028160095, 0.05636059492826462, -0.00044845364755019546, 0.11601968854665756, -0.059099163860082626, -0.10117274522781372, 0.05532938987016678, 0.18545863032341003, -0.15756087005138397, -0.055091436952352524, -0.14802812039852142, 0.012143934145569801, 0.08672762662172318, -0.07185439020395279, 0.04356320574879646, -0.00822177529335022, 0.1131599023938179, -0.002832255559042096, -0.09791401028633118, 0.09631212055683136, -0.07927564531564713, -0.0608060322701931, -0.0470094308257103, 0.012898336164653301, 0.11094337701797485, 0.02047494240105152, -0.019702250137925148, 0.005031177774071693, 0.019663745537400246, -0.09048464149236679, -0.018436091020703316, 0.06409405916929245, 0.005068428348749876, 0.0641745999455452, -0.0702991783618927, 0.04081974923610687, -0.03819733485579491, 0.011584707535803318, 0.14620241522789001, 0.10851540416479111, -0.06294458359479904, 0.04368554428219795, 0.19944806396961212, -0.07467976212501526, -0.28861334919929504, 0.008487970568239689, 0.04141451045870781, -0.019432246685028076, 0.00845408160239458, -0.25931963324546814, 0.17033590376377106, 0.029269956052303314, -0.006910096853971481, 0.038931574672460556, -0.11049990355968475, -0.08632916212081909, 0.21987800300121307, 0.07417324185371399, 0.04782717302441597, -0.09544304013252258, -0.0697300136089325, -0.022910207509994507, -0.18118958175182343, 0.11629747599363327, -0.060743577778339386, 0.07037316262722015, -0.009838871657848358, 0.02282044291496277, 0.025560136884450912, -0.0357423759996891, 0.06218429654836655, 0.007803854998201132, 0.029551131650805473, -0.09136120229959488, -0.022207949310541153, 0.025348341092467308, -0.04445002228021622, 0.08453015983104706, -0.016993513330817223, 0.054919879883527756, -0.09446708858013153, -0.06836910545825958, 0.016688033938407898, 0.08871909230947495, -0.014251834712922573, -0.07208475470542908, -0.043765466660261154, 0.021510707214474678, -0.048940472304821014, -0.04352965205907822, 0.1032700315117836, -0.07456110417842865, 0.04884772375226021, 0.19252166152000427, 0.14577516913414001, -0.003836527932435274, -0.09754201024770737, 0.012032700702548027, -0.02212260104715824, 0.1428045779466629, -0.16190606355667114, 0.07482220977544785, 0.08871889114379883, 0.03217833489179611, 0.1282099485397339, 0.058335885405540466, -0.12443294376134872, -0.009040597826242447, 0.04608055576682091, -0.07924031466245651, -0.02810436114668846, -0.010295498184859753, 0.08669400960206985, -0.1598615050315857, 0.04992205277085304, 0.15592840313911438, -0.059275656938552856, 0.01679926924407482, 0.03673981502652168, -0.014708200469613075, -0.05236565321683884, 0.09869887679815292, 0.10802227258682251, 0.0572509728372097, -0.036254268139600754, 0.10992337763309479, 0.10885630548000336, -0.0785730704665184, 0.043460313230752945, -0.08629006147384644, -0.06930923461914062, -0.06041431427001953, -0.08197040110826492, 0.1250227689743042, -0.07687319070100784, -0.07856723666191101, -0.002721840515732765, -0.052700966596603394, 0.03505384922027588, 0.19117005169391632, 0.04134692624211311, 0.010424168780446053, -0.06912796944379807, 0.06104586273431778, -0.10219036787748337, 0.0616200715303421, -0.04326136037707329, 0.07417543977499008, -0.09275471419095993, -0.004376810509711504, 0.04509132355451584, 0.03324640914797783, -0.05322103202342987, -0.050555989146232605, -0.12309945374727249, -0.020841723307967186, -0.1394367814064026, -0.028399260714650154, -0.007184475660324097, -0.007933342829346657, 0.02958814427256584, -0.08725174516439438, -0.015679238364100456, 0.030381465330719948, -0.02871793508529663, 0.0013494692975655198, 0.059530459344387054, 0.07377716153860092, -0.1789088100194931, -0.012213296256959438, 0.0724533349275589, -0.05419997125864029, 0.07419754564762115, 0.048556119203567505, -0.011341078206896782, 0.02956204302608967, -0.11352665722370148, 0.008579639717936516, -0.014917144551873207, 0.029884031042456627, 0.02975870482623577, -0.09714442491531372, 0.022682245820760727, -0.051010437309741974, -0.011276024393737316, -0.022940296679735184, 0.18936601281166077, -0.0658106580376625, 0.05014937371015549, -0.021583162248134613, 0.023902591317892075, -0.05916712060570717, 0.06369784474372864, 0.0981229692697525, 0.12298354506492615, 0.12660151720046997, -0.06411592662334442, 0.0675763413310051, -0.09485521167516708, 0.02198733389377594, 0.0337022989988327, -0.027516745030879974, 0.12557141482830048, -0.11504339426755905, -0.00005410781886894256, -0.06645475327968597, 0.18138667941093445, -0.031967680901288986, 0.02666247822344303, 0.05001247301697731, -0.006245587952435017, -0.09628888964653015, -0.03012392669916153, 0.14984244108200073, 0.04165041074156761, 0.03492683917284012, -0.012330200523138046, 0.05886820703744888, 0.016027066856622696, 0.007213701494038105, 0.13439367711544037, 0.14044328033924103, -0.11806772649288177, 0.005469928495585918, 0.04210406541824341, -0.04133499786257744, -0.09680012613534927, -0.025846341624855995, -0.007367150858044624, 0.07022451609373093, -0.0179399736225605, 0.14633212983608246, 0.06886249780654907, -0.0007883338257670403, 0.05992775037884712, 0.0021840673871338367, -0.059592049568891525, -0.09987791627645493, -0.06200340390205383, -0.01951768435537815, -0.15309210121631622, -0.013012265786528587, -0.07974009960889816, -0.0032512969337403774, 0.1188839003443718, 0.014843982644379139, 0.024965373799204826, 0.252844899892807, -0.06794355809688568, -0.022169513627886772, 0.03526286780834198, -0.04703141376376152, -0.04590793326497078, -0.11384283751249313, 0.046749599277973175, 0.07357224822044373, 0.1260809749364853, 0.04997942969202995, 0.041631974279880524, 0.010673288255929947, 0.05957190319895744, 0.0007844046340323985, -0.12879781424999237, -0.04123644530773163, 0.043157290667295456, -0.05002002790570259, 0.07369966059923172, 0.004926023073494434, 0.0011919663520529866, -0.02541564591228962, 0.17017722129821777, -0.07150314003229141, -0.052497271448373795, -0.12036599963903427, 0.18086954951286316, -0.0011874046176671982, 0.02969059720635414, -0.030642446130514145, -0.11413418501615524, -0.04830048978328705, 0.18225087225437164, 0.06430336087942123, -0.014838960021734238, 0.03432197496294975, 0.06318102777004242, 0.02054579369723797, 0.02457541413605213, 0.0877782553434372, 0.03564891591668129, 0.07516391575336456, 0.0020661556627601385, -0.046083964407444, -0.041524454951286316, -0.026530401781201363, 0.06922272592782974, 0.09143321216106415, 0.003006022423505783, -0.03737770766019821, -0.06089659780263901, 0.0628855973482132, -0.04782574996352196, -0.3197706341743469, -0.03135986253619194, -0.025862498208880424, -0.05419895052909851, -0.06931919604539871, 0.08524873852729797, -0.02808494120836258, 0.008824901655316353, 0.00525063369423151, -0.04434340447187424, 0.16053873300552368, 0.04185905680060387, -0.06380315870046616, -0.02384929358959198, 0.0628579780459404, -0.07434733957052231, 0.1768854707479477, -0.010056372731924057, 0.03162369504570961, 0.06982492655515671, 0.04813266918063164, -0.0785038024187088, 0.026689346879720688, 0.007896139286458492, -0.10593512654304504, -0.00031472183763980865, 0.07632852345705032, -0.026534000411629677, 0.12258993089199066, 0.03623203933238983, -0.2085002213716507, 0.040011078119277954, -0.032732367515563965, -0.0916564092040062, -0.06315570324659348, -0.0394931361079216, -0.07004895806312561, 0.15198737382888794, 0.13065218925476074, 0.00552660645917058, -0.07429914176464081, -0.09641153365373611, 0.03969345614314079, 0.015363626182079315, 0.06487902998924255, -0.03239701688289642, -0.09909752756357193, -0.016336660832166672, -0.02678295597434044, 0.047187939286231995, -0.31062597036361694, -0.014474296011030674, 0.0621027909219265, -0.04283371940255165, 0.002641495317220688, 0.03655017539858818, 0.08170351386070251, 0.07843168824911118, -0.053091906011104584, -0.029371796175837517, -0.0012829899787902832, 0.10885381698608398, -0.19884024560451508, -0.04099886864423752 ]
null
null
adapter-transformers
# Adapter `AdapterHub/bert-base-uncased-pf-rotten_tomatoes` for bert-base-uncased An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [sentiment/rotten_tomatoes](https://adapterhub.ml/explore/sentiment/rotten_tomatoes/) dataset and includes a prediction head for classification. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("bert-base-uncased") adapter_name = model.load_adapter("AdapterHub/bert-base-uncased-pf-rotten_tomatoes", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
{"language": ["en"], "tags": ["text-classification", "bert", "adapterhub:sentiment/rotten_tomatoes", "adapter-transformers"], "datasets": ["rotten_tomatoes"]}
text-classification
AdapterHub/bert-base-uncased-pf-rotten_tomatoes
[ "adapter-transformers", "bert", "text-classification", "adapterhub:sentiment/rotten_tomatoes", "en", "dataset:rotten_tomatoes", "arxiv:2104.08247", "region:us" ]
2022-03-02T23:29:04+00:00
[ "2104.08247" ]
[ "en" ]
TAGS #adapter-transformers #bert #text-classification #adapterhub-sentiment/rotten_tomatoes #en #dataset-rotten_tomatoes #arxiv-2104.08247 #region-us
# Adapter 'AdapterHub/bert-base-uncased-pf-rotten_tomatoes' for bert-base-uncased An adapter for the 'bert-base-uncased' model that was trained on the sentiment/rotten_tomatoes dataset and includes a prediction head for classification. This adapter was created for usage with the adapter-transformers library. ## Usage First, install 'adapter-transformers': _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_ Now, the adapter can be loaded and activated like this: ## Architecture & Training The training code for this adapter is available at URL In particular, training configurations for all tasks can be found here. ## Evaluation results Refer to the paper for more information on results. If you use this adapter, please cite our paper "What to Pre-Train on? Efficient Intermediate Task Selection":
[ "# Adapter 'AdapterHub/bert-base-uncased-pf-rotten_tomatoes' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the sentiment/rotten_tomatoes dataset and includes a prediction head for classification.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ "TAGS\n#adapter-transformers #bert #text-classification #adapterhub-sentiment/rotten_tomatoes #en #dataset-rotten_tomatoes #arxiv-2104.08247 #region-us \n", "# Adapter 'AdapterHub/bert-base-uncased-pf-rotten_tomatoes' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the sentiment/rotten_tomatoes dataset and includes a prediction head for classification.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ 51, 90, 57, 30, 45 ]
[ "passage: TAGS\n#adapter-transformers #bert #text-classification #adapterhub-sentiment/rotten_tomatoes #en #dataset-rotten_tomatoes #arxiv-2104.08247 #region-us \n# Adapter 'AdapterHub/bert-base-uncased-pf-rotten_tomatoes' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the sentiment/rotten_tomatoes dataset and includes a prediction head for classification.\n\nThis adapter was created for usage with the adapter-transformers library.## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ -0.05068407580256462, 0.026295484974980354, -0.00208571320399642, 0.02990788035094738, 0.1784546971321106, 0.045580703765153885, 0.16682784259319305, 0.1035604476928711, 0.1272713541984558, 0.036320362240076065, -0.08384685963392258, 0.12920619547367096, 0.030263016000390053, 0.016377612948417664, 0.04562634602189064, -0.053982991725206375, -0.017181776463985443, 0.022416220977902412, -0.11721888929605484, 0.09652683138847351, 0.1025991290807724, -0.07097319513559341, 0.055900223553180695, 0.015435358509421349, -0.1866481453180313, 0.023694097995758057, -0.021302109584212303, -0.0316033661365509, 0.11520013958215714, 0.08409402519464493, 0.21493616700172424, 0.019958848133683205, -0.0062374030239880085, -0.16237328946590424, 0.013123225420713425, 0.11854512244462967, 0.010584558360278606, 0.056938111782073975, 0.02211579866707325, -0.008338794112205505, -0.0652836486697197, -0.04050750657916069, 0.06899703294038773, 0.08269194513559341, -0.09081270545721054, -0.08019743859767914, -0.03546511009335518, 0.03951738774776459, 0.03065621107816696, 0.07598559558391571, 0.021372152492403984, 0.13253828883171082, -0.034848060458898544, 0.0656069666147232, 0.15683557093143463, -0.14758704602718353, 0.004437803756445646, 0.006749176420271397, 0.04980115965008736, 0.05606210604310036, -0.08198671787977219, -0.02876037172973156, 0.020714929327368736, 0.019093049690127373, 0.025949005037546158, -0.05197647958993912, -0.08796269446611404, -0.05391339957714081, -0.13300088047981262, -0.0013097316259518266, 0.212890625, -0.0042548454366624355, -0.10310404747724533, -0.08123882114887238, -0.054588112980127335, 0.0655292347073555, -0.013636359013617039, -0.05648878589272499, 0.040737759321928024, 0.012284939177334309, 0.06538482010364532, -0.08076779544353485, -0.11898491531610489, -0.05483172461390495, -0.02013738453388214, 0.271454781293869, -0.006782748736441135, -0.022665729746222496, -0.005166325252503157, 0.09534256905317307, 0.039655279368162155, -0.07253123819828033, -0.034666549414396286, -0.04046683385968208, -0.10241663455963135, -0.11237082630395889, -0.029566505923867226, -0.2493782341480255, 0.0002189184888266027, 0.13711591064929962, 0.0795847699046135, 0.028428908437490463, -0.07596530765295029, 0.04719211161136627, 0.07309146225452423, 0.15500809252262115, -0.036312784999608994, 0.028691036626696587, 0.013130102306604385, -0.015486195683479309, -0.059062983840703964, -0.03408091515302658, -0.04112841561436653, -0.048806071281433105, 0.05335352197289467, 0.05820298194885254, 0.0946265235543251, 0.09349941462278366, -0.06371425092220306, -0.11887592822313309, 0.1373702436685562, -0.1425357162952423, -0.01282482873648405, 0.015983467921614647, -0.04978898912668228, 0.034645311534404755, 0.10130377858877182, -0.01472083292901516, -0.06627166271209717, 0.05328808352351189, -0.1018405482172966, -0.006374528631567955, -0.06261374801397324, -0.14160965383052826, 0.026925094425678253, -0.056335434317588806, -0.03197840601205826, -0.14368757605552673, -0.0963786318898201, -0.05595151335000992, 0.044535160064697266, 0.011936429888010025, 0.06210507079958916, 0.06700071692466736, 0.08525437861680984, -0.01234919112175703, 0.006816432811319828, 0.013344927690923214, -0.03584745526313782, 0.05873594805598259, -0.011498277075588703, 0.018481416627764702, 0.06581338495016098, 0.06444736570119858, -0.09831218421459198, -0.004977263975888491, -0.21902795135974884, 0.08966011554002762, -0.13377897441387177, 0.1231575533747673, -0.16516627371311188, 0.03677524998784065, 0.01822664402425289, 0.04166414216160774, -0.011287684552371502, 0.15940752625465393, -0.0876712054014206, -0.06205443665385246, 0.0951051339507103, -0.16010220348834991, -0.09485680609941483, 0.0386756956577301, 0.002462339121848345, 0.16637833416461945, 0.08086155354976654, 0.08970829099416733, 0.1752576380968094, -0.09539216011762619, -0.07581411302089691, 0.06403276324272156, -0.04002179950475693, -0.00266529549844563, 0.0043845828622579575, 0.026826797053217888, -0.07597643882036209, 0.02623412013053894, -0.07700514048337936, 0.039852652698755264, 0.028515765443444252, -0.024700956419110298, -0.027641724795103073, -0.059665583074092865, 0.08080887794494629, 0.028946440666913986, 0.011004193685948849, 0.05588049814105034, -0.11257971078157425, 0.11441951245069504, 0.08890756964683533, -0.038972072303295135, 0.03749435767531395, -0.07653950899839401, 0.01600775122642517, -0.022779401391744614, -0.013705069199204445, -0.19773581624031067, -0.105595164000988, 0.07044512778520584, 0.013123266398906708, 0.05879650637507439, 0.04071974381804466, 0.04228777438402176, 0.002107323380187154, -0.012348377145826817, -0.035708144307136536, -0.02717815898358822, 0.010972405783832073, -0.031238466501235962, -0.15020869672298431, -0.07598088681697845, -0.08732587844133377, 0.04517553746700287, -0.1604006439447403, 0.04511486738920212, 0.08409378677606583, 0.08642537146806717, 0.07146146148443222, -0.04394853860139847, 0.022634286433458328, -0.018114253878593445, -0.05354311317205429, -0.053052447736263275, 0.03523202985525131, 0.0335833765566349, -0.03966374322772026, 0.016646813601255417, -0.07740797102451324, -0.060018349438905716, 0.07608450204133987, -0.027721157297492027, -0.12119290232658386, -0.07454019039869308, -0.010620751418173313, -0.04226823151111603, -0.06691227853298187, -0.07780095934867859, 0.1381533145904541, 0.070003442466259, 0.08802707493305206, -0.009703243151307106, -0.0007122018723748624, -0.015074680559337139, -0.0062385303899645805, -0.00448010116815567, -0.02734372578561306, 0.02678900770843029, -0.14898091554641724, 0.07323891669511795, 0.049283724278211594, -0.013001074083149433, 0.08846748620271683, 0.012129001319408417, -0.062201064079999924, 0.003978751599788666, 0.06622528284788132, 0.05669335648417473, 0.03298128768801689, -0.17810983955860138, 0.010398807004094124, 0.01796572282910347, -0.014261779375374317, 0.012505556456744671, -0.07286062091588974, 0.05406644195318222, 0.044962186366319656, -0.0019155609188601375, 0.05451883748173714, -0.05539272353053093, 0.007158194202929735, 0.03501136600971222, 0.01681053452193737, 0.10720019787549973, 0.005695904139429331, -0.033843085169792175, -0.12340079993009567, 0.17633669078350067, -0.08560161292552948, -0.25241169333457947, -0.16493470966815948, -0.08481770008802414, 0.012694464065134525, 0.024610908702015877, 0.0469302199780941, -0.09581400454044342, -0.07812315225601196, -0.03050546906888485, 0.0945684015750885, -0.0019506036769598722, -0.015226631425321102, -0.05571705475449562, 0.01668681390583515, 0.06849208474159241, -0.15858301520347595, 0.036499787122011185, 0.05600959062576294, -0.07056153565645218, -0.018386967480182648, 0.028085067868232727, 0.03854279965162277, 0.14100714027881622, 0.01824217662215233, -0.03481835126876831, -0.021292243152856827, 0.16388742625713348, -0.09028025716543198, 0.10326186567544937, 0.10320397466421127, -0.04900779202580452, 0.051760751754045486, 0.12375032156705856, 0.033185020089149475, -0.039487019181251526, 0.050975143909454346, 0.03604172542691231, 0.0025904944632202387, -0.2938195466995239, -0.07078665494918823, -0.03555216267704964, -0.04279056191444397, 0.1297006905078888, 0.053716957569122314, 0.10013314336538315, 0.07588334381580353, -0.04895735904574394, 0.07583270967006683, -0.01289078127592802, 0.09641241282224655, 0.10283872485160828, -0.005287626758217812, 0.0694730281829834, -0.07711600512266159, 0.0050706034526228905, 0.07520369440317154, 0.031023630872368813, 0.1907634735107422, -0.023840580135583878, 0.22827762365341187, 0.043833427131175995, -0.014734937809407711, 0.0341343879699707, 0.1115628108382225, -0.03035609982907772, 0.008378800936043262, 0.007937517017126083, -0.05117778480052948, -0.07453787326812744, 0.06551745533943176, 0.06520701944828033, -0.06550002098083496, -0.009790929965674877, -0.15603169798851013, 0.015878507867455482, 0.14842046797275543, 0.0024933023378252983, -0.12607093155384064, -0.07712453603744507, 0.004617734812200069, -0.028850194066762924, -0.07112295925617218, -0.03721146658062935, 0.05761340633034706, -0.11035085469484329, 0.025924740359187126, -0.06174090877175331, 0.09741348028182983, -0.11236954480409622, -0.03559808060526848, 0.08535967767238617, 0.041625820100307465, -0.0229827668517828, 0.06817350536584854, -0.20527683198451996, 0.09225232899188995, 0.046907443553209305, 0.03127480670809746, -0.05735931918025017, 0.07247769832611084, 0.023117631673812866, 0.14624381065368652, 0.07049818336963654, 0.01181265339255333, 0.07822235673666, -0.13918231427669525, -0.04034150391817093, -0.04065622389316559, 0.03558621183037758, -0.06231791526079178, 0.04839269071817398, -0.03878407925367355, 0.009069466963410378, 0.04395252466201782, 0.020779063925147057, -0.1380939483642578, -0.18469315767288208, 0.08018521964550018, -0.03877830505371094, 0.06435093283653259, -0.038479242473840714, -0.06557900458574295, 0.049691058695316315, 0.23730212450027466, -0.11368056386709213, -0.06366400420665741, -0.13963660597801208, -0.034661561250686646, 0.03866888955235481, -0.060206420719623566, 0.016956686973571777, -0.02015383541584015, 0.10334420949220657, -0.018005264922976494, -0.05059756711125374, 0.06362777203321457, -0.08778095990419388, -0.013816977851092815, -0.08356460183858871, -0.008676652796566486, 0.06717527657747269, 0.011459781788289547, 0.0037525563966482878, -0.026080191135406494, 0.041533321142196655, -0.04902322217822075, -0.03163444250822067, 0.06677901744842529, -0.018216704949736595, 0.10962960869073868, -0.17450831830501556, -0.023595813661813736, -0.09716704487800598, -0.014201158657670021, 0.13813093304634094, 0.17314332723617554, -0.056033190339803696, 0.056520696729421616, 0.12682466208934784, -0.13224515318870544, -0.23240645229816437, 0.031712036579847336, 0.04287010431289673, -0.01588449813425541, 0.027065442875027657, -0.2843617796897888, 0.1359688639640808, 0.02648250386118889, 0.005691446829587221, 0.12905248999595642, -0.16425491869449615, -0.09875205904245377, 0.07986948639154434, 0.12189099192619324, -0.024603527039289474, -0.11179463565349579, -0.05593670532107353, -0.0022248176392167807, -0.06741193681955338, 0.12641671299934387, 0.019903412088751793, 0.10556352138519287, -0.010060155764222145, -0.004125211853533983, 0.03275769203901291, -0.055245935916900635, 0.03868947923183441, 0.024283725768327713, 0.03394760563969612, -0.06040097028017044, 0.016521865501999855, 0.12589438259601593, -0.03758750855922699, 0.031277574598789215, -0.04646984860301018, 0.012282738462090492, -0.11774225533008575, -0.05942344665527344, -0.029896287247538567, 0.13657152652740479, -0.055614836513996124, -0.07966046780347824, -0.027829142287373543, 0.08170589059591293, 0.048893656581640244, -0.027373872697353363, 0.02640504576265812, -0.010194897651672363, 0.09107930958271027, 0.2506295144557953, 0.06361908465623856, -0.000050330589147051796, -0.2148957997560501, 0.006741046439856291, 0.011031423695385456, 0.09780807793140411, -0.0673111155629158, 0.08407191187143326, 0.045350346714258194, 0.072850301861763, 0.12711191177368164, 0.019707070663571358, -0.11793534457683563, -0.05778168886899948, 0.058621834963560104, -0.007368868682533503, -0.07774229347705841, -0.005480930674821138, 0.05318706855177879, -0.13307425379753113, -0.02518255077302456, 0.16361823678016663, -0.027357660233974457, -0.017164554446935654, 0.030216455459594727, -0.014782940037548542, -0.000506959855556488, 0.13690553605556488, 0.07443664222955704, 0.05144403502345085, -0.026067249476909637, 0.09303867816925049, 0.1344328373670578, -0.1314048022031784, -0.002325642853975296, 0.012791179120540619, -0.08934894949197769, -0.09549715369939804, 0.010479317046701908, 0.026613207533955574, -0.023049121722579002, 0.005110287573188543, -0.0405876524746418, -0.005038981791585684, 0.0024787941947579384, 0.1628192812204361, 0.0470506027340889, 0.040459610521793365, -0.050583627074956894, 0.024324310943484306, -0.07763709127902985, 0.058906376361846924, -0.02868906408548355, 0.10082893073558807, -0.12492398172616959, 0.031066594645380974, 0.045764438807964325, -0.01159327756613493, -0.03825262561440468, -0.06378895789384842, -0.11007872968912125, -0.044588226824998856, -0.0889640599489212, 0.044641152024269104, -0.03043977916240692, 0.013057000935077667, -0.012192228808999062, -0.03920716419816017, 0.016985489055514336, 0.02012138068675995, -0.03244750201702118, -0.03563077747821808, 0.0029366540256887674, 0.08647811412811279, -0.14770832657814026, -0.03542438521981239, 0.05998850613832474, -0.09316572546958923, 0.04295675456523895, 0.026382168754935265, -0.03072183206677437, 0.00986102782189846, -0.0467224195599556, 0.010564906522631645, -0.01131351012736559, 0.04781227931380272, 0.004098273813724518, -0.14046704769134521, 0.0479646734893322, -0.05483752489089966, 0.03415866568684578, -0.005605112761259079, 0.1686803698539734, -0.11106037348508835, 0.030994722619652748, -0.017224345356225967, -0.05094645544886589, -0.07872908562421799, 0.04274550825357437, 0.10345596820116043, 0.03998987376689911, 0.1607920527458191, -0.04148988425731659, 0.08254615217447281, -0.10855122655630112, -0.004853222519159317, 0.016815846785902977, -0.000796839187387377, 0.05635852366685867, -0.07219857722520828, -0.018993115052580833, -0.016085514798760414, 0.13947319984436035, -0.011396399699151516, 0.02975684218108654, 0.08416122943162918, -0.055745672434568405, -0.11304540932178497, -0.022232023999094963, 0.12494903057813644, 0.0023611898068338633, 0.02597462199628353, 0.028494177386164665, 0.023897811770439148, 0.011479263193905354, 0.042716797441244125, 0.10718291997909546, 0.2195315808057785, -0.0827690064907074, 0.0032501332461833954, -0.00474725803360343, -0.08605565875768661, -0.1486615091562271, -0.02628384903073311, -0.01482644584029913, 0.06974995136260986, -0.05862874910235405, 0.1651785671710968, 0.052556853741407394, -0.0790095329284668, 0.10537013411521912, -0.011852515861392021, -0.08631129562854767, -0.049897242337465286, -0.08428607881069183, -0.022403348237276077, -0.12947067618370056, -0.024494435638189316, -0.06202594190835953, 0.01204232033342123, 0.06770452857017517, -0.011825984343886375, 0.017728092148900032, 0.1803801953792572, -0.027477161958813667, -0.07743258029222488, 0.03323834389448166, -0.01004732120782137, -0.03261026367545128, -0.07563852518796921, 0.04865952208638191, 0.008761649951338768, 0.09851154685020447, 0.03280707448720932, 0.05105695128440857, 0.024102145805954933, 0.05191832780838013, -0.019559677690267563, -0.10652792453765869, -0.02438773214817047, 0.013860730454325676, -0.053825825452804565, 0.10111808031797409, 0.016754576936364174, -0.020603137090802193, -0.031077751889824867, 0.25703665614128113, -0.05538157746195793, -0.08925465494394302, -0.10148915648460388, 0.13412505388259888, 0.012659035623073578, -0.009043402969837189, -0.002028858056291938, -0.10744033753871918, -0.014786784537136555, 0.18367187678813934, 0.08215256780385971, 0.028968872502446175, 0.022404655814170837, 0.02756468951702118, 0.004684741608798504, 0.032442644238471985, 0.10887643694877625, 0.021999754011631012, 0.039597876369953156, -0.03322334215044975, 0.014496651478111744, -0.005019941367208958, -0.049082934856414795, -0.039400190114974976, 0.11539725214242935, -0.03496647626161575, 0.003610762534663081, -0.10559435933828354, 0.058046046644449234, 0.004522078204900026, -0.2692659795284271, 0.0756736770272255, -0.04241950809955597, -0.10734037309885025, -0.07442719489336014, 0.10526163876056671, -0.039149701595306396, 0.044502850621938705, 0.03439563885331154, -0.048727165907621384, 0.16443300247192383, 0.015409319661557674, -0.08089344203472137, -0.11807703226804733, 0.08935915678739548, -0.061799049377441406, 0.1656632423400879, -0.018375178799033165, 0.03434646502137184, 0.07526527345180511, 0.03588550165295601, -0.13314621150493622, -0.04740581288933754, 0.027549315243959427, -0.12159661948680878, 0.03851045295596123, 0.09605732560157776, -0.03894079104065895, 0.16063104569911957, 0.01789173111319542, -0.24130304157733917, 0.029934296384453773, 0.03720846772193909, -0.02529834769666195, -0.09966345876455307, -0.019722893834114075, -0.08189105242490768, 0.1345965415239334, 0.16231869161128998, 0.0001641912094783038, -0.05812150239944458, -0.07768501341342926, -0.01626199670135975, 0.0723591297864914, 0.10313839465379715, -0.09907535463571548, -0.19964253902435303, -0.026763757690787315, -0.006497049238532782, 0.0703510046005249, -0.2280549705028534, -0.08351226896047592, 0.06220254302024841, -0.05217116326093674, -0.031337350606918335, 0.12877030670642853, 0.05202315375208855, 0.0670909732580185, -0.03349589183926582, -0.16052015125751495, -0.0011158419074490666, 0.09861186146736145, -0.16021938621997833, -0.07527396827936172 ]
null
null
adapter-transformers
# Adapter `AdapterHub/bert-base-uncased-pf-rte` for bert-base-uncased An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [nli/rte](https://adapterhub.ml/explore/nli/rte/) dataset and includes a prediction head for classification. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("bert-base-uncased") adapter_name = model.load_adapter("AdapterHub/bert-base-uncased-pf-rte", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
{"language": ["en"], "tags": ["text-classification", "bert", "adapterhub:nli/rte", "adapter-transformers"]}
text-classification
AdapterHub/bert-base-uncased-pf-rte
[ "adapter-transformers", "bert", "text-classification", "adapterhub:nli/rte", "en", "arxiv:2104.08247", "region:us" ]
2022-03-02T23:29:04+00:00
[ "2104.08247" ]
[ "en" ]
TAGS #adapter-transformers #bert #text-classification #adapterhub-nli/rte #en #arxiv-2104.08247 #region-us
# Adapter 'AdapterHub/bert-base-uncased-pf-rte' for bert-base-uncased An adapter for the 'bert-base-uncased' model that was trained on the nli/rte dataset and includes a prediction head for classification. This adapter was created for usage with the adapter-transformers library. ## Usage First, install 'adapter-transformers': _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_ Now, the adapter can be loaded and activated like this: ## Architecture & Training The training code for this adapter is available at URL In particular, training configurations for all tasks can be found here. ## Evaluation results Refer to the paper for more information on results. If you use this adapter, please cite our paper "What to Pre-Train on? Efficient Intermediate Task Selection":
[ "# Adapter 'AdapterHub/bert-base-uncased-pf-rte' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the nli/rte dataset and includes a prediction head for classification.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ "TAGS\n#adapter-transformers #bert #text-classification #adapterhub-nli/rte #en #arxiv-2104.08247 #region-us \n", "# Adapter 'AdapterHub/bert-base-uncased-pf-rte' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the nli/rte dataset and includes a prediction head for classification.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ 36, 81, 57, 30, 45 ]
[ "passage: TAGS\n#adapter-transformers #bert #text-classification #adapterhub-nli/rte #en #arxiv-2104.08247 #region-us \n# Adapter 'AdapterHub/bert-base-uncased-pf-rte' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the nli/rte dataset and includes a prediction head for classification.\n\nThis adapter was created for usage with the adapter-transformers library.## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ -0.04394754767417908, -0.023261891677975655, -0.00274193799123168, 0.04945578798651695, 0.16301704943180084, 0.028168978169560432, 0.14820565283298492, 0.059410445392131805, 0.060162220150232315, 0.022935032844543457, 0.022557979449629784, 0.08894114196300507, 0.03695854917168617, 0.03638461232185364, 0.01277712732553482, -0.13588736951351166, -0.005109500605612993, 0.03550099954009056, -0.03576146438717842, 0.10151000320911407, 0.10576334595680237, -0.07733280956745148, 0.09600837528705597, 0.03887917101383209, -0.0842110887169838, 0.05576347932219505, -0.0035752607509493828, -0.0856582373380661, 0.10199543088674545, 0.0825057327747345, 0.16975553333759308, 0.03671758994460106, 0.036320239305496216, -0.14368221163749695, 0.016182413324713707, 0.1051507219672203, 0.020403774455189705, 0.0841166079044342, -0.0158599354326725, 0.005589997861534357, 0.029537098482251167, -0.0018125547794625163, 0.07372695207595825, 0.06859210133552551, -0.08828671276569366, -0.2079160362482071, -0.01889754831790924, 0.1163502186536789, 0.02638646773993969, 0.07730001956224442, 0.010648231953382492, 0.06816314160823822, 0.024801459163427353, 0.059145428240299225, 0.21425698697566986, -0.2340826541185379, -0.010797285474836826, -0.02260282263159752, 0.043080661445856094, 0.08079087734222412, -0.04245852679014206, 0.007772284094244242, 0.045357950031757355, 0.018761737272143364, 0.04763933643698692, -0.015228468924760818, -0.03265614062547684, 0.00028311170171946287, -0.16922040283679962, 0.0002755100140348077, 0.2203192561864853, -0.02042488567531109, -0.08897936344146729, -0.021257847547531128, -0.04428435117006302, 0.07938840985298157, 0.04165508970618248, -0.10664822906255722, -0.00808241218328476, -0.0023688115179538727, -0.001001536613330245, -0.10334081947803497, -0.0921492725610733, -0.09117460995912552, -0.07967927306890488, 0.28210967779159546, -0.003376559354364872, 0.022359125316143036, -0.004710284993052483, 0.12666621804237366, -0.020766258239746094, -0.11167744547128677, -0.057423681020736694, -0.05805112048983574, -0.06525351852178574, -0.04857081547379494, -0.023127980530261993, -0.24987688660621643, -0.032769132405519485, 0.15555600821971893, 0.10189376771450043, 0.03263580799102783, -0.11082996428012848, 0.058480698615312576, 0.02136867865920067, 0.17960385978221893, -0.09598968923091888, 0.030246013775467873, -0.017502037808299065, -0.030468126758933067, -0.028642941266298294, -0.09963098168373108, -0.07723014801740646, -0.010015711188316345, 0.03854772821068764, 0.036309707909822464, 0.020863233134150505, 0.1003727912902832, -0.05045609921216965, -0.07305526733398438, 0.0913529321551323, -0.13018812239170074, -0.017199430614709854, -0.005047513172030449, -0.056461866945028305, 0.07119177281856537, 0.15200766921043396, -0.03136250376701355, -0.03884541615843773, 0.0719430148601532, -0.0723520815372467, -0.0817614197731018, -0.07390742003917694, -0.15139783918857574, 0.019393032416701317, -0.0410345122218132, -0.01457460131496191, -0.16349297761917114, -0.11294327676296234, 0.008906355127692223, 0.07754316926002502, -0.017631618306040764, 0.10236171633005142, 0.027440093457698822, 0.026389211416244507, 0.010603577829897404, -0.025254633277654648, -0.03262851759791374, -0.013975591398775578, 0.07350904494524002, 0.023557746782898903, 0.05612074211239815, -0.027895374223589897, 0.07964204996824265, -0.06672201305627823, 0.008232052437961102, -0.17693154513835907, 0.08056087046861649, -0.1509113609790802, 0.009943011216819286, -0.14403703808784485, -0.02766488865017891, -0.01294806506484747, 0.01538859773427248, 0.08343792706727982, 0.06978988647460938, -0.10181853920221329, -0.054731838405132294, 0.030197108164429665, -0.18166735768318176, -0.12449081242084503, 0.06389845907688141, -0.012967451475560665, 0.13984090089797974, 0.05954832583665848, 0.08803138881921768, 0.15088734030723572, -0.07093384861946106, -0.07170673459768295, 0.05592978745698929, -0.07402276992797852, -0.025282131507992744, 0.029168259352445602, 0.05492574721574783, -0.17514961957931519, 0.009067893959581852, -0.10016702860593796, 0.021899782121181488, -0.04066302254796028, -0.03314743936061859, -0.016476836055517197, -0.03874284401535988, 0.11145269125699997, 0.035788051784038544, -0.0176602341234684, 0.04061073809862137, -0.15569640696048737, 0.19835805892944336, 0.06616148352622986, -0.07064580917358398, 0.03644533082842827, -0.11755567044019699, 0.08585791289806366, -0.10017824172973633, 0.007400314323604107, -0.18433250486850739, -0.03757568821310997, 0.008961356244981289, 0.0020354087464511395, 0.07818491011857986, 0.050796810537576675, 0.05843768268823624, 0.02539852261543274, -0.013340836390852928, -0.0036793136969208717, -0.06971924006938934, 0.03786986321210861, -0.03332703560590744, -0.12218228727579117, -0.05756619945168495, -0.05039450153708458, -0.022030245512723923, -0.18437354266643524, 0.043465372174978256, 0.06712371855974197, 0.07141096144914627, 0.035962168127298355, -0.008853226900100708, -0.04478331655263901, -0.0033774585463106632, -0.057228781282901764, -0.036569349467754364, 0.021337831392884254, -0.0017250366508960724, -0.08154536783695221, 0.019463373348116875, -0.08984852582216263, 0.004578086081892252, 0.06501870602369308, -0.059063754975795746, -0.09739603102207184, 0.014784377999603748, 0.005424763076007366, -0.03125164657831192, 0.00284678116440773, -0.09465442597866058, 0.2504471242427826, 0.05073228105902672, 0.07085391134023666, -0.03912420570850372, -0.01720135472714901, 0.008924730122089386, -0.004120466765016317, 0.006162007339298725, 0.022177981212735176, 0.02821127325296402, -0.13638785481452942, 0.032947149127721786, 0.16283012926578522, -0.047803983092308044, 0.09459375590085983, -0.00047724274918437004, -0.10850794613361359, 0.006628099828958511, -0.048778168857097626, 0.0580492801964283, 0.05175023525953293, -0.11525432765483856, 0.015812624245882034, 0.05669039860367775, -0.009515129029750824, 0.016865761950612068, -0.060670044273138046, 0.0459895059466362, 0.07424716651439667, -0.0017355440650135279, -0.03533535450696945, -0.025591950863599777, -0.03240813687443733, 0.065245121717453, 0.0442894883453846, 0.07677686959505081, 0.029328474774956703, -0.016109108924865723, -0.07856331765651703, 0.17874577641487122, -0.059331800788640976, -0.2066154181957245, -0.21246913075447083, -0.11869627237319946, -0.0157906673848629, 0.01728908158838749, 0.03404856100678444, -0.09706751257181168, -0.08950928598642349, -0.047197677195072174, 0.16383183002471924, -0.037459712475538254, 0.012310831807553768, 0.02262110821902752, -0.05219414830207825, 0.08314219862222672, -0.16804222762584686, 0.041789498180150986, 0.03415847197175026, -0.08850222080945969, -0.009135532192885876, 0.010503768920898438, 0.07971614599227905, 0.1625811904668808, -0.04872021824121475, 0.007394924759864807, -0.005727003328502178, 0.08281639218330383, -0.07381440699100494, 0.054095786064863205, 0.12533368170261383, -0.14720772206783295, 0.03024582378566265, 0.06536825001239777, 0.04642258211970329, -0.035655368119478226, 0.0536881648004055, 0.037845827639102936, -0.06332878768444061, -0.2984410524368286, -0.021770494058728218, 0.0007447893731296062, 0.0002829157165251672, 0.08766548335552216, 0.036749180406332016, 0.07485102117061615, 0.06786417961120605, 0.0450260229408741, 0.0023184954188764095, -0.027986381202936172, 0.07507078349590302, 0.20695340633392334, -0.02336229756474495, 0.10026633739471436, -0.07991821318864822, 0.013885482214391232, 0.09637298434972763, -0.04717967286705971, 0.14581914246082306, -0.030193597078323364, 0.10704360157251358, 0.06528983265161514, -0.045788008719682693, 0.04653700068593025, 0.15764741599559784, -0.05823927000164986, -0.009574294090270996, -0.003458248218521476, -0.0540664941072464, -0.053100742399692535, 0.04282212629914284, -0.04336564615368843, 0.016865922138094902, -0.03318706899881363, -0.04476248100399971, 0.02462175488471985, 0.10182276368141174, 0.019518598914146423, -0.23656214773654938, -0.11196170002222061, -0.030901819467544556, -0.01831008866429329, -0.07309401780366898, 0.015721973031759262, 0.061791930347681046, -0.0393059104681015, 0.03828786686062813, -0.02911955490708351, 0.09484648704528809, -0.13874398171901703, -0.01780598983168602, 0.06534432619810104, 0.1355886459350586, -0.05038225278258324, 0.10653398931026459, -0.18918411433696747, 0.09895788133144379, 0.0327315628528595, 0.020235318690538406, -0.05208127573132515, 0.0040136659517884254, 0.009258802980184555, 0.13750620186328888, 0.06645496934652328, -0.023613976314663887, 0.07892283797264099, -0.1540529578924179, -0.06221475824713707, 0.013237141072750092, 0.07582952082157135, -0.0813811644911766, 0.03928077965974808, -0.040676552802324295, 0.047082576900720596, 0.0643845647573471, 0.02585330791771412, -0.14929744601249695, -0.15593457221984863, 0.06149520352482796, 0.0018062542658299208, 0.09475962817668915, -0.06147585064172745, -0.12092309445142746, 0.04307165741920471, 0.22740520536899567, -0.13534219563007355, -0.0521768294274807, -0.15104889869689941, 0.012560516595840454, 0.07845655083656311, -0.07594995945692062, 0.032338693737983704, 0.005844572558999062, 0.09206360578536987, -0.0011729138204827905, -0.10244841873645782, 0.08620410412549973, -0.07104095071554184, -0.04906750097870827, -0.038610223680734634, 0.01113706175237894, 0.12764418125152588, 0.024872561916708946, -0.014444852247834206, -0.021945174783468246, 0.03341132029891014, -0.0943554937839508, -0.024095378816127777, 0.04881305620074272, -0.03696770593523979, 0.03637208789587021, -0.07873857766389847, 0.07008061558008194, -0.07129725068807602, 0.014036435633897781, 0.13908083736896515, 0.10662645846605301, -0.06906650960445404, 0.05576637387275696, 0.17690591514110565, -0.08429760485887527, -0.26849859952926636, 0.016509080305695534, 0.03232019022107124, -0.012697581201791763, 0.025483552366495132, -0.23521220684051514, 0.14844603836536407, 0.019656796008348465, 0.0035417964681982994, 0.05951273813843727, -0.12133391946554184, -0.08853723108768463, 0.20477938652038574, 0.088127002120018, 0.03505990654230118, -0.09180956333875656, -0.059165213257074356, -0.00493669556453824, -0.09626307338476181, 0.10749397426843643, -0.056503791362047195, 0.06476525962352753, -0.012039663270115852, 0.024367690086364746, 0.029419127851724625, -0.017810430377721786, 0.06642976403236389, -0.008351183496415615, 0.022885503247380257, -0.09820061177015305, 0.01195145770907402, 0.07626467198133469, -0.052039358764886856, 0.07481664419174194, -0.007765035144984722, 0.05741783231496811, -0.0830761045217514, -0.07565374672412872, 0.010052978061139584, 0.10881514847278595, -0.008614192716777325, -0.09728454798460007, -0.05828186869621277, 0.04051811993122101, -0.0290642399340868, -0.04685898870229721, 0.08673680573701859, -0.06369475275278091, 0.06328121572732925, 0.1844026744365692, 0.15797385573387146, -0.006233141291886568, -0.04663993790745735, 0.01576690934598446, -0.022988563403487206, 0.13107694685459137, -0.15158668160438538, 0.06613963842391968, 0.10081296414136887, 0.02829374186694622, 0.1187644973397255, 0.054176073521375656, -0.137239009141922, -0.027484307065606117, 0.07136630266904831, -0.0866938978433609, -0.045287635177373886, -0.04027525335550308, 0.06284172832965851, -0.16109280288219452, 0.052071087062358856, 0.14759251475334167, -0.0846472978591919, 0.02728240378201008, 0.050668589770793915, -0.01518814917653799, -0.0664653405547142, 0.09985736757516861, 0.12904946506023407, 0.041689977049827576, -0.013719886541366577, 0.09693863242864609, 0.11428412050008774, -0.06281743943691254, 0.046358197927474976, -0.04974886775016785, -0.06509579718112946, -0.05734725669026375, -0.058004241436719894, 0.09489879757165909, -0.06228012591600418, -0.08801957964897156, 0.0023250996600836515, -0.0458565354347229, 0.036495354026556015, 0.18634968996047974, 0.03165854513645172, 0.0032383324578404427, -0.07427467405796051, 0.0572601780295372, -0.08674726635217667, 0.08113092184066772, -0.03450149670243263, 0.07842705398797989, -0.10724593698978424, -0.009785354137420654, 0.048640936613082886, 0.055728621780872345, -0.06682343035936356, -0.04879339784383774, -0.12614330649375916, -0.013260637409985065, -0.14328743517398834, -0.02577393874526024, -0.010391238145530224, 0.000596952682826668, 0.00728306220844388, -0.10075123608112335, -0.0452425517141819, 0.031895190477371216, -0.02106262743473053, 0.001895496854558587, 0.06132546067237854, 0.07595221698284149, -0.17366260290145874, -0.023690450936555862, 0.06457507610321045, -0.05117357149720192, 0.07600414752960205, 0.0036510699428617954, -0.021341418847441673, 0.042157359421253204, -0.11055884510278702, 0.03374065086245537, -0.017252493649721146, 0.048076022416353226, 0.014117242768406868, -0.10272721946239471, 0.01793273538351059, -0.045229408890008926, -0.01966240257024765, -0.01737695187330246, 0.16021102666854858, -0.059228722006082535, 0.05779244005680084, -0.03766676411032677, -0.0024916771799325943, -0.053497955203056335, 0.07291769981384277, 0.062031302601099014, 0.10660670697689056, 0.11583543568849564, -0.0693894550204277, 0.06848887354135513, -0.09711287915706635, 0.01780584454536438, 0.043312326073646545, -0.005445322021842003, 0.1379682868719101, -0.12302789092063904, -0.006443690974265337, -0.06360938400030136, 0.18224678933620453, -0.018290145322680473, 0.014585265889763832, 0.05210942029953003, -0.03825538977980614, -0.08675666153430939, -0.05202413722872734, 0.18014982342720032, 0.029664786532521248, 0.02953464910387993, -0.024063510820269585, 0.03788488730788231, -0.002158451359719038, 0.03895072638988495, 0.15375575423240662, 0.1498606950044632, -0.1364186853170395, 0.005482290871441364, 0.032951079308986664, -0.04438944160938263, -0.11180180311203003, -0.031244926154613495, -0.0043723369017243385, 0.06921859085559845, -0.004638965241611004, 0.15804913640022278, 0.08684644848108292, -0.013926087878644466, 0.0579027459025383, 0.018040133640170097, -0.06543318182229996, -0.09688065201044083, -0.0933806449174881, -0.021233094856142998, -0.1678883135318756, -0.017479566857218742, -0.0831577256321907, -0.004918853752315044, 0.09524724632501602, 0.022317321971058846, 0.013321224600076675, 0.24059821665287018, -0.06493622064590454, -0.02657609060406685, 0.0389368049800396, -0.03530989959836006, -0.03962772712111473, -0.11513582617044449, 0.05227067321538925, 0.036026760935783386, 0.1240585669875145, 0.025738513097167015, 0.036986202001571655, 0.012143959291279316, 0.056410811841487885, 0.0037135290913283825, -0.11195898056030273, -0.03847403824329376, 0.042541906237602234, -0.041201233863830566, 0.06701323390007019, 0.006101692095398903, -0.023274650797247887, -0.019792556762695312, 0.16234812140464783, -0.06593010574579239, -0.0760670155286789, -0.10669602453708649, 0.2023923546075821, -0.011568475514650345, 0.021552294492721558, -0.03943948820233345, -0.11109686642885208, -0.048809509724378586, 0.19586020708084106, 0.07653634995222092, -0.005359450355172157, 0.02315867319703102, 0.04640379175543785, 0.023874487727880478, 0.016794249415397644, 0.10298491269350052, 0.02078571543097496, 0.07887222617864609, 0.0011807166738435626, -0.056656669825315475, -0.05998799949884415, -0.014141700230538845, 0.06261277943849564, 0.11943835020065308, 0.027746859937906265, -0.04050002619624138, -0.08378279209136963, 0.07414335757493973, -0.05253259092569351, -0.27414315938949585, -0.023190539330244064, -0.020957916975021362, -0.0746576115489006, -0.0681724026799202, 0.07302156835794449, -0.05566306412220001, 0.0002420670643914491, 0.0038985866121947765, -0.029147429391741753, 0.12978053092956543, 0.05084769055247307, -0.06997276842594147, -0.015221942216157913, 0.08306188136339188, -0.03925911337137222, 0.17298781871795654, -0.013488052412867546, 0.01976018399000168, 0.07517695426940918, 0.04488454759120941, -0.07789427042007446, 0.02372107468545437, 0.020679449662566185, -0.08541758358478546, -0.003319020848721266, 0.05304950848221779, -0.022371672093868256, 0.09940891712903976, 0.05412762984633446, -0.19205313920974731, 0.028026526793837547, -0.010263456031680107, -0.08277036249637604, -0.08033107966184616, -0.0373881496489048, -0.06863068789243698, 0.1573992371559143, 0.13785821199417114, -0.005125366151332855, -0.07039687782526016, -0.11236054450273514, 0.02244930900633335, 0.014689236879348755, 0.0841977447271347, -0.01931183412671089, -0.08900575339794159, -0.04074953496456146, -0.03417908400297165, 0.04558505117893219, -0.3081473410129547, -0.018186582252383232, 0.056725554168224335, -0.04244297742843628, -0.0033868555910885334, 0.07073874026536942, 0.09417043626308441, 0.06672337651252747, -0.04128916934132576, -0.0786619558930397, 0.003980720415711403, 0.09789882600307465, -0.194411963224411, -0.03041880950331688 ]
null
null
adapter-transformers
# Adapter `AdapterHub/bert-base-uncased-pf-scicite` for bert-base-uncased An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [scicite](https://huggingface.co/datasets/scicite/) dataset and includes a prediction head for classification. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("bert-base-uncased") adapter_name = model.load_adapter("AdapterHub/bert-base-uncased-pf-scicite", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
{"language": ["en"], "tags": ["text-classification", "bert", "adapter-transformers"], "datasets": ["scicite"]}
text-classification
AdapterHub/bert-base-uncased-pf-scicite
[ "adapter-transformers", "bert", "text-classification", "en", "dataset:scicite", "arxiv:2104.08247", "region:us" ]
2022-03-02T23:29:04+00:00
[ "2104.08247" ]
[ "en" ]
TAGS #adapter-transformers #bert #text-classification #en #dataset-scicite #arxiv-2104.08247 #region-us
# Adapter 'AdapterHub/bert-base-uncased-pf-scicite' for bert-base-uncased An adapter for the 'bert-base-uncased' model that was trained on the scicite dataset and includes a prediction head for classification. This adapter was created for usage with the adapter-transformers library. ## Usage First, install 'adapter-transformers': _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_ Now, the adapter can be loaded and activated like this: ## Architecture & Training The training code for this adapter is available at URL In particular, training configurations for all tasks can be found here. ## Evaluation results Refer to the paper for more information on results. If you use this adapter, please cite our paper "What to Pre-Train on? Efficient Intermediate Task Selection":
[ "# Adapter 'AdapterHub/bert-base-uncased-pf-scicite' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the scicite dataset and includes a prediction head for classification.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ "TAGS\n#adapter-transformers #bert #text-classification #en #dataset-scicite #arxiv-2104.08247 #region-us \n", "# Adapter 'AdapterHub/bert-base-uncased-pf-scicite' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the scicite dataset and includes a prediction head for classification.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ 34, 80, 57, 30, 45 ]
[ "passage: TAGS\n#adapter-transformers #bert #text-classification #en #dataset-scicite #arxiv-2104.08247 #region-us \n# Adapter 'AdapterHub/bert-base-uncased-pf-scicite' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the scicite dataset and includes a prediction head for classification.\n\nThis adapter was created for usage with the adapter-transformers library.## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ -0.07331566512584686, -0.00776580860838294, -0.002367740962654352, 0.03678159415721893, 0.17926035821437836, 0.034871604293584824, 0.14650532603263855, 0.04922257736325264, 0.12343898415565491, 0.04753324016928673, 0.043908942490816116, 0.10045607388019562, 0.06237318739295006, 0.04998312518000603, -0.01049825455993414, -0.13778460025787354, 0.02624635025858879, 0.002988984575495124, -0.026727598160505295, 0.09263557940721512, 0.09685458987951279, -0.09989460557699203, 0.09019646048545837, 0.00834465678781271, -0.09014662355184555, 0.01487072091549635, -0.0277231577783823, -0.05401723459362984, 0.08015025407075882, 0.06834518909454346, 0.16429083049297333, 0.04323411360383034, 0.043202754110097885, -0.14459215104579926, 0.01954190991818905, 0.07683034241199493, 0.0321345254778862, 0.0834280326962471, -0.015964921563863754, 0.008299257606267929, -0.01405712403357029, -0.008129571564495564, 0.05823623016476631, 0.05763763561844826, -0.10790213942527771, -0.15421055257320404, -0.06168220564723015, 0.0778312012553215, 0.04823697730898857, 0.06387677043676376, 0.005165608134120703, 0.044047798961400986, 0.007608919404447079, 0.04836783930659294, 0.1585567146539688, -0.22452694177627563, -0.008667521178722382, -0.03079589270055294, 0.0442211739718914, 0.08164429664611816, -0.04453365132212639, 0.008279877714812756, 0.017811255529522896, 0.005345020908862352, 0.04451935738325119, -0.034775443375110626, -0.10807792842388153, -0.003063490381464362, -0.162852942943573, -0.0169889647513628, 0.24301964044570923, -0.027955956757068634, -0.09429585933685303, -0.025541309267282486, -0.025959594175219536, 0.05827711522579193, 0.027481285855174065, -0.10698267817497253, 0.025266455486416817, 0.005097941495478153, 0.06967783719301224, -0.12386149913072586, -0.10222477465867996, -0.1048341915011406, -0.07379394769668579, 0.29135990142822266, -0.005912406835705042, 0.0398738719522953, 0.004994473420083523, 0.12333180010318756, -0.010183259844779968, -0.10477113723754883, -0.05517391115427017, -0.052991826087236404, -0.08585616946220398, -0.060709379613399506, -0.04808644577860832, -0.2569580376148224, -0.03078990988433361, 0.1506861299276352, 0.09865256398916245, 0.02503880299627781, -0.06590843200683594, 0.07878681272268295, 0.06153398007154465, 0.1576392948627472, -0.09603332728147507, 0.06434091925621033, -0.03788456320762634, -0.004717706236988306, -0.02063567563891411, -0.11440981179475784, -0.07470820099115372, -0.011790411546826363, 0.015168357640504837, 0.03613001108169556, 0.019962405785918236, 0.08751574903726578, -0.06810638308525085, -0.07189767807722092, 0.08527933061122894, -0.14060407876968384, -0.005844665691256523, 0.012268472462892532, -0.044267091900110245, 0.09356089681386948, 0.14398500323295593, -0.0016846739454194903, -0.042414236813783646, 0.08242009580135345, -0.07431896030902863, -0.026814468204975128, -0.08147001266479492, -0.1238926500082016, 0.012734956108033657, -0.05444185435771942, -0.03413519263267517, -0.12465152889490128, -0.13850533962249756, -0.028238371014595032, 0.08231234550476074, -0.022883309051394463, 0.10412171483039856, 0.03583341836929321, 0.043317168951034546, 0.01699909381568432, -0.018820853903889656, -0.03462417423725128, -0.023807577788829803, 0.06755870580673218, -0.006372490432113409, 0.05071073770523071, -0.07647109776735306, 0.08356437087059021, -0.08588676154613495, 0.014493548311293125, -0.17311599850654602, 0.08410768955945969, -0.14996154606342316, 0.025310441851615906, -0.13305024802684784, 0.0030271182768046856, -0.02738156169652939, 0.03386295214295387, 0.07734157890081406, 0.13802410662174225, -0.13652867078781128, -0.028261927887797356, 0.03353067860007286, -0.19149954617023468, -0.1264333873987198, 0.05910599231719971, -0.010110070928931236, 0.13501925766468048, 0.054512932896614075, 0.10758683830499649, 0.10472812503576279, -0.08196451514959335, -0.08591818809509277, 0.05624624341726303, -0.062161885201931, -0.010322929359972477, 0.07404156029224396, 0.0070689404383301735, -0.13367174565792084, 0.015388643369078636, -0.12158309668302536, -0.007334211375564337, -0.023304017260670662, -0.04718666523694992, -0.019272074103355408, -0.045912593603134155, 0.08148536086082458, 0.04633811116218567, -0.005580530967563391, 0.059725962579250336, -0.10803487151861191, 0.20331965386867523, 0.059000164270401, -0.07875470817089081, 0.02859961800277233, -0.10061291605234146, 0.1165800467133522, -0.10597162693738937, 0.009463487192988396, -0.2024751901626587, -0.043704915791749954, 0.010701742023229599, 0.040572911500930786, 0.05937376245856285, 0.015445306897163391, 0.04350386559963226, 0.024545853957533836, 0.009976783767342567, 0.01119017694145441, -0.03707711398601532, 0.02925185114145279, -0.07317671924829483, -0.12411358207464218, -0.09196095168590546, -0.06043563038110733, 0.035744424909353256, -0.18941730260849, 0.057089369744062424, 0.08997278660535812, 0.05835353210568428, 0.02705722488462925, -0.037408940494060516, -0.016771512106060982, -0.005280020646750927, -0.03348642960190773, -0.033335939049720764, 0.045285895466804504, 0.012064393609762192, -0.07422900944948196, 0.013647747226059437, -0.08907503634691238, -0.030766034498810768, 0.06630023568868637, -0.061246342957019806, -0.09285254776477814, -0.056072600185871124, 0.02055666409432888, -0.02988925389945507, -0.018579445779323578, -0.0947754755616188, 0.23301270604133606, 0.05227066949009895, 0.06200241297483444, -0.03291237726807594, 0.00632925471290946, -0.0070636086165905, -0.016157636418938637, 0.015043824911117554, 0.021147193387150764, 0.05809355154633522, -0.15706023573875427, 0.06684630364179611, 0.16543474793434143, -0.0467059500515461, 0.08295436948537827, -0.021800613030791283, -0.11186982691287994, -0.007508272770792246, -0.03416690230369568, 0.03934164717793465, 0.07944323867559433, -0.11821229010820389, -0.009372377768158913, 0.05194623023271561, -0.022366156801581383, 0.006904620677232742, -0.06100374460220337, 0.04733240231871605, 0.07071688771247864, 0.0008378533530049026, -0.02935822121798992, -0.034610774368047714, -0.04497712105512619, 0.05931767821311951, 0.029408857226371765, 0.1012805700302124, 0.023552224040031433, -0.026948899030685425, -0.08868569880723953, 0.18950508534908295, -0.04493938386440277, -0.1477964222431183, -0.19074758887290955, -0.07045445591211319, 0.009258607402443886, 0.03134573623538017, 0.01394606102257967, -0.0524124912917614, -0.06643885374069214, -0.058017224073410034, 0.09626530855894089, -0.018306726589798927, 0.004870033357292414, -0.014510570093989372, -0.06932452321052551, 0.04478777199983597, -0.1302124261856079, 0.024157807230949402, 0.016154177486896515, -0.08065412938594818, -0.020531238988041878, 0.03861970454454422, 0.08896013349294662, 0.15381594002246857, -0.030460920184850693, 0.003172386670485139, 0.007113317027688026, 0.1047990620136261, -0.07758712768554688, 0.0378924123942852, 0.12451436370611191, -0.1751631647348404, 0.030234472826123238, 0.1065128818154335, 0.06108718737959862, -0.04256213828921318, 0.023666484281420708, 0.019355159252882004, -0.05827534198760986, -0.28460371494293213, -0.03192862123250961, -0.01225266046822071, -0.004741235636174679, 0.08951817452907562, 0.025254743173718452, 0.03921470791101456, 0.10583105683326721, 0.035521093755960464, -0.00501445634290576, -0.029564127326011658, 0.0616791807115078, 0.1592237651348114, -0.013131446205079556, 0.10515693575143814, -0.07402436435222626, 0.03685685247182846, 0.08563938736915588, -0.02494591474533081, 0.14964261651039124, -0.009798732586205006, 0.11635838449001312, 0.058071766048669815, -0.03974525257945061, 0.03331073746085167, 0.14190538227558136, -0.05310894176363945, -0.008255220018327236, -0.008765303529798985, -0.05227845534682274, -0.07271780073642731, 0.046001315116882324, -0.009176074527204037, 0.0021986111532896757, -0.05192717909812927, -0.0725841075181961, 0.04276725649833679, 0.15419000387191772, 0.02435161918401718, -0.22613400220870972, -0.10380014777183533, 0.004538688808679581, -0.0029449642170220613, -0.08015270531177521, -0.010607127100229263, 0.09590848535299301, -0.06681039184331894, 0.02592792734503746, -0.04275118187069893, 0.09272662550210953, -0.15461674332618713, -0.011134762316942215, 0.06393945962190628, 0.08090517669916153, -0.03885127604007721, 0.09368682652711868, -0.1726333051919937, 0.10475275665521622, 0.043156690895557404, 0.03087329864501953, -0.055775780230760574, 0.02286107838153839, 0.03528166189789772, 0.1518329530954361, 0.09340433031320572, -0.012851320207118988, 0.030852537602186203, -0.1492513120174408, -0.07381008565425873, 0.015353766269981861, 0.05952129885554314, -0.11640354990959167, 0.03823571279644966, -0.033470943570137024, 0.05674542114138603, 0.020407741889357567, 0.023788247257471085, -0.12135930359363556, -0.16560815274715424, 0.08154294639825821, -0.005101125221699476, 0.11173267662525177, -0.03148239850997925, -0.09348032623529434, 0.024618079885840416, 0.21731357276439667, -0.164473295211792, -0.061807744204998016, -0.15851622819900513, 0.015361117199063301, 0.06056225299835205, -0.0523291639983654, 0.027877502143383026, 0.01045774295926094, 0.0798875093460083, 0.00445359293371439, -0.07898800820112228, 0.08452130854129791, -0.07641669362783432, -0.05670545622706413, -0.061167337000370026, -0.005109383724629879, 0.10589643567800522, 0.02000151015818119, -0.009710785932838917, 0.004317659419029951, 0.032186299562454224, -0.10132107883691788, 0.004024087451398373, 0.0691743716597557, 0.018167410045862198, 0.06700854748487473, -0.09968309104442596, 0.04041358456015587, -0.05811776965856552, 0.01772705651819706, 0.1580234318971634, 0.1305989772081375, -0.0668846145272255, 0.06015719473361969, 0.1851561814546585, -0.10615157335996628, -0.3003862500190735, 0.016247790306806564, 0.031854212284088135, -0.0015744827687740326, 0.061541300266981125, -0.2559349536895752, 0.15076735615730286, 0.07818161696195602, -0.016556529328227043, 0.060715265572071075, -0.13440720736980438, -0.08344613760709763, 0.18313804268836975, 0.08560609072446823, 0.04687424749135971, -0.1527624875307083, -0.08648566156625748, -0.018833409994840622, -0.1160237267613411, 0.12401369959115982, -0.07788626849651337, 0.06092284992337227, 0.0023407205007970333, -0.014858976006507874, 0.03621175140142441, -0.023821992799639702, 0.12487868964672089, -0.00034976183087565005, 0.0234738327562809, -0.09059235453605652, -0.033438339829444885, 0.05070558190345764, -0.050552140921354294, 0.09052655100822449, -0.03147266060113907, 0.042843520641326904, -0.09745796024799347, -0.056488920003175735, 0.01827499456703663, 0.09970243275165558, -0.004288233816623688, -0.05912429466843605, -0.048090241849422455, 0.038249704986810684, -0.014781393110752106, -0.02159073017537594, 0.07993154972791672, -0.09171628206968307, 0.055622249841690063, 0.1632220447063446, 0.16490031778812408, 0.02252727933228016, -0.073747918009758, 0.00864766351878643, -0.023015722632408142, 0.12982456386089325, -0.12062618881464005, 0.056627947837114334, 0.10148201137781143, 0.03447657451033592, 0.1280738115310669, 0.06018012389540672, -0.0990506038069725, -0.001260562101379037, 0.04379495605826378, -0.09651335328817368, -0.05295976251363754, -0.007131789345294237, 0.09958426654338837, -0.1792454719543457, 0.043632447719573975, 0.12849631905555725, -0.05704602971673012, 0.014529344625771046, 0.035786017775535583, 0.003761979518458247, -0.04927896335721016, 0.08785264194011688, 0.11470694094896317, 0.040752675384283066, -0.0350492000579834, 0.11805560439825058, 0.1262839436531067, -0.08634048700332642, 0.043406978249549866, -0.0521831288933754, -0.06606930494308472, -0.08045792579650879, -0.06644224375486374, 0.0666547641158104, -0.00680518290027976, -0.09275732934474945, 0.01640382409095764, -0.057314433157444, 0.01174189429730177, 0.19041171669960022, 0.047923099249601364, 0.01375309843569994, -0.05611668527126312, 0.0367177352309227, -0.08045879751443863, 0.060557760298252106, -0.04505863040685654, 0.06508031487464905, -0.09124689549207687, -0.020913802087306976, 0.034432314336299896, 0.04450269415974617, -0.058483876287937164, -0.05482914671301842, -0.132353737950325, -0.01720450259745121, -0.06676648557186127, -0.009832720272243023, -0.03550415858626366, -0.022875813767313957, 0.03090456686913967, -0.0937664806842804, -0.031361404806375504, 0.004694879520684481, -0.03433714061975479, 0.013217522762715816, 0.054748255759477615, 0.07998768240213394, -0.17017488181591034, -0.03342955932021141, 0.08117107301950455, -0.05440658703446388, 0.06906060129404068, 0.04436568170785904, -0.014848480932414532, 0.006362075451761484, -0.14907963573932648, 0.030671129003167152, -0.026053261011838913, 0.03478420153260231, -0.0011477239895612001, -0.08711039274930954, -0.00536838173866272, -0.03956689313054085, -0.0065650432370603085, -0.008512931875884533, 0.2231007218360901, -0.05349889397621155, 0.06481234729290009, -0.006927684880793095, 0.0037504148203879595, -0.05784284695982933, 0.07391806691884995, 0.08709584176540375, 0.11881154775619507, 0.12242920696735382, -0.05750645697116852, 0.06643875688314438, -0.08979328721761703, 0.03564202040433884, 0.03362080082297325, -0.015906209126114845, 0.08177631348371506, -0.12525485455989838, 0.0043874261900782585, -0.050546836107969284, 0.193182572722435, -0.03572753816843033, 0.03438378497958183, 0.044935375452041626, -0.008985531516373158, -0.045208074152469635, -0.007648431230336428, 0.16622789204120636, 0.04057084023952484, 0.01594119518995285, -0.01946241967380047, 0.0526132695376873, -0.026287849992513657, 0.049766961485147476, 0.15761780738830566, 0.14639197289943695, -0.12654297053813934, 0.04057639464735985, 0.008128783665597439, -0.042174484580755234, -0.07265499234199524, -0.04593526944518089, -0.0036225225776433945, 0.06703434139490128, -0.026658302173018456, 0.20790106058120728, 0.045926082879304886, -0.04097004234790802, 0.06928421556949615, 0.0012169817928224802, -0.07828681915998459, -0.1059410572052002, -0.0949895903468132, -0.002431082772091031, -0.12659072875976562, -0.031791482120752335, -0.07661354541778564, 0.00971603486686945, 0.16329148411750793, 0.0031039032619446516, 0.018939591944217682, 0.24323219060897827, -0.0839909166097641, -0.009799622930586338, 0.04122404009103775, -0.0513308085501194, -0.029381664469838142, -0.1505574733018875, 0.02352231554687023, 0.047868069261312485, 0.09704893082380295, 0.043020427227020264, 0.03522634133696556, 0.02221597358584404, 0.047236278653144836, -0.0005804500542581081, -0.12461426854133606, -0.03432151675224304, 0.033262331038713455, -0.03913502022624016, 0.0632251501083374, 0.014524327591061592, -0.012318022549152374, -0.023029692471027374, 0.1522548943758011, -0.06788113713264465, -0.027051391080021858, -0.13564974069595337, 0.15769141912460327, -0.016967039555311203, 0.017314346507191658, -0.04389115050435066, -0.13186609745025635, -0.014338074252009392, 0.1746562272310257, 0.05909118056297302, -0.05453833192586899, 0.03257311135530472, 0.04527636244893074, 0.020894326269626617, 0.02563381940126419, 0.07933679223060608, -0.024488801136612892, 0.060831908136606216, -0.020779240876436234, -0.019326908513903618, -0.03309548646211624, -0.04674065485596657, 0.027389544993638992, 0.10024023056030273, 0.002376588759943843, -0.024332452565431595, -0.0767626166343689, 0.07533187419176102, -0.06208721175789833, -0.2621840834617615, 0.024504153057932854, -0.03463290259242058, -0.0759311094880104, -0.06451093405485153, 0.04284194856882095, -0.03449774533510208, 0.006021994166076183, -0.006728048902004957, -0.03008587844669819, 0.12441010028123856, 0.04976706951856613, -0.05777924880385399, -0.04342975467443466, 0.08982482552528381, -0.055691495537757874, 0.20726937055587769, -0.01603843830525875, 0.0567450225353241, 0.05587035417556763, 0.04561875760555267, -0.07982185482978821, -0.00607707817107439, 0.024501550942659378, -0.07250533998012543, 0.0033857165835797787, 0.05356232076883316, -0.027307499200105667, 0.09955378621816635, 0.051979128271341324, -0.18335555493831635, 0.04428686201572418, -0.048458606004714966, -0.09490521997213364, -0.06544708460569382, -0.04383552074432373, -0.07289083302021027, 0.16777043044567108, 0.13434049487113953, 0.003245593048632145, -0.07254841923713684, -0.078839011490345, 0.02922702208161354, 0.023177558556199074, 0.08100029081106186, -0.038743793964385986, -0.10429705679416656, -0.021919937804341316, -0.030925648286938667, 0.060585346072912216, -0.2570054829120636, -0.02717297524213791, 0.029927736148238182, -0.030889704823493958, 0.006896233186125755, 0.02942751720547676, 0.11100257933139801, 0.04114769771695137, -0.05681955814361572, -0.06954547762870789, 0.019922306761145592, 0.1032804399728775, -0.16969813406467438, -0.03239855170249939 ]
null
null
adapter-transformers
# Adapter `AdapterHub/bert-base-uncased-pf-scitail` for bert-base-uncased An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [nli/scitail](https://adapterhub.ml/explore/nli/scitail/) dataset and includes a prediction head for classification. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("bert-base-uncased") adapter_name = model.load_adapter("AdapterHub/bert-base-uncased-pf-scitail", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
{"language": ["en"], "tags": ["text-classification", "bert", "adapterhub:nli/scitail", "adapter-transformers"], "datasets": ["scitail"]}
text-classification
AdapterHub/bert-base-uncased-pf-scitail
[ "adapter-transformers", "bert", "text-classification", "adapterhub:nli/scitail", "en", "dataset:scitail", "arxiv:2104.08247", "region:us" ]
2022-03-02T23:29:04+00:00
[ "2104.08247" ]
[ "en" ]
TAGS #adapter-transformers #bert #text-classification #adapterhub-nli/scitail #en #dataset-scitail #arxiv-2104.08247 #region-us
# Adapter 'AdapterHub/bert-base-uncased-pf-scitail' for bert-base-uncased An adapter for the 'bert-base-uncased' model that was trained on the nli/scitail dataset and includes a prediction head for classification. This adapter was created for usage with the adapter-transformers library. ## Usage First, install 'adapter-transformers': _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_ Now, the adapter can be loaded and activated like this: ## Architecture & Training The training code for this adapter is available at URL In particular, training configurations for all tasks can be found here. ## Evaluation results Refer to the paper for more information on results. If you use this adapter, please cite our paper "What to Pre-Train on? Efficient Intermediate Task Selection":
[ "# Adapter 'AdapterHub/bert-base-uncased-pf-scitail' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the nli/scitail dataset and includes a prediction head for classification.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ "TAGS\n#adapter-transformers #bert #text-classification #adapterhub-nli/scitail #en #dataset-scitail #arxiv-2104.08247 #region-us \n", "# Adapter 'AdapterHub/bert-base-uncased-pf-scitail' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the nli/scitail dataset and includes a prediction head for classification.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ 43, 83, 57, 30, 45 ]
