repo_name
stringlengths
5
100
path
stringlengths
4
299
copies
stringclasses
990 values
size
stringlengths
4
7
content
stringlengths
666
1.03M
license
stringclasses
15 values
hash
int64
-9,223,351,895,964,839,000
9,223,297,778B
line_mean
float64
3.17
100
line_max
int64
7
1k
alpha_frac
float64
0.25
0.98
autogenerated
bool
1 class
Varriount/Colliberation
libs/twisted/web/script.py
20
5272
# -*- test-case-name: twisted.web.test.test_script -*- # Copyright (c) Twisted Matrix Laboratories. # See LICENSE for details. """ I contain PythonScript, which is a very simple python script resource. """ import os, traceback try: import cStringIO as StringIO except ImportError: import StringIO from twisted import copyright from twisted.web import http, server, static, resource, html rpyNoResource = """<p>You forgot to assign to the variable "resource" in your script. For example:</p> <pre> # MyCoolWebApp.rpy import mygreatresource resource = mygreatresource.MyGreatResource() </pre> """ class AlreadyCached(Exception): """This exception is raised when a path has already been cached. """ class CacheScanner: def __init__(self, path, registry): self.path = path self.registry = registry self.doCache = 0 def cache(self): c = self.registry.getCachedPath(self.path) if c is not None: raise AlreadyCached(c) self.recache() def recache(self): self.doCache = 1 noRsrc = resource.ErrorPage(500, "Whoops! Internal Error", rpyNoResource) def ResourceScript(path, registry): """ I am a normal py file which must define a 'resource' global, which should be an instance of (a subclass of) web.resource.Resource; it will be renderred. """ cs = CacheScanner(path, registry) glob = {'__file__': path, 'resource': noRsrc, 'registry': registry, 'cache': cs.cache, 'recache': cs.recache} try: execfile(path, glob, glob) except AlreadyCached, ac: return ac.args[0] rsrc = glob['resource'] if cs.doCache and rsrc is not noRsrc: registry.cachePath(path, rsrc) return rsrc def ResourceTemplate(path, registry): from quixote import ptl_compile glob = {'__file__': path, 'resource': resource.ErrorPage(500, "Whoops! Internal Error", rpyNoResource), 'registry': registry} e = ptl_compile.compile_template(open(path), path) exec e in glob return glob['resource'] class ResourceScriptWrapper(resource.Resource): def __init__(self, path, registry=None): resource.Resource.__init__(self) self.path = path self.registry = registry or static.Registry() def render(self, request): res = ResourceScript(self.path, self.registry) return res.render(request) def getChildWithDefault(self, path, request): res = ResourceScript(self.path, self.registry) return res.getChildWithDefault(path, request) class ResourceScriptDirectory(resource.Resource): """ L{ResourceScriptDirectory} is a resource which serves scripts from a filesystem directory. File children of a L{ResourceScriptDirectory} will be served using L{ResourceScript}. Directory children will be served using another L{ResourceScriptDirectory}. @ivar path: A C{str} giving the filesystem path in which children will be looked up. @ivar registry: A L{static.Registry} instance which will be used to decide how to interpret scripts found as children of this resource. """ def __init__(self, pathname, registry=None): resource.Resource.__init__(self) self.path = pathname self.registry = registry or static.Registry() def getChild(self, path, request): fn = os.path.join(self.path, path) if os.path.isdir(fn): return ResourceScriptDirectory(fn, self.registry) if os.path.exists(fn): return ResourceScript(fn, self.registry) return resource.NoResource() def render(self, request): return resource.NoResource().render(request) class PythonScript(resource.Resource): """I am an extremely simple dynamic resource; an embedded python script. This will execute a file (usually of the extension '.epy') as Python code, internal to the webserver. """ isLeaf = 1 def __init__(self, filename, registry): """Initialize me with a script name. """ self.filename = filename self.registry = registry def render(self, request): """Render me to a web client. Load my file, execute it in a special namespace (with 'request' and '__file__' global vars) and finish the request. Output to the web-page will NOT be handled with print - standard output goes to the log - but with request.write. """ request.setHeader("x-powered-by","Twisted/%s" % copyright.version) namespace = {'request': request, '__file__': self.filename, 'registry': self.registry} try: execfile(self.filename, namespace, namespace) except IOError, e: if e.errno == 2: #file not found request.setResponseCode(http.NOT_FOUND) request.write(resource.NoResource("File not found.").render(request)) except: io = StringIO.StringIO() traceback.print_exc(file=io) request.write(html.PRE(io.getvalue())) request.finish() return server.NOT_DONE_YET
mit
-5,841,385,579,758,247,000
30.195266
102
0.63676
false
xiaohaidao007/pandoraBox-SDK-mt7620
staging_dir/host/lib/scons-2.5.0/SCons/Scanner/LaTeX.py
3
16233
"""SCons.Scanner.LaTeX This module implements the dependency scanner for LaTeX code. """ # # Copyright (c) 2001 - 2016 The SCons Foundation # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY # KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE # WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE # LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION # WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # __revision__ = "src/engine/SCons/Scanner/LaTeX.py rel_2.5.0:3543:937e55cd78f7 2016/04/09 11:29:54 bdbaddog" import os.path import re import SCons.Scanner import SCons.Util # list of graphics file extensions for TeX and LaTeX TexGraphics = ['.eps', '.ps'] LatexGraphics = ['.pdf', '.png', '.jpg', '.gif', '.tif'] # Used as a return value of modify_env_var if the variable is not set. class _Null(object): pass _null = _Null # The user specifies the paths in env[variable], similar to other builders. # They may be relative and must be converted to absolute, as expected # by LaTeX and Co. The environment may already have some paths in # env['ENV'][var]. These paths are honored, but the env[var] paths have # higher precedence. All changes are un-done on exit. def modify_env_var(env, var, abspath): try: save = env['ENV'][var] except KeyError: save = _null env.PrependENVPath(var, abspath) try: if SCons.Util.is_List(env[var]): env.PrependENVPath(var, [os.path.abspath(str(p)) for p in env[var]]) else: # Split at os.pathsep to convert into absolute path env.PrependENVPath(var, [os.path.abspath(p) for p in str(env[var]).split(os.pathsep)]) except KeyError: pass # Convert into a string explicitly to append ":" (without which it won't search system # paths as well). The problem is that env.AppendENVPath(var, ":") # does not work, refuses to append ":" (os.pathsep). if SCons.Util.is_List(env['ENV'][var]): env['ENV'][var] = os.pathsep.join(env['ENV'][var]) # Append the trailing os.pathsep character here to catch the case with no env[var] env['ENV'][var] = env['ENV'][var] + os.pathsep return save class FindENVPathDirs(object): """A class to bind a specific *PATH variable name to a function that will return all of the *path directories.""" def __init__(self, variable): self.variable = variable def __call__(self, env, dir=None, target=None, source=None, argument=None): import SCons.PathList try: path = env['ENV'][self.variable] except KeyError: return () dir = dir or env.fs._cwd path = SCons.PathList.PathList(path).subst_path(env, target, source) return tuple(dir.Rfindalldirs(path)) def LaTeXScanner(): """Return a prototype Scanner instance for scanning LaTeX source files when built with latex. """ ds = LaTeX(name = "LaTeXScanner", suffixes = '$LATEXSUFFIXES', # in the search order, see below in LaTeX class docstring graphics_extensions = TexGraphics, recursive = 0) return ds def PDFLaTeXScanner(): """Return a prototype Scanner instance for scanning LaTeX source files when built with pdflatex. """ ds = LaTeX(name = "PDFLaTeXScanner", suffixes = '$LATEXSUFFIXES', # in the search order, see below in LaTeX class docstring graphics_extensions = LatexGraphics, recursive = 0) return ds class LaTeX(SCons.Scanner.Base): """Class for scanning LaTeX files for included files. Unlike most scanners, which use regular expressions that just return the included file name, this returns a tuple consisting of the keyword for the inclusion ("include", "includegraphics", "input", or "bibliography"), and then the file name itself. Based on a quick look at LaTeX documentation, it seems that we should append .tex suffix for the "include" keywords, append .tex if there is no extension for the "input" keyword, and need to add .bib for the "bibliography" keyword that does not accept extensions by itself. Finally, if there is no extension for an "includegraphics" keyword latex will append .ps or .eps to find the file, while pdftex may use .pdf, .jpg, .tif, .mps, or .png. The actual subset and search order may be altered by DeclareGraphicsExtensions command. This complication is ignored. The default order corresponds to experimentation with teTeX $ latex --version pdfeTeX 3.141592-1.21a-2.2 (Web2C 7.5.4) kpathsea version 3.5.4 The order is: ['.eps', '.ps'] for latex ['.png', '.pdf', '.jpg', '.tif']. Another difference is that the search path is determined by the type of the file being searched: env['TEXINPUTS'] for "input" and "include" keywords env['TEXINPUTS'] for "includegraphics" keyword env['TEXINPUTS'] for "lstinputlisting" keyword env['BIBINPUTS'] for "bibliography" keyword env['BSTINPUTS'] for "bibliographystyle" keyword env['INDEXSTYLE'] for "makeindex" keyword, no scanning support needed just allows user to set it if needed. FIXME: also look for the class or style in document[class|style]{} FIXME: also look for the argument of bibliographystyle{} """ keyword_paths = {'include': 'TEXINPUTS', 'input': 'TEXINPUTS', 'includegraphics': 'TEXINPUTS', 'bibliography': 'BIBINPUTS', 'bibliographystyle': 'BSTINPUTS', 'addbibresource': 'BIBINPUTS', 'addglobalbib': 'BIBINPUTS', 'addsectionbib': 'BIBINPUTS', 'makeindex': 'INDEXSTYLE', 'usepackage': 'TEXINPUTS', 'lstinputlisting': 'TEXINPUTS'} env_variables = SCons.Util.unique(list(keyword_paths.values())) def __init__(self, name, suffixes, graphics_extensions, *args, **kw): # We have to include \n with the % we exclude from the first part # part of the regex because the expression is compiled with re.M. # Without the \n, the ^ could match the beginning of a *previous* # line followed by one or more newline characters (i.e. blank # lines), interfering with a match on the next line. # add option for whitespace before the '[options]' or the '{filename}' regex = r'^[^%\n]*\\(include|includegraphics(?:\s*\[[^\]]+\])?|lstinputlisting(?:\[[^\]]+\])?|input|bibliography|addbibresource|addglobalbib|addsectionbib|usepackage)\s*{([^}]*)}' self.cre = re.compile(regex, re.M) self.comment_re = re.compile(r'^((?:(?:\\%)|[^%\n])*)(.*)$', re.M) self.graphics_extensions = graphics_extensions def _scan(node, env, path=(), self=self): node = node.rfile() if not node.exists(): return [] return self.scan_recurse(node, path) class FindMultiPathDirs(object): """The stock FindPathDirs function has the wrong granularity: it is called once per target, while we need the path that depends on what kind of included files is being searched. This wrapper hides multiple instances of FindPathDirs, one per the LaTeX path variable in the environment. When invoked, the function calculates and returns all the required paths as a dictionary (converted into a tuple to become hashable). Then the scan function converts it back and uses a dictionary of tuples rather than a single tuple of paths. """ def __init__(self, dictionary): self.dictionary = {} for k,n in dictionary.items(): self.dictionary[k] = ( SCons.Scanner.FindPathDirs(n), FindENVPathDirs(n) ) def __call__(self, env, dir=None, target=None, source=None, argument=None): di = {} for k,(c,cENV) in self.dictionary.items(): di[k] = ( c(env, dir=None, target=None, source=None, argument=None) , cENV(env, dir=None, target=None, source=None, argument=None) ) # To prevent "dict is not hashable error" return tuple(di.items()) class LaTeXScanCheck(object): """Skip all but LaTeX source files, i.e., do not scan *.eps, *.pdf, *.jpg, etc. """ def __init__(self, suffixes): self.suffixes = suffixes def __call__(self, node, env): current = not node.has_builder() or node.is_up_to_date() scannable = node.get_suffix() in env.subst_list(self.suffixes)[0] # Returning false means that the file is not scanned. return scannable and current kw['function'] = _scan kw['path_function'] = FindMultiPathDirs(LaTeX.keyword_paths) kw['recursive'] = 0 kw['skeys'] = suffixes kw['scan_check'] = LaTeXScanCheck(suffixes) kw['name'] = name SCons.Scanner.Base.__init__(self, *args, **kw) def _latex_names(self, include): filename = include[1] if include[0] == 'input': base, ext = os.path.splitext( filename ) if ext == "": return [filename + '.tex'] if (include[0] == 'include'): return [filename + '.tex'] if include[0] == 'bibliography': base, ext = os.path.splitext( filename ) if ext == "": return [filename + '.bib'] if include[0] == 'usepackage': base, ext = os.path.splitext( filename ) if ext == "": return [filename + '.sty'] if include[0] == 'includegraphics': base, ext = os.path.splitext( filename ) if ext == "": #return [filename+e for e in self.graphics_extensions + TexGraphics] # use the line above to find dependencies for the PDF builder # when only an .eps figure is present. Since it will be found # if the user tells scons how to make the pdf figure, leave # it out for now. return [filename+e for e in self.graphics_extensions] return [filename] def sort_key(self, include): return SCons.Node.FS._my_normcase(str(include)) def find_include(self, include, source_dir, path): try: sub_path = path[include[0]] except (IndexError, KeyError): sub_path = () try_names = self._latex_names(include) for n in try_names: # see if we find it using the path in env[var] i = SCons.Node.FS.find_file(n, (source_dir,) + sub_path[0]) if i: return i, include # see if we find it using the path in env['ENV'][var] i = SCons.Node.FS.find_file(n, (source_dir,) + sub_path[1]) if i: return i, include return i, include def canonical_text(self, text): """Standardize an input TeX-file contents. Currently: * removes comments, unwrapping comment-wrapped lines. """ out = [] line_continues_a_comment = False for line in text.splitlines(): line,comment = self.comment_re.findall(line)[0] if line_continues_a_comment == True: out[-1] = out[-1] + line.lstrip() else: out.append(line) line_continues_a_comment = len(comment) > 0 return '\n'.join(out).rstrip()+'\n' def scan(self, node): # Modify the default scan function to allow for the regular # expression to return a comma separated list of file names # as can be the case with the bibliography keyword. # Cache the includes list in node so we only scan it once: # path_dict = dict(list(path)) # add option for whitespace (\s) before the '[' noopt_cre = re.compile('\s*\[.*$') if node.includes != None: includes = node.includes else: text = self.canonical_text(node.get_text_contents()) includes = self.cre.findall(text) # 1. Split comma-separated lines, e.g. # ('bibliography', 'phys,comp') # should become two entries # ('bibliography', 'phys') # ('bibliography', 'comp') # 2. Remove the options, e.g., such as # ('includegraphics[clip,width=0.7\\linewidth]', 'picture.eps') # should become # ('includegraphics', 'picture.eps') split_includes = [] for include in includes: inc_type = noopt_cre.sub('', include[0]) inc_list = include[1].split(',') for j in range(len(inc_list)): split_includes.append( (inc_type, inc_list[j]) ) # includes = split_includes node.includes = includes return includes def scan_recurse(self, node, path=()): """ do a recursive scan of the top level target file This lets us search for included files based on the directory of the main file just as latex does""" path_dict = dict(list(path)) queue = [] queue.extend( self.scan(node) ) seen = {} # This is a hand-coded DSU (decorate-sort-undecorate, or # Schwartzian transform) pattern. The sort key is the raw name # of the file as specifed on the \include, \input, etc. line. # TODO: what about the comment in the original Classic scanner: # """which lets # us keep the sort order constant regardless of whether the file # is actually found in a Repository or locally.""" nodes = [] source_dir = node.get_dir() #for include in includes: while queue: include = queue.pop() try: if seen[include[1]] == 1: continue except KeyError: seen[include[1]] = 1 # # Handle multiple filenames in include[1] # n, i = self.find_include(include, source_dir, path_dict) if n is None: # Do not bother with 'usepackage' warnings, as they most # likely refer to system-level files if include[0] != 'usepackage': SCons.Warnings.warn(SCons.Warnings.DependencyWarning, "No dependency generated for file: %s (included from: %s) -- file not found" % (i, node)) else: sortkey = self.sort_key(n) nodes.append((sortkey, n)) # recurse down queue.extend( self.scan(n) ) return [pair[1] for pair in sorted(nodes)] # Local Variables: # tab-width:4 # indent-tabs-mode:nil # End: # vim: set expandtab tabstop=4 shiftwidth=4:
gpl-2.0
-5,932,492,853,959,748,000
40.623077
187
0.585228
false
luisza/dfva_client
src/client_fva/ui/validationinformationcertificate.py
1
1999
from PyQt5 import QtWidgets, QtGui from PyQt5.QtWidgets import QTableWidgetItem from .validationinformationcertificateui import Ui_Dialog class ValidationInformationCertificate(QtWidgets.QDialog, Ui_Dialog): def __init__(self, widget, main_app): super().__init__(widget) Ui_Dialog.__init__(self) self.setupUi(self) self.signer_count = 0 self.certinformation.setEditTriggers(QtWidgets.QAbstractItemView.NoEditTriggers) self.certinformation.setRowCount(0) # set column count self.certinformation.setColumnCount(4) self.certinformation.setHorizontalHeaderItem(0, QTableWidgetItem("Identificación")) self.certinformation.setHorizontalHeaderItem(1, QTableWidgetItem("Nombre")) self.certinformation.setHorizontalHeaderItem(2, QTableWidgetItem("Válido desde")) self.certinformation.setHorizontalHeaderItem(3, QTableWidgetItem("Válido hasta")) self.certinformation.resizeColumnsToContents() def add_owner(self, data): # ('status', 'status_text', 'was_successfully', 'identification', 'full_name', 'start_validity', 'end_validity' ) if data['was_successfully']: self.certinformation.insertRow(self.certinformation.rowCount()) self.certinformation.setItem(self.signer_count, 0, QTableWidgetItem(data['identification'])) self.certinformation.setItem(self.signer_count, 1, QTableWidgetItem(data['full_name'])) self.certinformation.setItem(self.signer_count, 2, QTableWidgetItem(data['start_validity'])) self.certinformation.setItem(self.signer_count, 3, QTableWidgetItem(data['end_validity'])) self.signer_count += 1 self.certinformation.resizeColumnsToContents() def set_status_icon(self, code): if code: self.statusicon.setStyleSheet("image: url(:/images/connected.png);") else: self.statusicon.setStyleSheet("image: url(:/images/error.png);")
gpl-3.0
-7,060,771,720,240,273,000
48.925
121
0.701904
false
BadSingleton/pyside2
tests/QtCore/qrect_test.py
3
3364
#!/usr/bin/python '''Test cases for QRect''' import unittest from PySide2.QtCore import QPoint, QRect, QRectF class RectConstructor(unittest.TestCase): def testDefault(self): #QRect() obj = QRect() self.assert_(obj.isNull()) def testConstructorQPoint(self): topLeft = QPoint(3, 0) bottomRight = QPoint(0, 3) rect1 = QRect(topLeft, bottomRight) rect2 = QRect(topLeft, bottomRight) self.assertEqual(rect1, rect2) class RectOperator(unittest.TestCase): '''Test case for QRect operators''' def testEqual(self): '''QRect == QRect Note: operator == must be working as it's the main check for correctness''' rect1 = QRect() rect2 = QRect() self.assertEqual(rect1, rect2) rect1 = QRect(0, 4, 100, 300) rect2 = QRect(0, 4, 100, 300) self.assertEqual(rect1, rect2) def testNullRectIntersection(self): #QRect & QRect for null rects rect1 = QRect() rect2 = QRect() rect3 = rect1 & rect2 self.assertEqual(rect3, rect1) self.assertEqual(rect3, rect2) def testNoIntersect(self): '''QRect & QRect for non-intersecting QRects Non-intersecting QRects return a 'null' QRect for operator &''' rect1 = QRect(10, 10, 5, 5) rect2 = QRect(20, 20, 5, 5) rect3 = rect1 & rect2 self.assertEqual(rect3, QRect()) def testIntersectPartial(self): #QRect & QRect for partial intersections rect1 = QRect(10, 10, 10, 10) rect2 = QRect(15, 15, 10, 10) rect3 = rect1 & rect2 self.assertEqual(rect3, QRect(15, 15, 5, 5)) def testIntersetEnclosed(self): #QRect & QRect for a qrect inside another rect1 = QRect(10, 10, 20, 20) rect2 = QRect(15, 15, 5, 5) rect3 = rect1 & rect2 self.assertEqual(rect3, rect2) def testNullRectIntersectBounding(self): #QRect | QRect for null rects rect1 = QRect() rect2 = QRect() rect3 = rect1 & rect2 self.assertEqual(rect3, rect1) self.assertEqual(rect3, rect2) def testNoIntersectBounding(self): '''QRect | QRect for non-intersecting QRects Non-intersecting QRects return a greater QRect for operator |''' rect1 = QRect(10, 10, 5, 5) rect2 = QRect(20, 20, 5, 5) rect3 = rect1 | rect2 self.assertEqual(rect3, QRect(10, 10, 15, 15)) def testBoundingPartialIntersection(self): #QRect | QRect for partial intersections rect1 = QRect(10, 10, 10, 10) rect2 = QRect(15, 15, 10, 10) rect3 = rect1 | rect2 self.assertEqual(rect3, QRect(10, 10, 15, 15)) def testBoundingEnclosed(self): #QRect | QRect for a qrect inside another rect1 = QRect(10, 10, 20, 20) rect2 = QRect(15, 15, 5, 5) rect3 = rect1 | rect2 self.assertEqual(rect3, rect1) def testGetCoordsAndRect(self): rect1 = QRect(1, 2, 3, 4) self.assertEqual(rect1.getRect(), (1, 2, 3, 4)) self.assertEqual(rect1.getCoords(), (1, 2, 3, 5)) rect1 = QRectF(1, 2, 3, 4) self.assertEqual(rect1.getRect(), (1, 2, 3, 4)) self.assertEqual(rect1.getCoords(), (1, 2, 4, 6)) if __name__ == '__main__': unittest.main()
lgpl-2.1
-578,422,160,519,176,600
29.035714
72
0.588288
false
georgelegrand/first_gog
col.py
1
4850
import numpy as np import random ''' ОТКРЫТЫЙ ТЕКСТ: двойная перестановка МАРШРУТ ВПИСЫВАНИЯ: слева - направо МАРШРУТ ВЫПИСЫВАНИЯ: сверху - вниз СТОЛБЦЫ: ( 3, 1, 4, 2) //сейчас рандом СТРОКИ: ( 3, 2, 4, 1, 5) //сейчас рандом ''' def setToCh(smt): #конвертирует строку из последовательности цифр, хранящей перестановку, в список smt_ch = [] for n in smt: smt_ch.append(int(n)) #print(type(smt_ch), smt_ch) return smt_ch def d_print(x,y): print("Расшифрованный текст: ", x) return 1 def strToTable(msg, row_dim, col_dim): #вписывает слева-направо в таблицу msg_table = [] for i in range(0, row_dim): msg_table.append([]) for j in range(0, col_dim): msg_table[i].append(msg[col_dim*i +j]) #print(msg_table) return msg_table def changeCols(msg_table, col_ch, row_dim): #перестановка столбцов new_msg_table = [] for i in range(0, row_dim): new_msg_table.append([]) for j in col_ch: new_msg_table[i].append(msg_table[i][j]) #print("Таблица после перестановки столбцов: ", new_msg_table) return new_msg_table def changeRows(msg_table, row_set): #перестановка строк new_msg_table = [] for i in range(0, len(row_set)): a = int(row_set[i]) new_msg_table.append(msg_table[a]) #print("Таблица после перестановки строк: ", new_msg_table) return new_msg_table def printCryptLR(msg_table, col_dim, row_dim): #выписывает слева-направо print_msg = [] for i in range(0, len(msg_table)): for j in range(0, len(msg_table[i])): if msg_table[i][j] != "+": print_msg.append(msg_table[i][j]) print_msg = "".join(print_msg) print("Зашифрованный текст: ", print_msg) def printCrypt(msg_table, col_dim, row_dim): #выписывает сверху-вниз print_msg = [] for i in range(0, col_dim): for j in range(0, row_dim): #if msg_table[j][i] != "+": print_msg.append(msg_table[j][i]) print_msg = "".join(print_msg) print("Зашифрованный текст: ", print_msg) def genCrypt(msg): #шифрование #col_dim = int(input("Введите количество столбцов таблицы: ")) col_dim = random.randint(2,len(msg)-1) #генерим размерность таблицы в зависимости от количества столбцов #print("col_dim: ",col_dim) if len(msg) % col_dim == 0: #считаем соответствующее столбцам число строк row_dim = int(len(msg) / col_dim) else: row_dim = int(len(msg) // col_dim + 1) for add in range(col_dim - (len(msg) % col_dim)): msg = msg + " " #print(msg) #col_set = str(input("Введите порядок столбцов от 0 до " + str(col_dim-1) +" включительно (без пробелов): ")) #col_ch = setToCh(col_set) col_temp = list(range(0, col_dim)) #генерим случайную перестановку столбцов random.shuffle(col_temp) col_dict = dict(zip(list(range(0, col_dim)),col_temp)) #print(col_dict) #row_set = str(input("Введите порядок строк от 0 до " + str(row_dim-1) +" включительно (без пробелов): ")) #row_ch = setToCh(row_set) row_temp = list(range(0, row_dim)) #генерим случайную перестановку строк random.shuffle(row_temp) row_dict = dict(zip(list(range(0, row_dim)),row_temp)) msg_table = strToTable(msg,row_dim,col_dim) msg_table = changeCols(msg_table, col_temp, row_dim) #меняем столбцы msg_table = changeRows(msg_table, row_temp) #меняем строки printCrypt(msg_table, col_dim, row_dim) return msg_table, col_temp, row_temp, col_dim, row_dim def decryptTable(msg, msg_table, col_temp, row_temp, col_dim, row_dim): d_msg_table = changeRows(msg_table, row_temp) #меняем строки d_msg_table = changeCols(msg_table, col_temp, row_dim) #меняем столбцы d_print(msg, d_msg_table) return d_msg_table print("\n") print("Праздник шифрования начинается!!!") print("\n") msg = input("Введите текст для шифрования: ") res = genCrypt(msg) #d_msg = input("Введите текст для расшифрования: ") decryptTable(msg, res[0],res[1],res[2], res[3], res[4]) #printCrypt(msg_table, col_dim, row_dim) #printCrypt(res[0], res[1], res[2])
mit
-6,127,168,930,026,081,000
29.992
110
0.65399
false
mattjmorrison/django-media-masher
src/settings.py
1
1255
from os import path DEBUG = True TEMPLATE_DEBUG = DEBUG PROJECT_DIR = path.abspath(path.dirname(__file__)) ADMINS = ( ('Matthew J. Morrison', '[email protected]'), ) MANAGERS = ADMINS DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': '.database', } } USE_I18N = False USE_L10N = True MEDIA_ROOT = path.join(PROJECT_DIR, 'media') STATIC_ROOT = MEDIA_ROOT MEDIA_URL = '/static/' SECRET_KEY = '-2cmgs7l$5grqwd!x&6241^ah&xx34ki48fwn#ef5s_lm(1@0a4w&v' TEMPLATE_LOADERS = ( 'django.template.loaders.filesystem.Loader', 'django.template.loaders.app_directories.Loader', ) ROOT_URLCONF = 'src.urls' TEMPLATE_DIRS = () INSTALLED_APPS = ( 'south', 'debug_toolbar', 'masher', 'sample_app', 'django_nose', ) DEBUG_TOOLBAR_CONFIG = { 'SHOW_TOOLBAR_CALLBACK': lambda request: DEBUG, 'INTERCEPT_REDIRECTS': False, } MASHER_COMPRESS = True # Test settings SOUTH_TESTS_MIGRATE = False NOSE_ARGS = ( '--with-coverage', '--with-xunit', '--with-xcover', '--cover-package=src' ) #TEST_RUNNER = 'xmlrunner.extra.djangotestrunner.XMLTestRunner' TEST_RUNNER = 'django_nose.NoseTestSuiteRunner' TEST_OUTPUT_VERBOSE = False TEST_OUTPUT_DESCRIPTIONS = False
mit
5,681,423,153,971,184,000
19.241935
69
0.666135
false
Basvanstein/OWCK
build/lib.linux-x86_64-2.7/OWCK/utils.py
1
2259