[ "passage: TAGS\n#adapter-transformers #bert #text-classification #adapterhub-nli/scitail #en #dataset-scitail #arxiv-2104.08247 #region-us \n# Adapter 'AdapterHub/bert-base-uncased-pf-scitail' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the nli/scitail dataset and includes a prediction head for classification.\n\nThis adapter was created for usage with the adapter-transformers library.## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ -0.05867182835936546, 0.04187051206827164, -0.003119073109701276, 0.03281543776392937, 0.17163611948490143, -0.005022227298468351, 0.1579284816980362, 0.06489366292953491, 0.07278335839509964, 0.06319823861122131, 0.016867592930793762, 0.11421796679496765, 0.04654529318213463, 0.06186389550566673, 0.017439205199480057, -0.1259675770998001, 0.027965884655714035, 0.0073789856396615505, -0.036006879061460495, 0.10613942891359329, 0.10072974860668182, -0.09776046127080917, 0.09119024872779846, 0.034856922924518585, -0.09720928966999054, 0.03897557035088539, -0.010724365711212158, -0.083574078977108, 0.086955726146698, 0.08362340927124023, 0.16313980519771576, 0.02451971173286438, 0.017200445756316185, -0.1770462840795517, 0.011784834787249565, 0.08746279031038284, 0.04657064750790596, 0.07118542492389679, -0.022449571639299393, 0.01680145598948002, 0.01800175942480564, -0.04268313944339752, 0.06478001177310944, 0.05735642835497856, -0.07780060172080994, -0.19778281450271606, -0.03514624759554863, 0.10863395780324936, 0.03126181289553642, 0.06896128505468369, -0.0060638803988695145, 0.0782139003276825, 0.023502370342612267, 0.05372786894440651, 0.19313183426856995, -0.22684521973133087, -0.01055318396538496, -0.022915130481123924, 0.021803278475999832, 0.061806511133909225, -0.041236311197280884, 0.02013777568936348, 0.019393734633922577, 0.0027660634368658066, 0.019240882247686386, -0.011984611861407757, -0.05372419208288193, 0.01459544524550438, -0.1585598737001419, -0.026324549689888954, 0.24140611290931702, -0.010133840143680573, -0.10674664378166199, -0.062451351433992386, -0.04298502579331398, 0.09812459349632263, 0.03217412531375885, -0.1108492985367775, 0.01053443644195795, -0.004751332104206085, 0.03773188591003418, -0.09548960626125336, -0.11323707550764084, -0.06228536367416382, -0.08777491748332977, 0.2912918031215668, -0.00993749313056469, 0.041003402322530746, -0.00016764436441008002, 0.11016684025526047, 0.021402951329946518, -0.09971269965171814, -0.06991522014141083, -0.05443207547068596, -0.0993102565407753, -0.04812774434685707, -0.02233116142451763, -0.2678223252296448, -0.02988015115261078, 0.13746139407157898, 0.10723652690649033, 0.01878863386809826, -0.08079003542661667, 0.052019789814949036, 0.053007155656814575, 0.179628387093544, -0.07240341603755951, 0.06577343493700027, -0.053709231317043304, -0.019404007121920586, 0.005166484043002129, -0.11514876782894135, -0.04623071104288101, -0.015849344432353973, 0.030558547005057335, 0.030618419870734215, 0.017761195078492165, 0.07966621965169907, -0.06373996287584305, -0.0636221319437027, 0.058287519961595535, -0.14129488170146942, -0.0029753069393336773, 0.013710393570363522, -0.045438822358846664, 0.10350847989320755, 0.14442230761051178, -0.017516661435365677, -0.04222194477915764, 0.09048771858215332, -0.0886639952659607, -0.056418344378471375, -0.06841279566287994, -0.1251322627067566, 0.029820112511515617, -0.03245348483324051, -0.02857164479792118, -0.13802902400493622, -0.1122749075293541, -0.006789065431803465, 0.052269063889980316, 0.007191245909780264, 0.09097357839345932, 0.020302999764680862, 0.024341875687241554, 0.025024665519595146, -0.02582167461514473, -0.04221434146165848, -0.022465871647000313, 0.06910497695207596, 0.016380328685045242, 0.04536404088139534, -0.024629896506667137, 0.06232156604528427, -0.09373584389686584, 0.0054937745444476604, -0.16603003442287445, 0.084175243973732, -0.15258917212486267, 0.01929367147386074, -0.13560841977596283, -0.010066589340567589, 0.00017551879864186049, 0.042277511209249496, 0.06421537697315216, 0.10959702730178833, -0.13118216395378113, -0.06024333834648132, 0.04603772610425949, -0.18049930036067963, -0.1230507642030716, 0.08019957691431046, -0.008643293753266335, 0.12628068029880524, 0.06637684255838394, 0.1047249361872673, 0.12061171233654022, -0.08771257847547531, -0.1203186884522438, 0.0520450733602047, -0.05931328982114792, -0.004651241470128298, 0.04337695986032486, 0.023200059309601784, -0.1014525517821312, 0.02771957963705063, -0.11027049273252487, -0.02193433977663517, -0.02331330068409443, -0.04456440731883049, -0.03665678948163986, -0.02406213991343975, 0.08990475535392761, 0.033614277839660645, -0.01742861233651638, 0.039562661200761795, -0.12801788747310638, 0.210990771651268, 0.06403232365846634, -0.07096703350543976, 0.03148745000362396, -0.11984577029943466, 0.1091010794043541, -0.08820448070764542, 0.0031347901094704866, -0.19902275502681732, -0.05917254090309143, 0.014827295206487179, -0.035419952124357224, 0.060383398085832596, 0.049993522465229034, 0.038077015429735184, 0.020262785255908966, 0.029753414914011955, 0.013536695390939713, -0.04678666219115257, 0.022889774292707443, -0.04884205758571625, -0.10796651244163513, -0.06191746145486832, -0.04598619043827057, 0.056123413145542145, -0.20727771520614624, 0.05921412259340286, 0.10948354005813599, 0.07045571506023407, 0.029480911791324615, -0.046296700835227966, -0.015727732330560684, -0.020905980840325356, -0.04623708873987198, -0.02282719872891903, 0.033339787274599075, 0.007214446552097797, -0.08891402930021286, 0.0024740067310631275, -0.10811932384967804, -0.01614721491932869, 0.06576966494321823, -0.02040874771773815, -0.05513370409607887, -0.03149407356977463, -0.018038131296634674, -0.02536240965127945, -0.02953903004527092, -0.09668081253767014, 0.21536800265312195, 0.05804470553994179, 0.05974404141306877, -0.04274112731218338, -0.008173748850822449, 0.005477128084748983, -0.017879854887723923, -0.019423997029662132, 0.02629930153489113, 0.018771901726722717, -0.11810123920440674, 0.05886705592274666, 0.1581634134054184, -0.022474009543657303, 0.10979683697223663, -0.014158410020172596, -0.10499802231788635, -0.00873903464525938, -0.030519092455506325, 0.04567614942789078, 0.05205153673887253, -0.11661693453788757, 0.011589151807129383, 0.06591147184371948, -0.004873756319284439, -0.003567479318007827, -0.07002056390047073, 0.0371246375143528, 0.07821941375732422, -0.0019139705691486597, -0.018769707530736923, -0.018140574917197227, -0.024755306541919708, 0.060169655829668045, 0.031209895387291908, 0.10084839165210724, 0.013357059098780155, -0.02947382815182209, -0.09266530722379684, 0.1838127225637436, -0.07668378949165344, -0.23127682507038116, -0.22978739440441132, -0.07560484111309052, -0.04728193208575249, 0.01702273264527321, 0.026256851851940155, -0.0841565728187561, -0.08850601315498352, -0.07787071168422699, 0.12202485650777817, -0.021334853023290634, 0.012353533878922462, 0.014040758833289146, -0.053558818995952606, 0.061536017805337906, -0.15996360778808594, 0.02208329550921917, 0.018037425354123116, -0.0792044997215271, -0.02379419095814228, 0.03471989557147026, 0.0935499295592308, 0.15252023935317993, -0.028139594942331314, -0.005276596639305353, 0.01497997622936964, 0.10097017139196396, -0.07915183901786804, 0.03773330897092819, 0.1464231014251709, -0.15325550734996796, 0.03512188792228699, 0.08021365106105804, 0.04398587346076965, -0.04798901453614235, 0.04950950667262077, 0.04050169140100479, -0.0570337250828743, -0.280261754989624, -0.034858591854572296, 0.0038890226278454065, 0.017354656010866165, 0.07156472653150558, 0.04160632565617561, 0.04408872872591019, 0.06802073866128922, 0.023187581449747086, -0.021170808002352715, -0.01594836823642254, 0.07183162122964859, 0.20504096150398254, -0.022492045536637306, 0.10505464673042297, -0.08538539707660675, 0.015880558639764786, 0.09610892832279205, -0.0301835797727108, 0.13186323642730713, -0.024800850078463554, 0.11321613192558289, 0.07251475006341934, -0.057922717183828354, 0.046190522611141205, 0.12802989780902863, -0.03543281555175781, -0.006539493799209595, -0.004407405853271484, -0.07507125288248062, -0.08778997510671616, 0.05028422921895981, -0.03412555530667305, 0.039304446429014206, -0.048851750791072845, -0.030301162973046303, 0.04752926528453827, 0.12896683812141418, 0.048253633081912994, -0.2145337164402008, -0.1417388916015625, -0.0003473309916444123, -0.028107110410928726, -0.07342612743377686, -0.0040931422263383865, 0.0942520722746849, -0.06798718869686127, 0.03722859174013138, -0.040629271417856216, 0.07827113568782806, -0.15710531175136566, -0.0021277074702084064, 0.0445246696472168, 0.09747976809740067, -0.04026041924953461, 0.09757924824953079, -0.17348556220531464, 0.08857614547014236, 0.03793920949101448, 0.03617410734295845, -0.05385209247469902, 0.03372734785079956, 0.005389837548136711, 0.13220623135566711, 0.08958597481250763, -0.010640891268849373, 0.03490954264998436, -0.1407407522201538, -0.07904190570116043, 0.019709698855876923, 0.06388448178768158, -0.08387777209281921, 0.0458797812461853, -0.03833601623773575, 0.04887920990586281, 0.028714589774608612, 0.042092420160770416, -0.11954360455274582, -0.17813315987586975, 0.07435305416584015, 0.004579529166221619, 0.07421895116567612, -0.06180831044912338, -0.10762260109186172, 0.026539837941527367, 0.24324196577072144, -0.16941936314105988, -0.05894947052001953, -0.15013396739959717, 0.036391980946063995, 0.054999787360429764, -0.0595209114253521, 0.011791802942752838, -0.01524148415774107, 0.12318728119134903, 0.0012647646944969893, -0.0838547796010971, 0.05781900882720947, -0.05954921245574951, -0.06401760876178741, -0.0625234991312027, 0.013604795560240746, 0.10477443039417267, 0.01876053959131241, -0.01363966055214405, -0.016825173050165176, 0.03477516770362854, -0.09533783793449402, -0.014655493199825287, 0.13391248881816864, -0.028353260830044746, 0.06871785968542099, -0.0850527361035347, 0.02728305198252201, -0.06752540916204453, 0.008834272623062134, 0.1446114331483841, 0.11649905890226364, -0.05840276926755905, 0.05948922410607338, 0.18823596835136414, -0.11448585242033005, -0.27693915367126465, 0.02357294224202633, 0.028566163033246994, 0.007403787225484848, 0.045498233288526535, -0.22023019194602966, 0.18347910046577454, 0.077850341796875, -0.006245505064725876, 0.05402076989412308, -0.15574151277542114, -0.08724451065063477, 0.15415224432945251, 0.09826437383890152, 0.031691353768110275, -0.1182176023721695, -0.07831791788339615, -0.0033292716834694147, -0.12750141322612762, 0.13216696679592133, -0.05848749727010727, 0.052813705056905746, -0.014637237414717674, 0.017696036025881767, 0.0488930344581604, -0.030899638310074806, 0.09965716302394867, 0.01747656986117363, 0.037336114794015884, -0.09340124577283859, 0.013993244618177414, 0.0798507109284401, -0.05418454483151436, 0.09512116014957428, -0.01561152283102274, 0.0445198118686676, -0.10824934393167496, -0.060793571174144745, 0.0028653715271502733, 0.10700330138206482, -0.025906892493367195, -0.07504935562610626, -0.06519769132137299, 0.03285066783428192, -0.009001418948173523, -0.030641527846455574, 0.10265262424945831, -0.07455094903707504, 0.05994708091020584, 0.14524579048156738, 0.15749818086624146, 0.001160656800493598, -0.08862636238336563, 0.00469160545617342, -0.010566526092588902, 0.11008703708648682, -0.15340645611286163, 0.06562729179859161, 0.11782407015562057, 0.04012781009078026, 0.122714102268219, 0.050328709185123444, -0.1351802796125412, -0.022731797769665718, 0.06194019690155983, -0.11091303825378418, -0.07544969767332077, -0.014504678547382355, 0.0734998881816864, -0.1695529818534851, 0.04378349706530571, 0.16237661242485046, -0.05080300569534302, 0.027748648077249527, 0.038107406347990036, 0.0016628627199679613, -0.03937919810414314, 0.08556461334228516, 0.09479182958602905, 0.048469528555870056, -0.02020714432001114, 0.10623502731323242, 0.10356348752975464, -0.10062789171934128, 0.03331146389245987, -0.06287916004657745, -0.0805736631155014, -0.05883412063121796, -0.08096233010292053, 0.06229986622929573, -0.039301548153162, -0.08777014166116714, 0.0054928925819695, -0.0665830448269844, 0.020740030333399773, 0.15870238840579987, 0.04558664187788963, 0.01922586001455784, -0.07424349337816238, 0.03682880103588104, -0.08028544485569, 0.08039665967226028, -0.04756663367152214, 0.0708458349108696, -0.11030793190002441, 0.005162231158465147, 0.021608227863907814, 0.03406339883804321, -0.04514604061841965, -0.06617593765258789, -0.10844946652650833, -0.01762756146490574, -0.09192723035812378, -0.027779288589954376, -0.028596822172403336, -0.02517695724964142, 0.02525019273161888, -0.08177893608808517, -0.026339035481214523, 0.01795453205704689, -0.018508650362491608, 0.003868244821205735, 0.04820336773991585, 0.08199545741081238, -0.19608013331890106, -0.02899853140115738, 0.06770803034305573, -0.06667326390743256, 0.08433979004621506, 0.03531860187649727, -0.021208057180047035, 0.04143469035625458, -0.13612203299999237, 0.024569837376475334, 0.006416613701730967, 0.0603349544107914, 0.009532916359603405, -0.08392186462879181, 0.013836478814482689, -0.022531261667609215, -0.013450456783175468, -0.0026485673151910305, 0.1792898029088974, -0.04957900196313858, 0.036596160382032394, 0.01254107616841793, 0.0045264228247106075, -0.06449168920516968, 0.06278317421674728, 0.09018929302692413, 0.12103873491287231, 0.13841311633586884, -0.06209838390350342, 0.05207393318414688, -0.08934033662080765, 0.018288765102624893, 0.032975662499666214, -0.026962265372276306, 0.12269439548254013, -0.11492209881544113, -0.0031293206848204136, -0.055077314376831055, 0.1640329509973526, -0.037221502512693405, 0.06121489405632019, 0.056917332112789154, -0.057276271283626556, -0.07517758756875992, -0.02075636200606823, 0.16397066414356232, 0.05076127499341965, 0.03015313297510147, 0.027031295001506805, 0.019351990893483162, -0.006915102247148752, 0.05807052180171013, 0.14379547536373138, 0.1386326402425766, -0.12008505314588547, 0.05502905696630478, 0.02927832491695881, -0.01693917252123356, -0.13796254992485046, -0.044815242290496826, -0.05164821445941925, 0.0856838971376419, -0.020153844729065895, 0.16647911071777344, 0.07259238511323929, -0.02800425887107849, 0.06928221136331558, -0.000336058292305097, -0.0824468657374382, -0.10825184732675552, -0.11797411739826202, -0.009746665135025978, -0.1101972907781601, -0.016441570594906807, -0.08039524406194687, 0.018087852746248245, 0.0965133011341095, 0.021614018827676773, 0.0009030671790242195, 0.22114335000514984, -0.07827656716108322, -0.011163970455527306, 0.04957851022481918, -0.04190019518136978, -0.045856982469558716, -0.1071920320391655, 0.04998159036040306, 0.030110130086541176, 0.1203242614865303, 0.04427983984351158, 0.05394956097006798, 0.03909113258123398, 0.042382556945085526, -0.008699090220034122, -0.11605993658304214, -0.039380744099617004, 0.01742495223879814, -0.06635591387748718, 0.04706853628158569, 0.03384533151984215, -0.018876060843467712, -0.01990365982055664, 0.15937106311321259, -0.057703979313373566, -0.036535318940877914, -0.11811850965023041, 0.17698542773723602, -0.007520773913711309, 0.03978564217686653, -0.03148332238197327, -0.11677737534046173, -0.05740176886320114, 0.16746486723423004, 0.0505853071808815, -0.017248541116714478, 0.03624218329787254, 0.03948754072189331, 0.02128780633211136, 0.006700045894831419, 0.08402375131845474, 0.00296014198102057, 0.12351557612419128, 0.009621929377317429, -0.015672747045755386, -0.04740374907851219, -0.03808515891432762, 0.040535613894462585, 0.1134803369641304, -0.008282739669084549, -0.01717829890549183, -0.08510985970497131, 0.05916281044483185, -0.054168760776519775, -0.28378674387931824, 0.00917255599051714, -0.03168202564120293, -0.07253432273864746, -0.04710101708769798, 0.05921052396297455, -0.0547371543943882, 0.008848784491419792, 0.003069454338401556, -0.03896432742476463, 0.16599877178668976, 0.04353221505880356, -0.0754350870847702, -0.016262048855423927, 0.08867500722408295, -0.05728769302368164, 0.19367678463459015, 0.0024860037956386805, 0.041125573217868805, 0.0737999901175499, 0.0467676967382431, -0.08843129873275757, 0.0025251253973692656, 0.02472633682191372, -0.07838909327983856, -0.012936963699758053, 0.062150198966264725, -0.012899142690002918, 0.10920464992523193, 0.06388010084629059, -0.18245020508766174, 0.03219947963953018, -0.020704306662082672, -0.0841769203543663, -0.07271288335323334, -0.03305419161915779, -0.07561008632183075, 0.14397189021110535, 0.14374764263629913, 0.005796131677925587, -0.07091618329286575, -0.09104844927787781, 0.026465287432074547, -0.0050028227269649506, 0.10290682315826416, -0.008157757110893726, -0.10731728374958038, -0.018871281296014786, -0.05308617278933525, 0.06101103127002716, -0.2942694425582886, -0.03773559629917145, 0.06848733127117157, -0.03868759423494339, 0.007618900388479233, 0.06077442690730095, 0.09256835281848907, 0.048542775213718414, -0.05368317663669586, -0.0777660384774208, 0.009659383445978165, 0.11944098025560379, -0.16102975606918335, -0.041939038783311844 ]
null
null
adapter-transformers
# Adapter `AdapterHub/bert-base-uncased-pf-sick` for bert-base-uncased An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [nli/sick](https://adapterhub.ml/explore/nli/sick/) dataset and includes a prediction head for classification. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("bert-base-uncased") adapter_name = model.load_adapter("AdapterHub/bert-base-uncased-pf-sick", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
{"language": ["en"], "tags": ["text-classification", "adapter-transformers", "bert", "adapterhub:nli/sick"], "datasets": ["sick"]}
text-classification
AdapterHub/bert-base-uncased-pf-sick
[ "adapter-transformers", "bert", "text-classification", "adapterhub:nli/sick", "en", "dataset:sick", "arxiv:2104.08247", "region:us" ]
2022-03-02T23:29:04+00:00
[ "2104.08247" ]
[ "en" ]
TAGS #adapter-transformers #bert #text-classification #adapterhub-nli/sick #en #dataset-sick #arxiv-2104.08247 #region-us
# Adapter 'AdapterHub/bert-base-uncased-pf-sick' for bert-base-uncased An adapter for the 'bert-base-uncased' model that was trained on the nli/sick dataset and includes a prediction head for classification. This adapter was created for usage with the adapter-transformers library. ## Usage First, install 'adapter-transformers': _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_ Now, the adapter can be loaded and activated like this: ## Architecture & Training The training code for this adapter is available at URL In particular, training configurations for all tasks can be found here. ## Evaluation results Refer to the paper for more information on results. If you use this adapter, please cite our paper "What to Pre-Train on? Efficient Intermediate Task Selection":
[ "# Adapter 'AdapterHub/bert-base-uncased-pf-sick' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the nli/sick dataset and includes a prediction head for classification.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ "TAGS\n#adapter-transformers #bert #text-classification #adapterhub-nli/sick #en #dataset-sick #arxiv-2104.08247 #region-us \n", "# Adapter 'AdapterHub/bert-base-uncased-pf-sick' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the nli/sick dataset and includes a prediction head for classification.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ 43, 83, 57, 30, 45 ]
[ "passage: TAGS\n#adapter-transformers #bert #text-classification #adapterhub-nli/sick #en #dataset-sick #arxiv-2104.08247 #region-us \n# Adapter 'AdapterHub/bert-base-uncased-pf-sick' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the nli/sick dataset and includes a prediction head for classification.\n\nThis adapter was created for usage with the adapter-transformers library.## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ -0.059863124042749405, 0.04498805105686188, -0.0030083300080150366, 0.03957868739962578, 0.18030190467834473, 0.013027384877204895, 0.1386716067790985, 0.07887903600931168, 0.07233333587646484, 0.05712994560599327, 0.023047545924782753, 0.11928104609251022, 0.03693542629480362, 0.03862979635596275, 0.019413750618696213, -0.11138305068016052, 0.018201440572738647, 0.02807087078690529, -0.03619716316461563, 0.09821083396673203, 0.09584704786539078, -0.07765930145978928, 0.08229304850101471, 0.047188207507133484, -0.07616966962814331, 0.04125076159834862, -0.003252738853916526, -0.0806073322892189, 0.09053207188844681, 0.0765419602394104, 0.16390322148799896, 0.019090767949819565, -0.005413592327386141, -0.17302896082401276, 0.014498652890324593, 0.09146593511104584, 0.034795090556144714, 0.07450210303068161, -0.011801754124462605, 0.0070969355292618275, 0.016338758170604706, -0.059652458876371384, 0.06689786911010742, 0.05845700204372406, -0.07029840350151062, -0.2521408796310425, -0.027944184839725494, 0.12165874242782593, 0.0201500803232193, 0.08402089774608612, -0.010273651219904423, 0.10382591187953949, 0.035572558641433716, 0.05754857510328293, 0.1977699100971222, -0.22893014550209045, -0.0010339022846892476, -0.01116964966058731, 0.04121727868914604, 0.03394709527492523, -0.0397406667470932, 0.017585303634405136, 0.0200238898396492, 0.011435979045927525, 0.009007256478071213, -0.004981663543730974, -0.013393056578934193, 0.018665935844182968, -0.15841515362262726, -0.009905172511935234, 0.22572258114814758, -0.0024398714303970337, -0.08295809477567673, -0.0613858699798584, -0.03720693290233612, 0.06977452337741852, 0.036042049527168274, -0.11064357310533524, -0.00911658350378275, -0.0007311274530366063, 0.009269858710467815, -0.07489609718322754, -0.1044490784406662, -0.046510644257068634, -0.07894425839185715, 0.26636794209480286, -0.01327207125723362, 0.028612064197659492, 0.005972977727651596, 0.10615666210651398, -0.008745229803025723, -0.09097444266080856, -0.0652490183711052, -0.05387831851840019, -0.0831059068441391, -0.05580323562026024, -0.031247379258275032, -0.26940879225730896, -0.011210903525352478, 0.10179539769887924, 0.08592047542333603, 0.01899762637913227, -0.09193812310695648, 0.05056104436516762, 0.06146727502346039, 0.15982338786125183, -0.07946416735649109, 0.04516255483031273, -0.03903999552130699, -0.001100019202567637, 0.004304329864680767, -0.1049068421125412, -0.052996814250946045, -0.011350658722221851, 0.06799939274787903, 0.04234740138053894, 0.015986809507012367, 0.08478442579507828, -0.07202176749706268, -0.06477431952953339, 0.07677088677883148, -0.11970672756433487, -0.00011578472185647115, 0.020974697545170784, -0.050104398280382156, 0.09240785986185074, 0.15703724324703217, -0.023941727355122566, -0.04620814695954323, 0.099173404276371, -0.07308477908372879, -0.0756872221827507, -0.0707901194691658, -0.13790373504161835, 0.03595535829663277, -0.018015429377555847, -0.016137683764100075, -0.1359443962574005, -0.09906288981437683, 0.003538506804034114, 0.04967408627271652, 0.012376191094517708, 0.08192998915910721, 0.023747717961668968, 0.01765972375869751, 0.02287297509610653, -0.019747231155633926, -0.03796619921922684, -0.02666543424129486, 0.07547294348478317, 0.005619681440293789, 0.04459778964519501, -0.0261079091578722, 0.06363774091005325, -0.07601596415042877, 0.003924145363271236, -0.1734449863433838, 0.07755300402641296, -0.15301614999771118, -0.0008716414449736476, -0.138752281665802, -0.01849360018968582, 0.00204511359333992, 0.0320282019674778, 0.08232402801513672, 0.09326311945915222, -0.10760708898305893, -0.06573346257209778, 0.01135494839400053, -0.16559739410877228, -0.12933775782585144, 0.07882224768400192, -0.008282245136797428, 0.1334441751241684, 0.06182227283716202, 0.08705967664718628, 0.11330779641866684, -0.08821069449186325, -0.1437361240386963, 0.04744449257850647, -0.08611031621694565, -0.010675846599042416, 0.026381690055131912, 0.025120636448264122, -0.12820427119731903, 0.013952257111668587, -0.082984559237957, 0.0022821230813860893, -0.03133620321750641, -0.04048814997076988, -0.04126088693737984, -0.03118881769478321, 0.09948360174894333, 0.02541891112923622, -0.016782132908701897, 0.0371067188680172, -0.14211584627628326, 0.2086721509695053, 0.07264991104602814, -0.06229433789849281, 0.03108026087284088, -0.1206403449177742, 0.10821038484573364, -0.08840429037809372, 0.009358642622828484, -0.195093035697937, -0.057846516370773315, 0.011662974022328854, -0.05080754682421684, 0.03412395715713501, 0.04007129743695259, 0.05167319253087044, 0.025352558121085167, 0.013455302454531193, 0.0015472027007490396, -0.04704038053750992, 0.03124893084168434, -0.05762064456939697, -0.14400118589401245, -0.044970158487558365, -0.04597839340567589, 0.01858534663915634, -0.19220960140228271, 0.05118753761053085, 0.09852805733680725, 0.06916943192481995, 0.021261371672153473, -0.03970875218510628, -0.007634477689862251, -0.022175626829266548, -0.044643864035606384, -0.021904749795794487, 0.03802386298775673, 0.0001148240189650096, -0.10218719393014908, 0.016619546338915825, -0.12373162060976028, -0.02926548384130001, 0.07255677878856659, -0.022435933351516724, -0.05845695361495018, -0.0027929318603128195, -0.015483780764043331, -0.03298892453312874, -0.010487507097423077, -0.0952482745051384, 0.21377721428871155, 0.055983878672122955, 0.05718157812952995, -0.03750711679458618, -0.007351133972406387, 0.004828994162380695, -0.00930132158100605, -0.0343005433678627, 0.03414582088589668, 0.007682370953261852, -0.11899475753307343, 0.04922536388039589, 0.15707354247570038, -0.04598190635442734, 0.11982055753469467, 0.001887245918624103, -0.0959349200129509, -0.015197120606899261, -0.025468362495303154, 0.05699695646762848, 0.06143366917967796, -0.15287160873413086, 0.0357276014983654, 0.06994704902172089, -0.013047714717686176, 0.0072975498624145985, -0.05872997269034386, 0.03486666828393936, 0.06967292726039886, 0.0003780512197408825, -0.013876862823963165, -0.0071691484190523624, -0.017594443634152412, 0.06642008572816849, 0.03922379016876221, 0.10383567214012146, 0.03137510269880295, -0.01931900903582573, -0.09888891875743866, 0.17448276281356812, -0.08927294611930847, -0.24840986728668213, -0.2250921130180359, -0.09642504155635834, -0.040936004370450974, 0.009823036380112171, 0.03731653466820717, -0.11297610402107239, -0.09217580407857895, -0.069256991147995, 0.14068621397018433, -0.03191084787249565, 0.010249442420899868, 0.03830331936478615, -0.051496390253305435, 0.08246072381734848, -0.16715553402900696, 0.033820874989032745, 0.013760842382907867, -0.05667627230286598, -0.01465470902621746, 0.02896841987967491, 0.07661517709493637, 0.15964969992637634, -0.013058596290647984, -0.00920911505818367, 0.0061218952760100365, 0.10797679424285889, -0.07796818017959595, 0.03850254416465759, 0.14081183075904846, -0.15246857702732086, 0.03802331164479256, 0.05175091326236725, 0.04550711065530777, -0.04021945595741272, 0.05298899486660957, 0.05588603392243385, -0.04473204165697098, -0.2736060619354248, -0.03296509012579918, 0.009536289609968662, 0.01000641193240881, 0.057343680411577225, 0.049205321818590164, 0.05984508618712425, 0.058955397456884384, 0.025071827694773674, -0.015980001538991928, -0.028367336839437485, 0.0740179643034935, 0.2016090601682663, -0.027416042983531952, 0.09636931121349335, -0.07025561481714249, 0.013869568705558777, 0.11078948527574539, -0.044892895966768265, 0.1256011426448822, -0.028848690912127495, 0.09423317760229111, 0.08178640902042389, -0.058202777057886124, 0.05578874424099922, 0.1092490404844284, -0.0428466796875, -0.005683427210897207, 0.0020863793324679136, -0.07363772392272949, -0.06918279081583023, 0.039777062833309174, -0.028804173693060875, 0.03824549540877342, -0.04297428950667381, -0.010933896526694298, 0.0431898757815361, 0.10108546912670135, 0.040161341428756714, -0.20248720049858093, -0.13570646941661835, -0.014982822351157665, -0.016144411638379097, -0.08263637125492096, -0.011789744719862938, 0.06890726089477539, -0.057459112256765366, 0.02657376602292061, -0.046609196811914444, 0.07571998983621597, -0.1582592874765396, 0.00364986271597445, 0.021249985322356224, 0.10714744031429291, -0.05688861384987831, 0.09861763566732407, -0.19009505212306976, 0.05255648493766785, 0.03981774300336838, 0.051363255828619, -0.05577007308602333, 0.020053891465067863, 0.025243496522307396, 0.13602086901664734, 0.07077398151159286, -0.013362686149775982, 0.07672929763793945, -0.13761617243289948, -0.08319178968667984, 0.015496707521378994, 0.05242612212896347, -0.04765143617987633, 0.03524404019117355, -0.021816065534949303, 0.05092943087220192, 0.05679858475923538, 0.030636556446552277, -0.1394536793231964, -0.1537550985813141, 0.0814652219414711, 0.01897348463535309, 0.08717118948698044, -0.06594137102365494, -0.11348471790552139, 0.011598712764680386, 0.24569229781627655, -0.1646893173456192, -0.05424413084983826, -0.14752426743507385, 0.04929867386817932, 0.06852635741233826, -0.05967174470424652, 0.009035690687596798, -0.019358597695827484, 0.10192272067070007, -0.010357101447880268, -0.08635330200195312, 0.07054910063743591, -0.06872136890888214, -0.06746729463338852, -0.06473221629858017, 0.004650534596294165, 0.11766747385263443, 0.01959962584078312, -0.022764503955841064, -0.0315636470913887, 0.021778305992484093, -0.0876823142170906, 0.000919373647775501, 0.09958656132221222, -0.037489864975214005, 0.07250243425369263, -0.09703898429870605, 0.027699055150151253, -0.0760122761130333, 0.002189729828387499, 0.14653563499450684, 0.11617325246334076, -0.05134784057736397, 0.048246096819639206, 0.18559859693050385, -0.10421299189329147, -0.2704579532146454, 0.029615679755806923, 0.053233757615089417, -0.0010203639976680279, 0.021921904757618904, -0.22603847086429596, 0.18206679821014404, 0.07186231017112732, -0.008421007543802261, 0.06906749308109283, -0.14441107213497162, -0.08903235197067261, 0.17738348245620728, 0.10264318436384201, 0.06622776389122009, -0.11500727385282516, -0.0724804550409317, 0.007826000452041626, -0.09907639771699905, 0.13330549001693726, -0.06282714754343033, 0.06267860531806946, -0.015397658571600914, 0.007075753062963486, 0.04231050983071327, -0.03624694049358368, 0.08787744492292404, 0.011713591404259205, 0.03919750824570656, -0.08707936108112335, 0.00452572014182806, 0.07762613892555237, -0.06100115552544594, 0.086246557533741, -0.009598220698535442, 0.03522718697786331, -0.13019591569900513, -0.06409668922424316, -0.0045233918353915215, 0.125886932015419, -0.02891492284834385, -0.0802094116806984, -0.05576927587389946, 0.03935077041387558, -0.019908521324396133, -0.03161398321390152, 0.09421635419130325, -0.07125470787286758, 0.04515239968895912, 0.145210862159729, 0.1539372205734253, 0.011442156508564949, -0.09119751304388046, 0.031020816415548325, -0.01939624361693859, 0.12213225662708282, -0.14432880282402039, 0.0629224181175232, 0.09897434711456299, 0.02163100801408291, 0.12344858050346375, 0.04982475936412811, -0.15428194403648376, -0.027001716196537018, 0.07305317372083664, -0.10240800678730011, -0.051329631358385086, -0.027639824897050858, 0.04875212907791138, -0.1647200882434845, 0.02724982239305973, 0.1650499701499939, -0.0401160791516304, 0.040714289993047714, 0.04974369332194328, 0.0027920505963265896, -0.04272342845797539, 0.08792972564697266, 0.09843901544809341, 0.046937182545661926, -0.015376245602965355, 0.09154701977968216, 0.10476937890052795, -0.10111471265554428, 0.059789303690195084, -0.060767121613025665, -0.07381709665060043, -0.06179850548505783, -0.06508494168519974, 0.12349589914083481, -0.04645943269133568, -0.09363739937543869, 0.0018615493318066, -0.0576358437538147, 0.03408222272992134, 0.1669570654630661, 0.03466467559337616, 0.009238600730895996, -0.07184144854545593, 0.03148059919476509, -0.09770755469799042, 0.09353472292423248, -0.03920603543519974, 0.06660960614681244, -0.08436236530542374, -0.0036097473930567503, 0.02871100604534149, 0.035746172070503235, -0.05090070515871048, -0.05652007460594177, -0.1234741359949112, -0.033412862569093704, -0.13532377779483795, -0.035606689751148224, -0.02001667022705078, -0.02153175324201584, 0.019686609506607056, -0.07429423183202744, -0.02085179090499878, 0.029312845319509506, -0.013318577781319618, -0.009762400761246681, 0.06164164841175079, 0.07082950323820114, -0.1864692121744156, -0.03459702432155609, 0.057042788714170456, -0.06395423412322998, 0.09655298292636871, 0.03898812085390091, -0.013964579440653324, 0.03527503460645676, -0.11218417435884476, 0.023982983082532883, 0.00425299908965826, 0.05451417714357376, 0.008096493780612946, -0.09444774687290192, 0.01632649265229702, -0.031619634479284286, -0.01394160371273756, 0.010155926458537579, 0.19134831428527832, -0.050829146057367325, 0.03697265312075615, 0.0028004085179418325, 0.02459246665239334, -0.05402115359902382, 0.06764742732048035, 0.07613907754421234, 0.10783474147319794, 0.14713513851165771, -0.060970477759838104, 0.05359286814928055, -0.0871708020567894, 0.018632343038916588, 0.03143032640218735, -0.02080388367176056, 0.12950758635997772, -0.0896872729063034, 0.005914716981351376, -0.06560035794973373, 0.1624375283718109, -0.05317303538322449, 0.026244426146149635, 0.055967673659324646, -0.03360075503587723, -0.08116547018289566, -0.05098829045891762, 0.15270034968852997, 0.04786015301942825, 0.03737697750329971, 0.012301095761358738, 0.030498512089252472, 0.019585832953453064, 0.029967961832880974, 0.14353039860725403, 0.12347836792469025, -0.1018105149269104, 0.0523967519402504, 0.02550465427339077, -0.03366246819496155, -0.12623286247253418, -0.01433220598846674, -0.06430935859680176, 0.097368523478508, -0.002281402936205268, 0.14379560947418213, 0.07497764378786087, -0.012037483975291252, 0.06582011282444, 0.012207943014800549, -0.08399955928325653, -0.09953548014163971, -0.10573047399520874, -0.008660451509058475, -0.12243158370256424, -0.005549799185246229, -0.08541262894868851, 0.0034347381442785263, 0.07529713213443756, 0.02464878186583519, -0.00462942011654377, 0.22241327166557312, -0.0708606019616127, -0.002144088037312031, 0.05581791326403618, -0.047100696712732315, -0.04432768374681473, -0.103903628885746, 0.04672743380069733, 0.028955290094017982, 0.13027812540531158, 0.0420067124068737, 0.05587010830640793, 0.03250712901353836, 0.04896398261189461, 0.002862627152353525, -0.126005157828331, -0.03820769861340523, 0.03023928962647915, -0.06809503585100174, 0.08842112123966217, 0.028794778510928154, -0.005823864135891199, -0.023908914998173714, 0.1421835869550705, -0.04639056697487831, -0.04452499747276306, -0.10616452246904373, 0.16828244924545288, -0.01870119571685791, 0.022584235295653343, -0.040937390178442, -0.11958906054496765, -0.05732913315296173, 0.18369188904762268, 0.04479150101542473, -0.02685241959989071, 0.0346524715423584, 0.046550482511520386, 0.020434241741895676, 0.016065992414951324, 0.08712443709373474, 0.026409652084112167, 0.09115936607122421, 0.0019055858720093966, -0.022085225209593773, -0.07397708296775818, -0.02129761315882206, 0.036541178822517395, 0.11456365138292313, 0.017594512552022934, -0.03654251620173454, -0.07331033796072006, 0.062079526484012604, -0.06251935660839081, -0.26331618428230286, -0.021085523068904877, -0.021429909393191338, -0.07376851886510849, -0.057223379611968994, 0.07437258958816528, -0.0653214156627655, -0.0003871849621646106, 0.013918145559728146, -0.029071010649204254, 0.15228214859962463, 0.02669255994260311, -0.08638456463813782, -0.008555818349123001, 0.06821820884943008, -0.05673679709434509, 0.17599110305309296, 0.018069351091980934, 0.031069817021489143, 0.08537930995225906, 0.04037654772400856, -0.08264835178852081, 0.02074567601084709, 0.015335003845393658, -0.09717131406068802, -0.013899387791752815, 0.05749789997935295, -0.0039973184466362, 0.11660134792327881, 0.05927780643105507, -0.1711052656173706, 0.02188602276146412, -0.00426373491063714, -0.09010308235883713, -0.06721196323633194, -0.022154593840241432, -0.07491752505302429, 0.1379733383655548, 0.1515878289937973, -0.0009643178782425821, -0.07333502918481827, -0.09389155358076096, 0.026018496602773666, -0.01350355800241232, 0.08845487236976624, -0.010736767202615738, -0.11807550489902496, -0.003488392336294055, -0.05615299940109253, 0.05863981321454048, -0.3142428398132324, -0.039222992956638336, 0.0651697888970375, -0.04178917035460472, 0.0014317609602585435, 0.05610744282603264, 0.07752785831689835, 0.049252357333898544, -0.047825418412685394, -0.027269860729575157, 0.014711776748299599, 0.11043589562177658, -0.17433296144008636, -0.041533637791872025 ]
null
null
adapter-transformers
# Adapter `AdapterHub/bert-base-uncased-pf-snli` for bert-base-uncased An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [snli](https://huggingface.co/datasets/snli/) dataset and includes a prediction head for classification. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("bert-base-uncased") adapter_name = model.load_adapter("AdapterHub/bert-base-uncased-pf-snli", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
{"language": ["en"], "tags": ["text-classification", "bert", "adapter-transformers"], "datasets": ["snli"]}
text-classification
AdapterHub/bert-base-uncased-pf-snli
[ "adapter-transformers", "bert", "text-classification", "en", "dataset:snli", "arxiv:2104.08247", "region:us" ]
2022-03-02T23:29:04+00:00
[ "2104.08247" ]
[ "en" ]
TAGS #adapter-transformers #bert #text-classification #en #dataset-snli #arxiv-2104.08247 #region-us
# Adapter 'AdapterHub/bert-base-uncased-pf-snli' for bert-base-uncased An adapter for the 'bert-base-uncased' model that was trained on the snli dataset and includes a prediction head for classification. This adapter was created for usage with the adapter-transformers library. ## Usage First, install 'adapter-transformers': _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_ Now, the adapter can be loaded and activated like this: ## Architecture & Training The training code for this adapter is available at URL In particular, training configurations for all tasks can be found here. ## Evaluation results Refer to the paper for more information on results. If you use this adapter, please cite our paper "What to Pre-Train on? Efficient Intermediate Task Selection":
[ "# Adapter 'AdapterHub/bert-base-uncased-pf-snli' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the snli dataset and includes a prediction head for classification.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ "TAGS\n#adapter-transformers #bert #text-classification #en #dataset-snli #arxiv-2104.08247 #region-us \n", "# Adapter 'AdapterHub/bert-base-uncased-pf-snli' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the snli dataset and includes a prediction head for classification.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ 35, 82, 57, 30, 45 ]
[ "passage: TAGS\n#adapter-transformers #bert #text-classification #en #dataset-snli #arxiv-2104.08247 #region-us \n# Adapter 'AdapterHub/bert-base-uncased-pf-snli' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the snli dataset and includes a prediction head for classification.\n\nThis adapter was created for usage with the adapter-transformers library.## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ -0.07116951793432236, 0.023081373423337936, -0.0030622438061982393, 0.03799805790185928, 0.1788833886384964, 0.009305101819336414, 0.18817760050296783, 0.03769344836473465, 0.06518907099962234, 0.02292129397392273, 0.030085638165473938, 0.11762137711048126, 0.0546862930059433, 0.0752001628279686, -0.00682260375469923, -0.10515499860048294, 0.03689277917146683, 0.03721954673528671, -0.04413367807865143, 0.08630117774009705, 0.09653020650148392, -0.09820912778377533, 0.09607363492250443, 0.022967880591750145, -0.10341037064790726, 0.055191125720739365, -0.0031701126135885715, -0.08342693746089935, 0.09070330113172531, 0.06154979020357132, 0.16708101332187653, 0.059081677347421646, 0.05545801669359207, -0.12582534551620483, 0.007283968385308981, 0.06354927271604538, 0.05614004656672478, 0.08554397523403168, -0.036653101444244385, 0.05301903188228607, -0.024979878216981888, -0.0028876694850623608, 0.05593624338507652, 0.0507456436753273, -0.0819481760263443, -0.2282094657421112, -0.02544786036014557, 0.09041918814182281, 0.028648775070905685, 0.07231683284044266, 0.006005650386214256, 0.05082377418875694, -0.02074468694627285, 0.046262506395578384, 0.17951224744319916, -0.21819986402988434, -0.0032098100055009127, -0.039077278226614, 0.018831387162208557, 0.05379362404346466, -0.027834217995405197, 0.02741566114127636, -0.004948117770254612, -0.0031877632718533278, 0.04978475719690323, -0.023198610171675682, -0.023561272770166397, 0.008988739922642708, -0.15715953707695007, -0.008303309790790081, 0.23047934472560883, -0.024970244616270065, -0.10849439352750778, -0.047613807022571564, -0.05389149859547615, 0.10620204359292984, 0.028356781229376793, -0.11339536309242249, 0.029147902503609657, 0.008696472272276878, 0.010522575117647648, -0.11476735770702362, -0.09600473940372467, -0.09331758320331573, -0.08983443677425385, 0.2851850986480713, -0.024360880255699158, 0.041438233107328415, 0.006912540644407272, 0.10646399110555649, 0.026959272101521492, -0.11546972393989563, -0.0414484366774559, -0.052060820162296295, -0.09141089022159576, -0.02581007592380047, -0.03593149781227112, -0.27987948060035706, -0.009334880858659744, 0.14472106099128723, 0.09263212978839874, 0.017457397654652596, -0.0679747611284256, 0.05907559022307396, 0.038554929196834564, 0.15559083223342896, -0.0838811919093132, 0.05023229867219925, -0.04854283854365349, -0.0037104985676705837, -0.011530512012541294, -0.11320105195045471, -0.09858293831348419, -0.0453648716211319, 0.017801012843847275, 0.017285190522670746, 0.036801088601350784, 0.10012339055538177, -0.024561727419495583, -0.05524357035756111, 0.06837572157382965, -0.14504311978816986, -0.009551657363772392, -0.006439048331230879, -0.06141850724816322, 0.09940284490585327, 0.12290763854980469, -0.02054598368704319, -0.04203179478645325, 0.08186165243387222, -0.07413423806428909, -0.05091360956430435, -0.09183621406555176, -0.11797664314508438, 0.02097010239958763, -0.08036178350448608, -0.013545882888138294, -0.1368531733751297, -0.13856090605258942, 0.001347928075119853, 0.06952721625566483, 0.005239441059529781, 0.1114266887307167, 0.019986426457762718, 0.04695384204387665, 0.03712230548262596, -0.06573767215013504, -0.017994102090597153, -0.01178029365837574, 0.07179856300354004, 0.023822935298085213, 0.043952807784080505, -0.06812278926372528, 0.05814783275127411, -0.10120007395744324, 0.0028348674532026052, -0.15760602056980133, 0.09334632009267807, -0.14043712615966797, 0.012126796878874302, -0.10913547873497009, 0.013784356415271759, 0.004237361717969179, 0.04517915099859238, 0.08379856497049332, 0.11619050800800323, -0.1128792092204094, -0.04771299660205841, 0.04363297298550606, -0.2029258906841278, -0.1174071729183197, 0.07020071148872375, -0.00710512837395072, 0.06528779864311218, 0.07041764259338379, 0.12966465950012207, 0.10777661204338074, -0.0451706126332283, -0.09364314377307892, 0.07687786221504211, -0.04486342892050743, -0.029168859124183655, 0.057278331369161606, 0.026265360414981842, -0.14906838536262512, 0.02618071623146534, -0.15003246068954468, 0.009087508544325829, -0.02537320740520954, -0.051181383430957794, -0.029251737520098686, -0.046050574630498886, 0.11974451690912247, 0.05016733705997467, 0.007920002564787865, 0.05815187469124794, -0.1418912410736084, 0.23335015773773193, 0.052864477038383484, -0.07573337852954865, 0.0319092683494091, -0.10572480410337448, 0.11667604744434357, -0.10685525834560394, 0.006885698065161705, -0.19884087145328522, -0.024377020075917244, -0.0016705625457689166, 0.02263985201716423, 0.056771207600831985, 0.021274611353874207, 0.056744351983070374, 0.024885084480047226, -0.00223641749471426, -0.012222913093864918, -0.030192648991942406, 0.036041099578142166, -0.03429180756211281, -0.10984554886817932, -0.09519488364458084, -0.029014844447374344, -0.01338949240744114, -0.19111312925815582, 0.05845870450139046, 0.0764128565788269, 0.06898944824934006, 0.015043416991829872, -0.04262704402208328, -0.038607098162174225, -0.011186938732862473, -0.04416268318891525, -0.02099297195672989, 0.037999581545591354, 0.005764763802289963, -0.08181828260421753, 0.011530037969350815, -0.08337938785552979, 0.03515546768903732, 0.05901791900396347, -0.06673985719680786, -0.06947759538888931, -0.02885119989514351, 0.015482728369534016, -0.020410709083080292, -0.0033721632789820433, -0.10624712705612183, 0.18800421059131622, 0.03599017858505249, 0.054247818887233734, -0.03506471961736679, 0.018970083445310593, -0.00817661639302969, -0.03258924558758736, 0.03192330151796341, -0.004212992265820503, 0.005425850860774517, -0.1138378381729126, 0.08349224925041199, 0.13923731446266174, -0.05606973543763161, 0.09867743402719498, -0.04528762400150299, -0.11511033028364182, -0.014975626021623611, -0.06004486605525017, 0.022894367575645447, 0.08310933411121368, -0.14192268252372742, 0.0008161433506757021, 0.06118939816951752, 0.011475836858153343, -0.0013746066251769662, -0.05109941586852074, 0.04547687992453575, 0.08470866084098816, 0.0012516495771706104, -0.05735267326235771, -0.044527940452098846, -0.03069080226123333, 0.0671173706650734, 0.053039275109767914, 0.10402530431747437, 0.027399202808737755, -0.03326904773712158, -0.082656130194664, 0.19174417853355408, -0.06203485652804375, -0.19857674837112427, -0.20387350022792816, -0.12000051140785217, -0.015522563830018044, 0.05397174134850502, 0.017441710457205772, -0.09814530611038208, -0.0717116966843605, -0.043637800961732864, 0.15066975355148315, -0.015142770484089851, 0.021538145840168, 0.015004383400082588, -0.06641343981027603, 0.07778601348400116, -0.13791239261627197, 0.038465164601802826, 0.01585850492119789, -0.08077478408813477, -0.03442491963505745, 0.04001983255147934, 0.08474411815404892, 0.15140052139759064, -0.03652207925915718, -0.0035363342612981796, 0.0170795489102602, 0.08378423005342484, -0.06614121049642563, 0.03953459858894348, 0.1287904679775238, -0.16180172562599182, 0.024479970335960388, 0.08540484309196472, 0.0649331659078598, -0.02575615793466568, 0.026291269809007645, -0.0067161316983401775, -0.058320552110672, -0.2625759243965149, -0.01509271189570427, 0.011512648314237595, -0.003826136700809002, 0.06671681255102158, 0.009383725933730602, 0.017239490523934364, 0.11346963793039322, 0.05030648037791252, 0.00418315501883626, -0.021825075149536133, 0.03857035934925079, 0.20682449638843536, -0.012740672565996647, 0.11504026502370834, -0.0766802579164505, 0.024003004655241966, 0.09259700030088425, -0.05478000268340111, 0.12545248866081238, -0.037649739533662796, 0.11753107607364655, 0.08146212995052338, -0.04128222167491913, 0.03273804113268852, 0.15388529002666473, -0.043519359081983566, -0.004850537516176701, 0.014744793064892292, -0.06227242201566696, -0.08327841758728027, 0.0017255584243685007, -0.05859631672501564, 0.036098722368478775, -0.06964223086833954, -0.03174079954624176, 0.04492924362421036, 0.09869486838579178, 0.039260268211364746, -0.24524271488189697, -0.10998107492923737, -0.012550904415547848, -0.015678130090236664, -0.07796341180801392, 0.00007612735498696566, 0.0992785394191742, -0.04896722733974457, 0.02173531986773014, -0.020744917914271355, 0.07429443299770355, -0.1512976437807083, -0.010311486199498177, 0.04209446907043457, 0.10362543165683746, -0.029319092631340027, 0.09537886083126068, -0.18541757762432098, 0.10665616393089294, 0.031200692057609558, 0.021701740100979805, -0.03613082319498062, 0.04847687855362892, 0.025234276428818703, 0.168194979429245, 0.07662802934646606, -0.01443585753440857, 0.014392746612429619, -0.15223418176174164, -0.0786985456943512, 0.009707574732601643, 0.05585933476686478, -0.103132463991642, 0.05050912871956825, -0.016879431903362274, 0.05683012679219246, 0.03716852143406868, 0.05445123091340065, -0.1494881510734558, -0.1872098296880722, 0.06777995824813843, 0.012994618155062199, 0.10147035866975784, -0.06743380427360535, -0.11278705298900604, 0.03392401337623596, 0.21414650976657867, -0.13633355498313904, -0.06185194104909897, -0.17094045877456665, 0.038289304822683334, 0.055233683437108994, -0.05920892208814621, 0.03188729286193848, 0.010228470899164677, 0.10574410855770111, 0.011748571880161762, -0.10480047762393951, 0.08863227069377899, -0.055469512939453125, -0.04529433697462082, -0.05837346240878105, -0.00261591374874115, 0.1307692974805832, 0.023493895307183266, 0.0036792501341551542, -0.012971548363566399, 0.04633883386850357, -0.08445169776678085, -0.02243577130138874, 0.0670032873749733, 0.015452707186341286, 0.0640263631939888, -0.06850775331258774, 0.025088060647249222, -0.04398227110505104, 0.023812677711248398, 0.163889542222023, 0.0772051140666008, -0.07287279516458511, 0.04862125217914581, 0.17133039236068726, -0.10932162404060364, -0.29344797134399414, 0.02979995310306549, 0.03754816949367523, -0.005788515787571669, 0.05385894700884819, -0.2625652551651001, 0.17216555774211884, 0.05486660823225975, -0.015691300854086876, 0.009527509100735188, -0.11221648752689362, -0.0827169343829155, 0.20565348863601685, 0.10004844516515732, 0.060057833790779114, -0.11735489219427109, -0.08092072606086731, -0.013482943177223206, -0.0853673666715622, 0.13097895681858063, -0.03240859881043434, 0.03158503770828247, 0.004068377427756786, 0.026903172954916954, 0.047006022185087204, -0.026309721171855927, 0.09416564553976059, 0.002649923786520958, 0.03434433043003082, -0.10519525408744812, 0.004048058297485113, 0.0335061252117157, -0.05325978621840477, 0.08696457743644714, -0.00012132921256124973, 0.05125638097524643, -0.10766299813985825, -0.07124029844999313, 0.008676264435052872, 0.09260588884353638, -0.010706828907132149, -0.08145289868116379, -0.05161092430353165, 0.02067629061639309, -0.021552959457039833, -0.029990172013640404, 0.10905797779560089, -0.09137146174907684, 0.0370996855199337, 0.1784350574016571, 0.17807455360889435, -0.02355564944446087, -0.04755307734012604, 0.021346228197216988, -0.019293174147605896, 0.11659946292638779, -0.1556263566017151, 0.07623638957738876, 0.0889953076839447, 0.021618541330099106, 0.09741953015327454, 0.07159259170293808, -0.09574242681264877, -0.03544358164072037, 0.06649274379014969, -0.08654927462339401, -0.049094852060079575, -0.02704770117998123, 0.05646682530641556, -0.17325489223003387, 0.04685657098889351, 0.11986569315195084, -0.05663781613111496, 0.027596814557909966, 0.05092797428369522, -0.0035399841144680977, -0.05338733643293381, 0.10353446006774902, 0.1026354432106018, 0.06385202705860138, -0.03466968983411789, 0.12561914324760437, 0.1059964969754219, -0.08652263134717941, 0.03202076256275177, -0.07023555040359497, -0.08522560447454453, -0.0594283789396286, -0.08358147740364075, 0.07644300162792206, -0.011735396459698677, -0.10225922614336014, -0.004901290405541658, -0.08431105315685272, 0.022270947694778442, 0.15319329500198364, 0.06421449035406113, 0.017778784036636353, -0.05505601689219475, 0.06439121812582016, -0.06672491133213043, 0.06824075430631638, -0.018980834633111954, 0.09802421182394028, -0.10887092351913452, -0.011265471577644348, 0.021004699170589447, 0.036602459847927094, -0.06681696325540543, -0.042502328753471375, -0.13088051974773407, 0.0019857650622725487, -0.13065244257450104, -0.01341327466070652, -0.033564236015081406, -0.0338643342256546, 0.018379993736743927, -0.10677488893270493, -0.01797221414744854, 0.006710111629217863, -0.024922538548707962, 0.021663136780261993, 0.07697504013776779, 0.05777452886104584, -0.15763387084007263, -0.015057232230901718, 0.05688810721039772, -0.0635787695646286, 0.07002326101064682, 0.053921572864055634, -0.010038351640105247, 0.05613219738006592, -0.11839865893125534, -0.003936143592000008, -0.026875318959355354, 0.057752825319767, 0.003055604174733162, -0.08879075944423676, 0.0014969243202358484, -0.011434636078774929, 0.00626018550246954, -0.020329345017671585, 0.2069154679775238, -0.04896292835474014, 0.0701613798737526, 0.00005954166408628225, 0.009437349624931812, -0.06545588374137878, 0.07180120050907135, 0.1078520342707634, 0.12318365275859833, 0.14712081849575043, -0.07666604965925217, 0.05553695932030678, -0.08473166823387146, 0.04212974011898041, 0.04867180809378624, -0.03123481571674347, 0.11745979636907578, -0.11934901028871536, -0.00023003341630101204, -0.06334766745567322, 0.205453559756279, -0.035282839089632034, 0.03987962752580643, 0.04775190353393555, -0.046636469662189484, -0.012283982709050179, -0.02151610143482685, 0.20319508016109467, 0.054971322417259216, 0.007727434858679771, 0.014366429299116135, 0.04980125650763512, -0.017159292474389076, 0.05754697695374489, 0.125326469540596, 0.12782695889472961, -0.13558050990104675, 0.04953788220882416, 0.025693396106362343, -0.0096817035228014, -0.13421222567558289, -0.06331150978803635, -0.04268316552042961, 0.062186550348997116, -0.031874388456344604, 0.19805963337421417, 0.06275323778390884, -0.013233301229774952, 0.07278255373239517, 0.014543072320520878, -0.0852883830666542, -0.12768186628818512, -0.11995086818933487, 0.00015623756917193532, -0.14613917469978333, -0.038460806012153625, -0.07053010910749435, -0.017902377992868423, 0.15446589887142181, 0.0031972150318324566, 0.01723707653582096, 0.24698151648044586, -0.08140606433153152, 0.015610097907483578, 0.016785042360424995, -0.05031944438815117, -0.05635540932416916, -0.13009893894195557, 0.03361765667796135, 0.03266701102256775, 0.11351263523101807, 0.05456274747848511, 0.03008153848350048, 0.013499971479177475, 0.04199550673365593, 0.02402186393737793, -0.11999058723449707, -0.04194143787026405, 0.02779753878712654, -0.03776504471898079, 0.03973596543073654, 0.007889804430305958, -0.024790242314338684, -0.03935704752802849, 0.1788605898618698, -0.08473091572523117, -0.05911283567547798, -0.12340638786554337, 0.11964648962020874, -0.02531283348798752, 0.01595107465982437, -0.048339515924453735, -0.11815910041332245, -0.04902130365371704, 0.19751551747322083, 0.08778160065412521, -0.011588018387556076, 0.02907376177608967, 0.047071997076272964, 0.02094309590756893, -0.006350480020046234, 0.11362794041633606, -0.019429806619882584, 0.07916382700204849, 0.005415888968855143, -0.04152345657348633, -0.04116649553179741, -0.028833987191319466, 0.04242471605539322, 0.12222614139318466, 0.009041777811944485, -0.015108045190572739, -0.10212893784046173, 0.06210567429661751, -0.07001880556344986, -0.26464352011680603, 0.003000387456268072, 0.009405752643942833, -0.05858001112937927, -0.05930192023515701, 0.060480326414108276, -0.06340736150741577, 0.006022919900715351, 0.011440979316830635, -0.005275815259665251, 0.132181778550148, 0.052304886281490326, -0.06550204753875732, -0.010825920850038528, 0.08486863970756531, -0.041664689779281616, 0.20496423542499542, -0.006096605211496353, 0.0337008573114872, 0.05789761245250702, 0.06110360845923424, -0.09880830347537994, 0.003622617106884718, 0.02172631025314331, -0.08307398855686188, 0.00045809533912688494, 0.044489145278930664, -0.02725657820701599, 0.12319599092006683, 0.03689396381378174, -0.19699697196483612, 0.025466786697506905, -0.0066416021436452866, -0.09269025921821594, -0.06122453510761261, -0.05822954326868057, -0.06354793906211853, 0.13838766515254974, 0.12058058381080627, 0.00897355005145073, -0.07240785658359528, -0.10831651091575623, 0.029552534222602844, 0.0013345135375857353, 0.03811519593000412, -0.026825403794646263, -0.11344268918037415, -0.0392734631896019, -0.0005546736065298319, 0.03371788561344147, -0.27749985456466675, -0.0008581745205447078, 0.04827441647648811, -0.03278062120079994, -0.005778963677585125, 0.05166250467300415, 0.11767878383398056, 0.07251293957233429, -0.05209032818675041, -0.07420096546411514, 0.024984095245599747, 0.12351644039154053, -0.1775885969400406, -0.0566498301923275 ]
null
null
adapter-transformers
# Adapter `AdapterHub/bert-base-uncased-pf-social_i_qa` for bert-base-uncased An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [social_i_qa](https://huggingface.co/datasets/social_i_qa/) dataset and includes a prediction head for multiple choice. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("bert-base-uncased") adapter_name = model.load_adapter("AdapterHub/bert-base-uncased-pf-social_i_qa", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-what-to-pre-train-on, title={What to Pre-Train on? Efficient Intermediate Task Selection}, author={Clifton Poth and Jonas Pfeiffer and Andreas Rücklé and Iryna Gurevych}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (EMNLP)", month = nov, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/2104.08247", pages = "to appear", } ```
{"language": ["en"], "tags": ["bert", "adapter-transformers"], "datasets": ["social_i_qa"]}
null
AdapterHub/bert-base-uncased-pf-social_i_qa
[ "adapter-transformers", "bert", "en", "dataset:social_i_qa", "arxiv:2104.08247", "region:us" ]
2022-03-02T23:29:04+00:00
[ "2104.08247" ]
[ "en" ]
TAGS #adapter-transformers #bert #en #dataset-social_i_qa #arxiv-2104.08247 #region-us
# Adapter 'AdapterHub/bert-base-uncased-pf-social_i_qa' for bert-base-uncased An adapter for the 'bert-base-uncased' model that was trained on the social_i_qa dataset and includes a prediction head for multiple choice. This adapter was created for usage with the adapter-transformers library. ## Usage First, install 'adapter-transformers': _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_ Now, the adapter can be loaded and activated like this: ## Architecture & Training The training code for this adapter is available at URL In particular, training configurations for all tasks can be found here. ## Evaluation results Refer to the paper for more information on results. If you use this adapter, please cite our paper "What to Pre-Train on? Efficient Intermediate Task Selection":
[ "# Adapter 'AdapterHub/bert-base-uncased-pf-social_i_qa' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the social_i_qa dataset and includes a prediction head for multiple choice.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ "TAGS\n#adapter-transformers #bert #en #dataset-social_i_qa #arxiv-2104.08247 #region-us \n", "# Adapter 'AdapterHub/bert-base-uncased-pf-social_i_qa' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the social_i_qa dataset and includes a prediction head for multiple choice.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ 32, 86, 57, 30, 45 ]
[ "passage: TAGS\n#adapter-transformers #bert #en #dataset-social_i_qa #arxiv-2104.08247 #region-us \n# Adapter 'AdapterHub/bert-base-uncased-pf-social_i_qa' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the social_i_qa dataset and includes a prediction head for multiple choice.\n\nThis adapter was created for usage with the adapter-transformers library.## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ -0.09970592707395554, -0.03520241752266884, -0.0028068784158676863, 0.015052556991577148, 0.17346309125423431, 0.022904587909579277, 0.1288675218820572, 0.03705090656876564, 0.10800201445817947, 0.017926858738064766, 0.01888963207602501, 0.07518205046653748, 0.06508474797010422, 0.04860711842775345, 0.016750400885939598, -0.07288410514593124, 0.006358996033668518, 0.028536569327116013, -0.13568048179149628, 0.07782967388629913, 0.07849482446908951, -0.08611082285642624, 0.11053944379091263, 0.0532953180372715, -0.029872890561819077, 0.027070296928286552, -0.0023662394378334284, -0.08075001090765, 0.12798093259334564, 0.10272054374217987, 0.13143950700759888, 0.09631884098052979, 0.013139387592673302, -0.1332111358642578, 0.022298462688922882, 0.04699729382991791, 0.00958672259002924, 0.058498065918684006, -0.01381466630846262, 0.050607118755578995, -0.07206295430660248, 0.03381573408842087, 0.045299310237169266, 0.06398852169513702, -0.10368727892637253, -0.22555921971797943, -0.03553209826350212, 0.05501949414610863, 0.030722901225090027, 0.04311050474643707, -0.004599660634994507, 0.023222412914037704, -0.05854402109980583, 0.02822907269001007, 0.1294221132993698, -0.24110378324985504, 0.00910867378115654, -0.014525758102536201, 0.03321873024106026, 0.08738753199577332, -0.023343762382864952, 0.012170471251010895, 0.013736085966229439, 0.015816427767276764, 0.05501403659582138, -0.05195726454257965, -0.011744894087314606, 0.014586287550628185, -0.16939055919647217, 0.00777388783171773, 0.2578820288181305, -0.020139673724770546, -0.08317070454359055, 0.0190906785428524, -0.02200509048998356, 0.16094432771205902, 0.035940125584602356, -0.09803401678800583, 0.0033917471300810575, 0.010112419724464417, -0.00668402761220932, -0.08124510198831558, -0.10395006090402603, -0.11617599427700043, -0.08331800997257233, 0.2150970697402954, -0.01816427707672119, 0.04082835465669632, -0.03418843820691109, 0.0969957634806633, -0.020713869482278824, -0.09430278092622757, -0.0426352433860302, -0.06886585801839828, -0.027554888278245926, -0.017538990825414658, -0.019368506968021393, -0.26100799441337585, 0.030477190390229225, 0.07648543268442154, 0.12724409997463226, 0.04530597850680351, -0.04457348212599754, 0.04397091642022133, 0.03531922027468681, 0.19498546421527863, -0.09885036200284958, 0.04382055625319481, -0.029058195650577545, 0.018182437866926193, -0.07581622153520584, -0.10092793405056, -0.0650286078453064, -0.008800581097602844, -0.006158588454127312, 0.05355120822787285, 0.023333393037319183, 0.08767358958721161, -0.052908774465322495, -0.05716676265001297, 0.13830417394638062, -0.10551000386476517, -0.06096545606851578, 0.026206787675619125, -0.028628818690776825, 0.025788936764001846, 0.11049338430166245, 0.008439765311777592, -0.01740925759077072, 0.05640275403857231, -0.054786890745162964, -0.09883971512317657, -0.027699822559952736, -0.11590823531150818, -0.007813414558768272, -0.005595559719949961, -0.018732385709881783, -0.1698143631219864, -0.12833425402641296, 0.004119895398616791, 0.03868800774216652, 0.014004907570779324, 0.07021737098693848, 0.04573513939976692, 0.0686180368065834, 0.005727316718548536, -0.046072181314229965, 0.013936110772192478, -0.04399312660098076, 0.08949963003396988, 0.041183583438396454, 0.03381180390715599, -0.04224158823490143, 0.08880852907896042, -0.06444698572158813, 0.025454914197325706, -0.1530425250530243, 0.11530080437660217, -0.16940352320671082, -0.024950159713625908, -0.12146767228841782, 0.004579718224704266, 0.020781343802809715, 0.04128215089440346, 0.07838283479213715, 0.11316191405057907, -0.1298111230134964, -0.055310774594545364, 0.09169696271419525, -0.1755550354719162, -0.16087500751018524, 0.06743112951517105, -0.0013752698432654142, 0.10353947430849075, 0.0548693872988224, 0.10931366682052612, 0.13949885964393616, -0.07404650747776031, -0.11506333947181702, 0.08396528661251068, -0.07657964527606964, -0.05887893587350845, 0.09212607890367508, 0.026682373136281967, -0.15028923749923706, 0.021652908995747566, -0.15662798285484314, 0.0619237944483757, -0.02878611348569393, -0.045274149626493454, -0.026569003239274025, -0.0842863991856575, 0.15649192035198212, 0.007938756607472897, -0.008596084080636501, 0.07546216249465942, -0.09115917980670929, 0.14272494614124298, 0.05535568669438362, -0.037302762269973755, -0.01563636213541031, -0.1277325451374054, 0.1327592134475708, -0.1303497552871704, 0.025428524240851402, -0.1899268925189972, -0.03276517614722252, 0.009713315404951572, -0.022898422554135323, 0.07582733780145645, 0.11265818029642105, 0.0488516204059124, 0.014062420465052128, -0.01142585277557373, -0.03460780158638954, -0.045962780714035034, 0.031376905739307404, -0.052190981805324554, -0.0690869390964508, -0.037638109177351, -0.04642769321799278, 0.022711314260959625, -0.16623680293560028, 0.06000782176852226, 0.07908394932746887, 0.039148569107055664, 0.006578513886779547, 0.01830460876226425, -0.003598851850256324, 0.001525097992271185, -0.003966971766203642, -0.011855186894536018, 0.04136646166443825, 0.0013877290766686201, -0.11983740329742432, 0.03076625056564808, -0.07793895155191422, 0.0676126703619957, 0.036568060517311096, -0.033507779240608215, -0.02822500467300415, -0.009198960848152637, 0.00971644651144743, -0.02591383084654808, -0.013886721804738045, -0.10082987695932388, 0.31615716218948364, 0.06328355520963669, 0.05615920573472977, -0.04559560865163803, 0.03313792496919632, 0.001180050428956747, -0.022083226591348648, 0.01874578557908535, 0.0060201045125722885, 0.02345450222492218, -0.12152086943387985, 0.02807159349322319, 0.1821780651807785, 0.020653406158089638, 0.10515015572309494, -0.04060656577348709, -0.09796848148107529, -0.006351814605295658, -0.04502056539058685, 0.036836571991443634, 0.086876779794693, -0.09930294007062912, 0.0007865483639761806, 0.06986673176288605, -0.020584018900990486, -0.006437320727854967, -0.07642146199941635, 0.027177399024367332, 0.04349919408559799, -0.01001005619764328, -0.08374879509210587, -0.003980476874858141, -0.008708599023520947, 0.07500440627336502, 0.06745035201311111, 0.11990555375814438, 0.024380382150411606, -0.01595469005405903, -0.09444443136453629, 0.19178304076194763, -0.054018840193748474, -0.2256285548210144, -0.18291260302066803, -0.09085462987422943, -0.017975304275751114, -0.0016184209380298853, 0.049922410398721695, -0.13168267905712128, -0.07454618066549301, 0.002368347719311714, 0.20127703249454498, 0.012993406504392624, -0.001105562667362392, 0.0007453369325958192, -0.06987396627664566, 0.10737541317939758, -0.15462395548820496, 0.031408052891492844, 0.024991363286972046, -0.05942520871758461, 0.0048193312250077724, -0.00015328403969760984, 0.08980609476566315, 0.12107575684785843, -0.023136083036661148, -0.0049384781159460545, -0.009798749350011349, 0.16984893381595612, -0.06769105046987534, 0.028856808319687843, 0.16174061596393585, -0.1264609396457672, 0.05034807696938515, 0.08337294310331345, 0.056621670722961426, -0.03236940875649452, 0.01897280104458332, 0.02630143240094185, -0.06932613998651505, -0.26579031348228455, -0.04017914831638336, 0.015500906854867935, -0.003585674101486802, 0.026741940528154373, 0.028561241924762726, -0.026747383177280426, 0.11681699007749557, 0.06385679543018341, -0.028325609862804413, -0.0683669000864029, 0.02955772541463375, 0.20795592665672302, -0.005891732405871153, 0.11533928662538528, -0.08376137167215347, 0.0323249027132988, 0.10941863805055618, 0.0054450868628919125, 0.11634809523820877, -0.0560915544629097, 0.04974149912595749, 0.08524971455335617, 0.04651140049099922, 0.05901364982128143, 0.12468887120485306, -0.04577719792723656, -0.011570424772799015, -0.01259497832506895, -0.0426362045109272, -0.10664036124944687, 0.02881033346056938, 0.020034117624163628, -0.006358752027153969, -0.05927826836705208, -0.012459024786949158, 0.026630746200680733, 0.1841616928577423, -0.034231942147016525, -0.1517655849456787, -0.1469496786594391, -0.005712962243705988, 0.0031627342104911804, -0.05510624125599861, 0.011641422286629677, 0.08146581798791885, -0.0931343212723732, 0.03470548987388611, -0.030778544023633003, 0.09466519206762314, -0.12294629961252213, 0.012780074961483479, 0.03580804169178009, 0.07344771176576614, -0.02802584320306778, 0.10319710522890091, -0.20822550356388092, 0.09893519431352615, 0.048711441457271576, 0.013864196836948395, -0.04988417774438858, 0.01575111784040928, 0.040845174342393875, 0.13554561138153076, 0.05533302202820778, -0.0026284242048859596, 0.10055480152368546, -0.19654329121112823, -0.05252055823802948, 0.07027549296617508, 0.02103862166404724, -0.10665804892778397, 0.02800584025681019, -0.019540760666131973, 0.06053384393453598, 0.016085075214505196, 0.043544210493564606, -0.1109771654009819, -0.12789690494537354, 0.07401666045188904, -0.0018122931942343712, 0.09861259907484055, -0.0789160504937172, -0.10070355981588364, -0.026155736297369003, 0.12378691136837006, -0.11110161244869232, -0.09023279696702957, -0.13038598001003265, -0.005836066789925098, 0.05659203231334686, -0.08954928070306778, 0.0023252125829458237, -0.007345457561314106, 0.08653918653726578, 0.0002573487290646881, -0.0977315902709961, 0.069108746945858, -0.09532402455806732, -0.09439317137002945, -0.034629400819540024, 0.008224687539041042, 0.08852768689393997, 0.027863316237926483, -0.015434148721396923, -0.026667453348636627, 0.016391120851039886, -0.1136866956949234, -0.004877001047134399, 0.006154180038720369, -0.03673321008682251, 0.03735300526022911, -0.06859780102968216, -0.004794733133167028, -0.06545491516590118, -0.02619985118508339, 0.14502613246440887, 0.13256613910198212, -0.06885025650262833, 0.05790331959724426, 0.23742207884788513, -0.06316863000392914, -0.27112120389938354, -0.012871716171503067, 0.02218416891992092, -0.00984741561114788, 0.09148622304201126, -0.23663926124572754, 0.1376567929983139, 0.056243181228637695, -0.011744420975446701, -0.012110053561627865, -0.09388340264558792, -0.0842648297548294, 0.1990785449743271, 0.10444627702236176, 0.059028904885053635, -0.13583263754844666, -0.07803207635879517, 0.03042728267610073, -0.13148482143878937, 0.047497689723968506, -0.050911709666252136, 0.056150857359170914, -0.016764137893915176, 0.04328768327832222, 0.02556265890598297, -0.013872137293219566, 0.10285109281539917, -0.027596035972237587, -0.014439497143030167, -0.07940760254859924, -0.02993476763367653, 0.06732092797756195, -0.04885942116379738, 0.03458533436059952, -0.02334420569241047, 0.09260939806699753, -0.14644163846969604, -0.049351852387189865, -0.02370341494679451, 0.06838726252317429, 0.004684769082814455, -0.0936591625213623, -0.04530178755521774, 0.023855535313487053, -0.0038891418371349573, -0.04151487350463867, 0.004222476854920387, -0.09590281546115875, 0.06651582568883896, 0.16212153434753418, 0.16729465126991272, -0.03051988035440445, -0.11764735728502274, -0.009240135550498962, -0.020147087052464485, 0.10925553739070892, -0.13768774271011353, 0.08068501949310303, 0.1207498237490654, 0.021140698343515396, 0.11061221361160278, 0.03860870376229286, -0.0960891842842102, 0.026540562510490417, 0.05164996162056923, -0.06089485436677933, -0.08163279294967651, -0.0227348729968071, 0.15989726781845093, -0.1895548403263092, 0.07892865687608719, 0.12704643607139587, -0.030478546395897865, 0.004210774786770344, 0.017079928889870644, -0.014875046908855438, -0.05415754392743111, 0.09081724286079407, 0.10490317642688751, 0.07382263988256454, -0.04645475745201111, 0.10233230888843536, 0.09156317263841629, -0.0904185026884079, 0.030418282374739647, -0.0963413342833519, -0.0792824923992157, -0.07662571221590042, -0.066915363073349, 0.15882638096809387, -0.0788610577583313, -0.1058504581451416, 0.009141569025814533, -0.11601405590772629, 0.023248320445418358, 0.1901537925004959, 0.02099650911986828, -0.02006625197827816, -0.04154837131500244, 0.023800568655133247, -0.031856901943683624, 0.06746191531419754, -0.06289242208003998, 0.030757363885641098, -0.1036582812666893, -0.045194778591394424, 0.04418184235692024, 0.10446834564208984, -0.06721150130033493, -0.06565128266811371, -0.11228632926940918, -0.018162066116929054, -0.1732257753610611, -0.0078088524751365185, -0.039519112557172775, 0.024685241281986237, -0.012356750667095184, -0.11323948204517365, -0.02972412295639515, 0.00564569840207696, -0.033064693212509155, 0.03633623570203781, 0.03758459910750389, 0.10010592639446259, -0.15785928070545197, -0.031089194118976593, 0.049364447593688965, -0.016029085963964462, 0.07905460894107819, 0.01041383109986782, -0.02075047418475151, 0.05565556511282921, -0.029755303636193275, 0.036224544048309326, -0.02410438284277916, 0.07317493855953217, 0.026225628331303596, -0.053132668137550354, 0.008601746521890163, -0.05985415726900101, -0.03633049130439758, -0.0030057865660637617, 0.21643368899822235, -0.042813289910554886, 0.0996980145573616, -0.010798358358442783, 0.035972949117422104, -0.05854209139943123, 0.07251463085412979, 0.08421719074249268, 0.10997169464826584, 0.09107332676649094, -0.09128373861312866, 0.04018636420369148, -0.09320280700922012, 0.007314888760447502, 0.048785969614982605, -0.0044761355966329575, 0.10507857799530029, -0.11876670271158218, -0.005414932034909725, -0.05914869159460068, 0.21960121393203735, -0.06314264237880707, 0.09319974482059479, 0.053341250866651535, -0.010035437531769276, -0.04546531289815903, -0.05272187665104866, 0.12514333426952362, 0.015185413882136345, 0.030349429696798325, -0.0012801564298570156, 0.061231616884469986, -0.05549033358693123, 0.05699118599295616, 0.1341385543346405, 0.10986343026161194, -0.08901578187942505, 0.021551920101046562, 0.02426309883594513, -0.036208707839250565, -0.1075454130768776, -0.09548988938331604, -0.04737580567598343, 0.05932629108428955, -0.02396254986524582, 0.18661150336265564, 0.04396629333496094, -0.006034492049366236, 0.0800788477063179, -0.0067330216988921165, -0.04849454015493393, -0.07707639038562775, -0.0291146170347929, -0.0026815251912921667, -0.11725767701864243, -0.034157030284404755, -0.07831919938325882, -0.027349110692739487, 0.13819515705108643, -0.004825564566999674, 0.009608511812984943, 0.254318505525589, -0.08307743072509766, -0.0063210283406078815, 0.024075577035546303, -0.05233136564493179, -0.026954786852002144, -0.11814021319150925, 0.08078017085790634, 0.06526385992765427, 0.13048192858695984, 0.007341745775192976, 0.036635711789131165, -0.046878330409526825, 0.037646710872650146, -0.00665199663490057, -0.11495745927095413, -0.027404973283410072, 0.04207577928900719, -0.04776029661297798, 0.02310185320675373, 0.002618743572384119, 0.012302698567509651, -0.009868248365819454, 0.14151999354362488, -0.051425427198410034, 0.0025976202450692654, -0.11692213267087936, 0.09610684961080551, -0.07311629503965378, 0.011764554306864738, -0.010942253284156322, -0.0984976664185524, -0.054490793496370316, 0.22482866048812866, 0.05017063766717911, -0.059190478175878525, 0.030390964820981026, 0.028790486976504326, 0.027403198182582855, -0.0010605911957100034, 0.11045598238706589, 0.029364461079239845, 0.08592288941144943, -0.0491192452609539, -0.05144519358873367, -0.05226483196020126, -0.005397681146860123, 0.08406318724155426, 0.14039728045463562, 0.0017413878813385963, 0.0003530405228957534, -0.074836365878582, 0.06479231268167496, -0.05991411209106445, -0.24069979786872864, -0.08357760310173035, -0.049482520669698715, -0.07760755717754364, -0.09520585089921951, -0.0005150124779902399, -0.030018696561455727, 0.003264730330556631, 0.019895663484930992, -0.006016911007463932, 0.10163310915231705, 0.050114043056964874, -0.036685626953840256, -0.018660295754671097, 0.10006494075059891, 0.029987882822752, 0.14394134283065796, 0.010936698876321316, 0.010674461722373962, 0.07195812463760376, 0.045867983251810074, -0.07941947877407074, 0.0416514091193676, 0.041846662759780884, -0.10732542723417282, -0.03219793736934662, -0.0060543096624314785, 0.004846997559070587, 0.12596827745437622, 0.05866428092122078, -0.19924066960811615, 0.06829959154129028, 0.021804669871926308, -0.07001633197069168, -0.06490535289049149, -0.0041391970589756966, -0.06933630257844925, 0.1395494043827057, 0.10979575663805008, 0.023608259856700897, -0.09168923646211624, -0.0738220289349556, 0.05565083399415016, -0.004450860898941755, 0.10283105075359344, -0.042196113616228104, -0.09664598107337952, -0.011562574654817581, -0.06209429353475571, 0.028867855668067932, -0.2538761794567108, -0.022902613505721092, 0.045160435140132904, -0.011179447174072266, 0.041263386607170105, 0.08492891490459442, 0.06709760427474976, 0.05631222203373909, -0.042556170374155045, -0.11779747903347015, -0.005222779233008623, 0.11738524585962296, -0.18970665335655212, -0.021267063915729523 ]
null
null
adapter-transformers
# Adapter `AdapterHub/bert-base-uncased-pf-squad` for bert-base-uncased An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [qa/squad1](https://adapterhub.ml/explore/qa/squad1/) dataset and includes a prediction head for question answering. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("bert-base-uncased") adapter_name = model.load_adapter("AdapterHub/bert-base-uncased-pf-squad", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
{"language": ["en"], "tags": ["question-answering", "bert", "adapterhub:qa/squad1", "adapter-transformers"], "datasets": ["squad"]}
question-answering
AdapterHub/bert-base-uncased-pf-squad
[ "adapter-transformers", "bert", "question-answering", "adapterhub:qa/squad1", "en", "dataset:squad", "arxiv:2104.08247", "region:us" ]
2022-03-02T23:29:04+00:00
[ "2104.08247" ]
[ "en" ]
TAGS #adapter-transformers #bert #question-answering #adapterhub-qa/squad1 #en #dataset-squad #arxiv-2104.08247 #region-us
# Adapter 'AdapterHub/bert-base-uncased-pf-squad' for bert-base-uncased An adapter for the 'bert-base-uncased' model that was trained on the qa/squad1 dataset and includes a prediction head for question answering. This adapter was created for usage with the adapter-transformers library. ## Usage First, install 'adapter-transformers': _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_ Now, the adapter can be loaded and activated like this: ## Architecture & Training The training code for this adapter is available at URL In particular, training configurations for all tasks can be found here. ## Evaluation results Refer to the paper for more information on results. If you use this adapter, please cite our paper "What to Pre-Train on? Efficient Intermediate Task Selection":
[ "# Adapter 'AdapterHub/bert-base-uncased-pf-squad' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the qa/squad1 dataset and includes a prediction head for question answering.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ "TAGS\n#adapter-transformers #bert #question-answering #adapterhub-qa/squad1 #en #dataset-squad #arxiv-2104.08247 #region-us \n", "# Adapter 'AdapterHub/bert-base-uncased-pf-squad' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the qa/squad1 dataset and includes a prediction head for question answering.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ 44, 84, 57, 30, 45 ]
[ "passage: TAGS\n#adapter-transformers #bert #question-answering #adapterhub-qa/squad1 #en #dataset-squad #arxiv-2104.08247 #region-us \n# Adapter 'AdapterHub/bert-base-uncased-pf-squad' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the qa/squad1 dataset and includes a prediction head for question answering.\n\nThis adapter was created for usage with the adapter-transformers library.## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ -0.07807569950819016, -0.025752801448106766, -0.0029690838418900967, 0.02338295243680477, 0.1758498251438141, -0.004271816462278366, 0.13816401362419128, 0.0704936683177948, 0.09214037656784058, 0.04076017066836357, 0.012860158458352089, 0.08247873932123184, 0.04099889099597931, 0.011069905012845993, 0.02999475784599781, -0.06917114555835724, 0.006505885161459446, 0.030185548588633537, -0.07890425622463226, 0.10496620088815689, 0.09996967017650604, -0.10118604451417923, 0.08503969013690948, 0.054449137300252914, -0.07726027071475983, 0.06355062872171402, -0.019824154675006866, -0.08295103907585144, 0.11000539362430573, 0.10515614598989487, 0.14171478152275085, 0.04364345967769623, -0.010231353342533112, -0.16735124588012695, 0.02276460826396942, 0.0821467861533165, 0.011694989167153835, 0.041963011026382446, -0.030215676873922348, 0.03236747905611992, -0.05951052904129028, 0.015185697004199028, 0.042133819311857224, 0.07375573366880417, -0.07706881314516068, -0.2290075272321701, -0.010877197608351707, 0.08406319469213486, 0.038363657891750336, 0.0846773013472557, -0.017440320923924446, 0.10050838440656662, 0.007165662944316864, 0.04656078666448593, 0.18250307440757751, -0.29053768515586853, 0.0005507015739567578, -0.02441227436065674, 0.0817946121096611, 0.05006544664502144, -0.05163712427020073, -0.0031697601079940796, 0.021585475653409958, 0.02557721920311451, 0.018982861191034317, -0.04369639977812767, -0.023241523653268814, 0.0050524016842246056, -0.15440905094146729, -0.00935719721019268, 0.21310918033123016, -0.003912773914635181, -0.1070554181933403, -0.05359529331326485, -0.04094674438238144, 0.1323782354593277, 0.0329190269112587, -0.09194394946098328, -0.010980677790939808, -0.003171205520629883, -0.003143014619126916, -0.0865248292684555, -0.1209249347448349, -0.0835055410861969, -0.10316824913024902, 0.27108877897262573, -0.003317547030746937, 0.037882186472415924, -0.040532421320676804, 0.11453183740377426, -0.020459674298763275, -0.11521879583597183, -0.08687525987625122, -0.053154829889535904, -0.10874083638191223, -0.03883342444896698, -0.02571670524775982, -0.27383318543434143, 0.01326301321387291, 0.15155813097953796, 0.13145868480205536, 0.025993412360548973, -0.05986258387565613, 0.04296224191784859, 0.05255332589149475, 0.21515925228595734, -0.06060872599482536, 0.046007975935935974, -0.04444560408592224, 0.008863492868840694, -0.03923497721552849, -0.10234205424785614, -0.05087168514728546, -0.029146559536457062, 0.026245340704917908, 0.04615306854248047, 0.03354417905211449, 0.06965205818414688, -0.03125815838575363, -0.06953062862157822, 0.08428888767957687, -0.11254628747701645, -0.02137633040547371, 0.02486148104071617, -0.020161937922239304, 0.07699321210384369, 0.10448993742465973, 0.00770580442622304, -0.03778456151485443, 0.06000132858753204, -0.07527603209018707, -0.0721052810549736, -0.0384577251970768, -0.14032389223575592, 0.012632730416953564, 0.0018061742885038257, -0.010000714100897312, -0.17433147132396698, -0.06198320910334587, -0.002250734018161893, 0.034256305545568466, 0.017579860985279083, 0.08614514023065567, 0.06040281802415848, 0.02815639227628708, 0.0015827346360310912, -0.02161753550171852, 0.004202100448310375, -0.029759826138615608, 0.08967947214841843, 0.055399950593709946, 0.04573427140712738, -0.018139908090233803, 0.0676775798201561, -0.08238200843334198, 0.008670901879668236, -0.1755708009004593, 0.0870506539940834, -0.15735886991024017, 0.007551355753093958, -0.14141789078712463, -0.003789817448705435, 0.040560126304626465, 0.0430077500641346, 0.08478529751300812, 0.09036353975534439, -0.1055956557393074, -0.05756302550435066, 0.05972951650619507, -0.16985563933849335, -0.1675386279821396, 0.06275593489408493, -0.0008476064540445805, 0.12921832501888275, 0.0413241945207119, 0.07589218020439148, 0.14620164036750793, -0.1165073961019516, -0.1421934962272644, 0.044855449348688126, -0.05791960284113884, -0.023154539987444878, 0.06302429735660553, 0.020745784044265747, -0.10753022879362106, 0.021436132490634918, -0.11617439985275269, 0.00019550703291315585, -0.025967329740524292, -0.03717893734574318, -0.042793575674295425, -0.03667067736387253, 0.07849613577127457, -0.002980165183544159, -0.019388336688280106, 0.06848689168691635, -0.1371402144432068, 0.1647442728281021, 0.05457357317209244, -0.04654297977685928, 0.013046124950051308, -0.12769706547260284, 0.11901616305112839, -0.1395321935415268, 0.023075973615050316, -0.19874393939971924, -0.05011133477091789, 0.02113034389913082, -0.052535444498062134, 0.04386942461133003, 0.06297290325164795, 0.05686767399311066, 0.01633566990494728, 0.02453749068081379, -0.018043270334601402, -0.0799492821097374, 0.01914842054247856, -0.06140255928039551, -0.07666637748479843, -0.06869356334209442, -0.06089300662279129, 0.028508387506008148, -0.1336919069290161, 0.03917037695646286, 0.0933649018406868, 0.06075581908226013, 0.030010242015123367, -0.00809268094599247, -0.021106630563735962, -0.015410469844937325, -0.03312688320875168, -0.004029374103993177, 0.03333224728703499, 0.014670602045953274, -0.09753584116697311, 0.02352575771510601, -0.10217403620481491, -0.0022814376279711723, 0.06959117949008942, -0.008762864395976067, -0.04643223062157631, -0.06119445338845253, -0.026413198560476303, -0.026548411697149277, -0.03666040673851967, -0.11876988410949707, 0.23764564096927643, 0.081355981528759, 0.055332306772470474, -0.04275582730770111, -0.01581604778766632, 0.018157169222831726, 0.0017555428203195333, 0.022204171866178513, 0.021127257496118546, 0.055551815778017044, -0.08108184486627579, 0.022071152925491333, 0.2125048190355301, -0.0021981499157845974, 0.08928188681602478, -0.02766197919845581, -0.10566920042037964, -0.013099216856062412, -0.02123640477657318, 0.03632458299398422, 0.08409979939460754, -0.11984662711620331, 0.02073047310113907, 0.0707019791007042, -0.01574649102985859, -0.014333119615912437, -0.07022520899772644, 0.030891072005033493, 0.060056980699300766, 0.010326660238206387, -0.0515400655567646, 0.012745270505547523, -0.007195471785962582, 0.053240951150655746, 0.04002022743225098, 0.10541325062513351, 0.011404714547097683, -0.030049651861190796, -0.07898686826229095, 0.19440540671348572, -0.04550072178244591, -0.22384950518608093, -0.2036242038011551, -0.06089223548769951, -0.04356687143445015, -0.009569092653691769, 0.07738560438156128, -0.106864795088768, -0.08165808022022247, -0.04166853427886963, 0.16371607780456543, 0.013236292637884617, 0.008515231311321259, 0.013114850968122482, -0.06190277263522148, 0.08769050240516663, -0.16671070456504822, 0.023908665403723717, 0.015776965767145157, -0.09970822930335999, -0.010342206805944443, 0.06643900275230408, 0.08830622583627701, 0.11710396409034729, -0.017893848940730095, -0.00894028227776289, -0.00038742306060157716, 0.17636333405971527, -0.08263978362083435, 0.04591123014688492, 0.1564827561378479, -0.14083200693130493, 0.0380873940885067, 0.08823778480291367, 0.03958316147327423, -0.03941625356674194, 0.05591396614909172, 0.06591331213712692, -0.046669311821460724, -0.25036340951919556, -0.0038758539594709873, 0.009630447253584862, 0.002506605349481106, 0.05910676345229149, 0.04570391774177551, 0.017151212319731712, 0.07936237007379532, 0.022846683859825134, -0.03139651194214821, -0.07366148382425308, 0.07378866523504257, 0.2220911681652069, -0.01669863611459732, 0.11388883739709854, -0.08870051056146622, 0.0012639201013371348, 0.08681730926036835, 0.032500408589839935, 0.1316039115190506, -0.02442340739071369, 0.052772440016269684, 0.08804169297218323, -0.04979333281517029, 0.06017230451107025, 0.13071313500404358, -0.05791204050183296, -0.028643855825066566, -0.0045699249021708965, -0.06620267033576965, -0.06341647356748581, 0.052244216203689575, 0.0025184291880577803, 0.02228563465178013, -0.0689854696393013, -0.013694963417947292, 0.03713821619749069, 0.1760540008544922, 0.04175247997045517, -0.12323569506406784, -0.15033304691314697, -0.025408649817109108, -0.0552842952311039, -0.055783484131097794, 0.01178148202598095, 0.07769443839788437, -0.08304351568222046, -0.0007425768999382854, -0.04348776489496231, 0.09783010184764862, -0.11902689188718796, 0.005580635275691748, 0.048101235181093216, 0.0738486796617508, -0.03800677880644798, 0.08650284260511398, -0.2248377650976181, 0.07735419273376465, 0.036091890186071396, 0.031243370845913887, -0.052720971405506134, 0.0285753533244133, 0.012678941711783409, 0.07766855508089066, 0.08181943744421005, -0.011386127211153507, 0.09321632981300354, -0.15690355002880096, -0.0718194991350174, 0.05918259918689728, 0.022991470992565155, -0.08396736532449722, 0.0645473450422287, -0.03861170634627342, 0.05849062651395798, 0.01873350702226162, 0.09055964648723602, -0.11769679188728333, -0.14741529524326324, 0.05960584804415703, -0.0008560203714296222, 0.0899275690317154, -0.07071051746606827, -0.09932718425989151, 0.009692437946796417, 0.15532779693603516, -0.167832612991333, -0.07787597924470901, -0.1249559074640274, -0.00003286978608230129, 0.04929424822330475, -0.08516685664653778, 0.03519914671778679, -0.03139599412679672, 0.09716886281967163, -0.0037771989591419697, -0.08354736864566803, 0.06309542804956436, -0.07688915729522705, -0.05471263453364372, -0.045898374170064926, 0.0068197776563465595, 0.06717926263809204, 0.016337746754288673, -0.0002038972161244601, -0.028936874121427536, -0.006031370256096125, -0.10815984755754471, 0.004987924825400114, 0.032663024961948395, -0.0653962790966034, 0.03917954862117767, -0.07584260404109955, 0.040937114506959915, -0.05859476700425148, -0.002175529720261693, 0.14728346467018127, 0.14920665323734283, -0.0634961947798729, 0.04432796686887741, 0.2087530493736267, -0.06596444547176361, -0.26425570249557495, -0.020259501412510872, 0.048809368163347244, 0.008611940778791904, 0.05113106593489647, -0.2014712542295456, 0.18295906484127045, 0.04639233648777008, -0.004044491797685623, 0.05428681522607803, -0.14204025268554688, -0.08571405708789825, 0.18053902685642242, 0.10217942297458649, 0.0381317064166069, -0.13419176638126373, -0.07269325852394104, 0.018095627427101135, -0.21414199471473694, 0.09713685512542725, -0.064874067902565, 0.07084687799215317, -0.03181420639157295, 0.04282994195818901, 0.03039381466805935, -0.03433142229914665, 0.0858578234910965, 0.028597516939044, 0.009605098515748978, -0.07259643077850342, -0.0061667803674936295, 0.07368400692939758, -0.04491998255252838, 0.0652010515332222, -0.04216691479086876, 0.06646637618541718, -0.12679457664489746, -0.05315118655562401, -0.02273784577846527, 0.10382607579231262, -0.02487550489604473, -0.09445233643054962, -0.033942077308893204, 0.023933036252856255, -0.032191939651966095, -0.03862806037068367, 0.05025676637887955, -0.07919333130121231, 0.07875636219978333, 0.17401918768882751, 0.137075275182724, -0.014399521052837372, -0.14817209541797638, -0.00003139021646347828, -0.018673840910196304, 0.14830166101455688, -0.12640932202339172, 0.09092962741851807, 0.12243697792291641, 0.0391373336315155, 0.11382836103439331, 0.04580315947532654, -0.13042931258678436, 0.016794970259070396, 0.060519929975271225, -0.08049874007701874, -0.10791058838367462, -0.021908728405833244, 0.10660596936941147, -0.1632639616727829, 0.060047514736652374, 0.17360949516296387, -0.014172482304275036, 0.00030422801501117647, 0.04314146190881729, -0.024166017770767212, -0.03941340744495392, 0.10089416801929474, 0.09318874776363373, 0.06790478527545929, -0.02009931020438671, 0.07889433950185776, 0.08154678344726562, -0.1061205342411995, 0.035428620874881744, -0.07520507276058197, -0.0724606066942215, -0.07106678187847137, -0.08135660737752914, 0.08850497007369995, -0.11692248284816742, -0.05842212587594986, -0.007600440643727779, -0.06682619452476501, 0.026376737281680107, 0.1729069948196411, 0.031787093728780746, -0.006693654228001833, -0.053865909576416016, 0.04625910893082619, -0.05087108910083771, 0.08889348804950714, -0.04953452944755554, 0.06357989460229874, -0.09439561516046524, -0.056105080991983414, 0.03271409496665001, 0.08457210659980774, -0.05059725046157837, -0.07304894924163818, -0.13061468303203583, -0.022474879398941994, -0.22373366355895996, -0.039392128586769104, -0.00574203347787261, -0.012092637829482555, 0.015628183260560036, -0.1020750030875206, -0.03653300553560257, 0.0344821959733963, -0.02510739117860794, -0.007747925352305174, 0.054300837218761444, 0.07895799726247787, -0.19979462027549744, -0.026201123371720314, 0.06517130881547928, -0.05045328289270401, 0.10411553084850311, 0.030644653365015984, -0.025693507865071297, 0.03199813887476921, -0.03499684855341911, 0.011806724593043327, -0.027513844892382622, 0.06261438131332397, 0.032404813915491104, -0.07639876008033752, 0.04130099341273308, -0.0394011028110981, -0.02594608999788761, -0.003315902082249522, 0.18869000673294067, -0.06346473097801208, 0.03580767288804054, 0.005843158811330795, 0.01909240335226059, -0.062361542135477066, 0.041576799005270004, 0.06831786781549454, 0.12740108370780945, 0.13015083968639374, -0.06841599196195602, 0.07830595225095749, -0.1130329966545105, 0.008658809587359428, 0.03702951967716217, -0.008687267079949379, 0.12593601644039154, -0.11754070222377777, -0.01242926623672247, -0.06855662167072296, 0.16836239397525787, -0.06396261602640152, 0.13352705538272858, 0.06400598585605621, -0.038776569068431854, -0.07135335355997086, -0.051163505762815475, 0.17142336070537567, 0.038179222494363785, 0.04155869781970978, 0.0029882017988711596, 0.032487280666828156, -0.014869739301502705, 0.03313788026571274, 0.12486215680837631, 0.11149880290031433, -0.08705105632543564, 0.02681778557598591, 0.07200874388217926, -0.012863459065556526, -0.11963324248790741, -0.08572445064783096, -0.03677632659673691, 0.077053502202034, -0.03414526581764221, 0.1425735503435135, 0.07930149883031845, 0.009259984828531742, 0.07516434788703918, -0.01614450477063656, -0.05100105702877045, -0.07987719774246216, -0.04872969537973404, -0.009330038912594318, -0.13649386167526245, -0.01069911103695631, -0.06869430094957352, -0.019850241020321846, 0.06540537625551224, 0.02798592299222946, 0.003149685449898243, 0.2660202980041504, -0.05814746022224426, -0.027802474796772003, 0.04905259609222412, -0.04051665961742401, -0.020536206662654877, -0.08579833805561066, 0.10118332505226135, 0.05578438192605972, 0.13017016649246216, 0.024102801457047462, 0.06543073058128357, -0.018352851271629333, 0.03965703025460243, -0.012386213056743145, -0.11140869557857513, -0.048684582114219666, 0.030860507860779762, -0.07739479094743729, 0.08213599771261215, 0.027645159512758255, 0.03282691910862923, -0.022967560216784477, 0.15952537953853607, -0.055286478251218796, -0.07062510401010513, -0.12869125604629517, 0.1532101184129715, -0.02863958477973938, 0.042575184255838394, -0.03100462444126606, -0.11855759471654892, -0.0697273537516594, 0.20266419649124146, 0.012877310626208782, -0.06240690499544144, 0.047107111662626266, 0.0649123266339302, 0.02220679447054863, 0.00817354116588831, 0.08431021869182587, 0.03380613029003143, 0.1415143758058548, -0.017392650246620178, -0.022338926792144775, -0.048951562494039536, -0.03353319317102432, 0.07408755272626877, 0.12555237114429474, 0.005733075086027384, -0.01343312207609415, -0.08410239219665527, 0.05290853604674339, -0.03597519174218178, -0.2615654468536377, -0.0645589753985405, -0.010640118271112442, -0.08239905536174774, -0.06365679949522018, 0.06602542102336884, -0.031472232192754745, 0.0033493665978312492, 0.010803088545799255, -0.025360677391290665, 0.18689262866973877, 0.025844113901257515, -0.02904520183801651, -0.028453538194298744, 0.10947174578905106, -0.07091183960437775, 0.14879167079925537, 0.005663628689944744, 0.03643283620476723, 0.08823200315237045, 0.05890227109193802, -0.08436601608991623, 0.02053895778954029, 0.0381978303194046, -0.13796111941337585, -0.03113238699734211, 0.04452105984091759, 0.013299824669957161, 0.10838881880044937, 0.05374283716082573, -0.1728435456752777, 0.043682895600795746, 0.008244541473686695, -0.060265038162469864, -0.08520612120628357, 0.011285877786576748, -0.06198229268193245, 0.14095905423164368, 0.11810316890478134, -0.004071027040481567, -0.08056356757879257, -0.09102696925401688, 0.04163544252514839, 0.019341830164194107, 0.08555024862289429, -0.022309331223368645, -0.10218769311904907, 0.019109057262539864, -0.07432406395673752, 0.034928347915410995, -0.31623074412345886, -0.04736228287220001, 0.0907900482416153, -0.024429667741060257, 0.022776713594794273, 0.06925155967473984, 0.1057472974061966, 0.06569976359605789, -0.05203074961900711, -0.08808102458715439, -0.020192274823784828, 0.11561980843544006, -0.179590106010437, -0.0559203177690506 ]
null
null
adapter-transformers
# Adapter `AdapterHub/bert-base-uncased-pf-squad_v2` for bert-base-uncased An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [qa/squad2](https://adapterhub.ml/explore/qa/squad2/) dataset and includes a prediction head for question answering. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("bert-base-uncased") adapter_name = model.load_adapter("AdapterHub/bert-base-uncased-pf-squad_v2", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
{"language": ["en"], "tags": ["question-answering", "bert", "adapterhub:qa/squad2", "adapter-transformers"], "datasets": ["squad_v2"]}
question-answering
AdapterHub/bert-base-uncased-pf-squad_v2
[ "adapter-transformers", "bert", "question-answering", "adapterhub:qa/squad2", "en", "dataset:squad_v2", "arxiv:2104.08247", "region:us" ]
2022-03-02T23:29:04+00:00
[ "2104.08247" ]
[ "en" ]
TAGS #adapter-transformers #bert #question-answering #adapterhub-qa/squad2 #en #dataset-squad_v2 #arxiv-2104.08247 #region-us
# Adapter 'AdapterHub/bert-base-uncased-pf-squad_v2' for bert-base-uncased An adapter for the 'bert-base-uncased' model that was trained on the qa/squad2 dataset and includes a prediction head for question answering. This adapter was created for usage with the adapter-transformers library. ## Usage First, install 'adapter-transformers': _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_ Now, the adapter can be loaded and activated like this: ## Architecture & Training The training code for this adapter is available at URL In particular, training configurations for all tasks can be found here. ## Evaluation results Refer to the paper for more information on results. If you use this adapter, please cite our paper "What to Pre-Train on? Efficient Intermediate Task Selection":
[ "# Adapter 'AdapterHub/bert-base-uncased-pf-squad_v2' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the qa/squad2 dataset and includes a prediction head for question answering.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ "TAGS\n#adapter-transformers #bert #question-answering #adapterhub-qa/squad2 #en #dataset-squad_v2 #arxiv-2104.08247 #region-us \n", "# Adapter 'AdapterHub/bert-base-uncased-pf-squad_v2' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the qa/squad2 dataset and includes a prediction head for question answering.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ 47, 87, 57, 30, 45 ]
[ "passage: TAGS\n#adapter-transformers #bert #question-answering #adapterhub-qa/squad2 #en #dataset-squad_v2 #arxiv-2104.08247 #region-us \n# Adapter 'AdapterHub/bert-base-uncased-pf-squad_v2' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the qa/squad2 dataset and includes a prediction head for question answering.\n\nThis adapter was created for usage with the adapter-transformers library.## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ -0.08959303051233292, -0.0800928846001625, -0.002109825611114502, 0.014859231188893318, 0.17421025037765503, 0.03986210748553276, 0.12903381884098053, 0.08932571858167648, 0.11410865187644958, 0.03059842810034752, -0.03957613557577133, 0.08574852347373962, 0.05698542669415474, 0.02604975923895836, 0.04686537757515907, -0.01995784603059292, -0.005121643655002117, 0.03979475051164627, -0.10517363995313644, 0.09818549454212189, 0.08345892280340195, -0.086310014128685, 0.05039609223604202, 0.025661377236247063, -0.11951874196529388, 0.03678109496831894, -0.020799485966563225, -0.037810858339071274, 0.1259283721446991, 0.0863693580031395, 0.1582847535610199, 0.06303588300943375, -0.0005033416673541069, -0.16869038343429565, 0.02151992917060852, 0.08959908038377762, -0.009156842716038227, 0.033056702464818954, -0.03285917639732361, 0.0355614572763443, -0.06694811582565308, 0.023572172969579697, 0.04531630501151085, 0.09447865188121796, -0.08475521206855774, -0.15875132381916046, -0.021479370072484016, 0.0718400701880455, 0.06881649047136307, 0.07831242680549622, 0.00004212596468278207, 0.11907447874546051, -0.03623764589428902, 0.05220527946949005, 0.12767393887043, -0.2315722554922104, 0.008893734775483608, 0.0022689986508339643, 0.07555688917636871, 0.04400276020169258, -0.05258115008473396, -0.020722409710288048, 0.014377165585756302, 0.03523186221718788, 0.03518854081630707, -0.0659489631652832, -0.08548352867364883, -0.03602873161435127, -0.1397741734981537, -0.0027423594146966934, 0.19123457372188568, -0.011390128172934055, -0.10047326236963272, -0.06938472390174866, -0.046599000692367554, 0.07279781997203827, 0.010490624234080315, -0.06807206571102142, -0.01316143199801445, 0.0030420527327805758, 0.04560910165309906, -0.09611757099628448, -0.12242864072322845, -0.11333998292684555, -0.04807877540588379, 0.2234022617340088, 0.0023799154441803694, 0.011028780601918697, -0.03947708010673523, 0.13202856481075287, -0.0515473410487175, -0.08891374617815018, -0.08253102749586105, -0.05498847737908363, -0.16768613457679749, -0.06187475845217705, -0.004980735946446657, -0.2762046754360199, 0.005412174854427576, 0.17001992464065552, 0.12797591090202332, 0.03249417990446091, -0.03864968568086624, 0.06144564971327782, 0.03490198776125908, 0.17803427577018738, -0.025844328105449677, 0.0320306159555912, -0.0006130730616860092, 0.0191043671220541, -0.05224138870835304, -0.07846655696630478, -0.04890032857656479, -0.06547994911670685, 0.0160019900649786, 0.06794798374176025, 0.07556091248989105, 0.07754305750131607, -0.036722950637340546, -0.09494506567716599, 0.15225307643413544, -0.10627049207687378, -0.03351488709449768, 0.035850200802087784, -0.0108505729585886, 0.012801445089280605, 0.11960448324680328, 0.01440687756985426, -0.06062375754117966, 0.04774145409464836, -0.07201351225376129, -0.04630301147699356, -0.0358462929725647, -0.12218885868787766, 0.007006771396845579, -0.035645920783281326, -0.017099350690841675, -0.16502922773361206, -0.09977121651172638, -0.024316059425473213, 0.030427824705839157, 0.014660882763564587, 0.07574184238910675, 0.07720677554607391, 0.0668790265917778, -0.019047651439905167, -0.024733375757932663, 0.05364719405770302, -0.048864565789699554, 0.08652687072753906, 0.0529007650911808, 0.030161868780851364, -0.011616903357207775, 0.06889944523572922, -0.07535895705223083, 0.008897791616618633, -0.18113425374031067, 0.08191473037004471, -0.13615940511226654, 0.06283797323703766, -0.128718763589859, 0.016288617625832558, 0.04129427671432495, 0.049036912620067596, 0.05297231301665306, 0.1275540292263031, -0.10141075402498245, -0.05419782176613808, 0.10527844727039337, -0.1874151974916458, -0.1868072897195816, 0.03366423025727272, 0.02369937300682068, 0.13244463503360748, 0.026577310636639595, 0.07039261609315872, 0.21327757835388184, -0.10973242670297623, -0.09926947951316833, 0.035168640315532684, -0.05444462224841118, -0.08946211636066437, 0.046559497714042664, 0.0259573832154274, -0.06147086247801781, 0.022579321637749672, -0.10816942155361176, 0.04160069674253464, 0.006316604092717171, -0.04377593472599983, -0.04893967881798744, -0.06909310072660446, 0.06070966273546219, 0.01852915622293949, -0.00042831024620682, 0.0723111554980278, -0.12336215376853943, 0.09955072402954102, 0.08366749435663223, -0.041739244014024734, 0.018451573327183723, -0.09685293585062027, 0.08590822666883469, -0.10337023437023163, 0.022999713197350502, -0.18664348125457764, -0.0678686872124672, 0.041580963879823685, 0.00265706330537796, 0.04870900139212608, 0.05446230620145798, 0.06060800701379776, 0.02024073712527752, -0.013678980991244316, -0.06123652309179306, -0.07617702335119247, 0.009501446969807148, -0.04879821464419365, -0.07844636589288712, -0.09378158301115036, -0.08357007801532745, 0.015362084843218327, -0.16080732643604279, 0.05717267096042633, 0.07823112607002258, 0.06367284804582596, 0.05150454118847847, -0.012022871524095535, 0.00022030358377378434, -0.0012541008181869984, -0.03556855022907257, -0.015356806106865406, 0.047209035605192184, 0.026612496003508568, -0.08485188335180283, 0.013595938682556152, -0.09808981418609619, -0.038195621222257614, 0.06109081208705902, -0.0060578566044569016, -0.0614607036113739, -0.07345990091562271, -0.035371795296669006, -0.05034085363149643, -0.05264567956328392, -0.10994256287813187, 0.16912579536437988, 0.0977666899561882, 0.07207430899143219, -0.015249427407979965, -0.008009442128241062, 0.0011715162545442581, 0.029750226065516472, 0.050955530256032944, -0.01318193506449461, 0.06179627403616905, -0.06437720358371735, 0.028727246448397636, 0.13732591271400452, -0.012365351431071758, 0.09241881966590881, -0.023935064673423767, -0.0996348187327385, 0.009383860044181347, 0.02633029595017433, 0.04878951981663704, 0.09690418094396591, -0.1715041995048523, 0.013403715565800667, 0.053220126777887344, -0.009763959795236588, 0.004475044086575508, -0.07284948974847794, 0.025385281071066856, 0.044188618659973145, -0.0020055470522493124, -0.03201267123222351, -0.0062645734287798405, 0.005534233525395393, 0.040563955903053284, 0.020392805337905884, 0.11407562345266342, 0.006416029762476683, -0.04209102317690849, -0.11844217032194138, 0.177937313914299, -0.031857848167419434, -0.20174197852611542, -0.1876877099275589, -0.015500832349061966, -0.025887319818139076, -0.00506872683763504, 0.07909038662910461, -0.0870651826262474, -0.06661534309387207, -0.03280841186642647, 0.13109345734119415, 0.039172764867544174, -0.002467737765982747, -0.02837330289185047, -0.023616405203938484, 0.09147672355175018, -0.14784027636051178, 0.03577606752514839, 0.038749903440475464, -0.0902586281299591, 0.0035483050160109997, 0.07463694363832474, 0.06793210655450821, 0.1274133026599884, -0.013003800995647907, -0.012451931834220886, -0.0200667567551136, 0.17241986095905304, -0.09974092245101929, 0.08720022439956665, 0.1522332727909088, -0.09230901300907135, 0.028632165864109993, 0.1194024384021759, 0.031654395163059235, -0.03214369714260101, 0.04091149568557739, 0.04552922397851944, -0.0434245839715004, -0.2574160695075989, -0.037353429943323135, -0.031182121485471725, -0.014877907931804657, 0.07607316225767136, 0.05519666150212288, 0.04554549977183342, 0.08511492609977722, -0.015300574712455273, -0.00972001627087593, -0.06160682439804077, 0.08022291958332062, 0.12519000470638275, -0.0008383161039091647, 0.1007177010178566, -0.09463662654161453, 0.02542157657444477, 0.07923734188079834, 0.06892195343971252, 0.16595937311649323, -0.04103781282901764, 0.0988227054476738, 0.07490164041519165, -0.02142172120511532, 0.04227982833981514, 0.14362496137619019, -0.056614454835653305, -0.033217161893844604, 0.017649464309215546, -0.053299203515052795, -0.0704040676355362, 0.0807773545384407, 0.07104483246803284, -0.014836105518043041, -0.05844663083553314, -0.08965770900249481, 0.024290209636092186, 0.18649855256080627, 0.047747764736413956, -0.09188908338546753, -0.11942961812019348, -0.007606277707964182, -0.03489867225289345, -0.04493046924471855, -0.0041197058744728565, 0.09139200299978256, -0.09095559269189835, 0.013773161917924881, -0.050952523946762085, 0.10874365270137787, -0.0944325253367424, -0.019030949100852013, 0.05690480396151543, 0.019967008382081985, -0.01778552494943142, 0.0728074312210083, -0.24496202170848846, 0.08754626661539078, 0.0382666252553463, 0.044378798454999924, -0.04759906977415085, 0.048188384622335434, 0.017075637355446815, 0.10590767115354538, 0.0842171236872673, -0.007812052965164185, 0.0762920156121254, -0.160665825009346, -0.039208609610795975, 0.03353211656212807, -0.00919555313885212, -0.07671739161014557, 0.04925639182329178, -0.02791156992316246, 0.0481271967291832, 0.023753851652145386, 0.09737267345190048, -0.1294938623905182, -0.14830906689167023, 0.07267262041568756, -0.009876905009150505, 0.08509080857038498, -0.06576022505760193, -0.07219920307397842, 0.018474260345101357, 0.17335256934165955, -0.1440565288066864, -0.08669175207614899, -0.12483277916908264, -0.051154039800167084, 0.020290439948439598, -0.07551217079162598, 0.030011499300599098, -0.013436451554298401, 0.07352609932422638, -0.026808777824044228, -0.06770841777324677, 0.05836233124136925, -0.08814655989408493, -0.05097959190607071, -0.04944901540875435, 0.010822398588061333, 0.05595355108380318, 0.01819196715950966, 0.0029938227962702513, -0.039446525275707245, 0.02364029735326767, -0.09463157504796982, 0.01789156347513199, 0.012334118597209454, -0.034225184470415115, 0.055203627794981, -0.11102086305618286, 0.009600415825843811, -0.061580266803503036, -0.02336130291223526, 0.14885538816452026, 0.2017858773469925, -0.0621880479156971, 0.045379336923360825, 0.17191027104854584, -0.06760750710964203, -0.2628493905067444, -0.030888497829437256, 0.026909729465842247, 0.014675376005470753, 0.05213496834039688, -0.20869360864162445, 0.12912693619728088, 0.03302017226815224, -0.0014920149696990848, 0.0947226881980896, -0.16203440725803375, -0.09427390247583389, 0.15413407981395721, 0.13336433470249176, -0.019720496609807014, -0.1311774104833603, -0.06155944615602493, 0.03438056260347366, -0.18356578052043915, 0.09380755573511124, -0.060338038951158524, 0.09049661457538605, -0.05512503907084465, 0.012895291671156883, 0.021668296307325363, -0.056597571820020676, 0.061398278921842575, 0.02019781619310379, 0.012020100839436054, -0.05700216442346573, 0.023130057379603386, 0.0901087298989296, -0.06053614243865013, 0.03655961900949478, -0.06874780356884003, 0.05756690353155136, -0.15138709545135498, -0.039573557674884796, -0.04359535872936249, 0.11278785765171051, -0.03934217989444733, -0.09774314612150192, -0.02238517999649048, 0.049110449850559235, 0.002446028869599104, -0.024204649031162262, 0.039977848529815674, -0.06150571256875992, 0.10443532466888428, 0.2359575778245926, 0.0923507809638977, -0.03614337742328644, -0.18339070677757263, -0.014742705971002579, -0.0007865715306252241, 0.14324511587619781, -0.07981256395578384, 0.10024420917034149, 0.10365288704633713, 0.06265261024236679, 0.10497443377971649, 0.04379343241453171, -0.11220679432153702, 0.010247532278299332, 0.0704023465514183, -0.03871676325798035, -0.12532202899456024, -0.01545044220983982, 0.07373650372028351, -0.14122126996517181, 0.044531963765621185, 0.1541222631931305, -0.014446615241467953, -0.012551047839224339, 0.04781709611415863, -0.026470640674233437, -0.05190969631075859, 0.13361984491348267, 0.07534381002187729, 0.09162648022174835, -0.022235024720430374, 0.06949400901794434, 0.08496993780136108, -0.11929365992546082, 0.008528398349881172, -0.015061643905937672, -0.08697959035634995, -0.09900772571563721, -0.038128748536109924, 0.03706864267587662, -0.07016920298337936, -0.03478509187698364, -0.010968751274049282, -0.0421137697994709, 0.013927296735346317, 0.15892933309078217, 0.008915402926504612, 0.0015679625794291496, -0.03348778188228607, 0.03819044679403305, -0.051253318786621094, 0.07854843139648438, -0.059845879673957825, 0.08311618864536285, -0.11992956697940826, -0.029977897182106972, 0.04284545034170151, 0.08295954018831253, -0.05341559275984764, -0.06446807086467743, -0.13572748005390167, -0.00873085018247366, -0.1908271610736847, -0.022117918357253075, -0.029485467821359634, -0.004685878288000822, -0.0010383090702816844, -0.09150084108114243, -0.02190653420984745, 0.034363675862550735, -0.02809937484562397, -0.017892276868224144, 0.028044862672686577, 0.07356400042772293, -0.16374652087688446, -0.028453903272747993, 0.04605558142066002, -0.06475763767957687, 0.0798758715391159, 0.01615314558148384, -0.035845667123794556, 0.04036451876163483, -0.001981814159080386, 0.013378294184803963, -0.03128292039036751, 0.06219301372766495, 0.031192535534501076, -0.09394849836826324, 0.043681543320417404, -0.04697898030281067, -0.025803346186876297, 0.004438797477632761, 0.17782416939735413, -0.08445587009191513, 0.03221135586500168, -0.009920553304255009, -0.009199832566082478, -0.06974401324987411, 0.04199490323662758, 0.07025241106748581, 0.10212409496307373, 0.1311841607093811, -0.06671135872602463, 0.10339540243148804, -0.13281363248825073, -0.0022210991010069847, 0.051904503256082535, 0.025113798677921295, 0.11318571120500565, -0.10026247054338455, -0.02428573928773403, -0.06495647877454758, 0.13981682062149048, -0.09657590836286545, 0.09451546519994736, 0.07649923861026764, -0.05012761801481247, -0.10256986320018768, -0.04795223847031593, 0.1870346963405609, 0.017662890255451202, 0.034689586609601974, 0.022490570321679115, 0.04734852910041809, -0.013865101151168346, 0.04288528114557266, 0.1498081535100937, 0.12312301248311996, -0.08472701907157898, 0.018439780920743942, 0.04725843295454979, -0.07234411686658859, -0.13572871685028076, -0.09095434099435806, -0.020186971873044968, 0.05416906997561455, -0.061484284698963165, 0.15059661865234375, 0.10130743682384491, -0.03138938173651695, 0.09904757142066956, -0.01363754365593195, -0.06823921948671341, -0.0478561595082283, -0.054724693298339844, -0.00359330209903419, -0.1375492662191391, -0.01667047291994095, -0.04644765704870224, -0.04948181286454201, 0.08737599849700928, 0.01595977693796158, 0.006582309957593679, 0.24914564192295074, -0.011236525140702724, -0.018615037202835083, 0.0198378749191761, -0.023308726027607918, -0.012482045218348503, -0.06800349056720734, 0.10548944771289825, 0.05443951115012169, 0.11076357215642929, 0.03295653313398361, 0.06466126441955566, -0.040017154067754745, 0.05286230519413948, 0.003151804907247424, -0.0960150882601738, -0.03390013799071312, 0.024790946394205093, -0.05958488583564758, 0.12205181270837784, 0.020971067249774933, 0.020947620272636414, -0.026076864451169968, 0.19020725786685944, -0.0589614063501358, -0.0981978178024292, -0.12048090994358063, 0.14269623160362244, -0.006560123525559902, -0.003659674432128668, -0.011362452991306782, -0.12232527136802673, -0.062371209263801575, 0.2204606533050537, 0.04835456982254982, -0.011685098521411419, 0.051094070076942444, 0.057275548577308655, 0.014999361708760262, -0.0023215031251311302, 0.09878276288509369, 0.029509784653782845, 0.1133267879486084, -0.030001962557435036, 0.0009373068460263312, -0.01805655099451542, -0.06050407513976097, 0.04909345135092735, 0.14378806948661804, -0.012876519002020359, 0.01111043430864811, -0.08561786264181137, 0.048122845590114594, -0.029799656942486763, -0.20795424282550812, -0.007729596924036741, -0.01706891879439354, -0.09414436668157578, -0.07401524484157562, 0.0649631917476654, -0.05284089595079422, -0.0029856981709599495, 0.014023064635694027, -0.023030409589409828, 0.17177431285381317, 0.0072610462084412575, -0.02127952128648758, -0.078610360622406, 0.09967006742954254, -0.05690905451774597, 0.16229568421840668, -0.02380109764635563, 0.0335937961935997, 0.08155424147844315, 0.05769858881831169, -0.10003969818353653, 0.019517388194799423, 0.03199547529220581, -0.14138226211071014, -0.014577986672520638, 0.08922270685434341, -0.014169956557452679, 0.122259721159935, 0.026302795857191086, -0.22444060444831848, 0.022223694249987602, 0.008272753097116947, -0.027359211817383766, -0.09642148017883301, 0.013516295701265335, -0.050552111119031906, 0.1422426551580429, 0.09577921777963638, 0.001135443802922964, -0.07145015150308609, -0.09381165355443954, 0.028317363932728767, 0.03714993596076965, 0.12953492999076843, -0.052806880325078964, -0.1473483443260193, 0.029474901035428047, -0.050400201231241226, 0.03873343765735626, -0.2919800281524658, -0.04779275134205818, 0.07524077594280243, -0.0452067069709301, 0.005876725073903799, 0.1250552088022232, 0.09623835235834122, 0.06740564107894897, -0.05612420663237572, -0.17291288077831268, -0.016790984198451042, 0.10707110166549683, -0.1897886097431183, -0.0864931270480156 ]
null
null
adapter-transformers
# Adapter `AdapterHub/bert-base-uncased-pf-sst2` for bert-base-uncased An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [sentiment/sst-2](https://adapterhub.ml/explore/sentiment/sst-2/) dataset and includes a prediction head for classification. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("bert-base-uncased") adapter_name = model.load_adapter("AdapterHub/bert-base-uncased-pf-sst2", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
{"language": ["en"], "tags": ["text-classification", "bert", "adapterhub:sentiment/sst-2", "adapter-transformers"]}
text-classification
AdapterHub/bert-base-uncased-pf-sst2
[ "adapter-transformers", "bert", "text-classification", "adapterhub:sentiment/sst-2", "en", "arxiv:2104.08247", "region:us" ]
2022-03-02T23:29:04+00:00
[ "2104.08247" ]
[ "en" ]
TAGS #adapter-transformers #bert #text-classification #adapterhub-sentiment/sst-2 #en #arxiv-2104.08247 #region-us
# Adapter 'AdapterHub/bert-base-uncased-pf-sst2' for bert-base-uncased An adapter for the 'bert-base-uncased' model that was trained on the sentiment/sst-2 dataset and includes a prediction head for classification. This adapter was created for usage with the adapter-transformers library. ## Usage First, install 'adapter-transformers': _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_ Now, the adapter can be loaded and activated like this: ## Architecture & Training The training code for this adapter is available at URL In particular, training configurations for all tasks can be found here. ## Evaluation results Refer to the paper for more information on results. If you use this adapter, please cite our paper "What to Pre-Train on? Efficient Intermediate Task Selection":
[ "# Adapter 'AdapterHub/bert-base-uncased-pf-sst2' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the sentiment/sst-2 dataset and includes a prediction head for classification.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ "TAGS\n#adapter-transformers #bert #text-classification #adapterhub-sentiment/sst-2 #en #arxiv-2104.08247 #region-us \n", "# Adapter 'AdapterHub/bert-base-uncased-pf-sst2' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the sentiment/sst-2 dataset and includes a prediction head for classification.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ 38, 84, 57, 30, 45 ]
[ "passage: TAGS\n#adapter-transformers #bert #text-classification #adapterhub-sentiment/sst-2 #en #arxiv-2104.08247 #region-us \n# Adapter 'AdapterHub/bert-base-uncased-pf-sst2' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the sentiment/sst-2 dataset and includes a prediction head for classification.\n\nThis adapter was created for usage with the adapter-transformers library.## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ -0.06721916049718857, 0.008885465562343597, -0.0032678369898349047, 0.02311023883521557, 0.17421379685401917, 0.008396070450544357, 0.1657990664243698, 0.05718222260475159, 0.07172773033380508, 0.053326014429330826, 0.03245044872164726, 0.08169252425432205, 0.05445817485451698, 0.06008640304207802, 0.008140644989907742, -0.12804323434829712, 0.032021597027778625, 0.005285181570798159, -0.05794182047247887, 0.10991609841585159, 0.10581153631210327, -0.08892801403999329, 0.10426118969917297, 0.03757430240511894, -0.08929362148046494, 0.03835958242416382, -0.00272901589050889, -0.08696910738945007, 0.08298762142658234, 0.06729687750339508, 0.16491027176380157, 0.05051150172948837, 0.036882802844047546, -0.13719697296619415, 0.013102035038173199, 0.07805179804563522, 0.043312061578035355, 0.08325639367103577, -0.01614324003458023, -0.011423340067267418, 0.008933122269809246, -0.02007737196981907, 0.07715602964162827, 0.06544417887926102, -0.08957500010728836, -0.21448230743408203, -0.029450509697198868, 0.10980816930532455, 0.04522809386253357, 0.058692049235105515, -0.006481214892119169, 0.051901064813137054, 0.019087962806224823, 0.041361913084983826, 0.2070104330778122, -0.2170330286026001, -0.0004938383935950696, -0.03210176154971123, 0.025897612795233727, 0.06536939740180969, -0.05445166304707527, 0.004413377493619919, 0.026927728205919266, 0.009986181743443012, 0.04850947856903076, -0.02337302453815937, 0.0063915797509253025, 0.002450233092531562, -0.15043748915195465, -0.03416229411959648, 0.23393413424491882, -0.01212337613105774, -0.11695101857185364, -0.05250061675906181, -0.03490938991308212, 0.09080857783555984, 0.033371083438396454, -0.10308151692152023, 0.006331160664558411, 0.012182921171188354, 0.005188589449971914, -0.09428601711988449, -0.11666785925626755, -0.08651494979858398, -0.08511299639940262, 0.2881346344947815, -0.022600747644901276, 0.047590967267751694, 0.006432925816625357, 0.12523728609085083, -0.022370724007487297, -0.10510663688182831, -0.06994212418794632, -0.06491681188344955, -0.0817573219537735, -0.040521472692489624, -0.032852910459041595, -0.2682228088378906, -0.03547980263829231, 0.11971902847290039, 0.10063501447439194, 0.0375824011862278, -0.06986148655414581, 0.05501655489206314, 0.05839850381016731, 0.20258599519729614, -0.06994730234146118, 0.048556093126535416, -0.051458925008773804, -0.010425892658531666, -0.024655500426888466, -0.10453226417303085, -0.059979695826768875, -0.008575665764510632, 0.03804031014442444, 0.023008888587355614, 0.003231363371014595, 0.09837231785058975, -0.07014741748571396, -0.057508084923028946, 0.06871072947978973, -0.1429884433746338, -0.00256036757491529, 0.012019009329378605, -0.0459672249853611, 0.10425420105457306, 0.14376200735569, -0.014622515067458153, -0.03334988281130791, 0.10819853842258453, -0.07065033912658691, -0.04616966098546982, -0.06774135679006577, -0.13452674448490143, 0.01830318383872509, -0.03162050247192383, -0.03293177857995033, -0.13005656003952026, -0.11524869501590729, -0.006080786697566509, 0.059582654386758804, -0.0036152040120214224, 0.10174331814050674, 0.025709109380841255, 0.02104284055531025, 0.026292473077774048, -0.027184341102838516, -0.05080803111195564, -0.019401289522647858, 0.07209647446870804, 0.015912290662527084, 0.046696797013282776, -0.03606618195772171, 0.07198566943407059, -0.09185497462749481, 0.014950202777981758, -0.23534420132637024, 0.09500899910926819, -0.16179588437080383, 0.04057582467794418, -0.14220337569713593, -0.041550807654857635, -0.007672514300793409, 0.031596407294273376, 0.0719316303730011, 0.10420672595500946, -0.11773623526096344, -0.06550193578004837, 0.05892355740070343, -0.19597779214382172, -0.1049938052892685, 0.06229156628251076, -0.013579387217760086, 0.14894574880599976, 0.06721604615449905, 0.08314694464206696, 0.10614509880542755, -0.07309730350971222, -0.08798719197511673, 0.05015607178211212, -0.07751335948705673, 0.009147816337645054, 0.057292286306619644, 0.012158520519733429, -0.13076193630695343, 0.0335061140358448, -0.11965430527925491, -0.029433811083436012, -0.01371645275503397, -0.026301320642232895, -0.029741967096924782, -0.018448075279593468, 0.11335065960884094, 0.022401943802833557, -0.017942998558282852, 0.026786863803863525, -0.13471724092960358, 0.23307237029075623, 0.04750703647732735, -0.05978449061512947, 0.02926945686340332, -0.12016818672418594, 0.08853404223918915, -0.09127195179462433, 0.007761599961668253, -0.20700226724147797, -0.0034710706677287817, 0.002098405733704567, -0.004250331316143274, 0.073915496468544, 0.08052599430084229, 0.05699068680405617, 0.01022976916283369, 0.013417314738035202, 0.0051851156167685986, -0.06147098168730736, 0.027692945674061775, -0.03929349035024643, -0.10437683016061783, -0.06067459657788277, -0.051627881824970245, 0.013634254224598408, -0.1659316122531891, 0.060333337634801865, 0.12747159600257874, 0.059013545513153076, 0.031874701380729675, -0.04188704118132591, -0.024700656533241272, -0.02309645526111126, -0.04102039709687233, -0.02639460191130638, 0.023539874702692032, 0.0067590586841106415, -0.08455981314182281, 0.015919366851449013, -0.10662157088518143, 0.025369541719555855, 0.07412721961736679, -0.03189060464501381, -0.08677433431148529, -0.01707838661968708, -0.004244938492774963, -0.007578868418931961, -0.013257795944809914, -0.11298558861017227, 0.23376427590847015, 0.06058308109641075, 0.06253885477781296, -0.04121638461947441, -0.000009625008715374861, 0.005579927004873753, -0.02699204534292221, 0.0032148645259439945, 0.00481682363897562, -0.0009716266067698598, -0.11113717406988144, 0.042802587151527405, 0.17222195863723755, -0.015127278864383698, 0.08021421730518341, -0.013183449395000935, -0.10826824605464935, -0.009755612351000309, -0.040821462869644165, 0.03463117405772209, 0.05053262785077095, -0.12254825979471207, -0.009321358054876328, 0.06865829974412918, 0.0031246868893504143, -0.01736300438642502, -0.07899895310401917, 0.05480058491230011, 0.06999068707227707, -0.0007314726826734841, -0.052365873008966446, -0.03846439719200134, -0.012635299004614353, 0.06362877041101456, 0.04882069304585457, 0.11578912287950516, 0.015759283676743507, -0.02720416709780693, -0.09721117466688156, 0.17028114199638367, -0.07299607247114182, -0.2238398939371109, -0.23572653532028198, -0.0724538043141365, -0.019865790382027626, 0.03518885374069214, 0.03907223045825958, -0.09380150586366653, -0.10113859921693802, -0.062295395880937576, 0.16214989125728607, -0.030926203355193138, 0.014133094809949398, 0.05136912688612938, -0.042078275233507156, 0.08680325001478195, -0.15006586909294128, 0.019116491079330444, 0.026667198166251183, -0.08463887870311737, -0.014816385693848133, 0.04082219675183296, 0.05531811714172363, 0.14977875351905823, -0.028765447437763214, -0.00035347489756532013, -0.00895512755960226, 0.09822793304920197, -0.0629258081316948, 0.0450146310031414, 0.13373684883117676, -0.17947238683700562, 0.04688739776611328, 0.08041740953922272, 0.04341118037700653, -0.04815446585416794, 0.055985428392887115, 0.018240440636873245, -0.06394459307193756, -0.268667995929718, -0.005077071487903595, 0.007756536360830069, 0.02422284334897995, 0.08108381181955338, 0.026833195239305496, 0.027570128440856934, 0.09542940557003021, 0.03318295255303383, -0.019137194380164146, -0.007901465520262718, 0.07880982011556625, 0.20095862448215485, -0.03066195547580719, 0.10789033025503159, -0.09601572901010513, 0.013312638737261295, 0.10720228403806686, -0.06308763474225998, 0.11934896558523178, -0.022134076803922653, 0.09223827719688416, 0.0641079917550087, -0.0473971925675869, 0.04150211811065674, 0.14816191792488098, -0.03025590255856514, -0.007292587775737047, -0.015734640881419182, -0.059065062552690506, -0.1029430627822876, 0.061418335884809494, -0.011419538408517838, 0.03155509755015373, -0.04231556877493858, -0.04316115379333496, 0.04093523323535919, 0.13731247186660767, 0.03015456721186638, -0.2181815803050995, -0.13916659355163574, -0.00184239458758384, -0.03772476315498352, -0.07823706418275833, -0.005125291179865599, 0.07143595069646835, -0.07737430930137634, 0.04576796293258667, -0.028332216665148735, 0.08508900552988052, -0.1264548897743225, 0.001553291454911232, 0.02962813526391983, 0.09088978171348572, -0.04045823961496353, 0.09559260308742523, -0.17759035527706146, 0.08958591520786285, 0.024404752999544144, 0.020001966506242752, -0.05273205786943436, 0.03786969929933548, 0.031013766303658485, 0.12286051362752914, 0.07193445414304733, -0.01305488683283329, 0.02531490847468376, -0.140992671251297, -0.07549546658992767, 0.00927012786269188, 0.07760245352983475, -0.10948222875595093, 0.046613533049821854, -0.0440070778131485, 0.05202135071158409, 0.03219810500741005, 0.039727576076984406, -0.10329931229352951, -0.14558185636997223, 0.07984860241413116, -0.02334749698638916, 0.10042282193899155, -0.0717025175690651, -0.11031055450439453, 0.019048210233449936, 0.2446557730436325, -0.16055569052696228, -0.07196298241615295, -0.16178415715694427, 0.015994863584637642, 0.05505611374974251, -0.0627315416932106, 0.02314773201942444, -0.004937761928886175, 0.11579927802085876, 0.017559222877025604, -0.09222343564033508, 0.08383456617593765, -0.057803697884082794, -0.08378106355667114, -0.04556533321738243, 0.03062601573765278, 0.0965954065322876, 0.02638726867735386, -0.02068742737174034, -0.008254478685557842, 0.03455531224608421, -0.10677379369735718, 0.0006584792281500995, 0.08849582821130753, -0.01065079402178526, 0.06625675410032272, -0.04471004754304886, 0.015959706157445908, -0.05401699244976044, 0.022280441597104073, 0.12990759313106537, 0.11919304728507996, -0.06755295395851135, 0.08065821975469589, 0.16470883786678314, -0.07856806367635727, -0.29138651490211487, 0.037370506674051285, 0.054800909012556076, 0.002566277515143156, 0.06066722050309181, -0.2252076268196106, 0.16032208502292633, 0.03120778687298298, -0.014193130657076836, 0.01948126032948494, -0.09840568155050278, -0.10059164464473724, 0.1887948215007782, 0.08690087497234344, 0.06310652941465378, -0.10490868240594864, -0.08248256146907806, -0.019522251561284065, -0.16188578307628632, 0.10303615778684616, -0.032928623259067535, 0.04512738063931465, -0.0018299537478014827, 0.050887949764728546, 0.03886411339044571, -0.024644026532769203, 0.1031007468700409, 0.008053385652601719, 0.03719957172870636, -0.11035573482513428, 0.006754949223250151, 0.09309767931699753, -0.058876730501651764, 0.10325144976377487, -0.0054883346892893314, 0.04436277598142624, -0.09990931302309036, -0.06822028756141663, 0.011031538248062134, 0.09732749313116074, -0.01196633093059063, -0.07454299181699753, -0.06648018211126328, 0.01647059991955757, -0.03586208075284958, -0.05193924158811569, 0.08044885098934174, -0.08058314770460129, 0.043101660907268524, 0.1876465231180191, 0.17305739223957062, 0.01230539008975029, -0.07502193748950958, 0.014004050754010677, -0.019619746133685112, 0.10533487796783447, -0.17739582061767578, 0.07664129883050919, 0.09867250919342041, 0.029080569744110107, 0.13764669001102448, 0.050528738647699356, -0.12115921825170517, -0.00995574425905943, 0.06593023240566254, -0.08633844554424286, -0.05845705047249794, -0.01838708482682705, 0.0827869325876236, -0.18748487532138824, 0.04918132722377777, 0.15957507491111755, -0.05000342056155205, 0.02037324383854866, 0.04208881035447121, 0.0034552919678390026, -0.05797869339585304, 0.08223438262939453, 0.08528320491313934, 0.052321482449769974, -0.03104798123240471, 0.10345324873924255, 0.0879044383764267, -0.09094374626874924, 0.04883566126227379, -0.08229206502437592, -0.07812632620334625, -0.0404752679169178, -0.07889820635318756, 0.07781348377466202, -0.036655131727457047, -0.07982875406742096, -0.0034374650567770004, -0.08689356595277786, 0.020518040284514427, 0.16763830184936523, 0.05156005173921585, 0.024472270160913467, -0.0773380920290947, 0.06248423829674721, -0.056288912892341614, 0.06186899542808533, -0.018512481823563576, 0.06676601618528366, -0.103915736079216, 0.012224526144564152, 0.027006056159734726, 0.037529248744249344, -0.05996882542967796, -0.06316414475440979, -0.11218098551034927, -0.02262778766453266, -0.1486680507659912, -0.021553819999098778, -0.040885068476200104, -0.02151000127196312, 0.03343311324715614, -0.11606725305318832, -0.023014290258288383, 0.01597183756530285, -0.03284100070595741, 0.00995666068047285, 0.04249272495508194, 0.08222633600234985, -0.1803707480430603, -0.01334731001406908, 0.0863194689154625, -0.0663117989897728, 0.0865318700671196, 0.06247466430068016, -0.03467189148068428, 0.04180130735039711, -0.0860762968659401, 0.024585776031017303, 0.009399732574820518, 0.03366856649518013, 0.012794254347682, -0.07946904748678207, 0.00577204255387187, -0.03012995421886444, -0.0051818727515637875, -0.0021309785079210997, 0.1995895951986313, -0.04872777685523033, 0.04803543910384178, 0.0005123754381202161, -0.004406883381307125, -0.05353284999728203, 0.058475058525800705, 0.09520714730024338, 0.1146734431385994, 0.1311618983745575, -0.060221947729587555, 0.0589834600687027, -0.09796857088804245, 0.017023827880620956, 0.0331193208694458, -0.010948185808956623, 0.10214310884475708, -0.13502241671085358, 0.002273706253618002, -0.04619660973548889, 0.18916086852550507, -0.028634969145059586, 0.020243994891643524, 0.06116941571235657, -0.0045577771961688995, -0.049684736877679825, -0.024194935336709023, 0.14602403342723846, 0.03620229288935661, 0.019923008978366852, -0.006320037879049778, 0.022860627621412277, -0.003374972380697727, -0.01987292990088463, 0.1620347499847412, 0.1325342208147049, -0.10865383595228195, 0.04280618205666542, 0.014323524199426174, 0.011296287178993225, -0.12186407297849655, -0.03528968617320061, -0.03503851592540741, 0.07044266909360886, -0.02050206996500492, 0.1741308867931366, 0.06531572341918945, -0.020588131621479988, 0.07110276818275452, -0.006320507265627384, -0.06804606318473816, -0.09590520709753036, -0.10783623158931732, -0.013865766115486622, -0.15557165443897247, -0.021739114075899124, -0.07422246038913727, -0.0017451540334150195, 0.0966278612613678, 0.01220449898391962, 0.010946744121611118, 0.24064086377620697, -0.1113705188035965, -0.0260511115193367, 0.05579610541462898, -0.04300013557076454, -0.05226908624172211, -0.09591729938983917, 0.03853045031428337, 0.048380061984062195, 0.15718692541122437, 0.06083894148468971, 0.05167118087410927, 0.013264436274766922, 0.01969023235142231, -0.010652642697095871, -0.12173211574554443, -0.03997671976685524, 0.037917718291282654, -0.07261461764574051, 0.043655652552843094, 0.010043207556009293, -0.006965651176869869, -0.023648172616958618, 0.16276238858699799, -0.09015148133039474, -0.0435810461640358, -0.13127565383911133, 0.1654108464717865, -0.017270082607865334, 0.03779483959078789, -0.022889969870448112, -0.12780128419399261, -0.03833368048071861, 0.16587582230567932, 0.046675004065036774, -0.019967293366789818, 0.03625015914440155, 0.02972966805100441, 0.025981426239013672, 0.021311437711119652, 0.0884721577167511, -0.0013037698809057474, 0.07821999490261078, 0.003585546975955367, -0.02236802875995636, -0.040028635412454605, -0.045284442603588104, 0.06378661841154099, 0.09773575514554977, -0.013788256794214249, -0.030123114585876465, -0.09151840955018997, 0.07648276537656784, -0.03802189230918884, -0.3094308376312256, -0.005121971480548382, -0.017094070091843605, -0.061215512454509735, -0.034315481781959534, 0.08244457095861435, -0.03129000961780548, 0.004804716911166906, 0.010726324282586575, -0.030302438884973526, 0.17519015073776245, 0.042320217937231064, -0.05846697464585304, -0.004183427896350622, 0.09248831123113632, -0.1052916869521141, 0.14148026704788208, -0.0016257979441434145, 0.03226889669895172, 0.06350002437829971, 0.053458359092473984, -0.07732560485601425, 0.003106991993263364, 0.01837993785738945, -0.08410842716693878, -0.02962588518857956, 0.0824422612786293, -0.011019407771527767, 0.08320223540067673, 0.0580790638923645, -0.20850658416748047, 0.020311012864112854, -0.013367727398872375, -0.09864457696676254, -0.07929738610982895, -0.04268448054790497, -0.08858504891395569, 0.13733316957950592, 0.12752118706703186, -0.0014588229823857546, -0.0638221874833107, -0.08809077739715576, 0.026357540860772133, -0.011380406096577644, 0.06852854788303375, -0.01470866333693266, -0.119708351790905, -0.034553106874227524, -0.016842884942889214, 0.06375562399625778, -0.3119954764842987, -0.03644965589046478, 0.06435918807983398, -0.01678367890417576, 0.014251342043280602, 0.06140867620706558, 0.06365523487329483, 0.06205860525369644, -0.04194038361310959, -0.0896613597869873, 0.01583847962319851, 0.13895492255687714, -0.16527719795703888, -0.025194788351655006 ]
null
null
adapter-transformers
# Adapter `AdapterHub/bert-base-uncased-pf-stsb` for bert-base-uncased An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [sts/sts-b](https://adapterhub.ml/explore/sts/sts-b/) dataset and includes a prediction head for classification. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("bert-base-uncased") adapter_name = model.load_adapter("AdapterHub/bert-base-uncased-pf-stsb", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
{"language": ["en"], "tags": ["text-classification", "bert", "adapterhub:sts/sts-b", "adapter-transformers"]}
text-classification
AdapterHub/bert-base-uncased-pf-stsb
[ "adapter-transformers", "bert", "text-classification", "adapterhub:sts/sts-b", "en", "arxiv:2104.08247", "region:us" ]
2022-03-02T23:29:04+00:00
[ "2104.08247" ]
[ "en" ]
TAGS #adapter-transformers #bert #text-classification #adapterhub-sts/sts-b #en #arxiv-2104.08247 #region-us
# Adapter 'AdapterHub/bert-base-uncased-pf-stsb' for bert-base-uncased An adapter for the 'bert-base-uncased' model that was trained on the sts/sts-b dataset and includes a prediction head for classification. This adapter was created for usage with the adapter-transformers library. ## Usage First, install 'adapter-transformers': _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_ Now, the adapter can be loaded and activated like this: ## Architecture & Training The training code for this adapter is available at URL In particular, training configurations for all tasks can be found here. ## Evaluation results Refer to the paper for more information on results. If you use this adapter, please cite our paper "What to Pre-Train on? Efficient Intermediate Task Selection":
[ "# Adapter 'AdapterHub/bert-base-uncased-pf-stsb' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the sts/sts-b dataset and includes a prediction head for classification.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ "TAGS\n#adapter-transformers #bert #text-classification #adapterhub-sts/sts-b #en #arxiv-2104.08247 #region-us \n", "# Adapter 'AdapterHub/bert-base-uncased-pf-stsb' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the sts/sts-b dataset and includes a prediction head for classification.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ 39, 86, 57, 30, 45 ]
[ "passage: TAGS\n#adapter-transformers #bert #text-classification #adapterhub-sts/sts-b #en #arxiv-2104.08247 #region-us \n# Adapter 'AdapterHub/bert-base-uncased-pf-stsb' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the sts/sts-b dataset and includes a prediction head for classification.\n\nThis adapter was created for usage with the adapter-transformers library.## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ -0.06751745194196701, -0.010997641831636429, -0.0029483523685485125, 0.014848065562546253, 0.1882697343826294, -0.0008821141091175377, 0.16652396321296692, 0.04079752415418625, 0.05256408452987671, 0.04807468131184578, 0.0402386374771595, 0.07604765892028809, 0.041586436331272125, 0.0725584477186203, 0.007748839445412159, -0.09559990465641022, 0.027218924835324287, 0.017527230083942413, -0.06830243021249771, 0.1231386587023735, 0.10349947959184647, -0.08809719979763031, 0.10044834017753601, 0.023358194157481194, -0.09770406782627106, 0.04365722835063934, 0.0077303312718868256, -0.09075713902711868, 0.08990122377872467, 0.07380475103855133, 0.1608675718307495, 0.04860621690750122, 0.03753054514527321, -0.13562774658203125, 0.008966903202235699, 0.09609714895486832, 0.04288575425744057, 0.07589191943407059, -0.01788778230547905, 0.0021579554304480553, 0.006906292401254177, -0.019145146012306213, 0.0772932693362236, 0.06399443000555038, -0.09347321838140488, -0.2304478883743286, -0.029430720955133438, 0.07884351164102554, 0.025735093280673027, 0.07786590605974197, -0.004396059084683657, 0.07363736629486084, 0.017787929624319077, 0.05456874147057533, 0.18582123517990112, -0.23631402850151062, 0.00871988758444786, -0.02865401655435562, 0.037974704056978226, 0.08895561099052429, -0.03822609409689903, 0.018504125997424126, 0.021716298535466194, 0.010724491439759731, 0.06739827245473862, -0.02772080898284912, -0.007042655721306801, 0.022765610367059708, -0.15989674627780914, -0.03272251412272453, 0.2773466408252716, -0.0201768446713686, -0.10234002023935318, -0.03991100937128067, -0.03152983635663986, 0.08590677380561829, 0.028860731050372124, -0.1111161857843399, 0.0001487118424847722, 0.01044714730232954, -0.00009171924466500059, -0.08370362222194672, -0.1105850413441658, -0.07986020296812057, -0.08813678473234177, 0.2614961266517639, -0.024727575480937958, 0.03639495000243187, -0.008606525138020515, 0.1259213387966156, -0.010426316410303116, -0.09710826724767685, -0.06114491447806358, -0.0674944743514061, -0.09695059061050415, -0.04799772799015045, -0.030207538977265358, -0.31202805042266846, -0.04491828382015228, 0.11612660437822342, 0.11728521436452866, 0.028330117464065552, -0.06038478761911392, 0.06325030326843262, 0.04199196398258209, 0.18750013411045074, -0.07576842606067657, 0.04215091094374657, -0.051801521331071854, -0.018769174814224243, -0.04122127220034599, -0.11455969512462616, -0.05905550345778465, -0.01707439310848713, 0.03746376559138298, 0.012673582881689072, 0.013052930124104023, 0.09136049449443817, -0.057534825056791306, -0.04879140108823776, 0.038997240364551544, -0.14142870903015137, -0.007953230291604996, 0.0056290156207978725, -0.033507298678159714, 0.1034284308552742, 0.1576065868139267, -0.02989073283970356, -0.04353168606758118, 0.14357981085777283, -0.07703745365142822, -0.045391637831926346, -0.058427952229976654, -0.13459889590740204, 0.0026010419242084026, -0.03286018595099449, -0.03976505249738693, -0.12890063226222992, -0.08694444596767426, -0.01611017994582653, 0.04932960122823715, 0.014307643286883831, 0.12588870525360107, 0.027904042974114418, 0.024981681257486343, 0.03457724675536156, -0.03808629885315895, -0.06957890093326569, -0.021108364686369896, 0.07438845187425613, 0.01311076246201992, 0.020569318905472755, -0.04184405505657196, 0.07237333804368973, -0.07984410971403122, 0.010461282916367054, -0.21989375352859497, 0.08884080499410629, -0.1523875594139099, 0.03831939026713371, -0.13485963642597198, -0.03894590586423874, -0.007692031562328339, 0.05378466472029686, 0.06948857009410858, 0.10190864652395248, -0.11030907183885574, -0.06356093287467957, 0.07241380214691162, -0.17161230742931366, -0.10984279960393906, 0.057258933782577515, -0.01652655005455017, 0.13322775065898895, 0.06312566995620728, 0.05926079675555229, 0.13292044401168823, -0.042098790407180786, -0.07650426030158997, 0.063713937997818, -0.07122346013784409, -0.00430051377043128, 0.04650053754448891, 0.00002625562046887353, -0.13940876722335815, 0.031475719064474106, -0.13264191150665283, -0.028649738058447838, -0.013551604002714157, -0.019194521009922028, -0.04167137295007706, -0.008151321671903133, 0.10915619879961014, 0.02162620797753334, -0.0027245257515460253, 0.032692551612854004, -0.1337725669145584, 0.25625136494636536, 0.0497145876288414, -0.062061846256256104, 0.030818628147244453, -0.11573754996061325, 0.07500003278255463, -0.10256174951791763, 0.009621300734579563, -0.2305576354265213, -0.0003563736972864717, -0.01048477552831173, -0.003056066110730171, 0.07550980895757675, 0.08123621344566345, 0.06654774397611618, 0.013585064560174942, 0.012643896974623203, 0.01960238441824913, -0.050401851534843445, 0.027862107381224632, -0.038223788142204285, -0.10411221534013748, -0.05993758141994476, -0.049773454666137695, 0.02090245671570301, -0.18580108880996704, 0.05831073597073555, 0.12914375960826874, 0.048698656260967255, 0.029692918062210083, -0.04486566409468651, -0.03861500322818756, -0.01538289524614811, -0.0490851067006588, -0.02584061212837696, 0.018556125462055206, 0.0032408186234533787, -0.09320909529924393, 0.005286809988319874, -0.1273353546857834, 0.037972722202539444, 0.07945893704891205, -0.02829120121896267, -0.0957597941160202, -0.015474330633878708, 0.003984429407864809, -0.010077569633722305, 0.005530974827706814, -0.12256896495819092, 0.20939908921718597, 0.06300903856754303, 0.07299154996871948, -0.0395280160009861, -0.011166863143444061, 0.0048657990992069244, -0.013087733648717403, 0.011189727112650871, 0.008386846631765366, 0.01851317286491394, -0.11006411164999008, 0.05287013202905655, 0.1654139757156372, 0.004610203206539154, 0.07506122440099716, -0.015735294669866562, -0.11046121269464493, -0.002360706450417638, -0.02822241559624672, 0.04444485530257225, 0.05307513475418091, -0.11259796470403671, -0.013728812336921692, 0.07070920616388321, 0.007826756685972214, -0.013553482480347157, -0.07308849692344666, 0.05131417512893677, 0.08289644867181778, 0.008893745951354504, -0.051436230540275574, -0.03637892007827759, -0.012756722047924995, 0.06533683836460114, 0.04291915521025658, 0.10100418329238892, 0.011094889603555202, -0.02540833316743374, -0.1012795940041542, 0.17533093690872192, -0.08650238066911697, -0.2386026680469513, -0.2504773437976837, -0.08146312832832336, -0.028572317212820053, 0.037694621831178665, 0.04054393991827965, -0.08532515913248062, -0.10892746597528458, -0.07088300585746765, 0.13747572898864746, -0.038040272891521454, 0.009748511016368866, 0.015410613268613815, -0.03276390954852104, 0.08549123257398605, -0.1617799550294876, 0.033277448266744614, 0.03373683616518974, -0.06341864168643951, -0.0171438567340374, 0.04484303295612335, 0.06980860233306885, 0.15957029163837433, -0.01795423962175846, -0.004571642726659775, 0.0012668315321207047, 0.07852067798376083, -0.08258258551359177, 0.03454260528087616, 0.12387778609991074, -0.1764959841966629, 0.03651455417275429, 0.06285978853702545, 0.048435136675834656, -0.04870421811938286, 0.0621684305369854, 0.0011672351974993944, -0.06565453857183456, -0.2671045958995819, -0.016210343688726425, -0.006314238999038935, -0.005126011557877064, 0.07874482125043869, 0.03826587647199631, 0.032798949629068375, 0.08285364508628845, 0.0315750390291214, -0.006520760711282492, 0.004482381045818329, 0.07346750050783157, 0.18619917333126068, -0.02702680230140686, 0.1128268912434578, -0.1100676953792572, 0.007647474762052298, 0.10932713001966476, -0.08329657465219498, 0.13049520552158356, -0.022259287536144257, 0.09307540953159332, 0.07185252010822296, -0.06854777783155441, 0.04592163488268852, 0.15128253400325775, -0.02290160022675991, -0.004335871897637844, -0.005531467963010073, -0.06451442092657089, -0.09421595185995102, 0.04581254720687866, -0.03533095121383667, 0.026378566399216652, -0.03234407305717468, -0.04932303726673126, 0.03971891105175018, 0.11957754194736481, 0.025434209033846855, -0.22390279173851013, -0.12865068018436432, -0.005769024137407541, -0.020425474271178246, -0.09034894406795502, -0.00858769379556179, 0.09607942402362823, -0.06610945612192154, 0.033202026039361954, -0.026874369010329247, 0.08699961751699448, -0.11479136347770691, 0.004017471335828304, 0.05278307572007179, 0.10555252432823181, -0.05055022984743118, 0.09401340037584305, -0.22749172151088715, 0.07760818302631378, 0.028094006702303886, 0.010714114643633366, -0.04737628996372223, 0.04567013308405876, 0.014273053035140038, 0.16165614128112793, 0.0678769052028656, -0.0036132456734776497, 0.004846439231187105, -0.1324589103460312, -0.06577432155609131, 0.00044341650209389627, 0.09810514003038406, -0.10817823559045792, 0.036257728934288025, -0.05321928858757019, 0.045235272496938705, 0.04308738559484482, 0.011808675713837147, -0.08056310564279556, -0.16875271499156952, 0.0844237208366394, -0.028032660484313965, 0.08973001688718796, -0.07180626690387726, -0.09360792487859726, -0.009333504363894463, 0.22258570790290833, -0.1731453835964203, -0.05415390431880951, -0.16000348329544067, 0.007047797087579966, 0.051626160740852356, -0.049016501754522324, 0.03200431540608406, 0.0044103325344622135, 0.08979055285453796, 0.023659955710172653, -0.09459797292947769, 0.08817088603973389, -0.04396861046552658, -0.07148263603448868, -0.053815752267837524, 0.02532557211816311, 0.08989768475294113, 0.023107094690203667, -0.02814960852265358, -0.008381560444831848, 0.03549157455563545, -0.10140683501958847, -0.028957778587937355, 0.10104279220104218, -0.003234516829252243, 0.0759444609284401, -0.058768320828676224, 0.027386929839849472, -0.051104262471199036, 0.019642580300569534, 0.1451845020055771, 0.09506723284721375, -0.08095351606607437, 0.07872013747692108, 0.14903444051742554, -0.08006619662046432, -0.2846280038356781, 0.06306469440460205, 0.030999545007944107, 0.005490876734256744, 0.052213042974472046, -0.21619994938373566, 0.15313184261322021, 0.039508968591690063, -0.000030028153560124338, 0.06666494905948639, -0.12013334035873413, -0.1046525165438652, 0.1943776160478592, 0.08293260633945465, 0.052724212408065796, -0.10724223405122757, -0.08347265422344208, -0.030539177358150482, -0.14903566241264343, 0.08108876645565033, -0.038599997758865356, 0.0451546385884285, 0.0010280340211465955, 0.0004967991844750941, 0.039184775203466415, -0.030007600784301758, 0.0978214293718338, 0.01478306483477354, 0.05141180753707886, -0.11728169769048691, 0.058381590992212296, 0.10248588770627975, -0.056693073362112045, 0.1007368192076683, -0.015346148051321507, 0.043446265161037445, -0.12131520360708237, -0.0584963858127594, 0.020238511264324188, 0.09435766190290451, -0.015595311298966408, -0.06530579179525375, -0.0670178160071373, 0.0003082604380324483, -0.03943270817399025, -0.06021849066019058, 0.09615384787321091, -0.08948963135480881, 0.06423621624708176, 0.149713933467865, 0.17623841762542725, -0.00045260481419973075, -0.10231858491897583, 0.014674686826765537, -0.009877992793917656, 0.10079685598611832, -0.1742992103099823, 0.07442058622837067, 0.10650727152824402, 0.02897658757865429, 0.13404245674610138, 0.05475454032421112, -0.11559631675481796, -0.02711634524166584, 0.07548098266124725, -0.0985637903213501, -0.054546307772397995, -0.01692270301282406, 0.06952518969774246, -0.16515208780765533, 0.06117643043398857, 0.16547878086566925, -0.0418378971517086, 0.030299892649054527, 0.04461462050676346, 0.006695705931633711, -0.0580967515707016, 0.0921054258942604, 0.0970381498336792, 0.05794667452573776, -0.030582698062062263, 0.09672418981790543, 0.10097440332174301, -0.07011200487613678, 0.03811243176460266, -0.07494799792766571, -0.09559553116559982, -0.03945532068610191, -0.060339611023664474, 0.05158602446317673, -0.009148579090833664, -0.07566414773464203, 0.007597297430038452, -0.09837877005338669, 0.02810845896601677, 0.17640434205532074, 0.03981425240635872, 0.027993101626634598, -0.0815453827381134, 0.04080682247877121, -0.06693295389413834, 0.05548105761408806, -0.03807190805673599, 0.08462357521057129, -0.10609926283359528, 0.030627958476543427, 0.02356880158185959, 0.023706655949354172, -0.06098106503486633, -0.06333209574222565, -0.11292116343975067, -0.00669841980561614, -0.1386914849281311, -0.04571385681629181, -0.026628632098436356, -0.026613282039761543, 0.03165309503674507, -0.1047251895070076, -0.022130373865365982, 0.014968394301831722, -0.032608311623334885, 0.006158213596791029, 0.05462764948606491, 0.07388903945684433, -0.16998594999313354, -0.004397094249725342, 0.07282605767250061, -0.07435047626495361, 0.08225895464420319, 0.061442527920007706, -0.044160306453704834, 0.0579083152115345, -0.06599710136651993, 0.011846230365335941, 0.005351516418159008, 0.05822038650512695, 0.004608802497386932, -0.0493120476603508, 0.015640683472156525, -0.022825781255960464, -0.00980467814952135, 0.008336021564900875, 0.18399246037006378, -0.04839325696229935, 0.046650480479002, -0.0009400457493029535, 0.01148586068302393, -0.054267264902591705, 0.05421774461865425, 0.09171458333730698, 0.123796246945858, 0.13515762984752655, -0.054203812032938004, 0.05503382161259651, -0.09672606736421585, 0.008281663991510868, 0.029591821134090424, -0.032905228435993195, 0.11560354381799698, -0.13286803662776947, 0.010731630027294159, -0.041480857878923416, 0.19021275639533997, -0.044436123222112656, 0.04259972646832466, 0.060197122395038605, -0.025529367849230766, -0.05208217725157738, -0.025573857128620148, 0.15328368544578552, 0.04696686193346977, 0.015070520341396332, -0.003666708478704095, 0.037571102380752563, -0.006682222709059715, -0.03985631465911865, 0.15062767267227173, 0.1323147714138031, -0.12770970165729523, 0.04222796857357025, 0.024618705734610558, -0.001453119097277522, -0.10041163861751556, -0.03780471161007881, -0.04189581051468849, 0.07157810777425766, -0.024651002138853073, 0.15649648010730743, 0.06751379370689392, -0.013257733546197414, 0.07715097814798355, -0.009157163091003895, -0.0690172016620636, -0.09197253733873367, -0.06925557553768158, -0.005820218939334154, -0.1570500135421753, -0.025021640583872795, -0.0659063458442688, -0.009831562638282776, 0.11318100988864899, 0.023608561605215073, 0.009546821005642414, 0.238830104470253, -0.10686700791120529, -0.026645414531230927, 0.050411857664585114, -0.04839057847857475, -0.04412621259689331, -0.10470033437013626, 0.03973217308521271, 0.05060918256640434, 0.14338791370391846, 0.061565905809402466, 0.05106272175908089, 0.02460028976202011, 0.023338017985224724, -0.0044425358064472675, -0.11332330107688904, -0.03425629064440727, 0.04309689253568649, -0.09567763656377792, 0.031913042068481445, 0.01769658364355564, -0.017091291025280952, -0.026839369907975197, 0.17089051008224487, -0.08749891072511673, -0.05394509807229042, -0.11910679191350937, 0.1658484935760498, 0.012545442208647728, 0.04487653076648712, -0.03213408589363098, -0.12605641782283783, -0.04002133756875992, 0.1527271568775177, 0.06090496480464935, -0.02194712497293949, 0.04550933092832565, 0.03308195248246193, 0.025253592059016228, 0.022514447569847107, 0.1052030473947525, 0.0037352261133491993, 0.09957235306501389, 0.02434576489031315, -0.03481517359614372, -0.03766633942723274, -0.028490982949733734, 0.08103138953447342, 0.10682019591331482, -0.00898937787860632, -0.027086371555924416, -0.08101935684680939, 0.07461459934711456, -0.029024042189121246, -0.28669998049736023, -0.02807467430830002, -0.010652587749063969, -0.05702267587184906, -0.04205910116434097, 0.08145853877067566, -0.053505975753068924, -0.017189910635352135, 0.021741678938269615, -0.03431105613708496, 0.1464540809392929, 0.05019185319542885, -0.0593058280646801, -0.010515895672142506, 0.09059733897447586, -0.11094295233488083, 0.13438045978546143, -0.00007844637002563104, 0.022414101287722588, 0.05857930704951286, 0.055027712136507034, -0.07314492017030716, 0.009256016463041306, 0.005995988845825195, -0.0735362246632576, -0.009882040321826935, 0.05659310892224312, -0.01332576759159565, 0.0939980298280716, 0.047405119985342026, -0.19855782389640808, 0.02807868830859661, -0.026645226404070854, -0.0951140895485878, -0.07739755511283875, -0.05575791001319885, -0.07466400414705276, 0.13761548697948456, 0.1283133327960968, 0.00007107481360435486, -0.06403430551290512, -0.0911388173699379, 0.018264571204781532, -0.02208689972758293, 0.08085066080093384, -0.005170066840946674, -0.1156282052397728, -0.0332360714673996, -0.050432201474905014, 0.05564619600772858, -0.31676921248435974, -0.03232508897781372, 0.07970894128084183, -0.031485430896282196, 0.01934334635734558, 0.06495863944292068, 0.07749846577644348, 0.07383176684379578, -0.06372198462486267, -0.0784551128745079, 0.01696733757853508, 0.14669953286647797, -0.17712263762950897, -0.023592114448547363 ]
null
null
adapter-transformers
# Adapter `AdapterHub/bert-base-uncased-pf-swag` for bert-base-uncased An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [swag](https://huggingface.co/datasets/swag/) dataset and includes a prediction head for multiple choice. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("bert-base-uncased") adapter_name = model.load_adapter("AdapterHub/bert-base-uncased-pf-swag", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-what-to-pre-train-on, title={What to Pre-Train on? Efficient Intermediate Task Selection}, author={Clifton Poth and Jonas Pfeiffer and Andreas Rücklé and Iryna Gurevych}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (EMNLP)", month = nov, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/2104.08247", pages = "to appear", } ```
{"language": ["en"], "tags": ["bert", "adapter-transformers"], "datasets": ["swag"]}
null
AdapterHub/bert-base-uncased-pf-swag
[ "adapter-transformers", "bert", "en", "dataset:swag", "arxiv:2104.08247", "region:us" ]
2022-03-02T23:29:04+00:00
[ "2104.08247" ]
[ "en" ]
TAGS #adapter-transformers #bert #en #dataset-swag #arxiv-2104.08247 #region-us
# Adapter 'AdapterHub/bert-base-uncased-pf-swag' for bert-base-uncased An adapter for the 'bert-base-uncased' model that was trained on the swag dataset and includes a prediction head for multiple choice. This adapter was created for usage with the adapter-transformers library. ## Usage First, install 'adapter-transformers': _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_ Now, the adapter can be loaded and activated like this: ## Architecture & Training The training code for this adapter is available at URL In particular, training configurations for all tasks can be found here. ## Evaluation results Refer to the paper for more information on results. If you use this adapter, please cite our paper "What to Pre-Train on? Efficient Intermediate Task Selection":
[ "# Adapter 'AdapterHub/bert-base-uncased-pf-swag' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the swag dataset and includes a prediction head for multiple choice.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ "TAGS\n#adapter-transformers #bert #en #dataset-swag #arxiv-2104.08247 #region-us \n", "# Adapter 'AdapterHub/bert-base-uncased-pf-swag' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the swag dataset and includes a prediction head for multiple choice.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ 29, 80, 57, 30, 45 ]