# -*- coding: utf-8 -*- """ Created on Thu Nov 12 16:19:28 2015 @author: wangronin """ import time, os import numpy as np from numpy import pi, log, atleast_2d, size, mod from pyDOE import lhs from ghalton import Halton from sobol import i4_sobol ## SMSE measurement # test_y is the target, pred_y the predicted target, both 1D arrays of same length def SMSE(test_y,pred_y): se = [] target_variance = np.var(test_y) for i in range(len(test_y)): temp = (pred_y[i] - test_y[i])**2 se.append(temp) mse = np.mean(se) smse = mse / target_variance return smse ## MSLL = mean standardized log loss ## logprob = 0.5*log(2*pi.*varsigmaVec) + sserror - 0.5*log(2*pi*varyTrain)... ## - ((yTestVec - meanyTrain).^2)./(2*varyTrain); def MSLL(train_y,test_y,pred_y,variances): sll = [] mean_y = np.mean(train_y) var_y = np.var(train_y) for i in range(len(variances)): if variances[i] == 0: variances[i] += 0.0000001 #hack sll_trivial = 0.5*log(2 * pi * var_y) + ((test_y[i] - mean_y)**2 / (2* var_y)) sllv = ( 0.5*log(2 * pi * variances[i]) + \ ((test_y[i] - pred_y[i])**2 / (2* variances[i])) ) - sll_trivial sll.append(sllv) sll = np.array(sll) msll = np.mean(sll) return msll # Obtain the initial design locations def get_design_sites(dim, n_sample, x_lb, x_ub, sampling_method='lhs'): x_lb = atleast_2d(x_lb) x_ub = atleast_2d(x_ub) x_lb = x_lb.T if size(x_lb, 0) != 1 else x_lb x_ub = x_ub.T if size(x_ub, 0) != 1 else x_ub if sampling_method == 'lhs': # Latin Hyper Cube Sampling: Get evenly distributed sampling in R^dim samples = lhs(dim, samples=n_sample) * (x_ub - x_lb) + x_lb elif sampling_method == 'uniform': samples = np.random.rand(n_sample, dim) * (x_ub - x_lb) + x_lb elif sampling_method == 'sobol': seed = mod(int(time.time()) + os.getpid(), int(1e6)) samples = np.zeros((n_sample, dim)) for i in range(n_sample): samples[i, :], seed = i4_sobol(dim, seed) samples = samples * (x_ub - x_lb) + x_lb elif sampling_method == 'halton': sequencer = Halton(dim) samples = sequencer.get(n_sample) * (x_ub - x_lb) + x_lb return samples
gpl-2.0
761,808,325,784,908,200
29.945205
82
0.590969
false
ppiotr/Invenio
modules/bibexport/lib/bibexport_method_sitemap.py
5
17343
# -*- coding: utf-8 -*- ## ## This file is part of Invenio. ## Copyright (C) 2008, 2010, 2011 CERN. ## ## Invenio is free software; you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation; either version 2 of the ## License, or (at your option) any later version. ## ## Invenio is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Invenio; if not, write to the Free Software Foundation, Inc., ## 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA. """ BibExport plugin implementing 'sitemap' exporting method. The main function is run_export_method(jobname) defined at the end. This is what BibExport daemon calls for all the export jobs that use this exporting method. """ from datetime import datetime from urllib import quote from ConfigParser import ConfigParser import os import gzip import time from invenio.search_engine import get_collection_reclist from invenio.dbquery import run_sql from invenio.config import CFG_SITE_URL, CFG_WEBDIR, CFG_ETCDIR, \ CFG_SITE_RECORD, CFG_SITE_LANGS from invenio.intbitset import intbitset from invenio.websearch_webcoll import Collection from invenio.bibtask import write_message, task_update_progress, task_sleep_now_if_required from invenio.textutils import encode_for_xml from invenio.urlutils import get_canonical_and_alternates_urls DEFAULT_TIMEZONE = '+01:00' DEFAULT_PRIORITY_HOME = 1 DEFAULT_CHANGEFREQ_HOME = 'hourly' DEFAULT_PRIORITY_RECORDS = 0.8 DEFAULT_CHANGEFREQ_RECORDS = 'weekly' DEFAULT_PRIORITY_COMMENTS = 0.4 DEFAULT_CHANGEFREQ_COMMENTS = 'weekly' DEFAULT_PRIORITY_REVIEWS = 0.6 DEFAULT_CHANGEFREQ_REVIEWS = 'weekly' DEFAULT_PRIORITY_FULLTEXTS = 0.9 DEFAULT_CHANGEFREQ_FULLTEXTS = 'weekly' DEFAULT_PRIORITY_COLLECTIONS = 0.3 DEFAULT_CHANGEFREQ_COLLECTIONS = 'hourly' MAX_RECORDS = 50000 MAX_SIZE = 10000000 def get_all_public_records(collections): """ Get all records which exist (i.e. not suppressed ones) and are in accessible collection. returns list of (recid, last_modification) tuples """ recids = intbitset() for collection in collections: recids += get_collection_reclist(collection) query = 'SELECT id, modification_date FROM bibrec' res = run_sql(query) return [(recid, lastmod) for (recid, lastmod) in res if recid in recids] def get_all_public_collections(base_collections): """ Return a list of (collection.name, last_modification) tuples for all collections and subcollections of base_collections """ def get_collection_last_modification(collection): """ last modification = modification date fo latest added record """ last_mod = None query_last_mod = "SELECT modification_date FROM bibrec WHERE id=%s" try: latest_recid = collection.reclist.tolist()[-1] except IndexError: # this collection is empty return last_mod res = run_sql(query_last_mod, (latest_recid,)) if res and res[0][0]: last_mod = res[0][0] return last_mod output = [] for coll_name in base_collections: mother_collection = Collection(coll_name) if not mother_collection.restricted_p(): last_mod = get_collection_last_modification(mother_collection) output.append((coll_name, last_mod)) for descendant in mother_collection.get_descendants(type='r'): if not descendant.restricted_p(): last_mod = get_collection_last_modification(descendant) output.append((descendant.name, last_mod)) for descendant in mother_collection.get_descendants(type='v'): if not descendant.restricted_p(): last_mod = get_collection_last_modification(descendant) output.append((descendant.name, last_mod)) return output def filter_fulltexts(recids, fulltext_type=None): """ returns list of records having a fulltext of type fulltext_type. If fulltext_type is empty, return all records having a fulltext""" recids = dict(recids) if fulltext_type: query = """SELECT id_bibrec, max(modification_date) FROM bibrec_bibdoc LEFT JOIN bibdoc ON bibrec_bibdoc.id_bibdoc=bibdoc.id WHERE type=%s GROUP BY id_bibrec""" res = run_sql(query, (fulltext_type,)) else: query = """SELECT id_bibrec, max(modification_date) FROM bibrec_bibdoc LEFT JOIN bibdoc ON bibrec_bibdoc.id_bibdoc=bibdoc.id GROUP BY id_bibrec""" res = run_sql(query) return [(recid, lastmod) for (recid, lastmod) in res if recid in recids] def filter_comments(recids): """ Retrieve recids having a comment. return (recid, last_review_date)""" recids = dict(recids) query = """SELECT id_bibrec, max(date_creation) FROM cmtRECORDCOMMENT WHERE star_score=0 GROUP BY id_bibrec""" res = run_sql(query) return [(recid, lastmod) for (recid, lastmod) in res if recid in recids] def filter_reviews(recids): """ Retrieve recids having a review. return (recid, last_review_date)""" recids = dict(recids) query = """SELECT id_bibrec, max(date_creation) FROM cmtRECORDCOMMENT WHERE star_score>0 GROUP BY id_bibrec""" res = run_sql(query) return [(recid, lastmod) for (recid, lastmod) in res if recid in recids] SITEMAP_HEADER = """\ <?xml version="1.0" encoding="UTF-8"?> <urlset xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xhtml="http://www.w3.org/1999/xhtml" xsi:schemaLocation="http://www.sitemaps.org/schemas/sitemap/0.9 http://www.sitemaps.org/schemas/sitemap/0.9/sitemap.xsd" xmlns="http://www.sitemaps.org/schemas/sitemap/0.9">""" SITEMAP_FOOTER = '\n</urlset>\n' class SitemapWriter(object): """ Writer for sitemaps""" def __init__(self, sitemap_id): """ Constructor. name: path to the sitemap file to be created """ self.header = SITEMAP_HEADER self.footer = SITEMAP_FOOTER self.sitemap_id = sitemap_id self.name = os.path.join(CFG_WEBDIR, 'sitemap-%02d.xml.gz' % sitemap_id) self.filedescriptor = gzip.open(self.name + '.part', 'w') self.num_urls = 0 self.file_size = 0 self.filedescriptor.write(self.header) self.file_size += len(self.footer) def add_url(self, url, lastmod=datetime(1900, 1, 1), changefreq="", priority="", alternate=False): """ create a new url node. Returns the number of url nodes in sitemap""" self.num_urls += 1 canonical_url, alternate_urls = get_canonical_and_alternates_urls(url, drop_ln=not alternate) url_node = u""" <url> <loc>%s</loc>%s </url>""" optional = '' if lastmod: optional += u""" <lastmod>%s</lastmod>""" % lastmod.strftime('%Y-%m-%dT%H:%M:%S' + \ DEFAULT_TIMEZONE) if changefreq: optional += u""" <changefreq>%s</changefreq>""" % changefreq if priority: optional += u""" <priority>%s</priority>""" % priority if alternate: for ln, alternate_url in alternate_urls.iteritems(): ln = ln.replace('_', '-') ## zh_CN -> zh-CN optional += u""" <xhtml:link rel="alternate" hreflang="%s" href="%s" />""" % (ln, encode_for_xml(alternate_url, quote=True)) url_node %= (encode_for_xml(canonical_url), optional) self.file_size += len(url_node) self.filedescriptor.write(url_node) return self.num_urls def get_size(self): """ File size. Should not be > 10MB """ return self.file_size + len(self.footer) def get_number_of_urls(self): """ Number of urls in the sitemap. Should not be > 50'000""" return self.num_urls def get_name(self): """ Returns the filename """ return self.name def get_sitemap_url(self): """ Returns the sitemap URL""" return CFG_SITE_URL + '/' + os.path.basename(self.name) def __del__(self): """ Writes the whole sitemap """ self.filedescriptor.write(self.footer) self.filedescriptor.close() os.rename(self.name + '.part', self.name) SITEMAP_INDEX_HEADER = \ '<?xml version="1.0" encoding="UTF-8"?>\n' \ '<sitemapindex\n' \ ' xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"\n' \ ' xsi:schemaLocation="http://www.sitemaps.org/schemas/sitemap/0.9\n' \ ' http://www.sitemaps.org/schemas/sitemap/0.9/siteindex.xsd"\n' \ ' xmlns="http://www.sitemaps.org/schemas/sitemap/0.9">' SITEMAP_INDEX_FOOTER = '\n</sitemapindex>\n' class SitemapIndexWriter(object): """class for writing Sitemap Index files.""" def __init__(self, name): """ Constructor. name: path to the sitemap index file to be created """ self.header = SITEMAP_INDEX_HEADER self.footer = SITEMAP_INDEX_FOOTER self.name = name self.filedescriptor = gzip.open(self.name + '.part', 'w') self.num_urls = 0 self.file_size = 0 self.filedescriptor.write(self.header) self.file_size += len(self.footer) def add_url(self, url): """ create a new url node. Returns the number of url nodes in sitemap""" self.num_urls += 1 url_node = u""" <sitemap> <loc>%s</loc>%s </sitemap>""" optional = u""" <lastmod>%s</lastmod>""" % time.strftime('%Y-%m-%dT%H:%M:%S' +\ DEFAULT_TIMEZONE) url_node %= (url, optional) self.file_size += len(url_node) self.filedescriptor.write(url_node) return self.num_urls def __del__(self): """ Writes the whole sitemap """ self.filedescriptor.write(self.footer) self.filedescriptor.close() os.rename(self.name + '.part', self.name) def generate_sitemaps(sitemap_index_writer, collection_names, fulltext_filter=''): """ Generate sitemaps themselves. Return list of generated sitemaps files """ sitemap_id = 1 writer = SitemapWriter(sitemap_id) sitemap_index_writer.add_url(writer.get_sitemap_url()) nb_urls = 0 for lang in CFG_SITE_LANGS: writer.add_url(CFG_SITE_URL + '/?ln=%s' % lang, lastmod=datetime.today(), changefreq=DEFAULT_CHANGEFREQ_HOME, priority=DEFAULT_PRIORITY_HOME) nb_urls += 1 write_message("... Getting all public records...") recids = get_all_public_records(collection_names) write_message("... Generating urls for %s records..." % len(recids)) task_sleep_now_if_required(can_stop_too=True) for i, (recid, lastmod) in enumerate(recids): if nb_urls % 100 == 0 and (writer.get_size() >= MAX_SIZE or nb_urls >= MAX_RECORDS): sitemap_id += 1 writer = SitemapWriter(sitemap_id) sitemap_index_writer.add_url(writer.get_sitemap_url()) nb_urls = writer.add_url(CFG_SITE_URL + '/%s/%s' % (CFG_SITE_RECORD, recid), lastmod = lastmod, changefreq = DEFAULT_CHANGEFREQ_RECORDS, priority = DEFAULT_PRIORITY_RECORDS) if i % 100 == 0: task_update_progress("Sitemap for recid %s/%s" % (i + 1, len(recids))) task_sleep_now_if_required(can_stop_too=True) write_message("... Generating urls for collections...") collections = get_all_public_collections(collection_names) for i, (collection, lastmod) in enumerate(collections): for lang in CFG_SITE_LANGS: if nb_urls % 100 == 0 and (writer.get_size() >= MAX_SIZE or nb_urls >= MAX_RECORDS): sitemap_id += 1 writer = SitemapWriter(sitemap_id) sitemap_index_writer.add_url(writer.get_sitemap_url()) nb_urls = writer.add_url('%s/collection/%s?ln=%s' % (CFG_SITE_URL, quote(collection), lang), lastmod = lastmod, changefreq = DEFAULT_CHANGEFREQ_COLLECTIONS, priority = DEFAULT_PRIORITY_COLLECTIONS, alternate=True) if i % 100 == 0: task_update_progress("Sitemap for collection %s/%s" % (i + 1, len(collections))) task_sleep_now_if_required(can_stop_too=True) write_message("... Generating urls for fulltexts...") recids = filter_fulltexts(recids, fulltext_filter) for i, (recid, lastmod) in enumerate(recids): if nb_urls % 100 == 0 and (writer.get_size() >= MAX_SIZE or nb_urls >= MAX_RECORDS): sitemap_id += 1 writer = SitemapWriter(sitemap_id) sitemap_index_writer.add_url(writer.get_sitemap_url()) nb_urls = writer.add_url(CFG_SITE_URL + '/%s/%s/files' % (CFG_SITE_RECORD, recid), lastmod = lastmod, changefreq = DEFAULT_CHANGEFREQ_FULLTEXTS, priority = DEFAULT_PRIORITY_FULLTEXTS) if i % 100 == 0: task_update_progress("Sitemap for files page %s/%s" % (i, len(recids))) task_sleep_now_if_required(can_stop_too=True) write_message("... Generating urls for comments...") recids = filter_comments(recids) for i, (recid, lastmod) in enumerate(recids): if nb_urls % 100 == 0 and (writer.get_size() >= MAX_SIZE or nb_urls >= MAX_RECORDS): sitemap_id += 1 writer = SitemapWriter(sitemap_id) sitemap_index_writer.add_url(writer.get_sitemap_url()) nb_urls = writer.add_url(CFG_SITE_URL + '/%s/%s/comments' % (CFG_SITE_RECORD, recid), lastmod = lastmod, changefreq = DEFAULT_CHANGEFREQ_COMMENTS, priority = DEFAULT_PRIORITY_COMMENTS) if i % 100 == 0: task_update_progress("Sitemap for comments page %s/%s" % (i, len(recids))) task_sleep_now_if_required(can_stop_too=True) write_message("... Generating urls for reviews") recids = filter_reviews(recids) for i, (recid, lastmod) in enumerate(recids): if nb_urls % 100 == 0 and (writer.get_size() >= MAX_SIZE or nb_urls >= MAX_RECORDS): sitemap_id += 1 write_message("") writer = SitemapWriter(sitemap_id) sitemap_index_writer.add_url(writer.get_sitemap_url()) nb_urls = writer.add_url(CFG_SITE_URL + '/%s/%s/reviews' % (CFG_SITE_RECORD, recid), lastmod = lastmod, changefreq = DEFAULT_CHANGEFREQ_REVIEWS, priority = DEFAULT_PRIORITY_REVIEWS) if i % 100 == 0: task_update_progress("Sitemap for reviews page %s/%s" % (i, len(recids))) task_sleep_now_if_required(can_stop_too=True) def generate_sitemaps_index(collection_list, fulltext_filter=None): """main function. Generates the sitemap index and the sitemaps collection_list: list of collection names to add in sitemap fulltext_filter: if provided the parser will intergrate only give fulltext types """ write_message("Generating all sitemaps...") sitemap_index_writer = SitemapIndexWriter(CFG_WEBDIR + '/sitemap-index.xml.gz') generate_sitemaps(sitemap_index_writer, collection_list, fulltext_filter) def run_export_method(jobname): """Main function, reading params and running the task.""" write_message("bibexport_sitemap: job %s started." % jobname) collections = get_config_parameter(jobname=jobname, parameter_name="collection", is_parameter_collection = True) fulltext_type = get_config_parameter(jobname=jobname, parameter_name="fulltext_status") generate_sitemaps_index(collections, fulltext_type) write_message("bibexport_sitemap: job %s finished." % jobname) def get_config_parameter(jobname, parameter_name, is_parameter_collection = False): """Detect export method of JOBNAME. Basically, parse JOBNAME.cfg and return export_method. Return None if problem found.""" jobconfig = ConfigParser() jobconffile = CFG_ETCDIR + os.sep + 'bibexport' + os.sep + jobname + '.cfg' if not os.path.exists(jobconffile): write_message("ERROR: cannot find config file %s." % jobconffile) return None jobconfig.read(jobconffile) if is_parameter_collection: all_items = jobconfig.items(section='export_job') parameters = [] for item_name, item_value in all_items: if item_name.startswith(parameter_name): parameters.append(item_value) return parameters else: parameter = jobconfig.get('export_job', parameter_name) return parameter
gpl-2.0
-7,477,199,330,989,505,000
40.097156
116
0.617598
false
gangadhar-kadam/sapphire_app
selling/doctype/lead/test_lead.py
2
1061
# Copyright (c) 2013, Web Notes Technologies Pvt. Ltd. # License: GNU General Public License v3. See license.txt from __future__ import unicode_literals test_records = [ [{"doctype":"Lead", "lead_name": "_Test Lead", "status":"Open", "email_id":"[email protected]", "territory": "_Test Territory"}], [{"doctype":"Lead", "lead_name": "_Test Lead 1", "status":"Open", "email_id":"[email protected]"}], [{"doctype":"Lead", "lead_name": "_Test Lead 2", "status":"Contacted", "email_id":"[email protected]"}], [{"doctype":"Lead", "lead_name": "_Test Lead 3", "status":"Converted", "email_id":"[email protected]"}], ] import webnotes import unittest class TestLead(unittest.TestCase): def test_make_customer(self): from selling.doctype.lead.lead import make_customer customer = make_customer("_T-Lead-00001") self.assertEquals(customer[0]["doctype"], "Customer") self.assertEquals(customer[0]["lead_name"], "_T-Lead-00001") customer[0].customer_group = "_Test Customer Group" webnotes.bean(customer).insert()
agpl-3.0
4,780,978,341,459,978,000
34.4
72
0.673893
false
Natetempid/nearfield
GUI_Layout_1/GUI_Layout_1/usbswitch.py
1
2285
import serial import threading import Queue as q import datetime import numpy as np import sys import time #reload(sys) #sys.setdefaultencoding('utf8') class usbswitch(): def __init__(self, name): self.ctrl = serial.Serial() portname = "" for k in range(0,10): if str(k) in name: print portname portname = "COM%d" % k self.ctrl.port = portname self.ctrl.baudrate = 115200 self.ctrl.timeout = 2 self.ctrl.open() self.error = None self.relays = [] self.__initrelays() def __initrelays(self): for k in range(1,9): relay_tmp = relay(self,k) relay_tmp.turnOff() self.relays.append(relay_tmp) def turnOffAllRelays(self): self.ctrl.write( chr(254) + chr(129) + chr(1) ) for k in range(0,8): self.relays[k].status = 0 def close(self): self.ctrl.close() class relay(): def __init__(self, master, number): self.master = master if number < 1 or number > 8: self.number = None return None else: self.number = number #number is for relay 1 - 8 self.onID = self.set_onID() #this is an integer that is sent to relay to turn it on self.offID = self.set_offID() #this is an integer that is sent to relay to turn it off self.statusID = self.set_statusID() self.status = 0 #self.getStatus() def set_onID(self): return 107 + self.number def set_offID(self): return 99 + self.number def set_statusID(self): return 115 + self.number def turnOn(self): self.master.ctrl.write( chr(254) + chr(self.onID) + chr(1) ) self.status = 1 def turnOff(self): self.master.ctrl.write( chr(254) + chr(self.offID) + chr(1)) self.status = 0 def getStatus(self): waste = self.master.ctrl.read(1024) #read everything in the buffer currently, and then write self.master.ctrl.write( chr(254) + chr(self.statusID) + chr(1)) #print self.master.ctrl.read(1024) input = self.master.ctrl.read(1024) print input self.status = ord(input)
gpl-3.0
7,338,342,678,479,861,000
27.209877
100
0.563239
false
codrut3/tensorflow
tensorflow/contrib/receptive_field/python/util/receptive_field.py
16
23376
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Functions to compute receptive field of a fully-convolutional network. Please refer to the following g3doc for detailed explanation on how this computation is performed, and why it is important: g3doc/photos/vision/features/delf/g3doc/rf_computation.md """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import math from tensorflow.contrib.receptive_field.python.util import graph_compute_order from tensorflow.contrib.util import make_ndarray from tensorflow.python.platform import tf_logging as logging from tensorflow.python.framework import ops as framework_ops import numpy as np # White-listed layer operations, which do not affect the receptive field # computation. _UNCHANGED_RF_LAYER_OPS = [ 'Add', 'BiasAdd', 'Ceil', 'ConcatV2', 'Const', 'Floor', 'Identity', 'Log', 'Mul', 'Pow', 'RealDiv', 'Relu', 'Round', 'Rsqrt', 'Softplus', 'Sub', 'VariableV2'] # Different ways in which padding modes may be spelled. _VALID_PADDING = ["VALID", b"VALID"] _SAME_PADDING = ["SAME", b"SAME"] def _stride_size(node): """Computes stride size given a TF node. Args: node: Tensorflow node (NodeDef proto). Returns: stride_x: Stride size for horizontal direction (integer). stride_y: Stride size for vertical direction (integer). """ strides_attr = node.attr["strides"] logging.vlog(4, "strides_attr = %s", strides_attr) stride_y = strides_attr.list.i[1] stride_x = strides_attr.list.i[2] return stride_x, stride_y def _conv_kernel_size(node, name_to_order_node): """Computes kernel size given a TF convolution or pooling node. Args: node: Tensorflow node (NodeDef proto). name_to_order_node: Map from name to {order, node}. Output of graph_compute_order.get_compute_order(). Returns: kernel_size_x: Kernel size for horizontal direction (integer). kernel_size_y: Kernel size for vertical direction (integer). Raises: ValueError: If the weight layer node is invalid. """ weights_layer_read_name = node.input[1] if not weights_layer_read_name.endswith("/read"): raise ValueError( "Weight layer's name input to conv layer does not end with '/read'") weights_layer_param_name = weights_layer_read_name[:-5] weights_node = name_to_order_node[weights_layer_param_name].node if weights_node.op != "VariableV2": raise ValueError("Weight layer is not of type VariableV2") shape = weights_node.attr["shape"] logging.vlog(4, "weight shape = %s", shape) kernel_size_y = shape.shape.dim[0].size kernel_size_x = shape.shape.dim[1].size return kernel_size_x, kernel_size_y def _padding_size_conv_pool(node, kernel_size, stride): """Computes padding size given a TF convolution or pooling node. Args: node: Tensorflow node (NodeDef proto). kernel_size: Kernel size of node (integer). stride: Stride size of node (integer). Returns: padding: Padding size (integer). Raises: ValueError: If padding is invalid. """ # In this case, we need to carefully consider the different TF padding modes. # The padding depends on kernel size, and may depend on input size. If it # depends on input size, we raise an exception. padding_attr = node.attr["padding"] logging.vlog(4, "padding_attr = %s", padding_attr) if padding_attr.s in _VALID_PADDING: padding = 0 elif padding_attr.s in _SAME_PADDING: if kernel_size == 1: padding = 0 elif stride == 1: padding = int(math.floor((float(kernel_size) - 1) / 2)) elif stride == 2 and kernel_size % 2 == 0: padding = int(math.floor((float(kernel_size) - 1) / 2)) else: padding = None logging.warning( "Padding depends on input size, which means that the effective " "padding may be different depending on the input image " "dimensionality. In this case, alignment check will be skipped.") else: raise ValueError("Invalid padding operation %s" % padding_attr.s) return padding def _pool_kernel_size(node): """Computes kernel size given a TF pooling node. Args: node: Tensorflow node (NodeDef proto). Returns: kernel_size_x: Kernel size for horizontal direction (integer). kernel_size_y: Kernel size for vertical direction (integer). Raises: ValueError: If pooling is invalid. """ ksize = node.attr["ksize"] kernel_size_y = ksize.list.i[1] kernel_size_x = ksize.list.i[2] if ksize.list.i[0] != 1: raise ValueError("pool ksize for first dim is not 1") if ksize.list.i[3] != 1: raise ValueError("pool ksize for last dim is not 1") return kernel_size_x, kernel_size_y def _padding_size_pad_layer(node, name_to_order_node): """Computes padding size given a TF padding node. Args: node: Tensorflow node (NodeDef proto). name_to_order_node: Map from name to {order, node}. Output of graph_compute_order.get_compute_order(). Returns: padding_x: Padding size for horizontal direction (integer). padding_y: Padding size for vertical direction (integer). Raises: ValueError: If padding layer is invalid. """ paddings_layer_name = node.input[1] if not paddings_layer_name.endswith("/paddings"): raise ValueError("Padding layer name does not end with '/paddings'") paddings_node = name_to_order_node[paddings_layer_name].node if paddings_node.op != "Const": raise ValueError("Padding op is not Const") value = paddings_node.attr["value"] t = make_ndarray(value.tensor) padding_y = t[1][0] padding_x = t[2][0] if t[0][0] != 0: raise ValueError("padding is not zero for first tensor dim") if t[3][0] != 0: raise ValueError("padding is not zero for last tensor dim") return padding_x, padding_y def _get_layer_params(node, name_to_order_node): """Gets layer parameters relevant for RF computation. Currently, only these nodes are supported: - Conv2D - DepthwiseConv2dNative - Pad - MaxPool - AvgPool - all nodes listed in _UNCHANGED_RF_LAYER_OPS Args: node: Tensorflow node (NodeDef proto). name_to_order_node: Map from name to {order, node}. Output of graph_compute_order.get_compute_order(). Returns: kernel_size_x: Kernel size for horizontal direction (integer). kernel_size_y: Kernel size for vertical direction (integer). stride_x: Stride size for horizontal direction (integer). stride_y: Stride size for vertical direction (integer). padding_x: Padding size for horizontal direction (integer). padding_y: Padding size for vertical direction (integer). Raises: ValueError: If layer op is unknown. """ logging.vlog(3, "node.op = %s", node.op) logging.vlog(4, "node = %s", node) if node.op == "Conv2D" or node.op == "DepthwiseConv2dNative": stride_x, stride_y = _stride_size(node) kernel_size_x, kernel_size_y = _conv_kernel_size(node, name_to_order_node) # Compute the padding for this node separately for each direction. padding_x = _padding_size_conv_pool(node, kernel_size_x, stride_x) padding_y = _padding_size_conv_pool(node, kernel_size_y, stride_y) elif node.op == "Pad": # Kernel and stride are simply 1 in this case. kernel_size_x = 1 kernel_size_y = 1 stride_x = 1 stride_y = 1 padding_x, padding_y = _padding_size_pad_layer(node, name_to_order_node) elif node.op == "MaxPool" or node.op == "AvgPool": stride_x, stride_y = _stride_size(node) kernel_size_x, kernel_size_y = _pool_kernel_size(node) # Compute the padding for this node separately for each direction. padding_x = _padding_size_conv_pool(node, kernel_size_x, stride_x) padding_y = _padding_size_conv_pool(node, kernel_size_y, stride_y) elif node.op in _UNCHANGED_RF_LAYER_OPS: # These nodes do not modify the RF parameters. kernel_size_x = 1 kernel_size_y = 1 stride_x = 1 stride_y = 1 padding_x = 0 padding_y = 0 else: raise ValueError("Unknown layer for operation '%s': %s" % (node.name, node.op)) return kernel_size_x, kernel_size_y, stride_x, stride_y, padding_x, padding_y def _reverse_sort_by_order(name_to_order_node): """Sorts map of name_to_order_node nodes in reverse order. The output is such that the nodes in name_to_order_node are sorted in descending order of the "order" field. Args: name_to_order_node: Map from name to {order, node}. Output of graph_compute_order.get_compute_order(). Returns: sorted_name_to_order_node: Sorted version of the input, in descending order. """ return sorted(name_to_order_node.items(), key=lambda x: -x[1].order) def _get_rf_size_node_input(stride, kernel_size, rf_size_output): """Computes RF size at the input of a given layer. Args: stride: Stride of given layer (integer). kernel_size: Kernel size of given layer (integer). rf_size_output: RF size at output of given layer (integer). Returns: rf_size_input: RF size at input of given layer (integer). """ return