[ "passage: TAGS\n#adapter-transformers #bert #en #dataset-swag #arxiv-2104.08247 #region-us \n# Adapter 'AdapterHub/bert-base-uncased-pf-swag' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the swag dataset and includes a prediction head for multiple choice.\n\nThis adapter was created for usage with the adapter-transformers library.## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ -0.059914086014032364, -0.024620357900857925, -0.0011084262514486909, 0.019965821877121925, 0.17971013486385345, 0.037087421864271164, 0.12657104432582855, 0.032256849110126495, 0.0726638212800026, 0.02201336994767189, 0.0628814548254013, 0.06951986998319626, 0.04736171290278435, 0.04377919062972069, 0.014134307391941547, -0.10275115817785263, 0.01654268242418766, 0.01795332133769989, -0.03546364977955818, 0.08505791425704956, 0.09756655991077423, -0.09595075249671936, 0.07597240060567856, 0.017812054604291916, -0.08511370420455933, 0.03155391663312912, -0.05672474578022957, -0.05321892350912094, 0.07108820229768753, 0.05620663985610008, 0.16340652108192444, 0.05147683992981911, 0.038400523364543915, -0.12796838581562042, 0.010617531836032867, 0.054534535855054855, 0.03535763546824455, 0.06369975209236145, 0.010278821922838688, 0.0364946648478508, -0.07034828513860703, 0.030469436198472977, 0.04513166472315788, 0.045864276587963104, -0.08844879269599915, -0.20582431554794312, -0.028753988444805145, 0.10304435342550278, 0.048538174480199814, 0.07679987698793411, -0.006973072420805693, 0.05025200918316841, -0.009998061694204807, 0.03239503875374794, 0.13620004057884216, -0.2374705970287323, -0.004206372424960136, -0.018489830195903778, 0.07789020240306854, 0.05769339203834534, -0.04164571687579155, -0.010152860544621944, 0.013855143450200558, 0.03935931622982025, 0.029079541563987732, -0.04452233761548996, -0.07319819182157516, -0.003316015936434269, -0.17559118568897247, 0.0003109044337179512, 0.27116599678993225, -0.025319429114460945, -0.07589848339557648, -0.03191021829843521, -0.0185395460575819, 0.1341070830821991, 0.01267869584262371, -0.11387890577316284, 0.016404321417212486, 0.005974516272544861, 0.019130399450659752, -0.12301986664533615, -0.091844841837883, -0.09277239441871643, -0.048901237547397614, 0.28356149792671204, -0.013435573317110538, 0.023348379880189896, 0.00750760966911912, 0.12167299538850784, -0.048188868910074234, -0.10453302413225174, -0.018136976286768913, -0.05822095274925232, -0.05748530849814415, -0.05990711599588394, -0.043876104056835175, -0.26728445291519165, 0.0028061000630259514, 0.17859315872192383, 0.11886778473854065, 0.02955550327897072, -0.04685187339782715, 0.06894166767597198, 0.06548124551773071, 0.1383393108844757, -0.12474419176578522, -0.020424796268343925, -0.04031697288155556, 0.011692839674651623, -0.051629941910505295, -0.09184886515140533, -0.10632690042257309, -0.028681118041276932, 0.03347482159733772, 0.004449591040611267, 0.0663694515824318, 0.0775662437081337, -0.034207966178655624, -0.09803932905197144, 0.09234263747930527, -0.1170029565691948, -0.0010645391885191202, -0.0008213815744966269, -0.008281180635094643, 0.058958254754543304, 0.13202562928199768, 0.01906590163707733, -0.04009930044412613, 0.09724222123622894, -0.06843943148851395, -0.04784008860588074, -0.07290960848331451, -0.14616356790065765, 0.019778786227107048, -0.048455704003572464, -0.009998371824622154, -0.13758237659931183, -0.14513561129570007, -0.024646852165460587, 0.09423532336950302, -0.0030012994538992643, 0.08306921273469925, 0.04080259054899216, 0.04208104684948921, 0.008013001643121243, -0.035334356129169464, 0.04228076711297035, -0.019173434004187584, 0.06731410324573517, 0.0035610334016382694, 0.03167470917105675, -0.050831329077482224, 0.08625069260597229, -0.08167130500078201, 0.022304680198431015, -0.17615178227424622, 0.08814755082130432, -0.14929988980293274, 0.030940590426325798, -0.11505094915628433, 0.02449757233262062, -0.03882814198732376, 0.04312359541654587, 0.08456379175186157, 0.10213914513587952, -0.11364003270864487, -0.03788204863667488, 0.01573988050222397, -0.19943751394748688, -0.11568684875965118, 0.04351862892508507, -0.006161936093121767, 0.14913691580295563, 0.034347113221883774, 0.12538079917430878, 0.08923318982124329, -0.08000101149082184, -0.07970279455184937, 0.08636151254177094, -0.0788150504231453, -0.03568068519234657, 0.07960566133260727, 0.00040144973900169134, -0.1989089995622635, 0.008607955649495125, -0.15208661556243896, 0.03920317068696022, -0.01981434039771557, -0.03780354559421539, -0.017720289528369904, -0.04926081374287605, 0.06906978040933609, 0.032033298164606094, -0.006822662893682718, 0.06227080523967743, -0.12932376563549042, 0.2425648272037506, 0.04737044870853424, -0.06252144277095795, 0.014043759554624557, -0.08589261025190353, 0.1182960644364357, -0.1455795168876648, 0.02552187070250511, -0.1781187504529953, -0.014877534471452236, 0.005308313760906458, 0.037718337029218674, 0.04158853739500046, 0.06941883265972137, 0.0767364427447319, 0.039056405425071716, -0.0059035951271653175, -0.01627260074019432, -0.04205726087093353, 0.04751478508114815, -0.04595199227333069, -0.1261865198612213, -0.08977510780096054, -0.0721840187907219, 0.006977821234613657, -0.17654575407505035, 0.042637214064598083, 0.016148747876286507, 0.06896976381540298, 0.012018982321023941, -0.030446503311395645, -0.02260575443506241, -0.008809571154415607, -0.031135449185967445, -0.03696689009666443, 0.047805603593587875, 0.027474066242575645, -0.06280869245529175, 0.012846539728343487, -0.0669654831290245, -0.035832762718200684, 0.07813069969415665, -0.0835070013999939, -0.09800071269273758, -0.03876505419611931, 0.01755950041115284, -0.061281103640794754, -0.010697076097130775, -0.11270458251237869, 0.20517514646053314, 0.05282488092780113, 0.04973343014717102, -0.026620451360940933, 0.010959629900753498, -0.01630932278931141, -0.029670948162674904, 0.01214702520519495, 0.004243073984980583, 0.0460815504193306, -0.08240051567554474, 0.07188936322927475, 0.18661458790302277, -0.06278513371944427, 0.09730853885412216, -0.030412720516324043, -0.10776765644550323, -0.009007802233099937, -0.027210723608732224, 0.02797573246061802, 0.07772687822580338, -0.1606079488992691, 0.001325269928202033, 0.07235389202833176, -0.013718347996473312, 0.03085801936686039, -0.053232595324516296, 0.0490981824696064, 0.07035316526889801, 0.022506507113575935, 0.0024208957329392433, -0.03989709913730621, -0.049015626311302185, 0.027597231790423393, 0.0395953506231308, 0.11640668660402298, 0.041799332946538925, -0.0020171576179564, -0.08274457603693008, 0.16829344630241394, -0.04509977251291275, -0.18701714277267456, -0.1783834546804428, -0.11110072582960129, 0.012614758685231209, 0.016587259247899055, 0.031766023486852646, -0.045726221054792404, -0.08600915223360062, -0.020874151960015297, 0.12192731350660324, -0.024380473420023918, -0.00855618342757225, 0.01824246346950531, -0.08250035345554352, 0.08326108753681183, -0.1245403066277504, 0.040278565138578415, 0.045474421232938766, -0.03740684688091278, -0.012131650000810623, 0.06490544229745865, 0.09773124754428864, 0.1325990855693817, -0.025570014491677284, 0.007759037893265486, 0.029546014964580536, 0.13252942264080048, -0.05233202502131462, 0.03428854048252106, 0.09600856900215149, -0.17257367074489594, 0.026196885854005814, 0.1066213995218277, 0.04303549975156784, -0.012555022723972797, 0.007800749968737364, 0.023799775168299675, -0.04250159487128258, -0.23460166156291962, -0.024455467239022255, 0.009128741919994354, -0.017834195867180824, 0.10448209941387177, 0.025701452046632767, -0.005170799326151609, 0.11936893314123154, 0.04954923316836357, 0.007917233742773533, -0.0609084814786911, 0.06603463739156723, 0.16528603434562683, -0.023427963256835938, 0.11324330419301987, -0.05674836412072182, 0.020670300349593163, 0.08193996548652649, -0.044067978858947754, 0.11292018741369247, -0.008058277890086174, 0.07033351808786392, 0.06038445979356766, -0.04405650123953819, 0.04235604405403137, 0.1496352255344391, -0.0783349797129631, -0.02598191611468792, -0.007970469072461128, -0.04425220564007759, -0.041481535881757736, 0.04403087496757507, 0.009270605631172657, -0.01797497645020485, -0.022350819781422615, -0.060982320457696915, 0.030891140922904015, 0.09484528005123138, 0.013632341288030148, -0.18141771852970123, -0.07289552688598633, -0.010461216792464256, -0.024228014051914215, -0.09687371551990509, -0.010120421648025513, 0.1022733673453331, -0.056544531136751175, 0.013856188394129276, -0.03273502737283707, 0.10070020705461502, -0.10496038943529129, -0.005423511378467083, 0.04579770937561989, 0.11389059573411942, -0.03416856378316879, 0.12220295518636703, -0.1961638182401657, 0.04486436769366264, 0.04053220525383949, 0.025149313732981682, -0.05188719555735588, 0.0275108702480793, 0.015405464917421341, 0.11642525345087051, 0.07910922169685364, 0.0011392560554668307, 0.08913587033748627, -0.09336859732866287, -0.07757963985204697, 0.009799772873520851, 0.028173107653856277, -0.1010868176817894, 0.03137641027569771, -0.014121728017926216, 0.057193316519260406, 0.03170427680015564, 0.05024613440036774, -0.142985001206398, -0.14958077669143677, 0.08070467412471771, -0.019499044865369797, 0.1385151892900467, -0.03937184438109398, -0.10706024616956711, 0.003907026723027229, 0.1983267217874527, -0.12709394097328186, -0.05469154193997383, -0.142727792263031, 0.01908695138990879, 0.07558074593544006, -0.041338276118040085, 0.0362149178981781, -0.004397220443934202, 0.05760892480611801, -0.040530428290367126, -0.05763604864478111, 0.0761452168226242, -0.10058601945638657, -0.03724828362464905, -0.04253383353352547, -0.0330280102789402, 0.10690967738628387, 0.03287719190120697, -0.02064218372106552, -0.007243426516652107, 0.007746761664748192, -0.10732326656579971, -0.020553067326545715, 0.007182655390352011, 0.004099157638847828, 0.029081260785460472, -0.08089585602283478, 0.0406009666621685, -0.036583952605724335, 0.012834835797548294, 0.16627992689609528, 0.14423446357250214, -0.07077004760503769, 0.05856494605541229, 0.23256915807724, -0.0743931233882904, -0.31908005475997925, -0.01068625133484602, 0.06223490834236145, -0.005025237798690796, 0.026184897869825363, -0.2590577304363251, 0.18933479487895966, 0.03987181559205055, -0.009283442050218582, 0.07914937287569046, -0.07387658953666687, -0.08538420498371124, 0.2422545999288559, 0.07854761928319931, 0.07093506306409836, -0.1419038474559784, -0.09502232819795609, -0.0030480339191854, -0.09748286008834839, 0.11463720351457596, -0.031235262751579285, 0.06027437746524811, 0.0024763180408626795, -0.019736766815185547, 0.02749915048480034, -0.04820151999592781, 0.10916372388601303, 0.032415833324193954, 0.006031460594385862, -0.09265453368425369, 0.007432692218571901, 0.057390253990888596, -0.037462376058101654, 0.0923861488699913, -0.021418092772364616, 0.028068944811820984, -0.0950322225689888, -0.06998969614505768, -0.012310236692428589, 0.12203849107027054, 0.000788370962254703, -0.09608227759599686, -0.006285330280661583, 0.030430810526013374, -0.039718471467494965, -0.03152956813573837, 0.02512291818857193, -0.07129128277301788, -0.0005091179045848548, 0.19046811759471893, 0.1306803673505783, -0.0391460619866848, -0.07446877658367157, 0.008807890117168427, -0.040258727967739105, 0.14159813523292542, -0.06413702666759491, 0.04182129725813866, 0.07384434342384338, 0.03213927894830704, 0.1315990686416626, 0.043437737971544266, -0.1266453117132187, -0.04998215660452843, 0.0594450980424881, -0.11518239229917526, -0.027820484712719917, -0.03552231937646866, 0.07453837245702744, -0.18289989233016968, -0.021025938913226128, 0.11798513680696487, -0.03669419512152672, 0.02055256813764572, 0.04166816174983978, -0.019908012822270393, -0.0733102485537529, 0.10682977735996246, 0.12741583585739136, 0.047626886516809464, -0.03779875114560127, 0.09189347177743912, 0.09896225482225418, -0.08152194321155548, 0.05747599899768829, -0.061041705310344696, -0.06463594734668732, -0.07470938563346863, -0.06249913200736046, 0.15508662164211273, -0.00648600934073329, -0.10089735686779022, 0.038808420300483704, -0.04471459612250328, 0.02309419773519039, 0.12243250012397766, 0.0541083924472332, -0.003498896723613143, -0.03940523788332939, 0.04097755625844002, -0.09501034021377563, 0.08408303558826447, 0.016485953703522682, 0.0727234035730362, -0.0888739675283432, -0.04384232684969902, 0.059163738042116165, 0.05012233927845955, -0.06474907696247101, -0.04606104642152786, -0.14933423697948456, -0.035568926483392715, -0.1476902812719345, -0.018006378784775734, -0.05732136219739914, -0.01988937333226204, 0.035580266267061234, -0.09595070779323578, -0.02696921117603779, -0.005781485699117184, -0.03336199000477791, 0.00391781609505415, 0.06724676489830017, 0.06289976835250854, -0.13453327119350433, -0.032093435525894165, 0.06598176062107086, -0.049100618809461594, 0.05773453041911125, 0.06125972419977188, 0.0033786988351494074, -0.001830400782637298, -0.07095199078321457, -0.01488296128809452, -0.04000181332230568, 0.030127711594104767, 0.007462099194526672, -0.10716582834720612, 0.004504088778048754, -0.03492076322436333, -0.006691670045256615, -0.018879175186157227, 0.24539333581924438, -0.06506907194852829, 0.0727783814072609, -0.01319211907684803, -0.02482752874493599, -0.04792150482535362, 0.06329948455095291, 0.0793745219707489, 0.11935998499393463, 0.14295430481433868, -0.073624387383461, 0.07757116109132767, -0.07088351994752884, 0.032803598791360855, 0.014127103611826897, 0.006390711758285761, 0.12317689508199692, -0.10938028246164322, -0.015620697289705276, -0.04217223823070526, 0.21348287165164948, -0.0368213877081871, 0.020526014268398285, 0.022559592500329018, 0.0026644174940884113, -0.045241937041282654, -0.04649575054645538, 0.18562108278274536, 0.018401388078927994, 0.02268075756728649, -0.0546460822224617, 0.10392695665359497, -0.00476469099521637, 0.0180436372756958, 0.09796338528394699, 0.17794737219810486, -0.14952532947063446, 0.013219200074672699, 0.026145489886403084, -0.08093737065792084, -0.10389842838048935, 0.03142501786351204, 0.013355477713048458, 0.07219123840332031, -0.05025531351566315, 0.2021244913339615, 0.043809205293655396, -0.03261252120137215, 0.044522061944007874, 0.024392306804656982, -0.06359847635030746, -0.08722887933254242, -0.10135812312364578, -0.009354105219244957, -0.14017662405967712, -0.013037572614848614, -0.06560113281011581, -0.024480920284986496, 0.15548750758171082, 0.012964718043804169, 0.02304927259683609, 0.26432472467422485, -0.07176318764686584, -0.02771681919693947, 0.0005570671637542546, -0.05663779377937317, -0.004933830350637436, -0.14619825780391693, 0.026091797277331352, 0.04122622683644295, 0.1210336908698082, 0.03144235536456108, 0.02254542149603367, 0.01522192731499672, 0.04352109879255295, 0.021492140367627144, -0.12315673381090164, -0.052746254950761795, 0.045735303312540054, -0.03622722625732422, 0.08221330493688583, -0.001804662519134581, 0.0008649321389384568, -0.03555519878864288, 0.1262044459581375, -0.06141524389386177, -0.1163138598203659, -0.126402348279953, 0.07927534729242325, -0.05012749508023262, 0.02436835877597332, -0.050662748515605927, -0.11426720023155212, -0.01663144864141941, 0.2135745882987976, 0.06180110201239586, -0.0580182783305645, 0.01907058246433735, 0.07780075073242188, 0.017891688272356987, 0.01835578866302967, 0.06532293558120728, -0.02109529823064804, 0.05213416367769241, -0.02547290362417698, -0.05725190415978432, -0.08065931499004364, -0.048121191561222076, 0.03311459720134735, 0.10163316875696182, 0.03667619079351425, -0.03974636271595955, -0.07501168549060822, 0.05200254172086716, -0.03358905017375946, -0.25140899419784546, -0.012815557420253754, 0.018277892842888832, -0.062103111296892166, -0.072727270424366, 0.08024905622005463, -0.04023303836584091, -0.010172020643949509, 0.0002957498363684863, -0.009392987936735153, 0.11092539876699448, 0.03761579096317291, -0.04289737716317177, -0.011952201835811138, 0.0894942507147789, -0.024411074817180634, 0.17379479110240936, -0.0123319486156106, 0.025941504165530205, 0.05909934639930725, 0.07416991144418716, -0.09907280653715134, 0.022308524698019028, 0.011134847067296505, -0.06473276019096375, 0.0010805195197463036, 0.040111616253852844, -0.02693779580295086, 0.12839126586914062, 0.028604451566934586, -0.22272908687591553, 0.024024711921811104, -0.003771731862798333, -0.10775434225797653, -0.06827607750892639, -0.032226476818323135, -0.06340491771697998, 0.16726161539554596, 0.12232113629579544, 0.016559433192014694, -0.08695229887962341, -0.10484907031059265, 0.052437134087085724, 0.021434348076581955, 0.08882321417331696, -0.03851136565208435, -0.10646247863769531, -0.031351327896118164, -0.03205060958862305, 0.041192613542079926, -0.2584172189235687, -0.023346999660134315, 0.0331675261259079, -0.028370428830385208, 0.009271192364394665, 0.030883558094501495, 0.10001655668020248, 0.0603310763835907, -0.04441605508327484, -0.008190721273422241, 0.0028230154421180487, 0.09055458009243011, -0.18154631555080414, -0.029998352751135826 ]
null
null
adapter-transformers
# Adapter `AdapterHub/bert-base-uncased-pf-trec` for bert-base-uncased An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [trec](https://huggingface.co/datasets/trec/) dataset and includes a prediction head for classification. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("bert-base-uncased") adapter_name = model.load_adapter("AdapterHub/bert-base-uncased-pf-trec", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
{"language": ["en"], "tags": ["text-classification", "bert", "adapter-transformers"], "datasets": ["trec"]}
text-classification
AdapterHub/bert-base-uncased-pf-trec
[ "adapter-transformers", "bert", "text-classification", "en", "dataset:trec", "arxiv:2104.08247", "region:us" ]
2022-03-02T23:29:04+00:00
[ "2104.08247" ]
[ "en" ]
TAGS #adapter-transformers #bert #text-classification #en #dataset-trec #arxiv-2104.08247 #region-us
# Adapter 'AdapterHub/bert-base-uncased-pf-trec' for bert-base-uncased An adapter for the 'bert-base-uncased' model that was trained on the trec dataset and includes a prediction head for classification. This adapter was created for usage with the adapter-transformers library. ## Usage First, install 'adapter-transformers': _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_ Now, the adapter can be loaded and activated like this: ## Architecture & Training The training code for this adapter is available at URL In particular, training configurations for all tasks can be found here. ## Evaluation results Refer to the paper for more information on results. If you use this adapter, please cite our paper "What to Pre-Train on? Efficient Intermediate Task Selection":
[ "# Adapter 'AdapterHub/bert-base-uncased-pf-trec' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the trec dataset and includes a prediction head for classification.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ "TAGS\n#adapter-transformers #bert #text-classification #en #dataset-trec #arxiv-2104.08247 #region-us \n", "# Adapter 'AdapterHub/bert-base-uncased-pf-trec' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the trec dataset and includes a prediction head for classification.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ 34, 79, 57, 30, 45 ]
[ "passage: TAGS\n#adapter-transformers #bert #text-classification #en #dataset-trec #arxiv-2104.08247 #region-us \n# Adapter 'AdapterHub/bert-base-uncased-pf-trec' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the trec dataset and includes a prediction head for classification.\n\nThis adapter was created for usage with the adapter-transformers library.## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ -0.05174366757273674, -0.046926070004701614, -0.0024467569310218096, 0.04119610786437988, 0.18585623800754547, 0.042695462703704834, 0.1189441829919815, 0.048163048923015594, 0.052967049181461334, 0.016375400125980377, 0.05344178155064583, 0.1110185980796814, 0.03421730920672417, 0.024666275829076767, -0.017020558938384056, -0.13269221782684326, 0.003056707326322794, 0.027490243315696716, -0.023434119299054146, 0.09988492727279663, 0.10391005128622055, -0.09723885357379913, 0.09215648472309113, 0.01692177727818489, -0.09054933488368988, 0.030843818560242653, -0.030732469633221626, -0.06231280043721199, 0.0948520377278328, 0.0702492818236351, 0.18881697952747345, 0.0440824031829834, 0.02731527015566826, -0.13856157660484314, 0.02004554308950901, 0.0747411847114563, 0.012372001074254513, 0.07523252069950104, -0.019912512972950935, -0.01194132212549448, 0.008082938380539417, 0.01082866732031107, 0.06339951604604721, 0.05152428522706032, -0.11237053573131561, -0.16765333712100983, -0.04581112787127495, 0.0863042101264, 0.031047433614730835, 0.07877107709646225, 0.006298360414803028, 0.06213913485407829, -0.025082595646381378, 0.05320654436945915, 0.14729489386081696, -0.2372235655784607, -0.010088705457746983, -0.013795447535812855, 0.07147175818681717, 0.049477074295282364, -0.04054960608482361, -0.008101831190288067, 0.02661651186645031, 0.022495755925774574, 0.053865399211645126, -0.037273384630680084, -0.0890803411602974, -0.005727139301598072, -0.16909876465797424, -0.0160402599722147, 0.2594035565853119, -0.02769017033278942, -0.07967612147331238, -0.004697815515100956, -0.028643298894166946, 0.04988383129239082, 0.03158605843782425, -0.10385621339082718, 0.012588754296302795, 0.006404979154467583, 0.0222539771348238, -0.11553444713354111, -0.10308009386062622, -0.08264701068401337, -0.09716296941041946, 0.26170244812965393, -0.0061570112593472, 0.015694444999098778, -0.010926088318228722, 0.12899808585643768, -0.017149601131677628, -0.09502359479665756, -0.04713250696659088, -0.05491667613387108, -0.05212488770484924, -0.0809081569314003, -0.04531213268637657, -0.26009660959243774, -0.024567149579524994, 0.19138093292713165, 0.08427128940820694, 0.03177765756845474, -0.09440328925848007, 0.07639133930206299, 0.04038897156715393, 0.16520603001117706, -0.10559309273958206, 0.05889848992228508, -0.03510909900069237, -0.01599970832467079, -0.041137486696243286, -0.10215582698583603, -0.09695351868867874, -0.006881420500576496, 0.04505942389369011, 0.03601764887571335, 0.018804553896188736, 0.10405299812555313, -0.05163593590259552, -0.06636612117290497, 0.11970265954732895, -0.11270009726285934, 0.0003417783591430634, 0.022982042282819748, -0.04255641996860504, 0.0870724618434906, 0.14610923826694489, 0.0066224560141563416, -0.04331294447183609, 0.09363556653261185, -0.057770565152168274, -0.05017392709851265, -0.08138949424028397, -0.16182737052440643, 0.027142560109496117, -0.06123757362365723, -0.0169649850577116, -0.1627492606639862, -0.10896147787570953, -0.024824723601341248, 0.08909820020198822, -0.008568470366299152, 0.1011452004313469, 0.019963447004556656, 0.019311660900712013, 0.0218951553106308, -0.01981121487915516, -0.028074242174625397, -0.02968345209956169, 0.06113393232226372, -0.012777481228113174, 0.04915556684136391, -0.07725613564252853, 0.08488893508911133, -0.060573261231184006, 0.010434163734316826, -0.1665770709514618, 0.08149345964193344, -0.11897940933704376, 0.029128728434443474, -0.1373366266489029, -0.004206589423120022, -0.038764938712120056, 0.02856837399303913, 0.07587695866823196, 0.10079199075698853, -0.1292814016342163, -0.024805553257465363, 0.03821449726819992, -0.16498486697673798, -0.10883400589227676, 0.04285558685660362, -0.02719489485025406, 0.14598655700683594, 0.05614686384797096, 0.09196170419454575, 0.11943361908197403, -0.07416577637195587, -0.07251300662755966, 0.05862514302134514, -0.0863514244556427, -0.01755046844482422, 0.05899561569094658, 0.0068826558999717236, -0.18308039009571075, -0.005752919241786003, -0.09967642277479172, 0.011335436254739761, -0.03534086421132088, -0.03348074480891228, -0.009093848057091236, -0.03228064253926277, 0.08972958475351334, 0.018924681469798088, -0.0021348679438233376, 0.04984899237751961, -0.1225675418972969, 0.21084071695804596, 0.052929047495126724, -0.07958095520734787, 0.035724442452192307, -0.10927780717611313, 0.10978585481643677, -0.11625507473945618, 0.014067278243601322, -0.19541572034358978, -0.011508817784488201, 0.015431561507284641, 0.05127910152077675, 0.05482179671525955, 0.05282696709036827, 0.052887193858623505, 0.011207849718630314, 0.00993659533560276, 0.00502035254612565, -0.033399004489183426, 0.0351124182343483, -0.049530867487192154, -0.13001058995723724, -0.0647297352552414, -0.06444326043128967, 0.005143493879586458, -0.18199247121810913, 0.04661547392606735, 0.0860832929611206, 0.05859126150608063, 0.030728483572602272, -0.010228494182229042, -0.036908987909555435, 0.009819789789617062, -0.04820895195007324, -0.029888657853007317, 0.049901798367500305, 0.01358518935739994, -0.0748932734131813, 0.03669070452451706, -0.0908433347940445, -0.03555979207158089, 0.08503083884716034, -0.089154914021492, -0.10623833537101746, -0.03148259222507477, 0.020936137065291405, -0.03438439965248108, 0.007149906363338232, -0.08279335498809814, 0.27111247181892395, 0.04981685057282448, 0.0769830048084259, -0.038053058087825775, 0.00010351316450396553, -0.0005138948326930404, -0.008270452730357647, 0.020457353442907333, 0.026022423058748245, 0.07589303702116013, -0.1328980028629303, 0.02941242605447769, 0.1741347759962082, -0.05705763027071953, 0.07868503779172897, 0.0015586124500259757, -0.10080801695585251, -0.008472215384244919, -0.023683859035372734, 0.054717741906642914, 0.05504538491368294, -0.14235246181488037, 0.0029756929725408554, 0.048740487545728683, -0.01020784955471754, 0.02747943066060543, -0.06466521322727203, 0.055277351289987564, 0.0791807770729065, 0.010211321525275707, -0.031559642404317856, -0.020084131509065628, -0.03450364992022514, 0.05369634926319122, 0.047253962606191635, 0.0758424699306488, 0.03187926486134529, -0.00767614645883441, -0.08235517889261246, 0.19775603711605072, -0.056969888508319855, -0.19937396049499512, -0.17484422028064728, -0.09400792419910431, 0.02841060794889927, 0.025483068078756332, 0.03632381930947304, -0.06292083114385605, -0.07245587557554245, -0.05640954524278641, 0.10133534669876099, -0.0368301160633564, -0.003374455962330103, -0.007772983517497778, -0.06885495036840439, 0.05315868556499481, -0.14658720791339874, 0.03332088142633438, 0.02620573900640011, -0.08930418640375137, 0.00562638882547617, 0.02447047084569931, 0.09586033970117569, 0.16787223517894745, -0.04712849110364914, 0.0005134682287462056, -0.0060986424796283245, 0.09144910424947739, -0.0787290558218956, 0.030410436913371086, 0.08650235086679459, -0.17539218068122864, 0.027114225551486015, 0.1110217496752739, 0.051447249948978424, -0.03575436398386955, 0.034071654081344604, 0.024311145767569542, -0.05483061075210571, -0.28445175290107727, -0.024246910586953163, -0.006969773210585117, -0.005285110790282488, 0.11050277948379517, 0.03170517832040787, 0.050727277994155884, 0.08166511356830597, 0.04318360611796379, -0.000702093297149986, -0.036971502006053925, 0.06958405673503876, 0.201415553689003, -0.025253208354115486, 0.10332107543945312, -0.06229856237769127, 0.0168891791254282, 0.08375930041074753, -0.02943968027830124, 0.14227184653282166, -0.001433731522411108, 0.09028404206037521, 0.06934458762407303, -0.051117364317178726, 0.03709632530808449, 0.1489834189414978, -0.06906897574663162, -0.0016709575429558754, -0.017383769154548645, -0.03786882385611534, -0.04391695186495781, 0.030336016789078712, 0.011887450702488422, -0.010513730347156525, -0.048786554485559464, -0.06245752051472664, 0.043577760457992554, 0.1136028841137886, 0.021999629214406013, -0.22680039703845978, -0.08261030912399292, -0.025475915521383286, -0.006657944992184639, -0.0782506987452507, 0.005625382997095585, 0.06197143346071243, -0.05952576547861099, 0.021093066781759262, -0.031139716506004333, 0.09992067515850067, -0.16475647687911987, -0.014066505245864391, 0.057941339910030365, 0.09120693802833557, -0.044388700276613235, 0.09534619748592377, -0.2136574238538742, 0.0793420821428299, 0.030545584857463837, 0.02646515890955925, -0.051643017679452896, 0.005021707620471716, 0.017872953787446022, 0.1465427577495575, 0.06424228847026825, -0.014542319811880589, 0.08739528805017471, -0.12759779393672943, -0.08112236112356186, 0.022346962243318558, 0.05889648571610451, -0.10149920731782913, 0.040358513593673706, -0.02665330097079277, 0.04859679192304611, 0.04087092727422714, 0.006356204394251108, -0.14187347888946533, -0.15440630912780762, 0.06787999719381332, -0.004355716519057751, 0.11382993310689926, -0.037884671241045, -0.10205981880426407, 0.017111118882894516, 0.20065271854400635, -0.15307709574699402, -0.03641700744628906, -0.13980188965797424, -0.007316393777728081, 0.07229181379079819, -0.05444317311048508, 0.045119401067495346, -0.0013218744425103068, 0.0561300665140152, -0.013362104073166847, -0.07533086091279984, 0.09391918033361435, -0.0761464461684227, -0.04109813645482063, -0.049641672521829605, -0.020901449024677277, 0.10411714017391205, 0.025663884356617928, -0.005884052719920874, -0.01157345250248909, 0.022188637405633926, -0.09654219448566437, -0.03225826844573021, 0.037997886538505554, 0.009394391439855099, 0.05523855984210968, -0.09084640443325043, 0.03641896694898605, -0.0589480996131897, 0.01663314364850521, 0.17923714220523834, 0.11466309428215027, -0.06947600841522217, 0.0533968023955822, 0.1721491515636444, -0.09097684174776077, -0.2946273982524872, 0.019154397770762444, 0.03174595534801483, -0.013182301074266434, 0.008693480864167213, -0.24344414472579956, 0.1286512166261673, 0.035865817219018936, 0.00021912252123001963, 0.08317432552576065, -0.1421872228384018, -0.09178018569946289, 0.20978625118732452, 0.06850498914718628, 0.060068778693675995, -0.12741637229919434, -0.07026651501655579, -0.0185621939599514, -0.09354229271411896, 0.11115770041942596, -0.08649778366088867, 0.0699121505022049, -0.0003810893394984305, -0.023407258093357086, 0.017291851341724396, -0.02845330722630024, 0.0787133276462555, 0.016723157837986946, 0.024345405399799347, -0.09395034611225128, -0.044818248599767685, 0.02958563342690468, -0.04965963587164879, 0.0772562325000763, -0.0232844240963459, 0.04766751080751419, -0.09401243180036545, -0.06676407903432846, 0.017128661274909973, 0.12157921493053436, -0.0046304212883114815, -0.06829053908586502, -0.0515759214758873, 0.02567031979560852, -0.014623790048062801, -0.024961771443486214, 0.05275336652994156, -0.08425673842430115, 0.03589488938450813, 0.16334779560565948, 0.15887032449245453, -0.009988069534301758, -0.04387729987502098, 0.0323924794793129, -0.032373104244470596, 0.13787370920181274, -0.12008676677942276, 0.0506778359413147, 0.09433640539646149, 0.015429933555424213, 0.1399807184934616, 0.06505054235458374, -0.11374793946743011, -0.00922996737062931, 0.06414376199245453, -0.08851824700832367, -0.0034748709294945, -0.014782009646296501, 0.06490051746368408, -0.1439463347196579, 0.030605772510170937, 0.14812445640563965, -0.06330891698598862, 0.020595455542206764, 0.04064056649804115, -0.020314179360866547, -0.04858551546931267, 0.07557427883148193, 0.1253204345703125, 0.030215969309210777, -0.029179368168115616, 0.10020188987255096, 0.12559999525547028, -0.10994866490364075, 0.057637546211481094, -0.06732892990112305, -0.07606480270624161, -0.08274465799331665, -0.04785504564642906, 0.12876740097999573, -0.047124072909355164, -0.09817073494195938, 0.03108477033674717, -0.042670685797929764, 0.046386342495679855, 0.21380357444286346, 0.04713606461882591, 0.020252957940101624, -0.060718320310115814, 0.040552638471126556, -0.09745269268751144, 0.06268789619207382, -0.027278650552034378, 0.07008344680070877, -0.08230441808700562, -0.018249785527586937, 0.05608397349715233, 0.04345376044511795, -0.05800148472189903, -0.05265691876411438, -0.13954374194145203, -0.02618115209043026, -0.10680145025253296, -0.0023513231426477432, -0.026131557300686836, -0.0021121858153492212, 0.03380759805440903, -0.07351185381412506, -0.0428929440677166, 0.0027921772561967373, -0.03116496466100216, 0.007026568986475468, 0.06021665409207344, 0.07080800086259842, -0.1605345904827118, -0.033715859055519104, 0.06602545827627182, -0.04922094941139221, 0.06929274648427963, 0.035358112305402756, -0.015752719715237617, 0.013321653008460999, -0.13086886703968048, 0.01737513579428196, -0.02556724287569523, 0.032736994326114655, 0.004669397138059139, -0.09332656860351562, 0.013767498545348644, -0.036386121064424515, -0.006797935348004103, -0.012908874079585075, 0.19581720232963562, -0.06356720626354218, 0.05915025994181633, -0.025076264515519142, -0.009218565188348293, -0.046794988214969635, 0.07439083606004715, 0.06448513269424438, 0.11383324861526489, 0.1315346211194992, -0.0641082376241684, 0.07182027399539948, -0.06780748069286346, 0.029384460300207138, 0.025979502126574516, -0.00594366155564785, 0.08345834910869598, -0.11861783266067505, -0.000795920321252197, -0.0565374530851841, 0.20850716531276703, -0.024788763374090195, 0.03143054246902466, 0.03025265410542488, -0.028338951990008354, -0.09627267718315125, -0.02900930866599083, 0.17350271344184875, 0.040153663605451584, 0.009733482263982296, -0.048136211931705475, 0.06859923899173737, 0.0006336757796816528, 0.007895208895206451, 0.13648778200149536, 0.1581752598285675, -0.12817257642745972, 0.02331717312335968, 0.02364961989223957, -0.06311796605587006, -0.06837008893489838, -0.029588358476758003, 0.004846734926104546, 0.07693687826395035, -0.01683776266872883, 0.17715203762054443, 0.06641298532485962, -0.02360261231660843, 0.04720594733953476, 0.007291938178241253, -0.0715569481253624, -0.09609426558017731, -0.07181825488805771, -0.026986967772245407, -0.14515827596187592, -0.022484438493847847, -0.07933562248945236, -0.011962459422647953, 0.12410198152065277, 0.022354135289788246, 0.02279645949602127, 0.24967747926712036, -0.07482167333364487, -0.02910732477903366, 0.04251157119870186, -0.052941225469112396, -0.018927693367004395, -0.1292545646429062, 0.02862313762307167, 0.03371730446815491, 0.09562627226114273, 0.03863867372274399, 0.04147854447364807, 0.025628145784139633, 0.05176268145442009, 0.0013713905354961753, -0.11561064422130585, -0.03228291496634483, 0.05483274534344673, -0.03791948780417442, 0.08718981593847275, 0.0114281689748168, -0.014738853089511395, -0.014503278769552708, 0.14150938391685486, -0.05870451033115387, -0.07910281419754028, -0.13086873292922974, 0.1544150859117508, 0.004480741452425718, 0.02615891955792904, -0.05243813619017601, -0.11590185016393661, -0.01936880126595497, 0.2131842076778412, 0.10248273611068726, -0.041902195662260056, 0.02959323301911354, 0.07007493823766708, 0.02567257359623909, 0.042301807552576065, 0.07714549452066422, 0.001599760726094246, 0.04936468228697777, -0.01898203417658806, -0.06551770865917206, -0.05170876532793045, -0.013957969844341278, 0.061126310378313065, 0.09384705126285553, 0.02740527130663395, -0.04271646961569786, -0.07020679116249084, 0.08029523491859436, -0.06142790988087654, -0.25593191385269165, 0.0027496505063027143, -0.019460275769233704, -0.05548110231757164, -0.06486888974905014, 0.06836330890655518, -0.04300183430314064, 0.006881142035126686, -0.010378197766840458, -0.05898972600698471, 0.11813291162252426, 0.03926421329379082, -0.07375208288431168, -0.013721606694161892, 0.06892343610525131, -0.025526419281959534, 0.17102812230587006, -0.02118525095283985, 0.05655011534690857, 0.0735306367278099, 0.07235673815011978, -0.06472610682249069, 0.015905339270830154, 0.020624300464987755, -0.052322033792734146, 0.014855223707854748, 0.026175780221819878, -0.030582817271351814, 0.10978305339813232, 0.05699426308274269, -0.19573673605918884, 0.0629836916923523, -0.036317650228738785, -0.09134295582771301, -0.07761020958423615, -0.04496496543288231, -0.06742285937070847, 0.16565148532390594, 0.1436895877122879, 0.02017221599817276, -0.06876883655786514, -0.08254499733448029, 0.013998051173985004, 0.017924411222338676, 0.07523688673973083, -0.04791601374745369, -0.09536446630954742, -0.025477541610598564, -0.04502388462424278, 0.06026550382375717, -0.2953173518180847, -0.01446402259171009, 0.03757574409246445, -0.034735191613435745, 0.0022823994513601065, 0.04500889778137207, 0.08021023869514465, 0.06166325882077217, -0.05765291675925255, -0.006850937847048044, 0.003303265431895852, 0.10582058131694794, -0.1987791359424591, -0.03386928513646126 ]
null
null
adapter-transformers
# Adapter `AdapterHub/bert-base-uncased-pf-ud_deprel` for bert-base-uncased An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [deprel/ud_ewt](https://adapterhub.ml/explore/deprel/ud_ewt/) dataset and includes a prediction head for tagging. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("bert-base-uncased") adapter_name = model.load_adapter("AdapterHub/bert-base-uncased-pf-ud_deprel", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
{"language": ["en"], "tags": ["token-classification", "bert", "adapterhub:deprel/ud_ewt", "adapter-transformers"], "datasets": ["universal_dependencies"]}
token-classification
AdapterHub/bert-base-uncased-pf-ud_deprel
[ "adapter-transformers", "bert", "token-classification", "adapterhub:deprel/ud_ewt", "en", "dataset:universal_dependencies", "arxiv:2104.08247", "region:us" ]
2022-03-02T23:29:04+00:00
[ "2104.08247" ]
[ "en" ]
TAGS #adapter-transformers #bert #token-classification #adapterhub-deprel/ud_ewt #en #dataset-universal_dependencies #arxiv-2104.08247 #region-us
# Adapter 'AdapterHub/bert-base-uncased-pf-ud_deprel' for bert-base-uncased An adapter for the 'bert-base-uncased' model that was trained on the deprel/ud_ewt dataset and includes a prediction head for tagging. This adapter was created for usage with the adapter-transformers library. ## Usage First, install 'adapter-transformers': _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_ Now, the adapter can be loaded and activated like this: ## Architecture & Training The training code for this adapter is available at URL In particular, training configurations for all tasks can be found here. ## Evaluation results Refer to the paper for more information on results. If you use this adapter, please cite our paper "What to Pre-Train on? Efficient Intermediate Task Selection":
[ "# Adapter 'AdapterHub/bert-base-uncased-pf-ud_deprel' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the deprel/ud_ewt dataset and includes a prediction head for tagging.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ "TAGS\n#adapter-transformers #bert #token-classification #adapterhub-deprel/ud_ewt #en #dataset-universal_dependencies #arxiv-2104.08247 #region-us \n", "# Adapter 'AdapterHub/bert-base-uncased-pf-ud_deprel' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the deprel/ud_ewt dataset and includes a prediction head for tagging.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ 51, 89, 57, 30, 45 ]
[ "passage: TAGS\n#adapter-transformers #bert #token-classification #adapterhub-deprel/ud_ewt #en #dataset-universal_dependencies #arxiv-2104.08247 #region-us \n# Adapter 'AdapterHub/bert-base-uncased-pf-ud_deprel' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the deprel/ud_ewt dataset and includes a prediction head for tagging.\n\nThis adapter was created for usage with the adapter-transformers library.## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ -0.04051785171031952, -0.04068269208073616, -0.003224774030968547, 0.012158120051026344, 0.18954716622829437, 0.05829472094774246, 0.17464812099933624, 0.06769035011529922, 0.10020217299461365, 0.023531941697001457, -0.05858209356665611, 0.09870229661464691, 0.041226826608181, 0.0212598517537117, 0.061062831431627274, -0.05744887515902519, -0.003999385517090559, 0.033467721194028854, -0.12281964719295502, 0.06239255890250206, 0.09219769388437271, -0.08926670998334885, 0.04148212447762489, 0.0060617378912866116, -0.12659814953804016, 0.06346898525953293, -0.057763513177633286, -0.026316573843359947, 0.0991339311003685, 0.09338752925395966, 0.20704211294651031, 0.031974852085113525, 0.013052412308752537, -0.20938746631145477, 0.006137746851891279, 0.11063047498464584, -0.01335887797176838, 0.02354472689330578, -0.00042029478936456144, -0.04363549128174782, -0.07636970281600952, -0.017409101128578186, 0.08423826098442078, 0.05917428061366081, -0.07586997747421265, -0.11830001324415207, -0.01487373560667038, 0.0851689949631691, 0.03667254373431206, 0.08702217042446136, 0.012518671341240406, 0.09735922515392303, -0.053360216319561005, 0.0541863851249218, 0.13819362223148346, -0.11483779549598694, 0.023217523470520973, 0.020444009453058243, 0.058285415172576904, 0.019892238080501556, -0.06949792802333832, -0.06262978166341782, 0.025133032351732254, 0.04649363458156586, 0.06643989682197571, -0.03855345770716667, -0.09878364205360413, -0.03501279279589653, -0.12778359651565552, 0.004847678821533918, 0.2050401121377945, -0.01015100721269846, -0.09505995362997055, -0.07561876624822617, -0.04615722596645355, 0.055208586156368256, 0.029202023521065712, -0.05679561570286751, 0.03238383308053017, -0.007017158903181553, 0.0713123232126236, -0.08402273058891296, -0.12161733210086823, -0.07464306056499481, -0.0431952103972435, 0.2811073064804077, 0.013081079348921776, -0.0024163336493074894, -0.024878615513443947, 0.13995999097824097, 0.012027918361127377, -0.07999598234891891, -0.05314495041966438, -0.022899413481354713, -0.14115901291370392, -0.09396905452013016, -0.023462897166609764, -0.24471738934516907, -0.0102210883051157, 0.2481335550546646, 0.08952696621417999, 0.03075099177658558, -0.02330215461552143, 0.06437106430530548, 0.071977898478508, 0.1640477031469345, -0.027037566527724266, 0.006543653551489115, -0.0008534655789844692, 0.009736044332385063, -0.0317675918340683, -0.04012264311313629, -0.050184641033411026, -0.06491364538669586, 0.021056748926639557, 0.0396462045609951, 0.07134219259023666, 0.08993983268737793, -0.05692034959793091, -0.10358390212059021, 0.17491205036640167, -0.1366446167230606, -0.018347179517149925, 0.025665748864412308, -0.042290832847356796, 0.01361254882067442, 0.13261322677135468, -0.015662511810660362, -0.08203388750553131, 0.12005195766687393, -0.08096229285001755, -0.02643473446369171, -0.07532823830842972, -0.13510075211524963, 0.018109824508428574, -0.04293942078948021, 0.01057769637554884, -0.15706974267959595, -0.1623917669057846, -0.04851062595844269, 0.03585794195532799, 0.02355845831334591, 0.07407958060503006, 0.037364233285188675, 0.05417996644973755, -0.014535809867084026, -0.03429795801639557, 0.021296106278896332, -0.060918036848306656, 0.04723621532320976, 0.009278818964958191, 0.00632045092061162, 0.02896267920732498, 0.07372990250587463, -0.07154891639947891, -0.0168949905782938, -0.21468612551689148, 0.07802553474903107, -0.13198299705982208, 0.10117879509925842, -0.1130267009139061, 0.022211935371160507, 0.00690862163901329, 0.08007946610450745, 0.024547934532165527, 0.10547710955142975, -0.06349251419305801, -0.0634407177567482, 0.07464820891618729, -0.18443386256694794, -0.09821659326553345, 0.016292428597807884, -0.004948826972395182, 0.11230967938899994, 0.03812488168478012, 0.07451017200946808, 0.2046387642621994, -0.10276630520820618, -0.07885082811117172, 0.03937603905797005, -0.054656848311424255, -0.038073018193244934, 0.026642344892024994, 0.01889798417687416, -0.006125836167484522, 0.0023832391016185284, -0.06149192154407501, 0.04344455525279045, 0.026757707819342613, -0.00904124230146408, -0.0017051172908395529, -0.06574158370494843, 0.05467851087450981, 0.00615517795085907, 0.00857015885412693, 0.03070632368326187, -0.13497808575630188, 0.18538708984851837, 0.1223236694931984, -0.049033310264348984, 0.02878716215491295, -0.07905829697847366, 0.01850453019142151, -0.02704683504998684, 0.0015451980289071798, -0.17063204944133759, -0.11335904151201248, 0.050264280289411545, 0.012999466620385647, 0.054258864372968674, 0.04490360990166664, 0.053712911903858185, 0.029743988066911697, -0.023412754759192467, -0.07950200885534286, -0.08621244132518768, 0.00522760720923543, -0.016999350860714912, -0.10496225208044052, -0.08206363022327423, -0.09083578735589981, -0.02464246191084385, -0.1886695921421051, 0.061398010700941086, 0.053769551217556, 0.10816814750432968, 0.07496794313192368, -0.01592053845524788, -0.0024222887586802244, 0.0035788987297564745, -0.07317256927490234, -0.04282223433256149, 0.005991549696773291, 0.020720507949590683, -0.04288670793175697, 0.003755857003852725, -0.0943019837141037, -0.019124288111925125, 0.07471179217100143, -0.04980356618762016, -0.09680188447237015, -0.05574581027030945, -0.018039289861917496, -0.06455723196268082, -0.07309617102146149, -0.12485533952713013, 0.1776978224515915, 0.06604905426502228, 0.08574554324150085, 0.0028109359554946423, -0.030240021646022797, -0.04248572885990143, 0.030800169333815575, 0.015585465356707573, -0.027957970276474953, 0.04219347611069679, -0.05334235355257988, 0.07861314713954926, 0.05353439226746559, -0.05603519082069397, 0.10670526325702667, 0.006242256611585617, -0.07462933659553528, 0.0445006862282753, 0.034238073974847794, 0.031849462538957596, 0.061856117099523544, -0.16432644426822662, 0.009432143531739712, 0.023607222363352776, 0.01770302653312683, 0.02754991315305233, -0.07399091869592667, 0.04714161530137062, 0.060576215386390686, -0.00019219453679397702, -0.016069194301962852, -0.0603155791759491, 0.0028687110170722008, 0.02352822944521904, 0.005384680815041065, 0.10420086234807968, 0.015317865647375584, -0.04115215316414833, -0.11790017783641815, 0.17629288136959076, -0.07412610203027725, -0.1769726723432541, -0.2038290649652481, -0.02794390358030796, -0.003757718252018094, 0.02309165708720684, 0.06718961894512177, -0.06704558432102203, -0.08194543421268463, -0.026975248008966446, 0.1540641486644745, -0.009818742983043194, -0.03211263194680214, -0.0323021374642849, 0.002174683380872011, 0.052435316145420074, -0.16904106736183167, 0.033856041729450226, 0.050751108676195145, -0.05796850845217705, -0.0010331745725125074, 0.07568769156932831, 0.036363765597343445, 0.10824566334486008, -0.005085323005914688, -0.0437513031065464, -0.03174759820103645, 0.13489942252635956, -0.08915010839700699, 0.08318749070167542, 0.14333690702915192, -0.08855242282152176, 0.04586409777402878, 0.10623843967914581, 0.027360551059246063, -0.04249996319413185, 0.052841417491436005, 0.06853476911783218, -0.0006165288505144417, -0.28808704018592834, -0.035297948867082596, -0.029503723606467247, -0.04703198000788689, 0.11319173872470856, 0.05836198478937149, 0.07563572376966476, 0.07470093667507172, -0.04510778188705444, 0.07182218134403229, -0.010670342482626438, 0.09285697340965271, 0.1012745201587677, 0.0007379936287179589, 0.07880804687738419, -0.08495727926492691, -0.003509458154439926, 0.062083009630441666, 0.0606728233397007, 0.19358815252780914, -0.05185053497552872, 0.15730291604995728, 0.04557742178440094, -0.07310084998607635, 0.006554106250405312, 0.14509379863739014, -0.040031351149082184, 0.003961927257478237, 0.008699598722159863, -0.04461386054754257, -0.03442032262682915, 0.09305839985609055, 0.05874219536781311, -0.036002520471811295, -0.02506597898900509, -0.13950499892234802, 0.02452169358730316, 0.15108409523963928, 0.00816892646253109, -0.1452372968196869, -0.07959494739770889, 0.00799078680574894, -0.04532048478722572, -0.054971177130937576, -0.013948872685432434, 0.09273470938205719, -0.08633630722761154, 0.047265198081731796, -0.01066071167588234, 0.10270709544420242, -0.12952998280525208, -0.037066634744405746, 0.07593053579330444, 0.07650676369667053, -0.03275177255272865, 0.07193860411643982, -0.2371043562889099, 0.05134972557425499, 0.022492483258247375, 0.06003377586603165, -0.047226209193468094, 0.07969196885824203, 0.02113703452050686, 0.11239147931337357, 0.04286987707018852, -0.0023605863098055124, 0.06380187720060349, -0.10829806327819824, -0.02254055254161358, -0.019235778599977493, 0.02480694279074669, -0.08083269745111465, 0.040172282606363297, -0.019458342343568802, 0.03303302824497223, 0.046126965433359146, 0.021490219980478287, -0.13746507465839386, -0.1632329821586609, 0.04456372186541557, -0.028890537098050117, 0.07228060811758041, -0.053873345255851746, -0.07097547501325607, 0.031187228858470917, 0.1863328367471695, -0.1420203596353531, -0.07969596236944199, -0.1221790537238121, -0.043064579367637634, 0.023531591519713402, -0.06315679848194122, 0.018280474469065666, 0.01941658742725849, 0.07276961952447891, -0.029522264376282692, -0.07483924925327301, 0.044901832938194275, -0.09587238729000092, -0.035584766417741776, -0.0846717432141304, -0.0272760521620512, 0.07133454084396362, 0.00691465986892581, -0.040825095027685165, -0.0577588714659214, 0.0385776050388813, -0.06344299018383026, -0.005397128872573376, 0.09667053073644638, 0.01977587305009365, 0.12610575556755066, -0.14636598527431488, -0.038835201412439346, -0.0637495368719101, -0.029403118416666985, 0.11286184191703796, 0.18856629729270935, -0.03889299929141998, 0.014454865828156471, 0.1801077425479889, -0.1040324941277504, -0.26137369871139526, 0.022008251398801804, 0.041977185755968094, 0.0060125067830085754, 0.011552377603948116, -0.2810901701450348, 0.15351125597953796, 0.03523607552051544, 0.022127317264676094, 0.16481374204158783, -0.14335767924785614, -0.11533845216035843, 0.11644818633794785, 0.11820767819881439, -0.036969445645809174, -0.10557044297456741, -0.04319075495004654, 0.003292397828772664, -0.14468301832675934, 0.12207401543855667, -0.011773602105677128, 0.07652303576469421, -0.01608104258775711, 0.0021981834433972836, 0.02222789078950882, -0.055562037974596024, 0.04068496450781822, 0.03522798418998718, 0.06121902912855148, -0.06537102907896042, 0.05500909313559532, 0.08639388531446457, -0.052170369774103165, 0.04925072565674782, -0.06964977085590363, 0.013921476900577545, -0.10957840085029602, -0.06922987103462219, -0.011288503184914589, 0.12372765690088272, -0.03119366429746151, -0.10465138405561447, -0.03251781314611435, 0.04249326512217522, 0.03650496527552605, -0.03214070573449135, 0.05611100420355797, -0.006259080953896046, 0.03644440695643425, 0.16626250743865967, 0.07316656410694122, -0.014648673124611378, -0.21029765903949738, -0.017589174211025238, -0.0008154191309586167, 0.12590940296649933, -0.06770752370357513, 0.08562999963760376, 0.0785876214504242, 0.06129069998860359, 0.13075974583625793, 0.059131499379873276, -0.1290993094444275, -0.042936842888593674, 0.07838889211416245, -0.012768981978297234, -0.06750033795833588, -0.011127176694571972, 0.011873624287545681, -0.08978720009326935, 0.012444845400750637, 0.14784392714500427, -0.034350693225860596, -0.007608417887240648, 0.024081097915768623, -0.018590876832604408, -0.033913832157850266, 0.13664785027503967, 0.06002802774310112, 0.07126293331384659, -0.005773418582975864, 0.12912505865097046, 0.11392810940742493, -0.12312446534633636, 0.014982827007770538, 0.0014344784431159496, -0.07512608915567398, -0.08962142467498779, -0.03805376589298248, 0.06963788717985153, -0.05528734624385834, -0.052406325936317444, -0.022335493937134743, -0.011951606720685959, 0.014783970080316067, 0.1532374918460846, 0.02885032631456852, 0.01141772884875536, -0.01830068975687027, 0.06601165980100632, -0.06652919203042984, 0.059643927961587906, -0.03408000245690346, 0.11904013156890869, -0.13798926770687103, 0.019190547987818718, 0.0651983693242073, 0.013085473328828812, -0.028279801830649376, -0.034604884684085846, -0.13856208324432373, -0.017128560692071915, -0.11172621697187424, 0.012443392537534237, -0.03181660920381546, 0.016096685081720352, 0.028932947665452957, -0.06419288367033005, 0.003300843760371208, 0.04266806319355965, -0.029979927465319633, -0.032773859798908234, 0.029182519763708115, 0.07966268062591553, -0.15236304700374603, -0.049764733761548996, 0.03771679848432541, -0.10612394660711288, 0.06953489780426025, 0.02374524623155594, -0.024230988696217537, 0.024883028119802475, -0.030496420338749886, 0.01913602091372013, -0.014205541461706161, 0.06598355621099472, 0.00525152962654829, -0.0878131315112114, 0.05082269385457039, -0.0644884929060936, -0.01284612063318491, -0.019652636721730232, 0.12963327765464783, -0.10732745379209518, 0.028720449656248093, -0.02686186507344246, -0.057912204414606094, -0.08829320222139359, 0.034229572862386703, 0.08763720095157623, 0.06310330331325531, 0.15982747077941895, -0.05116130784153938, 0.0659918561577797, -0.09272190928459167, 0.006123350467532873, 0.046985141932964325, 0.017171058803796768, 0.09202837198972702, -0.0774984359741211, -0.0206148624420166, -0.05956031754612923, 0.1413143426179886, -0.08129698783159256, 0.012678753584623337, 0.057496100664138794, -0.07827132940292358, -0.124814473092556, -0.014132891781628132, 0.13557027280330658, -0.020948870107531548, 0.01270224992185831, -0.04755787178874016, 0.033848173916339874, 0.04001934453845024, 0.0303229670971632, 0.1285419911146164, 0.18727760016918182, -0.1016840860247612, 0.03565333038568497, 0.024188434705138206, -0.1413843333721161, -0.16420289874076843, -0.07049401849508286, 0.02128344215452671, 0.04407820105552673, -0.05679410696029663, 0.1544131189584732, 0.08360330760478973, -0.048957645893096924, 0.10413698107004166, -0.014073322527110577, -0.05755124241113663, -0.03192176669836044, -0.05712830647826195, 0.0012484111357480288, -0.12194480746984482, -0.01205699983984232, -0.05619433522224426, -0.03531334921717644, 0.09773341566324234, 0.011970490217208862, 0.008069027215242386, 0.19092880189418793, -0.003257214790210128, -0.041648685932159424, -0.008773384615778923, -0.012277856469154358, -0.015356870368123055, -0.040774133056402206, 0.03735613077878952, 0.03485503047704697, 0.0903790071606636, 0.026568181812763214, 0.043716032058000565, -0.0008477974333800375, 0.06228373944759369, 0.014185050502419472, -0.06645213067531586, -0.022061700001358986, 0.014766398817300797, -0.07908253371715546, 0.12364635616540909, 0.03393777832388878, -0.004559587221592665, -0.024732032790780067, 0.20886006951332092, -0.057678237557411194, -0.12698757648468018, -0.11740259826183319, 0.15471695363521576, 0.06526653468608856, 0.019544512033462524, 0.007120793219655752, -0.14822058379650116, -0.06269717961549759, 0.18136225640773773, 0.07166905701160431, 0.03469385579228401, 0.03105183318257332, 0.05865625664591789, 0.009655808098614216, 0.013476656749844551, 0.08645788580179214, 0.03690636530518532, 0.10401924699544907, -0.00425439840182662, -0.0044490862637758255, -0.006864806171506643, -0.030565936118364334, 0.020697707310318947, 0.11401406675577164, -0.03020254708826542, 0.014829126186668873, -0.09211336821317673, 0.00806371495127678, -0.018758034333586693, -0.25697940587997437, 0.08415631204843521, -0.023741530254483223, -0.08389315009117126, -0.06963369995355606, 0.08955945819616318, -0.06192221865057945, 0.025134842842817307, 0.029334060847759247, -0.06107601150870323, 0.1437540501356125, 0.0034939281176775694, -0.06722569465637207, -0.07507877796888351, 0.06218733265995979, -0.015898557379841805, 0.1825541853904724, -0.03442865610122681, 0.0678228810429573, 0.0792699009180069, 0.06857151538133621, -0.09483304619789124, 0.011536148376762867, 0.008071311749517918, -0.10495849698781967, 0.002131253480911255, 0.09002847969532013, -0.054758671671152115, 0.12653613090515137, -0.0003003314486704767, -0.22479839622974396, 0.009998916648328304, 0.037898290902376175, -0.051364749670028687, -0.09882223606109619, -0.016134202480316162, -0.07107609510421753, 0.12866397202014923, 0.12501239776611328, 0.030204204842448235, -0.06413602828979492, -0.08508672565221786, 0.01678042858839035, 0.05434071645140648, 0.12592336535453796, -0.06575895845890045, -0.16431087255477905, 0.027758954092860222, -0.023379230871796608, 0.07770765572786331, -0.24094505608081818, -0.04906332865357399, 0.07703840732574463, -0.050803665071725845, -0.01959245651960373, 0.10432300716638565, 0.08685294538736343, 0.08967643976211548, -0.06278636306524277, -0.18076921999454498, -0.033888936042785645, 0.09159377217292786, -0.16982603073120117, -0.09342963993549347 ]
null
null
adapter-transformers
# Adapter `AdapterHub/bert-base-uncased-pf-ud_en_ewt` for bert-base-uncased An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [dp/ud_ewt](https://adapterhub.ml/explore/dp/ud_ewt/) dataset and includes a prediction head for dependency parsing. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("bert-base-uncased") adapter_name = model.load_adapter("AdapterHub/bert-base-uncased-pf-ud_en_ewt", source="hf", set_active=True) ``` ## Architecture & Training This adapter was trained using adapter-transformer's example script for dependency parsing. See https://github.com/Adapter-Hub/adapter-transformers/tree/master/examples/dependency-parsing. ## Evaluation results Scores achieved by dependency parsing adapters on the test set of UD English EWT after training: | Model | UAS | LAS | | --- | --- | --- | | `bert-base-uncased` | 91.74 | 89.15 | | `roberta-base` | 91.43 | 88.43 | ## Citation <!-- Add some description here -->
{"language": ["en"], "tags": ["bert", "adapterhub:dp/ud_ewt", "adapter-transformers"], "datasets": ["universal_dependencies"]}
null
AdapterHub/bert-base-uncased-pf-ud_en_ewt
[ "adapter-transformers", "bert", "adapterhub:dp/ud_ewt", "en", "dataset:universal_dependencies", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[ "en" ]
TAGS #adapter-transformers #bert #adapterhub-dp/ud_ewt #en #dataset-universal_dependencies #region-us
Adapter 'AdapterHub/bert-base-uncased-pf-ud\_en\_ewt' for bert-base-uncased =========================================================================== An adapter for the 'bert-base-uncased' model that was trained on the dp/ud\_ewt dataset and includes a prediction head for dependency parsing. This adapter was created for usage with the adapter-transformers library. Usage ----- First, install 'adapter-transformers': *Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More* Now, the adapter can be loaded and activated like this: Architecture & Training ----------------------- This adapter was trained using adapter-transformer's example script for dependency parsing. See URL Evaluation results ------------------ Scores achieved by dependency parsing adapters on the test set of UD English EWT after training: Model: 'bert-base-uncased', UAS: 91.74, LAS: 89.15 Model: 'roberta-base', UAS: 91.43, LAS: 88.43
[]
[ "TAGS\n#adapter-transformers #bert #adapterhub-dp/ud_ewt #en #dataset-universal_dependencies #region-us \n" ]
[ 36 ]
[ "passage: TAGS\n#adapter-transformers #bert #adapterhub-dp/ud_ewt #en #dataset-universal_dependencies #region-us \n" ]
[ -0.07226882874965668, -0.02208099327981472, -0.00858865212649107, -0.03436117619276047, 0.0960790365934372, 0.07635773718357086, 0.1282142698764801, 0.016133278608322144, 0.1846838891506195, -0.05140646547079086, 0.11908279359340668, 0.10398616641759872, -0.028887808322906494, 0.012593629769980907, -0.04601554572582245, -0.1466558575630188, 0.09114612638950348, 0.07867353409528732, -0.22030873596668243, 0.017530914396047592, 0.05962488800287247, -0.07027162611484528, 0.07241512089967728, -0.06106400489807129, -0.14916245639324188, 0.08299177139997482, 0.019996607676148415, -0.04613286256790161, 0.08977524191141129, 0.09658919274806976, 0.21022102236747742, 0.12169754505157471, -0.04899661988019943, -0.24105343222618103, -0.00045185722410678864, -0.0024157711304724216, -0.05359624698758125, 0.04952528700232506, 0.02284228801727295, 0.0406949445605278, -0.14504781365394592, -0.006623306777328253, 0.022905258461833, 0.013999974355101585, -0.12753517925739288, -0.1695210486650467, -0.012799493968486786, -0.04562174528837204, -0.07758956402540207, 0.0017853999743238091, 0.03922522813081741, 0.16427703201770782, -0.10086512565612793, 0.0289780143648386, 0.12157869338989258, -0.19713443517684937, 0.08666817098855972, 0.07081067562103271, 0.011172345839440823, 0.055796168744564056, 0.03436452895402908, 0.034011196345090866, 0.06553773581981659, 0.008684513159096241, -0.0029176517855376005, -0.050221037119627, -0.12257275730371475, 0.0874808207154274, -0.10591883957386017, -0.0035952464677393436, 0.4146237373352051, -0.005747147835791111, 0.01660751737654209, 0.12687274813652039, -0.10429616272449493, 0.07027971744537354, 0.04510549455881119, -0.10547039657831192, 0.024720367044210434, 0.05651148408651352, 0.012114627286791801, 0.04568856582045555, -0.08755116164684296, 0.019070034846663475, -0.28194350004196167, 0.33014678955078125, -0.003386274678632617, 0.07708224654197693, -0.16910965740680695, 0.034895457327365875, -0.03603072836995125, -0.0914238840341568, 0.06719896197319031, -0.09844406694173813, 0.01156923733651638, -0.029944438487291336, -0.055314887315034866, -0.06242100149393082, 0.10495765507221222, 0.1865697205066681, -0.05467574670910835, -0.03340679779648781, -0.03333283215761185, 0.08096961677074432, 0.11287357658147812, 0.11288587003946304, -0.13099440932273865, -0.06770545244216919, 0.01818653754889965, -0.0831301137804985, -0.034003883600234985, -0.07171700894832611, -0.0722053274512291, -0.04093163460493088, 0.0126581359654665, 0.07823759317398071, 0.0492895171046257, 0.03723873198032379, -0.13187463581562042, -0.04547156020998955, 0.0592891201376915, -0.04130866378545761, -0.02140038087964058, -0.015442728996276855, -0.02109302207827568, 0.18408100306987762, 0.020542919635772705, -0.04470878466963768, -0.0011475816136226058, 0.04600238800048828, -0.12459123134613037, -0.08846873044967651, -0.01968637853860855, -0.09020384401082993, 0.06376829743385315, -0.03431155905127525, 0.1483878642320633, -0.13215570151805878, -0.013286009430885315, 0.07603094726800919, 0.02772182784974575, -0.021845471113920212, 0.06218402460217476, 0.004667443223297596, 0.010835418477654457, 0.0014372445875778794, -0.08340653032064438, -0.08858686685562134, -0.0622209794819355, 0.030971776694059372, -0.022252468392252922, -0.01842377707362175, -0.1430584043264389, 0.07517516613006592, -0.08245059102773666, 0.038655124604701996, -0.08498526364564896, 0.0211106576025486, -0.10833020508289337, 0.05312216281890869, -0.02330816350877285, 0.00049484649207443, -0.030955422669649124, 0.05694611743092537, 0.03282836079597473, 0.1493096947669983, -0.10860271751880646, -0.1121634989976883, 0.11014795303344727, -0.14890271425247192, -0.18930724263191223, 0.06622063368558884, -0.010064838454127312, 0.002177505986765027, 0.02940080128610134, 0.16151173412799835, 0.0068278624676167965, -0.02752763032913208, -0.03873027488589287, 0.14785638451576233, -0.097989022731781, -0.06832832843065262, 0.044599153101444244, 0.008964687585830688, -0.07841551303863525, 0.0008647015201859176, 0.041322141885757446, 0.12198145687580109, -0.09021405130624771, -0.02300741896033287, 0.007234054617583752, -0.04310818389058113, 0.030078420415520668, 0.005333692766726017, 0.020883549004793167, -0.015679718926548958, 0.03074154257774353, 0.184189110994339, 0.0786423459649086, 0.006090891547501087, 0.02107975259423256, -0.09731550514698029, 0.08502981811761856, -0.10776062309741974, 0.0417977012693882, -0.1345849186182022, -0.1280885636806488, 0.01641838625073433, 0.12489330768585205, -0.008926287293434143, 0.22474157810211182, 0.08324242383241653, -0.07194237411022186, -0.00460502365604043, -0.030184781178832054, 0.02705908939242363, 0.07086744904518127, 0.003817761316895485, -0.13897328078746796, 0.05613110214471817, -0.10585732758045197, -0.014053307473659515, -0.027844464406371117, -0.015733661130070686, 0.10122885555028915, 0.10286296904087067, 0.05311713367700577, 0.09883205592632294, -0.03914680331945419, 0.058429740369319916, -0.06555135548114777, 0.01265854574739933, 0.003707068506628275, -0.09262488037347794, -0.16866810619831085, 0.11175692081451416, -0.03710521012544632, 0.33125561475753784, 0.16412973403930664, -0.28440427780151367, 0.08989129215478897, -0.01696990802884102, 0.03614405170083046, -0.021333402022719383, 0.12160710990428925, -0.046422772109508514, 0.050647079944610596, 0.034035347402095795, 0.022085467353463173, -0.0037429933436214924, 0.03962704911828041, 0.0027368103619664907, -0.07233541458845139, -0.09394507110118866, 0.01587061583995819, 0.02756877802312374, -0.10011303424835205, 0.15630868077278137, 0.3317711651325226, 0.044297415763139725, 0.13956236839294434, -0.08849888294935226, -0.03959457948803902, -0.010993222706019878, -0.03696458786725998, -0.03249194473028183, 0.10789883136749268, -0.1648276150226593, 0.04309547692537308, 0.08474317938089371, 0.03222885727882385, 0.06646735966205597, -0.08829356729984283, -0.05881943181157112, 0.014436806552112103, 0.014718672260642052, -0.11272547394037247, 0.02617066539824009, -0.010838590562343597, 0.05510113760828972, -0.01370701752603054, -0.047309327870607376, 0.09613453596830368, 0.01770426332950592, -0.03159595653414726, 0.18475373089313507, -0.17396189272403717, -0.1374027281999588, -0.08099154382944107, -0.13458411395549774, -0.04677269607782364, 0.008360980078577995, 0.02025430276989937, -0.10654941946268082, -0.0649283304810524, 0.10499344021081924, 0.19063790142536163, -0.10450071096420288, 0.0028824307955801487, 0.014325316064059734, 0.014636725187301636, -0.043514322489500046, -0.13523344695568085, -0.02280024066567421, -0.00039193927659653127, 0.004392191767692566, 0.13356195390224457, -0.10160641372203827, 0.06881065666675568, 0.16759341955184937, 0.04653298854827881, -0.0402027852833271, 0.017638251185417175, 0.11385981738567352, -0.060238827019929886, -0.06812979280948639, 0.1409655511379242, -0.08122294396162033, 0.049096815288066864, 0.1296028196811676, 0.06329779326915741, -0.10966899245977402, -0.051682837307453156, -0.056455254554748535, -0.05094839259982109, -0.23385629057884216, -0.11339730024337769, -0.08142133802175522, 0.07305851578712463, -0.01162739284336567, -0.004028174094855785, -0.056355834007263184, 0.09786106646060944, 0.05842876434326172, -0.00019519179477356374, -0.06498018652200699, 0.006731458008289337, 0.2012743502855301, -0.0624765083193779, 0.060343921184539795, -0.06720646470785141, -0.08721335977315903, 0.12873876094818115, 0.12180706113576889, 0.20399561524391174, 0.0866653099656105, 0.0574524886906147, 0.03793856129050255, 0.03072219155728817, 0.07402544468641281, 0.2159298211336136, 0.04038448631763458, -0.037436217069625854, -0.03445765748620033, -0.009211179800331593, -0.07961957156658173, 0.020062066614627838, 0.04036245495080948, -0.19037246704101562, -0.007883965037763119, -0.07655742019414902, 0.07888549566268921, -0.040324386209249496, 0.05370042473077774, -0.14572827517986298, 0.003466384019702673, 0.04576192423701286, 0.08109316974878311, -0.014469576999545097, 0.047600142657756805, 0.03753185272216797, -0.00638879369944334, 0.06382782757282257, 0.06357089430093765, 0.060242075473070145, -0.07998210191726685, 0.03505796939134598, -0.08365132659673691, 0.05417599529027939, 0.02308328077197075, 0.05960094928741455, -0.2906443178653717, 0.20628809928894043, 0.01840653270483017, -0.11166898161172867, -0.06797246634960175, -0.016184378415346146, -0.017697090283036232, 0.24287280440330505, 0.0202457495033741, 0.07331712543964386, -0.05477581173181534, -0.07252700626850128, 0.03526023030281067, 0.07395181804895401, 0.05862909555435181, 0.04640227183699608, -0.0748005360364914, 0.025958925485610962, 0.06788794696331024, 0.050474800169467926, -0.02031646855175495, -0.036985158920288086, -0.10730604827404022, 0.06556663662195206, -0.04202750325202942, 0.00721756974235177, -0.016016189008951187, -0.02773383818566799, -0.03082709014415741, 0.10009123384952545, -0.03146108239889145, -0.012398858554661274, -0.053411055356264114, -0.03229096159338951, 0.14341597259044647, -0.07823970913887024, -0.023180849850177765, -0.010538993403315544, -0.11138224601745605, -0.035063862800598145, -0.1610787808895111, 0.14690516889095306, -0.11760489642620087, 0.022613530978560448, -0.048741165548563004, -0.017753470689058304, -0.02656305395066738, 0.006274589337408543, -0.05918614938855171, -0.05669109895825386, -0.04302255064249039, -0.09119196981191635, 0.015253114514052868, -0.04136942699551582, -0.038926806300878525, 0.15928201377391815, -0.08417430520057678, 0.00238982355222106, 0.0074739218689501286, -0.005999299697577953, 0.15469004213809967, 0.254633367061615, -0.022699186578392982, 0.016703790053725243, 0.30987054109573364, 0.0007921017822809517, -0.3088200092315674, -0.039956722408533096, -0.15550167858600616, -0.056268710643053055, 0.02131025679409504, -0.22650368511676788, 0.15869930386543274, 0.08384589850902557, 0.026120806112885475, 0.10159418731927872, -0.10359583050012589, -0.05241180211305618, 0.22482021152973175, 0.021880561485886574, 0.4450587332248688, -0.05925440043210983, -0.0159364752471447, -0.05245424434542656, -0.2539004683494568, 0.1744813174009323, -0.03677557408809662, 0.03724725916981697, -0.021147504448890686, 0.06557176262140274, 0.02208838239312172, -0.02217850089073181, 0.17701543867588043, 0.028754830360412598, 0.06412090361118317, -0.053611837327480316, -0.07094193994998932, 0.120694100856781, 0.027590418234467506, -0.015114267356693745, -0.020099487155675888, -0.022450894117355347, -0.07572761178016663, -0.021059522405266762, 0.011759383603930473, 0.075052909553051, 0.02476951666176319, -0.13209030032157898, -0.04073411971330643, 0.003738508326932788, -0.005637562833726406, -0.038412906229496, 0.1556333601474762, 0.026812070980668068, -0.059230536222457886, 0.09433024376630783, 0.10131935030221939, -0.2205277979373932, 0.07731278240680695, 0.005269763059914112, -0.04569889232516289, 0.12684810161590576, -0.10111341625452042, 0.04905911535024643, 0.151906356215477, -0.05263296514749527, 0.02801656164228916, 0.10645280033349991, -0.060274552553892136, -0.037527088075876236, 0.1519058644771576, -0.14179590344429016, -0.07054074108600616, 0.022734975442290306, -0.08270887285470963, 0.05486709624528885, 0.10457687079906464, 0.12799017131328583, 0.05855308845639229, 0.024676542729139328, -0.013186469674110413, -0.00351497670635581, -0.14252661168575287, 0.15651264786720276, 0.057924360036849976, 0.022090915590524673, -0.09416510164737701, 0.1733933985233307, 0.00033274927409365773, -0.1749466359615326, -0.010493730194866657, -0.06589057296514511, -0.10536439716815948, -0.08903791010379791, -0.0547945499420166, 0.15582825243473053, -0.2310270071029663, -0.09252697229385376, -0.0207002442330122, -0.12405179440975189, -0.002030434552580118, 0.0747220441699028, 0.06990626454353333, 0.09435101598501205, 0.011697104200720787, -0.03331764042377472, -0.007262234576046467, -0.040284719318151474, -0.009185013361275196, 0.05653282254934311, -0.07733296602964401, -0.14178146421909332, -0.03990539163351059, 0.1380939781665802, -0.09461323916912079, 0.0058034081012010574, -0.20514288544654846, 0.008438524790108204, -0.172323539853096, -0.14482846856117249, -0.03521693870425224, -0.00004275999890523963, 0.05037228390574455, -0.11536331474781036, -0.059613216668367386, -0.013305054977536201, -0.10721413046121597, 0.06852886825799942, 0.09240689128637314, 0.06769704073667526, -0.053279899060726166, -0.067241370677948, 0.09865857660770416, -0.035402972251176834, 0.12453792989253998, 0.14511796832084656, -0.03023984096944332, 0.11676208674907684, -0.0466279610991478, -0.09032876789569855, 0.041078731417655945, 0.08640696108341217, 0.13072173297405243, 0.01094149611890316, 0.006688316352665424, 0.03929348662495613, -0.04307951033115387, 0.02404206059873104, 0.14184586703777313, -0.018693411722779274, 0.03413054347038269, -0.07730039954185486, -0.13817603886127472, -0.05785614997148514, -0.04349660128355026, 0.15886883437633514, 0.0748932808637619, 0.07323894649744034, 0.021730270236730576, 0.042475201189517975, -0.03148569166660309, 0.016517892479896545, 0.04928218573331833, -0.1522933542728424, 0.17693915963172913, -0.02606598660349846, 0.00033857114613056183, -0.05158578231930733, 0.3806174695491791, -0.15457621216773987, -0.03690936416387558, 0.0059494455344974995, 0.03733992576599121, -0.058920055627822876, 0.0007968473946675658, 0.1745586395263672, 0.0653923973441124, -0.009008713997900486, -0.24766917526721954, 0.06985320150852203, 0.03803015500307083, -0.013853082433342934, 0.049433838576078415, 0.08225645124912262, -0.05570963770151138, 0.04938719794154167, 0.03549172356724739, -0.07823427021503448, -0.008385471999645233, -0.10601351410150528, 0.02899191342294216, 0.007726346608251333, 0.0477207787334919, 0.13901761174201965, 0.09618161618709564, 0.015793869271874428, 0.0744512528181076, 0.008984463289380074, -0.025779757648706436, -0.1072935238480568, 0.0058824243023991585, -0.03037526272237301, -0.20175905525684357, 0.011448478326201439, -0.11089863628149033, -0.04781466722488403, 0.1765526682138443, 0.04805043339729309, -0.03550155833363533, 0.10165779292583466, -0.002665167208760977, -0.03285311535000801, -0.046627193689346313, 0.013032302260398865, -0.06209263950586319, -0.009876862168312073, -0.06374531984329224, -0.05407053232192993, 0.08126939833164215, -0.07237304747104645, 0.01926899328827858, -0.03254140168428421, 0.022164223715662956, -0.06201734393835068, -0.08074762672185898, -0.07674308866262436, 0.04255395382642746, -0.12594223022460938, 0.12403957545757294, -0.02238164283335209, 0.009500659070909023, 0.03612259402871132, 0.03340762108564377, -0.03548740595579147, -0.104953333735466, -0.06264417618513107, 0.11787740886211395, -0.0005100112175568938, 0.15083104372024536, 0.02990841306746006, -0.013719499111175537, -0.12561561167240143, 0.1304624229669571, 0.2741023004055023, -0.13087300956249237, 0.01986464485526085, 0.03628382831811905, 0.04137221723794937, -0.05026886612176895, 0.11687631905078888, 0.08252908289432526, 0.054242826998233795, -0.0270353052765131, -0.07812327146530151, -0.0770295038819313, 0.03342881053686142, 0.009910671040415764, 0.01661030203104019, 0.09059416502714157, -0.0791345089673996, -0.10144190490245819, 0.04477216675877571, -0.14536860585212708, -0.0010081410873681307, 0.04747863486409187, -0.1469036042690277, -0.012181895785033703, -0.11529936641454697, 0.09862623363733292, -0.08887605369091034, 0.06628330051898956, -0.050084687769412994, -0.10755175352096558, -0.0004351212701294571, 0.06074978783726692, -0.2173169106245041, -0.007849747315049171, 0.09163614362478256, 0.09941881895065308, 0.018051989376544952, -0.009957032278180122, 0.09388482570648193, 0.08684796839952469, 0.12163092941045761, -0.023530293256044388, 0.029848840087652206, 0.014377306215465069, -0.03420142084360123, -0.14085109531879425, -0.07508663833141327, -0.03697109594941139, -0.02603437937796116, 0.0688968300819397, -0.12740609049797058, 0.010275604203343391, 0.08232809603214264, -0.06704393029212952, 0.010167722590267658, -0.05311308428645134, -0.09715050458908081, 0.08149868249893188, 0.045608170330524445, 0.051767297089099884, -0.0050374167039990425, -0.07620544731616974, 0.0636691302061081, 0.06700322777032852, 0.012848766520619392, -0.0920465961098671, -0.015285034663975239, -0.03832090646028519, 0.1754595935344696, 0.0006842911243438721, 0.010410025715827942, 0.018631059676408768, -0.028849441558122635, 0.044954754412174225, -0.03247726708650589, 0.09355071932077408, 0.08466315269470215, 0.07894228398799896, -0.027697071433067322, -0.14065495133399963, 0.020021231845021248, 0.012922948226332664, -0.11899863183498383, -0.05924849957227707 ]
null
null
adapter-transformers
# Adapter `AdapterHub/bert-base-uncased-pf-ud_pos` for bert-base-uncased An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [pos/ud_ewt](https://adapterhub.ml/explore/pos/ud_ewt/) dataset and includes a prediction head for tagging. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("bert-base-uncased") adapter_name = model.load_adapter("AdapterHub/bert-base-uncased-pf-ud_pos", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
{"language": ["en"], "tags": ["token-classification", "bert", "adapterhub:pos/ud_ewt", "adapter-transformers"], "datasets": ["universal_dependencies"]}
token-classification
AdapterHub/bert-base-uncased-pf-ud_pos
[ "adapter-transformers", "bert", "token-classification", "adapterhub:pos/ud_ewt", "en", "dataset:universal_dependencies", "arxiv:2104.08247", "region:us" ]
2022-03-02T23:29:04+00:00
[ "2104.08247" ]
[ "en" ]
TAGS #adapter-transformers #bert #token-classification #adapterhub-pos/ud_ewt #en #dataset-universal_dependencies #arxiv-2104.08247 #region-us
# Adapter 'AdapterHub/bert-base-uncased-pf-ud_pos' for bert-base-uncased An adapter for the 'bert-base-uncased' model that was trained on the pos/ud_ewt dataset and includes a prediction head for tagging. This adapter was created for usage with the adapter-transformers library. ## Usage First, install 'adapter-transformers': _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_ Now, the adapter can be loaded and activated like this: ## Architecture & Training The training code for this adapter is available at URL In particular, training configurations for all tasks can be found here. ## Evaluation results Refer to the paper for more information on results. If you use this adapter, please cite our paper "What to Pre-Train on? Efficient Intermediate Task Selection":
[ "# Adapter 'AdapterHub/bert-base-uncased-pf-ud_pos' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the pos/ud_ewt dataset and includes a prediction head for tagging.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ "TAGS\n#adapter-transformers #bert #token-classification #adapterhub-pos/ud_ewt #en #dataset-universal_dependencies #arxiv-2104.08247 #region-us \n", "# Adapter 'AdapterHub/bert-base-uncased-pf-ud_pos' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the pos/ud_ewt dataset and includes a prediction head for tagging.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ 49, 85, 57, 30, 45 ]