stride * rf_size_output + kernel_size - stride def _get_effective_stride_node_input(stride, effective_stride_output): """Computes effective stride at the input of a given layer. Args: stride: Stride of given layer (integer). effective_stride_output: Effective stride at output of given layer (integer). Returns: effective_stride_input: Effective stride at input of given layer (integer). """ return stride * effective_stride_output def _get_effective_padding_node_input(stride, padding, effective_padding_output): """Computes effective padding at the input of a given layer. Args: stride: Stride of given layer (integer). padding: Padding of given layer (integer). effective_padding_output: Effective padding at output of given layer (integer). Returns: effective_padding_input: Effective padding at input of given layer (integer). """ return stride * effective_padding_output + padding class ReceptiveField: """ Receptive field of a convolutional neural network. Args: size: Receptive field size. stride: Effective stride. padding: Effective padding. """ def __init__(self, size, stride, padding): self.size = np.asarray(size) self.stride = np.asarray(stride) self.padding = np.asarray(padding) def compute_input_center_coordinates(self, y, axis=None): """ Computes the center of the receptive field that generated a feature. Args: y: An array of feature coordinates with shape `(..., d)`, where `d` is the number of dimensions of the coordinates. axis: The dimensions for which to compute the input center coordinates. If `None` (the default), compute the input center coordinates for all dimensions. Returns: x: Center of the receptive field that generated the features, at the input of the network. Raises: ValueError: If the number of dimensions of the feature coordinates does not match the number of elements in `axis`. """ # Use all dimensions. if axis is None: axis = range(self.size.size) # Ensure axis is a list because tuples have different indexing behavior. axis = list(axis) y = np.asarray(y) if y.shape[-1] != len(axis): raise ValueError("Dimensionality of the feature coordinates `y` (%d) " "does not match dimensionality of `axis` (%d)" % (y.shape[-1], len(axis))) return - self.padding[axis] + y * self.stride[axis] + \ (self.size[axis] - 1) / 2 def compute_feature_coordinates(self, x, axis=None): """ Computes the position of a feature given the center of a receptive field. Args: x: An array of input center coordinates with shape `(..., d)`, where `d` is the number of dimensions of the coordinates. axis: The dimensions for which to compute the feature coordinates. If `None` (the default), compute the feature coordinates for all dimensions. Returns: y: Coordinates of the features. Raises: ValueError: If the number of dimensions of the input center coordinates does not match the number of elements in `axis`. """ # Use all dimensions. if axis is None: axis = range(self.size.size) # Ensure axis is a list because tuples have different indexing behavior. axis = list(axis) x = np.asarray(x) if x.shape[-1] != len(axis): raise ValueError("Dimensionality of the input center coordinates `x` " "(%d) does not match dimensionality of `axis` (%d)" % (x.shape[-1], len(axis))) return (x + self.padding[axis] + (1 - self.size[axis]) / 2) / \ self.stride[axis] def __iter__(self): return iter(np.concatenate([self.size, self.stride, self.padding])) def compute_receptive_field_from_graph_def(graph_def, input_node, output_node, stop_propagation=None): """Computes receptive field (RF) parameters from a Graph or GraphDef object. The algorithm stops the calculation of the receptive field whenever it encounters an operation in the list `stop_propagation`. Stopping the calculation early can be useful to calculate the receptive field of a subgraph such as a single branch of the [inception network](https://arxiv.org/abs/1512.00567). Args: graph_def: Graph or GraphDef object. input_node: Name of the input node or Tensor object from graph. output_node: Name of the output node or Tensor object from graph. stop_propagation: List of operation or scope names for which to stop the propagation of the receptive field. Returns: rf_size_x: Receptive field size of network in the horizontal direction, with respect to specified input and output. rf_size_y: Receptive field size of network in the vertical direction, with respect to specified input and output. effective_stride_x: Effective stride of network in the horizontal direction, with respect to specified input and output. effective_stride_y: Effective stride of network in the vertical direction, with respect to specified input and output. effective_padding_x: Effective padding of network in the horizontal direction, with respect to specified input and output. effective_padding_y: Effective padding of network in the vertical direction, with respect to specified input and output. Raises: ValueError: If network is not aligned or if either input or output nodes cannot be found. For network criterion alignment, see photos/vision/features/delf/g3doc/rf_computation.md """ # Convert a graph to graph_def if necessary. if isinstance(graph_def, framework_ops.Graph): graph_def = graph_def.as_graph_def() # Convert tensors to names. if isinstance(input_node, framework_ops.Tensor): input_node = input_node.op.name if isinstance(output_node, framework_ops.Tensor): output_node = output_node.op.name stop_propagation = stop_propagation or [] # Computes order of computation for a given graph. name_to_order_node = graph_compute_order.get_compute_order( graph_def=graph_def) # Sort in reverse topological order. order = _reverse_sort_by_order(name_to_order_node) # Dictionaries to keep track of receptive field, effective stride and # effective padding of different nodes. rf_sizes_x = {} rf_sizes_y = {} effective_strides_x = {} effective_strides_y = {} effective_paddings_x = {} effective_paddings_y = {} # Initialize dicts for output_node. rf_sizes_x[output_node] = 1 rf_sizes_y[output_node] = 1 effective_strides_x[output_node] = 1 effective_strides_y[output_node] = 1 effective_paddings_x[output_node] = 0 effective_paddings_y[output_node] = 0 # Flag to denote if we found output node yet. If we have not, we skip nodes # until the output node is found. found_output_node = False # Flag to denote if padding is undefined. This happens when SAME padding mode # is used in conjunction with stride and kernel sizes which make it such that # the padding to be applied would depend on the input size. In this case, # alignment checks are skipped, and the effective padding is None. undefined_padding = False for _, (o, node) in order: if node: logging.vlog(3, "%10d %-100s %-20s" % (o, node.name[:90], node.op)) else: continue # When we find input node, we can stop. if node.name == input_node: break # Loop until we find the output node. All nodes before finding the output # one are irrelevant, so they can be skipped. if not found_output_node: if node.name == output_node: found_output_node = True if found_output_node: if node.name not in rf_sizes_x: assert node.name not in rf_sizes_y, ("Node %s is in rf_sizes_y, but " "not in rf_sizes_x" % node.name) # In this case, node is not relevant since it's not part of the # computation we're interested in. logging.vlog(3, "Irrelevant node %s, skipping it...", node.name) continue # Get params for this layer. kernel_size_x, kernel_size_y, stride_x, stride_y, padding_x, padding_y = ( _get_layer_params(node, name_to_order_node)) logging.vlog(3, "kernel_size_x = %s, kernel_size_y = %s, " "stride_x = %s, stride_y = %s, " "padding_x = %s, padding_y = %s" % (kernel_size_x, kernel_size_y, stride_x, stride_y, padding_x, padding_y)) if padding_x is None or padding_y is None: undefined_padding = True # Get parameters at input of this layer which may or may not be propagated # to the input layers. rf_size_input_x = _get_rf_size_node_input(stride_x, kernel_size_x, rf_sizes_x[node.name]) rf_size_input_y = _get_rf_size_node_input(stride_y, kernel_size_y, rf_sizes_y[node.name]) effective_stride_input_x = _get_effective_stride_node_input( stride_x, effective_strides_x[node.name]) effective_stride_input_y = _get_effective_stride_node_input( stride_y, effective_strides_y[node.name]) if not undefined_padding: effective_padding_input_x = _get_effective_padding_node_input( stride_x, padding_x, effective_paddings_x[node.name]) effective_padding_input_y = _get_effective_padding_node_input( stride_y, padding_y, effective_paddings_y[node.name]) else: effective_padding_input_x = None effective_padding_input_y = None # Loop over this node's inputs and potentially propagate information down. for inp_name in node.input: # Stop the propagation of the receptive field. if any(inp_name.startswith(stop) for stop in stop_propagation): logging.vlog(3, "Skipping explicitly ignored node %s.", node.name) continue logging.vlog(4, "inp_name = %s", inp_name) inp_node = name_to_order_node[inp_name].node logging.vlog(4, "inp_node = \n%s", inp_node) if inp_node.name in rf_sizes_x: assert inp_node.name in rf_sizes_y, ( "Node %s is in rf_sizes_x, but " "not in rf_sizes_y" % inp_node.name) # This node was already discovered through a previous path, so we need # to make sure that graph is aligned. This alignment check is skipped # if the padding is not defined, since in this case alignment cannot # be checked. if not undefined_padding: if effective_strides_x[inp_node.name] != effective_stride_input_x: raise ValueError( "Graph is not aligned since effective stride from different " "paths is different in horizontal direction") if effective_strides_y[inp_node.name] != effective_stride_input_y: raise ValueError( "Graph is not aligned since effective stride from different " "paths is different in vertical direction") if (rf_sizes_x[inp_node.name] - 1 ) / 2 - effective_paddings_x[inp_node.name] != ( rf_size_input_x - 1) / 2 - effective_padding_input_x: raise ValueError( "Graph is not aligned since center shift from different " "paths is different in horizontal direction") if (rf_sizes_y[inp_node.name] - 1 ) / 2 - effective_paddings_y[inp_node.name] != ( rf_size_input_y - 1) / 2 - effective_padding_input_y: raise ValueError( "Graph is not aligned since center shift from different " "paths is different in vertical direction") # Keep track of path with largest RF, for both directions. if rf_sizes_x[inp_node.name] < rf_size_input_x: rf_sizes_x[inp_node.name] = rf_size_input_x effective_strides_x[inp_node.name] = effective_stride_input_x effective_paddings_x[inp_node.name] = effective_padding_input_x if rf_sizes_y[inp_node.name] < rf_size_input_y: rf_sizes_y[inp_node.name] = rf_size_input_y effective_strides_y[inp_node.name] = effective_stride_input_y effective_paddings_y[inp_node.name] = effective_padding_input_y else: assert inp_node.name not in rf_sizes_y, ( "Node %s is in rf_sizes_y, but " "not in rf_sizes_x" % inp_node.name) # In this case, it is the first time we encounter this node. So we # propagate the RF parameters. rf_sizes_x[inp_node.name] = rf_size_input_x rf_sizes_y[inp_node.name] = rf_size_input_y effective_strides_x[inp_node.name] = effective_stride_input_x effective_strides_y[inp_node.name] = effective_stride_input_y effective_paddings_x[inp_node.name] = effective_padding_input_x effective_paddings_y[inp_node.name] = effective_padding_input_y if not found_output_node: raise ValueError("Output node was not found") if input_node not in rf_sizes_x: raise ValueError("Input node was not found") return ReceptiveField( (rf_sizes_x[input_node], rf_sizes_y[input_node]), (effective_strides_x[input_node], effective_strides_y[input_node]), (effective_paddings_x[input_node], effective_paddings_y[input_node]))
apache-2.0
-2,473,689,287,112,896,500
38.287395
80
0.660806
false
ProfessorX/Config
.PyCharm30/system/python_stubs/-1247971765/PyKDE4/kdeui/KViewStateMaintainerBase.py
1
1046
# encoding: utf-8 # module PyKDE4.kdeui # from /usr/lib/python3/dist-packages/PyKDE4/kdeui.cpython-34m-x86_64-linux-gnu.so # by generator 1.135 # no doc # imports import PyKDE4.kdecore as __PyKDE4_kdecore import PyQt4.QtCore as __PyQt4_QtCore import PyQt4.QtGui as __PyQt4_QtGui import PyQt4.QtSvg as __PyQt4_QtSvg class KViewStateMaintainerBase(__PyQt4_QtCore.QObject): # no doc def configGroup(self, *args, **kwargs): # real signature unknown pass def restoreState(self, *args, **kwargs): # real signature unknown pass def saveState(self, *args, **kwargs): # real signature unknown pass def selectionModel(self, *args, **kwargs): # real signature unknown pass def setSelectionModel(self, *args, **kwargs): # real signature unknown pass def setView(self, *args, **kwargs): # real signature unknown pass def view(self, *args, **kwargs): # real signature unknown pass def __init__(self, *args, **kwargs): # real signature unknown pass
gpl-2.0
8,347,826,808,553,256,000
25.15
82
0.66826
false
okantekeli/aws-lambda
ImageFunctions/CreateImages.py
1
2560
import collections import datetime from datetime import timedelta import boto3 def lambda_handler(event, context): """Main Handler for execute lambda function Args: event : Lambda Event context : Lambda Event Context """ ec2 = boto3.client('ec2') # This query searchs instances which has AutoBackup Tags. # You can change/customize it according to your need reservations = ec2.describe_instances( Filters=[ {'Name': 'tag-key', 'Values': ['AutoBackup']}, ] ).get( 'Reservations', [] ) instances = sum( [ [i for i in r['Instances']] for r in reservations ], []) print "Found %d instances that need backing up" % len(instances) for instance in instances: for tag in instance['Tags']: if tag['Key'] == 'Name': create_snapshot(tag['Value'], instance['InstanceId']) def create_snapshot(instancename, instanceid): """Pushes the given SNS Topic Args: instancename (string) : The backed up instances name instanceid (string) : EC2 Instance ID """ ec2 = boto3.client('ec2') create_time = datetime.datetime.now() # This variable(days) defines image retention period. # You can change it according to your need ex : days=3 , days=5 , days=1 valid_time = datetime.datetime.now() + timedelta(days=3) snapshotname = instancename + '_' + create_time.strftime('%Y-%m-%d') ami_data = ec2.create_image( InstanceId=instanceid, Name=snapshotname, Description="Lambda created AMI of instance " + instanceid, NoReboot=True, DryRun=False ) amiid = ami_data['ImageId'] ec2.create_tags( Resources=[amiid], DryRun=False, Tags=[ { 'Key' : 'OriginalInstance', 'Value' : instancename }, { 'Key' : 'ValidUntil', 'Value' : valid_time.strftime('%Y-%m-%d') }] ) #publish SNS topic. sns_notifier(instancename, snapshotname) def sns_notifier(instancename, snapshotname): """Push the messages the given SNS Topic Args: instancename (string) : The backed up instance name snapshotname (string) : Snapshotname """ sns = boto3.client('sns') sns.publish( TargetArn='YOURSNSTOPICARN', Message='Auto Backup Complated For : ' + instancename + " named : " + snapshotname, MessageStructure='text' )
gpl-3.0
5,648,038,826,633,173,000
25.122449
92
0.585938
false
mikemhenry/arcade
examples/shapes.py
1
2831
""" This simple animation example shows how to use classes to animate multple objects on the screen at the same time. Because this is redraws the shapes from scratch each frame, this is slow and inefficient, but we'll show how to make it faster in the chapter on performance. """ import arcade import random # Set up the constants SCREEN_WIDTH = 800 SCREEN_HEIGHT = 600 RECT_WIDTH = 50 RECT_HEIGHT = 50 class Shape(): def __init__(self, x, y, width, height, angle, delta_x, delta_y, delta_angle, color): self.x = x self.y = y self.width = width self.height = height self.angle = angle self.delta_x = delta_x self.delta_y = delta_y self.delta_angle = delta_angle self.color = color def move(self): self.x += self.delta_x self.y += self.delta_y self.angle += self.delta_angle class Ellipse(Shape): def draw(self): arcade.draw_ellipse_filled(self.x, self.y, self.width, self.height, self.color, self.angle) class Rectangle(Shape): def draw(self): arcade.draw_rectangle_filled(self.x, self.y, self.width, self.height, self.color, self.angle) class MyApplication(arcade.Window): """ Main application class. """ def setup(self): """ Set up the game and initialize the variables. """ self.shape_list = [] for i in range(100): x = random.randrange(0, SCREEN_WIDTH) y = random.randrange(0, SCREEN_HEIGHT) width = random.randrange(10, 30) height = random.randrange(10, 30) angle = random.randrange(0, 360) d_x = random.randrange(-3, 4) d_y = random.randrange(-3, 4) d_angle = random.randrange(-3, 4) red = random.randrange(256) green = random.randrange(256) blue = random.randrange(256) alpha = random.randrange(256) shape_type = random.randrange(2) if shape_type == 0: shape = Rectangle(x, y, width, height, angle, d_x, d_y, d_angle, (red, green, blue, alpha)) else: shape = Ellipse(x, y, width, height, angle, d_x, d_y, d_angle, (red, green, blue, alpha)) self.shape_list.append(shape) def animate(self, dt): """ Move everything """ for shape in self.shape_list: shape.move() def on_draw(self): """ Render the screen. """ arcade.start_render() for shape in self.shape_list: shape.draw() window = MyApplication(SCREEN_WIDTH, SCREEN_HEIGHT, title="Shapes!") window.setup() arcade.run()
mit
9,209,995,178,170,576,000
25.707547
77
0.553515
false
eclee25/flu-SDI-exploratory-age
scripts/OR_allweeks.py
1
3108
#!/usr/bin/python ############################################## ###Python template ###Author: Elizabeth Lee ###Date: 9/2/13 ###Function: draw OR by week for all weeks ###Import data: ###Command Line: python ############################################## ### notes ### ### packages/modules ### import csv import numpy as np import matplotlib.pyplot as plt import sys ## local modules ## import ORgenerator as od ### data structures ### # ilidict[(week, age marker)] = ILI # wkdict[week] = seasonnum ilidict, wkdict = {}, {} # unnecessary # ORdict[week] = OR # ARdict[week] = attack rate per 10000 ORdict, ARdict = {}, {} ### parameters ### USchild = 20348657 + 20677194 + 22040343 #US child popn from 2010 Census USadult = 21585999 + 21101849 + 19962099 + 20179642 + 20890964 + 22708591 + 22298125 + 19664805 #US adult popn from 2010 Census seasons = range(1,11) #seasons for which ORs will be generated ### plotting settings ### colorvec = ['grey', 'black', 'red', 'orange', 'gold', 'green', 'blue', 'cyan', 'darkviolet', 'hotpink'] labelvec = ['00-01', '01-02', '02-03', '03-04', '04-05', '05-06', '06-07', '07-08', '08-09', '09-10'] xlabels = range(40,54) xlabels.extend(range(1,40)) ### functions ### ### import data ### datain=open('/home/elee/Dropbox/Elizabeth_Bansal_Lab/SDI_Data/explore/SQL_export/OR_allweeks.csv','r') data=csv.reader(datain, delimiter=',') ### program ### # OR by week chart # ilidict[(week, age marker)] = ILI # wkdict[week] = seasonnum # weeks = unique list of weeks for dataset ilidict, wkdict, weeks = od.import_dwk(data, 0, 1, 2, 3) ORdict, ARdict = od.ORgen_wk(ilidict, weeks) for s in seasons: # wkdummy will represent list of weeks for chart in season to use as key for OR dict wkdummy = [key for key in sorted(weeks) if wkdict[key] == int(s)] wkdummy = set(wkdummy) if s == 1: chartORs = [ORdict[wk] for wk in sorted(wkdummy)] chartwks = xrange(13, 13 + len(sorted(wkdummy))) print "season number and num weeks", s, len(wkdummy) plt.plot(chartwks, chartORs, marker = 'o', color = colorvec[s-1], label = labelvec[s-1], linewidth = 2) elif len(wkdummy) == 53: # wkdummy needs to be sorted bc dict values don't have order chartORs = [ORdict[wk] for wk in sorted(wkdummy)] chartwks = xrange(len(sorted(wkdummy))) print "season number and num weeks", s, len(wkdummy) plt.plot(chartwks, chartORs, marker = 'o', color = colorvec[s-1], label = labelvec[s-1], linewidth = 2) else: chartORs = [ORdict[wk] for wk in sorted(wkdummy)] avg53 = (chartORs[12] + chartORs[13])/2 chartORs.insert(13, avg53) chartwks = xrange(len(sorted(wkdummy)) + 1) print "season number and num weeks", s, len(wkdummy) plt.plot(chartwks, chartORs, marker = 'o', color = colorvec[s-1], label = labelvec[s-1], linewidth = 2) plt.plot([33, 33], [0, 10], color = 'k', linewidth = 1) plt.xlim([0, 52]) plt.ylim([0, 10]) plt.xlabel('Week Number', fontsize=24) # 12/1/13 increase size plt.ylabel('OR, child:adult', fontsize=24) # plt.ylabel('OR, US pop normalized', fontsize=24) plt.legend(loc = 'upper left') plt.xticks(xrange(53), xlabels) plt.show()
mit
8,016,307,729,006,739,000
31.715789
127
0.649936
false
constKutsy/GeoWiki
.compit/lib/python3.6/site-packages/tornado/test/httputil_test.py
14
17520
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import absolute_import, division, print_function from tornado.httputil import url_concat, parse_multipart_form_data, HTTPHeaders, format_timestamp, HTTPServerRequest, parse_request_start_line, parse_cookie from tornado.escape import utf8, native_str from tornado.log import gen_log from tornado.testing import ExpectLog from tornado.test.util import unittest import copy import datetime import logging import pickle import time class TestUrlConcat(unittest.TestCase): def test_url_concat_no_query_params(self): url = url_concat( "https://localhost/path", [('y', 'y'), ('z', 'z')], ) self.assertEqual(url, "https://localhost/path?y=y&z=z") def test_url_concat_encode_args(self): url = url_concat( "https://localhost/path", [('y', '/y'), ('z', 'z')], ) self.assertEqual(url, "https://localhost/path?y=%2Fy&z=z") def test_url_concat_trailing_q(self): url = url_concat( "https://localhost/path?", [('y', 'y'), ('z', 'z')], ) self.assertEqual(url, "https://localhost/path?y=y&z=z") def test_url_concat_q_with_no_trailing_amp(self): url = url_concat( "https://localhost/path?x", [('y', 'y'), ('z', 'z')], ) self.assertEqual(url, "https://localhost/path?x=&y=y&z=z") def test_url_concat_trailing_amp(self): url = url_concat( "https://localhost/path?x&", [('y', 'y'), ('z', 'z')], ) self.assertEqual(url, "https://localhost/path?x=&y=y&z=z") def test_url_concat_mult_params(self): url = url_concat( "https://localhost/path?a=1&b=2", [('y', 'y'), ('z', 'z')], ) self.assertEqual(url, "https://localhost/path?a=1&b=2&y=y&z=z") def test_url_concat_no_params(self): url = url_concat( "https://localhost/path?r=1&t=2", [], ) self.assertEqual(url, "https://localhost/path?r=1&t=2") def test_url_concat_none_params(self): url = url_concat( "https://localhost/path?r=1&t=2", None, ) self.assertEqual(url, "https://localhost/path?r=1&t=2") def test_url_concat_with_frag(self): url = url_concat( "https://localhost/path#tab", [('y', 'y')], ) self.assertEqual(url, "https://localhost/path?y=y#tab") def test_url_concat_multi_same_params(self): url = url_concat( "https://localhost/path", [('y', 'y1'), ('y', 'y2')], ) self.assertEqual(url, "https://localhost/path?y=y1&y=y2") def test_url_concat_multi_same_query_params(self): url = url_concat( "https://localhost/path?r=1&r=2", [('y', 'y')], ) self.assertEqual(url, "https://localhost/path?r=1&r=2&y=y") def test_url_concat_dict_params(self): url = url_concat( "https://localhost/path", dict(y='y'), ) self.assertEqual(url, "https://localhost/path?y=y") class MultipartFormDataTest(unittest.TestCase): def test_file_upload(self): data = b"""\ --1234 Content-Disposition: form-data; name="files"; filename="ab.txt" Foo --1234--""".replace(b"\n", b"\r\n") args = {} files = {} parse_multipart_form_data(b"1234", data, args, files) file = files["files"][0] self.assertEqual(file["filename"], "ab.txt") self.assertEqual(file["body"], b"Foo") def test_unquoted_names(self): # quotes are optional unless special characters are present data = b"""\ --1234 Content-Disposition: form-data; name=files; filename=ab.txt Foo --1234--""".replace(b"\n", b"\r\n") args = {} files = {} parse_multipart_form_data(b"1234", data, args, files) file = files["files"][0] self.assertEqual(file["filename"], "ab.txt") self.assertEqual(file["body"], b"Foo") def test_special_filenames(self): filenames = ['a;b.txt', 'a"b.txt', 'a";b.txt', 'a;"b.txt', 'a";";.txt', 'a\\"b.txt', 'a\\b.txt', ] for filename in filenames: logging.debug("trying filename %r", filename) data = """\ --1234 Content-Disposition: form-data; name="files"; filename="%s" Foo --1234--""" % filename.replace('\\', '\\\\').replace('"', '\\"') data = utf8(data.replace("\n", "\r\n")) args = {} files = {} parse_multipart_form_data(b"1234", data, args, files) file = files["files"][0] self.assertEqual(file["filename"], filename) self.assertEqual(file["body"], b"Foo") def test_boundary_starts_and_ends_with_quotes(self): data = b'''\ --1234 Content-Disposition: form-data; name="files"; filename="ab.txt" Foo --1234--'''.replace(b"\n", b"\r\n") args = {} files = {} parse_multipart_form_data(b'"1234"', data, args, files) file = files["files"][0] self.assertEqual(file["filename"], "ab.txt") self.assertEqual(file["body"], b"Foo") def test_missing_headers(self): data = b'''\ --1234 Foo --1234--'''.replace(b"\n", b"\r\n") args = {} files = {} with ExpectLog(gen_log, "multipart/form-data missing headers"): parse_multipart_form_data(b"1234", data, args, files) self.assertEqual(files, {}) def test_invalid_content_disposition(self): data = b'''\ --1234 Content-Disposition: invalid; name="files"; filename="ab.txt" Foo --1234--'''.replace(b"\n", b"\r\n") args = {} files = {} with ExpectLog(gen_log, "Invalid multipart/form-data"): parse_multipart_form_data(b"1234", data, args, files) self.assertEqual(files, {}) def test_line_does_not_end_with_correct_line_break(self): data = b'''\ --1234 Content-Disposition: form-data; name="files"; filename="ab.txt" Foo--1234--'''.replace(b"\n", b"\r\n") args = {} files = {} with ExpectLog(gen_log, "Invalid multipart/form-data"): parse_multipart_form_data(b"1234", data, args, files) self.assertEqual(files, {}) def test_content_disposition_header_without_name_parameter(self): data = b"""\ --1234 Content-Disposition: form-data; filename="ab.txt" Foo --1234--""".replace(b"\n", b"\r\n") args = {} files = {} with ExpectLog(gen_log, "multipart/form-data value missing name"): parse_multipart_form_data(b"1234", data, args, files) self.assertEqual(files, {}) def test_data_after_final_boundary(self): # The spec requires that data after the final boundary be ignored. # http://www.w3.org/Protocols/rfc1341/7_2_Multipart.html # In practice, some libraries include an extra CRLF after the boundary. data = b"""\ --1234 Content-Disposition: form-data; name="files"; filename="ab.txt" Foo --1234-- """.replace(b"\n", b"\r\n") args = {} files = {} parse_multipart_form_data(b"1234", data, args, files) file = files["files"][0] self.assertEqual(file["filename"], "ab.txt") self.assertEqual(file["body"], b"Foo") class HTTPHeadersTest(unittest.TestCase): def test_multi_line(self): # Lines beginning with whitespace are appended to the previous line # with any leading whitespace replaced by a single space. # Note that while multi-line headers are a part of the HTTP spec, # their use is strongly discouraged. data = """\ Foo: bar baz Asdf: qwer \tzxcv Foo: even more lines """.replace("\n", "\r\n") headers = HTTPHeaders.parse(data) self.assertEqual(headers["asdf"], "qwer zxcv") self.assertEqual(headers.get_list("asdf"), ["qwer zxcv"]) self.assertEqual(headers["Foo"], "bar baz,even more lines") self.assertEqual(headers.get_list("foo"), ["bar baz", "even more lines"]) self.assertEqual(sorted(list(headers.get_all())), [("Asdf", "qwer zxcv"), ("Foo", "bar baz"), ("Foo", "even more lines")]) def test_unicode_newlines(self): # Ensure that only \r\n is recognized as a header separator, and not # the other