[ "passage: TAGS\n#adapter-transformers #bert #token-classification #adapterhub-pos/ud_ewt #en #dataset-universal_dependencies #arxiv-2104.08247 #region-us \n# Adapter 'AdapterHub/bert-base-uncased-pf-ud_pos' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the pos/ud_ewt dataset and includes a prediction head for tagging.\n\nThis adapter was created for usage with the adapter-transformers library.## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ -0.07727738469839096, -0.043847814202308655, -0.0026412010192871094, 0.01470312848687172, 0.19099178910255432, 0.053104598075151443, 0.1567039042711258, 0.0649162083864212, 0.11091810464859009, 0.012311178259551525, -0.027378521859645844, 0.0986839160323143, 0.04211809113621712, 0.06703875958919525, 0.05275149643421173, -0.05425545200705528, 0.0062560648657381535, 0.05246487259864807, -0.1030421108007431, 0.07690779119729996, 0.08845532685518265, -0.08096179366111755, 0.050365742295980453, 0.023464055731892586, -0.13745079934597015, 0.06377619504928589, -0.05600521340966225, -0.05433742329478264, 0.10096447914838791, 0.08225647360086441, 0.18621927499771118, 0.03768635168671608, 0.010827727615833282, -0.1735353320837021, 0.004191177897155285, 0.09547019749879837, -0.009409802965819836, 0.04224125295877457, -0.011526403948664665, -0.026184236630797386, -0.06292423605918884, -0.01124938391149044, 0.07714658975601196, 0.05952060967683792, -0.06650296598672867, -0.1511095017194748, -0.004052269272506237, 0.09174469858407974, 0.033060651272535324, 0.08684718608856201, 0.009592576883733273, 0.11454625427722931, -0.02480330690741539, 0.05632210522890091, 0.16284522414207458, -0.14449292421340942, 0.01780443824827671, -0.0003752350457943976, 0.047336284071207047, 0.016017889603972435, -0.04558352753520012, -0.05657694488763809, 0.030002638697624207, 0.03946114704012871, 0.050219494849443436, -0.04329504817724228, -0.07961726933717728, -0.03681467846035957, -0.14257481694221497, 0.01278725266456604, 0.25225207209587097, -0.008923408575356007, -0.11200334131717682, -0.05457024276256561, -0.04995090514421463, 0.037594106048345566, 0.02607005089521408, -0.06812514364719391, 0.02140527032315731, 0.00047392406850121915, 0.060989219695329666, -0.07774966210126877, -0.11887504905462265, -0.08159124106168747, -0.05525803565979004, 0.30612751841545105, 0.005022828932851553, 0.0069356258027255535, -0.014105895534157753, 0.13336384296417236, -0.015128189697861671, -0.07271254807710648, -0.054154131561517715, -0.0320097841322422, -0.12729720771312714, -0.08160224556922913, -0.02474435605108738, -0.2480241060256958, -0.0119211720302701, 0.23771211504936218, 0.09823078662157059, 0.017752541229128838, -0.011513887904584408, 0.07801203429698944, 0.07560557872056961, 0.150667205452919, -0.028880709782242775, 0.01171249058097601, -0.001843321486376226, -0.0018819042015820742, -0.04076186195015907, -0.06599888950586319, -0.04237871989607811, -0.05123645067214966, 0.02975120209157467, 0.015165342949330807, 0.06014131009578705, 0.0876835286617279, -0.06949527561664581, -0.09293531626462936, 0.1517629623413086, -0.13954363763332367, -0.018702322617173195, 0.013031095266342163, -0.03591443598270416, 0.07354019582271576, 0.15951290726661682, -0.023867974057793617, -0.0757685974240303, 0.11346136033535004, -0.09030735492706299, -0.04059793800115585, -0.06929604709148407, -0.12376723438501358, 0.017625173553824425, -0.05492157116532326, 0.017739061266183853, -0.16239242255687714, -0.1625026911497116, -0.044451355934143066, 0.04604491963982582, 0.01982085220515728, 0.07867307960987091, 0.043434519320726395, 0.05517906695604324, -0.018821056932210922, -0.04516542702913284, 0.023412400856614113, -0.05432015657424927, 0.05551999807357788, 0.03260171040892601, 0.011583616025745869, 0.003092624247074127, 0.07034332305192947, -0.07861644774675369, -0.014429662376642227, -0.2204214483499527, 0.06980063766241074, -0.14276237785816193, 0.08884511142969131, -0.11799736320972443, 0.010128762573003769, 0.009216705337166786, 0.08962562680244446, 0.05055055767297745, 0.128298819065094, -0.06243251636624336, -0.062351763248443604, 0.07611484825611115, -0.1985258013010025, -0.1306198090314865, 0.03450658544898033, 0.009641910903155804, 0.13983093202114105, 0.025431407615542412, 0.0753808319568634, 0.17297035455703735, -0.0811779722571373, -0.08178413659334183, 0.04932156950235367, -0.04246246814727783, -0.07883400470018387, 0.04266022518277168, 0.00963021069765091, -0.047248464077711105, 0.009655608795583248, -0.0830175057053566, 0.0427326001226902, 0.005104836076498032, -0.007904298603534698, -0.01648387871682644, -0.06470904499292374, 0.05612243711948395, 0.01254167128354311, 0.014008843339979649, 0.034463509917259216, -0.14874331653118134, 0.19671252369880676, 0.12024258077144623, -0.056197792291641235, 0.03775620460510254, -0.09397932887077332, 0.07307381182909012, -0.062111467123031616, 0.002631158335134387, -0.18455763161182404, -0.05385551601648331, 0.021699586883187294, 0.034906305372714996, 0.045234277844429016, 0.036668673157691956, 0.056878022849559784, 0.025362174957990646, -0.0031547921244055033, -0.07176336646080017, -0.0755939707159996, 0.013507618568837643, -0.028209194540977478, -0.1061096042394638, -0.09017876535654068, -0.08221842348575592, -0.019005510956048965, -0.18427377939224243, 0.07166148722171783, 0.05862652510404587, 0.08841609954833984, 0.06262713670730591, -0.027091676369309425, -0.02342536300420761, 0.0011150145437568426, -0.07666819542646408, -0.03326404467225075, 0.013331801630556583, 0.024431107565760612, -0.0638914629817009, -0.002084939042106271, -0.08754836767911911, 0.009210792370140553, 0.08530667424201965, -0.06235449016094208, -0.09193786978721619, -0.03188226372003555, -0.02203574776649475, -0.052370838820934296, -0.06574521213769913, -0.11862382292747498, 0.16896823048591614, 0.07164227217435837, 0.0758005753159523, 0.004074825905263424, -0.013868016190826893, -0.023705001920461655, 0.00466194050386548, 0.026448844000697136, -0.01983492262661457, 0.039757609367370605, -0.04631342366337776, 0.07458871603012085, 0.08555662631988525, -0.06826338917016983, 0.09592984616756439, -0.006439677905291319, -0.09104016423225403, 0.035338398069143295, 0.010656754486262798, 0.03175141289830208, 0.06593992561101913, -0.20841822028160095, 0.0019449918763712049, 0.04028993844985962, 0.006528514437377453, 0.02937725931406021, -0.06423060595989227, 0.04378029331564903, 0.062407299876213074, 0.021373452618718147, -0.013743999414145947, -0.047330357134342194, -0.015736935660243034, 0.020234355702996254, 0.0013960240175947547, 0.09247448295354843, 0.016722943633794785, -0.01711192913353443, -0.11536528915166855, 0.18309509754180908, -0.05765627697110176, -0.17138177156448364, -0.2070537954568863, -0.052731238305568695, 0.0015952213434502482, 0.023111261427402496, 0.07594991475343704, -0.058278631418943405, -0.09014623612165451, -0.030081329867243767, 0.13427557051181793, 0.00511527806520462, -0.009857100434601307, 0.01129077561199665, -0.03253950923681259, 0.05786994472146034, -0.15523302555084229, 0.02888275496661663, 0.051943548023700714, -0.05644629895687103, 0.009745649993419647, 0.05975263565778732, 0.05327841639518738, 0.11278650909662247, -0.014854766428470612, -0.03575674071907997, -0.01765221171081066, 0.1159239411354065, -0.08897332847118378, 0.07168034464120865, 0.15323880314826965, -0.1146775558590889, 0.0337335579097271, 0.06394354999065399, 0.029763927683234215, -0.04841599985957146, 0.04336528107523918, 0.042956434190273285, -0.023028915748000145, -0.2767166495323181, -0.03929760307073593, -0.028094017878174782, -0.006463625002652407, 0.11121596395969391, 0.05443425476551056, 0.031520433723926544, 0.09858540445566177, -0.008617404848337173, 0.0449465848505497, -0.030366914346814156, 0.09741456806659698, 0.09461377561092377, -0.010735420510172844, 0.09258220344781876, -0.08489064872264862, 0.00797361321747303, 0.08091522753238678, 0.03889946639537811, 0.16113680601119995, -0.05508415773510933, 0.11368367820978165, 0.05064734071493149, -0.06901104748249054, 0.01828867569565773, 0.17121316492557526, -0.04118188098073006, -0.006088111083954573, 0.00455474155023694, -0.036161214113235474, -0.07139431685209274, 0.09192657470703125, 0.022755423560738564, -0.020362721756100655, -0.036540448665618896, -0.10753046721220016, 0.02825329266488552, 0.13824373483657837, 0.02375921793282032, -0.17361536622047424, -0.10823771357536316, -0.008341576904058456, -0.041157811880111694, -0.06241479143500328, -0.005740331020206213, 0.07519830018281937, -0.07292695343494415, 0.04632393643260002, -0.013726594857871532, 0.09538958966732025, -0.1141168400645256, -0.03497913107275963, 0.06063288822770119, 0.07245718687772751, -0.034737322479486465, 0.07245481759309769, -0.2307332456111908, 0.05935107171535492, 0.016557328402996063, 0.04833851754665375, -0.050870317965745926, 0.06856878846883774, 0.018617922440171242, 0.11951605975627899, 0.0630890429019928, -0.000281992630334571, 0.07874082773923874, -0.11806341260671616, -0.03232269734144211, -0.003253668313845992, -0.00047032409929670393, -0.09439980238676071, 0.024881955236196518, -0.014109974727034569, 0.048735033720731735, 0.03976983204483986, 0.056495584547519684, -0.12166523933410645, -0.1625119149684906, 0.04532767832279205, -0.020608238875865936, 0.09262997657060623, -0.05568547919392586, -0.0917237177491188, -0.0030238593462854624, 0.21669639647006989, -0.10349489748477936, -0.07460929453372955, -0.1309167444705963, -0.022848984226584435, 0.02012600377202034, -0.05768585205078125, 0.025903070345520973, 0.028127554804086685, 0.06349579244852066, -0.03187980130314827, -0.058500997722148895, 0.08062975108623505, -0.09892675280570984, -0.036881688982248306, -0.06452973932027817, -0.034781888127326965, 0.08723922073841095, 0.008009794168174267, -0.03308044373989105, -0.05196411907672882, 0.02769082598388195, -0.07267452776432037, -0.007717058528214693, 0.07680898904800415, 0.014969119802117348, 0.11585715413093567, -0.12120388448238373, -0.04128560051321983, -0.04982355982065201, -0.031820688396692276, 0.11675306409597397, 0.20353010296821594, -0.03240533545613289, 0.010083101689815521, 0.1788405478000641, -0.09545861184597015, -0.2661576271057129, 0.012555724009871483, 0.03525499254465103, 0.012317751534283161, 0.030017049983143806, -0.24418333172798157, 0.17539240419864655, 0.055549025535583496, 0.012892615981400013, 0.12005184590816498, -0.11660974472761154, -0.1101890355348587, 0.17389817535877228, 0.12334579229354858, 0.023179667070508003, -0.11614671349525452, -0.030733175575733185, 0.011241964995861053, -0.15858730673789978, 0.10926420241594315, -0.0232233926653862, 0.06761466711759567, -0.02589748613536358, 0.013145726174116135, 0.0192414540797472, -0.056130629032850266, 0.052282627671957016, 0.04494229331612587, 0.041154492646455765, -0.05947212874889374, 0.06424912065267563, 0.07710473984479904, -0.0468008928000927, 0.06529991328716278, -0.05584001541137695, 0.02306291088461876, -0.13630583882331848, -0.06630255281925201, -0.006131308153271675, 0.13476617634296417, -0.02552211284637451, -0.09929461777210236, -0.020277418196201324, 0.03743874281644821, 0.0052917590364813805, -0.02156924270093441, 0.08397017419338226, -0.027543887495994568, 0.05663051828742027, 0.18606212735176086, 0.07465451955795288, -0.04174195975065231, -0.17439180612564087, -0.013632131740450859, -0.012408838607370853, 0.13380545377731323, -0.08275595307350159, 0.07412105053663254, 0.08644168823957443, 0.06107063591480255, 0.11270797997713089, 0.06124845892190933, -0.1344241499900818, -0.035674769431352615, 0.08033163845539093, -0.044785648584365845, -0.034648071974515915, -0.011089359410107136, 0.03444727510213852, -0.10928153991699219, 0.04203328862786293, 0.16015100479125977, -0.03682873770594597, -0.012019800953567028, 0.032924748957157135, -0.014874669723212719, -0.061369843780994415, 0.14154930412769318, 0.061244264245033264, 0.07257130742073059, -0.013741769827902317, 0.10563239455223083, 0.08792484551668167, -0.13170842826366425, 0.02973758801817894, -0.02395220659673214, -0.08626898378133774, -0.08547239005565643, -0.027329808101058006, 0.06795676797628403, -0.08085854351520538, -0.06420817226171494, -0.009925452060997486, -0.017170682549476624, 0.020456569269299507, 0.14015895128250122, 0.04090247303247452, -0.0010830574901774526, -0.01957961544394493, 0.05592256039381027, -0.07045001536607742, 0.04951104894280434, -0.004598232917487621, 0.11499858647584915, -0.12332688271999359, -0.005419447552412748, 0.05531684681773186, 0.019325491040945053, -0.04149636626243591, -0.03295159712433815, -0.14826051890850067, -0.015044605359435081, -0.10943358391523361, -0.007500078994780779, -0.04414118453860283, 0.009395388886332512, 0.04265400022268295, -0.08345236629247665, -0.007737793959677219, 0.029836555942893028, -0.03107478655874729, -0.01423842553049326, 0.055813033133745193, 0.0701654925942421, -0.1484096646308899, -0.032421521842479706, 0.0411364808678627, -0.10135801881551743, 0.06608632206916809, 0.038587961345911026, -0.030705846846103668, 0.028687167912721634, -0.03765043616294861, 0.030447393655776978, 0.006031698547303677, 0.05333364009857178, 0.018287288025021553, -0.088807612657547, 0.047185029834508896, -0.03767998144030571, -0.010482215322554111, -0.016857722774147987, 0.183170884847641, -0.0918988287448883, 0.036901094019412994, -0.025073129683732986, -0.03587811812758446, -0.08603104948997498, 0.03302109241485596, 0.0883832722902298, 0.08989600837230682, 0.157018780708313, -0.05465647950768471, 0.07124215364456177, -0.09520826488733292, 0.014665643684566021, 0.0492066815495491, 0.017785245552659035, 0.13810673356056213, -0.08252415806055069, -0.02275126241147518, -0.07049277424812317, 0.1695294976234436, -0.09287022054195404, 0.041827380657196045, 0.056073758751153946, -0.07060123980045319, -0.12406741082668304, -0.0356377437710762, 0.1688729226589203, -0.014034862630069256, 0.035921595990657806, -0.03451617434620857, 0.059720028191804886, 0.04902663454413414, 0.013450461439788342, 0.13424335420131683, 0.13138018548488617, -0.15329374372959137, 0.05757085606455803, -0.00383345247246325, -0.10570590198040009, -0.16184628009796143, -0.09095698595046997, 0.007700731512159109, 0.04636412486433983, -0.04314039647579193, 0.16300630569458008, 0.08736004680395126, -0.02633298560976982, 0.08781682699918747, -0.0029630428180098534, -0.05992433801293373, -0.0495292954146862, -0.0775003433227539, 0.0048545305617153645, -0.14890114963054657, -0.008850879035890102, -0.05821825563907623, -0.05258013308048248, 0.11111623793840408, 0.016714250668883324, 0.018753251060843468, 0.2091493308544159, -0.03865181654691696, -0.0295959934592247, -0.00936537329107523, -0.024085424840450287, -0.027282925322651863, -0.07527937740087509, 0.032605670392513275, 0.0303182490170002, 0.12313947826623917, 0.04364432767033577, 0.03928442671895027, -0.002727076644077897, 0.07568395137786865, 0.016995707526803017, -0.0814247578382492, -0.03649734705686569, 0.017078325152397156, -0.07369966804981232, 0.10990455746650696, 0.012090395204722881, 0.002126755891367793, -0.027247801423072815, 0.19686359167099, -0.07017834484577179, -0.10082102566957474, -0.11787628382444382, 0.14966890215873718, 0.05713897943496704, 0.007666259538382292, 0.00031337031396105886, -0.14157874882221222, -0.06105450913310051, 0.1807674616575241, 0.07273327559232712, 0.039748482406139374, 0.035358890891075134, 0.06373226642608643, 0.009889714419841766, 0.0075844828970730305, 0.07975974678993225, 0.04097958654165268, 0.0863596647977829, -0.006771683692932129, -0.005415432620793581, -0.01621139422059059, -0.03560113161802292, 0.03447849676012993, 0.10474147647619247, -0.011691560968756676, 0.00036122347228229046, -0.07986288517713547, 0.022063840180635452, -0.04530857503414154, -0.26458266377449036, 0.05123613402247429, -0.014705580659210682, -0.07742471992969513, -0.0708496943116188, 0.07999592274427414, -0.06323301047086716, 0.023940587416291237, 0.030789190903306007, -0.05229026451706886, 0.14704206585884094, 0.015141323208808899, -0.06304033100605011, -0.061375439167022705, 0.06118424981832504, -0.033861398696899414, 0.1672481894493103, -0.029151592403650284, 0.0590984970331192, 0.07554411888122559, 0.07922720164060593, -0.09253393113613129, 0.004194358829408884, -0.012550502084195614, -0.08837801963090897, 0.003894468769431114, 0.06818585842847824, -0.052584320306777954, 0.11926588416099548, 0.001984049566090107, -0.2437964677810669, -0.004184729885309935, -0.0030450259801000357, -0.030578987672924995, -0.08678081631660461, -0.019199656322598457, -0.07908426225185394, 0.137896329164505, 0.090349480509758, 0.01771865412592888, -0.07712605595588684, -0.09405975788831711, 0.05186139792203903, 0.042235374450683594, 0.09551297873258591, -0.0474899560213089, -0.16113382577896118, 0.0101405568420887, -0.047843508422374725, 0.055307336151599884, -0.25913944840431213, -0.025078102946281433, 0.06004928797483444, -0.0542328804731369, -0.034688517451286316, 0.0848996564745903, 0.0846819281578064, 0.0913582518696785, -0.07064837217330933, -0.1456579715013504, -0.018056470900774002, 0.10081828385591507, -0.1747078150510788, -0.08996172249317169 ]
null
null
adapter-transformers
# Adapter `AdapterHub/bert-base-uncased-pf-wic` for bert-base-uncased An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [wordsence/wic](https://adapterhub.ml/explore/wordsence/wic/) dataset and includes a prediction head for classification. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("bert-base-uncased") adapter_name = model.load_adapter("AdapterHub/bert-base-uncased-pf-wic", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
{"language": ["en"], "tags": ["text-classification", "bert", "adapterhub:wordsence/wic", "adapter-transformers"]}
text-classification
AdapterHub/bert-base-uncased-pf-wic
[ "adapter-transformers", "bert", "text-classification", "adapterhub:wordsence/wic", "en", "arxiv:2104.08247", "region:us" ]
2022-03-02T23:29:04+00:00
[ "2104.08247" ]
[ "en" ]
TAGS #adapter-transformers #bert #text-classification #adapterhub-wordsence/wic #en #arxiv-2104.08247 #region-us
# Adapter 'AdapterHub/bert-base-uncased-pf-wic' for bert-base-uncased An adapter for the 'bert-base-uncased' model that was trained on the wordsence/wic dataset and includes a prediction head for classification. This adapter was created for usage with the adapter-transformers library. ## Usage First, install 'adapter-transformers': _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_ Now, the adapter can be loaded and activated like this: ## Architecture & Training The training code for this adapter is available at URL In particular, training configurations for all tasks can be found here. ## Evaluation results Refer to the paper for more information on results. If you use this adapter, please cite our paper "What to Pre-Train on? Efficient Intermediate Task Selection":
[ "# Adapter 'AdapterHub/bert-base-uncased-pf-wic' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the wordsence/wic dataset and includes a prediction head for classification.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ "TAGS\n#adapter-transformers #bert #text-classification #adapterhub-wordsence/wic #en #arxiv-2104.08247 #region-us \n", "# Adapter 'AdapterHub/bert-base-uncased-pf-wic' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the wordsence/wic dataset and includes a prediction head for classification.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ 37, 81, 57, 30, 45 ]
[ "passage: TAGS\n#adapter-transformers #bert #text-classification #adapterhub-wordsence/wic #en #arxiv-2104.08247 #region-us \n# Adapter 'AdapterHub/bert-base-uncased-pf-wic' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the wordsence/wic dataset and includes a prediction head for classification.\n\nThis adapter was created for usage with the adapter-transformers library.## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ -0.0692567527294159, 0.016001611948013306, -0.0028586587868630886, 0.028686312958598137, 0.1482207477092743, 0.012334628961980343, 0.1396930068731308, 0.0379987433552742, 0.06683724373579025, 0.038291752338409424, 0.04393107816576958, 0.07410100847482681, 0.05246869474649429, 0.025925416499376297, -0.00966520793735981, -0.12995056807994843, 0.03209074214100838, 0.0365741066634655, -0.04536094889044762, 0.09942657500505447, 0.08681965619325638, -0.10213953256607056, 0.0780569538474083, 0.05301222950220108, -0.13825151324272156, 0.03087015077471733, -0.026243355125188828, -0.09393709897994995, 0.08496923744678497, 0.08675988018512726, 0.19246676564216614, 0.04691943898797035, 0.015783468261361122, -0.13398995995521545, 0.018257547169923782, 0.07716548442840576, 0.03889983147382736, 0.0887569785118103, -0.01584545709192753, 0.0017900355160236359, -0.004086215980350971, -0.0023496460635215044, 0.06696812808513641, 0.06563512235879898, -0.08049138635396957, -0.18512730300426483, -0.024130769073963165, 0.12346689403057098, 0.020672978833317757, 0.06968796998262405, -0.0013722432777285576, 0.05896802619099617, 0.017063671723008156, 0.057033687829971313, 0.18136899173259735, -0.2647886276245117, -0.00970420241355896, -0.04444215074181557, 0.05029528588056564, 0.03698857128620148, -0.0742989256978035, 0.010982334613800049, 0.03460971266031265, 0.027501216158270836, 0.05131712183356285, -0.020408855751156807, -0.03519865497946739, -0.019665274769067764, -0.1601904332637787, -0.0023400001227855682, 0.22911079227924347, -0.014880732633173466, -0.1014796793460846, -0.03960707411170006, -0.028057727962732315, 0.11258366703987122, 0.03212303668260574, -0.07587534934282303, -0.009576422162353992, -0.005586961284279823, -0.0020902000833302736, -0.09016606211662292, -0.09900932013988495, -0.07727707922458649, -0.0917041152715683, 0.3220747709274292, -0.020690277218818665, 0.026500867679715157, -0.005340762436389923, 0.123296357691288, 0.03868427500128746, -0.12496909499168396, -0.07049920409917831, -0.05800732970237732, -0.04372958838939667, -0.04454220458865166, -0.0428420752286911, -0.18720145523548126, -0.02114441990852356, 0.08025630563497543, 0.08397089689970016, 0.028919696807861328, -0.09663998335599899, 0.06747324019670486, 0.042637281119823456, 0.17624016106128693, -0.06396736949682236, 0.04983043670654297, -0.041218046098947525, -0.009327578358352184, -0.053169284015893936, -0.10867157578468323, -0.0721934363245964, -0.014201696962118149, 0.03004944883286953, 0.027779610827565193, 0.007670764345675707, 0.09712129086256027, -0.047358717769384384, -0.07056713104248047, 0.13500602543354034, -0.14414095878601074, -0.005683562718331814, 0.029107125476002693, -0.03402812033891678, 0.13223221898078918, 0.16242367029190063, -0.010206945240497589, -0.056310851126909256, 0.10332585871219635, -0.07522770017385483, -0.0609339103102684, -0.07254136353731155, -0.15595585107803345, 0.017514238134026527, -0.016908451914787292, -0.020989254117012024, -0.144738107919693, -0.0849376767873764, -0.016662370413541794, 0.051314402371644974, 0.019067637622356415, 0.08968779444694519, 0.01425971556454897, 0.016438381746411324, 0.02366822026669979, -0.03590668365359306, -0.03364168480038643, -0.007658514194190502, 0.07921316474676132, -0.006219517905265093, 0.05340435728430748, -0.07561895251274109, 0.08179508149623871, -0.05265089124441147, 0.012252237647771835, -0.1944657564163208, 0.08794990181922913, -0.16165359318256378, 0.029806485399603844, -0.13564465939998627, -0.014478730037808418, -0.015749089419841766, 0.03566348925232887, 0.06637164950370789, 0.09091638028621674, -0.11222797632217407, -0.06293001770973206, 0.08431676775217056, -0.19087541103363037, -0.11948259174823761, 0.06225385144352913, -0.021634647622704506, 0.1258893609046936, 0.08381838351488113, 0.11436830461025238, 0.13052284717559814, -0.08505759388208389, -0.10841047018766403, 0.049066003412008286, -0.04208473488688469, 0.003069323720410466, 0.03324269503355026, 0.012701581232249737, -0.16133612394332886, 0.00545158889144659, -0.09280505776405334, -0.006715735420584679, -0.031474314630031586, -0.029085610061883926, -0.014080229215323925, -0.04196981340646744, 0.10478710383176804, 0.0011670963140204549, -0.01655486971139908, 0.03875918313860893, -0.1298125982284546, 0.22829493880271912, 0.07292910665273666, -0.09239107370376587, 0.030782362446188927, -0.12330888956785202, 0.06213532015681267, -0.08322781324386597, 0.009800443425774574, -0.18933844566345215, -0.011441103182733059, 0.01474852953106165, 0.012579272501170635, 0.07205227017402649, 0.038365550339221954, 0.048141781240701675, 0.03194878250360489, 0.023977497592568398, 0.007227596361190081, -0.054008252918720245, 0.03696969896554947, -0.06129272282123566, -0.125035360455513, -0.07765542715787888, -0.05305090174078941, -0.003277914598584175, -0.21514762938022614, 0.04702235013246536, 0.13656869530677795, 0.05774630606174469, 0.02219322696328163, -0.023460624739527702, -0.035032548010349274, 0.008531887084245682, -0.031009379774332047, -0.016711857169866562, 0.03130730614066124, 0.010427461005747318, -0.09485508501529694, 0.04359107464551926, -0.09887009114027023, 0.0063823070377111435, 0.09890731424093246, -0.04776529595255852, -0.07139090448617935, -0.04363706707954407, 0.018445994704961777, -0.029221313074231148, -0.008096946403384209, -0.1212627962231636, 0.29978758096694946, 0.05958133190870285, 0.06854673475027084, -0.04093274846673012, -0.003700964618474245, 0.0001230788038810715, 0.0012803319841623306, 0.01540802326053381, 0.01706160046160221, 0.015770582482218742, -0.14049416780471802, 0.023423299193382263, 0.1959264725446701, -0.03219487890601158, 0.11269926279783249, -0.017652390524744987, -0.09566321223974228, 0.012841559015214443, -0.04922657087445259, 0.042606037110090256, 0.05350442975759506, -0.12540775537490845, -0.009246795438230038, 0.05680185928940773, -0.014032726176083088, 0.02017686888575554, -0.07248937338590622, 0.05890656262636185, 0.06903363019227982, 0.0016297335969284177, -0.04009905830025673, -0.043234795331954956, -0.021077632904052734, 0.0487542487680912, 0.048384375870227814, 0.09524290263652802, 0.006037923041731119, -0.03000548481941223, -0.09068821370601654, 0.18645364046096802, -0.05333742871880531, -0.21154755353927612, -0.20325732231140137, -0.08584291487932205, 0.008375377394258976, 0.01032993383705616, 0.036301951855421066, -0.08694112300872803, -0.08812514692544937, -0.04705305024981499, 0.15968821942806244, -0.02913128212094307, 0.008504487574100494, 0.05612918362021446, -0.07320309430360794, 0.05439431220293045, -0.17513559758663177, 0.027983827516436577, 0.0252115186303854, -0.07941047102212906, -0.020591549575328827, 0.017194436863064766, 0.06805825978517532, 0.16130946576595306, -0.021179193630814552, 0.007789048831909895, -0.004980179015547037, 0.12879125773906708, -0.07967057079076767, 0.04162905737757683, 0.10377585887908936, -0.20625442266464233, 0.03452160209417343, 0.04521773383021355, 0.06399175524711609, -0.055816635489463806, 0.03867843374609947, 0.016438448801636696, -0.03627120330929756, -0.2640223205089569, -0.039209023118019104, 0.008203720673918724, 0.004571992438286543, 0.10389433056116104, 0.01530066505074501, 0.01853390969336033, 0.08148074150085449, 0.02275836654007435, 0.00522746192291379, -0.040556591004133224, 0.06152797490358353, 0.1908186376094818, -0.015348383225500584, 0.11371772736310959, -0.08806414157152176, 0.013031953945755959, 0.0703459158539772, -0.035402629524469376, 0.1463962197303772, -0.0021926104091107845, 0.12346456199884415, 0.07266243547201157, -0.05017276108264923, 0.08393942564725876, 0.17377328872680664, -0.06185530871152878, -0.00550796976312995, -0.0007029600674286485, -0.0764017328619957, -0.059060826897621155, 0.03443894162774086, -0.008295034989714622, 0.015078047290444374, -0.053600337356328964, -0.08356806635856628, 0.029690824449062347, 0.13286007940769196, 0.010331030003726482, -0.21328434348106384, -0.12369490414857864, -0.021775444969534874, -0.05432534217834473, -0.07817041128873825, 0.005753213074058294, 0.08705533295869827, -0.07703432440757751, 0.03799820691347122, -0.015606343746185303, 0.10884586721658707, -0.16451679170131683, -0.005711908917874098, 0.011837218888103962, 0.08931436389684677, -0.0502525195479393, 0.07881246507167816, -0.15066441893577576, 0.09138540178537369, 0.04149724543094635, 0.0346718393266201, -0.05800946056842804, 0.012467008084058762, 0.03086071088910103, 0.12664544582366943, 0.03742885962128639, -0.02857782691717148, 0.10547025501728058, -0.1234668493270874, -0.09272107481956482, 0.03674362599849701, 0.07644365727901459, -0.10425126552581787, 0.06978349387645721, -0.005866463761776686, 0.047945536673069, 0.03845766559243202, 0.008982174098491669, -0.13483522832393646, -0.15912003815174103, 0.06584098935127258, 0.016458235681056976, 0.1358201950788498, -0.060913942754268646, -0.11467861384153366, -0.0046964287757873535, 0.21483644843101501, -0.18317025899887085, -0.05999860167503357, -0.14655354619026184, -0.005326288752257824, 0.06884481012821198, -0.06071397662162781, 0.034132931381464005, 0.005158382933586836, 0.10722432285547256, -0.03366640582680702, -0.08918552845716476, 0.08802607655525208, -0.05768568068742752, -0.05134330317378044, -0.033305924385786057, 0.02463793195784092, 0.12134772539138794, 0.026304256170988083, -0.001998893218114972, -0.020743662491440773, 0.029624776914715767, -0.12150505185127258, -0.028458241373300552, 0.06146503612399101, -0.03402188420295715, 0.04569366201758385, -0.058817360550165176, 0.03990983963012695, -0.08106829226016998, 0.019687404856085777, 0.1579025238752365, 0.10369324684143066, -0.06806841492652893, 0.05765555426478386, 0.17851069569587708, -0.08106657862663269, -0.29523947834968567, 0.030339544638991356, 0.05627300217747688, 0.010586951859295368, -0.00684635154902935, -0.24176667630672455, 0.19098728895187378, 0.022356387227773666, -0.00743439607322216, 0.11285438388586044, -0.084771528840065, -0.09874642640352249, 0.19972877204418182, 0.07997547090053558, 0.03769480809569359, -0.10726769268512726, -0.07592888921499252, -0.012270504608750343, -0.15816602110862732, 0.14048786461353302, -0.0991269126534462, 0.06252042204141617, 0.020095298066735268, 0.0466555617749691, 0.026865309104323387, -0.017462577670812607, 0.09078653156757355, 0.01664985902607441, 0.018138017505407333, -0.07360745966434479, -0.011464548297226429, 0.021246079355478287, -0.033719751983881, 0.09044782817363739, -0.04113013297319412, 0.038998860865831375, -0.08275170624256134, -0.07681388407945633, 0.005075774621218443, 0.10838369280099869, -0.02881116420030594, -0.06485453248023987, -0.03333450108766556, 0.01567051187157631, -0.04171104356646538, -0.023217685520648956, 0.040171392261981964, -0.0977674126625061, 0.0452592559158802, 0.19262945652008057, 0.1920478194952011, -0.012284498661756516, -0.06113339960575104, 0.01300190668553114, -0.042921632528305054, 0.16216163337230682, -0.17544251680374146, 0.06411225348711014, 0.0955096110701561, 0.033851154148578644, 0.11493517458438873, 0.05652834102511406, -0.14011390507221222, -0.031337570399045944, 0.04651639610528946, -0.0955110564827919, -0.021604815497994423, -0.024606978520751, 0.10435868054628372, -0.16665133833885193, 0.04377470538020134, 0.1704104095697403, -0.07063713669776917, 0.01716277189552784, 0.04332588613033295, -0.03847559913992882, -0.0637190118432045, 0.09549580514431, 0.12730517983436584, 0.06422331929206848, -0.044360894709825516, 0.08521170914173126, 0.09916578233242035, -0.10729525983333588, 0.060547128319740295, -0.04640289768576622, -0.07103443145751953, -0.060071997344493866, -0.11472294479608536, 0.1191401481628418, -0.03402185067534447, -0.0914028137922287, 0.03493957221508026, -0.10169366747140884, 0.029893705621361732, 0.24311837553977966, 0.04798278957605362, 0.03554726392030716, -0.060418326407670975, 0.052192848175764084, -0.08111006021499634, 0.05510770529508591, -0.03944046050310135, 0.06034107133746147, -0.08753911405801773, 0.042904917150735855, 0.049018558114767075, 0.048742830753326416, -0.05288835987448692, -0.05342860892415047, -0.12738947570323944, -0.018876399844884872, -0.14835397899150848, -0.0073908185586333275, -0.03457777947187424, 0.0024563123006373644, 0.022192398086190224, -0.09183640778064728, -0.020257335156202316, 0.020759383216500282, -0.0342138446867466, 0.005719346459954977, 0.05524419620633125, 0.05817617475986481, -0.15301966667175293, -0.007375120650976896, 0.07634051889181137, -0.06998178362846375, 0.0689583271741867, 0.03229966759681702, -0.03789452835917473, 0.043721769005060196, -0.07821887731552124, 0.027969110757112503, -0.01335502415895462, 0.03405878320336342, 0.017092673107981682, -0.06716076284646988, -0.0021411466877907515, -0.05148649960756302, 0.030510153621435165, -0.001515773357823491, 0.22384317219257355, -0.05337134003639221, 0.029724696651101112, 0.0080413231626153, 0.013559000566601753, -0.04605800658464432, 0.06395852565765381, 0.0897659882903099, 0.0935554951429367, 0.11404432356357574, -0.06380991637706757, 0.06950673460960388, -0.0941511020064354, 0.030426589772105217, 0.02269919030368328, -0.027767309918999672, 0.14325274527072906, -0.12349376827478409, 0.009379897266626358, -0.06977630406618118, 0.18194641172885895, -0.06987118721008301, 0.0036025317385792732, 0.05178926885128021, -0.06362089514732361, -0.12220507860183716, -0.02432207204401493, 0.19406862556934357, 0.058128975331783295, 0.032900020480155945, -0.03682948648929596, 0.026938077062368393, -0.00968910101801157, 0.03971541300415993, 0.1458689570426941, 0.15779048204421997, -0.11942768841981888, 0.043318215757608414, 0.04431355372071266, -0.023281794041395187, -0.09597473591566086, -0.0469340980052948, -0.01994546875357628, 0.07270719856023788, -0.02220197208225727, 0.10677732527256012, 0.0788990929722786, -0.0095829414203763, 0.053566351532936096, 0.017977328971028328, -0.06923549622297287, -0.0928502082824707, -0.05488182604312897, -0.015722468495368958, -0.11510530859231949, -0.016390599310398102, -0.09045010805130005, -0.006338667124509811, 0.09208898991346359, 0.021655285730957985, 0.02398049831390381, 0.26702505350112915, -0.06517597287893295, -0.04290582612156868, 0.0914122611284256, -0.04949444904923439, -0.03876469284296036, -0.12224475294351578, 0.05114028602838516, 0.04644033685326576, 0.1446947455406189, 0.03928889334201813, 0.05658020079135895, 0.0002957931428682059, 0.0564558170735836, -0.005773844663053751, -0.12777388095855713, -0.036739859730005264, 0.041762225329875946, -0.03498038649559021, 0.06949011981487274, 0.012455062009394169, -0.0209416002035141, -0.03012029640376568, 0.10793313384056091, -0.08097925782203674, -0.09737688302993774, -0.13196197152137756, 0.15469977259635925, -0.01746276579797268, 0.025936797261238098, -0.04829339683055878, -0.09473276138305664, -0.028699839487671852, 0.23687469959259033, 0.0760299414396286, -0.046468280255794525, 0.04765436053276062, 0.04787662625312805, 0.026031825691461563, 0.027942011132836342, 0.10700694471597672, 0.014690340496599674, 0.10948975384235382, -0.006951436400413513, -0.07913853973150253, -0.06282436102628708, -0.04934082552790642, 0.04510831460356712, 0.09123090654611588, 0.01600019261240959, -0.043459661304950714, -0.08563169091939926, 0.06634387373924255, -0.059121713042259216, -0.2480795830488205, -0.03850637003779411, -0.037710752338171005, -0.07185802608728409, -0.06083523854613304, 0.04759353771805763, -0.017840620130300522, 0.012173363007605076, -0.0002385132829658687, -0.04754834994673729, 0.1601894646883011, 0.0385485514998436, -0.04999128356575966, 0.013438135385513306, 0.07724734395742416, -0.09959840774536133, 0.12848615646362305, 0.00021825879230163991, 0.04208241030573845, 0.054256174713373184, 0.07776730507612228, -0.06442099809646606, 0.004291459918022156, 0.01307692565023899, -0.09343934059143066, -0.01219189539551735, 0.052870649844408035, -0.011242315173149109, 0.1160081997513771, 0.046622347086668015, -0.21142713725566864, 0.036602385342121124, 0.014495276845991611, -0.08905619382858276, -0.06059615686535835, -0.049937374889850616, -0.0680689886212349, 0.15182070434093475, 0.15121211111545563, -0.013027911074459553, -0.0763493999838829, -0.06819957494735718, 0.022840816527605057, -0.001667279633693397, 0.0462031252682209, -0.05090625211596489, -0.1256883144378662, -0.031492333859205246, -0.04819093272089958, 0.044861406087875366, -0.31536248326301575, -0.012713111937046051, 0.05921091511845589, -0.023960979655385017, -0.008667622692883015, 0.051063552498817444, 0.10151960700750351, 0.06008176505565643, -0.03877910226583481, -0.06266477704048157, 0.016482200473546982, 0.10973846912384033, -0.17673014104366302, -0.0518893226981163 ]
null
null
adapter-transformers
# Adapter `AdapterHub/bert-base-uncased-pf-wikihop` for bert-base-uncased An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [qa/wikihop](https://adapterhub.ml/explore/qa/wikihop/) dataset and includes a prediction head for question answering. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("bert-base-uncased") adapter_name = model.load_adapter("AdapterHub/bert-base-uncased-pf-wikihop", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
{"language": ["en"], "tags": ["question-answering", "bert", "adapterhub:qa/wikihop", "adapter-transformers"]}
question-answering
AdapterHub/bert-base-uncased-pf-wikihop
[ "adapter-transformers", "bert", "question-answering", "adapterhub:qa/wikihop", "en", "arxiv:2104.08247", "region:us" ]
2022-03-02T23:29:04+00:00
[ "2104.08247" ]
[ "en" ]
TAGS #adapter-transformers #bert #question-answering #adapterhub-qa/wikihop #en #arxiv-2104.08247 #region-us
# Adapter 'AdapterHub/bert-base-uncased-pf-wikihop' for bert-base-uncased An adapter for the 'bert-base-uncased' model that was trained on the qa/wikihop dataset and includes a prediction head for question answering. This adapter was created for usage with the adapter-transformers library. ## Usage First, install 'adapter-transformers': _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_ Now, the adapter can be loaded and activated like this: ## Architecture & Training The training code for this adapter is available at URL In particular, training configurations for all tasks can be found here. ## Evaluation results Refer to the paper for more information on results. If you use this adapter, please cite our paper "What to Pre-Train on? Efficient Intermediate Task Selection":
[ "# Adapter 'AdapterHub/bert-base-uncased-pf-wikihop' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the qa/wikihop dataset and includes a prediction head for question answering.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ "TAGS\n#adapter-transformers #bert #question-answering #adapterhub-qa/wikihop #en #arxiv-2104.08247 #region-us \n", "# Adapter 'AdapterHub/bert-base-uncased-pf-wikihop' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the qa/wikihop dataset and includes a prediction head for question answering.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ 37, 83, 57, 30, 45 ]
[ "passage: TAGS\n#adapter-transformers #bert #question-answering #adapterhub-qa/wikihop #en #arxiv-2104.08247 #region-us \n# Adapter 'AdapterHub/bert-base-uncased-pf-wikihop' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the qa/wikihop dataset and includes a prediction head for question answering.\n\nThis adapter was created for usage with the adapter-transformers library.## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ -0.06845208257436752, -0.028924813494086266, -0.0030588589143007994, 0.026663241907954216, 0.14647099375724792, 0.005902788136154413, 0.1159442737698555, 0.0741325318813324, 0.10568834841251373, 0.027075281366705894, 0.026002369821071625, 0.08937019109725952, 0.06102767214179039, 0.02192702703177929, 0.028651634231209755, -0.11674188822507858, 0.010769158601760864, 0.04165361076593399, -0.0830620676279068, 0.09694486856460571, 0.09217669069766998, -0.10823678970336914, 0.08414574712514877, 0.0705120638012886, -0.0849778801202774, 0.04108712449669838, -0.018658438697457314, -0.101321741938591, 0.1092720776796341, 0.0985887423157692, 0.14626368880271912, 0.0528201200067997, 0.01125761866569519, -0.1530713587999344, 0.028299663215875626, 0.07696378976106644, 0.03266526013612747, 0.06522694230079651, -0.017721673473715782, 0.04228479415178299, -0.09305573254823685, 0.028688888996839523, 0.047028038650751114, 0.06681102514266968, -0.06843128800392151, -0.22839216887950897, -0.026733411476016045, 0.10949791967868805, 0.03651855140924454, 0.07804296165704727, -0.006438706535845995, 0.07086829841136932, 0.008069931529462337, 0.04572509229183197, 0.2181667983531952, -0.29679736495018005, -0.0051829456351697445, -0.03664502874016762, 0.0724056139588356, 0.026923654600977898, -0.07005400210618973, -0.003372367937117815, 0.03144875913858414, 0.020769573748111725, 0.04013758897781372, -0.040973346680402756, -0.009676559828221798, -0.010115286335349083, -0.14926445484161377, -0.0020051305182278156, 0.19752530753612518, -0.002967900363728404, -0.11465927213430405, -0.03176706284284592, -0.03214212879538536, 0.1351536214351654, 0.03895555064082146, -0.08741431683301926, -0.0041722566820681095, -0.010923284105956554, -0.015322284772992134, -0.09990707784891129, -0.10383559763431549, -0.09719142317771912, -0.10295982658863068, 0.29801562428474426, 0.015087534673511982, 0.037594377994537354, -0.031030025333166122, 0.12934108078479767, -0.028857477009296417, -0.1270696371793747, -0.09517228603363037, -0.06311903148889542, -0.060881681740283966, -0.02851116843521595, -0.01831197738647461, -0.23173688352108002, 0.0069413199089467525, 0.11421454697847366, 0.1046944409608841, 0.029303211718797684, -0.08524005860090256, 0.051720213145017624, 0.05464554950594902, 0.21541906893253326, -0.11092939972877502, 0.048949986696243286, -0.024526113644242287, 0.0018092725658789277, -0.06843764334917068, -0.10456489026546478, -0.04982711747288704, -0.02731313183903694, 0.026029303669929504, 0.04733792692422867, 0.02913156896829605, 0.08747334033250809, -0.023542245849967003, -0.07915002107620239, 0.09545664489269257, -0.12318331748247147, -0.032641034573316574, 0.007368530612438917, -0.05294898524880409, 0.1107136681675911, 0.12824489176273346, 0.018587348982691765, -0.04290755093097687, 0.08314184099435806, -0.0682729035615921, -0.07005131244659424, -0.04365496337413788, -0.12703374028205872, 0.0016001578187569976, 0.0007215291843749583, 0.00621394906193018, -0.15746042132377625, -0.0639648586511612, 0.004027999937534332, 0.051989808678627014, 0.012631932273507118, 0.06919647008180618, 0.0689980685710907, 0.04442770034074783, -0.001841321005485952, -0.029312698170542717, 0.008291047066450119, -0.021394899114966393, 0.10166004300117493, 0.022990578785538673, 0.05208331719040871, -0.03301132842898369, 0.0767408236861229, -0.058994047343730927, 0.027160950005054474, -0.19205394387245178, 0.062176309525966644, -0.16998964548110962, -0.006426427513360977, -0.14005474746227264, -0.024990234524011612, 0.030538998544216156, 0.021852733567357063, 0.08710701018571854, 0.06703083962202072, -0.07550102472305298, -0.03404545411467552, 0.08890462666749954, -0.15565766394138336, -0.16747333109378815, 0.06268593668937683, -0.009066334925591946, 0.1394113451242447, 0.04047393053770065, 0.09006445109844208, 0.1188877671957016, -0.12579508125782013, -0.11041438579559326, 0.03935731574892998, -0.04796816408634186, -0.0022405164781957865, 0.051107048988342285, 0.0171575378626585, -0.14370104670524597, 0.022391773760318756, -0.12604616582393646, -0.0024606159422546625, -0.03623136132955551, -0.038978997617959976, -0.035079509019851685, -0.06246577948331833, 0.09025022387504578, -0.0064476365223526955, -0.015682091936469078, 0.07423483580350876, -0.12941153347492218, 0.16553398966789246, 0.061484310775995255, -0.05821717530488968, 0.019847804680466652, -0.13399505615234375, 0.09589360654354095, -0.14085602760314941, 0.015000322833657265, -0.1768961101770401, -0.026508858427405357, 0.018740152940154076, -0.04244600608944893, 0.049405936151742935, 0.05678626149892807, 0.05016468092799187, 0.01790277659893036, 0.023594403639435768, -0.014081519097089767, -0.08348463475704193, 0.026534968987107277, -0.07194509357213974, -0.06726383417844772, -0.05930156260728836, -0.0488927960395813, -0.03858137130737305, -0.11256921291351318, 0.029513578861951828, 0.08149509876966476, 0.05481282249093056, 0.017778320237994194, 0.008134712465107441, -0.014774058945477009, -0.015961524099111557, -0.014174210838973522, -0.010303538292646408, 0.031487565487623215, 0.006554346531629562, -0.07770592719316483, 0.037242963910102844, -0.07078997790813446, 0.036435872316360474, 0.0733540877699852, -0.014949219301342964, -0.04660407826304436, -0.05127303674817085, -0.010588221251964569, -0.03981615602970123, -0.029220499098300934, -0.10366503894329071, 0.268806517124176, 0.07590945065021515, 0.05422251671552658, -0.04993099346756935, -0.012533239088952541, 0.018293172121047974, -0.0032147071324288845, 0.025188948959112167, -0.0019733712542802095, 0.03479335829615593, -0.09168879687786102, 0.004276515915989876, 0.22350262105464935, -0.018843242898583412, 0.10098554193973541, -0.030146488919854164, -0.11468374729156494, -0.00586077431216836, -0.044319670647382736, 0.03507396578788757, 0.09314650297164917, -0.10077858716249466, 0.017069829627871513, 0.07546593248844147, -0.004156558308750391, 0.002837238134816289, -0.060257673263549805, 0.02753775380551815, 0.05035017803311348, 0.0006219318020157516, -0.05357816070318222, -0.0046541886404156685, -0.014809530228376389, 0.0532289482653141, 0.0661543756723404, 0.12320956587791443, 0.008233064785599709, -0.023841753602027893, -0.05505942180752754, 0.1808597594499588, -0.03842056170105934, -0.1871221512556076, -0.1847258061170578, -0.09662984311580658, -0.029573755338788033, -0.020888615399599075, 0.05943821743130684, -0.09605550020933151, -0.08497701585292816, -0.018496589735150337, 0.1794627606868744, -0.017818383872509003, 0.003141664667055011, 0.03504430875182152, -0.07960055768489838, 0.08678152412176132, -0.1679348349571228, 0.032448139041662216, 0.02668760158121586, -0.09504687041044235, -0.012474668212234974, 0.048982854932546616, 0.09265665709972382, 0.1115451380610466, -0.03668434917926788, 0.0050070928409695625, 0.003812682582065463, 0.18270763754844666, -0.08021221309900284, 0.06168182194232941, 0.1437315046787262, -0.1607518196105957, 0.04713352024555206, 0.07234431058168411, 0.050390493124723434, -0.04718177393078804, 0.048907969146966934, 0.061166711151599884, -0.03966311365365982, -0.2699388265609741, 0.021305270493030548, 0.029698193073272705, 0.0016011454863473773, 0.07072992622852325, 0.029741205275058746, 0.01837630569934845, 0.10712437331676483, 0.0311431922018528, -0.008583109825849533, -0.08402568846940994, 0.05865050479769707, 0.18021981418132782, -0.013205473311245441, 0.10948214679956436, -0.07092265039682388, 0.015694282948970795, 0.07506948709487915, 0.049854576587677, 0.14045782387256622, -0.038637563586235046, 0.07013660669326782, 0.09333202987909317, 0.015371335670351982, 0.06973179429769516, 0.15347175300121307, -0.07443231344223022, -0.025091376155614853, -0.0027780369855463505, -0.05138321965932846, -0.05242297425866127, 0.029301505535840988, 0.0028659359086304903, 0.030985593795776367, -0.04906744509935379, -0.034887898713350296, 0.02190980687737465, 0.20057281851768494, 0.0002698409662116319, -0.11842988431453705, -0.12700824439525604, -0.02694508619606495, -0.0499906949698925, -0.07588566839694977, 0.02773006074130535, 0.05260225385427475, -0.10523264855146408, -0.005660100840032101, -0.04652300104498863, 0.11365649104118347, -0.1389387995004654, -0.0013239108957350254, 0.03663415461778641, 0.09005387127399445, -0.044505927711725235, 0.09871925413608551, -0.2148340493440628, 0.08507262915372849, 0.03370688855648041, 0.040486909449100494, -0.05470150709152222, 0.015797441825270653, 0.031108509749174118, 0.08917819708585739, 0.08504368364810944, -0.02920607104897499, 0.12591670453548431, -0.16610349714756012, -0.08304332196712494, 0.0646105408668518, 0.035999927669763565, -0.10358692705631256, 0.06970792263746262, -0.02843630127608776, 0.062436070293188095, 0.01424646470695734, 0.09099987894296646, -0.1469860076904297, -0.13514482975006104, 0.0636240765452385, -0.01628580316901207, 0.14945721626281738, -0.07359243184328079, -0.10335838794708252, -0.011856934055685997, 0.15635830163955688, -0.15064001083374023, -0.08560112863779068, -0.13839925825595856, -0.01966618001461029, 0.06866712868213654, -0.08969911932945251, 0.03586294502019882, -0.020372815430164337, 0.10413534194231033, -0.013621876947581768, -0.08519212156534195, 0.06763064116239548, -0.07755830883979797, -0.0658944696187973, -0.024334721267223358, -0.0007025510421954095, 0.08724641054868698, 0.017521103844046593, 0.005519130267202854, -0.03965257480740547, -0.007101513911038637, -0.12132801860570908, -0.002583119785413146, 0.014837740920484066, -0.04378633201122284, 0.003312842221930623, -0.058028578758239746, 0.0912819504737854, -0.09082135558128357, 0.00038248440250754356, 0.15255632996559143, 0.11212479323148727, -0.06563843786716461, 0.03991416469216347, 0.20861530303955078, -0.058532241731882095, -0.2667790949344635, -0.024275483563542366, 0.051078785210847855, -0.0007611911278218031, 0.043937649577856064, -0.21760158240795135, 0.17025496065616608, 0.046187691390514374, -0.012936726212501526, 0.06311634927988052, -0.10285888612270355, -0.08399268984794617, 0.19906556606292725, 0.12407201528549194, 0.031024981290102005, -0.12323340028524399, -0.06885646283626556, 0.02589997462928295, -0.22489020228385925, 0.09082812815904617, -0.08429967612028122, 0.06557027995586395, -0.027701085433363914, 0.06457681953907013, 0.024234497919678688, -0.024869389832019806, 0.097042016685009, -0.008995150215923786, -0.000914836535230279, -0.08116758614778519, -0.0038851983845233917, 0.021287111565470695, -0.049125298857688904, 0.07209336012601852, -0.005951542407274246, 0.06770515441894531, -0.09670454263687134, -0.06644309312105179, -0.02581370435655117, 0.09507361799478531, -0.029641371220350266, -0.10570749640464783, -0.033832158893346786, 0.02750626765191555, -0.03931339830160141, -0.03593117371201515, 0.050330039113759995, -0.07820159196853638, 0.05670465528964996, 0.18915286660194397, 0.1422310471534729, -0.00003520428072079085, -0.13991911709308624, -0.0011360286734998226, -0.028870556503534317, 0.1610061526298523, -0.1560308039188385, 0.08478792756795883, 0.11042416840791702, 0.030845915898680687, 0.093658946454525, 0.03926471993327141, -0.14433029294013977, 0.022070465609431267, 0.03219817951321602, -0.0750628113746643, -0.08062814921140671, -0.023770732805132866, 0.11858857423067093, -0.16893206536769867, 0.051257435232400894, 0.15729226171970367, -0.04200708866119385, -0.001286277431063354, 0.04650992900133133, -0.03311683237552643, -0.04398319125175476, 0.10487104207277298, 0.13441134989261627, 0.066053606569767, -0.02627881057560444, 0.09571810066699982, 0.08570379763841629, -0.09610602259635925, 0.04297247156500816, -0.08829683065414429, -0.058723658323287964, -0.06854090839624405, -0.0970945954322815, 0.07762938737869263, -0.07699673622846603, -0.07979222387075424, 0.013996891677379608, -0.07194460183382034, 0.01340846624225378, 0.1697346568107605, 0.020905394107103348, -0.0076574720442295074, -0.03389028087258339, 0.04866212233901024, -0.06361283361911774, 0.08757481724023819, -0.05688691511750221, 0.05984029173851013, -0.09819578379392624, -0.05758582428097725, 0.039754752069711685, 0.1293226182460785, -0.05100105702877045, -0.061785634607076645, -0.12229043990373611, -0.013760780915617943, -0.23014476895332336, -0.021656204015016556, -0.02932426519691944, -0.008482977747917175, -0.001321724965237081, -0.11759987473487854, -0.033251725137233734, 0.036401621997356415, -0.03073509782552719, -0.0014040354872122407, 0.054650530219078064, 0.06127919256687164, -0.1648949235677719, -0.01436016894876957, 0.08141931891441345, -0.04524477198719978, 0.08628930896520615, 0.012592011131346226, -0.03143477439880371, 0.042969539761543274, -0.02702179178595543, 0.030128903687000275, -0.06612478196620941, 0.03523927927017212, 0.03433610498905182, -0.07595270872116089, 0.010062268935143948, -0.07091067731380463, -0.016082273796200752, -0.018390405923128128, 0.1984359472990036, -0.0791284590959549, 0.02593940496444702, 0.014886881224811077, 0.039757147431373596, -0.04494669660925865, 0.043327074497938156, 0.07996853440999985, 0.09901503473520279, 0.08739744126796722, -0.058814894407987595, 0.09470901638269424, -0.1007324829697609, 0.015658531337976456, 0.041828371584415436, 0.00944558810442686, 0.16355973482131958, -0.11987384408712387, -0.013693295419216156, -0.07189127802848816, 0.17822206020355225, -0.07006151229143143, 0.09608729928731918, 0.05249560624361038, -0.07077372819185257, -0.10075519233942032, -0.046663783490657806, 0.18764391541481018, 0.02471747063100338, 0.04929773136973381, -0.017776822671294212, 0.029358193278312683, -0.042704422026872635, 0.05815400183200836, 0.11945103108882904, 0.12915751338005066, -0.06981692463159561, 0.01012973953038454, 0.053459446877241135, -0.010523315519094467, -0.10683468729257584, -0.07700695842504501, -0.005143589340150356, 0.061668895184993744, -0.011419123038649559, 0.08782533556222916, 0.08988542854785919, 0.003667030483484268, 0.06616123765707016, 0.0029611375648528337, -0.058710478246212006, -0.0816972628235817, -0.04940946027636528, -0.007427863776683807, -0.12747301161289215, 0.000550737720914185, -0.08139198273420334, -0.011368811130523682, 0.10315626114606857, 0.028105543926358223, 0.006787346210330725, 0.28766921162605286, -0.05789204314351082, -0.04886936768889427, 0.06948142498731613, -0.03142792731523514, -0.040413569658994675, -0.09929892420768738, 0.09223923832178116, 0.043768495321273804, 0.12811951339244843, 0.023252319544553757, 0.06220955401659012, -0.03910389170050621, 0.03783498704433441, -0.006153487134724855, -0.1117924377322197, -0.044395286589860916, 0.03827910125255585, -0.034562427550554276, 0.07020631432533264, 0.004728766158223152, 0.02364964410662651, -0.031315192580223083, 0.15885023772716522, -0.05890646204352379, -0.06069410219788551, -0.13842983543872833, 0.10327920317649841, -0.03460546210408211, 0.02142009139060974, -0.026487702503800392, -0.10404276847839355, -0.04819246381521225, 0.26439252495765686, -0.004503549542278051, -0.0693686455488205, 0.04132302477955818, 0.06491996347904205, 0.023568131029605865, 0.009542172774672508, 0.09236109256744385, 0.038434118032455444, 0.10173783451318741, -0.030906131491065025, -0.03928012773394585, -0.05730420723557472, -0.045968979597091675, 0.05466848611831665, 0.1267968863248825, 0.005096916109323502, -0.0312105193734169, -0.0914614275097847, 0.05302906408905983, -0.05975647643208504, -0.2631551921367645, -0.06115817278623581, 0.0015358366072177887, -0.09001361578702927, -0.06765314191579819, 0.05286071449518204, -0.02245309203863144, -0.0022930558770895004, 0.007436646614223719, -0.011226856149733067, 0.20381557941436768, 0.0409030057489872, -0.01730717159807682, 0.001440429245121777, 0.10246530175209045, -0.026134831830859184, 0.15896554291248322, 0.02129080519080162, 0.03041834942996502, 0.06328632682561874, 0.051283977925777435, -0.09085049480199814, 0.02057204581797123, 0.04050760343670845, -0.13212920725345612, -0.039111457765102386, 0.05576053261756897, 0.022402355447411537, 0.06513039767742157, 0.0521671399474144, -0.18261520564556122, 0.03624064102768898, 0.026051968336105347, -0.05477302521467209, -0.08154749870300293, 0.0027637952007353306, -0.07219183444976807, 0.15086926519870758, 0.13120004534721375, -0.011629314161837101, -0.08581700176000595, -0.09075140208005905, 0.056730013340711594, 0.00510091008618474, 0.06762862205505371, -0.04055863618850708, -0.08621786534786224, -0.004258777014911175, -0.077262744307518, 0.02323259226977825, -0.300584077835083, -0.022912152111530304, 0.08434154093265533, -0.033237602561712265, 0.02581069990992546, 0.05733276158571243, 0.10609573870897293, 0.06408181041479111, -0.04000750929117203, -0.041129548102617264, -0.02335890755057335, 0.09002623707056046, -0.1882900893688202, -0.04811794310808182 ]
null
null
adapter-transformers
# Adapter `AdapterHub/bert-base-uncased-pf-winogrande` for bert-base-uncased An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [comsense/winogrande](https://adapterhub.ml/explore/comsense/winogrande/) dataset and includes a prediction head for multiple choice. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("bert-base-uncased") adapter_name = model.load_adapter("AdapterHub/bert-base-uncased-pf-winogrande", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-what-to-pre-train-on, title={What to Pre-Train on? Efficient Intermediate Task Selection}, author={Clifton Poth and Jonas Pfeiffer and Andreas Rücklé and Iryna Gurevych}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (EMNLP)", month = nov, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/2104.08247", pages = "to appear", } ```
{"language": ["en"], "tags": ["bert", "adapterhub:comsense/winogrande", "adapter-transformers"], "datasets": ["winogrande"]}
null
AdapterHub/bert-base-uncased-pf-winogrande
[ "adapter-transformers", "bert", "adapterhub:comsense/winogrande", "en", "dataset:winogrande", "arxiv:2104.08247", "region:us" ]
2022-03-02T23:29:04+00:00
[ "2104.08247" ]
[ "en" ]
TAGS #adapter-transformers #bert #adapterhub-comsense/winogrande #en #dataset-winogrande #arxiv-2104.08247 #region-us
# Adapter 'AdapterHub/bert-base-uncased-pf-winogrande' for bert-base-uncased An adapter for the 'bert-base-uncased' model that was trained on the comsense/winogrande dataset and includes a prediction head for multiple choice. This adapter was created for usage with the adapter-transformers library. ## Usage First, install 'adapter-transformers': _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_ Now, the adapter can be loaded and activated like this: ## Architecture & Training The training code for this adapter is available at URL In particular, training configurations for all tasks can be found here. ## Evaluation results Refer to the paper for more information on results. If you use this adapter, please cite our paper "What to Pre-Train on? Efficient Intermediate Task Selection":
[ "# Adapter 'AdapterHub/bert-base-uncased-pf-winogrande' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the comsense/winogrande dataset and includes a prediction head for multiple choice.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ "TAGS\n#adapter-transformers #bert #adapterhub-comsense/winogrande #en #dataset-winogrande #arxiv-2104.08247 #region-us \n", "# Adapter 'AdapterHub/bert-base-uncased-pf-winogrande' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the comsense/winogrande dataset and includes a prediction head for multiple choice.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ 40, 85, 57, 30, 45 ]
[ "passage: TAGS\n#adapter-transformers #bert #adapterhub-comsense/winogrande #en #dataset-winogrande #arxiv-2104.08247 #region-us \n# Adapter 'AdapterHub/bert-base-uncased-pf-winogrande' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the comsense/winogrande dataset and includes a prediction head for multiple choice.\n\nThis adapter was created for usage with the adapter-transformers library.## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ -0.0609574019908905, 0.008045891299843788, -0.0032151208724826574, 0.03047424741089344, 0.15771332383155823, 0.007417172659188509, 0.15947243571281433, 0.043027013540267944, 0.017253652215003967, 0.033763587474823, 0.02306087501347065, 0.0834675058722496, 0.039416734129190445, 0.014509741216897964, 0.04152890667319298, -0.10981088876724243, 0.023679660633206367, 0.024730535224080086, -0.060771919786930084, 0.09923252463340759, 0.09848056733608246, -0.09157860279083252, 0.09765959531068802, 0.06480362266302109, -0.11741677671670914, 0.03319179639220238, -0.03063182346522808, -0.08909188956022263, 0.08950590342283249, 0.07644293457269669, 0.16135476529598236, 0.03586185351014137, 0.004298243205994368, -0.1282883882522583, 0.01034610066562891, 0.07424388080835342, 0.04865986108779907, 0.07878604531288147, -0.026850838214159012, 0.021922428160905838, -0.0023723796475678682, -0.005298664793372154, 0.07804930210113525, 0.057668536901474, -0.08069565892219543, -0.1996573656797409, -0.03387925401329994, 0.07950335741043091, 0.025430642068386078, 0.08928164839744568, -0.0018914758693426847, 0.0865311250090599, 0.01394660584628582, 0.04140423610806465, 0.1930786371231079, -0.2449052631855011, -0.007311435416340828, 0.019941842183470726, 0.053613197058439255, 0.01650853641331196, -0.0596860870718956, -0.005477701313793659, 0.018540292978286743, 0.022442888468503952, 0.026600589975714684, -0.034603461623191833, 0.012666490860283375, -0.015205325558781624, -0.15097181499004364, -0.002370046218857169, 0.23715464770793915, -0.00885745882987976, -0.11402039229869843, -0.06555399298667908, -0.03342277184128761, 0.1075369119644165, 0.027721745893359184, -0.10053791850805283, 0.0050951153971254826, 0.010135242715477943, -0.005507332738488913, -0.07112206518650055, -0.11502283066511154, -0.059330765157938004, -0.11423733085393906, 0.30877694487571716, -0.0309403445571661, 0.038545142859220505, -0.009005194529891014, 0.12091229110956192, 0.0038785829674452543, -0.11007820069789886, -0.07440793514251709, -0.0592106394469738, -0.07486157864332199, -0.05547292158007622, -0.023715969175100327, -0.2644960880279541, 0.01060246117413044, 0.14384374022483826, 0.12207317352294922, 0.016482029110193253, -0.07132907211780548, 0.04661088064312935, 0.07011859118938446, 0.18071198463439941, -0.07123767584562302, 0.015214418061077595, -0.05071587488055229, -0.030531302094459534, -0.010393274016678333, -0.10125505924224854, -0.04592311754822731, -0.025094030424952507, 0.038113877177238464, 0.022764449939131737, 0.041542574763298035, 0.07964237779378891, -0.0567963607609272, -0.06258793920278549, 0.13688957691192627, -0.1272026002407074, -0.008177856914699078, -0.013015647418797016, -0.03106091171503067, 0.1391977220773697, 0.12915630638599396, 0.01190089900046587, -0.018229177221655846, 0.1160278245806694, -0.0904000997543335, -0.06020645052194595, -0.05147925764322281, -0.12763214111328125, 0.03110177256166935, -0.009962504729628563, -0.0002610553056001663, -0.15071320533752441, -0.09536878764629364, -0.01254577748477459, 0.05584470182657242, -0.0010404686909168959, 0.09836757183074951, 0.03964516520500183, 0.021302497014403343, 0.022447895258665085, -0.024315185844898224, -0.0020718895830214024, -0.02107456512749195, 0.07180050015449524, 0.03120536170899868, 0.03211618587374687, -0.027586229145526886, 0.05623718723654747, -0.0901172086596489, 0.010788743384182453, -0.20053265988826752, 0.07957656681537628, -0.1469191610813141, 0.046613723039627075, -0.14590971171855927, -0.01323974970728159, -0.017878646031022072, 0.02926432341337204, 0.07813405245542526, 0.10469897836446762, -0.11200201511383057, -0.0510067418217659, 0.05961648374795914, -0.1986735463142395, -0.12220119684934616, 0.04737351834774017, -0.007265742868185043, 0.14442290365695953, 0.05965034291148186, 0.057523708790540695, 0.12281471490859985, -0.10593108087778091, -0.11201328784227371, 0.031799886375665665, -0.07140496373176575, -0.0017860445659607649, 0.05263202637434006, 0.0017053209012374282, -0.1116495430469513, 0.035542380064725876, -0.06875228136777878, -0.0010245433077216148, -0.01976439356803894, -0.027810517698526382, -0.03507596254348755, -0.02696302905678749, 0.08609382808208466, 0.006886820774525404, -0.02854018658399582, 0.037700098007917404, -0.13341708481311798, 0.1913667470216751, 0.08078936487436295, -0.04870648682117462, 0.02281588688492775, -0.12988653779029846, 0.0736699104309082, -0.13519011437892914, 0.009521580301225185, -0.1809518188238144, -0.035893671214580536, 0.008075864985585213, -0.03477596864104271, 0.0437789149582386, 0.06020352244377136, 0.06432592868804932, 0.026776833459734917, 0.019146915525197983, 0.005694935563951731, -0.04405997693538666, 0.03752260282635689, -0.034805867820978165, -0.10498131811618805, -0.05193290114402771, -0.0496767982840538, 0.04066767171025276, -0.15678732097148895, 0.038931217044591904, 0.10802659392356873, 0.0699324682354927, 0.03516202047467232, -0.0447579026222229, -0.024979516863822937, -0.027335751801729202, -0.03751802071928978, -0.030609549954533577, 0.014212176203727722, 0.0208892822265625, -0.09664936363697052, 0.01610378734767437, -0.10089457035064697, 0.018823741003870964, 0.08951221406459808, -0.01433325931429863, -0.0690627172589302, -0.03865547105669975, -0.014888018369674683, -0.03682713955640793, -0.01658266969025135, -0.10033605247735977, 0.2050982415676117, 0.0709933415055275, 0.04413329064846039, -0.018666252493858337, 0.0008808395941741765, 0.02198903076350689, -0.014825781807303429, -0.0008227626676671207, -0.0031369137577712536, 0.022533340379595757, -0.09853334724903107, 0.027652718126773834, 0.17459151148796082, -0.010684173554182053, 0.07974141091108322, -0.0215423796325922, -0.09760386496782303, -0.030309604480862617, -0.05192386358976364, 0.045848775655031204, 0.060275331139564514, -0.11746860295534134, 0.019104264676570892, 0.07297671586275101, 0.002317521022632718, -0.0030062526930123568, -0.0608024075627327, 0.03684812784194946, 0.06989938020706177, 0.024574927985668182, -0.01041451282799244, -0.007385351695120335, -0.0378698855638504, 0.03884924575686455, 0.04091949015855789, 0.1171194538474083, 0.00911040510982275, -0.012565741315484047, -0.07233061641454697, 0.16812433302402496, -0.06010394170880318, -0.22134681046009064, -0.20624223351478577, -0.07788978517055511, -0.03151065483689308, 0.007534705102443695, 0.04576796293258667, -0.07831462472677231, -0.10133865475654602, -0.06008988618850708, 0.12132341414690018, -0.02532036416232586, 0.01784501224756241, 0.05188894271850586, -0.05632305517792702, 0.06881735473871231, -0.17178086936473846, 0.021355317905545235, 0.029776066541671753, -0.0736633688211441, -0.0011685033096000552, 0.03826064616441727, 0.0826386958360672, 0.1336110532283783, 0.004239917267113924, -0.010415235534310341, 0.008876608684659004, 0.1395433396100998, -0.08742581307888031, 0.036756470799446106, 0.14539720118045807, -0.1435951441526413, 0.03070742078125477, 0.061985794454813004, 0.052770186215639114, -0.04668289050459862, 0.047123342752456665, 0.03293527290225029, -0.04900152608752251, -0.24225270748138428, -0.015775276347994804, 0.011678170412778854, 0.015317562967538834, 0.07962387800216675, 0.04361801594495773, 0.04040179029107094, 0.08494149893522263, 0.03895851597189903, -0.012910171411931515, -0.014125939458608627, 0.07774350047111511, 0.20336611568927765, -0.016899581998586655, 0.11364948749542236, -0.08104116469621658, 0.000984510756097734, 0.09584581851959229, -0.02776981331408024, 0.11795391887426376, -0.010557936504483223, 0.09620440751314163, 0.06978428363800049, -0.058724768459796906, 0.04949458688497543, 0.15148846805095673, -0.03271885961294174, -0.022333884611725807, -0.007165208458900452, -0.07505492120981216, -0.08412937819957733, 0.04431551694869995, -0.011328833177685738, 0.017287466675043106, -0.023657172918319702, -0.038421809673309326, 0.03457360342144966, 0.10658343136310577, 0.021492116153240204, -0.19893687963485718, -0.1444891095161438, -0.027649492025375366, -0.043739840388298035, -0.0714762732386589, -0.011559995822608471, 0.05488940328359604, -0.07379161566495895, 0.046165112406015396, -0.030715664848685265, 0.07875888049602509, -0.1617986559867859, -0.005410174839198589, 0.022093741223216057, 0.08915969729423523, -0.04503883048892021, 0.0848572701215744, -0.2134803682565689, 0.04442119598388672, 0.0326354056596756, 0.032540448009967804, -0.04977787658572197, 0.042185310274362564, 0.0052969674579799175, 0.10840477049350739, 0.060176242142915726, -0.011089804582297802, 0.11056679487228394, -0.11035732924938202, -0.10277619957923889, 0.01840827986598015, 0.04561632126569748, -0.09587371349334717, 0.04810434579849243, -0.0328177809715271, 0.04463161900639534, 0.037711989134550095, 0.05191558972001076, -0.14324766397476196, -0.16737638413906097, 0.09620724618434906, -0.015434157103300095, 0.11891400814056396, -0.06363645195960999, -0.11558592319488525, 0.019254717975854874, 0.2261204868555069, -0.12042353302240372, -0.05758298560976982, -0.16136544942855835, 0.0066714417189359665, 0.09365499764680862, -0.05598807334899902, 0.03577517718076706, -0.020371539518237114, 0.1065841093659401, -0.0013955975882709026, -0.07060860097408295, 0.07654939591884613, -0.06429141014814377, -0.06468985229730606, -0.057521119713783264, 0.0014148345217108727, 0.10077986121177673, 0.020896093919873238, -0.012830222025513649, -0.012800031341612339, 0.013700073584914207, -0.11222181469202042, -0.0066122934222221375, 0.10369250178337097, -0.03903786838054657, 0.024588722735643387, -0.02481783740222454, 0.034890592098236084, -0.047492191195487976, -0.014650735072791576, 0.12140761315822601, 0.13140246272087097, -0.04952647164463997, 0.045880258083343506, 0.1725497990846634, -0.07685547322034836, -0.243414044380188, 0.01249285414814949, 0.04206761345267296, -0.0066468180157244205, 0.02898084558546543, -0.20493543148040771, 0.1942870020866394, 0.05637216940522194, -0.008927066810429096, 0.07845400273799896, -0.12535694241523743, -0.0959886983036995, 0.16734406352043152, 0.0813654214143753, 0.08965041488409042, -0.1123991385102272, -0.07405313104391098, -0.007629134226590395, -0.20872581005096436, 0.11305349320173264, -0.034113962203264236, 0.050036583095788956, -0.0058074770495295525, 0.03875100240111351, 0.03513789549469948, -0.04322323203086853, 0.09002998471260071, 0.028261059895157814, 0.027484441176056862, -0.09193194657564163, 0.0033460883423686028, 0.06697117537260056, -0.04315668344497681, 0.09595037996768951, 0.012563720345497131, 0.04242187738418579, -0.05981016159057617, -0.06850384920835495, -0.00045409996528178453, 0.11855102330446243, -0.028212010860443115, -0.09191643446683884, -0.04487302526831627, 0.02695671282708645, -0.03293696790933609, -0.04331662505865097, 0.06579183787107468, -0.05986419692635536, 0.01419287919998169, 0.1484399139881134, 0.12998977303504944, -0.04038923978805542, -0.09019216895103455, 0.007478838786482811, -0.022034477442502975, 0.1133451983332634, -0.1403840333223343, 0.06591403484344482, 0.10221008956432343, 0.029845023527741432, 0.1064532995223999, 0.042309410870075226, -0.14683304727077484, -0.02884037233889103, 0.06281717866659164, -0.0918218344449997, -0.02608797326683998, -0.012738948687911034, 0.0731775164604187, -0.1536569744348526, 0.04743904620409012, 0.18503454327583313, -0.04346562922000885, 0.02188139781355858, 0.05670073255896568, -0.007355800364166498, -0.057227883487939835, 0.09481897205114365, 0.07730376720428467, 0.04293423891067505, -0.028931304812431335, 0.07681993395090103, 0.10405135899782181, -0.1058056578040123, 0.02945959009230137, -0.09462819248437881, -0.08098766952753067, -0.05428377911448479, -0.1163908988237381, 0.085875503718853, -0.08584705740213394, -0.07773932069540024, 0.017483629286289215, -0.06052061915397644, 0.011996430344879627, 0.11378350853919983, 0.04773050919175148, 0.050842463970184326, -0.054768528789281845, 0.05939251556992531, -0.08470728248357773, 0.06968722492456436, -0.023988962173461914, 0.08094147592782974, -0.09097380191087723, -0.023495739325881004, 0.040992189198732376, 0.027410024777054787, -0.0487777478992939, -0.06490468978881836, -0.10003993660211563, -0.031466662883758545, -0.14569947123527527, -0.03948946297168732, -0.0553894080221653, -0.010215978138148785, 0.034240927547216415, -0.1026853397488594, -0.018526753410696983, 0.013944809325039387, -0.014463812112808228, -0.0017895736964419484, 0.05674360692501068, 0.06351345777511597, -0.17506714165210724, -0.020966270938515663, 0.07197362184524536, -0.063273124396801, 0.07474570721387863, 0.03953690081834793, -0.00895426794886589, 0.022500187158584595, -0.05675309896469116, 0.03429217264056206, 0.0037117712199687958, 0.03388744965195656, 0.01947266422212124, -0.10610076785087585, 0.004263146314769983, -0.018041566014289856, -0.010190663859248161, -0.009093147702515125, 0.1946231871843338, -0.06914276629686356, 0.01329615619033575, 0.00033674275618977845, -0.009052077308297157, -0.06264781206846237, 0.038023266941308975, 0.10127770155668259, 0.1010897159576416, 0.15223586559295654, -0.04666343703866005, 0.06776439398527145, -0.09421547502279282, 0.009160850197076797, 0.022429877892136574, -0.017706910148262978, 0.14967398345470428, -0.10550542920827866, -0.010197375901043415, -0.054371148347854614, 0.18244022130966187, -0.0503910556435585, 0.07020959258079529, 0.044529836624860764, -0.04307769238948822, -0.09343079477548599, -0.03327467665076256, 0.1731666922569275, 0.061629462987184525, 0.037434160709381104, -0.0008397017954848707, 0.04868243262171745, 0.008618994615972042, -0.0040352740325033665, 0.10151732712984085, 0.1024317517876625, -0.12188339233398438, 0.034430116415023804, 0.02367621660232544, -0.01914854720234871, -0.13300251960754395, -0.04792868718504906, -0.045652199536561966, 0.06024942174553871, -0.018011238425970078, 0.14105935394763947, 0.074763722717762, 0.0009853250812739134, 0.05461309850215912, 0.012202524580061436, -0.058355238288640976, -0.06987462192773819, -0.09331434220075607, -0.014473202638328075, -0.12914244830608368, -0.013019232079386711, -0.07460585981607437, -0.010693171992897987, 0.08929584920406342, 0.021524664014577866, 0.008413613773882389, 0.24025817215442657, -0.06391160935163498, -0.03017173334956169, 0.04099520668387413, -0.03456899896264076, -0.048148512840270996, -0.09249658137559891, 0.06858837604522705, 0.006531320046633482, 0.173859104514122, 0.049690086394548416, 0.060032445937395096, 0.019821297377347946, 0.04708307608962059, 0.0022538460325449705, -0.12782874703407288, -0.04789300635457039, 0.029121166095137596, -0.06521731615066528, 0.03545267507433891, 0.01517090480774641, 0.011917480267584324, -0.018458448350429535, 0.1590132862329483, -0.06641771644353867, -0.08963844925165176, -0.11558592319488525, 0.11336075514554977, -0.009695050306618214, 0.03531138226389885, -0.040824342519044876, -0.11207255721092224, -0.04447390139102936, 0.1922711282968521, 0.06564190983772278, -0.00735034653916955, 0.031692516058683395, 0.06425058841705322, 0.017050746828317642, 0.008533242158591747, 0.07786595821380615, 0.008983961306512356, 0.12022651731967926, -0.0021701122168451548, -0.017930857837200165, -0.06002311781048775, -0.04324588179588318, 0.06039712205529213, 0.10043592005968094, -0.00265120854601264, -0.02258302830159664, -0.08072703331708908, 0.06720443814992905, -0.03707866743206978, -0.2759366035461426, -0.011408532038331032, -0.012345698662102222, -0.06959473341703415, -0.04147079959511757, 0.07378656417131424, -0.03982764855027199, 0.015213316306471825, 0.01470320113003254, -0.03150276839733124, 0.18434865772724152, 0.037070050835609436, -0.053870733827352524, -0.0026901301462203264, 0.08025467395782471, -0.040218137204647064, 0.13986387848854065, 0.003764621214941144, 0.04448891803622246, 0.07399913668632507, 0.07409030944108963, -0.10189753770828247, 0.003435546299442649, 0.014176229946315289, -0.09875545650720596, -0.005420485977083445, 0.036389078944921494, 0.0036981403827667236, 0.10246869921684265, 0.05822107940912247, -0.1906154304742813, 0.02665235847234726, 0.015689147636294365, -0.04562956094741821, -0.07117239385843277, -0.027256565168499947, -0.07427822053432465, 0.14728090167045593, 0.10790850967168808, -0.0016804748447611928, -0.07373233884572983, -0.09209365397691727, 0.04926673695445061, -0.0018628038233146071, 0.07250905781984329, -0.03945501521229744, -0.1145225539803505, -0.012529827654361725, -0.04173086956143379, 0.04835360124707222, -0.2817261219024658, -0.039008695632219315, 0.0767723098397255, -0.04210881143808365, 0.014090445823967457, 0.055578120052814484, 0.06915707141160965, 0.06391437351703644, -0.05213361978530884, -0.04582320153713226, 0.007969303987920284, 0.1088339239358902, -0.17907439172267914, -0.05118340253829956 ]
null
null
adapter-transformers
# Adapter `AdapterHub/bert-base-uncased-pf-wnut_17` for bert-base-uncased An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [wnut_17](https://huggingface.co/datasets/wnut_17/) dataset and includes a prediction head for tagging. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("bert-base-uncased") adapter_name = model.load_adapter("AdapterHub/bert-base-uncased-pf-wnut_17", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
{"language": ["en"], "tags": ["token-classification", "bert", "adapter-transformers"], "datasets": ["wnut_17"]}
token-classification
AdapterHub/bert-base-uncased-pf-wnut_17
[ "adapter-transformers", "bert", "token-classification", "en", "dataset:wnut_17", "arxiv:2104.08247", "region:us" ]
2022-03-02T23:29:04+00:00
[ "2104.08247" ]
[ "en" ]
TAGS #adapter-transformers #bert #token-classification #en #dataset-wnut_17 #arxiv-2104.08247 #region-us
# Adapter 'AdapterHub/bert-base-uncased-pf-wnut_17' for bert-base-uncased An adapter for the 'bert-base-uncased' model that was trained on the wnut_17 dataset and includes a prediction head for tagging. This adapter was created for usage with the adapter-transformers library. ## Usage First, install 'adapter-transformers': _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_ Now, the adapter can be loaded and activated like this: ## Architecture & Training The training code for this adapter is available at URL In particular, training configurations for all tasks can be found here. ## Evaluation results Refer to the paper for more information on results. If you use this adapter, please cite our paper "What to Pre-Train on? Efficient Intermediate Task Selection":
[ "# Adapter 'AdapterHub/bert-base-uncased-pf-wnut_17' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the wnut_17 dataset and includes a prediction head for tagging.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ "TAGS\n#adapter-transformers #bert #token-classification #en #dataset-wnut_17 #arxiv-2104.08247 #region-us \n", "# Adapter 'AdapterHub/bert-base-uncased-pf-wnut_17' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the wnut_17 dataset and includes a prediction head for tagging.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ 37, 84, 57, 30, 45 ]
[ "passage: TAGS\n#adapter-transformers #bert #token-classification #en #dataset-wnut_17 #arxiv-2104.08247 #region-us \n# Adapter 'AdapterHub/bert-base-uncased-pf-wnut_17' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the wnut_17 dataset and includes a prediction head for tagging.\n\nThis adapter was created for usage with the adapter-transformers library.## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ -0.08211524784564972, 0.00914554763585329, -0.0021787318401038647, 0.048059847205877304, 0.16799697279930115, 0.007411843631416559, 0.11160780489444733, 0.0432235524058342, 0.06079093739390373, 0.026052579283714294, 0.042313262820243835, 0.10137537866830826, 0.03363113850355148, 0.051833249628543854, 0.02536441758275032, -0.14005789160728455, 0.008437433280050755, 0.027689896523952484, -0.06912332028150558, 0.10170123726129532, 0.0732673704624176, -0.10199950635433197, 0.09054883569478989, 0.0725812017917633, -0.12611882388591766, 0.041388340294361115, -0.02124732732772827, -0.09521381556987762, 0.0747823715209961, 0.08184750378131866, 0.17697550356388092, 0.037592094391584396, 0.029129592701792717, -0.12517328560352325, 0.007414327934384346, 0.07830091565847397, 0.04603122919797897, 0.08756572753190994, 0.0030697325710207224, 0.010131694376468658, -0.030740775167942047, -0.01759049855172634, 0.06562048196792603, 0.06666312366724014, -0.07080165296792984, -0.2411608248949051, -0.027883436530828476, 0.12312336266040802, 0.010160491801798344, 0.06267186254262924, -0.0009298175573348999, 0.0729394257068634, 0.02932475320994854, 0.047682058066129684, 0.21856924891471863, -0.25320717692375183, 0.006834106985479593, 0.019827792420983315, 0.035600125789642334, -0.004552186466753483, -0.06853927671909332, -0.0004738489515148103, 0.03236469253897667, 0.01320235151797533, 0.038376402109861374, -0.010004676878452301, -0.006037640385329723, -0.004771900828927755, -0.1604708582162857, -0.008982336148619652, 0.21929314732551575, 0.003242812817916274, -0.11123497039079666, -0.040836479514837265, -0.03185005858540535, 0.06309928745031357, 0.02921277843415737, -0.08413545042276382, 0.007059638388454914, -0.004954826086759567, -0.02343832701444626, -0.05812155455350876, -0.09161635488271713, -0.07550759613513947, -0.0854133889079094, 0.3284444808959961, -0.01969640515744686, 0.039655838161706924, -0.011682056821882725, 0.1363218128681183, -0.017961854115128517, -0.11432886868715286, -0.0644584521651268, -0.05911839380860329, -0.06716902554035187, -0.05214780196547508, -0.03016849234700203, -0.22378091514110565, -0.021670712158083916, 0.136969193816185, 0.06459968537092209, 0.025877587497234344, -0.09002426266670227, 0.04428675398230553, 0.05837857723236084, 0.19908268749713898, -0.10134896636009216, 0.04652586951851845, -0.04654499515891075, -0.016291100531816483, -0.05309154465794563, -0.09641776978969574, -0.050480201840400696, -0.033736370503902435, 0.03614271432161331, 0.027255460619926453, 0.034269675612449646, 0.13016414642333984, -0.04776155948638916, -0.07885872572660446, 0.1218704879283905, -0.14661455154418945, 0.0024637028109282255, 0.006886263843625784, -0.06898023188114166, 0.10882650315761566, 0.16588880121707916, -0.007153810001909733, -0.029114441946148872, 0.12400247156620026, -0.08758088946342468, -0.06613963097333908, -0.062486253678798676, -0.1428152173757553, 0.02471192181110382, 0.01195553969591856, -0.00621877983212471, -0.13381709158420563, -0.12453892081975937, -0.013382123783230782, 0.05104270949959755, 0.015262334607541561, 0.08540254831314087, 0.024288490414619446, 0.01280733197927475, 0.02100069634616375, -0.01822623610496521, 0.02529449574649334, -0.01296800747513771, 0.08280222117900848, 0.005795114673674107, 0.04466814547777176, 0.002597656100988388, 0.07072727382183075, -0.0796663761138916, 0.017846213653683662, -0.1794450879096985, 0.08992543071508408, -0.17703261971473694, 0.04410354420542717, -0.1382184773683548, -0.03504953533411026, -0.03560153767466545, 0.017948463559150696, 0.07947780936956406, 0.07737109810113907, -0.07872278988361359, -0.05385478585958481, 0.07030966877937317, -0.16695250570774078, -0.09351217746734619, 0.06084228679537773, -0.017891712486743927, 0.1136104092001915, 0.062479373067617416, 0.08438261598348618, 0.14104057848453522, -0.09160631895065308, -0.10558953881263733, 0.044573862105607986, -0.08941743522882462, 0.0028842759784311056, 0.033006541430950165, 0.018777934834361076, -0.18804429471492767, 0.027615340426564217, -0.10105845332145691, -0.008978246711194515, -0.03760288655757904, -0.031233355402946472, -0.03174499422311783, -0.047416578978300095, 0.1665356159210205, 0.020321832969784737, -0.013830581679940224, 0.03186020627617836, -0.15017710626125336, 0.25264355540275574, 0.07054660469293594, -0.053584687411785126, 0.024818025529384613, -0.11874990910291672, 0.08252046257257462, -0.11097508668899536, 0.0028601314406841993, -0.19345299899578094, -0.0284942127764225, 0.004576572682708502, -0.0027460234705358744, 0.04987510293722153, 0.0634646937251091, 0.05564910173416138, 0.034176889806985855, 0.02343275398015976, -0.011996839195489883, -0.06722626835107803, 0.045019108802080154, -0.055121049284935, -0.097182497382164, -0.08711141347885132, -0.05078144744038582, -0.026383724063634872, -0.198649063706398, 0.04267270490527153, 0.08525320142507553, 0.05071952939033508, 0.018220897763967514, -0.02410786971449852, -0.013160874135792255, -0.019782332703471184, -0.013786428608000278, -0.02278989553451538, 0.021875403821468353, 0.0008702688501216471, -0.07773895561695099, 0.01055107545107603, -0.09595867991447449, 0.023672282695770264, 0.07904781401157379, -0.041986022144556046, -0.0634809210896492, -0.028292622417211533, -0.025151627138257027, -0.039871521294116974, -0.040573980659246445, -0.11653248220682144, 0.21655391156673431, 0.04404390603303909, 0.05357906594872475, -0.04038097709417343, -0.013699483126401901, 0.008563193492591381, -0.0061292871832847595, -0.0003614797897171229, -0.0009986647637560964, 0.00042586028575897217, -0.10816419869661331, 0.02343597635626793, 0.17846637964248657, 0.0011630489025264978, 0.11647865921258926, -0.01627562753856182, -0.08495888113975525, -0.009644239209592342, -0.06337162852287292, 0.028451137244701385, 0.033617377281188965, -0.10606389492750168, 0.036826737225055695, 0.0711655467748642, 0.012298156507313251, 0.00042832878534682095, -0.07370244711637497, 0.049018073827028275, 0.08001823723316193, 0.0027830214239656925, -0.0557156577706337, -0.009988830424845219, -0.024360479786992073, 0.04758942499756813, 0.045219797641038895, 0.12210031598806381, 0.020158687606453896, -0.013127482496201992, -0.07223871350288391, 0.1712673157453537, -0.07304338365793228, -0.1882266402244568, -0.2140817642211914, -0.11112888902425766, -0.019933756440877914, 0.00880210567265749, 0.0423344150185585, -0.070884570479393, -0.10598889738321304, -0.028720563277602196, 0.18430349230766296, -0.04811512678861618, 0.01915447786450386, 0.07159465551376343, -0.06296657025814056, 0.08024724572896957, -0.17121568322181702, 0.030153965577483177, 0.0300550926476717, -0.09448215365409851, -0.021110527217388153, 0.04206579178571701, 0.056054048240184784, 0.13992369174957275, -0.03929227590560913, 0.0047016507014632225, -0.003182723419740796, 0.12634669244289398, -0.05173725634813309, 0.04930556192994118, 0.12059316784143448, -0.16444730758666992, 0.049603551626205444, 0.03819276764988899, 0.06088100001215935, -0.055935729295015335, 0.05533352121710777, 0.04085087776184082, -0.05064707249403, -0.26561620831489563, -0.024502374231815338, 0.022883623838424683, 0.043631717562675476, 0.10663530230522156, 0.016415638849139214, 0.05408838763833046, 0.08435606956481934, 0.036176685243844986, 0.03849444165825844, -0.03866514563560486, 0.05392911285161972, 0.2313760668039322, -0.001441204803995788, 0.1040106862783432, -0.08613457530736923, 0.027789827436208725, 0.07042384147644043, -0.04001666605472565, 0.12220420688390732, -0.02764463797211647, 0.06535893678665161, 0.08400804549455643, -0.03669087216258049, 0.06730657070875168, 0.17507293820381165, -0.052855800837278366, -0.01903897151350975, 0.013742730021476746, -0.07974763214588165, -0.05791976675391197, 0.01933724619448185, -0.013083342462778091, 0.02664145827293396, -0.04665641486644745, -0.03960968554019928, 0.0245931725949049, 0.09173693507909775, 0.010543696582317352, -0.2068055272102356, -0.14954166114330292, -0.038341764360666275, -0.03686925023794174, -0.07445072382688522, -0.002199458424001932, 0.04649326205253601, -0.09551975876092911, 0.044723425060510635, -0.042506296187639236, 0.09484376013278961, -0.12479020655155182, 0.0032710840459913015, 0.04440804570913315, 0.12413349002599716, -0.053415194153785706, 0.09952479600906372, -0.14972631633281708, 0.08192089200019836, 0.042652834206819534, 0.02365381456911564, -0.06296252459287643, 0.025049109011888504, 0.024703359231352806, 0.1322900503873825, 0.060495976358652115, -0.010380747728049755, 0.07702665030956268, -0.14419838786125183, -0.08320823311805725, 0.008135928772389889, 0.04507498815655708, -0.08579085767269135, 0.04299633949995041, -0.025699861347675323, 0.033638495951890945, 0.042668625712394714, 0.057934604585170746, -0.16397520899772644, -0.13755673170089722, 0.06033962592482567, -0.02769332379102707, 0.12196259945631027, -0.06282518059015274, -0.13461534678936005, -0.033512555062770844, 0.2033979445695877, -0.12505044043064117, -0.06800615787506104, -0.1569124460220337, 0.07514641433954239, 0.08760520815849304, -0.07071801275014877, 0.04087343439459801, 0.0012083174660801888, 0.0892983004450798, -0.016469139605760574, -0.10566458851099014, 0.09497998654842377, -0.06831589341163635, -0.08621233701705933, -0.026391515508294106, 0.01940630003809929, 0.11234870553016663, 0.023876244202256203, -0.02300586737692356, -0.011819303967058659, 0.04842555150389671, -0.11411969363689423, -0.020596163347363472, 0.08983474224805832, -0.03115909732878208, 0.042670976370573044, -0.038536831736564636, 0.031034106388688087, -0.04753382131457329, 0.02921883389353752, 0.11952344328165054, 0.0997495949268341, -0.08411548286676407, 0.06299068033695221, 0.1586984097957611, -0.07766087353229523, -0.28460872173309326, 0.03923865035176277, 0.05737416446208954, -0.00008526026067556813, 0.057614751160144806, -0.21408163011074066, 0.20519183576107025, 0.04312214255332947, -0.010654658079147339, 0.08131914585828781, -0.14038078486919403, -0.10994213074445724, 0.16892270743846893, 0.08851993083953857, 0.061603039503097534, -0.07820601761341095, -0.07937496155500412, 0.0123732415959239, -0.19816288352012634, 0.13294990360736847, -0.020235946401953697, 0.05279291048645973, -0.009013868868350983, 0.04127294197678566, 0.042188357561826706, -0.033674564212560654, 0.07095841318368912, 0.040047526359558105, 0.03367677703499794, -0.10010453313589096, 0.020172078162431717, 0.06965681910514832, -0.04490556940436363, 0.10294055938720703, 0.012750384397804737, 0.055639419704675674, -0.09585104882717133, -0.07329200953245163, -0.00955966580659151, 0.13408565521240234, -0.0427362360060215, -0.08864019811153412, -0.04059102386236191, 0.02247633971273899, -0.03284499794244766, -0.05355626717209816, 0.03783412277698517, -0.04944435879588127, 0.03353894501924515, 0.1748494803905487, 0.15334413945674896, -0.005956265609711409, -0.08607956767082214, 0.004805151838809252, -0.029808182269334793, 0.12856709957122803, -0.1867474466562271, 0.07280116528272629, 0.09665030241012573, 0.04529495909810066, 0.08513182401657104, 0.0538010373711586, -0.14279378950595856, -0.05165461078286171, 0.04766978695988655, -0.09189621359109879, -0.04224926605820656, -0.03684059530496597, 0.07216385006904602, -0.16507628560066223, 0.05139566585421562, 0.1545722335577011, -0.06415623426437378, 0.012577763758599758, 0.044490497559309006, -0.017356712371110916, -0.05851981043815613, 0.11039630323648453, 0.12609423696994781, 0.06886512041091919, -0.031661257147789, 0.0974605530500412, 0.09367594122886658, -0.09040521830320358, 0.03770017996430397, -0.08416595309972763, -0.07396630197763443, -0.0518382228910923, -0.08753956854343414, 0.10356026142835617, -0.056064557284116745, -0.07922223955392838, 0.03626704588532448, -0.05302313715219498, 0.03273939713835716, 0.16535857319831848, 0.05341413617134094, 0.037968821823596954, -0.06120884045958519, 0.0512528158724308, -0.0901200994849205, 0.08523023873567581, -0.01404412928968668, 0.08857128769159317, -0.11238793283700943, -0.0016868829261511564, 0.0422472320497036, 0.07389847934246063, -0.04328382387757301, -0.057808320969343185, -0.11085176467895508, -0.03547177091240883, -0.10458602011203766, -0.04091300815343857, -0.04107429459691048, 0.0042165000922977924, 0.008394086733460426, -0.10473532974720001, -0.01614583097398281, 0.042516935616731644, -0.027636932209134102, -0.0013746435288339853, 0.06184384226799011, 0.05616176500916481, -0.17326584458351135, -0.009831531904637814, 0.0728822723031044, -0.05666652321815491, 0.07437154650688171, 0.03136415407061577, -0.015556203201413155, 0.05119343474507332, -0.07345647364854813, 0.034166134893894196, -0.025434643030166626, 0.018535170704126358, 0.03879297524690628, -0.07796347141265869, 0.010311543010175228, -0.056316278874874115, 0.009670634754002094, -0.007548286579549313, 0.20179161429405212, -0.08478254824876785, 0.030653798952698708, 0.007728641852736473, 0.026548799127340317, -0.06386716663837433, 0.038924381136894226, 0.06335064768791199, 0.08726947009563446, 0.13067036867141724, -0.05619187280535698, 0.06524984538555145, -0.09954031556844711, 0.002036870224401355, 0.01746727153658867, -0.021000172942876816, 0.1662462055683136, -0.10769151151180267, 0.002958606230095029, -0.05685221403837204, 0.17052721977233887, -0.028725504875183105, 0.05613449215888977, 0.04247027263045311, -0.025469690561294556, -0.09420139342546463, -0.03702979534864426, 0.1836581528186798, 0.010963046923279762, 0.04097070172429085, -0.0032160962000489235, 0.0417846255004406, 0.0026547047309577465, 0.021375954151153564, 0.1567021906375885, 0.1201542541384697, -0.14677448570728302, 0.01347630750387907, 0.040739789605140686, -0.01708470657467842, -0.17589892446994781, -0.06290198117494583, -0.04952964186668396, 0.0774068608880043, -0.031502123922109604, 0.08331059664487839, 0.047459520399570465, -0.023447083309292793, 0.07063549757003784, 0.01773969456553459, -0.07020235061645508, -0.0904700979590416, -0.14150692522525787, -0.0030382827389985323, -0.15161776542663574, -0.005655339453369379, -0.07387086749076843, 0.0008471009787172079, 0.0731147900223732, 0.016352200880646706, 0.020695624873042107, 0.2830849885940552, -0.09350506216287613, -0.014028236269950867, 0.044887199997901917, -0.054910846054553986, -0.06446953862905502, -0.09812670946121216, 0.058282628655433655, 0.032808296382427216, 0.14641737937927246, 0.02749427780508995, 0.03154006972908974, -0.0002975752286147326, 0.0421871691942215, 0.013394669629633427, -0.1203441247344017, -0.045726411044597626, 0.033285755664110184, -0.05213696509599686, 0.024997124448418617, 0.019205735996365547, -0.0033061550930142403, -0.04043063521385193, 0.16169901192188263, -0.06542083621025085, -0.09008350223302841, -0.12801390886306763, 0.13126887381076813, 0.012270892970263958, 0.017243191599845886, -0.021077441051602364, -0.10798321664333344, -0.0051590995863080025, 0.206119567155838, 0.05969512462615967, 0.016103193163871765, 0.04618091881275177, 0.04705466330051422, 0.01699073053896427, 0.0295904278755188, 0.1049797534942627, 0.010734575800597668, 0.060253072530031204, 0.006730194669216871, -0.055359892547130585, -0.07118256390094757, -0.047015462070703506, 0.05933159217238426, 0.09698290377855301, 0.005387651268392801, -0.057040221989154816, -0.06581983715295792, 0.08161962032318115, -0.05018358305096626, -0.283909410238266, -0.014367852360010147, -0.005718579515814781, -0.05659693479537964, -0.06739635765552521, 0.08526147156953812, -0.015192156657576561, 0.009720465168356895, 0.008545197546482086, -0.031430911272764206, 0.16086408495903015, 0.046648669987916946, -0.06983165442943573, -0.007206728681921959, 0.05888783931732178, -0.036832261830568314, 0.1589261293411255, 0.022650467231869698, 0.021076181903481483, 0.05808998644351959, 0.0732148140668869, -0.11238295584917068, 0.012320871464908123, 0.013828498311340809, -0.07777096331119537, -0.025050947442650795, 0.06701584160327911, 0.01160341501235962, 0.08906756341457367, 0.01173718273639679, -0.2348385602235794, 0.02171848528087139, 0.004919490311294794, -0.03623047098517418, -0.063698410987854, -0.037346865981817245, -0.06254294514656067, 0.14727741479873657, 0.15235114097595215, -0.0035059284418821335, -0.08085402846336365, -0.09487125277519226, 0.04539117589592934, -0.024360373616218567, 0.04785870015621185, -0.04958406090736389, -0.11859925091266632, -0.016003459692001343, -0.05259373411536217, 0.044515565037727356, -0.2517794668674469, -0.031705666333436966, 0.07134763896465302, -0.04245833307504654, 0.003536985954269767, 0.06850075721740723, 0.08416219055652618, 0.053508419543504715, -0.02766411192715168, -0.03844275698065758, 0.0000498018016514834, 0.11765604466199875, -0.19499194622039795, -0.037965547293424606 ]
null
null
adapter-transformers
# Adapter `AdapterHub/bert-base-uncased-pf-yelp_polarity` for bert-base-uncased An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [yelp_polarity](https://huggingface.co/datasets/yelp_polarity/) dataset and includes a prediction head for classification. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("bert-base-uncased") adapter_name = model.load_adapter("AdapterHub/bert-base-uncased-pf-yelp_polarity", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
{"language": ["en"], "tags": ["text-classification", "bert", "adapter-transformers"], "datasets": ["yelp_polarity"]}
text-classification
AdapterHub/bert-base-uncased-pf-yelp_polarity
[ "adapter-transformers", "bert", "text-classification", "en", "dataset:yelp_polarity", "arxiv:2104.08247", "region:us" ]
2022-03-02T23:29:04+00:00
[ "2104.08247" ]
[ "en" ]
TAGS #adapter-transformers #bert #text-classification #en #dataset-yelp_polarity #arxiv-2104.08247 #region-us
# Adapter 'AdapterHub/bert-base-uncased-pf-yelp_polarity' for bert-base-uncased An adapter for the 'bert-base-uncased' model that was trained on the yelp_polarity dataset and includes a prediction head for classification. This adapter was created for usage with the adapter-transformers library. ## Usage First, install 'adapter-transformers': _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_ Now, the adapter can be loaded and activated like this: ## Architecture & Training The training code for this adapter is available at URL In particular, training configurations for all tasks can be found here. ## Evaluation results Refer to the paper for more information on results. If you use this adapter, please cite our paper "What to Pre-Train on? Efficient Intermediate Task Selection":
[ "# Adapter 'AdapterHub/bert-base-uncased-pf-yelp_polarity' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the yelp_polarity dataset and includes a prediction head for classification.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ "TAGS\n#adapter-transformers #bert #text-classification #en #dataset-yelp_polarity #arxiv-2104.08247 #region-us \n", "# Adapter 'AdapterHub/bert-base-uncased-pf-yelp_polarity' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the yelp_polarity dataset and includes a prediction head for classification.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ 38, 88, 57, 30, 45 ]
[ "passage: TAGS\n#adapter-transformers #bert #text-classification #en #dataset-yelp_polarity #arxiv-2104.08247 #region-us \n# Adapter 'AdapterHub/bert-base-uncased-pf-yelp_polarity' for bert-base-uncased\n\nAn adapter for the 'bert-base-uncased' model that was trained on the yelp_polarity dataset and includes a prediction head for classification.\n\nThis adapter was created for usage with the adapter-transformers library.## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ -0.05562546104192734, 0.0025414456613361835, -0.003375509288161993, 0.02222864329814911, 0.19802147150039673, 0.008972598239779472, 0.16032768785953522, 0.03957366570830345, 0.04720002040266991, 0.041491858661174774, 0.044117581099271774, 0.09942679852247238, 0.04799981415271759, 0.036518726497888565, 0.020414452999830246, -0.17118480801582336, 0.004699578508734703, 0.02000073902308941, -0.07955323904752731, 0.10817115753889084, 0.08060523122549057, -0.08028309047222137, 0.07407645881175995, 0.05568017438054085, -0.11069656163454056, 0.02747720293700695, -0.033010538667440414, -0.09112733602523804, 0.07726918160915375, 0.08411744236946106, 0.1766052544116974, 0.035022225230932236, 0.011130029335618019, -0.16347312927246094, 0.012861165218055248, 0.08838923275470734, 0.021027138456702232, 0.09496589750051498, 0.007842851802706718, -0.01694594882428646, 0.0407056026160717, -0.04793405532836914, 0.09384315460920334, 0.059309497475624084, -0.06698418408632278, -0.2735179364681244, -0.015904493629932404, 0.09580507129430771, 0.012603932060301304, 0.05705386400222778, -0.003311966545879841, 0.07929801940917969, 0.021764187142252922, 0.06067797914147377, 0.15862134099006653, -0.22898736596107483, 0.0030732862651348114, -0.02184058167040348, 0.00023295199207495898, 0.023665519431233406, -0.05636226385831833, 0.011373927816748619, 0.01835475116968155, 0.005965513177216053, 0.05083463713526726, -0.006556618958711624, 0.017084145918488503, -0.001812361995689571, -0.17750895023345947, 0.007503830827772617, 0.20216168463230133, -0.03367394581437111, -0.1068328395485878, -0.0468846820294857, -0.04051196947693825, 0.08235198259353638, 0.00864505860954523, -0.07225498557090759, 0.010841838084161282, -0.020345304161310196, 0.017434755340218544, -0.06576832383871078, -0.11835091561079025, -0.07750282436609268, -0.099366195499897, 0.380398690700531, -0.0012018075212836266, 0.059280067682266235, -0.002062972169369459, 0.09049351513385773, 0.03913755342364311, -0.0844925120472908, -0.05714673921465874, -0.05205376818776131, -0.08650361001491547, -0.05216122791171074, -0.0433841273188591, -0.3022650480270386, -0.03771838918328285, 0.14243464171886444, 0.1121722161769867, 0.04105325788259506, -0.05162128433585167, 0.0533905029296875, 0.09304094314575195, 0.18639306724071503, -0.0537274144589901, 0.12654557824134827, -0.054703373461961746, -0.05234428122639656, 0.010323486290872097, -0.11159034073352814, -0.061239782720804214, -0.029048647731542587, 0.06231864169239998, 0.020830413326621056, 0.014018533751368523, 0.0929659754037857, -0.05098038166761398, -0.06803064793348312, 0.09850972145795822, -0.12054254114627838, 0.0205906480550766, 0.0277328472584486, -0.02838132530450821, 0.15939292311668396, 0.14995810389518738, -0.020667318254709244, -0.044947464019060135, 0.17171919345855713, -0.06838450580835342, -0.016522178426384926, -0.05434531345963478, -0.1624642014503479, 0.024533960968255997, 0.02834206633269787, -0.026170194149017334, -0.17135509848594666, -0.09805386513471603, -0.0037899818271398544, 0.06364034116268158, -0.017081456258893013, 0.12154681980609894, 0.03022746741771698, 0.017798397690057755, 0.04260833188891411, -0.024465812370181084, -0.0037177421618252993, -0.03626236319541931, 0.0678286999464035, -0.013463389128446579, 0.06600595265626907, -0.003761010942980647, 0.06349537521600723, -0.0788220539689064, -0.009127160534262657, -0.2017437219619751, 0.09963370859622955, -0.17813418805599213, 0.009107973426580429, -0.12840263545513153, -0.057871829718351364, 0.010080656036734581, 0.04718540981411934, 0.0776863619685173, 0.12877096235752106, -0.13051028549671173, -0.07129339873790741, 0.04687444865703583, -0.21104273200035095, -0.0654243752360344, 0.06979338079690933, -0.011645396240055561, 0.0993117243051529, 0.0665675699710846, 0.08080792427062988, 0.12341915816068649, -0.10440314561128616, -0.08991836756467819, 0.04164503887295723, -0.1021232083439827, -0.007682104129344225, 0.04880204424262047, 0.03355758264660835, -0.15306764841079712, 0.008750637993216515, -0.05885017663240433, 0.014937442727386951, -0.035932574421167374, -0.010611636564135551, -0.025748981162905693, 0.004310230258852243, 0.1139560267329216, 0.016794385388493538, 0.0016368974465876818, 0.029409734532237053, -0.12947231531143188, 0.22064390778541565, 0.047688182443380356, -0.06410473585128784, 0.049576424062252045, -0.079262875020504, 0.10074540972709656, -0.10477446019649506, 0.01579444482922554, -0.18118467926979065, -0.010466940701007843, -0.001211279071867466, -0.06206906959414482, 0.04983732849359512, 0.04156488925218582, 0.06163512170314789, 0.03651132434606552, 0.009373615495860577, 0.013357210904359818, -0.03289564326405525, 0.030998535454273224, -0.04951261729001999, -0.11477568745613098, -0.059634510427713394, -0.04661185294389725, 0.048170819878578186, -0.17870032787322998, 0.046083852648735046, 0.11671356856822968, 0.07656151801347733, 0.0340452715754509, -0.019687114283442497, -0.012366758659482002, -0.01701918989419937, -0.025943826884031296, -0.023162316530942917, 0.03400358557701111, 0.01318009290844202, -0.11925818771123886, 0.029051179066300392, -0.06494225561618805, -0.015343770384788513, 0.08146221190690994, -0.061969585716724396, -0.1001632809638977, -0.07428480684757233, -0.012334337458014488, -0.011271766386926174, -0.0003600402269512415, -0.0903545469045639, 0.21591851115226746, 0.08660261332988739, 0.06558158993721008, -0.023794464766979218, -0.0026103041600435972, 0.01324981078505516, -0.045772843062877655, 0.003343235934153199, 0.03380333259701729, 0.011419028043746948, -0.1522873193025589, 0.03851134330034256, 0.14545826613903046, -0.03106335736811161, 0.10052552074193954, -0.0061803520657122135, -0.09635705500841141, -0.006104723084717989, -0.044765859842300415, 0.047830745577812195, 0.04272065311670303, -0.06460800021886826, 0.009221894666552544, 0.07462897896766663, -0.008256249129772186, -0.00932487566024065, -0.08277105540037155, 0.04544282704591751, 0.08710072934627533, 0.045102644711732864, -0.09879189729690552, -0.024704867973923683, -0.020870007574558258, 0.06283463537693024, 0.042743973433971405, 0.12020751088857651, 0.012726612389087677, -0.011617097072303295, -0.08364321291446686, 0.1910906881093979, -0.08635499328374863, -0.22396798431873322, -0.22239576280117035, -0.06613177806138992, -0.008590111508965492, 0.021481700241565704, 0.03192651644349098, -0.10819220542907715, -0.10646311193704605, -0.049897417426109314, 0.19329769909381866, -0.02350457012653351, 0.01617688685655594, 0.007900380529463291, -0.06187838315963745, 0.05781694874167442, -0.14485923945903778, 0.02948259748518467, -0.0015024610329419374, -0.04796958342194557, 0.029406189918518066, 0.05163706839084625, 0.06637310981750488, 0.1166580468416214, -0.03233354538679123, -0.012979971244931221, -0.0023173324298113585, 0.09323107451200485, -0.07479991763830185, 0.031904708594083786, 0.11204086244106293, -0.1314375400543213, 0.03556136041879654, 0.0387076810002327, 0.06923791021108627, -0.039097703993320465, 0.042795006185770035, 0.03402487561106682, -0.0607244037091732, -0.2453155815601349, -0.04252904653549194, 0.009896927513182163, 0.031121864914894104, 0.1051328256726265, 0.032938145101070404, -0.01748093031346798, 0.07837942242622375, 0.02986929751932621, -0.044899411499500275, -0.012484523467719555, 0.10308296233415604, 0.23827755451202393, -0.011221102438867092, 0.12152053415775299, -0.080001100897789, -0.001138073392212391, 0.09716141223907471, -0.041276123374700546, 0.1336413472890854, -0.03190906345844269, 0.08360309153795242, 0.042256101965904236, -0.07945766299962997, 0.06431257724761963, 0.18179383873939514, -0.015655241906642914, -0.010226679965853691, 0.0038321202155202627, -0.057871561497449875, -0.09997968375682831, 0.037302229553461075, -0.024288147687911987, -0.006479944102466106, -0.040800802409648895, -0.07099264115095139, 0.030598392710089684, 0.1104532778263092, 0.009434533305466175, -0.1999724805355072, -0.15773341059684753, -0.023049553856253624, -0.030734725296497345, -0.08231967687606812, -0.008135203272104263, 0.04135012626647949, -0.06608407199382782, 0.09048374742269516, -0.06222693994641304, 0.07044444233179092, -0.14658625423908234, -0.012156054377555847, 0.03263101354241371, 0.1075579896569252, -0.04708002507686615, 0.09173569828271866, -0.1780186891555786, 0.07783018797636032, 0.03127280995249748, 0.020880039781332016, -0.056816115975379944, 0.03420452028512955, -0.0037985939998179674, 0.1304354965686798, 0.039864156395196915, 0.003775432938709855, 0.08491815626621246, -0.14414428174495697, -0.0820048451423645, 0.005854841787368059, 0.06040346249938011, -0.08518970012664795, 0.0321645624935627, -0.03883964568376541, 0.04864291101694107, 0.02845805138349533, -0.00021395919611677527, -0.09260544180870056, -0.18765322864055634, 0.07682285457849503, -0.03968782350420952, 0.047662153840065, -0.040918607264757156, -0.1447799801826477, 0.0018972354009747505, 0.16697223484516144, -0.1181749776005745, -0.09324643760919571, -0.14752380549907684, 0.0366630032658577, 0.06394939869642258, -0.056254226714372635, 0.0334295816719532, -0.015084415674209595, 0.11566806584596634, 0.006981160491704941, -0.10471102595329285, 0.0799475908279419, -0.06257733702659607, -0.07067875564098358, -0.021447185426950455, 0.03089097887277603, 0.09046689420938492, 0.012757315300405025, -0.03457779064774513, 0.029297133907675743, -0.011934931389987469, -0.11096999049186707, 0.010365783236920834, 0.0481763556599617, -0.0019953723531216383, 0.07237482815980911, -0.04034027084708214, 0.056451939046382904, -0.037557460367679596, 0.017065133899450302, 0.13925184309482574, 0.12964338064193726, -0.06139940395951271, 0.07465537637472153, 0.1662306934595108, -0.06342237442731857, -0.2852719724178314, 0.013854240998625755, 0.06530166417360306, -0.008451303467154503, 0.016752663999795914, -0.23677018284797668, 0.14289717376232147, 0.054684530943632126, 0.001630403334274888, 0.07174953818321228, -0.0892418697476387, -0.10460130125284195, 0.166584312915802, 0.10473455488681793, 0.07259517908096313, -0.11959806084632874, -0.06559433788061142, -0.0322360023856163, -0.1597898304462433, 0.16107021272182465, -0.03322942554950714, 0.06533551961183548, -0.02698044292628765, 0.07105516642332077, 0.05308150500059128, -0.03604034334421158, 0.0927513986825943, -0.005615476984530687, 0.02645004168152809, -0.10516060143709183, 0.04142161086201668, 0.014021100476384163, -0.038849763572216034, 0.08776777982711792, -0.02655981108546257, 0.04043927416205406, -0.06061149388551712, -0.0631449744105339, 0.0013044290244579315, 0.10286026448011398, -0.02614128217101097, -0.06254619359970093, -0.06017718091607094, 0.005479932297021151, 0.0005980163696222007, -0.06288706511259079, 0.11422596126794815, -0.05535004287958145, 0.049525126814842224, 0.17470958828926086, 0.12788476049900055, -0.01656322367489338, -0.09136705845594406, 0.01626216247677803, -0.030191849917173386, 0.13459418714046478, -0.1484660655260086, 0.05937124043703079, 0.11249830573797226, 0.04390569031238556, 0.10685285925865173, 0.05944559723138809, -0.11193253099918365, -0.050806090235710144, 0.042124200612306595, -0.10890447348356247, -0.12274406105279922, 0.012920500710606575, 0.0826641097664833, -0.11724860221147537, 0.08041955530643463, 0.16619184613227844, -0.0678723007440567, 0.012169471941888332, 0.054442353546619415, 0.002411889610812068, -0.028872240334749222, 0.08839631825685501, 0.08979137986898422, 0.04737601801753044, -0.05097837746143341, 0.09143374115228653, 0.08359437435865402, -0.06360988318920135, 0.055241659283638, -0.07685349136590958, -0.07467221468687057, -0.05964222922921181, -0.07248818129301071, 0.11396070569753647, -0.08761589974164963, -0.0647880956530571, 0.028284408152103424, -0.08813335001468658, 0.021438730880618095, 0.1365889310836792, 0.037775736302137375, 0.004232269711792469, -0.09026983380317688, 0.06388615071773529, -0.09695304930210114, 0.054393619298934937, -0.03197597339749336, 0.07240819185972214, -0.08875701576471329, 0.008650950156152248, 0.017294839024543762, 0.01631251536309719, -0.05886247754096985, -0.05160344019532204, -0.11427720636129379, -0.036804649978876114, -0.09849780052900314, -0.03327156975865364, -0.02404441498219967, 0.0074188900180161, 0.03547912836074829, -0.0828649252653122, 0.001562445773743093, 0.01856287010014057, -0.037481531500816345, 0.01601315103471279, 0.04580036923289299, 0.039555080235004425, -0.18673788011074066, -0.03323204815387726, 0.05589844658970833, -0.06104229763150215, 0.08350841701030731, 0.08105336874723434, -0.01962336339056492, 0.03884131461381912, -0.09371577203273773, 0.0242890827357769, 0.022132540121674538, 0.033228740096092224, 0.010149523615837097, -0.1153201088309288, 0.004131998401135206, -0.03303120285272598, -0.037270933389663696, 0.004396338481456041, 0.2073269635438919, -0.05204015225172043, 0.039520636200904846, -0.01136440597474575, 0.007224878296256065, -0.07123152911663055, 0.06322192400693893, 0.05290146544575691, 0.1308169960975647, 0.15342794358730316, -0.07271658629179001, 0.05938289314508438, -0.0902075245976448, 0.007187473587691784, 0.03586187586188316, -0.03863175958395004, 0.09453025460243225, -0.10138013958930969, 0.010522705502808094, -0.0525524728000164, 0.17578332126140594, -0.03959561511874199, 0.06441301107406616, 0.04149279370903969, 0.011386176571249962, -0.08966168761253357, -0.02524947002530098, 0.14729011058807373, 0.027849949896335602, 0.016214624047279358, 0.007951727136969566, 0.04404223710298538, 0.0032948842272162437, -0.031488049775362015, 0.11202235519886017, 0.09202428162097931, -0.17831464111804962, 0.020130660384893417, 0.006033554207533598, -0.019706223160028458, -0.10393958538770676, -0.050608955323696136, -0.052899546921253204, 0.08466456085443497, -0.022248387336730957, 0.21879185736179352, 0.03097737953066826, -0.0058262404054403305, 0.06879711151123047, -0.0077301692217588425, -0.07792346924543381, -0.08802464604377747, -0.1125398501753807, -0.00816209428012371, -0.14882932603359222, -0.018620604649186134, -0.06723958253860474, 0.006705043371766806, 0.053098201751708984, 0.03045002929866314, 0.01789788343012333, 0.23195132613182068, -0.06359587609767914, -0.033257242292165756, 0.05148570239543915, -0.039151985198259354, -0.05920105427503586, -0.08487538993358612, 0.028998272493481636, 0.050455644726753235, 0.12892256677150726, 0.04100343585014343, 0.05925348401069641, 0.037675559520721436, 0.04778650775551796, -0.011112394742667675, -0.12657801806926727, -0.012393721379339695, 0.050118520855903625, -0.04893094301223755, 0.06100228428840637, 0.009759332984685898, 0.011280449107289314, -0.044515032321214676, 0.18422815203666687, -0.05388768017292023, -0.016547231003642082, -0.10740736126899719, 0.18356448411941528, -0.008007630705833435, 0.05368562415242195, -0.026720944792032242, -0.11741753667593002, -0.07467615604400635, 0.13389143347740173, 0.05930285155773163, -0.0066165076568722725, 0.027294227853417397, 0.03066151775419712, 0.021687911823391914, 0.051957808434963226, 0.09642554074525833, 0.030056918039917946, 0.03741521015763283, 0.005433255340903997, -0.0036463593132793903, -0.059622205793857574, -0.01858660578727722, 0.029012316837906837, 0.12286726385354996, -0.005829061847180128, -0.035378359258174896, -0.09091361612081528, 0.06595446914434433, -0.035101160407066345, -0.31576791405677795, -0.030759340152144432, -0.05208662524819374, -0.06992629915475845, -0.0549975261092186, 0.08446560800075531, -0.04738651588559151, 0.03610615432262421, 0.012659864500164986, -0.043089382350444794, 0.154483363032341, 0.04673134535551071, -0.03340193256735802, -0.011008667759597301, 0.06238375976681709, -0.09560457617044449, 0.12081052362918854, 0.010747472755610943, 0.040302544832229614, 0.07500503212213516, 0.06624144315719604, -0.08207464963197708, 0.004041810519993305, 0.011935354210436344, -0.10777425765991211, -0.00695818429812789, 0.09014766663312912, -0.0072581092827022076, 0.036144502460956573, 0.051873527467250824, -0.22518932819366455, 0.008489131927490234, -0.03026757203042507, -0.07642790675163269, -0.04193064570426941, -0.015673121437430382, -0.08097299188375473, 0.11733744293451309, 0.1412210464477539, 0.012170382775366306, -0.08186102658510208, -0.10228931158781052, 0.013448799028992653, -0.0011754774022847414, 0.051973823457956314, -0.005332109984010458, -0.10009268671274185, -0.024230830371379852, -0.03220142051577568, 0.06990042328834534, -0.2554294764995575, -0.013912338763475418, 0.0452578105032444, -0.022368550300598145, 0.01276269182562828, 0.05194474011659622, 0.0236721932888031, 0.06658149510622025, -0.058190472424030304, -0.11362971365451813, 0.02619468979537487, 0.12688466906547546, -0.15075916051864624, -0.009096799418330193 ]
null
null
adapter-transformers
# Adapter `AdapterHub/bioASQyesno` for facebook/bart-base An [adapter](https://adapterhub.ml) for the `facebook/bart-base` model that was trained on the [qa/bioasq](https://adapterhub.ml/explore/qa/bioasq/) dataset. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("facebook/bart-base") adapter_name = model.load_adapter("AdapterHub/bioASQyesno", source="hf", set_active=True) ``` ## Architecture & Training Trained for 15 epochs with early stopping, a learning rate of 1e-4, and a batch size of 4 on the yes-no questions of the bioASQ 8b dataset. ## Evaluation results Achieved 75% accuracy on the test dataset of bioASQ 8b dataset. ## Citation <!-- Add some description here -->
{"tags": ["adapterhub:qa/bioasq", "adapter-transformers", "bart"]}
null
AdapterHub/bioASQyesno
[ "adapter-transformers", "bart", "adapterhub:qa/bioasq", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[]
TAGS #adapter-transformers #bart #adapterhub-qa/bioasq #region-us
# Adapter 'AdapterHub/bioASQyesno' for facebook/bart-base An adapter for the 'facebook/bart-base' model that was trained on the qa/bioasq dataset. This adapter was created for usage with the adapter-transformers library. ## Usage First, install 'adapter-transformers': _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_ Now, the adapter can be loaded and activated like this: ## Architecture & Training Trained for 15 epochs with early stopping, a learning rate of 1e-4, and a batch size of 4 on the yes-no questions of the bioASQ 8b dataset. ## Evaluation results Achieved 75% accuracy on the test dataset of bioASQ 8b dataset.
[ "# Adapter 'AdapterHub/bioASQyesno' for facebook/bart-base\n\nAn adapter for the 'facebook/bart-base' model that was trained on the qa/bioasq dataset.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nTrained for 15 epochs with early stopping, a learning rate of 1e-4, and a batch size of 4 on the yes-no questions of the bioASQ 8b dataset.", "## Evaluation results\n\nAchieved 75% accuracy on the test dataset of bioASQ 8b dataset." ]
[ "TAGS\n#adapter-transformers #bart #adapterhub-qa/bioasq #region-us \n", "# Adapter 'AdapterHub/bioASQyesno' for facebook/bart-base\n\nAn adapter for the 'facebook/bart-base' model that was trained on the qa/bioasq dataset.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nTrained for 15 epochs with early stopping, a learning rate of 1e-4, and a batch size of 4 on the yes-no questions of the bioASQ 8b dataset.", "## Evaluation results\n\nAchieved 75% accuracy on the test dataset of bioASQ 8b dataset." ]
[ 22, 62, 57, 49, 25 ]
[ "passage: TAGS\n#adapter-transformers #bart #adapterhub-qa/bioasq #region-us \n# Adapter 'AdapterHub/bioASQyesno' for facebook/bart-base\n\nAn adapter for the 'facebook/bart-base' model that was trained on the qa/bioasq dataset.\n\nThis adapter was created for usage with the adapter-transformers library.## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:## Architecture & Training\n\nTrained for 15 epochs with early stopping, a learning rate of 1e-4, and a batch size of 4 on the yes-no questions of the bioASQ 8b dataset.## Evaluation results\n\nAchieved 75% accuracy on the test dataset of bioASQ 8b dataset." ]
[ -0.13004747033119202, 0.010143529623746872, -0.0017046782886609435, -0.037370599806308746, 0.08919916301965714, 0.00696165906265378, 0.18489845097064972, 0.10339701920747757, 0.2552741765975952, 0.03196858987212181, 0.04942413792014122, -0.04417141154408455, 0.03792404383420944, 0.2418411821126938, -0.005650214850902557, 0.06261774152517319, 0.057805292308330536, 0.09570705890655518, -0.0859459862112999, 0.049371134489774704, 0.05009245127439499, -0.06342445313930511, 0.08127205818891525, 0.010161333717405796, -0.10311418771743774, 0.0552661307156086, 0.06506352871656418, -0.0645931288599968, 0.10489213466644287, 0.062470026314258575, 0.08850277215242386, 0.05753980576992035, 0.018441885709762573, -0.14808204770088196, 0.03190184757113457, 0.0256417877972126, -0.011131755076348782, 0.06744588166475296, -0.058458466082811356, 0.09455458074808121, 0.01831367239356041, -0.00025022809859365225, 0.016932912170886993, 0.07021652907133102, -0.05857818201184273, -0.2151363492012024, 0.022926010191440582, 0.04123605415225029, 0.04362177476286888, 0.05184625834226608, -0.004692931659519672, -0.0419473834335804, -0.031237421557307243, 0.0597202442586422, 0.08873601257801056, -0.14458410441875458, -0.005091406404972076, -0.13526810705661774, 0.1885206252336502, 0.12220237404108047, -0.03779440373182297, 0.008403593674302101, 0.017037183046340942, 0.044116631150245667, 0.05991552397608757, -0.06471750140190125, 0.17787252366542816, -0.03264210745692253, -0.0545070618391037, -0.008321727626025677, 0.2350924015045166, -0.017151515930891037, -0.12735740840435028, -0.033568572252988815, -0.04659569263458252, 0.04413226246833801, -0.015570416115224361, -0.08100882172584534, -0.01623767428100109, 0.05793023481965065, -0.025654738768935204, -0.08152436465024948, -0.024747807532548904, -0.0584469698369503, -0.0388331413269043, 0.14719191193580627, -0.033191122114658356, 0.039830658584833145, -0.08122383058071136, -0.00029813384753651917, 0.07288296520709991, -0.06712288409471512, -0.021167078986763954, -0.029005656018853188, -0.07885441184043884, -0.004727534484118223, -0.0833016112446785, 0.006924062501639128, 0.1274729073047638, 0.17507655918598175, 0.09143461287021637, 0.008903968147933483, -0.04651789367198944, 0.03357367962598801, -0.05221262946724892, 0.05695744976401329, -0.05225782096385956, -0.15090090036392212, 0.0859234407544136, 0.0860898494720459, -0.12240888923406601, -0.053532764315605164, -0.07058541476726532, -0.03784210979938507, 0.07770077884197235, 0.0006917258724570274, 0.009049898944795132, -0.028647027909755707, 0.0005765468813478947, -0.033188264816999435, 0.04739222675561905, -0.06276659667491913, -0.05832075700163841, 0.015022761188447475, -0.0063972752541303635, 0.018085191026329994, 0.06999138742685318, -0.05388180911540985, -0.01595405861735344, -0.0902821496129036, -0.09282331168651581, -0.10433606803417206, 0.003916028421372175, -0.09175913780927658, -0.012320631183683872, 0.042225610464811325, 0.07796864956617355, -0.14252498745918274, -0.09262002259492874, 0.011258866637945175, 0.031177325174212456, -0.0379335843026638, 0.0004875928570982069, 0.11599314957857132, 0.03514145687222481, 0.03572931885719299, -0.0925622507929802, 0.012267416343092918, -0.05154147744178772, 0.0931970477104187, 0.08793528378009796, 0.131262868642807, -0.14827410876750946, 0.07123138010501862, -0.07707921415567398, 0.028734181076288223, -0.08893987536430359, 0.12190214544534683, -0.10367144644260406, -0.07819589227437973, -0.09926535934209824, 0.037931278347969055, -0.022313520312309265, 0.04942182078957558, 0.11687146127223969, 0.09987504035234451, -0.1438101828098297, -0.07675614207983017, 0.07091602683067322, -0.07635777443647385, -0.161530002951622, 0.09310632944107056, 0.008811629377305508, 0.1461762636899948, 0.06959711760282516, 0.19023756682872772, 0.12914316356182098, -0.0369616337120533, -0.09140125662088394, 0.038278430700302124, 0.0016465606167912483, -0.14679305255413055, 0.035981904715299606, 0.07442162185907364, -0.09529592096805573, 0.03682088479399681, -0.01476249098777771, 0.16222581267356873, -0.04006049409508705, -0.014413139782845974, -0.038308415561914444, -0.1251007318496704, 0.009669858030974865, -0.031005294993519783, -0.04516950249671936, 0.05274007096886635, -0.02683495543897152, 0.10000373423099518, 0.043443214148283005, -0.09317439049482346, 0.008785598911345005, -0.12380191683769226, 0.08989924192428589, -0.17876699566841125, 0.005949053447693586, -0.15953586995601654, -0.0048067704774439335, 0.024300895631313324, -0.06065107136964798, -0.020957937464118004, 0.10136312991380692, 0.042163994163274765, -0.022243903949856758, -0.02277020551264286, 0.023607168346643448, -0.04269365221261978, 0.021090609952807426, -0.13323073089122772, -0.09845482558012009, 0.017465757206082344, -0.07689687609672546, 0.02267555333673954, -0.07153261452913284, 0.028491614386439323, -0.020965280011296272, 0.028272368013858795, -0.007120305672287941, -0.04136206582188606, 0.01551179401576519, -0.003923439420759678, -0.01697416417300701, -0.021267186850309372, 0.041410114616155624, -0.02575129084289074, -0.10276248306035995, 0.03331560641527176, -0.07859499752521515, 0.0970371812582016, 0.05348606035113335, 0.2070937305688858, -0.010455131530761719, -0.060990966856479645, 0.008363941684365273, -0.06349731236696243, 0.03245055675506592, -0.058575768023729324, 0.190530925989151, 0.030810795724391937, 0.06350785493850708, -0.0635315328836441, 0.049539051949977875, 0.027336429804563522, -0.010582372546195984, 0.08770348876714706, -0.008522254414856434, 0.002027590526267886, -0.1540854573249817, 0.03082915022969246, 0.19691313803195953, 0.055707283318042755, 0.10106772929430008, 0.002300767693668604, -0.11883673071861267, -0.01780024915933609, -0.025150399655103683, -0.009669029153883457, 0.2120150327682495, -0.18941546976566315, 0.038138311356306076, 0.026069622486829758, -0.022645805031061172, 0.049468040466308594, 0.0051201749593019485, 0.045016784220933914, -0.0371343269944191, -0.04137137904763222, -0.05489109084010124, -0.02424527518451214, -0.0010140412487089634, 0.08872698992490768, 0.04634787142276764, -0.03212852403521538, 0.05619063600897789, 0.011630206368863583, -0.10056454688310623, 0.21078798174858093, -0.011618725024163723, -0.2398688644170761, -0.1060636043548584, -0.1486768275499344, 0.024783579632639885, 0.023206504061818123, 0.07092920690774918, -0.07892568409442902, -0.00031531884451396763, 0.012584124691784382, 0.07705746591091156, 0.11088969558477402, 0.06418994814157486, 0.0785921961069107, -0.027082761749625206, 0.17258892953395844, -0.06702154874801636, 0.031052518635988235, -0.05099276080727577, 0.026152843609452248, 0.0002654952113516629, -0.05359147861599922, 0.06073489040136337, 0.06090761348605156, -0.0697346031665802, -0.05204426869750023, -0.005680146161466837, 0.3057886064052582, -0.06890497356653214, 0.04959659278392792, 0.20189937949180603, -0.04054880514740944, -0.02701771818101406, 0.058542925864458084, 0.00046765943989157677, -0.09715956449508667, 0.029777025803923607, 0.019761286675930023, -0.07054881006479263, -0.17976655066013336, -0.012707422487437725, 0.0010903574293479323, -0.003851179499179125, 0.10038372129201889, 0.02252226136624813, -0.011532517150044441, 0.08945492655038834, 0.04270162805914879, 0.05415932461619377, -0.08406897634267807, 0.0035144395660609007, 0.08160808682441711, -0.005770519841462374, 0.1421157419681549, 0.01807965151965618, 0.05558646842837334, 0.10781528800725937, 0.12305000424385071, 0.13846199214458466, -0.016511399298906326, 0.005437794141471386, 0.021434547379612923, 0.04010378196835518, 0.042971909046173096, 0.1593707948923111, -0.022294841706752777, -0.05994722992181778, -0.03192704916000366, 0.041651275008916855, -0.14933432638645172, -0.015771839767694473, -0.000842723879031837, -0.04430973157286644, -0.0658915713429451, 0.1052202507853508, -0.00005929453982389532, 0.11368029564619064, 0.045317698270082474, -0.14082251489162445, -0.120135098695755, -0.011095179244875908, -0.07863661646842957, -0.14785926043987274, 0.029710855334997177, 0.22586795687675476, -0.017469776794314384, -0.06837217509746552, -0.03600941598415375, 0.1124621108174324, 0.0009993101703003049, 0.059148866683244705, 0.006284960079938173, -0.013634462840855122, -0.02866954170167446, 0.05114922672510147, -0.3561360836029053, 0.016124673187732697, 0.01126190461218357, 0.016087783500552177, -0.027902472764253616, 0.0021190086845308542, 0.015323738567531109, 0.08883371204137802, 0.0743085965514183, 0.054616764187812805, -0.149473175406456, -0.11386960744857788, -0.15055041015148163, 0.11382768303155899, -0.04712473973631859, 0.05542459711432457, 0.08448363095521927, 0.0031963023357093334, 0.11337721347808838, 0.029120177030563354, 0.06902088224887848, -0.14397768676280975, -0.12365364283323288, 0.03217006474733353, 0.07270895689725876, 0.04998616874217987, -0.05309971794486046, 0.0024460963904857635, 0.20640258491039276, 0.1162899062037468, -0.13305775821208954, -0.06344380229711533, -0.17330965399742126, 0.06166917085647583, 0.10115509480237961, -0.081120565533638, 0.013751747086644173, 0.03294118121266365, 0.043856002390384674, 0.019169004634022713, -0.13230229914188385, 0.10391952842473984, -0.0840013176202774, -0.06419139355421066, -0.07371293008327484, -0.07165800034999847, 0.07843171060085297, 0.06121646985411644, 0.08191186934709549, -0.1245286837220192, -0.08934319019317627, -0.029229484498500824, 0.08156954497098923, -0.1558496654033661, -0.11526407301425934, 0.033817872405052185, -0.15329128503799438, -0.03477231413125992, -0.03223569691181183, 0.02406410500407219, 0.05606044828891754, 0.11837153136730194, 0.007061962503939867, 0.07215127348899841, 0.23122312128543854, -0.06974292546510696, -0.20462918281555176, -0.027296217158436775, 0.04242642968893051, 0.037843599915504456, -0.03793485835194588, -0.25879016518592834, 0.20847395062446594, 0.08897387236356735, -0.00542188948020339, 0.04941919073462486, 0.041926465928554535, -0.09889741241931915, 0.21852180361747742, 0.010413714684545994, 0.31089627742767334, -0.12712964415550232, -0.04113271087408066, -0.0811278223991394, -0.04275057837367058, 0.07877232134342194, -0.14447630941867828, 0.09472209215164185, -0.07873338460922241, 0.05630514770746231, -0.011220257729291916, -0.013186926953494549, 0.10569093376398087, 0.05708315968513489, 0.012592245824635029, 0.03293825685977936, 0.032684020698070526, 0.03285084664821625, -0.011313199065625668, 0.029533956199884415, -0.08172698318958282, 0.021365631371736526, -0.20761702954769135, -0.039577897638082504, -0.08948487043380737, 0.0668053850531578, 0.005953610874712467, -0.04415111243724823, -0.021739913150668144, 0.039870183914899826, 0.02992176078259945, 0.0012477559503167868, -0.05450534075498581, -0.11892607063055038, 0.07427601516246796, 0.15500769019126892, 0.08079954236745834, -0.06488925218582153, -0.027734773233532906, 0.05552099272608757, 0.0031515969894826412, 0.07843746989965439, -0.13379137217998505, 0.09134914726018906, 0.05372382327914238, -0.06957279145717621, 0.059762854129076004, 0.05353151634335518, -0.056150417774915695, 0.06756741553544998, 0.05088983103632927, -0.04817178100347519, 0.03841599449515343, 0.01955471746623516, 0.033674802631139755, -0.19699305295944214, -0.004659196361899376, 0.17211948335170746, 0.0002754662127699703, -0.00989324226975441, -0.07223781198263168, 0.016325071454048157, -0.10111270099878311, 0.20518837869167328, 0.08317573368549347, 0.08919075131416321, -0.08642088621854782, 0.013443497940897942, -0.01733538880944252, -0.013756406493484974, 0.07734028995037079, -0.052620917558670044, -0.10853033512830734, -0.041548557579517365, 0.00029464991530403495, 0.16629764437675476, -0.1294218897819519, -0.07249371707439423, -0.11179586499929428, -0.11061441898345947, 0.06807151436805725, 0.2423790544271469, -0.009051204659044743, -0.07672584801912308, -0.00930063147097826, -0.07716836035251617, -0.083375945687294, 0.08493054658174515, -0.1338283121585846, 0.03915371000766754, 0.02862832322716713, -0.03753418102860451, -0.06922833621501923, 0.07420720160007477, -0.10289448499679565, 0.05170990526676178, -0.16636474430561066, -0.024223262444138527, -0.3969518840312958, -0.011787028051912785, -0.023410078138113022, -0.0380646288394928, 0.012791038490831852, -0.0783982127904892, -0.04590025916695595, 0.007899721153080463, -0.07173610478639603, 0.03797534108161926, 0.04964868351817131, 0.015901807695627213, -0.08413293212652206, -0.0005081365234218538, -0.004649842623621225, -0.04218250885605812, 0.11562836915254593, 0.08393179625272751, -0.03956429287791252, -0.02843192033469677, 0.06200186163187027, -0.03402804583311081, -0.012269286438822746, 0.05859263613820076, 0.00019736037938855588, -0.12282370775938034, 0.0421065092086792, 0.047183550894260406, 0.02730841189622879, 0.03537708520889282, 0.2561059594154358, 0.0017184631433337927, -0.015890417620539665, -0.08636711537837982, 0.04871881380677223, -0.038610879331827164, 0.04582590609788895, 0.12086471915245056, 0.12471859157085419, 0.09677952527999878, -0.07191631942987442, 0.0027073887176811695, -0.15362294018268585, -0.01119534857571125, 0.047063760459423065, -0.04974586144089699, 0.07924938946962357, -0.09575775265693665, 0.04491797834634781, 0.06524921208620071, 0.29760846495628357, -0.09963678568601608, 0.05612710118293762, 0.009666952304542065, -0.126230388879776, 0.04498555511236191, -0.019882807508111, 0.21852163970470428, -0.004637275356799364, 0.0062749916687607765, 0.0889798179268837, 0.04212876781821251, 0.030535800382494926, 0.13684649765491486, 0.08229541033506393, 0.1401841938495636, 0.019667187705636024, 0.06939937174320221, -0.03386334329843521, -0.0557359904050827, 0.012231608852744102, -0.06770698726177216, -0.062468454241752625, -0.005481821950525045, 0.03984598070383072, 0.09841280430555344, 0.059508997946977615, -0.044786885380744934, 0.06355444341897964, -0.023289788514375687, -0.08068769425153732, -0.09029597043991089, 0.15798141062259674, -0.024465689435601234, -0.1360604614019394, -0.06947135925292969, -0.14601314067840576, -0.10422997921705246, 0.1299329549074173, -0.026125749573111534, -0.004948162939399481, 0.13692866265773773, 0.04173200577497482, -0.020864808931946754, 0.01820557750761509, 0.0012996570440009236, -0.011493697762489319, -0.09507259726524353, 0.011205052025616169, 0.06387152522802353, 0.07830635458230972, 0.06854061037302017, -0.0011211184319108725, -0.048748280853033066, 0.05942262336611748, -0.03501253202557564, -0.07967782765626907, -0.03556220233440399, -0.042551759630441666, -0.06681987643241882, 0.12044175714254379, 0.008664128370583057, -0.05587984248995781, -0.011365175247192383, 0.14269450306892395, -0.04192819073796272, -0.0037784292362630367, -0.17017753422260284, 0.08953850716352463, -0.06852041929960251, 0.04482269659638405, -0.09413804858922958, 0.006575233303010464, 0.0022090149577707052, 0.26134005188941956, -0.09441240131855011, -0.1913561224937439, -0.02633221074938774, 0.023217448964715004, -0.001837357645854354, -0.033922288566827774, 0.15298151969909668, 0.0787801593542099, -0.008326757699251175, 0.005021634045988321, -0.04988637566566467, -0.002937884768471122, -0.0977928414940834, -0.04702657088637352, 0.11220238357782364, 0.03299582004547119, 0.00963550340384245, -0.1348879486322403, 0.003842087695375085, -0.0076792859472334385, -0.15561531484127045, -0.03417608514428139, 0.0012167765526100993, -0.06570243835449219, -0.12336812913417816, -0.029684511944651604, -0.03878694027662277, -0.02138913981616497, -0.018997997045516968, 0.07430145144462585, 0.0828784853219986, -0.007464307826012373, -0.06802397966384888, -0.008013015612959862, 0.07245668023824692, -0.11254077404737473, 0.12391279637813568, 0.030422478914260864, 0.00044339493615552783, 0.08660940825939178, 0.004920232575386763, -0.14183208346366882, -0.004439684096723795, -0.0384005643427372, -0.015448101796209812, 0.002860537962988019, 0.11643775552511215, -0.008985676802694798, 0.08732829242944717, 0.08076722919940948, -0.05628862977027893, -0.03677196428179741, -0.09723006933927536, -0.06841335445642471, -0.045413799583911896, -0.04217018932104111, -0.027512863278388977, 0.12115646153688431, 0.07172947376966476, -0.06931114196777344, -0.0133584626019001, -0.06547488272190094, 0.056066062301397324, 0.05043358355760574, 0.14645758271217346, -0.04225203022360802, -0.1499885767698288, -0.02180500142276287, 0.003994079306721687, -0.04218641668558121, -0.3978722393512726, -0.012618696317076683, -0.05008965730667114, -0.07052677869796753, -0.0008658227161504328, 0.15836064517498016, 0.015322139486670494, 0.042386479675769806, -0.058570727705955505, -0.025617707520723343, 0.019407330080866814, 0.10392588376998901, -0.14292623102664948, -0.07247323542833328 ]
null
null
adapter-transformers
# Adapter `hSterz/narrativeqa` for facebook/bart-base An [adapter](https://adapterhub.ml) for the `facebook/bart-base` model that was trained on the [qa/narrativeqa](https://adapterhub.ml/explore/qa/narrativeqa/) dataset. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("facebook/bart-base") adapter_name = model.load_adapter("hSterz/narrativeqa", source="hf", set_active=True) ``` ## Architecture & Training <!-- Add some description here --> ## Evaluation results <!-- Add some description here --> ## Citation <!-- Add some description here -->
{"tags": ["adapterhub:qa/narrativeqa", "adapter-transformers", "bart"], "datasets": ["narrativeqa"]}
null
AdapterHub/narrativeqa
[ "adapter-transformers", "bart", "adapterhub:qa/narrativeqa", "dataset:narrativeqa", "region:us" ]
2022-03-02T23:29:04+00:00
[]
[]
TAGS #adapter-transformers #bart #adapterhub-qa/narrativeqa #dataset-narrativeqa #region-us
# Adapter 'hSterz/narrativeqa' for facebook/bart-base An adapter for the 'facebook/bart-base' model that was trained on the qa/narrativeqa dataset. This adapter was created for usage with the adapter-transformers library. ## Usage First, install 'adapter-transformers': _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_ Now, the adapter can be loaded and activated like this: ## Architecture & Training ## Evaluation results
[ "# Adapter 'hSterz/narrativeqa' for facebook/bart-base\n\nAn adapter for the 'facebook/bart-base' model that was trained on the qa/narrativeqa dataset.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training", "## Evaluation results" ]
[ "TAGS\n#adapter-transformers #bart #adapterhub-qa/narrativeqa #dataset-narrativeqa #region-us \n", "# Adapter 'hSterz/narrativeqa' for facebook/bart-base\n\nAn adapter for the 'facebook/bart-base' model that was trained on the qa/narrativeqa dataset.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training", "## Evaluation results" ]
[ 31, 61, 57, 5, 4 ]
[ "passage: TAGS\n#adapter-transformers #bart #adapterhub-qa/narrativeqa #dataset-narrativeqa #region-us \n# Adapter 'hSterz/narrativeqa' for facebook/bart-base\n\nAn adapter for the 'facebook/bart-base' model that was trained on the qa/narrativeqa dataset.\n\nThis adapter was created for usage with the adapter-transformers library.## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:## Architecture & Training## Evaluation results" ]
[ -0.09562403708696365, -0.13347218930721283, -0.0033293410670012236, -0.025264326483011246, 0.11188049614429474, 0.08142675459384918, 0.19874152541160583, 0.003196367993950844, 0.21527643501758575, -0.1010078638792038, 0.0653453916311264, -0.007691832724958658, 0.06498424708843231, 0.14292393624782562, 0.014069204218685627, -0.03808599337935448, 0.03763866424560547, 0.09109838306903839, -0.1728583127260208, 0.09190730005502701, 0.06408654153347015, -0.006400124169886112, 0.09853257983922958, 0.08157438039779663, -0.10353279113769531, 0.09266795963048935, 0.0727519541978836, -0.09005199372768402, 0.11422492563724518, 0.11496780812740326, 0.1702493280172348, 0.09177080541849136, -0.01867818459868431, -0.14957554638385773, 0.04558562487363815, 0.07063649594783783, -0.036307889968156815, -0.0019644692074507475, -0.07836712151765823, 0.011737308464944363, 0.11146765947341919, 0.05293663963675499, 0.02750731073319912, 0.08953645825386047, -0.08301537483930588, -0.26116928458213806, 0.052495818585157394, 0.1171962171792984, -0.010258235968649387, 0.08118768036365509, 0.015803063288331032, -0.11333350092172623, -0.014155584387481213, 0.03983190283179283, 0.1537659466266632, -0.1761063188314438, -0.03313453495502472, -0.01077857706695795, 0.10347514599561691, 0.011184769682586193, -0.009244214743375778, 0.07203696668148041, 0.012205141596496105, 0.06771866232156754, 0.11600054055452347, -0.10496482998132706, 0.11118848621845245, -0.01035758201032877, -0.10097761452198029, -0.03420102223753929, 0.2156379669904709, -0.048007041215896606, -0.060884423553943634, 0.018787091597914696, -0.0451875701546669, 0.17587627470493317, -0.005025813356041908, -0.07214000821113586, -0.07600846886634827, 0.08342056721448898, -0.01866086572408676, -0.1699770838022232, -0.08078135550022125, -0.0993688777089119, -0.10621295124292374, 0.22654825448989868, -0.025469209998846054, 0.05872061103582382, -0.14094150066375732, 0.05523897707462311, 0.08941316604614258, -0.11647215485572815, 0.006226674187928438, -0.09935986250638962, -0.025506943464279175, 0.03765534609556198, -0.027259008958935738, -0.15975768864154816, 0.10390441119670868, 0.06639489531517029, 0.11881807446479797, 0.09596115350723267, -0.0657833069562912, 0.04281708970665932, -0.06440383195877075, 0.14989399909973145, -0.020100858062505722, -0.10481851547956467, 0.025009552016854286, 0.02531738206744194, -0.12929022312164307, -0.10151271522045135, -0.09752363711595535, -0.04687150940299034, -0.07274793833494186, 0.027581021189689636, 0.034503668546676636, 0.12286070734262466, 0.000007827173249097541, -0.06618550419807434, -0.008579755201935768, -0.05454767495393753, -0.09688613563776016, 0.0004973196191713214, 0.011416549794375896, 0.09324600547552109, 0.11282296478748322, -0.05153650790452957, 0.013080819509923458, -0.0307314433157444, -0.012233663350343704, -0.0871729850769043, 0.008159264922142029, -0.07593997567892075, -0.03414579853415489, 0.016916876658797264, 0.024727167561650276, -0.21006834506988525, -0.09190521389245987, 0.034968774765729904, 0.1076909750699997, 0.026220982894301414, 0.09075839072465897, 0.06675399094820023, 0.07756077498197556, 0.03971485793590546, -0.08325348794460297, -0.1016978770494461, -0.06141510605812073, 0.06369224190711975, 0.019955020397901535, 0.04877757281064987, -0.14404767751693726, 0.058634717017412186, -0.012627747841179371, 0.07728475332260132, -0.16692142188549042, 0.0954539105296135, -0.0864151194691658, 0.003933179657906294, -0.08075909316539764, 0.0641268789768219, -0.016342924907803535, 0.08115297555923462, 0.043402351438999176, 0.08209528028964996, -0.15708042681217194, -0.11340608447790146, 0.07663727551698685, -0.17362509667873383, -0.2158575803041458, 0.05160462483763695, -0.039434440433979034, 0.19208736717700958, 0.05304684489965439, 0.11732295900583267, 0.2448003590106964, -0.06086647883057594, -0.0007916454924270511, 0.08387575298547745, -0.1427503526210785, -0.04017726331949234, -0.024379096925258636, 0.10493257641792297, -0.20636825263500214, 0.0076217870227992535, -0.055225614458322525, 0.17465080320835114, 0.00210378784686327, -0.031976617872714996, -0.03021290898323059, -0.09213753789663315, 0.1518966257572174, -0.0424240306019783, -0.05265689641237259, 0.08506100624799728, -0.05193774029612541, 0.07689343392848969, 0.06937482953071594, -0.06102517619729042, 0.02107691951096058, -0.13918015360832214, 0.07680698484182358, -0.045302651822566986, 0.0645497515797615, -0.11473360657691956, 0.024526862427592278, -0.06410107761621475, -0.0473148338496685, 0.04710083454847336, 0.13540120422840118, 0.08184018731117249, -0.0675450786948204, -0.0025642849504947662, -0.03162253648042679, -0.04904419928789139, 0.07324889302253723, 0.004951759707182646, -0.09289773553609848, -0.019065823405981064, -0.05392681434750557, 0.02218586392700672, -0.07935809344053268, 0.05446209758520126, 0.0728260725736618, 0.08086857944726944, -0.011917653493583202, 0.06483284384012222, -0.061316072940826416, -0.012189419940114021, 0.01586747355759144, -0.018404819071292877, 0.038653094321489334, -0.008376788347959518, -0.1351756900548935, 0.11657723784446716, -0.10307974368333817, 0.12451360374689102, 0.10403916239738464, -0.08311540633440018, 0.040316641330718994, -0.05994369089603424, 0.05192408710718155, -0.02747979573905468, 0.1282341182231903, -0.08091479539871216, 0.29482218623161316, 0.0698399543762207, 0.04743459075689316, -0.026700858026742935, 0.0474160835146904, 0.03862413763999939, -0.029207564890384674, 0.019485920667648315, -0.052375249564647675, -0.03617778792977333, -0.16248789429664612, 0.008830010890960693, 0.35639214515686035, 0.06851574033498764, 0.18374527990818024, -0.001516232150606811, -0.045521654188632965, -0.021482862532138824, -0.0959833487868309, 0.0014742533676326275, 0.1713072657585144, -0.17849040031433105, -0.023980623111128807, -0.005126502830535173, -0.029190143570303917, 0.06269260495901108, 0.0035074413754045963, 0.02289237082004547, 0.04638686776161194, -0.03348500654101372, -0.044672224670648575, 0.021647769957780838, 0.03880787640810013, 0.028823642060160637, 0.04600340873003006, 0.02075665071606636, 0.07800386846065521, -0.03667360171675682, -0.03161916881799698, 0.15085676312446594, -0.0752667784690857, -0.3401220738887787, -0.13728643953800201, -0.18623694777488708, -0.024920674040913582, -0.00445212796330452, 0.10032941401004791, -0.11620896309614182, -0.0030018603429198265, 0.040456078946590424, 0.27866679430007935, 0.024666927754878998, 0.02623671293258667, 0.04015399515628815, -0.04334227740764618, 0.13384009897708893, -0.10912535339593887, -0.009182566776871681, 0.01846344582736492, -0.07199256122112274, -0.02402603067457676, -0.07826243340969086, 0.04899654537439346, 0.054971545934677124, -0.010066910646855831, 0.06369257718324661, -0.016618983820080757, 0.1535337269306183, -0.08541964739561081, 0.011571921408176422, 0.24476094543933868, -0.1435650736093521, 0.01741797663271427, 0.07513411343097687, 0.009701032191514969, -0.04312565550208092, 0.013611436821520329, 0.0011005025589838624, -0.11228200793266296, -0.0889396071434021, -0.04393379017710686, -0.0302104689180851, 0.053128134459257126, 0.1088670939207077, 0.011757984757423401, 0.04677135869860649, 0.11095940321683884, 0.05041707307100296, -0.021436726674437523, -0.041804831475019455, 0.006401257123798132, 0.2252712845802307, -0.004837109707295895, 0.061474621295928955, -0.08153043687343597, 0.04615911468863487, 0.10211283713579178, 0.0283155869692564, 0.11486829072237015, 0.023968394845724106, -0.042676251381635666, 0.10889171063899994, 0.027963872998952866, 0.08369498699903488, 0.14640767872333527, -0.026899946853518486, -0.06888879090547562, 0.022897280752658844, 0.024479782208800316, -0.13747428357601166, 0.013736575841903687, -0.015223825350403786, -0.08052235096693039, -0.058982137590646744, 0.053062472492456436, 0.046089574694633484, 0.1561669260263443, -0.04222670942544937, -0.09641449898481369, -0.08707895874977112, -0.044266268610954285, -0.04512869939208031, -0.07650161534547806, 0.047629620879888535, 0.14314964413642883, -0.08553623408079147, 0.03530128672719002, -0.017712578177452087, 0.10824930667877197, -0.09335475414991379, 0.07038391381502151, 0.07495257258415222, 0.061251137405633926, 0.002131425542756915, 0.05022933706641197, -0.3617997467517853, 0.10629915446043015, 0.033180054277181625, -0.008187550120055676, -0.07379690557718277, -0.0264597050845623, 0.11504623293876648, 0.13417448103427887, 0.0002375401381868869, 0.04342622309923172, -0.020303968340158463, -0.21301616728305817, -0.012007073499262333, 0.12652797996997833, 0.017845364287495613, -0.07048299908638, 0.027833251282572746, -0.05885123088955879, 0.0910458043217659, 0.03743227571249008, 0.13743814826011658, -0.1205606609582901, -0.20407797396183014, -0.001932017388753593, 0.10479290038347244, 0.0946916937828064, -0.10506892204284668, 0.0017517064698040485, 0.1452864706516266, 0.02275541052222252, -0.029669126495718956, -0.06656491756439209, -0.13521210849285126, -0.06721112877130508, 0.020773980766534805, -0.08498913794755936, 0.07119158655405045, 0.02968953177332878, 0.020531482994556427, -0.03126654028892517, -0.22662413120269775, 0.09664466977119446, -0.08737552165985107, 0.04098030552268028, -0.0010687350295484066, -0.028933169320225716, 0.10584966838359833, 0.0070749991573393345, 0.08026943355798721, -0.12160804122686386, -0.00030908139888197184, -0.08509279042482376, -0.09631922841072083, -0.14549075067043304, -0.16983388364315033, -0.0046629831194877625, 0.022018980234861374, 0.0554797425866127, -0.03223329782485962, 0.04405379667878151, 0.08066735416650772, -0.016182715073227882, -0.032119270414114, 0.09672459959983826, 0.2040109783411026, -0.039878662675619125, -0.2647145092487335, -0.09364432096481323, -0.053180526942014694, -0.016090145334601402, 0.0406012237071991, -0.2266823947429657, 0.15929388999938965, -0.008019993081688881, 0.011538616381585598, 0.01715748757123947, -0.018942788243293762, -0.03305642306804657, 0.2911854684352875, 0.046507131308317184, 0.21989980340003967, -0.0897790715098381, -0.048484329134225845, -0.0963052436709404, -0.219468891620636, 0.0679096058011055, -0.29847270250320435, 0.06743507087230682, -0.044536687433719635, 0.07001184672117233, -0.015070459805428982, 0.033660996705293655, 0.0893748328089714, -0.04533755034208298, 0.03980572894215584, -0.09302196651697159, 0.09669449925422668, 0.12030383944511414, -0.03933871164917946, -0.017467165365815163, -0.21290956437587738, 0.0053075160831213, -0.11242396384477615, -0.051751431077718735, -0.04025629162788391, 0.09086298942565918, -0.002054354175925255, -0.09843626618385315, -0.0017013628967106342, -0.007953416556119919, -0.02214612253010273, -0.009610159322619438, -0.09545794129371643, -0.09266803413629532, 0.11520203948020935, 0.10690777748823166, 0.11066411435604095, -0.11773103475570679, -0.09531620889902115, 0.0028147283010184765, 0.0070785051211714745, 0.12363609671592712, -0.1326199173927307, 0.10505352914333344, 0.04935786500573158, -0.08366075903177261, 0.1084783598780632, 0.045475397258996964, -0.029830535873770714, 0.06312376260757446, 0.09656504541635513, -0.04463375732302666, 0.005567931570112705, -0.011657031252980232, 0.06983582675457001, -0.060393866151571274, 0.05991587042808533, 0.212229922413826, 0.014783995226025581, 0.022654233500361443, -0.022123778238892555, -0.06895043700933456, -0.13581767678260803, 0.06508319824934006, 0.028128786012530327, 0.07645229250192642, -0.07141637802124023, 0.04963875561952591, -0.042096562683582306, -0.03874364122748375, 0.0699431449174881, -0.04957510530948639, -0.10828068852424622, -0.0601312480866909, -0.08215761184692383, 0.1749027669429779, -0.12016141414642334, -0.14386402070522308, -0.03223299980163574, -0.18460075557231903, -0.01588011160492897, 0.2747226059436798, 0.03304028511047363, 0.0016869925893843174, -0.05933714658021927, -0.011971522122621536, -0.0035642862785607576, -0.0038806344382464886, -0.030038870871067047, -0.013381782919168472, -0.09543672949075699, -0.052101075649261475, 0.04650323465466499, 0.1192537397146225, -0.11322815716266632, -0.04727794975042343, -0.14030975103378296, 0.024556457996368408, -0.44737401604652405, -0.03530505299568176, -0.06528297811746597, 0.015280447900295258, 0.02769128419458866, -0.07942400127649307, -0.0726763978600502, 0.022331587970256805, -0.056974925100803375, 0.023237237706780434, 0.08888537436723709, 0.04023870825767517, -0.08579639345407486, 0.001674574799835682, 0.03875592723488808, -0.04268743470311165, 0.09948615729808807, 0.08282608538866043, -0.08412197977304459, 0.07892206311225891, -0.05298205837607384, -0.030239475890994072, -0.045963138341903687, 0.04590236395597458, 0.024069534614682198, 0.02085748128592968, 0.034547243267297745, 0.0022706983145326376, -0.0032258282881230116, 0.023945176973938942, 0.23707489669322968, 0.010450982488691807, 0.04233011230826378, -0.04163261130452156, 0.058817047625780106, 0.012845097109675407, 0.017157448455691338, 0.1811758279800415, 0.1448151022195816, 0.09890417754650116, -0.08637715876102448, 0.03574973717331886, -0.11257955431938171, -0.015037023462355137, 0.06617575138807297, -0.0327753908932209, 0.23650342226028442, -0.17157888412475586, -0.011297543533146381, -0.009227041155099869, 0.2851611375808716, -0.10386192798614502, 0.059766363352537155, 0.025633061304688454, -0.05824129655957222, -0.018840452656149864, -0.06519293040037155, 0.14618633687496185, 0.02834334783256054, 0.0410124734044075, -0.023266032338142395, 0.037684712558984756, 0.022060222923755646, 0.10143467038869858, 0.06881093978881836, 0.08518803119659424, 0.00458518648520112, 0.029574038460850716, 0.06699080020189285, 0.0683869868516922, 0.0002580407017376274, -0.1623774915933609, -0.10013898462057114, 0.04423489794135094, 0.008699205704033375, 0.09148918837308884, 0.1002507284283638, 0.062289487570524216, 0.09876105934381485, 0.030490692704916, -0.04121438041329384, -0.06384506076574326, -0.04633885994553566, 0.016546323895454407, -0.25475916266441345, -0.05791403353214264, -0.04086083546280861, -0.09091989696025848, 0.18510125577449799, -0.0022381225135177374, 0.015556062571704388, 0.2922211289405823, 0.04894254356622696, -0.061171215027570724, 0.09824658930301666, -0.03670981898903847, -0.06071241572499275, -0.06541530787944794, 0.034844957292079926, -0.0004590359458234161, 0.10282262414693832, -0.018602175638079643, 0.02286371961236, -0.0695493146777153, 0.05619337037205696, -0.05180423706769943, -0.1046990379691124, -0.0513024777173996, 0.004126570653170347, -0.08982747048139572, 0.15311774611473083, -0.015656162053346634, -0.015955263748764992, -0.01662011630833149, 0.0911032110452652, -0.036791201680898666, -0.12894676625728607, -0.15265633165836334, 0.015996688976883888, -0.09988302737474442, 0.005879838950932026, -0.11992974579334259, 0.02360714226961136, -0.0716068297624588, 0.2532373070716858, 0.07472460716962814, -0.14783167839050293, 0.07138983905315399, -0.03303614631295204, 0.027413351461291313, -0.029921075329184532, 0.1576819270849228, 0.05422741919755936, -0.000848926545586437, 0.03663778677582741, -0.11346127837896347, -0.02531445026397705, -0.06499646604061127, 0.05556078255176544, 0.10101226717233658, 0.014987575821578503, -0.007689848076552153, -0.07312696427106857, 0.06688080728054047, -0.09719965606927872, -0.11275254189968109, -0.05772412195801735, -0.0026935660280287266, -0.017102302983403206, -0.13023844361305237, 0.07056241482496262, -0.013714848086237907, -0.004520231857895851, 0.006976995151489973, -0.003546718740835786, 0.044514741748571396, 0.023922903463244438, -0.06991831958293915, -0.0783819705247879, 0.14249049127101898, -0.17840123176574707, 0.1500115543603897, -0.03402630612254143, -0.10466082394123077, 0.04813072830438614, 0.08184841275215149, -0.05164507031440735, 0.0034301793202757835, 0.011678192764520645, -0.07610125094652176, -0.10844893008470535, -0.018622728064656258, -0.02652841992676258, 0.05354844778776169, 0.08339880406856537, -0.13834144175052643, 0.019387835636734962, -0.02488761954009533, -0.026414599269628525, 0.004159801639616489, -0.08056754618883133, -0.03282654657959938, 0.10860895365476608, 0.06185964494943619, 0.006682679057121277, -0.029166007414460182, -0.07101158052682877, 0.032740410417318344, 0.021101782098412514, 0.047062065452337265, -0.058044496923685074, -0.0342768169939518, -0.08025719970464706, 0.0024710088036954403, -0.05175982415676117, -0.22180096805095673, -0.045724451541900635, -0.012595139443874359, -0.012021547183394432, 0.07120955735445023, 0.116843082010746, 0.08202936500310898, 0.09718777984380722, -0.014013489708304405, -0.036970581859350204, -0.003555151866748929, 0.12965375185012817, -0.2025478184223175, -0.06680724024772644 ]
null
null
adapter-transformers
# Adapter `AdapterHub/roberta-base-pf-anli_r3` for roberta-base An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [anli](https://huggingface.co/datasets/anli/) dataset and includes a prediction head for classification. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("roberta-base") adapter_name = model.load_adapter("AdapterHub/roberta-base-pf-anli_r3", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
{"language": ["en"], "tags": ["text-classification", "roberta", "adapter-transformers"], "datasets": ["anli"]}
text-classification
AdapterHub/roberta-base-pf-anli_r3
[ "adapter-transformers", "roberta", "text-classification", "en", "dataset:anli", "arxiv:2104.08247", "region:us" ]
2022-03-02T23:29:04+00:00
[ "2104.08247" ]
[ "en" ]
TAGS #adapter-transformers #roberta #text-classification #en #dataset-anli #arxiv-2104.08247 #region-us
# Adapter 'AdapterHub/roberta-base-pf-anli_r3' for roberta-base An adapter for the 'roberta-base' model that was trained on the anli dataset and includes a prediction head for classification. This adapter was created for usage with the adapter-transformers library. ## Usage First, install 'adapter-transformers': _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_ Now, the adapter can be loaded and activated like this: ## Architecture & Training The training code for this adapter is available at URL In particular, training configurations for all tasks can be found here. ## Evaluation results Refer to the paper for more information on results. If you use this adapter, please cite our paper "What to Pre-Train on? Efficient Intermediate Task Selection":
[ "# Adapter 'AdapterHub/roberta-base-pf-anli_r3' for roberta-base\n\nAn adapter for the 'roberta-base' model that was trained on the anli dataset and includes a prediction head for classification.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ "TAGS\n#adapter-transformers #roberta #text-classification #en #dataset-anli #arxiv-2104.08247 #region-us \n", "# Adapter 'AdapterHub/roberta-base-pf-anli_r3' for roberta-base\n\nAn adapter for the 'roberta-base' model that was trained on the anli dataset and includes a prediction head for classification.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ 35, 73, 57, 30, 45 ]