newline-like unicode characters. # Characters that are likely to be problematic can be found in # http://unicode.org/standard/reports/tr13/tr13-5.html # and cpython's unicodeobject.c (which defines the implementation # of unicode_type.splitlines(), and uses a different list than TR13). newlines = [ u'\u001b', # VERTICAL TAB u'\u001c', # FILE SEPARATOR u'\u001d', # GROUP SEPARATOR u'\u001e', # RECORD SEPARATOR u'\u0085', # NEXT LINE u'\u2028', # LINE SEPARATOR u'\u2029', # PARAGRAPH SEPARATOR ] for newline in newlines: # Try the utf8 and latin1 representations of each newline for encoding in ['utf8', 'latin1']: try: try: encoded = newline.encode(encoding) except UnicodeEncodeError: # Some chars cannot be represented in latin1 continue data = b'Cookie: foo=' + encoded + b'bar' # parse() wants a native_str, so decode through latin1 # in the same way the real parser does. headers = HTTPHeaders.parse( native_str(data.decode('latin1'))) expected = [('Cookie', 'foo=' + native_str(encoded.decode('latin1')) + 'bar')] self.assertEqual( expected, list(headers.get_all())) except Exception: gen_log.warning("failed while trying %r in %s", newline, encoding) raise def test_optional_cr(self): # Both CRLF and LF should be accepted as separators. CR should not be # part of the data when followed by LF, but it is a normal char # otherwise (or should bare CR be an error?) headers = HTTPHeaders.parse( 'CRLF: crlf\r\nLF: lf\nCR: cr\rMore: more\r\n') self.assertEqual(sorted(headers.get_all()), [('Cr', 'cr\rMore: more'), ('Crlf', 'crlf'), ('Lf', 'lf'), ]) def test_copy(self): all_pairs = [('A', '1'), ('A', '2'), ('B', 'c')] h1 = HTTPHeaders() for k, v in all_pairs: h1.add(k, v) h2 = h1.copy() h3 = copy.copy(h1) h4 = copy.deepcopy(h1) for headers in [h1, h2, h3, h4]: # All the copies are identical, no matter how they were # constructed. self.assertEqual(list(sorted(headers.get_all())), all_pairs) for headers in [h2, h3, h4]: # Neither the dict or its member lists are reused. self.assertIsNot(headers, h1) self.assertIsNot(headers.get_list('A'), h1.get_list('A')) def test_pickle_roundtrip(self): headers = HTTPHeaders() headers.add('Set-Cookie', 'a=b') headers.add('Set-Cookie', 'c=d') headers.add('Content-Type', 'text/html') pickled = pickle.dumps(headers) unpickled = pickle.loads(pickled) self.assertEqual(sorted(headers.get_all()), sorted(unpickled.get_all())) self.assertEqual(sorted(headers.items()), sorted(unpickled.items())) def test_setdefault(self): headers = HTTPHeaders() headers['foo'] = 'bar' # If a value is present, setdefault returns it without changes. self.assertEqual(headers.setdefault('foo', 'baz'), 'bar') self.assertEqual(headers['foo'], 'bar') # If a value is not present, setdefault sets it for future use. self.assertEqual(headers.setdefault('quux', 'xyzzy'), 'xyzzy') self.assertEqual(headers['quux'], 'xyzzy') self.assertEqual(sorted(headers.get_all()), [('Foo', 'bar'), ('Quux', 'xyzzy')]) def test_string(self): headers = HTTPHeaders() headers.add("Foo", "1") headers.add("Foo", "2") headers.add("Foo", "3") headers2 = HTTPHeaders.parse(str(headers)) self.assertEquals(headers, headers2) class FormatTimestampTest(unittest.TestCase): # Make sure that all the input types are supported. TIMESTAMP = 1359312200.503611 EXPECTED = 'Sun, 27 Jan 2013 18:43:20 GMT' def check(self, value): self.assertEqual(format_timestamp(value), self.EXPECTED) def test_unix_time_float(self): self.check(self.TIMESTAMP) def test_unix_time_int(self): self.check(int(self.TIMESTAMP)) def test_struct_time(self): self.check(time.gmtime(self.TIMESTAMP)) def test_time_tuple(self): tup = tuple(time.gmtime(self.TIMESTAMP)) self.assertEqual(9, len(tup)) self.check(tup) def test_datetime(self): self.check(datetime.datetime.utcfromtimestamp(self.TIMESTAMP)) # HTTPServerRequest is mainly tested incidentally to the server itself, # but this tests the parts of the class that can be tested in isolation. class HTTPServerRequestTest(unittest.TestCase): def test_default_constructor(self): # All parameters are formally optional, but uri is required # (and has been for some time). This test ensures that no # more required parameters slip in. HTTPServerRequest(uri='/') def test_body_is_a_byte_string(self): requets = HTTPServerRequest(uri='/') self.assertIsInstance(requets.body, bytes) class ParseRequestStartLineTest(unittest.TestCase): METHOD = "GET" PATH = "/foo" VERSION = "HTTP/1.1" def test_parse_request_start_line(self): start_line = " ".join([self.METHOD, self.PATH, self.VERSION]) parsed_start_line = parse_request_start_line(start_line) self.assertEqual(parsed_start_line.method, self.METHOD) self.assertEqual(parsed_start_line.path, self.PATH) self.assertEqual(parsed_start_line.version, self.VERSION) class ParseCookieTest(unittest.TestCase): # These tests copied from Django: # https://github.com/django/django/pull/6277/commits/da810901ada1cae9fc1f018f879f11a7fb467b28 def test_python_cookies(self): """ Test cases copied from Python's Lib/test/test_http_cookies.py """ self.assertEqual(parse_cookie('chips=ahoy; vienna=finger'), {'chips': 'ahoy', 'vienna': 'finger'}) # Here parse_cookie() differs from Python's cookie parsing in that it # treats all semicolons as delimiters, even within quotes. self.assertEqual( parse_cookie('keebler="E=mc2; L=\\"Loves\\"; fudge=\\012;"'), {'keebler': '"E=mc2', 'L': '\\"Loves\\"', 'fudge': '\\012', '': '"'} ) # Illegal cookies that have an '=' char in an unquoted value. self.assertEqual(parse_cookie('keebler=E=mc2'), {'keebler': 'E=mc2'}) # Cookies with ':' character in their name. self.assertEqual(parse_cookie('key:term=value:term'), {'key:term': 'value:term'}) # Cookies with '[' and ']'. self.assertEqual(parse_cookie('a=b; c=[; d=r; f=h'), {'a': 'b', 'c': '[', 'd': 'r', 'f': 'h'}) def test_cookie_edgecases(self): # Cookies that RFC6265 allows. self.assertEqual(parse_cookie('a=b; Domain=example.com'), {'a': 'b', 'Domain': 'example.com'}) # parse_cookie() has historically kept only the last cookie with the # same name. self.assertEqual(parse_cookie('a=b; h=i; a=c'), {'a': 'c', 'h': 'i'}) def test_invalid_cookies(self): """ Cookie strings that go against RFC6265 but browsers will send if set via document.cookie. """ # Chunks without an equals sign appear as unnamed values per # https://bugzilla.mozilla.org/show_bug.cgi?id=169091 self.assertIn('django_language', parse_cookie('abc=def; unnamed; django_language=en').keys()) # Even a double quote may be an unamed value. self.assertEqual(parse_cookie('a=b; "; c=d'), {'a': 'b', '': '"', 'c': 'd'}) # Spaces in names and values, and an equals sign in values. self.assertEqual(parse_cookie('a b c=d e = f; gh=i'), {'a b c': 'd e = f', 'gh': 'i'}) # More characters the spec forbids. self.assertEqual(parse_cookie('a b,c<>@:/[]?{}=d " =e,f g'), {'a b,c<>@:/[]?{}': 'd " =e,f g'}) # Unicode characters. The spec only allows ASCII. self.assertEqual(parse_cookie('saint=André Bessette'), {'saint': native_str('André Bessette')}) # Browsers don't send extra whitespace or semicolons in Cookie headers, # but parse_cookie() should parse whitespace the same way # document.cookie parses whitespace. self.assertEqual(parse_cookie(' = b ; ; = ; c = ; '), {'': 'b', 'c': ''})
unlicense
-3,576,038,395,327,762,000
36.592275
156
0.565304
false
w1ndy/qtile
libqtile/layout/verticaltile.py
6
10393
# Copyright (c) 2014, Florian Scherf <[email protected]>. All rights reserved. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. from .base import Layout class VerticalTile(Layout): """ VerticalTile implements a tiling layout that works nice on vertically mounted monitors. The available height gets divided by the number of panes, if no pane is maximized. If one pane has been maximized, the available height gets split in master- and secondary area. The maximized pane (master pane) gets the full height of the master area and the other panes (secondary panes) share the remaining space. The master area (at default 75%) can grow and shrink via keybindings. :: ----------------- ----------------- --- | | | | | | 1 | <-- Panes | | | | | | | | | |---------------| | | | | | | | | | | | 2 | <-----+ | 1 | | Master Area | | | | | | |---------------| | | | | | | | | | | | 3 | <-----+ | | | | | | | | | |---------------| | |---------------| --- | | | | 2 | | | 4 | <-----+ |---------------| | Secondary Area | | | 3 | | ----------------- ----------------- --- Normal behavior. No One maximized pane in the master area maximized pane. No and two secondary panes in the specific areas. secondary area. :: ----------------------------------- In some cases VerticalTile can be | | useful on horizontal mounted | 1 | monitors two. | | For example if you want to have a |---------------------------------| webbrowser and a shell below it. | | | 2 | | | ----------------------------------- Suggested keybindings: :: Key([modkey], 'j', lazy.layout.down()), Key([modkey], 'k', lazy.layout.up()), Key([modkey], 'Tab', lazy.layout.next()), Key([modkey, 'shift'], 'Tab', lazy.layout.next()), Key([modkey, 'shift'], 'j', lazy.layout.shuffle_down()), Key([modkey, 'shift'], 'k', lazy.layout.shuffle_up()), Key([modkey], 'm', lazy.layout.maximize()), Key([modkey], 'n', lazy.layout.normalize()), """ defaults = [ ('border_focus', '#FF0000', 'Border color for the focused window.'), ('border_normal', '#FFFFFF', 'Border color for un-focused winows.'), ('border_width', 1, 'Border width.'), ('margin', 0, 'Border margin.'), ('name', 'VerticalTile', 'Name of this layout.'), ] windows = [] focused = None maximized = None ratio = 0.75 steps = 0.05 def __init__(self, **config): Layout.__init__(self, **config) self.add_defaults(self.defaults) def add(self, window): if self.windows and self.focused: index = self.windows.index(self.focused) self.windows.insert(index + 1, window) else: self.windows.append(window) self.focus(window) def remove(self, window): if window not in self.windows: return index = self.windows.index(window) self.windows.remove(window) if not self.windows: self.focused = None self.maximized = None return if self.maximized is window: self.maximized = None if index == len(self.windows): index -= 1 self.focus(self.windows[index]) return self.focused def clone(self, group): c = Layout.clone(self, group) c.windows = [] c.focused = None return c def configure(self, window, screen): if self.windows and window in self.windows: n = len(self.windows) index = self.windows.index(window) # border if n > 1: border_width = self.border_width else: border_width = 0 if window is self.focused: border_color = self.group.qtile.colorPixel(self.border_focus) else: border_color = self.group.qtile.colorPixel(self.border_normal) # width if n > 1: width = screen.width - self.border_width * 2 else: width = screen.width # height if n > 1: main_area_height = int(screen.height * self.ratio) sec_area_height = screen.height - main_area_height main_pane_height = main_area_height - border_width * 2 sec_pane_height = sec_area_height / (n - 1) - border_width * 2 normal_pane_height = (screen.height / n) - (border_width * 2) if self.maximized: if window is self.maximized: height = main_pane_height else: height = sec_pane_height else: height = normal_pane_height else: height = screen.height # y y = screen.y if n > 1: if self.maximized: y += (index * sec_pane_height) + (border_width * 2 * index) else: y += (index * normal_pane_height) +\ (border_width * 2 * index) if self.maximized and window is not self.maximized: if index > self.windows.index(self.maximized): y = y - sec_pane_height + main_pane_height window.place(screen.x, y, width, height, border_width, border_color, margin=self.margin) window.unhide() else: window.hide() def blur(self): self.focused = None def focus(self, window): self.focused = window def focus_first(self): try: self.focus(self.windows[0]) except IndexError: self.blur() def focus_last(self): try: self.focus(self.windows[-1]) except IndexError: self.blur() def focus_next(self): try: index = self.windows.index(self.focused) self.focus(self.windows[index + 1]) except IndexError: self.focus_first() def focus_previous(self): try: index = self.windows.index(self.focused) self.focus(self.windows[index - 1]) except IndexError: self.focus_last() def grow(self): if self.ratio + self.steps < 1: self.ratio += self.steps self.group.layoutAll() def shrink(self): if self.ratio - self.steps > 0: self.ratio -= self.steps self.group.layoutAll() def cmd_next(self): self.focus_next() self.group.focus(self.focused, False) def cmd_previous(self): self.focus_previous() self.group.focus(self.focused, False) def cmd_down(self): self.focus_next() self.group.focus(self.focused, False) def cmd_up(self): self.focus_previous() self.group.focus(self.focused, False) def cmd_shuffle_up(self): index = self.windows.index(self.focused) try: self.windows[index], self.windows[index - 1] =\ self.windows[index - 1], self.windows[index] except IndexError: self.windows[index], self.windows[-1] =\ self.windows[-1], self.windows[index] self.group.layoutAll() def cmd_shuffle_down(self): index = self.windows.index(self.focused) try: self.windows[index], self.windows[index + 1] =\ self.windows[index + 1], self.windows[index] except IndexError: self.windows[index], self.windows[0] =\ self.windows[0], self.windows[index] self.group.layoutAll() def cmd_maximize(self): if self.windows: self.maximized = self.focused self.group.layoutAll() def cmd_normalize(self): self.maximized = None self.group.layoutAll() def cmd_grow(self): if not self.maximized: return if self.focused is self.maximized: self.grow() else: self.shrink() def cmd_shrink(self): if not self.maximized: return if self.focused is self.maximized: self.shrink() else: self.grow()
mit
-3,183,962,367,164,014,000
32.743506
79
0.488983
false
phsmit/iwclul2016-scripts
01_dataprep/trn_to_phn.py
1
1177
#!/usr/bin/env python3 import os import sys def main(langdat_dir, trn_file, phn_dir): phone_map = {v[0]: v[1].strip() for v in (l.split(None, 1) for l in open('{}/phones'.format(langdat_dir), encoding='utf-8'))} for line in open(trn_file): parts = line.split() sentence = parts[:-1] sid = parts[-1][1:-1] phn = open(os.path.join(phn_dir,sid+".phn"), "w", encoding="iso8859-15") print("0 0 __", file=phn) phones = '_' for word in sentence: for c in word: phones += phone_map[c] phones += '_' for j in range(1, len(phones)-1): if phones[j] == '_': print("0 0 _", file=phn) continue lci = j -1 while lci > 0 and phones[lci] == '_': lci -= 1 rci = j +1 while rci < len(phones) - 1 and phones[rci] == '_': rci += 1 print("0 0 {}-{}+{}".format(phones[lci], phones[j], phones[rci]), file=phn) print("0 0 __", file=phn) phn.close() if __name__ == "__main__": main(sys.argv[1], sys.argv[2], sys.argv[3])
bsd-3-clause
-4,783,353,102,058,689,000
24.608696
129
0.460493
false
PetrDlouhy/django
tests/queries/models.py
36
16195
""" Various complex queries that have been problematic in the past. """ from __future__ import unicode_literals import threading from django.db import models from django.utils import six from django.utils.encoding import python_2_unicode_compatible class DumbCategory(models.Model): pass class ProxyCategory(DumbCategory): class Meta: proxy = True @python_2_unicode_compatible class NamedCategory(DumbCategory): name = models.CharField(max_length=10) def __str__(self): return self.name @python_2_unicode_compatible class Tag(models.Model): name = models.CharField(max_length=10) parent = models.ForeignKey('self', blank=True, null=True, related_name='children') category = models.ForeignKey(NamedCategory, null=True, default=None) class Meta: ordering = ['name'] def __str__(self): return self.name @python_2_unicode_compatible class Note(models.Model): note = models.CharField(max_length=100) misc = models.CharField(max_length=10) class Meta: ordering = ['note'] def __str__(self): return self.note def __init__(self, *args, **kwargs): super(Note, self).__init__(*args, **kwargs) # Regression for #13227 -- having an attribute that # is unpickleable doesn't stop you from cloning queries # that use objects of that type as an argument. self.lock = threading.Lock() @python_2_unicode_compatible class Annotation(models.Model): name = models.CharField(max_length=10) tag = models.ForeignKey(Tag) notes = models.ManyToManyField(Note) def __str__(self): return self.name @python_2_unicode_compatible class ExtraInfo(models.Model): info = models.CharField(max_length=100) note = models.ForeignKey(Note) value = models.IntegerField(null=True) class Meta: ordering = ['info'] def __str__(self): return self.info @python_2_unicode_compatible class Author(models.Model): name = models.CharField(max_length=10) num = models.IntegerField(unique=True) extra = models.ForeignKey(ExtraInfo) class Meta: ordering = ['name'] def __str__(self): return self.name @python_2_unicode_compatible class Item(models.Model): name = models.CharField(max_length=10) created = models.DateTimeField() modified = models.DateTimeField(blank=True, null=True) tags = models.ManyToManyField(Tag, blank=True) creator = models.ForeignKey(Author) note = models.ForeignKey(Note) class Meta: ordering = ['-note', 'name'] def __str__(self): return self.name @python_2_unicode_compatible class Report(models.Model): name = models.CharField(max_length=10) creator = models.ForeignKey(Author, to_field='num', null=True) def __str__(self): return self.name @python_2_unicode_compatible class Ranking(models.Model): rank = models.IntegerField() author = models.ForeignKey(Author) class Meta: # A complex ordering specification. Should stress the system a bit. ordering = ('author__extra__note', 'author__name', 'rank') def __str__(self): return '%d: %s' % (self.rank, self.author.name) @python_2_unicode_compatible class Cover(models.Model): title = models.CharField(max_length=50) item = models.ForeignKey(Item) class Meta: ordering = ['item'] def __str__(self): return self.title @python_2_unicode_compatible class Number(models.Model): num = models.IntegerField() def __str__(self): return six.text_type(self.num) # Symmetrical m2m field with a normal field using the reverse accessor name # ("valid"). class Valid(models.Model): valid = models.CharField(max_length=10) parent = models.ManyToManyField('self') class Meta: ordering = ['valid'] # Some funky cross-linked models for testing a couple of infinite recursion # cases. class X(models.Model): y = models.ForeignKey('Y') class Y(models.Model): x1 = models.ForeignKey(X, related_name='y1') # Some models with a cycle in the default ordering. This would be bad if we # didn't catch the infinite loop. class LoopX(models.Model): y = models.ForeignKey('LoopY') class Meta: ordering = ['y'] class LoopY(models.Model): x = models.ForeignKey(LoopX) class Meta: ordering = ['x'] class LoopZ(models.Model): z = models.ForeignKey('self') class Meta: ordering = ['z'] # A model and custom default manager combination. class CustomManager(models.Manager): def get_queryset(self): qs = super(CustomManager, self).get_queryset() return qs.filter(public=True, tag__name='t1') @python_2_unicode_compatible class ManagedModel(models.Model): data = models.CharField(max_length=10) tag = models.ForeignKey(Tag) public = models.BooleanField(default=True) objects = CustomManager() normal_manager = models.Manager() def __str__(self): return self.data # An inter-related setup with multiple paths from Child to Detail. class Detail(models.Model): data = models.CharField(max_length=10) class MemberManager(models.Manager): def get_queryset(self): return super(MemberManager, self).get_queryset().select_related("details") class Member(models.Model): name = models.CharField(max_length=10) details = models.OneToOneField(Detail, primary_key=True) objects = MemberManager() class Child(models.Model): person = models.OneToOneField(Member, primary_key=True) parent = models.ForeignKey(Member, related_name="children") # Custom primary keys interfered with ordering in the past. class CustomPk(models.Model): name = models.CharField(max_length=10, primary_key=True) extra = models.CharField(max_length=10) class Meta: ordering = ['name', 'extra'] class Related(models.Model): custom = models.ForeignKey(CustomPk) class CustomPkTag(models.Model): id = models.CharField(max_length=20, primary_key=True) custom_pk = models.ManyToManyField(CustomPk) tag = models.CharField(max_length=20) # An inter-related setup with a model subclass that has a nullable # path to another model, and a return path from that model. @python_2_unicode_compatible class Celebrity(models.Model): name = models.CharField("Name", max_length=20) greatest_fan = models.ForeignKey("Fan", null=True, unique=True) def __str__(self): return self.name class TvChef(Celebrity): pass class Fan(models.Model): fan_of = models.ForeignKey(Celebrity) # Multiple foreign keys @python_2_unicode_compatible class LeafA(models.Model): data = models.CharField(max_length=10) def __str__(self): return self.data class LeafB(models.Model): data = models.CharField(max_length=10) class Join(models.Model): a = models.ForeignKey(LeafA) b = models.ForeignKey(LeafB) @python_2_unicode_compatible class ReservedName(models.Model): name = models.CharField(max_length=20) order = models.IntegerField() def __str__(self): return self.name # A simpler shared-foreign-key setup that can expose some problems. @python_2_unicode_compatible class SharedConnection(models.Model): data = models.CharField(max_length=10) def __str__(self): return self.data class PointerA(models.Model): connection = models.ForeignKey(SharedConnection) class PointerB(models.Model): connection = models.ForeignKey(SharedConnection) # Multi-layer ordering @python_2_unicode_compatible class SingleObject(models.Model): name = models.CharField(max_length=10) class Meta: ordering = ['name'] def __str__(self): return self.name class RelatedObject(models.Model): single = models.ForeignKey(SingleObject, null=True) f = models.IntegerField(null=True) class Meta: ordering = ['single'] @python_2_unicode_compatible class Plaything(models.Model): name = models.CharField(max_length=10) others = models.ForeignKey(RelatedObject, null=True) class Meta: ordering = ['others'] def __str__(self): return self.name @python_2_unicode_compatible class Article(models.Model): name = models.CharField(max_length=20) created = models.DateTimeField() def __str__(self): return self.name @python_2_unicode_compatible class Food(models.Model): name = models.CharField(max_length=20, unique=True) def __str__(self): return self.name @python_2_unicode_compatible class Eaten(models.Model): food = models.ForeignKey(Food, to_field="name", null=True) meal = models.CharField(max_length=20) def __str__(self): return "%s at %s" % (self.food, self.meal) @python_2_unicode_compatible class Node(models.Model): num = models.IntegerField(unique=True) parent = models.ForeignKey("self", to_field="num", null=True) def __str__(self): return "%s" % self.num # Bug #12252 @python_2_unicode_compatible class ObjectA(models.Model): name = models.CharField(max_length=50) def __str__(self): return self.name def __iter__(self): # Ticket #23721 assert False, 'type checking should happen without calling model __iter__' class ProxyObjectA(ObjectA): class Meta: proxy = True class ChildObjectA(ObjectA): pass @python_2_unicode_compatible class ObjectB(models.Model): name = models.CharField(max_length=50) objecta = models.ForeignKey(ObjectA) num = models.PositiveSmallIntegerField() def __str__(self): return self.name class ProxyObjectB(ObjectB): class Meta: proxy = True @python_2_unicode_compatible class ObjectC(models.Model): name = models.CharField(max_length=50) objecta = models.ForeignKey(ObjectA, null=True) objectb = models.ForeignKey(ObjectB, null=True) childobjecta = models.ForeignKey(ChildObjectA, null=True, related_name='ca_pk') def __str__(self): return self.name @python_2_unicode_compatible class SimpleCategory(models.Model): name = models.CharField(max_length=15) def __str__(self): return self.name @python_2_unicode_compatible class SpecialCategory(SimpleCategory): special_name = models.CharField(max_length=15) def __str__(self): return self.name + " " + self.special_name @python_2_unicode_compatible class CategoryItem(models.Model): category = models.ForeignKey(SimpleCategory) def __str__(self): return "category item: " + str(self.category) @python_2_unicode_compatible class OneToOneCategory(models.Model): new_name = models.CharField(max_length=15) category = models.OneToOneField(SimpleCategory) def __str__(self): return "one2one " + self.new_name class CategoryRelationship(models.Model): first = models.ForeignKey(SimpleCategory, related_name='first_rel') second = models.ForeignKey(SimpleCategory, related_name='second_rel') class NullableName(models.Model): name = models.CharField(max_length=20, null=True) class Meta: ordering = ['id'] class ModelD(models.Model): name = models.TextField() class ModelC(models.Model): name = models.TextField() class ModelB(models.Model): name = models.TextField() c = models.ForeignKey(ModelC) class ModelA(models.Model): name = models.TextField() b = models.ForeignKey(ModelB, null=True) d = models.ForeignKey(ModelD) @python_2_unicode_compatible class Job(models.Model): name = models.CharField(max_length=20, unique=True) def __str__(self): return self.name class JobResponsibilities(models.Model): job = models.ForeignKey(Job, to_field='name') responsibility = models.ForeignKey('Responsibility', to_field='description') @python_2_unicode_compatible class Responsibility(models.Model): description = models.CharField(max_length=20, unique=True) jobs = models.ManyToManyField(Job, through=JobResponsibilities, related_name='responsibilities') def __str__(self): return self.description # Models for disjunction join promotion low level testing. class FK1(models.Model): f1 = models.TextField() f2 = models.TextField() class FK2(models.Model): f1 = models.TextField() f2 = models.TextField() class FK3(models.Model): f1 = models.TextField() f2 = models.TextField() class BaseA(models.Model): a = models.ForeignKey(FK1, null=True) b = models.ForeignKey(FK2, null=True) c = models.ForeignKey(FK3, null=True) @python_2_unicode_compatible class Identifier(models.Model): name = models.CharField(max_length=100) def __str__(self): return self.name class Program(models.Model): identifier = models.OneToOneField(Identifier) class Channel(models.Model): programs = models.ManyToManyField(Program) identifier = models.OneToOneField(Identifier) class Book(models.Model): title = models.TextField() chapter = models.ForeignKey('Chapter') class Chapter(models.Model): title = models.TextField() paragraph = models.ForeignKey('Paragraph') class Paragraph(models.Model): text = models.TextField() page = models.ManyToManyField('Page') class Page(models.Model): text = models.TextField() class MyObject(models.Model): parent = models.ForeignKey('self', null=True, blank=True, related_name='children') data = models.CharField(max_length=100) created_at = models.DateTimeField(auto_now_add=True) # Models for #17600 regressions @python_2_unicode_compatible class Order(models.Model): id = models.IntegerField(primary_key=True) class Meta: ordering = ('pk', ) def __str__(self): return '%s' % self.pk @python_2_unicode_compatible class OrderItem(models.Model): order = models.ForeignKey(Order, related_name='items') status = models.IntegerField() class Meta: ordering = ('pk', ) def __str__(self): return '%s' % self.pk class BaseUser(models.Model): pass @python_2_unicode_compatible class Task(models.Model): title = models.CharField(max_length=10) owner = models.ForeignKey(BaseUser, related_name='owner') creator = models.ForeignKey(BaseUser, related_name='creator') def __str__(self): return self.title @python_2_unicode_compatible class Staff(models.Model): name = models.CharField(max_length=10) def __str__(self): return self.name @python_2_unicode_compatible class StaffUser(BaseUser): staff = models.OneToOneField(Staff, related_name='user') def __str__(self): return self.staff class Ticket21203Parent(models.Model): parentid = models.AutoField(primary_key=True) parent_bool = models.BooleanField(default=True) created = models.DateTimeField(auto_now=True) class Ticket21203Child(models.Model): childid = models.AutoField(primary_key=True) parent = models.ForeignKey(Ticket21203Parent) class Person(models.Model): name = models.CharField(max_length=128) @python_2_unicode_compatible class Company(models.Model): name = models.CharField(max_length=128) employees = models.ManyToManyField(Person, related_name='employers', through='Employment') def __str__(self): return self.name class Employment(models.Model): employer = models.ForeignKey(Company) employee = models.ForeignKey(Person) title = models.CharField(max_length=128) # Bug #22429 class School(models.Model): pass class Student(models.Model): school = models.ForeignKey(School) class Classroom(models.Model): school = models.ForeignKey(School) students = models.ManyToManyField(Student, related_name='classroom') class Ticket23605A(models.Model): pass class Ticket23605B(models.Model): modela_fk = models.ForeignKey(Ticket23605A) modelc_fk = models.ForeignKey("Ticket23605C") field_b0 = models.IntegerField(null=True) field_b1 = models.BooleanField(default=False) class Ticket23605C(models.Model): field_c0 = models.FloatField()
bsd-3-clause
-2,722,055,568,291,930,600
21.65035
94
0.682495
false
Carreau/readthedocs.org
readthedocs/core/utils.py
8
3694
import getpass import logging import os from urlparse import urlparse from django.conf import settings from django.core.mail import EmailMultiAlternatives from django.template.loader import get_template from django.template import Context from builds.models import Build log = logging.getLogger(__name__) SYNC_USER = getattr(settings, 'SYNC_USER', getpass.getuser()) def run_on_app_servers(command): """ A helper to copy a single file across app servers """ log.info("Running %s on app servers" % command) ret_val = 0 if getattr(settings, "MULTIPLE_APP_SERVERS", None): for server in settings.MULTIPLE_APP_SERVERS: ret = os.system("ssh %s@%s %s" % (SYNC_USER, server, command)) if ret != 0: ret_val = ret return ret_val else: ret = os.system(command) return ret def make_latest(project): """ Useful for correcting versions with no latest, using the database. >>> no_latest = Project.objects.exclude(versions__slug__in=['latest']) >>> for project in no_latest: >>> make_latest(project) """ branch = project.default_branch or project.vcs_repo().fallback_branch version_data, created = Version.objects.get_or_create( project=project, slug='latest', type='branch', active=True, verbose_name='latest', identifier=branch, ) def clean_url(url): parsed = urlparse(url) if parsed.scheme: scheme, netloc = parsed.scheme, parsed.netloc elif parsed.netloc: scheme, netloc = "http", parsed.netloc else: scheme, netloc = "http", parsed.path return netloc def cname_to_slug(host): from dns import resolver answer = [ans for ans in resolver.query(host, 'CNAME')][0] domain = answer.target.to_unicode() slug = domain.split('.')[0] return slug def trigger_build(project, version=None, record=True, force=False, basic=False): """ An API to wrap the triggering of a build. """ # Avoid circular import from projects.tasks import update_docs if project.skip: return None if not version: version = project.versions.get(slug='latest') if record: build = Build.objects.create( project=project, version=version, type='html', state='triggered', success=True, ) update_docs.delay(pk=project.pk, version_pk=version.pk, record=record, force=force, basic=basic, build_pk=build.pk) else: build = None update_docs.delay(pk=project.pk, version_pk=version.pk, record=record, force=force, basic=basic) return build def send_email(recipient, subject, template, template_html, context=None, request=None): ''' Send multipart email recipient Email recipient address subject Email subject header template Plain text template to send template_html HTML template to send as new message part context A dictionary to pass into the template calls request Request object for determining absolute URL ''' if request: scheme = 'https' if request.is_secure() else 'http' context['uri'] = '{scheme}://{host}'.format(scheme=scheme, host=request.get_host()) ctx = Context(context) msg = EmailMultiAlternatives( subject, get_template(template).render(ctx), settings.DEFAULT_FROM_EMAIL, [recipient] ) msg.attach_alternative(get_template(template_html).render(ctx), 'text/html') msg.send()
mit
6,760,016,510,612,581,000
25.768116
123
0.622902
false
lancezlin/pyjs
pyjswidgets/pyjamas/ui/FlexCellFormatter.py
8
1365
# Copyright 2006 James Tauber and contributors # Copyright (C) 2009 Luke Kenneth Casson Leighton <[email protected]> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pyjamas import DOM from pyjamas.ui.CellFormatter import CellFormatter class FlexCellFormatter(CellFormatter): def __init__(self, outer, **kwargs): CellFormatter.__init__(self, outer, **kwargs) def getColSpan(self, row, column): return DOM.getIntAttribute(self.getElement(row, column), "colSpan") def getRowSpan(self, row, column): return DOM.getIntAttribute(self.getElement(row, column), "rowSpan") def setColSpan(self, row, column, colSpan): DOM.setIntAttribute(self.ensureElement(row, column), "colSpan", colSpan) def setRowSpan(self, row, column, rowSpan): DOM.setIntAttribute(self.ensureElement(row, column), "rowSpan", rowSpan)
apache-2.0
-631,005,595,587,995,000
38
80
0.733333
false
junghans/espressopp
contrib/mpi4py/mpi4py-1.3/test/test_doc.py
3
1559
import types from mpi4py import MPI import mpiunittest as unittest ModuleType = type(MPI) ClassType = type(MPI.Comm) FunctionType = type(MPI.Init) MethodDescrType = type(MPI.Comm.Get_rank) GetSetDescrType = type(MPI.Comm.rank) def getdocstr(mc, docstrings, namespace=None): name = getattr(mc, '__name__', None) if name is None: return if name in ('__builtin__', 'builtins'): return if name.startswith('_'): return if namespace: name = '%s.%s' % (namespace, name) if type(mc) in (ModuleType, ClassType): doc = getattr(mc, '__doc__', None) docstrings[name] = doc for k, v in vars(mc).items(): getdocstr(v, docstrings, name) elif type(mc) in (FunctionType, MethodDescrType, GetSetDescrType): doc = getattr(mc, '__doc__', None) docstrings[name] = doc class TestDoc(unittest.TestCase): def testDoc(self): missing = False docs = { } getdocstr(MPI, docs) for k in docs: if not k.startswith('_'): doc = docs[k] if doc is None: print ("'%s': missing docstring" % k) missing = True else: doc = doc.strip() if not doc: print ("'%s': empty docstring" % k) missing = True if 'mpi4py.MPI' in doc: print ("'%s': bad format docstring" % k) self.assertFalse(missing) if __name__ == '__main__': unittest.main()
gpl-3.0
-7,050,226,136,262,280,000
30.816327
70
0.530468
false
pydata/xarray
doc/gallery/plot_cartopy_facetgrid.py
4
1285
""" ================================== Multiple plots and map projections ================================== Control the map projection parameters on multiple axes This example illustrates how to plot multiple maps and control their extent and aspect ratio. For more details see `this discussion`_ on github. .. _this discussion: https://github.com/pydata/xarray/issues/1397#issuecomment-299190567 """ import cartopy.crs as ccrs import matplotlib.pyplot as plt import xarray as xr # Load the data ds = xr.tutorial.load_dataset("air_temperature") air = ds.air.isel(time=[0, 724]) - 273.15 # This is the map projection we want to plot *onto* map_proj = ccrs.LambertConformal(central_longitude=-95, central_latitude=45) p = air.plot( transform=ccrs.PlateCarree(), # the data's projection col="time", col_wrap=1, # multiplot settings aspect=ds.dims["lon"] / ds.dims["lat"], # for a sensible figsize subplot_kws={"projection": map_proj}, # the plot's projection ) # We have to set the map's options on all four axes for ax in p.axes.flat: ax.coastlines() ax.set_extent([-160, -30, 5, 75]) # Without this aspect attributes the maps will look chaotic and the # "extent" attribute above will be ignored ax.set_aspect("equal") plt.show()
apache-2.0
1,738,798,561,084,066,600
27.555556
88
0.676265
false
leezu/mxnet
example/extensions/lib_custom_op/test_gemm.py
6
2831
#!/usr/bin/env python3 # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # coding: utf-8 # pylint: disable=arguments-differ # This test checks dynamic loading of custom library into MXNet # and checks end to end compute of a simple 2D gemm custom op import mxnet as mx import os #load library if (os.name=='posix'): path = os.path.abspath('libgemm_lib.so') mx.library.load(path) elif (os.name=='nt'): path = os.path.abspath('libgemm_lib.dll') mx.library.load(path) a = mx.nd.array([[1,2,3],[4,5,6]]) b = mx.nd.array([[7],[8],[9]]) print("--------start ndarray compute---------") print(mx.nd.my_gemm(a,b)) print("--------") print(mx.nd.state_gemm(a,b,test_kw=100)) print("--------start symbolic compute--------") s = mx.sym.Variable('s') t = mx.sym.Variable('t') c = mx.sym.my_gemm(s,t) d = mx.sym.state_gemm(s,t,test_kw=200) e = mx.sym.linalg.gemm2(s,t) out_grad = mx.nd.ones((2,1)) # stateless block = mx.gluon.nn.SymbolBlock(c,[s,t]) with mx.autograd.record(): a_ = mx.nd.array([[1,2,3],[4,5,6]]) b_ = mx.nd.array([[7],[8],[9]]) a_.attach_grad() b_.attach_grad() # foward out = block(a_,b_) print(out) print('+++++') # backward out.backward(out_grad) print(a_.grad) print(b_.grad) print("-------") # stateful block2 = mx.gluon.nn.SymbolBlock(d,[s,t]) block2.hybridize(static_alloc=True, static_shape=True) out2 = block2(a,b) out2 = block2(a,b) print(out2) with mx.autograd.record(): a_ = mx.nd.array([[1,2,3],[4,5,6]]) b_ = mx.nd.array([[7],[8],[9]]) a_.attach_grad() b_.attach_grad() # forward out2 = block2(a_,b_) print('+++++') # backward out2.backward(out_grad) print(a_.grad) print(b_.grad) print("-------") # baseline block3 = mx.gluon.nn.SymbolBlock(e,[s,t]) with mx.autograd.record(): a_ = mx.nd.array([[1,2,3],[4,5,6]]) b_ = mx.nd.array([[7],[8],[9]]) a_.attach_grad() b_.attach_grad() # forward out3 = block3(a_,b_) print(out3) print('+++++') # backward out3.backward(out_grad) print(a_.grad) print(b_.grad)
apache-2.0
-63,400,042,165,830,720
25.961905
63
0.630519
false
Shedino/SherpaHighLevel
catkin_ws/src/px-ros-pkg/mavlink/share/pyshared/pymavlink/examples/rotmat.py
29
8769
#!/usr/bin/env python # # vector3 and rotation matrix classes # This follows the conventions in the ArduPilot code, # and is essentially a python version of the AP_Math library # # Andrew Tridgell, March 2012 # # This library is free software; you can redistribute it and/or modify it # under the terms of the GNU Lesser General Public License as published by the # Free Software Foundation; either version 2.1 of the License, or (at your # option) any later version. # # This library is distributed in the hope that it will be useful, but WITHOUT # ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or # FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License # for more details. # # You should have received a copy of the GNU Lesser General Public License # along with this library; if not, write to the Free Software Foundation, # Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA '''rotation matrix class ''' from math import sin, cos, sqrt, asin, atan2, pi, radians, acos class Vector3: '''a vector''' def __init__(self, x=None, y=None, z=None): if x != None and y != None and z != None: self.x = float(x) self.y = float(y) self.z = float(z) elif x != None and len(x) == 3: self.x = float(x[0]) self.y = float(x[1]) self.z = float(x[2]) elif x != None: raise ValueError('bad initialiser') else: self.x = float(0) self.y = float(0) self.z = float(0) def __repr__(self): return 'Vector3(%.2f, %.2f, %.2f)' % (self.x, self.y, self.z) def __add__(self, v): return Vector3(self.x + v.x, self.y + v.y, self.z + v.z) __radd__ = __add__ def __sub__(self, v): return Vector3(self.x - v.x, self.y - v.y, self.z - v.z) def __neg__(self): return Vector3(-self.x, -self.y, -self.z) def __rsub__(self, v): return Vector3(v.x - self.x, v.y - self.y, v.z - self.z) def __mul__(self, v): if isinstance(v, Vector3): '''dot product''' return self.x*v.x + self.y*v.y + self.z*v.z return Vector3(self.x * v, self.y * v, self.z * v) __rmul__ = __mul__ def __div__(self, v): return Vector3(self.x / v, self.y / v, self.z / v) def __mod__(self, v): '''cross product''' return Vector3(self.y*v.z - self.z*v.y, self.z*v.x - self.x*v.z, self.x*v.y - self.y*v.x) def __copy__(self): return Vector3(self.x, self.y, self.z) copy = __copy__ def length(self): return sqrt(self.x**2 + self.y**2 + self.z**2) def zero(self): self.x = self.y = self.z = 0 def angle(self, v): '''return the angle between this vector and another vector''' return acos(self * v) / (self.length() * v.length()) def normalized(self): return self / self.length() def normalize(self): v = self.normalized() self.x = v.x self.y = v.y self.z = v.z class Matrix3: '''a 3x3 matrix, intended as a rotation matrix''' def __init__(self, a=None, b=None, c=None): if a is not None and b is not None and c is not None: self.a = a.copy() self.b = b.copy() self.c = c.copy() else: self.identity() def __repr__(self): return 'Matrix3((%.2f, %.2f, %.2f), (%.2f, %.2f, %.2f), (%.2f, %.2f, %.2f))' % ( self.a.x, self.a.y, self.a.z, self.b.x, self.b.y, self.b.z, self.c.x, self.c.y, self.c.z) def identity(self): self.a = Vector3(1,0,0) self.b = Vector3(0,1,0) self.c = Vector3(0,0,1) def transposed(self): return Matrix3(Vector3(self.a.x, self.b.x, self.c.x), Vector3(self.a.y, self.b.y, self.c.y), Vector3(self.a.z, self.b.z, self.c.z)) def from_euler(self, roll, pitch, yaw): '''fill the matrix from Euler angles in radians''' cp = cos(pitch) sp = sin(pitch) sr = sin(roll) cr = cos(roll) sy = sin(yaw) cy = cos(yaw) self.a.x = cp * cy self.a.y = (sr * sp * cy) - (cr * sy) self.a.z = (cr * sp * cy) + (sr * sy) self.b.x = cp * sy self.b.y = (sr * sp * sy) + (cr * cy) self.b.z = (cr * sp * sy) - (sr * cy) self.c.x = -sp self.c.y = sr * cp self.c.z = cr * cp def to_euler(self): '''find Euler angles for the matrix''' if self.c.x >= 1.0: pitch = pi elif self.c.x <= -1.0: pitch = -pi else: pitch = -asin(self.c.x) roll = atan2(self.c.y, self.c.z) yaw = atan2(self.b.x, self.a.x) return (roll, pitch, yaw) def __add__(self, m): return Matrix3(self.a + m.a, self.b + m.b, self.c + m.c) __radd__ = __add__ def __sub__(self, m): return Matrix3(self.a - m.a, self.b - m.b, self.c - m.c) def __rsub__(self, m): return Matrix3(m.a - self.a, m.b - self.b, m.c - self.c) def __mul__(self, other): if isinstance(other, Vector3): v = other return Vector3(self.a.x * v.x + self.a.y * v.y + self.a.z * v.z, self.b.x * v.x + self.b.y * v.y + self.b.z * v.z, self.c.x * v.x + self.c.y * v.y + self.c.z * v.z) elif isinstance(other, Matrix3): m = other return Matrix3(Vector3(self.a.x * m.a.x + self.a.y * m.b.x + self.a.z * m.c.x, self.a.x * m.a.y + self.a.y * m.b.y + self.a.z * m.c.y, self.a.x * m.a.z + self.a.y * m.b.z + self.a.z * m.c.z), Vector3(self.b.x * m.a.x + self.b.y * m.b.x + self.b.z * m.c.x, self.b.x * m.a.y + self.b.y * m.b.y + self.b.z * m.c.y, self.b.x * m.a.z + self.b.y * m.b.z + self.b.z * m.c.z), Vector3(self.c.x * m.a.x + self.c.y * m.b.x + self.c.z * m.c.x, self.c.x * m.a.y + self.c.y * m.b.y + self.c.z * m.c.y, self.c.x * m.a.z + self.c.y * m.b.z + self.c.z * m.c.z)) v = other return Matrix3(self.a * v, self.b * v, self.c * v) def __div__(self, v): return Matrix3(self.a / v, self.b / v, self.c / v) def __neg__(self): return Matrix3(-self.a, -self.b, -self.c) def __copy__(self): return Matrix3(self.a, self.b, self.c) copy = __copy__ def rotate(self, g): '''rotate the matrix by a given amount on 3 axes''' temp_matrix = Matrix3() a = self.a b = self.b c = self.c temp_matrix.a.x = a.y * g.z - a.z * g.y temp_matrix.a.y = a.z * g.x - a.x * g.z temp_matrix.a.z = a.x * g.y - a.y * g.x temp_matrix.b.x = b.y * g.z - b.z * g.y temp_matrix.b.y = b.z * g.x - b.x * g.z temp_matrix.b.z = b.x * g.y - b.y * g.x temp_matrix.c.x = c.y * g.z - c.z * g.y temp_matrix.c.y = c.z * g.x - c.x * g.z temp_matrix.c.z = c.x * g.y - c.y * g.x self.a += temp_matrix.a self.b += temp_matrix.b self.c += temp_matrix.c def normalize(self): '''re-normalise a rotation matrix''' error = self.a * self.b t0 = self.a - (self.b * (0.5 * error)) t1 = self.b - (self.a * (0.5 * error)) t2 = t0 % t1 self.a = t0 * (1.0 / t0.length()) self.b = t1 * (1.0 / t1.length()) self.c = t2 * (1.0 / t2.length()) def trace(self): '''the trace of the matrix''' return self.a.x + self.b.y + self.c.z def test_euler(): '''check that from_euler() and to_euler() are consistent''' m = Matrix3() from math import radians, degrees for r in range(-179, 179, 3): for p in range(-89, 89, 3): for y in range(-179, 179, 3): m.from_euler(radians(r), radians(p), radians(y)) (r2, p2, y2) = m.to_euler() v1 = Vector3(r,p,y) v2 = Vector3(degrees(r2),degrees(p2),degrees(y2)) diff = v1 - v2 if diff.length() > 1.0e-12: print('EULER ERROR:', v1, v2, diff.length()) if __name__ == "__main__": import doctest doctest.testmod() test_euler()
bsd-3-clause
2,206,745,543,868,549,400
31.598513
91
0.475653
false
openstack/tooz
tooz/drivers/redis.py
1
30171
# -*- coding: utf-8 -*- # Copyright (C) 2014 Yahoo! Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from distutils import version import functools import logging import string import threading from oslo_utils import encodeutils from oslo_utils import strutils import redis from redis import exceptions from redis import sentinel import tooz from tooz import coordination from tooz import locking from tooz import utils LOG = logging.getLogger(__name__) def _handle_failures(func=None, n_tries=15): """Translates common redis exceptions into tooz exceptions. This also enables retrying on certain exceptions. :param func: the function to act on :param n_tries: the number of retries """ if func is None: return functools.partial( _handle_failures, n_tries=n_tries ) @functools.wraps(func) def wrapper(*args, **kwargs): ntries = n_tries while ntries > 1: try: return func(*args, **kwargs) except exceptions.ConnectionError as e: # retry ntries times and then raise a connection error ntries -= 1 if ntries >= 1: utils.raise_with_cause(coordination.ToozConnectionError, encodeutils.exception_to_unicode(e), cause=e) except (exceptions.TimeoutError) as e: utils.raise_with_cause(coordination.ToozConnectionError, encodeutils.exception_to_unicode(e), cause=e) except exceptions.RedisError as e: utils.raise_with_cause(tooz.ToozError, encodeutils.exception_to_unicode(e), cause=e) return func(*args, **kwargs) return wrapper class RedisLock(locking.Lock): def __init__(self, coord, client, name, timeout): name = "%s_%s_lock" % (coord.namespace, str(name)) super(RedisLock, self).__init__(name) # NOTE(jd) Make sure we don't release and heartbeat at the same time by # using a exclusive access lock (LP#1557593) self._exclusive_access = threading.Lock() self._lock = client.lock(name, timeout=timeout, thread_local=False) self._coord = coord self._client = client @_handle_failures def is_still_owner(self): lock_tok = self._lock.local.token if not lock_tok: return False owner_tok = self._client.get(self.name) return owner_tok == lock_tok @_handle_failures def break_(self): return bool(self._client.delete(self.name)) @_handle_failures def acquire(self, blocking=True, shared=False): if shared: raise tooz.NotImplemented blocking, timeout = utils.convert_blocking(blocking) acquired = self._lock.acquire( blocking=blocking, blocking_timeout=timeout) if acquired: with self._exclusive_access: self._coord._acquired_locks.add(self) return acquired @_handle_failures def release(self): with self._exclusive_access: try: self._lock.release() except exceptions.LockError as e: LOG.error("Unable to release lock '%r': %s", self, e) return False finally: self._coord._acquired_locks.discard(self) return True @_handle_failures def heartbeat(self): with self._exclusive_access: if self.acquired: self._lock.reacquire() return True return False @property def acquired(self): return self in self._coord._acquired_locks class RedisDriver(coordination.CoordinationDriverCachedRunWatchers, coordination.CoordinationDriverWithExecutor): """Redis provides a few nice benefits that act as a poormans zookeeper. It **is** fully functional and implements all of the coordination driver API(s). It stores data into `redis`_ using the provided `redis`_ API(s) using `msgpack`_ encoded values as needed. - Durability (when setup with `AOF`_ mode). - Consistent, note that this is still restricted to only one redis server, without the recently released redis (alpha) clustering > 1 server will not be consistent when partitions or failures occur (even redis clustering docs state it is not a fully AP or CP solution, which means even with it there will still be *potential* inconsistencies). - Master/slave failover (when setup with redis `sentinel`_), giving some notion of HA (values *can* be lost when a failover transition occurs). The Redis driver connection URI should look like:: redis://[:PASSWORD@]HOST:PORT[?OPTION=VALUE[&OPTION2=VALUE2[&...]]] For a list of options recognized by this driver, see the documentation for the member CLIENT_ARGS, and to determine the expected types of those options see CLIENT_BOOL_ARGS, CLIENT_INT_ARGS, and CLIENT_LIST_ARGS. To use a `sentinel`_ the connection URI must point to the sentinel server. At connection time the sentinel will be asked for the current IP and port of the master and then connect there. The connection URI for sentinel should be written as follows:: redis://<sentinel host>:<sentinel port>?sentinel=<master name> Additional sentinel hosts are listed with multiple ``sentinel_fallback`` parameters as follows:: redis://<sentinel host>:<sentinel port>?sentinel=<master name>& sentinel_fallback=<other sentinel host>:<sentinel port>& sentinel_fallback=<other sentinel host>:<sentinel port>& sentinel_fallback=<other sentinel host>:<sentinel port> Further resources/links: - http://redis.io/ - http://redis.io/topics/sentinel - http://redis.io/topics/cluster-spec Note that this client will itself retry on transaction failure (when they keys being watched have changed underneath the current transaction). Currently the number of attempts that are tried is infinite (this might be addressed in https://github.com/andymccurdy/redis-py/issues/566 when that gets worked on). See http://redis.io/topics/transactions for more information on this topic. General recommendations/usage considerations: - When used for locks, run in AOF mode and think carefully about how your redis deployment handles losing a server (the clustering support is supposed to aid in losing servers, but it is also of unknown reliablity and is relatively new, so use at your own risk). .. _redis: http://redis.io/ .. _msgpack: http://msgpack.org/ .. _sentinel: http://redis.io/topics/sentinel .. _AOF: http://redis.io/topics/persistence """ CHARACTERISTICS = ( coordination.Characteristics.DISTRIBUTED_ACROSS_THREADS, coordination.Characteristics.DISTRIBUTED_ACROSS_PROCESSES, coordination.Characteristics.DISTRIBUTED_ACROSS_HOSTS, coordination.Characteristics.CAUSAL, ) """ Tuple of :py:class:`~tooz.coordination.Characteristics` introspectable enum member(s) that can be used to interogate how this driver works. """ MIN_VERSION = version.LooseVersion("2.6.0") """ The min redis version that this driver requires to operate with... """ GROUP_EXISTS = b'__created__' """ Redis deletes dictionaries that have no keys in them, which means the key will disappear which means we can't tell the difference between a group not existing and a group being empty without this key being saved... """ #: Value used (with group exists key) to keep a group from disappearing. GROUP_EXISTS_VALUE = b'1' #: Default namespace for keys when none is provided. DEFAULT_NAMESPACE = b'_tooz' NAMESPACE_SEP = b':' """ Separator that is used to combine a key with the namespace (to get the **actual** key that will be used). """ DEFAULT_ENCODING = 'utf8' """ This is for python3.x; which will behave differently when returned binary types or unicode types (redis uses binary internally it appears), so to just stick with a common way of doing this, make all the things binary (with this default encoding if one is not given and a unicode string is provided). """ CLIENT_ARGS = frozenset([ 'db', 'encoding', 'retry_on_timeout', 'socket_keepalive', 'socket_timeout', 'ssl', 'ssl_certfile', 'ssl_keyfile', 'sentinel', 'sentinel_fallback', ]) """ Keys that we allow to proxy from the coordinator configuration into the redis client (used to configure the redis client internals so that it works as you expect/want it to). See: http://redis-py.readthedocs.org/en/latest/#redis.Redis See: https://github.com/andymccurdy/redis-py/blob/2.10.3/redis/client.py """ #: Client arguments that are expected/allowed to be lists. CLIENT_LIST_ARGS = frozenset([ 'sentinel_fallback', ]) #: Client arguments that are expected to be boolean convertible. CLIENT_BOOL_ARGS = frozenset([ 'retry_on_timeout', 'ssl', ]) #: Client arguments that are expected to be int convertible. CLIENT_INT_ARGS = frozenset([ 'db', 'socket_keepalive', 'socket_timeout', ]) #: Default socket timeout to use when none is provided. CLIENT_DEFAULT_SOCKET_TO = 30 #: String used to keep a key/member alive (until it next expires). STILL_ALIVE = b"Not dead!" SCRIPTS = { 'create_group': """ -- Extract *all* the variables (so we can easily know what they are)... local namespaced_group_key = KEYS[1] local all_groups_key = KEYS[2] local no_namespaced_group_key = ARGV[1] if redis.call("exists", namespaced_group_key) == 1 then return 0 end redis.call("sadd", all_groups_key, no_namespaced_group_key) redis.call("hset", namespaced_group_key, "${group_existence_key}", "${group_existence_value}") return 1 """, 'delete_group': """ -- Extract *all* the variables (so we can easily know what they are)... local namespaced_group_key = KEYS[1] local all_groups_key = KEYS[2] local no_namespaced_group_key = ARGV[1] if redis.call("exists", namespaced_group_key) == 0 then return -1 end if redis.call("sismember", all_groups_key, no_namespaced_group_key) == 0 then return -2 end if redis.call("hlen", namespaced_group_key) > 1 then return -3 end -- First remove from the set (then delete the group); if the set removal -- fails, at least the group will still exist (and can be fixed manually)... if redis.call("srem", all_groups_key, no_namespaced_group_key) == 0 then return -4 end redis.call("del", namespaced_group_key) return 1 """, 'update_capabilities': """ -- Extract *all* the variables (so we can easily know what they are)... local group_key = KEYS[1] local member_id = ARGV[1] local caps = ARGV[2] if redis.call("exists", group_key) == 0 then return -1 end if redis.call("hexists", group_key, member_id) == 0 then return -2 end redis.call("hset", group_key, member_id, caps) return 1 """, } """`Lua`_ **template** scripts that will be used by various methods (they are turned into real scripts and loaded on call into the :func:`.start` method). .. _Lua: http://www.lua.org """ EXCLUDE_OPTIONS = CLIENT_LIST_ARGS def __init__(self, member_id, parsed_url, options): super(RedisDriver, self).