[ "passage: TAGS\n#adapter-transformers #roberta #text-classification #en #dataset-anli #arxiv-2104.08247 #region-us \n# Adapter 'AdapterHub/roberta-base-pf-anli_r3' for roberta-base\n\nAn adapter for the 'roberta-base' model that was trained on the anli dataset and includes a prediction head for classification.\n\nThis adapter was created for usage with the adapter-transformers library.## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ -0.0002479679824318737, -0.04250883311033249, -0.0018236670875921845, 0.04693203046917915, 0.1944967806339264, 0.02546229027211666, 0.1700686514377594, 0.06769715994596481, 0.021171944215893745, 0.03024192713201046, 0.03730807453393936, 0.08629783242940903, 0.06480363756418228, 0.03667966276407242, 0.002356841927394271, -0.13581982254981995, 0.007860583253204823, -0.018132388591766357, -0.03492259606719017, 0.10516848415136337, 0.12271120399236679, -0.06151018291711807, 0.08006585389375687, -0.00931539200246334, -0.12557478249073029, 0.06303441524505615, -0.023435160517692566, -0.08776473999023438, 0.08858619630336761, 0.06672810018062592, 0.1578824520111084, 0.010491114109754562, 0.04243305325508118, -0.17280444502830505, 0.02331232652068138, 0.08555179089307785, 0.016646945849061012, 0.06747311353683472, 0.011339124292135239, -0.10078924149274826, 0.050913769751787186, 0.023436589166522026, 0.048214446753263474, 0.04552840441465378, -0.13929086923599243, -0.17047855257987976, -0.0572974868118763, 0.092111736536026, 0.03924969211220741, 0.10414072871208191, -0.006403469946235418, 0.07355713099241257, -0.035907384008169174, 0.057902831584215164, 0.19026394188404083, -0.19478090107440948, -0.01855175755918026, 0.012689831666648388, 0.11066543310880661, 0.10023859888315201, -0.059194955974817276, -0.024873167276382446, 0.03177191689610481, 0.012549590319395065, 0.014250736683607101, -0.04589499905705452, -0.04943446069955826, -0.008348679170012474, -0.1647147387266159, -0.04709114879369736, 0.2818368077278137, -0.02805069461464882, -0.051296666264534, 0.00827056635171175, -0.010585128329694271, 0.08045702427625656, 0.04920724779367447, -0.06317590922117233, -0.01910921186208725, 0.000038970396417425945, 0.03057822771370411, -0.14855340123176575, -0.09755872189998627, -0.09938563406467438, -0.04072688892483711, 0.33227798342704773, 0.0018200376071035862, 0.01883966661989689, -0.019981611520051956, 0.11571196466684341, -0.045434944331645966, -0.06099306419491768, -0.00801595114171505, -0.06404629349708557, -0.086297906935215, -0.03437887877225876, -0.019414730370044708, -0.24866041541099548, 0.009400624781847, 0.2286538928747177, 0.08239999413490295, 0.02299043908715248, -0.050164904445409775, 0.0940326601266861, 0.028494536876678467, 0.15400713682174683, -0.07743976265192032, -0.03528362140059471, -0.014784805476665497, -0.01334751583635807, -0.02828548662364483, -0.0816679447889328, -0.09485217183828354, -0.050559498369693756, 0.01249388325959444, 0.039613354951143265, 0.05239417031407356, 0.058480679988861084, -0.03848269209265709, -0.05462014675140381, 0.030347101390361786, -0.12854398787021637, -0.042998481541872025, -0.028350340202450752, -0.015201662667095661, -0.002338690683245659, 0.14436334371566772, 0.01892240345478058, -0.041456907987594604, 0.06833170354366302, -0.03499583154916763, -0.06481976807117462, -0.10376671701669693, -0.14497697353363037, -0.017945440486073494, -0.1263856589794159, 0.004722388461232185, -0.14045672118663788, -0.14628365635871887, -0.036242127418518066, 0.07608624547719955, -0.023529168218374252, 0.07692236453294754, 0.04989911988377571, 0.013269608840346336, -0.015381982550024986, 0.0027520626317709684, 0.03812322020530701, -0.026983115822076797, 0.06111244857311249, 0.047337863594293594, 0.059858351945877075, -0.05445664003491402, 0.09365681558847427, -0.058477699756622314, 0.03353835269808769, -0.13850831985473633, 0.0934087261557579, -0.11511681973934174, 0.049046363681554794, -0.14334020018577576, 0.007250011898577213, -0.05310887098312378, 0.028403673321008682, 0.04885302856564522, 0.03788604959845543, -0.03737529739737511, -0.04167027398943901, 0.040508296340703964, -0.2025732845067978, -0.09203358739614487, 0.046988166868686676, -0.025119561702013016, 0.189104825258255, 0.039280328899621964, 0.15880611538887024, 0.09015470743179321, -0.032216329127550125, -0.0425635389983654, 0.03398226574063301, -0.12982091307640076, -0.05857338011264801, 0.10208601504564285, 0.0338110476732254, -0.13452666997909546, -0.015819141641259193, -0.11005254089832306, 0.04079502448439598, -0.0248579028993845, -0.03500225767493248, -0.017303243279457092, -0.039734192192554474, -0.024591488763689995, 0.055950816720724106, -0.035121675580739975, 0.04386794939637184, -0.12176499515771866, 0.10643717646598816, 0.06034006550908089, -0.053570039570331573, 0.03652002289891243, -0.09143413603305817, 0.11432013660669327, -0.11555569618940353, -0.007276331540197134, -0.21503032743930817, 0.057112596929073334, -0.014750747010111809, 0.08574144542217255, 0.10776255279779434, 0.05379021167755127, 0.05293678492307663, 0.00047729938523843884, 0.010279344394803047, -0.001798034063540399, -0.03329002112150192, 0.035099491477012634, -0.019854295998811722, -0.16852127015590668, -0.05360791087150574, -0.07627293467521667, 0.08255201578140259, -0.17177237570285797, 0.03982502222061157, 0.007544534746557474, 0.06058943271636963, 0.028120705857872963, 0.008287622593343258, -0.013888245448470116, -0.029805533587932587, -0.04783649370074272, -0.05375361815094948, 0.028023192659020424, 0.023073779419064522, -0.051694780588150024, 0.030064325779676437, -0.09235351532697678, -0.07358194887638092, 0.053278613835573196, -0.049735572189092636, -0.1363639533519745, -0.008929873816668987, -0.007184349931776524, -0.04686133936047554, 0.009260598570108414, -0.07495003193616867, 0.22383466362953186, 0.04239606484770775, 0.06395304948091507, -0.033534273505210876, 0.036180440336465836, -0.019209984689950943, -0.07970134168863297, 0.028504475951194763, 0.08247634768486023, 0.044519178569316864, -0.13695363700389862, 0.07275883108377457, 0.0957341268658638, -0.10852888971567154, 0.09835220873355865, 0.00798401702195406, -0.11548353731632233, -0.007550460752099752, -0.0069204517640173435, 0.06618157774209976, 0.05679678916931152, -0.09638514369726181, -0.009832322597503662, 0.05963165685534477, -0.024354109540581703, 0.04445730522274971, -0.0674099400639534, 0.03165606036782265, 0.06486667692661285, 0.020635170862078667, 0.030915159732103348, -0.03980449214577675, -0.03942028060555458, 0.07040006667375565, 0.05620836094021797, 0.08569364994764328, 0.004299487452954054, -0.03925546631217003, -0.07249650359153748, 0.16528809070587158, -0.004859847016632557, -0.16833391785621643, -0.20234671235084534, -0.16816984117031097, 0.0608031339943409, 0.008681168779730797, 0.040923625230789185, -0.08117853105068207, -0.08238472044467926, -0.017343467101454735, 0.141757994890213, -0.05588841065764427, -0.03432801365852356, -0.021549474447965622, 0.011714847758412361, 0.02702157199382782, -0.12127243727445602, 0.04702688753604889, 0.027471909299492836, -0.07197293639183044, 0.025489747524261475, -0.02341059409081936, 0.11825406551361084, 0.12373939901590347, -0.03245869651436806, 0.027206283062696457, -0.01784380152821541, 0.0896783247590065, -0.09656596928834915, 0.03318542614579201, 0.12896668910980225, -0.13140840828418732, 0.023737642914056778, 0.1291891485452652, 0.001223911065608263, -0.0037757845129817724, 0.052620865404605865, 0.030410340055823326, -0.08053670078516006, -0.3143884241580963, -0.0036733956076204777, -0.008205709047615528, -0.041985973715782166, 0.09063311666250229, 0.036442168056964874, 0.04308588057756424, 0.1003931388258934, 0.04219607263803482, -0.0037072470877319574, -0.02677941508591175, 0.08728717267513275, 0.12474469840526581, -0.01263374462723732, 0.11248224228620529, -0.10209089517593384, 0.00862005166709423, 0.10214962810277939, 0.007825243286788464, 0.20528052747249603, -0.026524359360337257, 0.10177379846572876, 0.07488632202148438, -0.05276845395565033, 0.06056903675198555, 0.09789106994867325, -0.05031204968690872, 0.02235965058207512, -0.023953525349497795, -0.020844046026468277, -0.04939611628651619, 0.05735602602362633, -0.026045290753245354, -0.01294881571084261, 0.021754061803221703, -0.007157274521887302, 0.02555937133729458, 0.10686298459768295, -0.003443920984864235, -0.23141498863697052, -0.07330404222011566, 0.00321047380566597, -0.019530797377228737, -0.08982867747545242, 0.0032666639890521765, 0.0281783789396286, -0.08869536966085434, -0.02300277166068554, -0.030799107626080513, 0.10049794614315033, -0.1528862714767456, -0.050194356590509415, -0.0014917765511199832, 0.11798343807458878, -0.05153221637010574, 0.13444633781909943, -0.19651289284229279, 0.12797695398330688, 0.019965071231126785, 0.03236747160553932, -0.04639129713177681, 0.03091799095273018, 0.009093929082155228, 0.07948034256696701, 0.10786712914705276, -0.031119178980588913, 0.017223695293068886, -0.10813089460134506, -0.06625634431838989, 0.00019674650684464723, 0.09357346594333649, -0.0868857130408287, 0.06194784864783287, -0.07440570741891861, 0.05557052046060562, 0.020460160449147224, -0.0638844445347786, -0.09742414951324463, -0.16517001390457153, 0.08954337239265442, 0.007550928741693497, 0.06066175177693367, -0.04006803035736084, -0.07731787860393524, 0.07457219064235687, 0.20943990349769592, -0.13729090988636017, -0.051198095083236694, -0.1486929953098297, 0.0650397315621376, 0.0927555188536644, -0.04852445051074028, 0.04276297613978386, -0.04078591242432594, 0.04439125582575798, -0.03548827022314072, -0.04141911864280701, 0.05409814417362213, -0.08327566087245941, -0.04879259690642357, -0.021388977766036987, -0.00912550464272499, 0.11003744602203369, 0.0508333258330822, -0.015235178172588348, 0.02338695526123047, -0.03968025743961334, -0.09209892153739929, -0.012068410404026508, -0.050774939358234406, -0.019016088917851448, 0.08159834146499634, -0.07502431422472, -0.001026794547215104, -0.09072501957416534, -0.011252819560468197, 0.17419159412384033, 0.1519073098897934, -0.05457364395260811, 0.0637924000620842, 0.15584281086921692, -0.10423982888460159, -0.2658281922340393, 0.004259321838617325, 0.03993385657668114, 0.003343922784551978, 0.002508358331397176, -0.22381591796875, 0.13223515450954437, 0.03388366475701332, -0.007688530255109072, 0.03756817430257797, -0.1214219406247139, -0.05752132833003998, 0.20087507367134094, 0.08748183399438858, 0.02293410338461399, -0.15989328920841217, -0.07748085260391235, -0.02282015047967434, -0.07121217250823975, 0.05666351318359375, -0.0650855228304863, 0.08932293206453323, -0.019319970160722733, -0.019781634211540222, 0.00803904514759779, -0.03879924118518829, 0.0772319957613945, -0.017112527042627335, 0.01756187714636326, -0.12022443860769272, -0.04642271623015404, 0.1371743530035019, -0.05518144741654396, 0.07872392982244492, -0.025584563612937927, 0.035303227603435516, -0.0984635278582573, -0.08376767486333847, 0.008700787089765072, 0.08545845746994019, 0.012639029882848263, -0.07229162007570267, -0.07851354777812958, 0.04506548494100571, -0.03926945477724075, -0.012556707486510277, 0.04866897314786911, -0.08942225575447083, 0.044430606067180634, 0.14182570576667786, 0.13254177570343018, 0.06949622929096222, -0.04144508019089699, 0.011673511937260628, -0.00816350243985653, 0.09731999784708023, -0.140151709318161, 0.028419209644198418, 0.07849541306495667, 0.020675230771303177, 0.14982862770557404, 0.04101939871907234, -0.16394734382629395, -0.0034720723051577806, 0.08597264438867569, -0.09517589211463928, -0.023569373413920403, 0.011445879004895687, 0.0925043523311615, -0.14021766185760498, -0.031817737966775894, 0.12333336472511292, -0.0553571954369545, 0.0051130931824445724, 0.038351669907569885, 0.0073123229667544365, -0.0683046355843544, 0.0650864914059639, 0.16426588594913483, 0.029386276379227638, -0.02509322203695774, 0.11237051337957382, 0.13912922143936157, -0.05123202130198479, 0.05904824659228325, 0.016357779502868652, -0.0631292462348938, -0.07421715557575226, -0.03976975753903389, 0.10691960155963898, -0.0555756613612175, -0.12326247245073318, -0.006371303461492062, -0.04228028282523155, 0.011432800441980362, 0.1579529196023941, 0.05559275671839714, -0.03261010721325874, -0.03551419824361801, 0.03097119927406311, -0.12608321011066437, 0.07974483072757721, -0.005980002228170633, 0.04956079646945, -0.04340986907482147, -0.08393648266792297, 0.07037664949893951, 0.050948042422533035, -0.051998354494571686, -0.07224524766206741, -0.12638701498508453, 0.019002128392457962, -0.06159146502614021, 0.02256855182349682, -0.028712056577205658, -0.018838927149772644, 0.013592633418738842, -0.09301945567131042, -0.059225957840681076, -0.0002369800495216623, -0.030144263058900833, 0.008176900446414948, 0.035541996359825134, 0.07045840471982956, -0.15346910059452057, -0.046325113624334335, 0.09307600557804108, -0.03921177610754967, 0.06557288765907288, 0.04892909899353981, 0.003911798354238272, -0.015684526413679123, -0.10564523190259933, 0.028215164318680763, -0.01657937653362751, -0.0005577439442276955, 0.0010695351520553231, -0.1618519276380539, 0.01873880624771118, -0.04710840806365013, -0.0048071350902318954, -0.0034939658362418413, 0.17321397364139557, -0.06992950290441513, 0.12100382894277573, -0.05189239978790283, -0.0423780232667923, -0.05430804193019867, 0.10320726782083511, 0.06715959310531616, 0.12594035267829895, 0.1183801144361496, -0.054971206933259964, 0.08690646290779114, -0.067851223051548, 0.045731253921985626, 0.0032757637090981007, -0.0067358603700995445, 0.06052941828966141, -0.11564818769693375, -0.023739013820886612, -0.029086826369166374, 0.23335473239421844, 0.022095095366239548, 0.009610328823328018, 0.03218558803200722, -0.004730328917503357, -0.023934558033943176, -0.049482423812150955, 0.11409719288349152, 0.04670408368110657, 0.016778752207756042, 0.0005746667739003897, 0.05531897395849228, -0.0022389586083590984, -0.016778768971562386, 0.1483812779188156, 0.22979730367660522, -0.04081447422504425, 0.01839630678296089, 0.012250116094946861, -0.07288699597120285, -0.012465197592973709, 0.055437952280044556, 0.026062998920679092, 0.00801036786288023, -0.0060725584626197815, 0.16715985536575317, 0.16999441385269165, -0.023898564279079437, 0.04779665917158127, 0.00685463659465313, -0.04794123396277428, -0.08975342661142349, -0.06957537680864334, -0.026921549811959267, -0.09218262881040573, -0.0047560762614011765, -0.08467959612607956, -0.016842927783727646, 0.15690559148788452, 0.010345054790377617, 0.02831670455634594, 0.20657213032245636, -0.035832349210977554, -0.050931815057992935, -0.008009254932403564, -0.056343115866184235, 0.010005524381995201, -0.1195482611656189, 0.04360763728618622, 0.026154782623052597, 0.07697220146656036, 0.049740131944417953, 0.055455002933740616, 0.015162098221480846, 0.05138389393687248, -0.04185943305492401, -0.11518038809299469, -0.02813388966023922, 0.06439176201820374, -0.04805374518036842, 0.07417316734790802, -0.000789259618613869, -0.010022593662142754, -0.005192932207137346, 0.19665177166461945, -0.03874664381146431, -0.11856069415807724, -0.11712338030338287, 0.09989314526319504, -0.05225471407175064, -0.011391217820346355, -0.09491493552923203, -0.13886068761348724, -0.00446265609934926, 0.2164619415998459, 0.1251041144132614, -0.02122589759528637, 0.01803625002503395, 0.0506088025867939, 0.027419347316026688, 0.04194783419370651, 0.029775086790323257, -0.011469176039099693, 0.04101989045739174, -0.05241531878709793, -0.0652584508061409, -0.07699035108089447, -0.0302492193877697, 0.0703742727637291, 0.11605168133974075, 0.03892020881175995, -0.044999636709690094, -0.06984670460224152, 0.10047134757041931, -0.048463817685842514, -0.2830633521080017, 0.026915865018963814, -0.023971939459443092, -0.10093504190444946, -0.059475816786289215, 0.05353172495961189, -0.04967482388019562, 0.016292836517095566, -0.011010454967617989, -0.06849066913127899, 0.02643142081797123, 0.06623119115829468, -0.0878271609544754, -0.020899100229144096, 0.09350418299436569, 0.009598864242434502, 0.16690856218338013, -0.04419418424367905, 0.01931903325021267, 0.08358411490917206, 0.027305306866765022, -0.11084591597318649, 0.048784662038087845, 0.023984400555491447, -0.011709822341799736, 0.011496352031826973, 0.07654853165149689, -0.04692423343658447, 0.11650566756725311, 0.06822329759597778, -0.16831772029399872, 0.054541803896427155, -0.054580140858888626, -0.09951350837945938, -0.10538528859615326, -0.04415597394108772, -0.09685049206018448, 0.17237238585948944, 0.1374429613351822, 0.006802071817219257, -0.05481434985995293, -0.11706924438476562, 0.01168908178806305, 0.05381012335419655, 0.09285543113946915, -0.057527244091033936, -0.06096674129366875, -0.05447603017091751, -0.0070664850063622, 0.05953925475478172, -0.3158702850341797, -0.01631046086549759, 0.013151033781468868, -0.03596702590584755, -0.0053579360246658325, 0.061281297355890274, 0.12056863307952881, 0.07126574218273163, -0.045422494411468506, -0.06288506835699081, 0.02289981208741665, 0.12143239378929138, -0.20556513965129852, -0.028767811134457588 ]
null
null
adapter-transformers
# Adapter `AdapterHub/roberta-base-pf-art` for roberta-base An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [art](https://huggingface.co/datasets/art/) dataset and includes a prediction head for multiple choice. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("roberta-base") adapter_name = model.load_adapter("AdapterHub/roberta-base-pf-art", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-what-to-pre-train-on, title={What to Pre-Train on? Efficient Intermediate Task Selection}, author={Clifton Poth and Jonas Pfeiffer and Andreas Rücklé and Iryna Gurevych}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (EMNLP)", month = nov, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/2104.08247", pages = "to appear", } ```
{"language": ["en"], "tags": ["roberta", "adapter-transformers"], "datasets": ["art"]}
null
AdapterHub/roberta-base-pf-art
[ "adapter-transformers", "roberta", "en", "dataset:art", "arxiv:2104.08247", "region:us" ]
2022-03-02T23:29:04+00:00
[ "2104.08247" ]
[ "en" ]
TAGS #adapter-transformers #roberta #en #dataset-art #arxiv-2104.08247 #region-us
# Adapter 'AdapterHub/roberta-base-pf-art' for roberta-base An adapter for the 'roberta-base' model that was trained on the art dataset and includes a prediction head for multiple choice. This adapter was created for usage with the adapter-transformers library. ## Usage First, install 'adapter-transformers': _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_ Now, the adapter can be loaded and activated like this: ## Architecture & Training The training code for this adapter is available at URL In particular, training configurations for all tasks can be found here. ## Evaluation results Refer to the paper for more information on results. If you use this adapter, please cite our paper "What to Pre-Train on? Efficient Intermediate Task Selection":
[ "# Adapter 'AdapterHub/roberta-base-pf-art' for roberta-base\n\nAn adapter for the 'roberta-base' model that was trained on the art dataset and includes a prediction head for multiple choice.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ "TAGS\n#adapter-transformers #roberta #en #dataset-art #arxiv-2104.08247 #region-us \n", "# Adapter 'AdapterHub/roberta-base-pf-art' for roberta-base\n\nAn adapter for the 'roberta-base' model that was trained on the art dataset and includes a prediction head for multiple choice.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ 29, 68, 57, 30, 45 ]
[ "passage: TAGS\n#adapter-transformers #roberta #en #dataset-art #arxiv-2104.08247 #region-us \n# Adapter 'AdapterHub/roberta-base-pf-art' for roberta-base\n\nAn adapter for the 'roberta-base' model that was trained on the art dataset and includes a prediction head for multiple choice.\n\nThis adapter was created for usage with the adapter-transformers library.## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ -0.03226030245423317, -0.07350148260593414, -0.0023190376814454794, 0.045486364513635635, 0.17753072082996368, 0.030539512634277344, 0.12709765136241913, 0.06384480744600296, 0.016873590648174286, 0.05171020328998566, 0.01917562261223793, 0.08564990758895874, 0.03977428749203682, 0.07833181321620941, 0.04243713617324829, -0.1220453679561615, 0.004943288862705231, -0.029084471985697746, -0.025206653401255608, 0.09235778450965881, 0.10732807219028473, -0.06279010325670242, 0.06485586613416672, 0.012517869472503662, -0.1251884549856186, 0.04001230746507645, -0.036785274744033813, -0.06133598834276199, 0.10709545016288757, 0.06601855158805847, 0.16054289042949677, 0.0157413799315691, 0.014104832895100117, -0.15953022241592407, 0.023777207359671593, 0.09241931140422821, 0.024538781493902206, 0.04168762266635895, -0.0022022193297743797, -0.04329367354512215, 0.05322088301181793, 0.05720749497413635, 0.07969104498624802, 0.040045928210020065, -0.10656258463859558, -0.20410718023777008, -0.0606190524995327, 0.07793991267681122, 0.05458871275186539, 0.11211748421192169, 0.018293268978595734, 0.07711858302354813, -0.016306240111589432, 0.05414406582713127, 0.16921496391296387, -0.2196284532546997, -0.020718511193990707, 0.01480876374989748, 0.08130361139774323, 0.09668222814798355, -0.04312941059470177, -0.03746167942881584, -0.0008420338272117078, 0.04257294908165932, 0.0402529276907444, -0.06253310292959213, -0.027025632560253143, -0.01454545184969902, -0.1583104282617569, -0.03922392427921295, 0.24721261858940125, -0.045502450317144394, -0.0665167048573494, -0.043933697044849396, -0.03750566765666008, 0.0480475015938282, 0.0028749844059348106, -0.06927840411663055, 0.010898904874920845, 0.01964521035552025, 0.018686970695853233, -0.1058056578040123, -0.09650443494319916, -0.10241739451885223, -0.04307563602924347, 0.28209903836250305, -0.0023231960367411375, 0.031171491369605064, -0.01133574265986681, 0.1270706206560135, -0.02275438979268074, -0.08009248971939087, -0.036875221878290176, -0.07350274175405502, -0.09873345494270325, -0.04832667484879494, -0.011007086373865604, -0.25031691789627075, -0.001978586195036769, 0.2730224132537842, 0.11653873324394226, 0.069259874522686, -0.024298686534166336, 0.08090813457965851, 0.05027816817164421, 0.1523502618074417, -0.11137482523918152, -0.06200837343931198, -0.0147702069953084, -0.013494045473635197, -0.01767605170607567, -0.07559088617563248, -0.10998934507369995, -0.04151453077793121, 0.017382225021719933, 0.040538057684898376, 0.06380338221788406, 0.05739453807473183, -0.03952617570757866, -0.07783152908086777, 0.09091939777135849, -0.11445712298154831, -0.03449105843901634, -0.0486178919672966, -0.02710067667067051, -0.008371052332222462, 0.13554899394512177, -0.0033889382611960173, -0.01618599146604538, 0.10017386823892593, -0.04298803210258484, -0.053823404014110565, -0.1038195937871933, -0.1337161511182785, -0.018316766247153282, -0.07331599295139313, -0.015028602443635464, -0.16299796104431152, -0.1441686600446701, -0.049843449145555496, 0.10730542987585068, -0.03555653989315033, 0.07675884664058685, 0.0664730966091156, 0.008946051821112633, 0.0037798082921653986, -0.018817884847521782, 0.07705739140510559, -0.03895687311887741, 0.07233154028654099, 0.022200675681233406, 0.06594214588403702, -0.012825027108192444, 0.07124068588018417, -0.09034235775470734, 0.0434294119477272, -0.1976754069328308, 0.07548616081476212, -0.10410147160291672, 0.08652441948652267, -0.10914236307144165, 0.02110513672232628, -0.08590656518936157, 0.033238984644412994, 0.06704065948724747, 0.05963563546538353, -0.04849806800484657, -0.03700022026896477, 0.07246507704257965, -0.2013561725616455, -0.10640385746955872, 0.04790768027305603, -0.0116830850020051, 0.1714542806148529, 0.016642482951283455, 0.12736299633979797, 0.11442293226718903, -0.09219588339328766, -0.013246639631688595, 0.08161495625972748, -0.14431987702846527, -0.03451952710747719, 0.07514896988868713, 0.035678330808877945, -0.12315618991851807, 0.010348827578127384, -0.03859597444534302, 0.0971476212143898, -0.01628381758928299, -0.02009677141904831, -0.00510874018073082, -0.04237385839223862, -0.029633674770593643, 0.0545312874019146, -0.0201064795255661, 0.030013585463166237, -0.10072974115610123, 0.0743207037448883, 0.08235412836074829, -0.016558581963181496, 0.00811729021370411, -0.08488985151052475, 0.08189067989587784, -0.11215066909790039, -0.0039860946126282215, -0.2091057151556015, 0.022306067869067192, 0.008607282303273678, 0.11418421566486359, 0.05602532625198364, 0.05315594747662544, 0.0727929025888443, 0.019646555185317993, 0.01463924627751112, -0.028490623459219933, -0.03484070673584938, 0.009100059978663921, -0.0460636280477047, -0.139060840010643, -0.07637082040309906, -0.10299844294786453, 0.04037221521139145, -0.11466030031442642, 0.028610918670892715, -0.017021171748638153, 0.05998973548412323, 0.057006970047950745, -0.005830759182572365, -0.026094596832990646, -0.0027986729983240366, -0.05460675060749054, -0.07416705787181854, 0.0455293282866478, 0.05090960115194321, 0.0018029329366981983, 0.05492357537150383, -0.09941480308771133, -0.01682748831808567, 0.0735248252749443, -0.03416585177183151, -0.1341460645198822, -0.011959074065089226, -0.0031018287409096956, -0.058599770069122314, -0.002791199367493391, -0.07866619527339935, 0.1985602229833603, 0.056893836706876755, 0.10030591487884521, -0.016908185556530952, 0.01679406501352787, -0.00406288867816329, -0.03858132287859917, 0.007751848548650742, 0.033307336270809174, 0.04917093366384506, -0.11045370250940323, 0.07541430741548538, 0.09383192658424377, -0.06518495827913284, 0.1135077252984047, 0.013084987178444862, -0.1104741320014, -0.004056022968143225, 0.016699293628335, 0.06434974819421768, 0.10765080899000168, -0.1375112235546112, -0.02395145408809185, 0.050366636365652084, -0.002805738477036357, 0.04563814774155617, -0.07463010400533676, 0.029836004599928856, 0.07184196263551712, 0.03448176756501198, 0.11660388857126236, -0.01647401601076126, -0.030215725302696228, 0.04414747655391693, 0.07290929555892944, 0.07304133474826813, -0.0017894749762490392, -0.040989965200424194, -0.07623340934515, 0.17043079435825348, -0.04032651335000992, -0.17667467892169952, -0.16499100625514984, -0.16162723302841187, 0.07604089379310608, 0.012777194380760193, 0.042268019169569016, -0.05658763274550438, -0.07625838369131088, -0.0595250241458416, 0.10480117052793503, -0.10534285753965378, -0.02101646363735199, -0.035436417907476425, 0.009937062859535217, 0.01644463837146759, -0.1257658153772354, 0.03611438721418381, 0.04461473599076271, -0.04788602888584137, 0.021607916802167892, 0.004585913382470608, 0.10413387417793274, 0.13054272532463074, 0.0018893760861828923, 0.018864648416638374, -0.011648585088551044, 0.1194317564368248, -0.08093039691448212, 0.021721838042140007, 0.1505984216928482, -0.0651320293545723, 0.03500961884856224, 0.14713720977306366, 0.005523319356143475, -0.026666710153222084, 0.05655528977513313, 0.015205989591777325, -0.07478301227092743, -0.22048255801200867, -0.03517042472958565, -0.03388511762022972, 0.015941299498081207, 0.10433601588010788, 0.06096195802092552, 0.06585317850112915, 0.08263028413057327, 0.027813443914055824, 0.0618240162730217, -0.017347795888781548, 0.09908268600702286, 0.11956474184989929, -0.014736172743141651, 0.10159765928983688, -0.09532539546489716, 0.0039043473079800606, 0.09102964401245117, 0.00800224021077156, 0.19463077187538147, -0.031186087056994438, 0.14007951319217682, 0.059608493000268936, -0.009929108433425426, 0.057912979274988174, 0.08984527736902237, -0.0676577240228653, -0.003155065467581153, -0.023472361266613007, -0.02714017778635025, -0.052429646253585815, 0.06192507594823837, 0.011688889004290104, -0.017927726730704308, 0.02093362994492054, -0.03652153164148331, 0.01920206844806671, 0.1421796828508377, -0.03380415216088295, -0.2125152051448822, -0.07341530174016953, -0.0005949852056801319, -0.036166634410619736, -0.1055978462100029, 0.0019592316821217537, 0.0764012411236763, -0.11670945584774017, -0.020804623141884804, -0.05743005499243736, 0.1144266277551651, -0.12632814049720764, -0.0576980859041214, 0.08156988024711609, 0.0914025604724884, -0.02474706806242466, 0.09424155950546265, -0.22455182671546936, 0.074158675968647, 0.03102571703493595, 0.027900954708456993, -0.049226291477680206, 0.04215112701058388, 0.02080843783915043, 0.09863033890724182, 0.08013083040714264, -0.0357588566839695, 0.031925976276397705, -0.10868288576602936, -0.04059397429227829, -0.0109143927693367, 0.07741963118314743, -0.0901535302400589, 0.05153622478246689, -0.0642891451716423, 0.0351078137755394, 0.0027604433707892895, -0.0018415400991216302, -0.09950210899114609, -0.1869196742773056, 0.07047707587480545, -0.02196343243122101, 0.044341474771499634, -0.06733308732509613, -0.048783812671899796, 0.08643867075443268, 0.22615237534046173, -0.12356264889240265, -0.03245808556675911, -0.16696122288703918, 0.020892806351184845, 0.0759938433766365, -0.04041311517357826, 0.05359773710370064, -0.0490499772131443, 0.05024198070168495, -0.044725894927978516, -0.07048700749874115, 0.08608391880989075, -0.09935285896062851, -0.027096694335341454, -0.07140382379293442, -0.025849400088191032, 0.08472468703985214, 0.02825023978948593, -0.05257721245288849, 0.02183055877685547, -0.028960514813661575, -0.09745419770479202, -0.029754381626844406, 0.0055968319065868855, -0.0021241919603198767, 0.04490536078810692, -0.0697711929678917, 0.033902592957019806, -0.03642083331942558, -0.01749444752931595, 0.1419924944639206, 0.14889071881771088, -0.07640015333890915, 0.07549963891506195, 0.1463664174079895, -0.06041911616921425, -0.2959834635257721, 0.009357176721096039, 0.030402125790715218, 0.02684040553867817, 0.008488647639751434, -0.24906720221042633, 0.11027500778436661, 0.030701830983161926, -0.01909784972667694, 0.11604835093021393, -0.17193733155727386, -0.08174575120210648, 0.13144032657146454, 0.12406165897846222, 0.009392745792865753, -0.14245662093162537, -0.07229438424110413, -0.010156212374567986, -0.13258254528045654, 0.0014490813482552767, -0.08811298757791519, 0.08386509120464325, -0.01063214149326086, -0.06093858182430267, 0.010206043720245361, -0.05261235311627388, 0.0774645060300827, -0.03827936202287674, 0.05447488650679588, -0.11106062680482864, 0.026382748037576675, 0.1287192851305008, -0.043487299233675, 0.07911323755979538, -0.02271115966141224, 0.038951847702264786, -0.10019560903310776, -0.0723031684756279, 0.001993277808651328, 0.08717001229524612, 0.0016577168134972453, -0.09685919433832169, -0.06899774819612503, 0.05951804667711258, -0.03957659751176834, -0.029922012239694595, 0.045543182641267776, -0.060272201895713806, 0.01501866988837719, 0.16685843467712402, 0.07246643304824829, -0.01100021693855524, -0.07547838240861893, 0.018137438222765923, -0.008838913403451443, 0.11248962581157684, -0.10028908401727676, 0.019288383424282074, 0.04043513908982277, 0.030710412189364433, 0.1175886020064354, 0.04594382643699646, -0.14378513395786285, -0.002322116168215871, 0.09162496030330658, -0.08436209708452225, -0.0007064852397888899, 0.01131114549934864, 0.09677378833293915, -0.1102956086397171, -0.03287534788250923, 0.1033809557557106, -0.05456620827317238, 0.01536018867045641, 0.020148448646068573, -0.03730681538581848, -0.06053115427494049, 0.07895226031541824, 0.12224284559488297, 0.03304131701588631, -0.009113105945289135, 0.10874371975660324, 0.10562065988779068, -0.10823217034339905, 0.012095737271010876, 0.04323644936084747, -0.07932933419942856, -0.08593638241291046, -0.042124051600694656, 0.11808884143829346, 0.008835392072796822, -0.06600358337163925, -0.020497746765613556, -0.016202105209231377, 0.027362436056137085, 0.15289509296417236, 0.04274744167923927, -0.016637304797768593, -0.05093913897871971, 0.05080464109778404, -0.10770910978317261, 0.09235481172800064, -0.04342784732580185, 0.08847533166408539, -0.09224174171686172, -0.06304614245891571, 0.07668650895357132, 0.03940100595355034, -0.06307289004325867, -0.0823678970336914, -0.11461465060710907, 0.02442306838929653, -0.06561578065156937, -0.0069945575669407845, -0.0875837430357933, -0.026790248230099678, 0.009921204298734665, -0.06413987278938293, -0.04180532321333885, 0.009912682697176933, -0.03180008381605148, -0.014349999837577343, -0.006748265121132135, 0.039774246513843536, -0.10880987346172333, -0.024381417781114578, 0.06249161809682846, -0.07437422126531601, 0.07418419420719147, 0.052365172654390335, 0.018941232934594154, -0.03506555035710335, -0.07402266561985016, 0.004174013156443834, -0.03179517015814781, 0.011147276498377323, 0.011588308960199356, -0.10875453054904938, 0.022229231894016266, -0.056497473269701004, -0.01805160753428936, -0.015446756035089493, 0.14851926267147064, -0.10357029736042023, 0.09490560740232468, -0.05498399958014488, -0.05690041929483414, -0.06911022216081619, 0.06267177313566208, 0.09715059399604797, 0.10255234688520432, 0.1181994304060936, -0.059314802289009094, 0.08491145819425583, -0.09208360314369202, -0.0017417625058442354, 0.006160793825984001, 0.02979505993425846, 0.06440460681915283, -0.12201479822397232, -0.019940542057156563, -0.01919780857861042, 0.23270246386528015, 0.0045224763453006744, 0.005118054803460836, 0.0458146408200264, -0.06897544860839844, 0.005184658337384462, -0.019296303391456604, 0.12301062792539597, 0.04542288929224014, 0.009329123422503471, -0.020743560045957565, 0.08699797838926315, -0.004027436021715403, 0.0384739525616169, 0.09038034826517105, 0.25008535385131836, 0.001772819203324616, 0.025797339156270027, -0.0086943618953228, -0.09634605795145035, -0.0753268226981163, 0.007278249599039555, 0.005278170108795166, 0.01765643060207367, -0.0404953770339489, 0.1738816648721695, 0.1717728227376938, -0.037677422165870667, 0.03572103753685951, 0.02035977505147457, -0.019266797229647636, -0.06966565549373627, -0.0597897507250309, -0.02621879242360592, -0.12922900915145874, -0.012129888869822025, -0.04437343403697014, -0.01094463188201189, 0.16892237961292267, 0.023583153262734413, 0.03418564051389694, 0.21079063415527344, -0.030418530106544495, -0.058832284063100815, 0.006123040337115526, -0.040366318076848984, 0.010007485747337341, -0.10186976194381714, 0.05131581053137779, 0.006713496521115303, 0.004272958263754845, 0.03845258802175522, 0.04398151859641075, -0.017663367092609406, 0.0510476715862751, 0.005043143406510353, -0.11164791136980057, -0.01699966937303543, 0.060063280165195465, -0.051106005907058716, 0.10001165419816971, 0.0075301299802958965, -0.02059445157647133, -0.021650604903697968, 0.21283933520317078, -0.0628749206662178, -0.095235176384449, -0.13251303136348724, 0.09077134728431702, -0.03308936953544617, 0.0038283290341496468, -0.08183411508798599, -0.0956995040178299, -0.009881541132926941, 0.20636031031608582, 0.0870710164308548, -0.04475022852420807, 0.015229124575853348, 0.09263106435537338, 0.007374212611466646, 0.001862550969235599, 0.07456808537244797, 0.009505190886557102, 0.13043324649333954, -0.04928775504231453, -0.07027295231819153, -0.09088203310966492, -0.06293298304080963, 0.016131268814206123, 0.09200266748666763, 0.0132741779088974, -0.019957926124334335, -0.08992049098014832, 0.06977437436580658, -0.02918541245162487, -0.22426775097846985, 0.12365120649337769, -0.02426590397953987, -0.08998755365610123, -0.0370543897151947, 0.08203887939453125, -0.051784761250019073, 0.013820330612361431, 0.00037686803261749446, -0.033532578498125076, 0.05788983404636383, 0.04762693867087364, -0.08755483478307724, -0.0745469182729721, 0.07089051604270935, 0.03673994913697243, 0.1650172621011734, -0.06565821915864944, 0.016583509743213654, 0.09317099303007126, 0.06832627952098846, -0.12814584374427795, 0.036047689616680145, 0.037139877676963806, -0.0672440379858017, -0.011453497223556042, 0.07886975258588791, -0.030366629362106323, 0.1663241982460022, 0.05286872759461403, -0.21113185584545135, 0.06240503117442131, -0.04031338915228844, -0.06539104133844376, -0.12697161734104156, -0.055442407727241516, -0.07059412449598312, 0.17177841067314148, 0.12139272689819336, 0.032115593552589417, -0.05924103036522865, -0.09396355599164963, 0.018929194658994675, 0.03309175372123718, 0.15388908982276917, -0.07331906259059906, -0.1161348894238472, -0.03225952014327049, -0.0028876992873847485, 0.02743740752339363, -0.28325262665748596, -0.06067387014627457, 0.02331230416893959, -0.035169411450624466, 0.008211920037865639, 0.07849128544330597, 0.09020611643791199, 0.06875801831483841, -0.05507240444421768, -0.09188620001077652, 0.029757041484117508, 0.12068711966276169, -0.21638481318950653, -0.04539915546774864 ]
null
null
adapter-transformers
# Adapter `AdapterHub/roberta-base-pf-boolq` for roberta-base An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [qa/boolq](https://adapterhub.ml/explore/qa/boolq/) dataset and includes a prediction head for classification. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("roberta-base") adapter_name = model.load_adapter("AdapterHub/roberta-base-pf-boolq", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
{"language": ["en"], "tags": ["text-classification", "roberta", "adapterhub:qa/boolq", "adapter-transformers"], "datasets": ["boolq"]}
text-classification
AdapterHub/roberta-base-pf-boolq
[ "adapter-transformers", "roberta", "text-classification", "adapterhub:qa/boolq", "en", "dataset:boolq", "arxiv:2104.08247", "region:us" ]
2022-03-02T23:29:04+00:00
[ "2104.08247" ]
[ "en" ]
TAGS #adapter-transformers #roberta #text-classification #adapterhub-qa/boolq #en #dataset-boolq #arxiv-2104.08247 #region-us
# Adapter 'AdapterHub/roberta-base-pf-boolq' for roberta-base An adapter for the 'roberta-base' model that was trained on the qa/boolq dataset and includes a prediction head for classification. This adapter was created for usage with the adapter-transformers library. ## Usage First, install 'adapter-transformers': _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_ Now, the adapter can be loaded and activated like this: ## Architecture & Training The training code for this adapter is available at URL In particular, training configurations for all tasks can be found here. ## Evaluation results Refer to the paper for more information on results. If you use this adapter, please cite our paper "What to Pre-Train on? Efficient Intermediate Task Selection":
[ "# Adapter 'AdapterHub/roberta-base-pf-boolq' for roberta-base\n\nAn adapter for the 'roberta-base' model that was trained on the qa/boolq dataset and includes a prediction head for classification.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ "TAGS\n#adapter-transformers #roberta #text-classification #adapterhub-qa/boolq #en #dataset-boolq #arxiv-2104.08247 #region-us \n", "# Adapter 'AdapterHub/roberta-base-pf-boolq' for roberta-base\n\nAn adapter for the 'roberta-base' model that was trained on the qa/boolq dataset and includes a prediction head for classification.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ 43, 72, 57, 30, 45 ]
[ "passage: TAGS\n#adapter-transformers #roberta #text-classification #adapterhub-qa/boolq #en #dataset-boolq #arxiv-2104.08247 #region-us \n# Adapter 'AdapterHub/roberta-base-pf-boolq' for roberta-base\n\nAn adapter for the 'roberta-base' model that was trained on the qa/boolq dataset and includes a prediction head for classification.\n\nThis adapter was created for usage with the adapter-transformers library.## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ -0.03880169615149498, -0.008361022919416428, -0.003110624384135008, 0.02814510278403759, 0.17646558582782745, 0.01739988476037979, 0.1325577050447464, 0.07295648753643036, 0.023686567321419716, 0.020771987736225128, 0.040390923619270325, 0.07917774468660355, 0.06608796119689941, 0.04810937121510506, 0.027229594066739082, -0.13234733045101166, 0.004266475792974234, 0.0017351300921291113, -0.0706384927034378, 0.10937141627073288, 0.1176624745130539, -0.0773286297917366, 0.09810313582420349, 0.04226094111800194, -0.10907662659883499, 0.06073949486017227, -0.008576098829507828, -0.09589283913373947, 0.10437658429145813, 0.09184399992227554, 0.13896939158439636, 0.0247313492000103, 0.022075124084949493, -0.18915493786334991, 0.03318290784955025, 0.0776372104883194, 0.009252499788999557, 0.07019351422786713, -0.02355140820145607, -0.07462434470653534, 0.013547911308705807, 0.02133031375706196, 0.046584900468587875, 0.07308993488550186, -0.11368516832590103, -0.21970786154270172, -0.05632809177041054, 0.1077495813369751, 0.02956555038690567, 0.0888499841094017, -0.0009915949776768684, 0.05636897683143616, -0.010185731574892998, 0.053319089114665985, 0.24374808371067047, -0.2426483929157257, -0.011742944829165936, 0.02280486561357975, 0.10121545940637589, 0.058578792959451675, -0.07188695669174194, -0.004141936544328928, 0.02434203214943409, 0.009627082385122776, 0.014031950384378433, -0.048201657831668854, -0.021018097177147865, 0.011857188306748867, -0.13351932168006897, -0.030117928981781006, 0.23150084912776947, -0.03480508178472519, -0.09082615375518799, -0.01592894084751606, -0.004281415604054928, 0.0519944429397583, 0.039041172713041306, -0.05479256436228752, -0.005796065554022789, 0.012270423583686352, -0.00815714243799448, -0.10022260993719101, -0.09696552157402039, -0.10766084492206573, -0.07739796489477158, 0.2653196156024933, -0.015160199254751205, 0.03636512532830238, -0.04731237515807152, 0.12959317862987518, -0.027444293722510338, -0.0907929539680481, -0.06859500706195831, -0.07873713970184326, -0.07762142270803452, -0.015437072142958641, -0.033396705985069275, -0.2251311093568802, 0.02706349454820156, 0.22303661704063416, 0.10660622268915176, 0.05585881695151329, -0.05728646740317345, 0.06790272146463394, 0.0333704799413681, 0.22095897793769836, -0.07075271010398865, -0.030770843848586082, -0.009964541532099247, -0.03294116258621216, -0.04488881304860115, -0.09017516672611237, -0.09129686653614044, -0.036244746297597885, 0.01623080112040043, 0.04825972765684128, 0.02498272806406021, 0.06832533329725266, -0.020577318966388702, -0.04195715859532356, 0.05689861252903938, -0.1321384161710739, -0.04211939498782158, -0.013423092663288116, -0.0397627130150795, 0.00719039048999548, 0.14803612232208252, 0.005208496004343033, -0.016944145783782005, 0.041640643030405045, -0.05243975669145584, -0.0649309903383255, -0.06765265017747879, -0.1308082491159439, -0.020758064463734627, -0.085260309278965, 0.02770533598959446, -0.15106403827667236, -0.1274983137845993, -0.014667642302811146, 0.06195014715194702, -0.01951264962553978, 0.07802872359752655, 0.058094389736652374, 0.01581229455769062, 0.004235518164932728, -0.0019785184413194656, 0.03324103727936745, -0.026009229943156242, 0.08483812212944031, 0.04283806309103966, 0.05103153735399246, -0.06457214802503586, 0.08000462502241135, -0.06290910392999649, 0.03857514262199402, -0.1717754453420639, 0.10464777797460556, -0.12576350569725037, 0.054393406957387924, -0.14934183657169342, -0.014258621260523796, -0.017021385952830315, 0.023869303986430168, 0.06517628580331802, 0.03575953096151352, -0.07791508734226227, -0.03865025192499161, 0.08963161706924438, -0.17837879061698914, -0.13107480108737946, 0.023237593472003937, -0.03704261779785156, 0.16978146135807037, 0.04215715825557709, 0.12222646176815033, 0.18446239829063416, -0.0613655149936676, -0.0826837569475174, 0.04121742025017738, -0.11178278923034668, -0.06429421156644821, 0.07340638339519501, 0.02408725582063198, -0.138205885887146, 0.018364317715168, -0.06830567121505737, 0.04208991676568985, -0.015944894403219223, -0.047997232526540756, -0.012713798321783543, -0.04369845986366272, 0.015517127700150013, 0.018416211009025574, -0.013242803514003754, 0.055711086839437485, -0.1205715537071228, 0.11014954745769501, 0.07456032931804657, -0.04568958654999733, 0.015157127752900124, -0.11372784525156021, 0.10475236177444458, -0.12353683263063431, -0.002621656283736229, -0.21192002296447754, 0.04509216547012329, -0.02294670231640339, 0.03531458228826523, 0.07410892844200134, 0.036830924451351166, 0.059993959963321686, -0.019893815740942955, 0.020723631605505943, 0.0010847398079931736, -0.04881655052304268, 0.02124200388789177, -0.04034237936139107, -0.08499379456043243, -0.0441429503262043, -0.07543624192476273, 0.05491122975945473, -0.13383841514587402, 0.04695294797420502, 0.056670062243938446, 0.04650665074586868, 0.030595112591981888, 0.008052600547671318, -0.013799959793686867, -0.023619869723916054, -0.03564320132136345, -0.03861188888549805, 0.015351234003901482, 0.016131404787302017, -0.0816168412566185, 0.02343541756272316, -0.09767203032970428, -0.03688420355319977, 0.06896233558654785, 0.0073952991515398026, -0.08916115015745163, -0.05637158825993538, -0.010108805261552334, -0.03022170625627041, 0.019811658188700676, -0.07693323493003845, 0.25070372223854065, 0.05114605277776718, 0.06274052709341049, -0.04332084581255913, -0.0078015136532485485, 0.0028868631925433874, -0.03501828387379646, 0.026517661288380623, 0.04061669856309891, 0.0343625470995903, -0.10492022335529327, 0.03804996609687805, 0.13270410895347595, -0.03469746187329292, 0.10643677413463593, -0.02199460193514824, -0.09801486134529114, -0.010417137295007706, -0.050457656383514404, 0.04634696990251541, 0.09643588215112686, -0.05520721524953842, 0.0027068150229752064, 0.057777926325798035, -0.02119634672999382, 0.03317738324403763, -0.05599597468972206, 0.02446570061147213, 0.04381295666098595, 0.008935438469052315, -0.015271839685738087, -0.012837852351367474, -0.02829916775226593, 0.051728107035160065, 0.07399827241897583, 0.10578503459692001, 0.0061376518569886684, -0.03292801231145859, -0.06744479387998581, 0.18571868538856506, -0.04352084919810295, -0.177917018532753, -0.2140388786792755, -0.14046311378479004, 0.02597661130130291, -0.00026533007621765137, 0.043428439646959305, -0.10231059044599533, -0.07043111324310303, -0.028269624337553978, 0.1575280725955963, -0.0530347041785717, -0.012153884395956993, -0.00414652843028307, -0.014160359278321266, 0.06777247041463852, -0.15232451260089874, 0.035659197717905045, 0.011862259358167648, -0.07221788167953491, 0.008252481929957867, -0.0018637385219335556, 0.09837956726551056, 0.1089768186211586, -0.03347093239426613, 0.02529403194785118, -0.02844296768307686, 0.15362431108951569, -0.08938740193843842, 0.02776809222996235, 0.13965976238250732, -0.12613166868686676, 0.022588292136788368, 0.10509359836578369, 0.014605824835598469, -0.029044920578598976, 0.050074853003025055, 0.04066798463463783, -0.07900115102529526, -0.27454379200935364, 0.0038121910765767097, 0.0024520899169147015, -0.03237445652484894, 0.06710519641637802, 0.049307502806186676, 0.04320027679204941, 0.09918852895498276, 0.05923030152916908, -0.012610877864062786, -0.04108904302120209, 0.07517901808023453, 0.15088781714439392, -0.006052721291780472, 0.09287238866090775, -0.10839782655239105, 0.015943428501486778, 0.07866284996271133, 0.04922882094979286, 0.17883659899234772, -0.031225088983774185, 0.07375394552946091, 0.08653414249420166, -0.033315423876047134, 0.07909537106752396, 0.11777914315462112, -0.05639374256134033, 0.0019459784962236881, -0.01645784266293049, -0.028714949265122414, -0.0889659896492958, 0.04348526895046234, -0.025004856288433075, 0.022254280745983124, -0.017268557101488113, -0.00784306600689888, 0.029921839013695717, 0.14747227728366852, -0.016499696299433708, -0.17707858979701996, -0.10398805141448975, 0.0007724222377873957, -0.022868376225233078, -0.06990145146846771, 0.017498355358839035, 0.013369794934988022, -0.10359624028205872, 0.00787273421883583, -0.02555008791387081, 0.11267415434122086, -0.12239395081996918, -0.04111158102750778, 0.011567050591111183, 0.08881634473800659, -0.04715113714337349, 0.11206841468811035, -0.22192449867725372, 0.09655116498470306, 0.02665192075073719, 0.029631556943058968, -0.03619535267353058, 0.039996881037950516, 0.024967383593320847, 0.05436243116855621, 0.07881749421358109, -0.03367481380701065, 0.007150086108595133, -0.13328368961811066, -0.06286164373159409, 0.03823956102132797, 0.04930969327688217, -0.10607600957155228, 0.06264938414096832, -0.05896991118788719, 0.05613170191645622, 0.009119942784309387, -0.0285172276198864, -0.08857183158397675, -0.16373443603515625, 0.046663928776979446, -0.03682563081383705, 0.090670645236969, -0.06989771872758865, -0.06162842735648155, 0.04250513017177582, 0.15192213654518127, -0.18477550148963928, -0.06234842911362648, -0.1402818262577057, 0.031179409474134445, 0.08409653604030609, -0.07671081274747849, 0.05066011846065521, -0.01801728643476963, 0.06449571251869202, -0.015393055975437164, -0.08373227715492249, 0.05554819852113724, -0.06211039796471596, -0.058575864881277084, -0.014006955549120903, 0.024210499599575996, 0.0839768648147583, 0.028906265273690224, -0.007973997853696346, 0.0006588599062524736, -0.03881888464093208, -0.11372914165258408, -0.012838535942137241, -0.003974105231463909, -0.030544010922312737, 0.06738820672035217, -0.03998924791812897, 0.011338683776557446, -0.07906492799520493, 0.010816273279488087, 0.19005148112773895, 0.11773823946714401, -0.08507675677537918, 0.076947420835495, 0.13465900719165802, -0.0843043178319931, -0.24431994557380676, -0.0021435392554849386, 0.026854615658521652, 0.0013817782746627927, 0.014812923967838287, -0.21086664497852325, 0.13471846282482147, 0.02853419817984104, -0.012393707409501076, 0.01957421377301216, -0.1275251805782318, -0.08021190762519836, 0.20923499763011932, 0.08634106069803238, 0.01958117075264454, -0.1393306851387024, -0.0743839219212532, -0.022124698385596275, -0.16532811522483826, 0.049035124480724335, -0.0778118446469307, 0.0739615261554718, -0.033380135893821716, 0.014707416296005249, 0.006486543919891119, -0.02823876403272152, 0.09875938296318054, -0.009888925589621067, 0.024843653663992882, -0.10568173974752426, -0.03836610168218613, 0.09895352274179459, -0.051427941769361496, 0.05354529246687889, -0.03448048606514931, 0.06017979979515076, -0.13281063735485077, -0.06662590056657791, 0.012960785999894142, 0.08602025359869003, -0.010694893077015877, -0.0747198760509491, -0.0920410230755806, 0.04954861104488373, -0.05229215696454048, -0.02953054942190647, 0.053433626890182495, -0.11248060315847397, 0.071043960750103, 0.15371815860271454, 0.1304779350757599, 0.06151626259088516, -0.06357358396053314, 0.026049906387925148, -0.012389173731207848, 0.11327384412288666, -0.17577844858169556, 0.054989978671073914, 0.09274925291538239, 0.009673732332885265, 0.1386738419532776, 0.04740888252854347, -0.13957899808883667, 0.04585421457886696, 0.08306010067462921, -0.07019616663455963, -0.04650607332587242, -0.006257286760956049, 0.05690397322177887, -0.17358556389808655, 0.016890818253159523, 0.14114411175251007, -0.036325227469205856, -0.006724596489220858, 0.034554194658994675, 0.004052655305713415, -0.07516995817422867, 0.08103577792644501, 0.15144449472427368, 0.049607053399086, -0.03788677975535393, 0.10271500051021576, 0.11244706809520721, -0.02242971956729889, 0.045941755175590515, -0.03242385387420654, -0.05361190438270569, -0.067657470703125, -0.06665096431970596, 0.13033050298690796, -0.06704354286193848, -0.09395119547843933, -0.006437159143388271, -0.07544349133968353, 0.020161475986242294, 0.20356565713882446, 0.03604471683502197, -0.005790202412754297, -0.03236762434244156, 0.03350857272744179, -0.09646483510732651, 0.07694114744663239, -0.03301098942756653, 0.04793769493699074, -0.08333630859851837, -0.07851310074329376, 0.06122492998838425, 0.09462565928697586, -0.048851530998945236, -0.08028077334165573, -0.13632218539714813, 0.011252014897763729, -0.14877019822597504, 0.02147025056183338, -0.042725689709186554, 0.013745359145104885, 0.0013028891989961267, -0.09444427490234375, -0.05737244710326195, 0.016179509460926056, -0.028295649215579033, 0.005874682683497667, 0.03114144131541252, 0.07666978985071182, -0.1518358290195465, -0.00968846119940281, 0.0859127938747406, -0.02630878984928131, 0.10326870530843735, 0.03608854115009308, -0.0007296987459994853, 0.0264443289488554, -0.061738450080156326, 0.037681423127651215, -0.027828991413116455, 0.006169810891151428, -0.006187318824231625, -0.10600559413433075, 0.02580900490283966, -0.05745844542980194, -0.03289680927991867, -0.006798097398132086, 0.16841694712638855, -0.08124156296253204, 0.07557004690170288, -0.04301184415817261, 0.014444916509091854, -0.06460386514663696, 0.06950915604829788, 0.09500730037689209, 0.11569245904684067, 0.08560787886381149, -0.05910448729991913, 0.08203964680433273, -0.10258617997169495, 0.017164262011647224, 0.009115364402532578, -0.0025689282920211554, 0.08212938159704208, -0.12450294196605682, -0.019170019775629044, -0.04301828145980835, 0.2338634878396988, -0.0023032505996525288, 0.02276510000228882, 0.039419010281562805, -0.003268121974542737, -0.04072197154164314, -0.027442289516329765, 0.1570567637681961, 0.04313618317246437, 0.02447999082505703, 0.01205360982567072, 0.05047393962740898, -0.02395281381905079, 0.014444255270063877, 0.12265589088201523, 0.1859961599111557, -0.030055848881602287, 0.022036336362361908, 0.038445036858320236, -0.030089763924479485, -0.00026517166406847537, 0.01304305624216795, -0.003065512515604496, 0.000022799480575486086, -0.016453750431537628, 0.09364532679319382, 0.16002874076366425, -0.020173797383904457, 0.05825009569525719, 0.011433289386332035, -0.044518716633319855, -0.09226890653371811, -0.02726750262081623, -0.02439301833510399, -0.11048050224781036, -0.007918842136859894, -0.08193735033273697, -0.04494360089302063, 0.14397606253623962, -0.00028758923872374, 0.014400724321603775, 0.2220623791217804, -0.04639332741498947, -0.04942134767770767, 0.009105403907597065, -0.03751127049326897, -0.01482684351503849, -0.11333677172660828, 0.08644943684339523, 0.06602421402931213, 0.09074268490076065, 0.040370743721723557, 0.06178911030292511, 0.006016342435032129, 0.05242110788822174, -0.0566655769944191, -0.1049305647611618, -0.022804932668805122, 0.07372155040502548, -0.038782812654972076, 0.0690845176577568, 0.016399599611759186, -0.004723912104964256, -0.015018543228507042, 0.19627073407173157, -0.047216273844242096, -0.08928295224905014, -0.1295642852783203, 0.10121029615402222, -0.025751760229468346, 0.0012504764599725604, -0.0740463137626648, -0.1258356124162674, -0.009118704125285149, 0.21023745834827423, 0.11737851798534393, -0.03350675106048584, 0.03228498250246048, 0.049255240708589554, 0.0253258366137743, 0.049554672092199326, 0.0707332193851471, 0.01217000000178814, 0.10284309089183807, -0.03819868341088295, -0.04990613833069801, -0.053194768726825714, -0.04710213840007782, 0.08121350407600403, 0.13239064812660217, 0.009124383330345154, -0.0471903458237648, -0.0572221614420414, 0.09205400198698044, -0.09789779037237167, -0.2408253699541092, -0.00808166153728962, -0.04648910090327263, -0.09548675268888474, -0.055053919553756714, 0.04225056990981102, -0.024606933817267418, -0.010392892174422741, 0.00807360839098692, -0.04198821261525154, 0.09844116121530533, 0.04718298092484474, -0.07803735882043839, -0.031137624755501747, 0.0989285334944725, -0.009560276754200459, 0.15765343606472015, -0.03337220475077629, -0.011388910934329033, 0.08981996029615402, 0.055106021463871, -0.09189833700656891, 0.039576344192028046, 0.021017637103796005, -0.05629313737154007, -0.00506414333358407, 0.047486379742622375, -0.0015864348970353603, 0.09189598262310028, 0.07843954861164093, -0.13645213842391968, 0.05830752104520798, -0.050583481788635254, -0.06104176491498947, -0.09936992079019547, -0.022456252947449684, -0.0862831324338913, 0.17048025131225586, 0.11068066209554672, -0.0077850306406617165, -0.04737411439418793, -0.09020788222551346, 0.02760288305580616, 0.02273903787136078, 0.08619087934494019, -0.042337432503700256, -0.06893068552017212, -0.035735804587602615, -0.030155565589666367, 0.01532737910747528, -0.3292428255081177, -0.020786231383681297, 0.02864396758377552, -0.027379853650927544, 0.027124710381031036, 0.08609981834888458, 0.11494813859462738, 0.0799468457698822, -0.0550403967499733, -0.04398217052221298, -0.000195652391994372, 0.11484032869338989, -0.21002672612667084, -0.037384260445833206 ]
null
null
adapter-transformers
# Adapter `AdapterHub/roberta-base-pf-cola` for roberta-base An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [lingaccept/cola](https://adapterhub.ml/explore/lingaccept/cola/) dataset and includes a prediction head for classification. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("roberta-base") adapter_name = model.load_adapter("AdapterHub/roberta-base-pf-cola", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
{"language": ["en"], "tags": ["text-classification", "roberta", "adapterhub:lingaccept/cola", "adapter-transformers"]}
text-classification
AdapterHub/roberta-base-pf-cola
[ "adapter-transformers", "roberta", "text-classification", "adapterhub:lingaccept/cola", "en", "arxiv:2104.08247", "region:us" ]
2022-03-02T23:29:04+00:00
[ "2104.08247" ]
[ "en" ]
TAGS #adapter-transformers #roberta #text-classification #adapterhub-lingaccept/cola #en #arxiv-2104.08247 #region-us
# Adapter 'AdapterHub/roberta-base-pf-cola' for roberta-base An adapter for the 'roberta-base' model that was trained on the lingaccept/cola dataset and includes a prediction head for classification. This adapter was created for usage with the adapter-transformers library. ## Usage First, install 'adapter-transformers': _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_ Now, the adapter can be loaded and activated like this: ## Architecture & Training The training code for this adapter is available at URL In particular, training configurations for all tasks can be found here. ## Evaluation results Refer to the paper for more information on results. If you use this adapter, please cite our paper "What to Pre-Train on? Efficient Intermediate Task Selection":
[ "# Adapter 'AdapterHub/roberta-base-pf-cola' for roberta-base\n\nAn adapter for the 'roberta-base' model that was trained on the lingaccept/cola dataset and includes a prediction head for classification.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ "TAGS\n#adapter-transformers #roberta #text-classification #adapterhub-lingaccept/cola #en #arxiv-2104.08247 #region-us \n", "# Adapter 'AdapterHub/roberta-base-pf-cola' for roberta-base\n\nAn adapter for the 'roberta-base' model that was trained on the lingaccept/cola dataset and includes a prediction head for classification.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ 38, 72, 57, 30, 45 ]
[ "passage: TAGS\n#adapter-transformers #roberta #text-classification #adapterhub-lingaccept/cola #en #arxiv-2104.08247 #region-us \n# Adapter 'AdapterHub/roberta-base-pf-cola' for roberta-base\n\nAn adapter for the 'roberta-base' model that was trained on the lingaccept/cola dataset and includes a prediction head for classification.\n\nThis adapter was created for usage with the adapter-transformers library.## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ 0.015135260298848152, -0.05318101495504379, -0.0029047802090644836, 0.020471647381782532, 0.1736154705286026, 0.025450674816966057, 0.13035018742084503, 0.050126634538173676, 0.0032738028094172478, 0.04222571849822998, 0.05000452324748039, 0.08624926954507828, 0.04538708180189133, 0.02382936142385006, 0.010993045754730701, -0.13501253724098206, 0.007859679870307446, -0.004617518279701471, -0.005729980301111937, 0.11341951787471771, 0.11659814417362213, -0.06024331972002983, 0.08940980583429337, 0.012141096405684948, -0.10121271014213562, 0.04990158975124359, -0.029239090159535408, -0.08510097116231918, 0.08691420406103134, 0.08202303200960159, 0.18598055839538574, 0.022276565432548523, 0.010219505988061428, -0.16996915638446808, 0.023155713453888893, 0.06439027935266495, 0.01921074092388153, 0.06673286110162735, -0.025527257472276688, -0.08519123494625092, 0.05441410094499588, 0.016790222376585007, 0.06666439771652222, 0.05532877892255783, -0.13669057190418243, -0.158766970038414, -0.055881425738334656, 0.10702051222324371, 0.05714726075530052, 0.10222569853067398, -0.01062873937189579, 0.06115787848830223, -0.020968995988368988, 0.061296164989471436, 0.23302336037158966, -0.2351210117340088, -0.02213682234287262, 0.057500556111335754, 0.11884502321481705, 0.07805295288562775, -0.037423934787511826, -0.0069755748845636845, 0.030799424275755882, 0.016710732132196426, -0.016012193635106087, -0.05808519199490547, -0.04095155745744705, -0.006657732650637627, -0.1529441922903061, -0.03724277392029762, 0.272234171628952, -0.045980509370565414, -0.0674331933259964, -0.009195148944854736, 0.004552716854959726, 0.08839541673660278, 0.027842693030834198, -0.07149369269609451, 0.005984075833112001, 0.015752991661429405, 0.04073129966855049, -0.1388484239578247, -0.08879043161869049, -0.10267899185419083, -0.06579677760601044, 0.3221605122089386, -0.020274590700864792, 0.011411228217184544, -0.01741407997906208, 0.1209188923239708, -0.015470066107809544, -0.07419977337121964, -0.04040641710162163, -0.052900318056344986, -0.05912775546312332, -0.05884132161736488, -0.03537295386195183, -0.2141244113445282, 0.0020585833117365837, 0.21464423835277557, 0.12274474650621414, 0.05016078054904938, -0.06661106646060944, 0.08787139505147934, 0.019752275198698044, 0.17579540610313416, -0.06713560968637466, -0.04122959449887276, -0.026355693116784096, -0.017646729946136475, -0.021483976393938065, -0.08491434901952744, -0.11504150927066803, -0.035520266741514206, -0.013221198692917824, 0.04968949407339096, 0.05872749909758568, 0.06290829926729202, -0.03815336525440216, -0.04671914130449295, 0.042579520493745804, -0.1279783546924591, -0.019068438559770584, -0.03600310906767845, -0.029493054375052452, 0.045919474214315414, 0.1555357426404953, 0.01662420481443405, -0.033209178596735, 0.09415657818317413, -0.06209045276045799, -0.04501930996775627, -0.09945578128099442, -0.12134091556072235, -0.012292450293898582, -0.09002853184938431, -0.006048030685633421, -0.13115356862545013, -0.1396828442811966, -0.043836262077093124, 0.07304909825325012, -0.03021012619137764, 0.06345309317111969, 0.03602370247244835, 0.019704468548297882, -0.008296193554997444, 0.010448473505675793, 0.030503837391734123, -0.016729777678847313, 0.06307326257228851, 0.028296275064349174, 0.053318072110414505, -0.056744981557130814, 0.08081521838903427, -0.08117544651031494, 0.048343610018491745, -0.2142401784658432, 0.07810243219137192, -0.10107288509607315, 0.08341944962739944, -0.16257648169994354, 0.0005892529152333736, -0.07495950162410736, 0.0314125195145607, 0.03759167715907097, 0.04364652931690216, -0.062083568423986435, -0.039191581308841705, 0.06050701066851616, -0.2036759853363037, -0.0890166312456131, 0.005176051519811153, -0.01435969490557909, 0.1840137243270874, 0.0559038482606411, 0.11242982745170593, 0.10325969755649567, -0.07674117386341095, -0.04148109629750252, 0.028676196932792664, -0.12917013466358185, -0.02341136895120144, 0.0723794624209404, -0.008390577509999275, -0.16649772226810455, -0.0005868170410394669, -0.08199784904718399, 0.03749607875943184, -0.0027484020683914423, -0.03407014161348343, -0.00422948831692338, -0.00873795710504055, -0.014885257929563522, 0.03188323229551315, -0.023328619077801704, 0.051133185625076294, -0.12259887903928757, 0.13744868338108063, 0.06312607228755951, -0.038629498332738876, 0.023117566481232643, -0.10004992038011551, 0.13511915504932404, -0.0826013907790184, -0.0018499838188290596, -0.19313956797122955, 0.06265702098608017, -0.026401273906230927, 0.10242029279470444, 0.08894209563732147, 0.04675396904349327, 0.05051613971590996, -0.018925854936242104, 0.006334693171083927, 0.01674770563840866, -0.03520137816667557, 0.021742353215813637, -0.012490238063037395, -0.14225570857524872, -0.029399335384368896, -0.06668071448802948, 0.09311304241418839, -0.1652117669582367, 0.04177599400281906, 0.04332372918725014, 0.06698693335056305, 0.03254926949739456, -0.0009705693810246885, -0.01597588323056698, -0.007902640849351883, -0.04286343604326248, -0.04973530396819115, 0.03481191024184227, 0.01077205315232277, -0.053582798689603806, 0.032447732985019684, -0.10096091032028198, -0.12519504129886627, 0.08345402032136917, -0.03613271564245224, -0.1431126594543457, -0.07614100724458694, 0.012656539678573608, -0.0428970642387867, 0.02770378068089485, -0.0768454372882843, 0.2514740526676178, 0.038928769528865814, 0.05721602588891983, -0.036233220249414444, 0.009949374943971634, -0.02291964367032051, -0.06092316657304764, -0.0007569147855974734, 0.04610937088727951, 0.05350799486041069, -0.12042002379894257, 0.055287592113018036, 0.12424657493829727, -0.0802481546998024, 0.10222741961479187, 0.004544296767562628, -0.09886014461517334, -0.01854717545211315, -0.0025657187215983868, 0.06607280671596527, 0.06406795233488083, -0.08896493911743164, 0.002433194313198328, 0.043166060000658035, -0.043013982474803925, 0.04891582950949669, -0.04856312647461891, 0.030545182526111603, 0.05753901228308678, 0.02289089933037758, 0.07270257920026779, -0.04303205758333206, -0.036769356578588486, 0.05271270126104355, 0.07305658608675003, 0.07791338115930557, 0.00556498859077692, -0.018127204850316048, -0.06095229461789131, 0.15755948424339294, -0.033155836164951324, -0.17390085756778717, -0.20979657769203186, -0.13104799389839172, 0.07567114382982254, 0.006951488088816404, 0.019693277776241302, -0.05070703104138374, -0.07490073889493942, -0.03999615088105202, 0.15699677169322968, -0.06457611918449402, -0.037477780133485794, -0.011459515430033207, -0.0013191341422498226, 0.02061428874731064, -0.13380073010921478, 0.0383014902472496, 0.02512517385184765, -0.06939753144979477, 0.011417645029723644, -0.03722604736685753, 0.09824741631746292, 0.16156862676143646, -0.027999501675367355, 0.02143894135951996, -0.018665919080376625, 0.10273820906877518, -0.10026448965072632, 0.03974837437272072, 0.10346049815416336, -0.1158430427312851, 0.021434539929032326, 0.1297445148229599, -0.00628240779042244, -0.028569942340254784, 0.05266891419887543, 0.03190096095204353, -0.07695551216602325, -0.2698492109775543, -0.01991775818169117, -0.01043794211000204, -0.03433436155319214, 0.08897428214550018, 0.03455188125371933, 0.06569802761077881, 0.09510955214500427, 0.04016285017132759, 0.01934409886598587, -0.017904868349432945, 0.08721286058425903, 0.1641179323196411, -0.021410584449768066, 0.10289706289768219, -0.09630537778139114, -0.010053752921521664, 0.07621277868747711, -0.008595389313995838, 0.18825024366378784, 0.0006398096447810531, 0.0970175638794899, 0.07722292095422745, -0.08573585748672485, 0.08591867983341217, 0.11095408350229263, -0.0627121701836586, 0.005471355747431517, -0.022069433704018593, -0.042929161339998245, -0.05624635890126228, 0.05866297334432602, 0.0021930502261966467, -0.0159093476831913, 0.035073813050985336, -0.028222551569342613, 0.021235689520835876, 0.1257750242948532, -0.01964667998254299, -0.19890226423740387, -0.037415895611047745, 0.010077063925564289, -0.006197842303663492, -0.07998061180114746, 0.002523461589589715, 0.04211146757006645, -0.07985182106494904, 0.012144099920988083, -0.012135162949562073, 0.10159596055746078, -0.12371070683002472, -0.05544101819396019, -0.009861201979219913, 0.0868602767586708, -0.053880978375673294, 0.11329808831214905, -0.20265471935272217, 0.09341008961200714, 0.03066370263695717, 0.01560516282916069, -0.04687436670064926, 0.035382576286792755, 0.004374907352030277, 0.08918988704681396, 0.09078627824783325, -0.01617863029241562, 0.0056344373151659966, -0.09811842441558838, -0.07569199800491333, -0.004702877253293991, 0.07408705353736877, -0.10471787303686142, 0.057762712240219116, -0.060027480125427246, 0.05097508057951927, 0.006857714615762234, -0.04333255812525749, -0.0943559780716896, -0.1745036542415619, 0.06874173879623413, -0.01857493445277214, 0.07455691695213318, -0.05148515850305557, -0.06848044693470001, 0.10047029703855515, 0.1930001825094223, -0.15753547847270966, -0.03538357838988304, -0.1264779418706894, 0.007053108885884285, 0.09776508808135986, -0.0425308421254158, 0.0478123277425766, -0.03301144391298294, 0.035477522760629654, -0.043344929814338684, -0.03971776366233826, 0.061891719698905945, -0.04711533337831497, -0.05612197145819664, -0.02667146548628807, 0.02739623375236988, 0.07526922225952148, 0.044065333902835846, -0.0005687482189387083, 0.028172018006443977, -0.022067755460739136, -0.10980577766895294, -0.04353649914264679, -0.022837981581687927, -0.00016429457173217088, 0.09088033437728882, -0.04666107892990112, 0.004894308280199766, -0.07148181647062302, 0.01210788544267416, 0.17996741831302643, 0.1386406570672989, -0.0682177022099495, 0.05671805888414383, 0.12513546645641327, -0.09920788556337357, -0.25048327445983887, 0.004202292766422033, 0.013747898861765862, -0.0031995626632124186, -0.010287533514201641, -0.21656441688537598, 0.13270767033100128, 0.044618040323257446, -0.019078189507126808, 0.06238488480448723, -0.13686221837997437, -0.07960012555122375, 0.1880018264055252, 0.09438488632440567, 0.042481523007154465, -0.15575921535491943, -0.0937020406126976, -0.03060714714229107, -0.09301333874464035, 0.05752348527312279, -0.06541655957698822, 0.08927644044160843, -0.02425779588520527, -0.02317298948764801, 0.01874249242246151, -0.031512901186943054, 0.09945503622293472, -0.018804708495736122, 0.015548840165138245, -0.1290854662656784, -0.05228487774729729, 0.10179024189710617, -0.03961295634508133, 0.07434391975402832, -0.06196684390306473, 0.02404020167887211, -0.09400047361850739, -0.07587682455778122, 0.017776593565940857, 0.12165722995996475, -0.022875135764479637, -0.06781191378831863, -0.095899298787117, 0.057857442647218704, -0.07623790949583054, -0.014413869008421898, 0.04384595900774002, -0.11977487802505493, 0.05681377649307251, 0.14555121958255768, 0.12915857136249542, 0.05483432859182358, -0.027412135154008865, 0.05126409977674484, -0.0017454407643526793, 0.1068653091788292, -0.13976046442985535, 0.022993508726358414, 0.08178071677684784, 0.026269886642694473, 0.15935911238193512, 0.042831748723983765, -0.14851334691047668, -0.015648335218429565, 0.10302799940109253, -0.09744095802307129, -0.01811343804001808, -0.006470957770943642, 0.06425240635871887, -0.1481744349002838, -0.05937238410115242, 0.1406669169664383, -0.031385038048028946, 0.01034601591527462, 0.04468155652284622, -0.006457753013819456, -0.07616947591304779, 0.06466397643089294, 0.13996095955371857, 0.037827927619218826, -0.023884691298007965, 0.07703722268342972, 0.15185397863388062, -0.032563064247369766, 0.03770513832569122, 0.009560835547745228, -0.038181912153959274, -0.07676445692777634, -0.054873403161764145, 0.12169644981622696, -0.007982159964740276, -0.09199877828359604, 0.006920241750776768, -0.07648233324289322, 0.01191321574151516, 0.17649374902248383, 0.05201093107461929, 0.008991343900561333, -0.014367516152560711, 0.012949846684932709, -0.10889717191457748, 0.05574018135666847, -0.03876456618309021, 0.04483835771679878, -0.05547911301255226, -0.04820549115538597, 0.08530458062887192, 0.022925281897187233, -0.05093823000788689, -0.07947893440723419, -0.14855678379535675, 0.005242731422185898, -0.050996195524930954, 0.03119657374918461, -0.0648391917347908, -0.013357368297874928, 0.01859402470290661, -0.07031664252281189, -0.04949761927127838, -0.007568767759948969, -0.027981946244835854, 0.008153253234922886, 0.026304809376597404, 0.08628395199775696, -0.14326851069927216, -0.03002346307039261, 0.10224488377571106, -0.043179549276828766, 0.06904273480176926, 0.029504546895623207, 0.006069997791200876, -0.0217607319355011, -0.09605273604393005, 0.052868783473968506, -0.0056351348757743835, 0.005590642802417278, -0.019570890814065933, -0.13695164024829865, 0.010136162862181664, -0.04856042563915253, 0.016197169199585915, 0.00446189334616065, 0.16715499758720398, -0.0970723032951355, 0.09778108447790146, -0.042097341269254684, -0.06531102955341339, -0.038618505001068115, 0.07016946375370026, 0.09178248792886734, 0.09277600795030594, 0.10731761157512665, -0.05427483096718788, 0.08218103647232056, -0.06427813321352005, 0.036964092403650284, -0.009068065322935581, 0.015471460297703743, 0.10338850319385529, -0.11368905007839203, -0.03680584952235222, -0.020620888099074364, 0.20753030478954315, 0.01627158373594284, 0.01500819530338049, 0.04174990579485893, 0.020046599209308624, -0.017197243869304657, -0.020326273515820503, 0.0849466621875763, 0.03676581755280495, 0.016423573717474937, -0.009570127353072166, 0.056262873113155365, -0.019475268200039864, -0.02289571426808834, 0.12440505623817444, 0.22968405485153198, -0.038354143500328064, 0.01829279400408268, 0.03013012744486332, -0.053400978446006775, -0.01830321177840233, 0.059794262051582336, 0.026445331051945686, 0.005603119730949402, -0.02062632329761982, 0.14012214541435242, 0.15117743611335754, -0.03743232414126396, 0.036727432161569595, 0.02385447360575199, -0.05307378992438316, -0.08709725737571716, -0.05899298936128616, -0.024222170934081078, -0.10481511056423187, -0.003659971756860614, -0.07433024048805237, -0.03093143366277218, 0.14027351140975952, -0.00023742449411656708, 0.019575847312808037, 0.21595440804958344, -0.06420114636421204, -0.061931729316711426, 0.008805028162896633, -0.03166000545024872, 0.013039167039096355, -0.17030629515647888, 0.05282726511359215, 0.018353842198848724, 0.07810705155134201, 0.0309725534170866, 0.06457369029521942, 0.017925549298524857, 0.03766921907663345, -0.04006534442305565, -0.0982358455657959, -0.021839061751961708, 0.07570841163396835, -0.02760397084057331, 0.07904143631458282, 0.004375452641397715, -0.016787756234407425, -0.02007373422384262, 0.17847368121147156, -0.042806126177310944, -0.1386585831642151, -0.10179586708545685, 0.07285620272159576, -0.04419887810945511, 0.005817940924316645, -0.09611044079065323, -0.10341504216194153, -0.0034799494314938784, 0.21787376701831818, 0.09291204810142517, -0.015796953812241554, 0.02680128999054432, 0.04316432774066925, 0.030419286340475082, 0.07032107561826706, 0.0253228098154068, 0.004339013714343309, 0.07695962488651276, -0.03850017488002777, -0.07080797851085663, -0.07864799350500107, -0.032279618084430695, 0.05270899087190628, 0.07296542823314667, 0.025386180728673935, -0.06385286152362823, -0.056550029665231705, 0.09607124328613281, -0.08253350853919983, -0.23883767426013947, 0.04592164605855942, -0.0598738007247448, -0.07465578615665436, -0.05909394100308418, 0.07448895275592804, -0.06593791395425797, 0.007296217605471611, -0.0010750461369752884, -0.0784977450966835, 0.027768531814217567, 0.0525161474943161, -0.11258823424577713, -0.03797227889299393, 0.08948541432619095, -0.0449674166738987, 0.1752234399318695, -0.04149533808231354, 0.0031955281738191843, 0.08990545570850372, 0.06921937316656113, -0.0803551971912384, 0.03646213933825493, 0.01579303666949272, -0.03235442563891411, 0.018709424883127213, 0.04203769937157631, -0.02112177200615406, 0.12127191573381424, 0.08291368186473846, -0.1648724377155304, 0.06954488903284073, -0.011682579293847084, -0.06561428308486938, -0.10258283466100693, -0.03944792225956917, -0.10810743272304535, 0.17300719022750854, 0.14293302595615387, 0.00419131712988019, -0.04879763349890709, -0.07778201252222061, 0.009516549296677113, 0.020140454173088074, 0.08313117921352386, -0.06230894848704338, -0.06791265308856964, -0.061532046645879745, -0.030619656667113304, 0.029245369136333466, -0.309842973947525, -0.033449046313762665, 0.0011417511850595474, -0.03351455181837082, -0.011915718205273151, 0.06572778522968292, 0.1225089579820633, 0.06723195314407349, -0.04184853285551071, -0.09092966467142105, 0.014338178560137749, 0.11533704400062561, -0.20360980927944183, -0.016053324565291405 ]
null
null
adapter-transformers
# Adapter `AdapterHub/roberta-base-pf-commonsense_qa` for roberta-base An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [comsense/csqa](https://adapterhub.ml/explore/comsense/csqa/) dataset and includes a prediction head for multiple choice. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("roberta-base") adapter_name = model.load_adapter("AdapterHub/roberta-base-pf-commonsense_qa", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-what-to-pre-train-on, title={What to Pre-Train on? Efficient Intermediate Task Selection}, author={Clifton Poth and Jonas Pfeiffer and Andreas Rücklé and Iryna Gurevych}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (EMNLP)", month = nov, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/2104.08247", pages = "to appear", } ```
{"language": ["en"], "tags": ["roberta", "adapterhub:comsense/csqa", "adapter-transformers"], "datasets": ["commonsense_qa"]}
null
AdapterHub/roberta-base-pf-commonsense_qa
[ "adapter-transformers", "roberta", "adapterhub:comsense/csqa", "en", "dataset:commonsense_qa", "arxiv:2104.08247", "region:us" ]
2022-03-02T23:29:04+00:00
[ "2104.08247" ]
[ "en" ]
TAGS #adapter-transformers #roberta #adapterhub-comsense/csqa #en #dataset-commonsense_qa #arxiv-2104.08247 #region-us
# Adapter 'AdapterHub/roberta-base-pf-commonsense_qa' for roberta-base An adapter for the 'roberta-base' model that was trained on the comsense/csqa dataset and includes a prediction head for multiple choice. This adapter was created for usage with the adapter-transformers library. ## Usage First, install 'adapter-transformers': _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_ Now, the adapter can be loaded and activated like this: ## Architecture & Training The training code for this adapter is available at URL In particular, training configurations for all tasks can be found here. ## Evaluation results Refer to the paper for more information on results. If you use this adapter, please cite our paper "What to Pre-Train on? Efficient Intermediate Task Selection":
[ "# Adapter 'AdapterHub/roberta-base-pf-commonsense_qa' for roberta-base\n\nAn adapter for the 'roberta-base' model that was trained on the comsense/csqa dataset and includes a prediction head for multiple choice.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ "TAGS\n#adapter-transformers #roberta #adapterhub-comsense/csqa #en #dataset-commonsense_qa #arxiv-2104.08247 #region-us \n", "# Adapter 'AdapterHub/roberta-base-pf-commonsense_qa' for roberta-base\n\nAn adapter for the 'roberta-base' model that was trained on the comsense/csqa dataset and includes a prediction head for multiple choice.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ 42, 76, 57, 30, 45 ]