__init__(member_id, parsed_url, options) self._parsed_url = parsed_url self._encoding = self._options.get('encoding', self.DEFAULT_ENCODING) timeout = self._options.get('timeout', self.CLIENT_DEFAULT_SOCKET_TO) self.timeout = int(timeout) self.membership_timeout = float(self._options.get( 'membership_timeout', timeout)) lock_timeout = self._options.get('lock_timeout', self.timeout) self.lock_timeout = int(lock_timeout) namespace = self._options.get('namespace', self.DEFAULT_NAMESPACE) self._namespace = utils.to_binary(namespace, encoding=self._encoding) self._group_prefix = self._namespace + b"_group" self._beat_prefix = self._namespace + b"_beats" self._groups = self._namespace + b"_groups" self._client = None self._acquired_locks = set() self._started = False self._server_info = {} self._scripts = {} def _check_fetch_redis_version(self, geq_version, not_existent=True): if isinstance(geq_version, str): desired_version = version.LooseVersion(geq_version) elif isinstance(geq_version, version.LooseVersion): desired_version = geq_version else: raise TypeError("Version check expects a string/version type") try: redis_version = version.LooseVersion( self._server_info['redis_version']) except KeyError: return (not_existent, None) else: if redis_version < desired_version: return (False, redis_version) else: return (True, redis_version) @property def namespace(self): return self._namespace @property def running(self): return self._started def get_lock(self, name): return RedisLock(self, self._client, name, self.lock_timeout) _dumps = staticmethod(utils.dumps) _loads = staticmethod(utils.loads) @classmethod def _make_client(cls, parsed_url, options, default_socket_timeout): kwargs = {} if parsed_url.hostname: kwargs['host'] = parsed_url.hostname if parsed_url.port: kwargs['port'] = parsed_url.port else: if not parsed_url.path: raise ValueError("Expected socket path in parsed urls path") kwargs['unix_socket_path'] = parsed_url.path if parsed_url.password: kwargs['password'] = parsed_url.password for a in cls.CLIENT_ARGS: if a not in options: continue if a in cls.CLIENT_BOOL_ARGS: v = strutils.bool_from_string(options[a]) elif a in cls.CLIENT_LIST_ARGS: v = options[a] elif a in cls.CLIENT_INT_ARGS: v = int(options[a]) else: v = options[a] kwargs[a] = v if 'socket_timeout' not in kwargs: kwargs['socket_timeout'] = default_socket_timeout # Ask the sentinel for the current master if there is a # sentinel arg. if 'sentinel' in kwargs: sentinel_hosts = [ tuple(fallback.split(':')) for fallback in kwargs.get('sentinel_fallback', []) ] sentinel_hosts.insert(0, (kwargs['host'], kwargs['port'])) sentinel_server = sentinel.Sentinel( sentinel_hosts, socket_timeout=kwargs['socket_timeout']) sentinel_name = kwargs['sentinel'] del kwargs['sentinel'] if 'sentinel_fallback' in kwargs: del kwargs['sentinel_fallback'] master_client = sentinel_server.master_for(sentinel_name, **kwargs) # The master_client is a redis.StrictRedis using a # Sentinel managed connection pool. return master_client return redis.StrictRedis(**kwargs) @_handle_failures def _start(self): super(RedisDriver, self)._start() try: self._client = self._make_client(self._parsed_url, self._options, self.timeout) except exceptions.RedisError as e: utils.raise_with_cause(coordination.ToozConnectionError, encodeutils.exception_to_unicode(e), cause=e) else: # Ensure that the server is alive and not dead, this does not # ensure the server will always be alive, but does insure that it # at least is alive once... self._server_info = self._client.info() # Validate we have a good enough redis version we are connected # to so that the basic set of features we support will actually # work (instead of blowing up). new_enough, redis_version = self._check_fetch_redis_version( self.MIN_VERSION) if not new_enough: raise tooz.NotImplemented("Redis version greater than or" " equal to '%s' is required" " to use this driver; '%s' is" " being used which is not new" " enough" % (self.MIN_VERSION, redis_version)) tpl_params = { 'group_existence_value': self.GROUP_EXISTS_VALUE, 'group_existence_key': self.GROUP_EXISTS, } # For py3.x ensure these are unicode since the string template # replacement will expect unicode (and we don't want b'' as a # prefix which will happen in py3.x if this is not done). for (k, v) in tpl_params.copy().items(): if isinstance(v, bytes): v = v.decode('ascii') tpl_params[k] = v prepared_scripts = {} for name, raw_script_tpl in self.SCRIPTS.items(): script_tpl = string.Template(raw_script_tpl) script = script_tpl.substitute(**tpl_params) prepared_scripts[name] = self._client.register_script(script) self._scripts = prepared_scripts self.heartbeat() self._started = True def _encode_beat_id(self, member_id): member_id = utils.to_binary(member_id, encoding=self._encoding) return self.NAMESPACE_SEP.join([self._beat_prefix, member_id]) def _encode_member_id(self, member_id): member_id = utils.to_binary(member_id, encoding=self._encoding) if member_id == self.GROUP_EXISTS: raise ValueError("Not allowed to use private keys as a member id") return member_id def _decode_member_id(self, member_id): return utils.to_binary(member_id, encoding=self._encoding) def _encode_group_leader(self, group_id): group_id = utils.to_binary(group_id, encoding=self._encoding) return b"leader_of_" + group_id def _encode_group_id(self, group_id, apply_namespace=True): group_id = utils.to_binary(group_id, encoding=self._encoding) if not apply_namespace: return group_id return self.NAMESPACE_SEP.join([self._group_prefix, group_id]) def _decode_group_id(self, group_id): return utils.to_binary(group_id, encoding=self._encoding) @_handle_failures def heartbeat(self): beat_id = self._encode_beat_id(self._member_id) expiry_ms = max(0, int(self.membership_timeout * 1000.0)) self._client.psetex(beat_id, time_ms=expiry_ms, value=self.STILL_ALIVE) for lock in self._acquired_locks.copy(): try: lock.heartbeat() except tooz.ToozError: LOG.warning("Unable to heartbeat lock '%s'", lock, exc_info=True) return min(self.lock_timeout, self.membership_timeout) @_handle_failures def _stop(self): while self._acquired_locks: lock = self._acquired_locks.pop() try: lock.release() except tooz.ToozError: LOG.warning("Unable to release lock '%s'", lock, exc_info=True) super(RedisDriver, self)._stop() if self._client is not None: # Make sure we no longer exist... beat_id = self._encode_beat_id(self._member_id) try: # NOTE(harlowja): this will delete nothing if the key doesn't # exist in the first place, which is fine/expected/desired... self._client.delete(beat_id) except tooz.ToozError: LOG.warning("Unable to delete heartbeat key '%s'", beat_id, exc_info=True) self._client = None self._server_info = {} self._scripts.clear() self._started = False def _submit(self, cb, *args, **kwargs): if not self._started: raise tooz.ToozError("Redis driver has not been started") return self._executor.submit(cb, *args, **kwargs) def _get_script(self, script_key): try: return self._scripts[script_key] except KeyError: raise tooz.ToozError("Redis driver has not been started") def create_group(self, group_id): script = self._get_script('create_group') def _create_group(script): encoded_group = self._encode_group_id(group_id) keys = [ encoded_group, self._groups, ] args = [ self._encode_group_id(group_id, apply_namespace=False), ] result = script(keys=keys, args=args) result = strutils.bool_from_string(result) if not result: raise coordination.GroupAlreadyExist(group_id) return RedisFutureResult(self._submit(_create_group, script)) def update_capabilities(self, group_id, capabilities): script = self._get_script('update_capabilities') def _update_capabilities(script): keys = [ self._encode_group_id(group_id), ] args = [ self._encode_member_id(self._member_id), self._dumps(capabilities), ] result = int(script(keys=keys, args=args)) if result == -1: raise coordination.GroupNotCreated(group_id) if result == -2: raise coordination.MemberNotJoined(group_id, self._member_id) return RedisFutureResult(self._submit(_update_capabilities, script)) def leave_group(self, group_id): encoded_group = self._encode_group_id(group_id) encoded_member_id = self._encode_member_id(self._member_id) def _leave_group(p): if not p.exists(encoded_group): raise coordination.GroupNotCreated(group_id) p.multi() p.hdel(encoded_group, encoded_member_id) c = p.execute()[0] if c == 0: raise coordination.MemberNotJoined(group_id, self._member_id) else: self._joined_groups.discard(group_id) return RedisFutureResult(self._submit(self._client.transaction, _leave_group, encoded_group, value_from_callable=True)) def get_members(self, group_id): encoded_group = self._encode_group_id(group_id) def _get_members(p): if not p.exists(encoded_group): raise coordination.GroupNotCreated(group_id) potential_members = set() for m in p.hkeys(encoded_group): m = self._decode_member_id(m) if m != self.GROUP_EXISTS: potential_members.add(m) if not potential_members: return set() # Ok now we need to see which members have passed away... gone_members = set() member_values = p.mget(map(self._encode_beat_id, potential_members)) for (potential_member, value) in zip(potential_members, member_values): # Always preserve self (just incase we haven't heartbeated # while this call/s was being made...), this does *not* prevent # another client from removing this though... if potential_member == self._member_id: continue if not value: gone_members.add(potential_member) # Trash all the members that no longer are with us... RIP... if gone_members: p.multi() encoded_gone_members = list(self._encode_member_id(m) for m in gone_members) p.hdel(encoded_group, *encoded_gone_members) p.execute() return set(m for m in potential_members if m not in gone_members) return potential_members return RedisFutureResult(self._submit(self._client.transaction, _get_members, encoded_group, value_from_callable=True)) def get_member_capabilities(self, group_id, member_id): encoded_group = self._encode_group_id(group_id) encoded_member_id = self._encode_member_id(member_id) def _get_member_capabilities(p): if not p.exists(encoded_group): raise coordination.GroupNotCreated(group_id) capabilities = p.hget(encoded_group, encoded_member_id) if capabilities is None: raise coordination.MemberNotJoined(group_id, member_id) return self._loads(capabilities) return RedisFutureResult(self._submit(self._client.transaction, _get_member_capabilities, encoded_group, value_from_callable=True)) def join_group(self, group_id, capabilities=b""): encoded_group = self._encode_group_id(group_id) encoded_member_id = self._encode_member_id(self._member_id) def _join_group(p): if not p.exists(encoded_group): raise coordination.GroupNotCreated(group_id) p.multi() p.hset(encoded_group, encoded_member_id, self._dumps(capabilities)) c = p.execute()[0] if c == 0: # Field already exists... raise coordination.MemberAlreadyExist(group_id, self._member_id) else: self._joined_groups.add(group_id) return RedisFutureResult(self._submit(self._client.transaction, _join_group, encoded_group, value_from_callable=True)) def delete_group(self, group_id): script = self._get_script('delete_group') def _delete_group(script): keys = [ self._encode_group_id(group_id), self._groups, ] args = [ self._encode_group_id(group_id, apply_namespace=False), ] result = int(script(keys=keys, args=args)) if result in (-1, -2): raise coordination.GroupNotCreated(group_id) if result == -3: raise coordination.GroupNotEmpty(group_id) if result == -4: raise tooz.ToozError("Unable to remove '%s' key" " from set located at '%s'" % (args[0], keys[-1])) if result != 1: raise tooz.ToozError("Internal error, unable" " to complete group '%s' removal" % (group_id)) return RedisFutureResult(self._submit(_delete_group, script)) def _destroy_group(self, group_id): """Should only be used in tests...""" self._client.delete(self._encode_group_id(group_id)) def get_groups(self): def _get_groups(): results = [] for g in self._client.smembers(self._groups): results.append(self._decode_group_id(g)) return results return RedisFutureResult(self._submit(_get_groups)) def _get_leader_lock(self, group_id): name = self._encode_group_leader(group_id) return self.get_lock(name) def run_elect_coordinator(self): for group_id, hooks in self._hooks_elected_leader.items(): leader_lock = self._get_leader_lock(group_id) if leader_lock.acquire(blocking=False): # We got the lock hooks.run(coordination.LeaderElected(group_id, self._member_id)) def run_watchers(self, timeout=None): result = super(RedisDriver, self).run_watchers(timeout=timeout) self.run_elect_coordinator() return result RedisFutureResult = functools.partial(coordination.CoordinatorResult)
apache-2.0
6,796,789,495,924,240,000
37.581841
79
0.580259
false
srblum/server
scripts/generate_fasta.py
5
3505
""" Generate a random FASTA file """ from __future__ import division from __future__ import print_function from __future__ import unicode_literals import argparse import hashlib import json import math import os import random import utils class FastaGenerator(object): """ Generates a random FASTA file and metadata json. """ def __init__(self, args): self.numBases = args.num_bases self.outputPrefix = args.output_prefix self.fastaFileName = "{}.fa".format(self.outputPrefix) self.referenceId = os.path.split(args.output_prefix)[-1] self.bases = "" def writeFasta(self): """ Write the random fasta file """ utils.log("writing {} bases to {} ...".format( self.numBases, self.fastaFileName)) with open(self.fastaFileName, 'w') as fastaFile: firstLine = ">{} Generated by generate_fasta.py".format( self.referenceId) print(firstLine, file=fastaFile) basesPerLine = 70 numLines = int(math.ceil(self.numBases / basesPerLine)) baseChoices = ['A', 'G', 'C', 'T'] basesRemaining = self.numBases for i in range(numLines): if basesRemaining < basesPerLine: basesToWrite = basesRemaining else: basesToWrite = basesPerLine bases = ''.join( [random.choice(baseChoices) for _ in range(basesToWrite)]) line = "{}".format(bases) self.bases += line print(line, file=fastaFile) basesRemaining -= basesToWrite assert basesRemaining == 0 def writeMetadata(self): """ Write some metadata. """ metadata = { "md5checksum": hashlib.md5(self.bases).hexdigest(), "sourceUri": "http://example.com/random_url", "ncbiTaxonId": random.randint(1, 10000), "isDerived": False, "sourceDivergence": None, "sourceAccessions": [], } jsonFileName = "{}.json".format(self.outputPrefix) utils.log("writing metadata to {} ...".format(jsonFileName)) with open(jsonFileName, "w") as jsonFile: json.dump(metadata, jsonFile, indent=4) def zipFasta(self): """ Compress the fasta file """ utils.log("zipping {} ...".format(self.fastaFileName)) cmd = "bgzip -f {}".format(self.fastaFileName) utils.runCommand(cmd) def indexFasta(self): """ Create index on the fasta file """ zipFileName = "{}.gz".format(self.fastaFileName) utils.log("indexing {} ...".format(zipFileName)) cmd = "samtools faidx {}".format(zipFileName) utils.runCommand(cmd) def generate(self): self.writeFasta() self.writeMetadata() self.zipFasta() self.indexFasta() def main(): parser = argparse.ArgumentParser( description="Generate random FASTA files and metadata") parser.add_argument( "output_prefix", help="The prefix for generated files.") basesDefault = 1000 parser.add_argument( "--num-bases", "-n", default=basesDefault, help="number of bases to include; default {}".format(basesDefault)) fastaGenerator = FastaGenerator(parser.parse_args()) fastaGenerator.generate() if __name__ == '__main__': main()
apache-2.0
6,550,465,919,768,596,000
30.576577
78
0.573181
false
ioana-delaney/spark
python/pyspark/ml/param/__init__.py
53
17172
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import array import sys if sys.version > '3': basestring = str xrange = range unicode = str from abc import ABCMeta import copy import numpy as np from py4j.java_gateway import JavaObject from pyspark.ml.linalg import DenseVector, Vector, Matrix from pyspark.ml.util import Identifiable __all__ = ['Param', 'Params', 'TypeConverters'] class Param(object): """ A param with self-contained documentation. .. versionadded:: 1.3.0 """ def __init__(self, parent, name, doc, typeConverter=None): if not isinstance(parent, Identifiable): raise TypeError("Parent must be an Identifiable but got type %s." % type(parent)) self.parent = parent.uid self.name = str(name) self.doc = str(doc) self.typeConverter = TypeConverters.identity if typeConverter is None else typeConverter def _copy_new_parent(self, parent): """Copy the current param to a new parent, must be a dummy param.""" if self.parent == "undefined": param = copy.copy(self) param.parent = parent.uid return param else: raise ValueError("Cannot copy from non-dummy parent %s." % parent) def __str__(self): return str(self.parent) + "__" + self.name def __repr__(self): return "Param(parent=%r, name=%r, doc=%r)" % (self.parent, self.name, self.doc) def __hash__(self): return hash(str(self)) def __eq__(self, other): if isinstance(other, Param): return self.parent == other.parent and self.name == other.name else: return False class TypeConverters(object): """ .. note:: DeveloperApi Factory methods for common type conversion functions for `Param.typeConverter`. .. versionadded:: 2.0.0 """ @staticmethod def _is_numeric(value): vtype = type(value) return vtype in [int, float, np.float64, np.int64] or vtype.__name__ == 'long' @staticmethod def _is_integer(value): return TypeConverters._is_numeric(value) and float(value).is_integer() @staticmethod def _can_convert_to_list(value): vtype = type(value) return vtype in [list, np.ndarray, tuple, xrange, array.array] or isinstance(value, Vector) @staticmethod def _can_convert_to_string(value): vtype = type(value) return isinstance(value, basestring) or vtype in [np.unicode_, np.string_, np.str_] @staticmethod def identity(value): """ Dummy converter that just returns value. """ return value @staticmethod def toList(value): """ Convert a value to a list, if possible. """ if type(value) == list: return value elif type(value) in [np.ndarray, tuple, xrange, array.array]: return list(value) elif isinstance(value, Vector): return list(value.toArray()) else: raise TypeError("Could not convert %s to list" % value) @staticmethod def toListFloat(value): """ Convert a value to list of floats, if possible. """ if TypeConverters._can_convert_to_list(value): value = TypeConverters.toList(value) if all(map(lambda v: TypeConverters._is_numeric(v), value)): return [float(v) for v in value] raise TypeError("Could not convert %s to list of floats" % value) @staticmethod def toListInt(value): """ Convert a value to list of ints, if possible. """ if TypeConverters._can_convert_to_list(value): value = TypeConverters.toList(value) if all(map(lambda v: TypeConverters._is_integer(v), value)): return [int(v) for v in value] raise TypeError("Could not convert %s to list of ints" % value) @staticmethod def toListString(value): """ Convert a value to list of strings, if possible. """ if TypeConverters._can_convert_to_list(value): value = TypeConverters.toList(value) if all(map(lambda v: TypeConverters._can_convert_to_string(v), value)): return [TypeConverters.toString(v) for v in value] raise TypeError("Could not convert %s to list of strings" % value) @staticmethod def toVector(value): """ Convert a value to a MLlib Vector, if possible. """ if isinstance(value, Vector): return value elif TypeConverters._can_convert_to_list(value): value = TypeConverters.toList(value) if all(map(lambda v: TypeConverters._is_numeric(v), value)): return DenseVector(value) raise TypeError("Could not convert %s to vector" % value) @staticmethod def toMatrix(value): """ Convert a value to a MLlib Matrix, if possible. """ if isinstance(value, Matrix): return value raise TypeError("Could not convert %s to matrix" % value) @staticmethod def toFloat(value): """ Convert a value to a float, if possible. """ if TypeConverters._is_numeric(value): return float(value) else: raise TypeError("Could not convert %s to float" % value) @staticmethod def toInt(value): """ Convert a value to an int, if possible. """ if TypeConverters._is_integer(value): return int(value) else: raise TypeError("Could not convert %s to int" % value) @staticmethod def toString(value): """ Convert a value to a string, if possible. """ if isinstance(value, basestring): return value elif type(value) in [np.string_, np.str_]: return str(value) elif type(value) == np.unicode_: return unicode(value) else: raise TypeError("Could not convert %s to string type" % type(value)) @staticmethod def toBoolean(value): """ Convert a value to a boolean, if possible. """ if type(value) == bool: return value else: raise TypeError("Boolean Param requires value of type bool. Found %s." % type(value)) class Params(Identifiable): """ Components that take parameters. This also provides an internal param map to store parameter values attached to the instance. .. versionadded:: 1.3.0 """ __metaclass__ = ABCMeta def __init__(self): super(Params, self).__init__() #: internal param map for user-supplied values param map self._paramMap = {} #: internal param map for default values self._defaultParamMap = {} #: value returned by :py:func:`params` self._params = None # Copy the params from the class to the object self._copy_params() def _copy_params(self): """ Copy all params defined on the class to current object. """ cls = type(self) src_name_attrs = [(x, getattr(cls, x)) for x in dir(cls)] src_params = list(filter(lambda nameAttr: isinstance(nameAttr[1], Param), src_name_attrs)) for name, param in src_params: setattr(self, name, param._copy_new_parent(self)) @property def params(self): """ Returns all params ordered by name. The default implementation uses :py:func:`dir` to get all attributes of type :py:class:`Param`. """ if self._params is None: self._params = list(filter(lambda attr: isinstance(attr, Param), [getattr(self, x) for x in dir(self) if x != "params" and not isinstance(getattr(type(self), x, None), property)])) return self._params def explainParam(self, param): """ Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string. """ param = self._resolveParam(param) values = [] if self.isDefined(param): if param in self._defaultParamMap: values.append("default: %s" % self._defaultParamMap[param]) if param in self._paramMap: values.append("current: %s" % self._paramMap[param]) else: values.append("undefined") valueStr = "(" + ", ".join(values) + ")" return "%s: %s %s" % (param.name, param.doc, valueStr) def explainParams(self): """ Returns the documentation of all params with their optionally default values and user-supplied values. """ return "\n".join([self.explainParam(param) for param in self.params]) def getParam(self, paramName): """ Gets a param by its name. """ param = getattr(self, paramName) if isinstance(param, Param): return param else: raise ValueError("Cannot find param with name %s." % paramName) def isSet(self, param): """ Checks whether a param is explicitly set by user. """ param = self._resolveParam(param) return param in self._paramMap def hasDefault(self, param): """ Checks whether a param has a default value. """ param = self._resolveParam(param) return param in self._defaultParamMap def isDefined(self, param): """ Checks whether a param is explicitly set by user or has a default value. """ return self.isSet(param) or self.hasDefault(param) def hasParam(self, paramName): """ Tests whether this instance contains a param with a given (string) name. """ if isinstance(paramName, basestring): p = getattr(self, paramName, None) return isinstance(p, Param) else: raise TypeError("hasParam(): paramName must be a string") def getOrDefault(self, param): """ Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set. """ param = self._resolveParam(param) if param in self._paramMap: return self._paramMap[param] else: return self._defaultParamMap[param] def extractParamMap(self, extra=None): """ Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra. :param extra: extra param values :return: merged param map """ if extra is None: extra = dict() paramMap = self._defaultParamMap.copy() paramMap.update(self._paramMap) paramMap.update(extra) return paramMap def copy(self, extra=None): """ Creates a copy of this instance with the same uid and some extra params. The default implementation creates a shallow copy using :py:func:`copy.copy`, and then copies the embedded and extra parameters over and returns the copy. Subclasses should override this method if the default approach is not sufficient. :param extra: Extra parameters to copy to the new instance :return: Copy of this instance """ if extra is None: extra = dict() that = copy.copy(self) that._paramMap = {} that._defaultParamMap = {} return self._copyValues(that, extra) def set(self, param, value): """ Sets a parameter in the embedded param map. """ self._shouldOwn(param) try: value = param.typeConverter(value) except ValueError as e: raise ValueError('Invalid param value given for param "%s". %s' % (param.name, e)) self._paramMap[param] = value def _shouldOwn(self, param): """ Validates that the input param belongs to this Params instance. """ if not (self.uid == param.parent and self.hasParam(param.name)): raise ValueError("Param %r does not belong to %r." % (param, self)) def _resolveParam(self, param): """ Resolves a param and validates the ownership. :param param: param name or the param instance, which must belong to this Params instance :return: resolved param instance """ if isinstance(param, Param): self._shouldOwn(param) return param elif isinstance(param, basestring): return self.getParam(param) else: raise ValueError("Cannot resolve %r as a param." % param) @staticmethod def _dummy(): """ Returns a dummy Params instance used as a placeholder to generate docs. """ dummy = Params() dummy.uid = "undefined" return dummy def _set(self, **kwargs): """ Sets user-supplied params. """ for param, value in kwargs.items(): p = getattr(self, param) if value is not None: try: value = p.typeConverter(value) except TypeError as e: raise TypeError('Invalid param value given for param "%s". %s' % (p.name, e)) self._paramMap[p] = value return self def _clear(self, param): """ Clears a param from the param map if it has been explicitly set. """ if self.isSet(param): del self._paramMap[param] def _setDefault(self, **kwargs): """ Sets default params. """ for param, value in kwargs.items(): p = getattr(self, param) if value is not None and not isinstance(value, JavaObject): try: value = p.typeConverter(value) except TypeError as e: raise TypeError('Invalid default param value given for param "%s". %s' % (p.name, e)) self._defaultParamMap[p] = value return self def _copyValues(self, to, extra=None): """ Copies param values from this instance to another instance for params shared by them. :param to: the target instance :param extra: extra params to be copied :return: the target instance with param values copied """ paramMap = self._paramMap.copy() if extra is not None: paramMap.update(extra) for param in self.params: # copy default params if param in self._defaultParamMap and to.hasParam(param.name): to._defaultParamMap[to.getParam(param.name)] = self._defaultParamMap[param] # copy explicitly set params if param in paramMap and to.hasParam(param.name): to._set(**{param.name: paramMap[param]}) return to def _resetUid(self, newUid): """ Changes the uid of this instance. This updates both the stored uid and the parent uid of params and param maps. This is used by persistence (loading). :param newUid: new uid to use, which is converted to unicode :return: same instance, but with the uid and Param.parent values updated, including within param maps """ newUid = unicode(newUid) self.uid = newUid newDefaultParamMap = dict() newParamMap = dict() for param in self.params: newParam = copy.copy(param) newParam.parent = newUid if param in self._defaultParamMap: newDefaultParamMap[newParam] = self._defaultParamMap[param] if param in self._paramMap: newParamMap[newParam] = self._paramMap[param] param.parent = newUid self._defaultParamMap = newDefaultParamMap self._paramMap = newParamMap return self
apache-2.0
1,622,447,795,900,820,200
32.604697
99
0.585896
false
jtorrents/networkx
doc/source/conf.py
2
5695
# -*- coding: utf-8 -*- # # Sphinx documentation build configuration file, created by # sphinx-quickstart.py on Sat Mar 8 21:47:50 2008. # # This file is execfile()d with the current directory set to its containing dir. # # The contents of this file are pickled, so don't put values in the namespace # that aren't pickleable (module imports are okay, they're removed automatically). # # All configuration values have a default value; values that are commented out # serve to show the default value. import sys, os, re # Check Sphinx version import sphinx if sphinx.__version__ < "1.0.1": raise RuntimeError("Sphinx 1.0.1 or newer required") # If your extensions are in another directory, add it here. sys.path.append(os.path.abspath('../sphinxext')) # General configuration # --------------------- # Add any Sphinx extension module names here, as strings. They can be extensions # coming with Sphinx (named 'sphinx.addons.*') or your custom ones. extensions = ['sphinx.ext.autodoc', 'sphinx.ext.pngmath', 'sphinx.ext.viewcode', # 'sphinx.ext.mathjax', 'numpydoc', 'sphinx.ext.coverage', 'sphinx.ext.autosummary','sphinx.ext.todo','sphinx.ext.doctest', 'sphinx.ext.intersphinx', 'customroles'] # generate autosummary pages autosummary_generate=True # Add any paths that contain templates here, relative to this directory. templates_path = ['templates','../rst_templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. source_encoding = 'utf-8' # The master toctree document. master_doc = 'index' # General substitutions. project = 'NetworkX' copyright = '2013, NetworkX Developers' # The default replacements for |version| and |release|, also used in various # other places throughout the built documents. # # The short X.Y version. import networkx version = networkx.__version__ # The full version, including dev info release = networkx.__version__.replace('_','') # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of documents that shouldn't be included in the build. # unused_docs = ['reference/pdf_reference'] # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). add_module_names = False # show_authors = True # The name of the Pygments (syntax highlighting) style to use. #pygments_style = 'friendly' pygments_style = 'sphinx' # A list of prefixs that are ignored when creating the module index. (new in Sphinx 0.6) modindex_common_prefix=['networkx.'] doctest_global_setup="import networkx as nx" # Options for HTML output # ----------------------- html_theme = "sphinxdoc" #html_theme_options = { # "rightsidebar": "true", # "relbarbgcolor: "black" #} # The style sheet to use for HTML and HTML Help pages. A file of that name # must exist either in Sphinx' static/ path, or in one of the custom paths # given in html_static_path. html_style = 'networkx.css' # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['static'] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Content template for the index page. #html_index = 'index.html' html_index = 'contents.html' # Custom sidebar templates, maps page names to templates. #html_sidebars = {'index': 'indexsidebar.html'} # Additional templates that should be rendered to pages, maps page names to # templates. #html_additional_pages = {'index': 'index.html','gallery':'gallery.html'} html_additional_pages = {'gallery':'gallery.html'} # If true, the reST sources are included in the HTML build as _sources/<name>. html_copy_source = False html_use_opensearch = 'http://networkx.lanl.gov' # Output file base name for HTML help builder. htmlhelp_basename = 'NetworkX' pngmath_use_preview = True # Options for LaTeX output # ------------------------ # The paper size ('letter' or 'a4'). latex_paper_size = 'letter' # The font size ('10pt', '11pt' or '12pt'). #latex_font_size = '10pt' # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, document class [howto/manual]). latex_documents = [('tutorial/index', 'networkx_tutorial.tex', 'NetworkX Tutorial', 'Aric Hagberg, Dan Schult, Pieter Swart', 'howto', 1), ('reference/pdf_reference', 'networkx_reference.tex', 'NetworkX Reference', 'Aric Hagberg, Dan Schult, Pieter Swart', 'manual', 1)] #latex_appendices = ['installing']#,'legal'],'citing','credits','history'] #latex_appendices = ['credits'] # Intersphinx mapping intersphinx_mapping = {'http://docs.python.org/': None, 'http://docs.scipy.org/doc/numpy/': None, } # For trac custom roles trac_url = 'https://networkx.lanl.gov/trac/' default_role = 'math' #mathjax_path = 'http://mathjax.connectmv.com/MathJax.js'
bsd-3-clause
-8,630,463,174,791,881,000
31.175141
88
0.676734
false
qedi-r/home-assistant
tests/components/sleepiq/test_init.py
4
2776
"""The tests for the SleepIQ component.""" import unittest from unittest.mock import MagicMock, patch import requests_mock from homeassistant import setup import homeassistant.components.sleepiq as sleepiq from tests.common import load_fixture, get_test_home_assistant def mock_responses(mock, single=False): """Mock responses for SleepIQ.""" base_url = "https://prod-api.sleepiq.sleepnumber.com/rest/" if single: suffix = "-single" else: suffix = "" mock.put(base_url + "login", text=load_fixture("sleepiq-login.json")) mock.get( base_url + "bed?_k=0987", text=load_fixture("sleepiq-bed{}.json".format(suffix)) ) mock.get(base_url + "sleeper?_k=0987", text=load_fixture("sleepiq-sleeper.json")) mock.get( base_url + "bed/familyStatus?_k=0987", text=load_fixture("sleepiq-familystatus{}.json".format(suffix)), ) class TestSleepIQ(unittest.TestCase): """Tests the SleepIQ component.""" def setUp(self): """Initialize values for this test case class.""" self.hass = get_test_home_assistant() self.username = "foo" self.password = "bar" self.config = { "sleepiq": {"username": self.username, "password": self.password} } def tearDown(self): # pylint: disable=invalid-name """Stop everything that was started.""" self.hass.stop() @requests_mock.Mocker() def test_setup(self, mock): """Test the setup.""" mock_responses(mock) # We're mocking the load_platform discoveries or else the platforms # will be setup during tear down when blocking till done, but the mocks # are no longer active. with patch("homeassistant.helpers.discovery.load_platform", MagicMock()): assert sleepiq.setup(self.hass, self.config) @requests_mock.Mocker() def test_setup_login_failed(self, mock): """Test the setup if a bad username or password is given.""" mock.put( "https://prod-api.sleepiq.sleepnumber.com/rest/login", status_code=401, json=load_fixture("sleepiq-login-failed.json"), ) response = sleepiq.setup(self.hass, self.config) assert not response def test_setup_component_no_login(self): """Test the setup when no login is configured.""" conf = self.config.copy() del conf["sleepiq"]["username"] assert not setup.setup_component(self.hass, sleepiq.DOMAIN, conf) def test_setup_component_no_password(self): """Test the setup when no password is configured.""" conf = self.config.copy() del conf["sleepiq"]["password"] assert not setup.setup_component(self.hass, sleepiq.DOMAIN, conf)
apache-2.0
-2,349,374,305,424,731,000
33.271605
88
0.636527
false
lemonsong/lemonsong.github.io
blog/pelican-plugins/representative_image/test_representative_image.py
63
2040
#!/bin/sh import unittest from jinja2.utils import generate_lorem_ipsum # Generate content with image TEST_CONTENT_IMAGE_URL = 'https://testimage.com/test.jpg' TEST_CONTENT = str(generate_lorem_ipsum(n=3, html=True)) + '<img src="' + TEST_CONTENT_IMAGE_URL + '"/>'+ str(generate_lorem_ipsum(n=2,html=True)) TEST_SUMMARY_IMAGE_URL = 'https://testimage.com/summary.jpg' TEST_SUMMARY_WITHOUTIMAGE = str(generate_lorem_ipsum(n=1, html=True)) TEST_SUMMARY_WITHIMAGE = TEST_SUMMARY_WITHOUTIMAGE + '<img src="' + TEST_SUMMARY_IMAGE_URL + '"/>' TEST_CUSTOM_IMAGE_URL = 'https://testimage.com/custom.jpg' from pelican.contents import Article import representative_image class TestRepresentativeImage(unittest.TestCase): def setUp(self): super(TestRepresentativeImage, self).setUp() representative_image.register() def test_extract_image_from_content(self): args = { 'content': TEST_CONTENT, 'metadata': { 'summary': TEST_SUMMARY_WITHOUTIMAGE, }, } article = Article(**args) self.assertEqual(article.featured_image, TEST_CONTENT_IMAGE_URL) def test_extract_image_from_summary(self): args = { 'content': TEST_CONTENT, 'metadata': { 'summary': TEST_SUMMARY_WITHIMAGE, }, } article = Article(**args) self.assertEqual(article.featured_image, TEST_SUMMARY_IMAGE_URL) self.assertEqual(article.summary, TEST_SUMMARY_WITHOUTIMAGE) def test_extract_image_from_summary_with_custom_image(self): args = { 'content': TEST_CONTENT, 'metadata': { 'summary': TEST_SUMMARY_WITHIMAGE, 'image': TEST_CUSTOM_IMAGE_URL, }, } article = Article(**args) self.assertEqual(article.featured_image, TEST_CUSTOM_IMAGE_URL) self.assertEqual(article.summary, TEST_SUMMARY_WITHOUTIMAGE) if __name__ == '__main__': unittest.main()
mit
5,224,455,482,497,638,000
29
146
0.621078
false
tjlaboss/openmc
tests/regression_tests/source_parameterized_dlopen/test.py
7
2162
from pathlib import Path import os import shutil import subprocess import textwrap import openmc import pytest from tests.testing_harness import PyAPITestHarness @pytest.fixture def compile_source(request): """Compile the external source""" # Get build directory and write CMakeLists.txt file openmc_dir = Path(str(request.config.rootdir)) / 'build' with open('CMakeLists.txt', 'w') as f: f.write(textwrap.dedent(""" cmake_minimum_required(VERSION 3.3 FATAL_ERROR) project(openmc_sources CXX) add_library(source SHARED parameterized_source_sampling.cpp) find_package(OpenMC REQUIRED HINTS {}) target_link_libraries(source OpenMC::libopenmc) """.format(openmc_dir))) # Create temporary build directory and change to there local_builddir = Path('build') local_builddir.mkdir(exist_ok=True) os.chdir(str(local_builddir)) # Run cmake/make to build the shared libary subprocess.run(['cmake', os.path.pardir], check=True) subprocess.run(['make'], check=True) os.chdir(os.path.pardir) yield # Remove local build directory when test is complete shutil.rmtree('build') os.remove('CMakeLists.txt') @pytest.fixture def model(): model = openmc.model.Model() natural_lead = openmc.Material(name="natural_lead") natural_lead.add_element('Pb', 1.0) natural_lead.set_density('g/cm3', 11.34) model.materials.append(natural_lead) # geometry surface_sph1 = openmc.Sphere(r=100, boundary_type='vacuum') cell_1 = openmc.Cell(fill=natural_lead, region=-surface_sph1) model.geometry = openmc.Geometry([cell_1]) # settings model.settings.batches = 10 model.settings.inactive = 0 model.settings.particles = 1000 model.settings.run_mode = 'fixed source' # custom source from shared library source = openmc.Source() source.library = 'build/libsource.so' source.parameters = '1e3' model.settings.source = source return model def test_dlopen_source(compile_source, model): harness = PyAPITestHarness('statepoint.10.h5', model) harness.main()
mit
4,885,972,692,589,280,000
27.826667
72
0.684089
false
cbitterfield/JobCard
example/code_blocks.py
1
1238
# Variables for standard use: config = {} jobcard = {} noexec = True command = {} command_status = {} command_name = "example" CMD = '' item_src = '' # Standard Imports import os import job import logging import subprocess logger = logging.getLogger(__name__) # Code Block - Run a command an check results # command_name = 'MyCommand' # Run Command if noexec: command[command_name] = subprocess.Popen("echo", shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) else: logger.warning("Running Command - " + str(command_name)) command[command_name] = subprocess.Popen(CMD, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) logger.info( "COMMAND" + command_name + " for "+ item_src + " Started" ) # Check if Command executed logger.info("Check if " + str(command_name) + " Completed") stdoutdata, stderrdata = command[command_name].communicate() command_status[command_name] = command[command_name].returncode if command_status[command_name] == 0: logger.info(str(command_name) + " Completed, returned Status: " + str(command_status[command_name])) else: logger.error(str(command_name) + "failed, with Status:"+ str(command_status[command_name])) Error = True
gpl-3.0
5,514,271,849,741,310,000
24.8125
116
0.693861
false
anilthanki/tgac-galaxytools
tools/Ensembl-REST/get_feature_info.py
2
1637
# A simple tool to connect to the Ensembl server and retrieve feature # information using the Ensembl REST API. from __future__ import print_function import json import optparse from itertools import islice import requests from six.moves.urllib.parse import urljoin parser = optparse.OptionParser() parser.add_option('-i', '--input', help='List of Ensembl IDs') parser.add_option('-e', '--expand', type='choice', choices=['0', '1'], default='0', help='Expands the search to include any connected features. e.g. If the object is a gene, its transcripts, translations and exons will be returned as well.') parser.add_option('-f', '--format', type='choice', choices=['full', 'condensed'], default='full', help='Specify the formats to emit from this endpoint') options, args = parser.parse_args() if options.input is None: raise Exception('-i option must be specified') server = 'http://rest.ensembl.org' ext = 'lookup/id' headers = {'Content-Type': 'application/json', 'Accept': 'application/json'} params = dict((k, getattr(options, k)) for k in ['format', 'expand']) first = True print('{') with open(options.input) as f: while True: ids = [line.strip() for line in islice(f, 50)] if not ids: break if not first: print(",") data = {'ids': ids} r = requests.post(urljoin(server, ext), params=params, headers=headers, data=json.dumps(data)) if not r.ok: r.raise_for_status() print(r.text[1:-1]) first = False print('}')
mit
-4,122,030,656,891,136,500
29.314815
175
0.618815
false
chemelnucfin/tensorflow
tensorflow/contrib/grid_rnn/python/ops/grid_rnn_cell.py
19
23308
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Module for constructing GridRNN cells""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from collections import namedtuple import functools from tensorflow.python.framework import tensor_shape from tensorflow.python.ops import array_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import nn from tensorflow.python.ops import variable_scope as vs from tensorflow.python.platform import tf_logging as logging from tensorflow.contrib import layers from tensorflow.contrib import rnn class GridRNNCell(rnn.RNNCell): """Grid recurrent cell. This implementation is based on: http://arxiv.org/pdf/1507.01526v3.pdf This is the generic implementation of GridRNN. Users can specify arbitrary number of dimensions, set some of them to be priority (section 3.2), non-recurrent (section 3.3) and input/output dimensions (section 3.4). Weight sharing can also be specified using the `tied` parameter. Type of recurrent units can be specified via `cell_fn`. """ def __init__(self, num_units, num_dims=1, input_dims=None, output_dims=None, priority_dims=None, non_recurrent_dims=None, tied=False, cell_fn=None, non_recurrent_fn=None, state_is_tuple=True, output_is_tuple=True): """Initialize the parameters of a Grid RNN cell Args: num_units: int, The number of units in all dimensions of this GridRNN cell num_dims: int, Number of dimensions of this grid. input_dims: int or list, List of dimensions which will receive input data. output_dims: int or list, List of dimensions from which the output will be recorded. priority_dims: int or list, List of dimensions to be considered as priority dimensions. If None, no dimension is prioritized. non_recurrent_dims: int or list, List of dimensions that are not recurrent. The transfer function for non-recurrent dimensions is specified via `non_recurrent_fn`, which is default to be `tensorflow.nn.relu`. tied: bool, Whether to share the weights among the dimensions of this GridRNN cell. If there are non-recurrent dimensions in the grid, weights are shared between each group of recurrent and non-recurrent dimensions. cell_fn: function, a function which returns the recurrent cell object. Has to be in the following signature: ``` def cell_func(num_units): # ... ``` and returns an object of type `RNNCell`. If None, LSTMCell with default parameters will be used. Note that if you use a custom RNNCell (with `cell_fn`), it is your responsibility to make sure the inner cell use `state_is_tuple=True`. non_recurrent_fn: a tensorflow Op that will be the transfer function of the non-recurrent dimensions state_is_tuple: If True, accepted and returned states are tuples of the states of the recurrent dimensions. If False, they are concatenated along the column axis. The latter behavior will soon be deprecated. Note that if you use a custom RNNCell (with `cell_fn`), it is your responsibility to make sure the inner cell use `state_is_tuple=True`. output_is_tuple: If True, the output is a tuple of the outputs of the recurrent dimensions. If False, they are concatenated along the column axis. The later behavior will soon be deprecated. Raises: TypeError: if cell_fn does not return an RNNCell instance. """ if not state_is_tuple: logging.warning('%s: Using a concatenated state is slower and will ' 'soon be deprecated. Use state_is_tuple=True.', self) if not output_is_tuple: logging.warning('%s: Using a concatenated output is slower and will ' 'soon be deprecated. Use output_is_tuple=True.', self) if num_dims < 1: raise ValueError('dims must be >= 1: {}'.format(num_dims)) self._config = _parse_rnn_config(num_dims, input_dims, output_dims, priority_dims, non_recurrent_dims, non_recurrent_fn or nn.relu, tied, num_units) self._state_is_tuple = state_is_tuple self._output_is_tuple = output_is_tuple if cell_fn is None: my_cell_fn = functools.partial( rnn.LSTMCell, num_units=num_units, state_is_tuple=state_is_tuple) else: my_cell_fn = lambda: cell_fn(num_units) if tied: self._cells = [my_cell_fn()] * num_dims else: self._cells = [my_cell_fn() for _ in range(num_dims)] if not isinstance(self._cells[0], rnn.RNNCell): raise TypeError('cell_fn must return an RNNCell instance, saw: %s' % type(self._cells[0])) if self._output_is_tuple: self._output_size = tuple(self._cells[0].output_size for _ in self._config.outputs) else: self._output_size = self._cells[0].output_size * len(self._config.outputs) if self._state_is_tuple: self._state_size = tuple(self._cells[0].state_size for _ in self._config.recurrents) else: self._state_size = self._cell_state_size() * len(self._config.recurrents) @property def output_size(self): return self._output_size @property def state_size(self): return self._state_size def __call__(self, inputs, state, scope=None): """Run one step of GridRNN. Args: inputs: input Tensor, 2D, batch x input_size. Or None state: state Tensor, 2D, batch x state_size. Note that state_size = cell_state_size * recurrent_dims scope: VariableScope for the created subgraph; defaults to "GridRNNCell". Returns: A tuple containing: - A 2D, batch x output_size, Tensor representing the output of the cell after reading "inputs" when previous state was "state". - A 2D, batch x state_size, Tensor representing the new state of the cell after reading "inputs" when previous state was "state". """ conf = self._config dtype = inputs.dtype c_prev, m_prev, cell_output_size = self._extract_states(state) new_output = [None] * conf.num_dims new_state = [None] * conf.num_dims with vs.variable_scope(scope or type(self).__name__): # GridRNNCell # project input, populate c_prev and m_prev self._project_input(inputs, c_prev, m_prev, cell_output_size > 0) # propagate along dimensions, first for non-priority dimensions # then priority dimensions _propagate(conf.non_priority, conf, self._cells, c_prev, m_prev, new_output, new_state, True) _propagate(conf.priority, conf, self._cells, c_prev, m_prev, new_output, new_state, False) # collect outputs and states output_tensors = [new_output[i] for i in self._config.outputs] if self._output_is_tuple: output = tuple(output_tensors) else: if output_tensors: output = array_ops.concat(output_tensors, 1) else: output = array_ops.zeros([0, 0], dtype) if self._state_is_tuple: states = tuple(new_state[i] for i in self._config.recurrents) else: # concat each state first, then flatten the whole thing state_tensors = [ x for i in self._config.recurrents for x in new_state[i] ] if state_tensors: states = array_ops.concat(state_tensors, 1) else: states = array_ops.zeros([0, 0], dtype) return output, states def _extract_states(self, state): """Extract the cell and previous output tensors from the given state. Args: state: The RNN state. Returns: Tuple of the cell value, previous output, and cell_output_size. Raises: ValueError: If len(self._config.recurrents) != len(state). """ conf = self._config # c_prev is `m` (cell value), and # m_prev is `h` (previous output) in the paper. # Keeping c and m here for consistency with the codebase c_prev = [None] * conf.num_dims m_prev = [None] * conf.num_dims # for LSTM : state = memory cell + output, hence cell_output_size > 0 # for GRU/RNN: state = output (whose size is equal to _num_units), # hence cell_output_size = 0 total_cell_state_size = self._cell_state_size() cell_output_size = total_cell_state_size - conf.num_units if self._state_is_tuple: if len(conf.recurrents) != len(state): raise ValueError('Expected state as a tuple of {} ' 'element'.format(len(conf.recurrents))) for recurrent_dim, recurrent_state in zip(conf.recurrents, state): if cell_output_size > 0: c_prev[recurrent_dim], m_prev[recurrent_dim] = recurrent_state else: m_prev[recurrent_dim] = recurrent_state else: for recurrent_dim, start_idx in zip(conf.recurrents, range(0, self.state_size, total_cell_state_size)): if cell_output_size > 0: c_prev[recurrent_dim] = array_ops.slice(state, [0, start_idx], [-1, conf.num_units]) m_prev[recurrent_dim] = array_ops.slice( state, [0, start_idx + conf.num_units], [-1, cell_output_size]) else: m_prev[recurrent_dim] = array_ops.slice(state, [0, start_idx], [-1, conf.num_units]) return c_prev, m_prev, cell_output_size def _project_input(self, inputs, c_prev, m_prev, with_c): """Fills in c_prev and m_prev with projected input, for input dimensions. Args: inputs: inputs tensor c_prev: cell value m_prev: previous output with_c: boolean; whether to include project_c. Raises: ValueError: if len(self._config.input) != len(inputs) """ conf = self._config if (inputs is not None and tensor_shape.dimension_value(inputs.shape.with_rank(2)[1]) > 0 and conf.inputs): if isinstance(inputs, tuple): if len(conf.inputs) != len(inputs): raise ValueError('Expect inputs as a tuple of {} ' 'tensors'.format(len(conf.inputs))) input_splits = inputs else: input_splits = array_ops.split( value=inputs, num_or_size_splits=len(conf.inputs), axis=1) input_sz = tensor_shape.dimension_value( input_splits[0].shape.with_rank(2)[1]) for i, j in enumerate(conf.inputs): input_project_m = vs.get_variable( 'project_m_{}'.format(j), [input_sz, conf.num_units], dtype=inputs.dtype) m_prev[j] = math_ops.matmul(input_splits[i], input_project_m) if with_c: input_project_c = vs.get_variable( 'project_c_{}'.format(j), [input_sz, conf.num_units], dtype=inputs.dtype) c_prev[j] = math_ops.matmul(input_splits[i], input_project_c) def _cell_state_size(self): """Total size of the state of the inner cell used in this grid. Returns: Total size of the state of the inner cell. """ state_sizes = self._cells[0].state_size if isinstance(state_sizes, tuple): return sum(state_sizes) return state_sizes """Specialized cells, for convenience """ class Grid1BasicRNNCell(GridRNNCell): """1D BasicRNN cell""" def __init__(self, num_units, state_is_tuple=True, output_is_tuple=True): super(Grid1BasicRNNCell, self).__init__( num_units=num_units, num_dims=1, input_dims=0, output_dims=0, priority_dims=0, tied=False, cell_fn=lambda n: rnn.BasicRNNCell(num_units=n), state_is_tuple=state_is_tuple, output_is_tuple=output_is_tuple) class Grid2BasicRNNCell(GridRNNCell): """2D BasicRNN cell This creates a 2D cell which receives input and gives output in the first dimension. The first dimension can optionally be non-recurrent if `non_recurrent_fn` is specified. """ def __init__(self, num_units, tied=False, non_recurrent_fn=None, state_is_tuple=True, output_is_tuple=True): super(Grid2BasicRNNCell, self).__init__( num_units=num_units, num_dims=2, input_dims=0, output_dims=0, priority_dims=0, tied=tied, non_recurrent_dims=None if non_recurrent_fn is None else 0, cell_fn=lambda n: rnn.BasicRNNCell(num_units=n), non_recurrent_fn=non_recurrent_fn, state_is_tuple=state_is_tuple, output_is_tuple=output_is_tuple) class Grid1BasicLSTMCell(GridRNNCell): """1D BasicLSTM cell.""" def __init__(self, num_units, forget_bias=1, state_is_tuple=True, output_is_tuple=True): def cell_fn(n): return rnn.BasicLSTMCell(num_units=n, forget_bias=forget_bias) super(Grid1BasicLSTMCell, self).__init__( num_units=num_units, num_dims=1, input_dims=0, output_dims=0, priority_dims=0, tied=False, cell_fn=cell_fn, state_is_tuple=state_is_tuple, output_is_tuple=output_is_tuple) class Grid2BasicLSTMCell(GridRNNCell): """2D BasicLSTM cell. This creates a 2D cell which receives input and gives output in the first dimension. The first dimension can optionally be non-recurrent if `non_recurrent_fn` is specified. """ def __init__(self, num_units, tied=False, non_recurrent_fn=None, forget_bias=1, state_is_tuple=True, output_is_tuple=True): def cell_fn(n): return rnn.BasicLSTMCell(num_units=n, forget_bias=forget_bias) super(Grid2BasicLSTMCell, self).__init__( num_units=num_units, num_dims=2, input_dims=0, output_dims=0, priority_dims=0, tied=tied, non_recurrent_dims=None if non_recurrent_fn is None else 0, cell_fn=cell_fn, non_recurrent_fn=non_recurrent_fn, state_is_tuple=state_is_tuple, output_is_tuple=output_is_tuple) class Grid1LSTMCell(GridRNNCell): """1D LSTM cell. This is different from Grid1BasicLSTMCell because it gives options to specify the forget bias and enabling peepholes. """ def __init__(self, num_units, use_peepholes=False, forget_bias=1.0, state_is_tuple=True, output_is_tuple=True): def cell_fn(n): return rnn.LSTMCell( num_units=n, forget_bias=forget_bias, use_peepholes=use_peepholes) super(Grid1LSTMCell, self).__init__( num_units=num_units, num_dims=1, input_dims=0, output_dims=0, priority_dims=0, cell_fn=cell_fn, state_is_tuple=state_is_tuple, output_is_tuple=output_is_tuple) class Grid2LSTMCell(GridRNNCell): """2D LSTM cell. This creates a 2D cell which receives input and gives output in the first dimension. The first dimension can optionally be non-recurrent if `non_recurrent_fn` is specified. """ def __init__(self, num_units, tied=False, non_recurrent_fn=None, use_peepholes=False, forget_bias=1.0, state_is_tuple=True, output_is_tuple=True): def cell_fn(n): return rnn.LSTMCell( num_units=n, forget_bias=forget_bias, use_peepholes=use_peepholes) super(Grid2LSTMCell, self).