[ "passage: TAGS\n#adapter-transformers #roberta #adapterhub-comsense/csqa #en #dataset-commonsense_qa #arxiv-2104.08247 #region-us \n# Adapter 'AdapterHub/roberta-base-pf-commonsense_qa' for roberta-base\n\nAn adapter for the 'roberta-base' model that was trained on the comsense/csqa dataset and includes a prediction head for multiple choice.\n\nThis adapter was created for usage with the adapter-transformers library.## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ -0.04951002821326256, -0.02616850472986698, -0.0036667482927441597, 0.002022108295932412, 0.15496766567230225, 0.021685641258955002, 0.16750618815422058, 0.04858043044805527, -0.001195669174194336, 0.036430828273296356, 0.042972177267074585, 0.06992753595113754, 0.08095771074295044, 0.04313405230641365, 0.04474601522088051, -0.0949147418141365, 0.01698528602719307, 0.021433254703879356, -0.09965895861387253, 0.10667835175991058, 0.12247671186923981, -0.07585007697343826, 0.096267931163311, 0.06158146634697914, -0.11924870312213898, 0.0390559546649456, -0.012292143888771534, -0.08747914433479309, 0.10453902930021286, 0.10141143947839737, 0.1706477701663971, 0.04492820054292679, 0.02557394653558731, -0.17432907223701477, 0.03345532715320587, 0.07157938927412033, 0.008990688249468803, 0.07577889412641525, -0.04356694966554642, -0.038674429059028625, 0.031000623479485512, 0.015005547553300858, 0.049082618206739426, 0.06630377471446991, -0.09645938873291016, -0.1639372855424881, -0.06298065185546875, 0.09858228266239166, 0.04026104137301445, 0.08361431956291199, 0.009656514041125774, 0.05511227995157242, -0.01656566746532917, 0.04780501872301102, 0.23122382164001465, -0.2334040403366089, -0.01920601911842823, 0.03214668482542038, 0.09181927144527435, 0.04526039958000183, -0.05436638370156288, -0.0010502600343897939, 0.024921361356973648, 0.0056693037040531635, 0.02251000888645649, -0.05261094495654106, -0.0031693093478679657, -0.007620353251695633, -0.1307257115840912, -0.032677724957466125, 0.239206001162529, -0.019645869731903076, -0.0867418423295021, -0.02263958379626274, -0.01893365941941738, 0.07218356430530548, 0.023329447954893112, -0.0612572506070137, -0.005090331193059683, 0.0022628139704465866, -0.0352974459528923, -0.09770084917545319, -0.11378049105405807, -0.10648579895496368, -0.10480614006519318, 0.20438288152217865, -0.018338659778237343, 0.041832249611616135, -0.031708721071481705, 0.11472771316766739, -0.00022005909704603255, -0.08775278180837631, -0.083913654088974, -0.058793310075998306, -0.09445781260728836, -0.030526746064424515, -0.02904214896261692, -0.22350364923477173, 0.034626878798007965, 0.19873476028442383, 0.13629327714443207, 0.04451719671487808, -0.04799270257353783, 0.05703303590416908, 0.021394647657871246, 0.1994914561510086, -0.10013913363218307, -0.010796460323035717, -0.007868627086281776, -0.024249594658613205, -0.023600609973073006, -0.09026381373405457, -0.06697200238704681, -0.027354756370186806, 0.0004095790791325271, 0.05130218714475632, 0.020275941118597984, 0.06446563452482224, -0.023220783099532127, -0.026634657755494118, 0.11807053536176682, -0.12635277211666107, -0.05699654668569565, -0.01944955624639988, -0.015018558129668236, 0.06515532732009888, 0.14207272231578827, 0.020340517163276672, 0.0026242167223244905, 0.02754395641386509, -0.06380753219127655, -0.06699097901582718, -0.05547240376472473, -0.10739070922136307, -0.0025948903057724237, -0.06055259332060814, 0.022344913333654404, -0.15841801464557648, -0.10414586961269379, -0.008609237149357796, 0.0559416301548481, -0.017245862632989883, 0.07701505720615387, 0.056949637830257416, 0.015876134857535362, -0.00033475778764113784, -0.0069475723430514336, 0.0418974906206131, -0.021471356973052025, 0.08147567510604858, 0.043094683438539505, 0.04792920500040054, -0.037415556609630585, 0.05637604743242264, -0.045431219041347504, 0.04463651776313782, -0.15736067295074463, 0.09085770696401596, -0.1293306052684784, 0.03468920662999153, -0.14749546349048615, 0.00803909357637167, -0.01604694500565529, 0.022643335163593292, 0.06125625967979431, 0.03998847305774689, -0.08992847055196762, -0.036054838448762894, 0.12000653147697449, -0.1770014613866806, -0.1522461622953415, 0.028302758932113647, -0.0222639087587595, 0.16316479444503784, 0.03917505219578743, 0.04653196036815643, 0.14162719249725342, -0.09704411774873734, -0.08730052411556244, 0.046156030148267746, -0.08176323026418686, -0.06386666744947433, 0.08117420971393585, 0.02217012271285057, -0.0728241354227066, 0.016023065894842148, -0.06282642483711243, 0.0406268835067749, -0.028837749734520912, -0.05093583092093468, -0.00966535322368145, -0.060540392994880676, -0.0013316930271685123, 0.004095895681530237, -0.024226855486631393, 0.06814965605735779, -0.10399766266345978, 0.08782026171684265, 0.0933818444609642, -0.04181060940027237, 0.020015684887766838, -0.12150227278470993, 0.08696196228265762, -0.15982887148857117, -0.007483492139726877, -0.20106148719787598, 0.018257755786180496, -0.02254573069512844, 0.022873710840940475, 0.06490420550107956, 0.051377445459365845, 0.06027785316109657, -0.011117154732346535, 0.022491905838251114, 0.021024569869041443, -0.051707878708839417, 0.027627982199192047, -0.03500748798251152, -0.08137328177690506, -0.03815414384007454, -0.06487484276294708, 0.10228896886110306, -0.1083463579416275, 0.04377326741814613, 0.05367150530219078, 0.08185729384422302, 0.025743380188941956, -0.0036881007254123688, -0.01671782322227955, -0.017733480781316757, -0.03473027050495148, -0.040925703942775726, 0.003931084182113409, 0.022015094757080078, -0.09604433178901672, 0.04195598512887955, -0.09248203784227371, -0.015090667642652988, 0.07343260943889618, 0.012000471353530884, -0.09758009016513824, -0.040601473301649094, -0.004889263771474361, -0.022269558161497116, 0.01932181417942047, -0.08590281754732132, 0.21910105645656586, 0.05973413959145546, 0.061965201050043106, -0.03966030851006508, -0.0059912363067269325, 0.02323414571583271, -0.03831382095813751, 0.016852475702762604, 0.012956584803760052, 0.07261312752962112, -0.09683822840452194, 0.031799521297216415, 0.14519093930721283, -0.03234803304076195, 0.08770140260457993, -0.03937697038054466, -0.1227196529507637, -0.024998433887958527, -0.047411780804395676, 0.06349844485521317, 0.10314535349607468, -0.029813282191753387, -0.0026899257209151983, 0.0673208236694336, -0.031243903562426567, 0.020518045872449875, -0.062496595084667206, 0.024939820170402527, 0.0522412471473217, 0.00008549790800316259, -0.014740598388016224, -0.006394237279891968, -0.042204175144433975, 0.05259648710489273, 0.05734366923570633, 0.10132134705781937, -0.0028246156871318817, -0.02959388494491577, -0.06431058794260025, 0.17357969284057617, -0.0400603823363781, -0.17599084973335266, -0.2033616006374359, -0.1055334210395813, 0.030461618676781654, 0.0022505077067762613, 0.025042319670319557, -0.08214541524648666, -0.07386122643947601, -0.04569559544324875, 0.12583027780056, -0.028681600466370583, 0.00303745549172163, 0.033147700130939484, -0.012602314352989197, 0.06835584342479706, -0.15918421745300293, 0.03958342224359512, 0.006633908487856388, -0.09077530354261398, -0.005092850886285305, -0.010062441229820251, 0.11263864487409592, 0.09966792166233063, -0.005917727947235107, 0.00848399568349123, -0.02343090809881687, 0.14895477890968323, -0.10543603450059891, 0.03642130643129349, 0.1579977571964264, -0.0985800251364708, 0.020181875675916672, 0.09833694994449615, 0.025278925895690918, -0.01787649095058441, 0.0345781035721302, 0.028964029625058174, -0.07664316892623901, -0.2514752745628357, 0.014318279922008514, -0.013940508477389812, -0.05491974949836731, 0.03696618974208832, 0.037674177438020706, 0.04242747277021408, 0.09975776076316833, 0.03004422038793564, 0.004903580527752638, -0.034706633538007736, 0.06019528955221176, 0.13877227902412415, -0.0010436413576826453, 0.09904630482196808, -0.1245504766702652, 0.004885678179562092, 0.07483182102441788, 0.05093254894018173, 0.17381739616394043, -0.019932392984628677, 0.1235116496682167, 0.09397232532501221, -0.023651933297514915, 0.07702465355396271, 0.13283298909664154, -0.03995678946375847, -0.012200274504721165, -0.01820722594857216, -0.031163174659013748, -0.10016053915023804, 0.037314970046281815, 0.003854011883959174, 0.020004617050290108, 0.005398586392402649, -0.00887206569314003, 0.023312125355005264, 0.1455191820859909, -0.011364007368683815, -0.19011782109737396, -0.11417603492736816, -0.009426658973097801, -0.019571995362639427, -0.049003832042217255, -0.0019414119888097048, 0.014067946933209896, -0.1054902970790863, 0.011383379809558392, -0.02353597804903984, 0.10352947562932968, -0.13469350337982178, -0.04102785140275955, 0.006182459183037281, 0.08236013352870941, -0.04129672050476074, 0.08810693025588989, -0.25296732783317566, 0.11016185581684113, 0.03297683224081993, 0.030134379863739014, -0.03616674244403839, 0.04644044488668442, 0.022154374048113823, 0.06858507543802261, 0.06637051701545715, -0.0410858653485775, 0.019297463819384575, -0.1541338562965393, -0.07682176679372787, 0.04914035275578499, 0.0448298454284668, -0.10106734931468964, 0.07098938524723053, -0.048424042761325836, 0.047838933765888214, 0.012739080935716629, 0.012554437853395939, -0.10895483940839767, -0.20063842833042145, 0.07244092971086502, -0.016619626432657242, 0.07072523981332779, -0.07619141787290573, -0.07241613417863846, 0.04855095222592354, 0.14349044859409332, -0.20372414588928223, -0.06384670734405518, -0.15002132952213287, -0.013619926758110523, 0.11080881208181381, -0.0829399898648262, 0.05973641946911812, -0.03784044459462166, 0.09019047766923904, -0.014311368577182293, -0.07060280442237854, 0.03292057290673256, -0.0772395133972168, -0.07280028611421585, -0.03585673123598099, 0.02397085539996624, 0.07415163516998291, 0.04122279956936836, 0.0018000041600316763, -0.002531611593440175, -0.030694087967276573, -0.10234047472476959, -0.02804989367723465, 0.028227781876921654, -0.04276673123240471, 0.04345238581299782, -0.014830399304628372, 0.04132607579231262, -0.06114482134580612, -0.013730649836361408, 0.1400826871395111, 0.1250847727060318, -0.06478282809257507, 0.07095146179199219, 0.1480545997619629, -0.06809548288583755, -0.2306824028491974, -0.04747065156698227, 0.03014509752392769, 0.014640259556472301, 0.0225210040807724, -0.18797703087329865, 0.12741151452064514, 0.029410885646939278, -0.01965492032468319, 0.0012984222266823053, -0.12019507586956024, -0.08231988549232483, 0.1728869378566742, 0.0800747275352478, 0.020217882469296455, -0.12956732511520386, -0.07182440161705017, -0.021227169781923294, -0.19550547003746033, 0.03995072469115257, -0.09229262918233871, 0.07522440701723099, -0.01701728254556656, 0.02825191430747509, 0.001257633906789124, -0.03100057877600193, 0.10774337500333786, -0.005486377514898777, 0.018170539289712906, -0.093913733959198, -0.010545986704528332, 0.11930951476097107, -0.03903583437204361, 0.038450270891189575, -0.03516267612576485, 0.05862484872341156, -0.07235980778932571, -0.06103653460741043, 0.0153321148827672, 0.07559984922409058, -0.01891896314918995, -0.06539829820394516, -0.08750707656145096, 0.029007725417613983, -0.04578229412436485, -0.037547193467617035, 0.06413911283016205, -0.08791326731443405, 0.06342189013957977, 0.15301169455051422, 0.12855838239192963, 0.021727314218878746, -0.05288896709680557, -0.00011895557690877467, -0.017606154084205627, 0.09968864917755127, -0.16161638498306274, 0.05363587290048599, 0.0790112242102623, 0.0022784690372645855, 0.11678111553192139, 0.03745691105723381, -0.1492752730846405, 0.05626903846859932, 0.07529917359352112, -0.04572688788175583, -0.027831444516777992, 0.024248691275715828, 0.05626143515110016, -0.17908728122711182, 0.04020468890666962, 0.15852724015712738, -0.03307881951332092, 0.0009218074847012758, 0.0277512576431036, 0.001359713962301612, -0.07186754792928696, 0.09776173532009125, 0.12319605052471161, 0.05364096909761429, -0.030946122482419014, 0.06776152551174164, 0.11130567640066147, -0.051498010754585266, 0.026739854365587234, -0.09486095607280731, -0.06717970222234726, -0.05670040473341942, -0.07456120103597641, 0.08811882883310318, -0.09075187891721725, -0.08777803182601929, -0.03129371628165245, -0.07857856154441833, 0.009448331780731678, 0.1890372484922409, 0.03486720100045204, 0.02211320959031582, -0.012612533755600452, 0.03513014689087868, -0.09611169248819351, 0.07569202780723572, -0.04260796308517456, 0.05126260221004486, -0.07887588441371918, -0.05860790237784386, 0.05256238952279091, 0.08347718417644501, -0.0502781942486763, -0.05730271711945534, -0.10849616676568985, 0.004722741432487965, -0.14068253338336945, 0.0020618082489818335, -0.06948549300432205, -0.012267457321286201, 0.018889516592025757, -0.10413409769535065, -0.0612555593252182, 0.01993674598634243, -0.009953668341040611, 0.011261104606091976, 0.028761235997080803, 0.07501215487718582, -0.1550288200378418, -0.006334901321679354, 0.08956119418144226, -0.040176015347242355, 0.08127656579017639, 0.025107355788350105, 0.006539577152580023, 0.02611246518790722, -0.08203892409801483, 0.04108939692378044, -0.03813626989722252, 0.02200365625321865, -0.0025524008087813854, -0.08387967199087143, 0.023343747481703758, -0.03935781866312027, -0.027789194136857986, -0.009778095409274101, 0.1448296457529068, -0.052463628351688385, 0.04909425973892212, -0.0516510009765625, 0.02479270100593567, -0.06383287906646729, 0.06506083905696869, 0.11754950881004333, 0.10838117450475693, 0.08667824417352676, -0.056490447372198105, 0.06963113695383072, -0.10012699663639069, 0.01594453491270542, 0.0029857922345399857, 0.010299359448254108, 0.07319958508014679, -0.1405763179063797, -0.011229149997234344, -0.045260991901159286, 0.2519603669643402, -0.04607538878917694, 0.06980836391448975, 0.038812436163425446, -0.00904833897948265, -0.01904192939400673, -0.020927028730511665, 0.1447063386440277, 0.07235229760408401, 0.03488598018884659, -0.0037724466528743505, 0.037272993475198746, -0.03337589278817177, -0.014506686478853226, 0.09399391710758209, 0.15544864535331726, -0.046907007694244385, 0.033783577382564545, 0.03350524231791496, -0.03139175474643707, 0.03269623965024948, -0.02997163124382496, -0.032711658626794815, -0.03102530539035797, -0.0011256752768531442, 0.0875500962138176, 0.16665752232074738, -0.010691567324101925, 0.04215244576334953, 0.01936456188559532, -0.03544585034251213, -0.07814344763755798, -0.017913006246089935, -0.02552192285656929, -0.09143702685832977, -0.012078315950930119, -0.0728461965918541, -0.043263159692287445, 0.17085465788841248, 0.003973948769271374, 0.03132842853665352, 0.21811547875404358, -0.023932626470923424, -0.03584563359618187, 0.004436685238033533, -0.0229916013777256, -0.011766355484724045, -0.10691129416227341, 0.0737631544470787, 0.0595165491104126, 0.10258270055055618, 0.04874176159501076, 0.05253694951534271, 0.012721570208668709, 0.059820160269737244, -0.043071117252111435, -0.11745015531778336, -0.023973053321242332, 0.04455650597810745, -0.04159816727042198, 0.030289828777313232, 0.008088207803666592, 0.014040091075003147, -0.013282419182360172, 0.1506454348564148, -0.03792492300271988, -0.08063633739948273, -0.150136336684227, 0.053415291011333466, -0.03578481823205948, 0.009639168158173561, -0.06251229345798492, -0.10878689587116241, -0.023550255224108696, 0.22903741896152496, 0.09721981734037399, -0.047818902879953384, 0.03681458160281181, 0.04978759214282036, 0.021771205589175224, 0.020662609487771988, 0.0663047581911087, 0.012765507213771343, 0.11919046938419342, -0.03163010627031326, -0.06929121911525726, -0.049045298248529434, -0.05104052275419235, 0.0728037878870964, 0.11102331429719925, -0.013462426140904427, -0.03147902712225914, -0.042566001415252686, 0.07833828777074814, -0.05784611403942108, -0.2631244659423828, 0.0032972018234431744, -0.03469083458185196, -0.08181393146514893, -0.04153241962194443, 0.03674248605966568, -0.012809631414711475, -0.02008974552154541, 0.004302993416786194, -0.0372617281973362, 0.1641315072774887, 0.05183835327625275, -0.0637972429394722, 0.0001990404271055013, 0.09383735060691833, -0.009314087219536304, 0.14177528023719788, -0.024717038497328758, 0.009957114234566689, 0.09192962944507599, 0.05367013067007065, -0.08330747485160828, 0.0424627922475338, 0.04871843755245209, -0.06720228493213654, 0.009423205628991127, 0.041385065764188766, 0.003130730241537094, 0.07876172661781311, 0.08305049687623978, -0.14527125656604767, 0.07370389252901077, -0.053449224680662155, -0.04431535676121712, -0.08159558475017548, -0.02065802365541458, -0.07999090105295181, 0.17033644020557404, 0.0923628956079483, -0.016420764848589897, -0.046790096908807755, -0.08108580112457275, 0.028614630922675133, 0.029212795197963715, 0.09618403017520905, -0.04913797974586487, -0.0855032205581665, -0.025501906871795654, -0.07596387714147568, 0.02226453833281994, -0.2874266803264618, -0.02856851927936077, 0.03945564851164818, -0.04960550740361214, 0.03166378661990166, 0.0801570862531662, 0.10732028633356094, 0.07305210083723068, -0.046345267444849014, -0.015820106491446495, 0.0029198017437011003, 0.10125911235809326, -0.20082180202007294, -0.044586341828107834 ]
null
null
adapter-transformers
# Adapter `AdapterHub/roberta-base-pf-comqa` for roberta-base An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [com_qa](https://huggingface.co/datasets/com_qa/) dataset and includes a prediction head for question answering. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("roberta-base") adapter_name = model.load_adapter("AdapterHub/roberta-base-pf-comqa", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
{"language": ["en"], "tags": ["question-answering", "roberta", "adapter-transformers"], "datasets": ["com_qa"]}
question-answering
AdapterHub/roberta-base-pf-comqa
[ "adapter-transformers", "roberta", "question-answering", "en", "dataset:com_qa", "arxiv:2104.08247", "region:us" ]
2022-03-02T23:29:04+00:00
[ "2104.08247" ]
[ "en" ]
TAGS #adapter-transformers #roberta #question-answering #en #dataset-com_qa #arxiv-2104.08247 #region-us
# Adapter 'AdapterHub/roberta-base-pf-comqa' for roberta-base An adapter for the 'roberta-base' model that was trained on the com_qa dataset and includes a prediction head for question answering. This adapter was created for usage with the adapter-transformers library. ## Usage First, install 'adapter-transformers': _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_ Now, the adapter can be loaded and activated like this: ## Architecture & Training The training code for this adapter is available at URL In particular, training configurations for all tasks can be found here. ## Evaluation results Refer to the paper for more information on results. If you use this adapter, please cite our paper "What to Pre-Train on? Efficient Intermediate Task Selection":
[ "# Adapter 'AdapterHub/roberta-base-pf-comqa' for roberta-base\n\nAn adapter for the 'roberta-base' model that was trained on the com_qa dataset and includes a prediction head for question answering.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ "TAGS\n#adapter-transformers #roberta #question-answering #en #dataset-com_qa #arxiv-2104.08247 #region-us \n", "# Adapter 'AdapterHub/roberta-base-pf-comqa' for roberta-base\n\nAn adapter for the 'roberta-base' model that was trained on the com_qa dataset and includes a prediction head for question answering.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ 37, 72, 57, 30, 45 ]
[ "passage: TAGS\n#adapter-transformers #roberta #question-answering #en #dataset-com_qa #arxiv-2104.08247 #region-us \n# Adapter 'AdapterHub/roberta-base-pf-comqa' for roberta-base\n\nAn adapter for the 'roberta-base' model that was trained on the com_qa dataset and includes a prediction head for question answering.\n\nThis adapter was created for usage with the adapter-transformers library.## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ -0.021959694102406502, -0.04722658172249794, -0.0020901167299598455, 0.0055557857267558575, 0.168034628033638, 0.036897074431180954, 0.11963310837745667, 0.0740930438041687, 0.010512378066778183, 0.03627534210681915, 0.0522238090634346, 0.06858167052268982, 0.0709172934293747, -0.002986696781590581, 0.034605950117111206, -0.08261299133300781, 0.0027277227491140366, -0.001680790795944631, -0.07671425491571426, 0.11418916285037994, 0.12507306039333344, -0.07002273947000504, 0.0759366899728775, 0.021183522418141365, -0.10523661971092224, 0.05096873641014099, -0.03566942736506462, -0.07196003943681717, 0.10380169749259949, 0.08314985781908035, 0.14460453391075134, 0.02956111915409565, 0.01923944056034088, -0.185287743806839, 0.030808236449956894, 0.06667881458997726, -0.000905581924598664, 0.056660305708646774, -0.00835574883967638, -0.04792575538158417, -0.009884556755423546, 0.03959095850586891, 0.0314088799059391, 0.061837464570999146, -0.12772922217845917, -0.19573810696601868, -0.05963771790266037, 0.0797099769115448, 0.06464705616235733, 0.12675507366657257, -0.02246103622019291, 0.07332578301429749, -0.050472814589738846, 0.05477968230843544, 0.1806964874267578, -0.24569039046764374, -0.022609734907746315, 0.015851574018597603, 0.13948288559913635, 0.0704825296998024, -0.04958830401301384, -0.022036219015717506, 0.017458615824580193, 0.02087138034403324, -0.017087262123823166, -0.06615279614925385, -0.032850250601768494, 0.00219899439252913, -0.1609984040260315, -0.03512394800782204, 0.2648596465587616, -0.028920095413923264, -0.05191831663250923, 0.017400743439793587, -0.0055867950432002544, 0.09116881340742111, 0.0311797596514225, -0.07202212512493134, -0.009661855176091194, 0.0063266088254749775, -0.0006848786724731326, -0.12075916677713394, -0.10215374082326889, -0.12144748121500015, -0.08200783282518387, 0.25020286440849304, -0.0033395658247172832, 0.02187991514801979, -0.05126345157623291, 0.10905737429857254, -0.05004114657640457, -0.08147764950990677, -0.050612326711416245, -0.05351635068655014, -0.09990577399730682, -0.03099590539932251, -0.0364384688436985, -0.2197035849094391, 0.04551785811781883, 0.24065817892551422, 0.11979608237743378, 0.041159454733133316, -0.029635382816195488, 0.08056417107582092, 0.03378133475780487, 0.1756988912820816, -0.10954305529594421, -0.052451085299253464, -0.019560573622584343, -0.005848457105457783, -0.050906408578157425, -0.07668157666921616, -0.0983211100101471, -0.044899772852659225, 0.012912082485854626, 0.053164124488830566, 0.0740094780921936, 0.046884339302778244, 0.0012178292963653803, -0.04695641249418259, 0.05328407883644104, -0.10901972651481628, -0.04901394248008728, -0.024123722687363625, 0.0000616403340245597, -0.017555566504597664, 0.12730419635772705, 0.04537335783243179, -0.0123461177572608, 0.03186817839741707, -0.050575174391269684, -0.0727836862206459, -0.07400999963283539, -0.12714332342147827, -0.013760620728135109, -0.09504741430282593, 0.0237983800470829, -0.1522354930639267, -0.10817628353834152, -0.033608436584472656, 0.06945637613534927, -0.02669023908674717, 0.06540753692388535, 0.07037847489118576, 0.008441099897027016, -0.012493696063756943, 0.00718490406870842, 0.0973556637763977, -0.021640753373503685, 0.08540455251932144, 0.052259430289268494, 0.05300891026854515, -0.057084470987319946, 0.07555852830410004, -0.05915708467364311, 0.045185454189777374, -0.1119413822889328, 0.07711578905582428, -0.1060926616191864, 0.03460394963622093, -0.1520962119102478, 0.012441412545740604, -0.03907002508640289, 0.03162011131644249, 0.06642179191112518, 0.025273887440562248, -0.05352305993437767, -0.009710133075714111, 0.0890204980969429, -0.1707950383424759, -0.13952873647212982, 0.02980329655110836, -0.012000934220850468, 0.1825685352087021, 0.009401390329003334, 0.11440343409776688, 0.13490840792655945, -0.06297450512647629, -0.05241793766617775, 0.05043557286262512, -0.11897597461938858, -0.06447509676218033, 0.09990210831165314, 0.00888823438435793, -0.15585722029209137, -0.011095071211457253, -0.09889235347509384, 0.05091628059744835, -0.022931398823857307, -0.05578792467713356, -0.007712565828114748, -0.04476339742541313, -0.037723299115896225, 0.0276116281747818, -0.030733419582247734, 0.07150296121835709, -0.11859434843063354, 0.06893709301948547, 0.06843315064907074, -0.030142154544591904, 0.00479341484606266, -0.1116257980465889, 0.11264818161725998, -0.16687701642513275, 0.005666102282702923, -0.2011086493730545, 0.05364103987812996, -0.02770279347896576, 0.08560450375080109, 0.06343192607164383, 0.05992119759321213, 0.06269074231386185, -0.022697696462273598, 0.00893893651664257, 0.0023964494466781616, -0.04744023457169533, 0.023396313190460205, -0.045193009078502655, -0.11354818195104599, -0.02999057061970234, -0.07583394646644592, 0.10086622834205627, -0.11006122082471848, 0.03444879129528999, 0.009686957113444805, 0.04124950245022774, 0.010859133675694466, 0.017963161692023277, -0.016990141943097115, -0.01791645959019661, -0.029583824798464775, -0.03240039572119713, 0.030339378863573074, 0.021857932209968567, -0.06958423554897308, 0.0316058024764061, -0.10422778129577637, -0.1012626588344574, 0.06639812141656876, -0.021182121708989143, -0.11985846608877182, -0.04713520035147667, -0.011917570605874062, -0.05309855937957764, 0.02914087288081646, -0.09066838771104813, 0.2251468300819397, 0.04523218050599098, 0.03990926593542099, -0.03700582683086395, -0.0077862609177827835, -0.003806818975135684, -0.05161850526928902, 0.033649373799562454, 0.05429588258266449, 0.08906843513250351, -0.10608323663473129, 0.05813242867588997, 0.15208488702774048, -0.08038150519132614, 0.07672687619924545, -0.03030463121831417, -0.12546588480472565, -0.025235436856746674, -0.010234169661998749, 0.05949180945754051, 0.10812439024448395, -0.08770506083965302, 0.008808907121419907, 0.06558642536401749, -0.027173606678843498, 0.04648851975798607, -0.06186142563819885, 0.01618272252380848, 0.046341702342033386, 0.015249214135110378, 0.01198561117053032, -0.014793054200708866, -0.04232831299304962, 0.04771319404244423, 0.0751594603061676, 0.10873280465602875, 0.0021490708459168673, -0.03639252111315727, -0.07057729363441467, 0.171858012676239, -0.015038887970149517, -0.15548834204673767, -0.16910739243030548, -0.10659907013177872, 0.07479574531316757, -0.009545095264911652, 0.04617757722735405, -0.08185878396034241, -0.06090519204735756, -0.02400415949523449, 0.11689287424087524, -0.06074538081884384, -0.028683405369520187, -0.03132472187280655, -0.016044218093156815, 0.05481792241334915, -0.13055646419525146, 0.05089685320854187, 0.02055830880999565, -0.07583536207675934, 0.021957524120807648, -0.00760957645252347, 0.13904820382595062, 0.11179458349943161, -0.02666464075446129, 0.0200798362493515, -0.016603054478764534, 0.17915551364421844, -0.1099509671330452, 0.03441450372338295, 0.1264573484659195, -0.10079266130924225, 0.01759633608162403, 0.1465732902288437, -0.0015021428698673844, -0.00818753894418478, 0.03544927015900612, 0.05014129355549812, -0.06986187398433685, -0.27356746792793274, 0.020324058830738068, -0.013175291009247303, -0.052911754697561264, 0.05884954705834389, 0.04489903151988983, 0.04499614238739014, 0.11945807188749313, 0.03740977123379707, -0.01745845377445221, -0.057095564901828766, 0.07391982525587082, 0.11985678970813751, 0.0032060511875897646, 0.1098109781742096, -0.09151432663202286, -0.0009620915516279638, 0.07184410095214844, 0.05632669851183891, 0.18759258091449738, -0.008242919109761715, 0.08230916410684586, 0.09915801882743835, -0.008969071321189404, 0.06821571290493011, 0.09238950163125992, -0.07665038853883743, -0.0016782155726104975, -0.028427178040146828, -0.02304999530315399, -0.049476105719804764, 0.04845144599676132, 0.02117033861577511, -0.006050624884665012, 0.019789952784776688, -0.0040285359136760235, 0.02182612754404545, 0.14386902749538422, -0.015998555347323418, -0.14921005070209503, -0.05692509934306145, 0.0024844880681484938, -0.008175646886229515, -0.07324172556400299, 0.007478546816855669, 0.030371051281690598, -0.0880020260810852, -0.03542260825634003, -0.02825983241200447, 0.11924481391906738, -0.10320959985256195, -0.044618941843509674, 0.014503415673971176, 0.08814103901386261, -0.034281570464372635, 0.12861065566539764, -0.23528197407722473, 0.111846923828125, 0.0376385897397995, 0.023504765704274178, -0.04506650194525719, 0.032849349081516266, -0.0014898231020197272, 0.04367733374238014, 0.10793008655309677, -0.029491301625967026, 0.040325142443180084, -0.10694439709186554, -0.06618204712867737, 0.04478304460644722, 0.06379299610853195, -0.10684442520141602, 0.07030019164085388, -0.06484531611204147, 0.059643469750881195, 0.00917983427643776, -0.0023966494482010603, -0.09917048364877701, -0.1794237494468689, 0.07164666056632996, -0.01554271299391985, 0.08958394080400467, -0.05617179721593857, -0.0525556281208992, 0.053246837109327316, 0.15847265720367432, -0.19032776355743408, -0.04844173416495323, -0.13085278868675232, 0.01506936177611351, 0.10498661547899246, -0.060573507100343704, 0.04683728516101837, -0.04433344304561615, 0.03318318352103233, -0.026720333844423294, -0.03455442562699318, 0.05688740685582161, -0.08621104806661606, -0.04997454583644867, -0.025099273771047592, 0.01177175808697939, 0.08088883757591248, 0.05128176882863045, 0.0006534929852932692, 0.014809363521635532, -0.07117919623851776, -0.11276093870401382, -0.009418926201760769, -0.06125020608305931, -0.029180901125073433, 0.03934665024280548, -0.044104721397161484, 0.04672865942120552, -0.08068383485078812, -0.016089465469121933, 0.19494812190532684, 0.1455511599779129, -0.08031157404184341, 0.045404329895973206, 0.1669224202632904, -0.06594336777925491, -0.25950881838798523, -0.022808294743299484, 0.04616178199648857, 0.0038889870047569275, 0.0035151306074112654, -0.18666228652000427, 0.11528485268354416, 0.036432765424251556, -0.019136305898427963, 0.020282292738556862, -0.12941664457321167, -0.059424400329589844, 0.19514024257659912, 0.09533347934484482, 0.008449682034552097, -0.17827171087265015, -0.0814361497759819, -0.007240672595798969, -0.12704525887966156, 0.03871234506368637, -0.10454516857862473, 0.086332768201828, -0.02122235856950283, -0.014645261690020561, -0.0017664723563939333, -0.04745432734489441, 0.10874558985233307, -0.017753222957253456, 0.0023492774926126003, -0.09678415209054947, -0.03569783270359039, 0.11198664456605911, -0.031906209886074066, 0.04349012300372124, -0.02987843006849289, 0.05639351159334183, -0.09257416427135468, -0.06440195441246033, -0.01287267729640007, 0.0781412422657013, -0.01216131541877985, -0.08162296563386917, -0.06358440220355988, 0.04829820618033409, -0.04968121275305748, -0.030059462413191795, 0.009791756980121136, -0.11855871975421906, 0.05385327711701393, 0.1505231112241745, 0.1388053447008133, 0.05314638465642929, -0.06604839116334915, 0.04025690630078316, -0.018293602392077446, 0.11944816261529922, -0.11723003536462784, 0.036609143018722534, 0.07936469465494156, 0.01699276827275753, 0.1381879597902298, 0.03987893462181091, -0.14747354388237, 0.01623431034386158, 0.08424282819032669, -0.07020658999681473, -0.0694790631532669, 0.008619235828518867, 0.08590707927942276, -0.1837700456380844, -0.031016221269965172, 0.11794904619455338, -0.01437738910317421, 0.0019383177859708667, 0.05152728036046028, -0.004420805722475052, -0.06965741515159607, 0.08033919334411621, 0.16027973592281342, 0.045280199497938156, -0.02544722706079483, 0.07323727756738663, 0.1235148161649704, -0.047481928020715714, 0.04791167005896568, -0.02768910489976406, -0.04799942672252655, -0.08909819275140762, -0.05754362419247627, 0.10538864135742188, -0.05053173378109932, -0.1008247509598732, 0.013589989393949509, -0.06319864839315414, 0.007192706689238548, 0.15026186406612396, 0.029384836554527283, -0.027238480746746063, 0.0024304059334099293, 0.03468502312898636, -0.11761156469583511, 0.08705264329910278, -0.039806582033634186, 0.04176260903477669, -0.0418163426220417, -0.11486531794071198, 0.06998225301504135, 0.0919073224067688, -0.053415607661008835, -0.06664897501468658, -0.13545389473438263, 0.02021181769669056, -0.1207619458436966, 0.01491050235927105, -0.05649053677916527, -0.017500583082437515, 0.018794221803545952, -0.09616812318563461, -0.07128070294857025, -0.005691711325198412, -0.025079980492591858, -0.001391829689964652, 0.028685053810477257, 0.0613323450088501, -0.1329764872789383, -0.031311940401792526, 0.09500610083341599, -0.022337656468153, 0.07784385979175568, 0.02509264461696148, 0.017242396250367165, -0.019533615559339523, -0.06497316062450409, 0.02264084294438362, -0.056964367628097534, 0.013025525026023388, -0.006628670264035463, -0.12861844897270203, 0.013487848453223705, -0.05903574451804161, -0.030352747067809105, -0.009469359181821346, 0.15484710037708282, -0.08048015087842941, 0.10472660511732101, -0.05042042210698128, -0.013869484886527061, -0.05801013484597206, 0.06326162070035934, 0.06626565754413605, 0.10277830064296722, 0.09283355623483658, -0.058119647204875946, 0.0993516594171524, -0.08571554720401764, 0.032226573675870895, -0.001114554237574339, 0.03648681193590164, 0.05717083066701889, -0.12645287811756134, -0.01606719195842743, -0.040676627308130264, 0.2305041402578354, -0.02684885449707508, 0.08664354681968689, 0.031313978135585785, -0.005056443624198437, -0.005391492508351803, -0.04804380238056183, 0.14049221575260162, 0.05321050062775612, 0.018142856657505035, -0.007470243610441685, 0.07040542364120483, -0.05354750528931618, -0.020630044862627983, 0.09876849502325058, 0.21816763281822205, -0.002373362658545375, 0.001490084920078516, 0.044799380004405975, -0.07226162403821945, 0.03036845289170742, 0.039782676845788956, 0.01989048346877098, -0.03251509740948677, -0.019854750484228134, 0.13567928969860077, 0.17268183827400208, -0.017740324139595032, 0.033122457563877106, 0.0019494093721732497, -0.03556942939758301, -0.08350218832492828, -0.008643063716590405, -0.02427717298269272, -0.08737193048000336, 0.0016688527539372444, -0.0773005485534668, -0.04415363445878029, 0.146026149392128, 0.012524092569947243, 0.021289069205522537, 0.22357188165187836, -0.02022552117705345, -0.05880257487297058, -0.02988831140100956, -0.037361666560173035, 0.041729919612407684, -0.13997510075569153, 0.0814393013715744, 0.055131204426288605, 0.07665760070085526, 0.04998268932104111, 0.06420735269784927, -0.011550545692443848, 0.04760518670082092, -0.04911560192704201, -0.10721731185913086, -0.036160074174404144, 0.08276752382516861, -0.028245262801647186, 0.07093075662851334, 0.000706164981238544, 0.01639743335545063, -0.01579130068421364, 0.17377959191799164, -0.04245566204190254, -0.13168513774871826, -0.11837165802717209, 0.05781599506735802, -0.06341724842786789, 0.004350988660007715, -0.09106361120939255, -0.13270309567451477, -0.01096946932375431, 0.2641075849533081, 0.0978245735168457, -0.06622530519962311, 0.0250073429197073, 0.0837075486779213, 0.0261757280677557, 0.03563163802027702, 0.01983160898089409, 0.009516173042356968, 0.09845784306526184, -0.07053889334201813, -0.06486116349697113, -0.08042832463979721, -0.03665692359209061, 0.07691450417041779, 0.11297735571861267, 0.030459251254796982, -0.045786574482917786, -0.048896804451942444, 0.07682193070650101, -0.05676031857728958, -0.24743299186229706, 0.00045690443948842585, -0.01758774183690548, -0.09200751036405563, -0.051876287907361984, 0.06163501739501953, -0.036297135055065155, -0.01777596026659012, -0.004747196100652218, -0.039269715547561646, 0.058927588164806366, 0.04999161884188652, -0.06422611325979233, -0.01665557362139225, 0.10866354405879974, 0.031181903555989265, 0.15628130733966827, -0.04074592515826225, 0.006993410177528858, 0.0963359996676445, 0.05067775398492813, -0.09860800951719284, 0.057998210191726685, 0.055593136698007584, -0.060056425631046295, 0.012732692062854767, 0.04418741911649704, -0.005481395870447159, 0.08685741573572159, 0.09024936705827713, -0.1621391475200653, 0.06557010859251022, -0.050517283380031586, -0.0529104582965374, -0.11031301319599152, -0.016997655853629112, -0.07776390016078949, 0.18179571628570557, 0.11347359418869019, -0.0033464813604950905, -0.05692477524280548, -0.09297966212034225, 0.021161751821637154, 0.036670248955488205, 0.10966572910547256, -0.06167256087064743, -0.061939340084791183, -0.028303761035203934, -0.026966461911797523, 0.019877074286341667, -0.2964822053909302, -0.03273097425699234, 0.03162767365574837, -0.036076538264751434, 0.021948501467704773, 0.0641566663980484, 0.12659351527690887, 0.07985655218362808, -0.05483401194214821, -0.058362919837236404, -0.0003502069157548249, 0.10572504252195358, -0.2200765758752823, -0.029565632343292236 ]
null
null
adapter-transformers
# Adapter `AdapterHub/roberta-base-pf-conll2000` for roberta-base An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [chunk/conll2000](https://adapterhub.ml/explore/chunk/conll2000/) dataset and includes a prediction head for tagging. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("roberta-base") adapter_name = model.load_adapter("AdapterHub/roberta-base-pf-conll2000", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
{"language": ["en"], "tags": ["token-classification", "roberta", "adapterhub:chunk/conll2000", "adapter-transformers"], "datasets": ["conll2000"]}
token-classification
AdapterHub/roberta-base-pf-conll2000
[ "adapter-transformers", "roberta", "token-classification", "adapterhub:chunk/conll2000", "en", "dataset:conll2000", "arxiv:2104.08247", "region:us" ]
2022-03-02T23:29:04+00:00
[ "2104.08247" ]
[ "en" ]
TAGS #adapter-transformers #roberta #token-classification #adapterhub-chunk/conll2000 #en #dataset-conll2000 #arxiv-2104.08247 #region-us
# Adapter 'AdapterHub/roberta-base-pf-conll2000' for roberta-base An adapter for the 'roberta-base' model that was trained on the chunk/conll2000 dataset and includes a prediction head for tagging. This adapter was created for usage with the adapter-transformers library. ## Usage First, install 'adapter-transformers': _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_ Now, the adapter can be loaded and activated like this: ## Architecture & Training The training code for this adapter is available at URL In particular, training configurations for all tasks can be found here. ## Evaluation results Refer to the paper for more information on results. If you use this adapter, please cite our paper "What to Pre-Train on? Efficient Intermediate Task Selection":
[ "# Adapter 'AdapterHub/roberta-base-pf-conll2000' for roberta-base\n\nAn adapter for the 'roberta-base' model that was trained on the chunk/conll2000 dataset and includes a prediction head for tagging.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ "TAGS\n#adapter-transformers #roberta #token-classification #adapterhub-chunk/conll2000 #en #dataset-conll2000 #arxiv-2104.08247 #region-us \n", "# Adapter 'AdapterHub/roberta-base-pf-conll2000' for roberta-base\n\nAn adapter for the 'roberta-base' model that was trained on the chunk/conll2000 dataset and includes a prediction head for tagging.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ 47, 75, 57, 30, 45 ]
[ "passage: TAGS\n#adapter-transformers #roberta #token-classification #adapterhub-chunk/conll2000 #en #dataset-conll2000 #arxiv-2104.08247 #region-us \n# Adapter 'AdapterHub/roberta-base-pf-conll2000' for roberta-base\n\nAn adapter for the 'roberta-base' model that was trained on the chunk/conll2000 dataset and includes a prediction head for tagging.\n\nThis adapter was created for usage with the adapter-transformers library.## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ -0.05101762339472771, 0.016933875158429146, -0.002670468995347619, 0.02506471984088421, 0.15045151114463806, 0.015266003087162971, 0.1477363556623459, 0.04395647719502449, -0.05621742829680443, 0.042503394186496735, 0.049829695373773575, 0.10174845159053802, 0.05283960700035095, 0.0829538032412529, 0.03009316325187683, -0.1311209350824356, 0.020605744794011116, 0.017980750650167465, -0.04944412410259247, 0.11146888136863708, 0.11256755888462067, -0.08308865129947662, 0.09759365022182465, 0.06786362826824188, -0.15361016988754272, 0.044800013303756714, -0.007403458934277296, -0.09457533061504364, 0.08001454174518585, 0.07978871464729309, 0.18277961015701294, 0.001164744608104229, 0.027717359364032745, -0.13030292093753815, 0.022569280117750168, 0.08231303840875626, 0.046376656740903854, 0.08985910564661026, -0.024282492697238922, -0.035481806844472885, 0.0696621984243393, -0.004849250894039869, 0.07781587541103363, 0.06004684790968895, -0.09047532081604004, -0.2251058965921402, -0.06762688606977463, 0.1293734461069107, 0.029133200645446777, 0.09014037996530533, 0.008590507321059704, 0.09787304699420929, 0.05055531486868858, 0.047000836580991745, 0.24217332899570465, -0.22149023413658142, -0.026927145197987556, 0.07139902561903, 0.05001030117273331, 0.006738294847309589, -0.06523612886667252, -0.007506768684834242, 0.03265722841024399, 0.003643077565357089, 0.023548409342765808, -0.03868413716554642, -0.06803902983665466, -0.01214482169598341, -0.14190398156642914, -0.02685478702187538, 0.2250978946685791, -0.027382507920265198, -0.1055537611246109, -0.060382068157196045, -0.016287758946418762, 0.05181141197681427, 0.02901340462267399, -0.07706990838050842, 0.00010233706416329369, 0.007701638154685497, -0.02896079234778881, -0.08438795804977417, -0.11301922053098679, -0.0949556902050972, -0.12294915318489075, 0.3213403522968292, -0.017650937661528587, 0.04403261840343475, -0.01086330134421587, 0.12677326798439026, 0.0003917236754205078, -0.08405376225709915, -0.08166032284498215, -0.06385574489831924, -0.09639852494001389, -0.04823613911867142, -0.02331259474158287, -0.2437320202589035, 0.00797950942069292, 0.213387131690979, 0.08441704511642456, 0.041583895683288574, -0.040867846459150314, 0.058205537497997284, 0.04300893843173981, 0.20308193564414978, -0.08357582241296768, 0.014197739772498608, -0.03260648623108864, -0.06192593276500702, -0.003014899091795087, -0.090494304895401, -0.04404112324118614, -0.029086442664265633, 0.025711415335536003, 0.02412799559533596, 0.02531527914106846, 0.09382801502943039, -0.04663398489356041, -0.03581719845533371, 0.07101389020681381, -0.14086665213108063, -0.02869541570544243, -0.04148804768919945, -0.04894772544503212, 0.11524853110313416, 0.14605672657489777, 0.014045674353837967, 0.011135171167552471, 0.08063977211713791, -0.08199338614940643, -0.0728578045964241, -0.06535310298204422, -0.1225999966263771, 0.012654910795390606, -0.05799875035881996, 0.010528133250772953, -0.14953197538852692, -0.1294231414794922, -0.017774824053049088, 0.07501976191997528, -0.011464415118098259, 0.09526972472667694, 0.051150087267160416, 0.010143023915588856, 0.009046660736203194, -0.006783645134419203, 0.01786830648779869, -0.019305557012557983, 0.06174691021442413, 0.03086007945239544, 0.043181341141462326, -0.03778589889407158, 0.0549003966152668, -0.07527147233486176, 0.023529356345534325, -0.18955253064632416, 0.05584409087896347, -0.13373298943042755, 0.07384204864501953, -0.1654946655035019, -0.023611176759004593, -0.051370084285736084, 0.026951249688863754, 0.06589718908071518, 0.03877580910921097, -0.07490465044975281, -0.04203803464770317, 0.07824491709470749, -0.19651678204536438, -0.1195828765630722, 0.017275100573897362, -0.026994211599230766, 0.18641316890716553, 0.05257829651236534, 0.06474778801202774, 0.14647170901298523, -0.10137438029050827, -0.08873997628688812, 0.028004178777337074, -0.11229366809129715, -0.03767063096165657, 0.05290623754262924, 0.0014752764254808426, -0.08817245066165924, 0.031962841749191284, -0.06513863056898117, 0.00018374879437033087, -0.01394160557538271, -0.03373261168599129, -0.023091699928045273, -0.03211332485079765, 0.020440682768821716, 0.0359068438410759, -0.03117523342370987, 0.03156111761927605, -0.12702380120754242, 0.1414918303489685, 0.09956883639097214, -0.0450458861887455, 0.025049574673175812, -0.1155037060379982, 0.07650956511497498, -0.11983378976583481, -0.014877429232001305, -0.20563694834709167, -0.014041299000382423, -0.026702776551246643, 0.018047165125608444, 0.06836844980716705, 0.05956672877073288, 0.07113177329301834, -0.01240294799208641, 0.03432461619377136, 0.026170261204242706, -0.04074617847800255, 0.025743955746293068, -0.025941578671336174, -0.09535574167966843, -0.06560178101062775, -0.06433690339326859, 0.09757418930530548, -0.14115743339061737, 0.03377850726246834, 0.08982082456350327, 0.07695435732603073, 0.030129503458738327, -0.041018180549144745, -0.0088869109749794, -0.040579862892627716, -0.0453946590423584, -0.0595020055770874, 0.010631627403199673, 0.02693093940615654, -0.0763278603553772, -0.0073867738246917725, -0.09063955396413803, -0.024590641260147095, 0.08945127576589584, 0.02197275310754776, -0.11774154752492905, -0.047838423401117325, -0.023855630308389664, -0.02648857794702053, 0.0029816299211233854, -0.08701156824827194, 0.2168387472629547, 0.047399409115314484, 0.05634691193699837, -0.028406953439116478, -0.018961742520332336, 0.009189313277602196, -0.03182472661137581, -0.0054153138771653175, -0.005546001251786947, 0.010757563635706902, -0.0993456020951271, 0.04021841660141945, 0.10889844596385956, -0.05076209828257561, 0.08103694766759872, -0.02110106311738491, -0.10370959341526031, -0.01865977980196476, -0.0389433428645134, 0.06539786607027054, 0.05988103151321411, -0.02848096750676632, 0.009405695833265781, 0.07428097724914551, -0.012369598262012005, 0.01850801147520542, -0.07143209129571915, 0.03099796362221241, 0.05901097133755684, 0.01651095226407051, 0.02917983941733837, 0.01603526435792446, -0.040901798754930496, 0.04514981433749199, 0.06785675138235092, 0.09641148895025253, -0.0027488071937114, -0.023672854527831078, -0.05528420954942703, 0.17816510796546936, -0.05259448289871216, -0.17980772256851196, -0.22630789875984192, -0.11727108806371689, 0.006323625333607197, 0.00012896412226837128, 0.006599802058190107, -0.0752452090382576, -0.1107860580086708, -0.05651017650961876, 0.14408904314041138, -0.06574416905641556, 0.009226414375007153, 0.05648161470890045, -0.01975185237824917, 0.05337340384721756, -0.17607152462005615, 0.033158060163259506, 0.01579621061682701, -0.08427435159683228, -0.010340938344597816, -0.0009784093126654625, 0.09054567664861679, 0.14452464878559113, -0.02176426351070404, 0.021220363676548004, -0.011011365801095963, 0.09396872669458389, -0.08957526832818985, 0.034836627542972565, 0.15687009692192078, -0.12929370999336243, 0.023969223722815514, 0.06903457641601562, 0.026379628106951714, -0.038053516298532486, 0.056981444358825684, 0.024221310392022133, -0.07886503636837006, -0.26044678688049316, -0.004068139940500259, -0.010597534477710724, -0.0027344513218849897, 0.08971970528364182, 0.03680942580103874, 0.08450037986040115, 0.10471474379301071, 0.039201799780130386, 0.008655831217765808, 0.00028105152887292206, 0.09010608494281769, 0.17191971838474274, -0.0009063820471055806, 0.09286980330944061, -0.11548788100481033, 0.005752633325755596, 0.0910985991358757, -0.014209618791937828, 0.17028625309467316, -0.013332409784197807, 0.08707521855831146, 0.08168915659189224, -0.053855013102293015, 0.04423937201499939, 0.1485951840877533, -0.042077790945768356, -0.010910271666944027, -0.0010442263446748257, -0.060455307364463806, -0.07991837710142136, 0.050936345010995865, -0.042783208191394806, 0.03564894199371338, 0.01261979527771473, -0.021933674812316895, 0.016720280051231384, 0.07869158685207367, 0.015778206288814545, -0.24954798817634583, -0.12350374460220337, -0.010582296177744865, -0.01810634322464466, -0.07354838401079178, -0.0039044320583343506, 0.004211392253637314, -0.09651827812194824, 0.04671497270464897, -0.04019688814878464, 0.08579788357019424, -0.15502768754959106, -0.04947848245501518, 0.01591063290834427, 0.13443322479724884, -0.035193637013435364, 0.08226752281188965, -0.15107855200767517, 0.09080245345830917, 0.026078084483742714, 0.03727700188755989, -0.041795145720243454, 0.05906088650226593, 0.01696234755218029, 0.06744856387376785, 0.06934607028961182, -0.04261968284845352, 0.0047848159447312355, -0.11541571468114853, -0.06906887143850327, 0.0032561463303864002, 0.056258875876665115, -0.08739657700061798, 0.060042936354875565, -0.06461929529905319, 0.037721551954746246, 0.032101597636938095, -0.0074691129848361015, -0.12918485701084137, -0.1806490570306778, 0.07577544450759888, 0.005770030897110701, 0.07797103375196457, -0.07700484246015549, -0.09273327142000198, 0.01883859559893608, 0.24711056053638458, -0.12779925763607025, -0.06014122813940048, -0.16858135163784027, 0.05267571285367012, 0.12511500716209412, -0.058437369763851166, 0.07311772555112839, -0.04189182072877884, 0.09959913045167923, -0.0037930801045149565, -0.08935236185789108, 0.046218112111091614, -0.055353641510009766, -0.06127309426665306, -0.03302118182182312, 0.01742340438067913, 0.080669105052948, 0.01658284291625023, -0.002969725988805294, 0.028241436928510666, -0.014374206773936749, -0.11236152052879333, -0.027883432805538177, 0.07325153797864914, -0.0018361706752330065, 0.04480484873056412, -0.010527047328650951, 0.006694497540593147, -0.03990129008889198, -0.0020513134077191353, 0.1455470621585846, 0.10143820196390152, -0.07588328421115875, 0.03606945276260376, 0.11218111962080002, -0.07073008269071579, -0.2469075471162796, 0.0346388965845108, 0.03571813553571701, 0.004050535149872303, 0.019980022683739662, -0.1839204728603363, 0.16222113370895386, 0.06175106391310692, -0.01931072771549225, 0.027397520840168, -0.17270882427692413, -0.09287696331739426, 0.17509675025939941, 0.09652766585350037, 0.03382139280438423, -0.11330022662878036, -0.07454964518547058, -0.028312796726822853, -0.24106068909168243, 0.054406192153692245, -0.08618995547294617, 0.05834444612264633, -0.01870773732662201, 0.016448894515633583, 0.01748747192323208, -0.04597311094403267, 0.08221957832574844, 0.01991492137312889, 0.04388716444373131, -0.1103210598230362, -0.016001835465431213, 0.12259973585605621, -0.03966287523508072, 0.10768768191337585, 0.0058396682143211365, 0.05951631814241409, -0.07045252621173859, -0.06878293305635452, 0.025778967887163162, 0.11445388942956924, -0.0195017047226429, -0.08228001743555069, -0.10598926246166229, 0.040229324251413345, -0.06358586996793747, -0.047984156757593155, 0.10581992566585541, -0.0608048252761364, 0.07863947004079819, 0.12808547914028168, 0.10406854003667831, 0.04354798048734665, -0.059669915586709976, 0.01957748830318451, -0.011484584771096706, 0.08101089298725128, -0.1851472109556198, 0.03998221084475517, 0.09325072169303894, 0.03806121274828911, 0.1021139845252037, 0.043588683009147644, -0.15203800797462463, 0.0030361285898834467, 0.08525878190994263, -0.08285258710384369, 0.0005204719491302967, 0.01591229811310768, 0.07318839430809021, -0.167745903134346, 0.0690184086561203, 0.15895043313503265, -0.049175430089235306, 0.01683567464351654, 0.05119020491838455, -0.009199315682053566, -0.06597359478473663, 0.09670162200927734, 0.11713825911283493, 0.03498045355081558, -0.03096489980816841, 0.08210839331150055, 0.10702098160982132, -0.0327657014131546, 0.017412234097719193, -0.08022104203701019, -0.07573283463716507, -0.039248861372470856, -0.05551354959607124, 0.05077897757291794, -0.0709507092833519, -0.08209139108657837, 0.0005458356463350356, -0.07408373802900314, -0.0025439723394811153, 0.15543188154697418, 0.06079103797674179, 0.05566718056797981, -0.03321593254804611, 0.03932496905326843, -0.10672556608915329, 0.060340166091918945, -0.008330578915774822, 0.0777391567826271, -0.10763674229383469, -0.004885569214820862, 0.0506059005856514, 0.016058914363384247, -0.04158182069659233, -0.06324900686740875, -0.11183714121580124, -0.010730345733463764, -0.0825512558221817, -0.026644229888916016, -0.06766049563884735, -0.009251435287296772, 0.030549949035048485, -0.10030737519264221, -0.04993997514247894, 0.028426136821508408, -0.009240665473043919, -0.002602578140795231, 0.032153282314538956, 0.058317605406045914, -0.16310536861419678, -0.010195772163569927, 0.08311350643634796, -0.05006301403045654, 0.07018542289733887, 0.027723828330636024, 0.015014011412858963, 0.024463238194584846, -0.0862128883600235, 0.04462915658950806, 0.010976760648190975, 0.009972542524337769, 0.017549315467476845, -0.10718532651662827, 0.01299939677119255, -0.03221099451184273, -0.0011303148930892348, 0.0024660895578563213, 0.1614450067281723, -0.07613541185855865, 0.027202636003494263, -0.05703667923808098, 0.010082367807626724, -0.06792235374450684, 0.054009657353162766, 0.1316242218017578, 0.10737291723489761, 0.11783070117235184, -0.04246821999549866, 0.06292780488729477, -0.09337248653173447, 0.015455145388841629, 0.0012587477685883641, -0.024684028699994087, 0.11361081898212433, -0.10485298931598663, -0.013394057750701904, -0.04031147435307503, 0.2023148536682129, -0.03538026660680771, 0.029589373618364334, 0.047558773308992386, -0.001151115633547306, -0.03090863861143589, -0.01476315688341856, 0.15131880342960358, 0.06346327811479568, 0.03354284167289734, 0.01583150401711464, 0.042735107243061066, 0.00417349673807621, -0.06673459708690643, 0.1427539736032486, 0.13192212581634521, -0.10812754184007645, 0.047834526747465134, 0.027254901826381683, -0.02059592679142952, -0.028167271986603737, 0.004120242781937122, -0.03622716665267944, 0.002221538918092847, -0.00659660529345274, 0.12207453697919846, 0.145482137799263, -0.019251400604844093, 0.04040473327040672, 0.029044974595308304, -0.047149658203125, -0.07932751625776291, -0.07312893122434616, -0.026846868917346, -0.11045330762863159, 0.001379015389829874, -0.06691749393939972, -0.015645761042833328, 0.1269075870513916, 0.019586460664868355, 0.019996872171759605, 0.24328777194023132, -0.06352800130844116, -0.04228882119059563, 0.018681678920984268, -0.026465613394975662, -0.04702511057257652, -0.0955657958984375, 0.06152191013097763, 0.018033290281891823, 0.12313152849674225, 0.05913609266281128, 0.04676050692796707, 0.032111041247844696, 0.05042175576090813, -0.01866798847913742, -0.11437644064426422, -0.045855242758989334, 0.049840427935123444, -0.04430036246776581, -0.004950768314301968, 0.015455308370292187, 0.00750486645847559, -0.025215746834874153, 0.14659427106380463, -0.053247932344675064, -0.08772824704647064, -0.12173450738191605, 0.08900477737188339, -0.012670647352933884, 0.0011913612252101302, -0.04802439361810684, -0.12010373175144196, -0.014177967794239521, 0.22736895084381104, 0.08872192353010178, 0.01873033307492733, 0.03327575698494911, 0.05571276694536209, 0.017357973381876945, 0.008680852130055428, 0.06984468549489975, 0.001145421527326107, 0.11123441904783249, 0.003704576753079891, -0.06755493581295013, -0.0509854331612587, -0.04763561487197876, 0.07223562151193619, 0.08466621488332748, -0.017092866823077202, -0.04719552770256996, -0.056903641670942307, 0.09366931766271591, -0.06110174208879471, -0.27636927366256714, 0.019724855199456215, -0.03056035004556179, -0.08087892085313797, -0.03630587458610535, 0.07393486797809601, -0.03875220939517021, 0.008276031352579594, 0.004104659426957369, -0.04623187333345413, 0.1310916244983673, 0.060046348720788956, -0.09160245954990387, -0.02849220670759678, 0.08659380674362183, -0.019761959090828896, 0.1560312807559967, -0.028676796704530716, 0.045021940022706985, 0.0879916250705719, 0.042126547545194626, -0.10297026485204697, 0.017435038462281227, 0.025522122159600258, -0.06845089048147202, 0.001909244921989739, 0.03474215790629387, -0.0059493849985301495, 0.07995494455099106, 0.0639498382806778, -0.15573613345623016, 0.04350283741950989, -0.03852967545390129, -0.03503914177417755, -0.09662915021181107, -0.03355536237359047, -0.09699192643165588, 0.1714940071105957, 0.11456050723791122, -0.0116261076182127, -0.06103774905204773, -0.09013847261667252, 0.039608728140592575, 0.0071654655039310455, 0.095070481300354, -0.03246776759624481, -0.10175947844982147, -0.03018156811594963, -0.08106536418199539, 0.02994619309902191, -0.2818966805934906, -0.029931409284472466, 0.04763441160321236, -0.054666850715875626, 0.01911463774740696, 0.0691966637969017, 0.10600701719522476, 0.06020816043019295, -0.04206569865345955, -0.008667697198688984, 0.011724671348929405, 0.10696101188659668, -0.19309958815574646, -0.03828386962413788 ]
null
null
adapter-transformers
# Adapter `AdapterHub/roberta-base-pf-conll2003` for roberta-base An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [ner/conll2003](https://adapterhub.ml/explore/ner/conll2003/) dataset and includes a prediction head for tagging. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("roberta-base") adapter_name = model.load_adapter("AdapterHub/roberta-base-pf-conll2003", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
{"language": ["en"], "tags": ["token-classification", "roberta", "adapterhub:ner/conll2003", "adapter-transformers"], "datasets": ["conll2003"]}
token-classification
AdapterHub/roberta-base-pf-conll2003
[ "adapter-transformers", "roberta", "token-classification", "adapterhub:ner/conll2003", "en", "dataset:conll2003", "arxiv:2104.08247", "region:us" ]
2022-03-02T23:29:04+00:00
[ "2104.08247" ]
[ "en" ]
TAGS #adapter-transformers #roberta #token-classification #adapterhub-ner/conll2003 #en #dataset-conll2003 #arxiv-2104.08247 #region-us
# Adapter 'AdapterHub/roberta-base-pf-conll2003' for roberta-base An adapter for the 'roberta-base' model that was trained on the ner/conll2003 dataset and includes a prediction head for tagging. This adapter was created for usage with the adapter-transformers library. ## Usage First, install 'adapter-transformers': _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_ Now, the adapter can be loaded and activated like this: ## Architecture & Training The training code for this adapter is available at URL In particular, training configurations for all tasks can be found here. ## Evaluation results Refer to the paper for more information on results. If you use this adapter, please cite our paper "What to Pre-Train on? Efficient Intermediate Task Selection":
[ "# Adapter 'AdapterHub/roberta-base-pf-conll2003' for roberta-base\n\nAn adapter for the 'roberta-base' model that was trained on the ner/conll2003 dataset and includes a prediction head for tagging.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ "TAGS\n#adapter-transformers #roberta #token-classification #adapterhub-ner/conll2003 #en #dataset-conll2003 #arxiv-2104.08247 #region-us \n", "# Adapter 'AdapterHub/roberta-base-pf-conll2003' for roberta-base\n\nAn adapter for the 'roberta-base' model that was trained on the ner/conll2003 dataset and includes a prediction head for tagging.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.", "## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ 46, 74, 57, 30, 45 ]
[ "passage: TAGS\n#adapter-transformers #roberta #token-classification #adapterhub-ner/conll2003 #en #dataset-conll2003 #arxiv-2104.08247 #region-us \n# Adapter 'AdapterHub/roberta-base-pf-conll2003' for roberta-base\n\nAn adapter for the 'roberta-base' model that was trained on the ner/conll2003 dataset and includes a prediction head for tagging.\n\nThis adapter was created for usage with the adapter-transformers library.## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:## Architecture & Training\n\nThe training code for this adapter is available at URL\nIn particular, training configurations for all tasks can be found here.## Evaluation results\n\nRefer to the paper for more information on results.\n\nIf you use this adapter, please cite our paper \"What to Pre-Train on? Efficient Intermediate Task Selection\":" ]
[ -0.020700078457593918, 0.0017153254011645913, -0.0031110194977372885, 0.025641117244958878, 0.1425832062959671, 0.01251554861664772, 0.14843446016311646, 0.03310723602771759, -0.07274292409420013, 0.04675598442554474, 0.05454360693693161, 0.10993572324514389, 0.03931037336587906, 0.06125263497233391, 0.035305675119161606, -0.12405719608068466, 0.021428300067782402, 0.011124794371426105, -0.022579733282327652, 0.11170591413974762, 0.10540159791707993, -0.0795833095908165, 0.09893971681594849, 0.07759822905063629, -0.14082689583301544, 0.06370031833648682, -0.004422832280397415, -0.08879369497299194, 0.0868234634399414, 0.07439415901899338, 0.18955475091934204, -0.001701262081041932, 0.033220384269952774, -0.16011524200439453, 0.022599272429943085, 0.0802542045712471, 0.03056236170232296, 0.08778204768896103, -0.025803355500102043, -0.05649160221219063, 0.08434753119945526, -0.003540436504408717, 0.08054801821708679, 0.06721284985542297, -0.10915499925613403, -0.19444622099399567, -0.07429960370063782, 0.14531095325946808, 0.027407238259911537, 0.08415108174085617, 0.016328023746609688, 0.0996609628200531, 0.025990022346377373, 0.04896720498800278, 0.2720312774181366, -0.21343053877353668, -0.03669489920139313, 0.07685493677854538, 0.052217137068510056, 0.00010632692283252254, -0.056089140474796295, 0.009281936101615429, 0.03735210746526718, 0.007272095885127783, 0.04639526456594467, -0.03213447332382202, -0.07467056065797806, 0.009360887110233307, -0.15695519745349884, -0.02857615053653717, 0.18901517987251282, -0.014637663960456848, -0.09098773449659348, -0.04713322967290878, -0.025643762201070786, 0.03593744710087776, 0.024258356541395187, -0.08269280195236206, -0.006646065507084131, -0.007304644212126732, -0.03889116644859314, -0.12010662257671356, -0.1071990355849266, -0.11152030527591705, -0.12375517189502716, 0.31708115339279175, -0.012394298799335957, 0.037271708250045776, -0.010026112198829651, 0.125030517578125, 0.00035460953949950635, -0.07159450650215149, -0.07564685493707657, -0.06617145985364914, -0.10354703664779663, -0.045388225466012955, -0.021541934460401535, -0.2306182086467743, 0.006042289547622204, 0.2551897168159485, 0.1042456179857254, 0.03444986045360565, -0.03240865841507912, 0.05681043863296509, 0.018354127183556557, 0.17678463459014893, -0.0920623242855072, 0.012044820003211498, -0.027805255725979805, -0.06546781957149506, 0.008001313544809818, -0.08590620011091232, -0.048067606985569, -0.030482251197099686, 0.010292723774909973, 0.019298089668154716, 0.031415894627571106, 0.09904906898736954, -0.04227149114012718, -0.03493576496839523, 0.08314809203147888, -0.12873658537864685, -0.03407014161348343, -0.030883707106113434, -0.043846406042575836, 0.10476580262184143, 0.15002986788749695, 0.015430833213031292, 0.01578471064567566, 0.07067215442657471, -0.0786047950387001, -0.0843246728181839, -0.06820716708898544, -0.11308768391609192, 0.018280036747455597, -0.05607970058917999, 0.002735508605837822, -0.16348686814308167, -0.14812727272510529, -0.007354834116995335, 0.08539816737174988, -0.010814297012984753, 0.09885350614786148, 0.04127132147550583, 0.01532637607306242, 0.0014620644506067038, -0.013455851003527641, 0.00754404766485095, -0.015226112678647041, 0.051254820078611374, 0.04910864681005478, 0.05070221424102783, -0.046520840376615524, 0.042036738246679306, -0.07271439582109451, 0.02709147520363331, -0.1622322052717209, 0.0409020259976387, -0.13674701750278473, 0.05808795243501663, -0.1704217791557312, -0.020913435146212578, -0.06182899698615074, 0.020646914839744568, 0.07872437685728073, 0.02970515936613083, -0.04947960376739502, -0.047268059104681015, 0.06954984366893768, -0.18321430683135986, -0.11728902906179428, 0.023145610466599464, -0.02688533440232277, 0.17353925108909607, 0.04187886789441109, 0.07931629568338394, 0.14481890201568604, -0.11174700409173965, -0.08268913626670837, 0.01752592623233795, -0.12037718296051025, -0.054674625396728516, 0.039038121700286865, 0.025018122047185898, -0.08861373364925385, 0.031962424516677856, -0.07871650159358978, 0.018865665420889854, -0.018248869106173515, -0.045028530061244965, -0.010861312970519066, -0.03843262419104576, 0.036148250102996826, 0.025445085018873215, -0.03137641400098801, 0.03869766369462013, -0.11934266239404678, 0.1702101081609726, 0.09608544409275055, -0.057058535516262054, 0.0388929545879364, -0.10916025936603546, 0.08619897067546844, -0.12617990374565125, -0.023969430476427078, -0.19686944782733917, -0.03327952325344086, -0.04117043688893318, 0.002629827708005905, 0.08814124763011932, 0.04549139738082886, 0.07915878295898438, -0.0037651786115020514, 0.024867497384548187, 0.02446870505809784, -0.06305060535669327, 0.03187951445579529, -0.005352122243493795, -0.09276462346315384, -0.06541525572538376, -0.05801890417933464, 0.07674893736839294, -0.15399064123630524, 0.03472684696316719, 0.05793093889951706, 0.09150759875774384, 0.02300715260207653, -0.03877463564276695, -0.017928410321474075, -0.0349121131002903, -0.049017470329999924, -0.04697234928607941, 0.0220546405762434, 0.020484264940023422, -0.07700531929731369, 0.0021839241962879896, -0.09398066252470016, -0.04707716405391693, 0.07601606845855713, -0.009761602617800236, -0.12290666997432709, -0.04110918566584587, -0.02983395755290985, -0.03516031429171562, 0.016831697896122932, -0.07454391568899155, 0.22277972102165222, 0.05273418501019478, 0.052141256630420685, -0.02662241831421852, -0.032582953572273254, 0.015742776915431023, -0.044022198766469955, -0.0034349302295595407, 0.0020999591797590256, 0.05231909826397896, -0.11129116266965866, 0.044190701097249985, 0.10376717150211334, -0.08900927007198334, 0.08123389631509781, -0.004081352613866329, -0.10089346766471863, -0.016354629769921303, -0.04255186766386032, 0.0746350809931755, 0.05117389187216759, -0.0027976224664598703, 0.008679763413965702, 0.06754784286022186, -0.012720824219286442, 0.031484510749578476, -0.0653655156493187, 0.02945159561932087, 0.05247907340526581, 0.006623163353651762, 0.0514245480298996, 0.01627029851078987, -0.05146690458059311, 0.046556584537029266, 0.06747137010097504, 0.07841632515192032, -0.0009819027036428452, -0.015410869382321835, -0.05343428999185562, 0.16932979226112366, -0.03459184989333153, -0.15248386561870575, -0.23941963911056519, -0.13622283935546875, -0.01777833327651024, -0.004649899434298277, 0.0005184790352359414, -0.06409114599227905, -0.09772535413503647, -0.0570128932595253, 0.12405849248170853, -0.06396772712469101, -0.011230895295739174, 0.04467572644352913, -0.02178274095058441, 0.058225132524967194, -0.17316848039627075, 0.03429586812853813, 0.008601578883826733, -0.09313595294952393, -0.01999831572175026, -0.007218636106699705, 0.1173684373497963, 0.12438244372606277, -0.02123122103512287, 0.019931098446249962, -0.008836830034852028, 0.0949326902627945, -0.08181703090667725, 0.02749277651309967, 0.1603284627199173, -0.12093422561883926, 0.026727447286248207, 0.06285999715328217, 0.030941609293222427, -0.03341646119952202, 0.05228974297642708, 0.04627291113138199, -0.0836695060133934, -0.2629927098751068, -0.009305417537689209, -0.02368054911494255, -0.010228564962744713, 0.08841783553361893, 0.035950545221567154, 0.10408307611942291, 0.08707838505506516, 0.042443398386240005, -0.004800365772098303, 0.0011955808149650693, 0.10481280833482742, 0.1952897012233734, 0.004486643709242344, 0.09252867102622986, -0.10883859544992447, -0.007891029119491577, 0.08279348909854889, 0.002368347952142358, 0.1648823618888855, -0.010771432891488075, 0.10921713709831238, 0.09370287507772446, -0.057710032910108566, 0.04201614484190941, 0.13958525657653809, -0.04393903166055679, -0.012566243298351765, -0.0003499553131405264, -0.05783626437187195, -0.0624670535326004, 0.03979763016104698, -0.05274909362196922, 0.02609097771346569, 0.026178589090704918, -0.03988674655556679, 0.031064501032233238, 0.07569918036460876, 0.015366364270448685, -0.2680550515651703, -0.10570301860570908, -0.021182378754019737, -0.013854427263140678, -0.0460614375770092, -0.002720063552260399, -0.020150786265730858, -0.08783315867185593, 0.059592682868242264, -0.037311721593141556, 0.08845774084329605, -0.14631731808185577, -0.04288109019398689, 0.005502211861312389, 0.15287461876869202, -0.028664011508226395, 0.09221689403057098, -0.14956481754779816, 0.1074451431632042, 0.022040164098143578, 0.03916850686073303, -0.024755151942372322, 0.034036390483379364, -0.0014774635201320052, 0.05095633119344711, 0.07859528809785843, -0.03723979368805885, 0.0015327365836128592, -0.10162803530693054, -0.06345686316490173, 0.008530033752322197, 0.05659177899360657, -0.09363484382629395, 0.06260207295417786, -0.06570948660373688, 0.03117534890770912, 0.0346636138856411, 0.006788803264498711, -0.13034112751483917, -0.1916615068912506, 0.06271949410438538, 0.007783504202961922, 0.04260186478495598, -0.07032928615808487, -0.09021764993667603, 0.012512082234025002, 0.2739090621471405, -0.12348933517932892, -0.03046472929418087, -0.17111258208751678, 0.047685880213975906, 0.1198873296380043, -0.07132932543754578, 0.07103485614061356, -0.037480778992176056, 0.0814744383096695, -0.016990303993225098, -0.10691569745540619, 0.03717796131968498, -0.05885607376694679, -0.05545429140329361, -0.01714918203651905, 0.011197774671018124, 0.09409291297197342, 0.014477221295237541, -0.002038109814748168, 0.029521822929382324, -0.00657071964815259, -0.11367890983819962, -0.024882562458515167, 0.10053767263889313, 0.006442712154239416, 0.02044927142560482, -0.007019958924502134, 0.029388483613729477, -0.039375241845846176, 0.007636860944330692, 0.16258762776851654, 0.11246209591627121, -0.06927550584077835, 0.041814111173152924, 0.13544675707817078, -0.07810674607753754, -0.2521398067474365, 0.00903588067740202, 0.033979564905166626, -0.0052360789850354195, 0.028728071600198746, -0.171491801738739, 0.1530003398656845, 0.07463239878416061, -0.022121908143162727, -0.01740049570798874, -0.15426300466060638, -0.09290282428264618, 0.15319815278053284, 0.11176645010709763, 0.04775695502758026, -0.091489277780056, -0.06165188550949097, -0.020609116181731224, -0.25409644842147827, 0.07578311115503311, -0.08357337862253189, 0.06406792998313904, -0.021237235516309738, 0.022396253421902657, 0.013296498917043209, -0.05630742013454437, 0.07563187181949615, 0.0026004628743976355, 0.040416959673166275, -0.10353637486696243, -0.013847746886312962, 0.1130254939198494, -0.04939688369631767, 0.09776819497346878, -0.0019354801625013351, 0.06188981607556343, -0.03386176377534866, -0.07775279134511948, 0.010813209228217602, 0.12306952476501465, -0.011364547535777092, -0.08245524764060974, -0.10264135152101517, 0.04405244439840317, -0.05751515179872513, -0.03656948730349541, 0.13496696949005127, -0.06516727060079575, 0.0843450129032135, 0.1325455605983734, 0.11162843555212021, 0.06733271479606628, -0.05566813051700592, 0.006870051380246878, -0.023737644776701927, 0.07399673014879227, -0.17942145466804504, 0.04566214978694916, 0.10052718967199326, 0.03744335100054741, 0.09591466188430786, 0.04521641507744789, -0.16286000609397888, -0.003590256441384554, 0.09322218596935272, -0.09482701867818832, -0.007280391175299883, 0.01099635474383831, 0.03378763049840927, -0.16578184068202972, 0.08078346401453018, 0.16633518040180206, -0.06703131645917892, 0.013919430784881115, 0.05597592517733574, -0.01181967556476593, -0.0792892575263977, 0.08455676585435867, 0.12486179918050766, 0.027937790378928185, -0.02039686217904091, 0.07458007335662842, 0.1062019020318985, -0.003975976258516312, 0.020854167640209198, -0.07706871628761292, -0.07138281315565109, -0.0364239402115345, -0.052139442414045334, 0.0633920356631279, -0.10031740367412567, -0.08045287430286407, -0.008375037461519241, -0.044044479727745056, -0.0036216338630765676, 0.171732097864151, 0.057875461876392365, 0.03569864481687546, -0.03825072944164276, 0.0464828684926033, -0.10879990458488464, 0.05844777077436447, -0.023283878341317177, 0.09218063950538635, -0.1092214435338974, -0.015536709688603878, 0.053119558840990067, 0.023999270051717758, -0.04425237327814102, -0.050056543201208115, -0.12957319617271423, -0.003790821647271514, -0.08300676941871643, -0.039007361978292465, -0.07405786216259003, -0.0034281834959983826, 0.02544841542840004, -0.08932683616876602, -0.06339677423238754, 0.03273959830403328, -0.008899848908185959, 0.0032007184345275164, 0.03246321156620979, 0.05476764217019081, -0.17400793731212616, 0.0010660698171705008, 0.09209467470645905, -0.051130570471286774, 0.05827676132321358, 0.025109218433499336, 0.02747245691716671, 0.043943099677562714, -0.11815542727708817, 0.03873143717646599, 0.009625853970646858, 0.01903229020535946, 0.011691087856888771, -0.08857247978448868, 0.005605311598628759, -0.029214663431048393, 0.0060149310156702995, -0.008259749040007591, 0.12070456147193909, -0.07807092368602753, 0.0393252857029438, -0.058019332587718964, -0.006096403114497662, -0.06722290813922882, 0.046410705894231796, 0.11090680956840515, 0.11843468248844147, 0.1033860445022583, -0.04244514927268028, 0.06001683697104454, -0.0862683653831482, 0.02263304404914379, 0.00539005221799016, -0.03019064851105213, 0.1073317602276802, -0.1150112897157669, -0.018430469557642937, -0.04550519958138466, 0.21179768443107605, -0.044364843517541885, 0.016341259703040123, 0.040775690227746964, -0.02414504624903202, -0.03206630423665047, -0.02228621579706669, 0.1368541717529297, 0.06257046014070511, 0.030757585540413857, 0.011930683627724648, 0.03739786148071289, -0.006184662226587534, -0.053701985627412796, 0.15266965329647064, 0.14638635516166687, -0.13463488221168518, 0.03450310230255127, 0.0447784848511219, -0.027429282665252686, -0.021738627925515175, 0.0024788016453385353, -0.04070225730538368, 0.0010548795107752085, -0.009104743599891663, 0.10160287469625473, 0.1833885759115219, -0.018893707543611526, 0.03511226177215576, 0.04485948011279106, -0.04446391761302948, -0.09482869505882263, -0.1034185066819191, -0.0346057191491127, -0.10482549667358398, 0.014109082520008087, -0.062063027173280716, -0.02094927430152893, 0.11311111599206924, 0.02130071260035038, 0.025502488017082214, 0.2315763384103775, -0.024400275200605392, -0.030555767938494682, -0.008708462119102478, -0.04257005453109741, -0.04651632159948349, -0.0917532816529274, 0.06174710765480995, 0.02202225662767887, 0.11951784044504166, 0.06514354795217514, 0.045397453010082245, 0.039804305881261826, 0.05767572671175003, -0.01949179545044899, -0.11210431158542633, -0.05049885809421539, 0.04954736307263374, -0.04641294479370117, -0.006974637508392334, 0.017813650891184807, 0.0024071151856333017, -0.019420601427555084, 0.14822258055210114, -0.05055050924420357, -0.0977952852845192, -0.12268718332052231, 0.12848812341690063, -0.005911464802920818, 0.008333510719239712, -0.059265751391649246, -0.10616214573383331, -0.020739631727337837, 0.24281494319438934, 0.11019259691238403, 0.02159718982875347, 0.03740812465548515, 0.05961863324046135, 0.02160601317882538, 0.01615133322775364, 0.05768189951777458, -0.006034772377461195, 0.12037062644958496, 0.0013116998597979546, -0.07939194142818451, -0.04824434220790863, -0.03595389425754547, 0.07221101224422455, 0.09295643866062164, -0.004760580137372017, -0.04739059507846832, -0.0542723722755909, 0.08601420372724533, -0.08160213381052017, -0.26524055004119873, 0.009602588601410389, -0.016754699870944023, -0.08346616476774216, -0.03697789087891579, 0.07956144958734512, -0.04938057065010071, 0.011398893781006336, -0.003020656993612647, -0.055329907685518265, 0.1028084084391594, 0.06431090831756592, -0.10458344221115112, -0.010027015581727028, 0.0856776088476181, 0.024780847132205963, 0.16548487544059753, -0.028186101466417313, 0.038717154413461685, 0.0874660536646843, 0.0256141759455204, -0.10242439806461334, 0.03660832718014717, 0.02929074503481388, -0.08327824622392654, 0.003307509236037731, 0.030652550980448723, -0.014509035274386406, 0.07753278315067291, 0.061978261917829514, -0.16160906851291656, 0.04800710827112198, -0.02265031263232231, -0.03381110355257988, -0.08099784702062607, -0.03176058828830719, -0.08863233029842377, 0.17056578397750854, 0.10908632725477219, -0.009701716713607311, -0.054297804832458496, -0.0979396253824234, 0.03688564524054527, 0.012466040439903736, 0.10087756812572479, -0.02609918639063835, -0.09853208065032959, -0.03965430706739426, -0.07699856162071228, 0.03157060965895653, -0.2807666063308716, -0.026518486440181732, 0.05927982181310654, -0.042943403124809265, 0.016535503789782524, 0.07219924032688141, 0.12657245993614197, 0.05723148584365845, -0.03723996505141258, -0.02257978543639183, 0.0004658300895243883, 0.09611263126134872, -0.19777627289295197, -0.042440712451934814 ]