__init__( num_units=num_units, num_dims=2, input_dims=0, output_dims=0, priority_dims=0, tied=tied, non_recurrent_dims=None if non_recurrent_fn is None else 0, cell_fn=cell_fn, non_recurrent_fn=non_recurrent_fn, state_is_tuple=state_is_tuple, output_is_tuple=output_is_tuple) class Grid3LSTMCell(GridRNNCell): """3D BasicLSTM cell. This creates a 2D cell which receives input and gives output in the first dimension. The first dimension can optionally be non-recurrent if `non_recurrent_fn` is specified. The second and third dimensions are LSTM. """ def __init__(self, num_units, tied=False, non_recurrent_fn=None, use_peepholes=False, forget_bias=1.0, state_is_tuple=True, output_is_tuple=True): def cell_fn(n): return rnn.LSTMCell( num_units=n, forget_bias=forget_bias, use_peepholes=use_peepholes) super(Grid3LSTMCell, self).__init__( num_units=num_units, num_dims=3, input_dims=0, output_dims=0, priority_dims=0, tied=tied, non_recurrent_dims=None if non_recurrent_fn is None else 0, cell_fn=cell_fn, non_recurrent_fn=non_recurrent_fn, state_is_tuple=state_is_tuple, output_is_tuple=output_is_tuple) class Grid2GRUCell(GridRNNCell): """2D LSTM cell. This creates a 2D cell which receives input and gives output in the first dimension. The first dimension can optionally be non-recurrent if `non_recurrent_fn` is specified. """ def __init__(self, num_units, tied=False, non_recurrent_fn=None, state_is_tuple=True, output_is_tuple=True): super(Grid2GRUCell, self).__init__( num_units=num_units, num_dims=2, input_dims=0, output_dims=0, priority_dims=0, tied=tied, non_recurrent_dims=None if non_recurrent_fn is None else 0, cell_fn=lambda n: rnn.GRUCell(num_units=n), non_recurrent_fn=non_recurrent_fn, state_is_tuple=state_is_tuple, output_is_tuple=output_is_tuple) # Helpers _GridRNNDimension = namedtuple('_GridRNNDimension', [ 'idx', 'is_input', 'is_output', 'is_priority', 'non_recurrent_fn' ]) _GridRNNConfig = namedtuple('_GridRNNConfig', ['num_dims', 'dims', 'inputs', 'outputs', 'recurrents', 'priority', 'non_priority', 'tied', 'num_units']) def _parse_rnn_config(num_dims, ls_input_dims, ls_output_dims, ls_priority_dims, ls_non_recurrent_dims, non_recurrent_fn, tied, num_units): def check_dim_list(ls): if ls is None: ls = [] if not isinstance(ls, (list, tuple)): ls = [ls] ls = sorted(set(ls)) if any(_ < 0 or _ >= num_dims for _ in ls): raise ValueError('Invalid dims: {}. Must be in [0, {})'.format(ls, num_dims)) return ls input_dims = check_dim_list(ls_input_dims) output_dims = check_dim_list(ls_output_dims) priority_dims = check_dim_list(ls_priority_dims) non_recurrent_dims = check_dim_list(ls_non_recurrent_dims) rnn_dims = [] for i in range(num_dims): rnn_dims.append( _GridRNNDimension( idx=i, is_input=(i in input_dims), is_output=(i in output_dims), is_priority=(i in priority_dims), non_recurrent_fn=non_recurrent_fn if i in non_recurrent_dims else None)) return _GridRNNConfig( num_dims=num_dims, dims=rnn_dims, inputs=input_dims, outputs=output_dims, recurrents=[x for x in range(num_dims) if x not in non_recurrent_dims], priority=priority_dims, non_priority=[x for x in range(num_dims) if x not in priority_dims], tied=tied, num_units=num_units) def _propagate(dim_indices, conf, cells, c_prev, m_prev, new_output, new_state, first_call): """Propagates through all the cells in dim_indices dimensions. """ if len(dim_indices) == 0: return # Because of the way RNNCells are implemented, we take the last dimension # (H_{N-1}) out and feed it as the state of the RNN cell # (in `last_dim_output`). # The input of the cell (H_0 to H_{N-2}) are concatenated into `cell_inputs` if conf.num_dims > 1: ls_cell_inputs = [None] * (conf.num_dims - 1) for d in conf.dims[:-1]: if new_output[d.idx] is None: ls_cell_inputs[d.idx] = m_prev[d.idx] else: ls_cell_inputs[d.idx] = new_output[d.idx] cell_inputs = array_ops.concat(ls_cell_inputs, 1) else: cell_inputs = array_ops.zeros([m_prev[0].get_shape().as_list()[0], 0], m_prev[0].dtype) last_dim_output = (new_output[-1] if new_output[-1] is not None else m_prev[-1]) for i in dim_indices: d = conf.dims[i] if d.non_recurrent_fn: if conf.num_dims > 1: linear_args = array_ops.concat([cell_inputs, last_dim_output], 1) else: linear_args = last_dim_output with vs.variable_scope('non_recurrent' if conf.tied else 'non_recurrent/cell_{}'.format(i)): if conf.tied and not (first_call and i == dim_indices[0]): vs.get_variable_scope().reuse_variables() new_output[d.idx] = layers.fully_connected( linear_args, num_outputs=conf.num_units, activation_fn=d.non_recurrent_fn, weights_initializer=(vs.get_variable_scope().initializer or layers.initializers.xavier_initializer), weights_regularizer=vs.get_variable_scope().regularizer) else: if c_prev[i] is not None: cell_state = (c_prev[i], last_dim_output) else: # for GRU/RNN, the state is just the previous output cell_state = last_dim_output with vs.variable_scope('recurrent' if conf.tied else 'recurrent/cell_{}'.format(i)): if conf.tied and not (first_call and i == dim_indices[0]): vs.get_variable_scope().reuse_variables() cell = cells[i] new_output[d.idx], new_state[d.idx] = cell(cell_inputs, cell_state)
apache-2.0
5,037,187,476,360,267,000
33.892216
80
0.59988
false
bloyl/mne-python
mne/viz/topomap.py
1
108149
"""Functions to plot M/EEG data e.g. topographies.""" # Authors: Alexandre Gramfort <[email protected]> # Denis Engemann <[email protected]> # Martin Luessi <[email protected]> # Eric Larson <[email protected]> # Robert Luke <[email protected]> # # License: Simplified BSD import copy import itertools from functools import partial from numbers import Integral import warnings import numpy as np from ..baseline import rescale from ..channels.channels import _get_ch_type from ..channels.layout import ( _find_topomap_coords, find_layout, _pair_grad_sensors, _merge_ch_data) from ..defaults import _EXTRAPOLATE_DEFAULT, _BORDER_DEFAULT from ..io.pick import (pick_types, _picks_by_type, pick_info, pick_channels, _pick_data_channels, _picks_to_idx, _get_channel_types, _MEG_CH_TYPES_SPLIT) from ..utils import (_clean_names, _time_mask, verbose, logger, fill_doc, _validate_type, _check_sphere, _check_option, _is_numeric, warn, check_version) from .utils import (tight_layout, _setup_vmin_vmax, _prepare_trellis, _check_delayed_ssp, _draw_proj_checkbox, figure_nobar, plt_show, _process_times, DraggableColorbar, _validate_if_list_of_axes, _setup_cmap, _check_time_unit) from ..time_frequency import psd_multitaper from ..defaults import _handle_default from ..transforms import apply_trans, invert_transform from ..io.meas_info import Info, _simplify_info from ..io.proj import Projection _fnirs_types = ('hbo', 'hbr', 'fnirs_cw_amplitude', 'fnirs_od') def _adjust_meg_sphere(sphere, info, ch_type): sphere = _check_sphere(sphere, info) assert ch_type is not None if ch_type in ('mag', 'grad', 'planar1', 'planar2'): # move sphere X/Y (head coords) to device X/Y space if info['dev_head_t'] is not None: head_dev_t = invert_transform(info['dev_head_t']) sphere[:3] = apply_trans(head_dev_t, sphere[:3]) # Set the sphere Z=0 because all this really affects is flattening. # We could make the head size change as a function of depth in # the helmet like: # # sphere[2] /= -5 # # but let's just assume some orthographic rather than parallel # projection for explicitness / simplicity. sphere[2] = 0. clip_origin = (0., 0.) else: clip_origin = sphere[:2].copy() return sphere, clip_origin def _prepare_topomap_plot(inst, ch_type, sphere=None): """Prepare topo plot.""" info = copy.deepcopy(inst if isinstance(inst, Info) else inst.info) sphere, clip_origin = _adjust_meg_sphere(sphere, info, ch_type) clean_ch_names = _clean_names(info['ch_names']) for ii, this_ch in enumerate(info['chs']): this_ch['ch_name'] = clean_ch_names[ii] info['bads'] = _clean_names(info['bads']) for comp in info['comps']: comp['data']['col_names'] = _clean_names(comp['data']['col_names']) info._update_redundant() info._check_consistency() # special case for merging grad channels layout = find_layout(info) if (ch_type == 'grad' and layout is not None and (layout.kind.startswith('Vectorview') or layout.kind.startswith('Neuromag_122'))): picks, _ = _pair_grad_sensors(info, layout) pos = _find_topomap_coords(info, picks[::2], sphere=sphere) merge_channels = True elif ch_type in _fnirs_types: # fNIRS data commonly has overlapping channels, so deal with separately picks, pos, merge_channels, overlapping_channels = \ _average_fnirs_overlaps(info, ch_type, sphere) else: merge_channels = False if ch_type == 'eeg': picks = pick_types(info, meg=False, eeg=True, ref_meg=False, exclude='bads') elif ch_type == 'csd': picks = pick_types(info, meg=False, csd=True, ref_meg=False, exclude='bads') elif ch_type == 'dbs': picks = pick_types(info, meg=False, dbs=True, ref_meg=False, exclude='bads') elif ch_type == 'seeg': picks = pick_types(info, meg=False, seeg=True, ref_meg=False, exclude='bads') else: picks = pick_types(info, meg=ch_type, ref_meg=False, exclude='bads') if len(picks) == 0: raise ValueError("No channels of type %r" % ch_type) pos = _find_topomap_coords(info, picks, sphere=sphere) ch_names = [info['ch_names'][k] for k in picks] if ch_type in _fnirs_types: # Remove the chroma label type for cleaner labeling. ch_names = [k[:-4] for k in ch_names] if merge_channels: if ch_type == 'grad': # change names so that vectorview combined grads appear as MEG014x # instead of MEG0142 or MEG0143 which are the 2 planar grads. ch_names = [ch_names[k][:-1] + 'x' for k in range(0, len(ch_names), 2)] else: assert ch_type in _fnirs_types # Modify the nirs channel names to indicate they are to be merged # New names will have the form S1_D1xS2_D2 # More than two channels can overlap and be merged for set in overlapping_channels: idx = ch_names.index(set[0][:-4]) new_name = 'x'.join(s[:-4] for s in set) ch_names[idx] = new_name pos = np.array(pos)[:, :2] # 2D plot, otherwise interpolation bugs return picks, pos, merge_channels, ch_names, ch_type, sphere, clip_origin def _average_fnirs_overlaps(info, ch_type, sphere): from scipy.spatial.distance import pdist, squareform picks = pick_types(info, meg=False, ref_meg=False, fnirs=ch_type, exclude='bads') chs = [info['chs'][i] for i in picks] locs3d = np.array([ch['loc'][:3] for ch in chs]) dist = pdist(locs3d) # Store the sets of channels to be merged overlapping_channels = list() # Channels to be excluded from picks, as will be removed after merging channels_to_exclude = list() if len(locs3d) > 1 and np.min(dist) < 1e-10: overlapping_mask = np.triu(squareform(dist < 1e-10)) for chan_idx in range(overlapping_mask.shape[0]): already_overlapped = list(itertools.chain.from_iterable( overlapping_channels)) if overlapping_mask[chan_idx].any() and \ (chs[chan_idx]['ch_name'] not in already_overlapped): # Determine the set of channels to be combined. Ensure the # first listed channel is the one to be replaced with merge overlapping_set = [chs[i]['ch_name'] for i in np.where(overlapping_mask[chan_idx])[0]] overlapping_set = np.insert(overlapping_set, 0, (chs[chan_idx]['ch_name'])) overlapping_channels.append(overlapping_set) channels_to_exclude.append(overlapping_set[1:]) exclude = list(itertools.chain.from_iterable(channels_to_exclude)) [exclude.append(bad) for bad in info['bads']] picks = pick_types(info, meg=False, ref_meg=False, fnirs=ch_type, exclude=exclude) pos = _find_topomap_coords(info, picks, sphere=sphere) picks = pick_types(info, meg=False, ref_meg=False, fnirs=ch_type) # Overload the merge_channels variable as this is returned to calling # function and indicates that merging of data is required merge_channels = overlapping_channels else: picks = pick_types(info, meg=False, ref_meg=False, fnirs=ch_type, exclude='bads') merge_channels = False pos = _find_topomap_coords(info, picks, sphere=sphere) return picks, pos, merge_channels, overlapping_channels def _plot_update_evoked_topomap(params, bools): """Update topomaps.""" projs = [proj for ii, proj in enumerate(params['projs']) if ii in np.where(bools)[0]] params['proj_bools'] = bools new_evoked = params['evoked'].copy() new_evoked.info['projs'] = [] new_evoked.add_proj(projs) new_evoked.apply_proj() data = new_evoked.data[:, params['time_idx']] * params['scale'] if params['merge_channels']: data, _ = _merge_ch_data(data, 'grad', []) interp = params['interp'] new_contours = list() for cont, ax, im, d in zip(params['contours_'], params['axes'], params['images'], data.T): Zi = interp.set_values(d)() im.set_data(Zi) # must be removed and re-added if len(cont.collections) > 0: tp = cont.collections[0] visible = tp.get_visible() patch_ = tp.get_clip_path() color = tp.get_color() lw = tp.get_linewidth() for tp in cont.collections: tp.remove() cont = ax.contour(interp.Xi, interp.Yi, Zi, params['contours'], colors=color, linewidths=lw) for tp in cont.collections: tp.set_visible(visible) tp.set_clip_path(patch_) new_contours.append(cont) params['contours_'] = new_contours params['fig'].canvas.draw() def _add_colorbar(ax, im, cmap, side="right", pad=.05, title=None, format=None, size="5%"): """Add a colorbar to an axis.""" import matplotlib.pyplot as plt from mpl_toolkits.axes_grid1 import make_axes_locatable divider = make_axes_locatable(ax) cax = divider.append_axes(side, size=size, pad=pad) cbar = plt.colorbar(im, cax=cax, format=format) if cmap is not None and cmap[1]: ax.CB = DraggableColorbar(cbar, im) if title is not None: cax.set_title(title, y=1.05, fontsize=10) return cbar, cax def _eliminate_zeros(proj): """Remove grad or mag data if only contains 0s (gh 5641).""" GRAD_ENDING = ('2', '3') MAG_ENDING = '1' proj = copy.deepcopy(proj) proj['data']['data'] = np.atleast_2d(proj['data']['data']) for ending in (GRAD_ENDING, MAG_ENDING): names = proj['data']['col_names'] idx = [i for i, name in enumerate(names) if name.endswith(ending)] # if all 0, remove the 0s an their labels if not proj['data']['data'][0][idx].any(): new_col_names = np.delete(np.array(names), idx).tolist() new_data = np.delete(np.array(proj['data']['data'][0]), idx) proj['data']['col_names'] = new_col_names proj['data']['data'] = np.array([new_data]) proj['data']['ncol'] = len(proj['data']['col_names']) return proj @fill_doc def plot_projs_topomap(projs, info, cmap=None, sensors=True, colorbar=False, res=64, size=1, show=True, outlines='head', contours=6, image_interp='bilinear', axes=None, vlim=(None, None), sphere=None, extrapolate=_EXTRAPOLATE_DEFAULT, border=_BORDER_DEFAULT): """Plot topographic maps of SSP projections. Parameters ---------- projs : list of Projection The projections. info : instance of Info The info associated with the channels in the projectors. .. versionchanged:: 0.20 The positional argument ``layout`` was deprecated and replaced by ``info``. %(proj_topomap_kwargs)s %(topomap_sphere_auto)s %(topomap_extrapolate)s .. versionadded:: 0.20 %(topomap_border)s Returns ------- fig : instance of matplotlib.figure.Figure Figure with a topomap subplot for each projector. Notes ----- .. versionadded:: 0.9.0 """ import matplotlib.pyplot as plt sphere = _check_sphere(sphere, info) # be forgiving if `projs` isn't a list if isinstance(projs, Projection): projs = [projs] _validate_type(info, 'info', 'info') types, datas, poss, spheres, outliness, ch_typess = [], [], [], [], [], [] for proj in projs: # get ch_names, ch_types, data proj = _eliminate_zeros(proj) # gh 5641 ch_names = _clean_names(proj['data']['col_names'], remove_whitespace=True) if vlim == 'joint': ch_idxs = np.where(np.in1d(info['ch_names'], proj['data']['col_names']))[0] these_ch_types = _get_channel_types(info, ch_idxs, unique=True) # each projector should have only one channel type assert len(these_ch_types) == 1 types.append(list(these_ch_types)[0]) data = proj['data']['data'].ravel() info_names = _clean_names(info['ch_names'], remove_whitespace=True) picks = pick_channels(info_names, ch_names) if len(picks) == 0: raise ValueError( f'No channel names in info match projector {proj}') use_info = pick_info(info, picks) data_picks, pos, merge_channels, names, ch_type, this_sphere, \ clip_origin = _prepare_topomap_plot( use_info, _get_ch_type(use_info, None), sphere=sphere) these_outlines = _make_head_outlines( sphere, pos, outlines, clip_origin) data = data[data_picks] if merge_channels: data, _ = _merge_ch_data(data, 'grad', []) data = data.ravel() # populate containers datas.append(data) poss.append(pos) spheres.append(this_sphere) outliness.append(these_outlines) ch_typess.append(ch_type) del data, pos, this_sphere, these_outlines, ch_type del sphere # setup axes n_projs = len(projs) if axes is None: fig, axes, ncols, nrows = _prepare_trellis( n_projs, ncols='auto', nrows='auto', sharex=True, sharey=True) elif isinstance(axes, plt.Axes): axes = [axes] _validate_if_list_of_axes(axes, n_projs) # handle vmin/vmax vlims = [None for _ in range(len(datas))] if vlim == 'joint': for _ch_type in set(types): idx = np.where(np.in1d(types, _ch_type))[0] these_data = np.concatenate(np.array(datas, dtype=object)[idx]) norm = all(these_data >= 0) _vl = _setup_vmin_vmax(these_data, vmin=None, vmax=None, norm=norm) for _idx in idx: vlims[_idx] = _vl # make sure we got a vlim for all projs assert all([vl is not None for vl in vlims]) else: vlims = [vlim for _ in range(len(datas))] # plot for proj, ax, _data, _pos, _vlim, _sphere, _outlines, _ch_type in zip( projs, axes, datas, poss, vlims, spheres, outliness, ch_typess): # title title = proj['desc'] title = '\n'.join(title[ii:ii + 22] for ii in range(0, len(title), 22)) ax.set_title(title, fontsize=10) # plot vmin, vmax = _vlim im = plot_topomap(_data, _pos[:, :2], vmin=vmin, vmax=vmax, cmap=cmap, sensors=sensors, res=res, axes=ax, outlines=_outlines, contours=contours, image_interp=image_interp, show=False, extrapolate=extrapolate, sphere=_sphere, border=border, ch_type=_ch_type)[0] if colorbar: _add_colorbar(ax, im, cmap) fig = ax.get_figure() with warnings.catch_warnings(record=True): warnings.simplefilter('ignore') tight_layout(fig=fig) plt_show(show) return fig def _make_head_outlines(sphere, pos, outlines, clip_origin): """Check or create outlines for topoplot.""" assert isinstance(sphere, np.ndarray) x, y, _, radius = sphere del sphere if outlines in ('head', 'skirt', None): ll = np.linspace(0, 2 * np.pi, 101) head_x = np.cos(ll) * radius + x head_y = np.sin(ll) * radius + y dx = np.exp(np.arccos(np.deg2rad(12)) * 1j) dx, dy = dx.real, dx.imag nose_x = np.array([-dx, 0, dx]) * radius + x nose_y = np.array([dy, 1.15, dy]) * radius + y ear_x = np.array([.497, .510, .518, .5299, .5419, .54, .547, .532, .510, .489]) * (radius * 2) ear_y = np.array([.0555, .0775, .0783, .0746, .0555, -.0055, -.0932, -.1313, -.1384, -.1199]) * (radius * 2) + y if outlines is not None: # Define the outline of the head, ears and nose outlines_dict = dict(head=(head_x, head_y), nose=(nose_x, nose_y), ear_left=(ear_x + x, ear_y), ear_right=(-ear_x + x, ear_y)) else: outlines_dict = dict() # Make the figure encompass slightly more than all points mask_scale = 1.25 if outlines == 'skirt' else 1. # We probably want to ensure it always contains our most # extremely positioned channels, so we do: mask_scale = max( mask_scale, np.linalg.norm(pos, axis=1).max() * 1.01 / radius) outlines_dict['mask_pos'] = (mask_scale * head_x, mask_scale * head_y) clip_radius = radius * mask_scale outlines_dict['clip_radius'] = (clip_radius,) * 2 outlines_dict['clip_origin'] = clip_origin outlines = outlines_dict elif isinstance(outlines, dict): if 'mask_pos' not in outlines: raise ValueError('You must specify the coordinates of the image ' 'mask.') else: raise ValueError('Invalid value for `outlines`.') return outlines def _draw_outlines(ax, outlines): """Draw the outlines for a topomap.""" from matplotlib import rcParams outlines_ = {k: v for k, v in outlines.items() if k not in ['patch']} for key, (x_coord, y_coord) in outlines_.items(): if 'mask' in key or key in ('clip_radius', 'clip_origin'): continue ax.plot(x_coord, y_coord, color=rcParams['axes.edgecolor'], linewidth=1, clip_on=False) return outlines_ def _get_extra_points(pos, extrapolate, origin, radii): """Get coordinates of additinal interpolation points.""" from scipy.spatial.qhull import Delaunay radii = np.array(radii, float) assert radii.shape == (2,) x, y = origin # auto should be gone by now _check_option('extrapolate', extrapolate, ('head', 'box', 'local')) # the old method of placement - large box mask_pos = None if extrapolate == 'box': extremes = np.array([pos.min(axis=0), pos.max(axis=0)]) diffs = extremes[1] - extremes[0] extremes[0] -= diffs extremes[1] += diffs eidx = np.array(list(itertools.product( *([[0] * (pos.shape[1] - 1) + [1]] * pos.shape[1])))) pidx = np.tile(np.arange(pos.shape[1])[np.newaxis], (len(eidx), 1)) outer_pts = extremes[eidx, pidx] return outer_pts, mask_pos, Delaunay(np.concatenate((pos, outer_pts))) # check if positions are colinear: diffs = np.diff(pos, axis=0) with np.errstate(divide='ignore'): slopes = diffs[:, 1] / diffs[:, 0] colinear = ((slopes == slopes[0]).all() or np.isinf(slopes).all()) # compute median inter-electrode distance if colinear or pos.shape[0] < 4: dim = 1 if diffs[:, 1].sum() > diffs[:, 0].sum() else 0 sorting = np.argsort(pos[:, dim]) pos_sorted = pos[sorting, :] diffs = np.diff(pos_sorted, axis=0) distances = np.linalg.norm(diffs, axis=1) distance = np.median(distances) else: tri = Delaunay(pos, incremental=True) idx1, idx2, idx3 = tri.simplices.T distances = np.concatenate( [np.linalg.norm(pos[i1, :] - pos[i2, :], axis=1) for i1, i2 in zip([idx1, idx2], [idx2, idx3])]) distance = np.median(distances) if extrapolate == 'local': if colinear or pos.shape[0] < 4: # special case for colinear points and when there is too # little points for Delaunay (needs at least 3) edge_points = sorting[[0, -1]] line_len = np.diff(pos[edge_points, :], axis=0) unit_vec = line_len / np.linalg.norm(line_len) * distance unit_vec_par = unit_vec[:, ::-1] * [[-1, 1]] edge_pos = (pos[edge_points, :] + np.concatenate([-unit_vec, unit_vec], axis=0)) new_pos = np.concatenate([pos + unit_vec_par, pos - unit_vec_par, edge_pos], axis=0) if pos.shape[0] == 3: # there may be some new_pos points that are too close # to the original points new_pos_diff = pos[..., np.newaxis] - new_pos.T[np.newaxis, :] new_pos_diff = np.linalg.norm(new_pos_diff, axis=1) good_extra = (new_pos_diff > 0.5 * distance).all(axis=0) new_pos = new_pos[good_extra] tri = Delaunay(np.concatenate([pos, new_pos], axis=0)) return new_pos, new_pos, tri # get the convex hull of data points from triangulation hull_pos = pos[tri.convex_hull] # extend the convex hull limits outwards a bit channels_center = pos.mean(axis=0) radial_dir = hull_pos - channels_center unit_radial_dir = radial_dir / np.linalg.norm(radial_dir, axis=-1, keepdims=True) hull_extended = hull_pos + unit_radial_dir * distance mask_pos = hull_pos + unit_radial_dir * distance * 0.5 hull_diff = np.diff(hull_pos, axis=1)[:, 0] hull_distances = np.linalg.norm(hull_diff, axis=-1) del channels_center # Construct a mask mask_pos = np.unique(mask_pos.reshape(-1, 2), axis=0) mask_center = np.mean(mask_pos, axis=0) mask_pos -= mask_center mask_pos = mask_pos[ np.argsort(np.arctan2(mask_pos[:, 1], mask_pos[:, 0]))] mask_pos += mask_center # add points along hull edges so that the distance between points # is around that of average distance between channels add_points = list() eps = np.finfo('float').eps n_times_dist = np.round(0.25 * hull_distances / distance).astype('int') for n in range(2, n_times_dist.max() + 1): mask = n_times_dist == n mult = np.arange(1 / n, 1 - eps, 1 / n)[:, np.newaxis, np.newaxis] steps = hull_diff[mask][np.newaxis, ...] * mult add_points.append((hull_extended[mask, 0][np.newaxis, ...] + steps).reshape((-1, 2))) # remove duplicates from hull_extended hull_extended = np.unique(hull_extended.reshape((-1, 2)), axis=0) new_pos = np.concatenate([hull_extended] + add_points) else: assert extrapolate == 'head' # return points on the head circle angle = np.arcsin(distance / np.mean(radii)) n_pnts = max(12, int(np.round(2 * np.pi / angle))) points_l = np.linspace(0, 2 * np.pi, n_pnts, endpoint=False) use_radii = radii * 1.1 + distance points_x = np.cos(points_l) * use_radii[0] + x points_y = np.sin(points_l) * use_radii[1] + y new_pos = np.stack([points_x, points_y], axis=1) if colinear or pos.shape[0] == 3: tri = Delaunay(np.concatenate([pos, new_pos], axis=0)) return new_pos, mask_pos, tri tri.add_points(new_pos) return new_pos, mask_pos, tri class _GridData(object): """Unstructured (x,y) data interpolator. This class allows optimized interpolation by computing parameters for a fixed set of true points, and allowing the values at those points to be set independently. """ def __init__(self, pos, extrapolate, origin, radii, border): # in principle this works in N dimensions, not just 2 assert pos.ndim == 2 and pos.shape[1] == 2, pos.shape _validate_type(border, ('numeric', str), 'border') # check that border, if string, is correct if isinstance(border, str): _check_option('border', border, ('mean',), extra='when a string') # Adding points outside the extremes helps the interpolators outer_pts, mask_pts, tri = _get_extra_points( pos, extrapolate, origin, radii) self.n_extra = outer_pts.shape[0] self.mask_pts = mask_pts self.border = border self.tri = tri def set_values(self, v): """Set the values at interpolation points.""" # Rbf with thin-plate is what we used to use, but it's slower and # looks about the same: # # zi = Rbf(x, y, v, function='multiquadric', smooth=0)(xi, yi) # # Eventually we could also do set_values with this class if we want, # see scipy/interpolate/rbf.py, especially the self.nodes one-liner. from scipy.interpolate import CloughTocher2DInterpolator if isinstance(self.border, str): # we've already checked that border = 'mean' n_points = v.shape[0] v_extra = np.zeros(self.n_extra) indices, indptr = self.tri.vertex_neighbor_vertices rng = range(n_points, n_points + self.n_extra) used = np.zeros(len(rng), bool) for idx, extra_idx in enumerate(rng): ngb = indptr[indices[extra_idx]:indices[extra_idx + 1]] ngb = ngb[ngb < n_points] if len(ngb) > 0: used[idx] = True v_extra[idx] = v[ngb].mean() if not used.all() and used.any(): # Eventually we might want to use the value of the nearest # point or something, but this case should hopefully be # rare so for now just use the average value of all extras v_extra[~used] = np.mean(v_extra[used]) else: v_extra = np.full(self.n_extra, self.border, dtype=float) v = np.concatenate((v, v_extra)) self.interpolator = CloughTocher2DInterpolator(self.tri, v) return self def set_locations(self, Xi, Yi): """Set locations for easier (delayed) calling.""" self.Xi = Xi self.Yi = Yi return self def __call__(self, *args): """Evaluate the interpolator.""" if len(args) == 0: args = [self.Xi, self.Yi] return self.interpolator(*args) def _topomap_plot_sensors(pos_x, pos_y, sensors, ax): """Plot sensors.""" if sensors is True: ax.scatter(pos_x, pos_y, s=0.25, marker='o', edgecolor=['k'] * len(pos_x), facecolor='none') else: ax.plot(pos_x, pos_y, sensors) def _get_pos_outlines(info, picks, sphere, to_sphere=True): ch_type = _get_ch_type(pick_info(_simplify_info(info), picks), None) orig_sphere = sphere sphere, clip_origin = _adjust_meg_sphere(sphere, info, ch_type) logger.debug('Generating pos outlines with sphere ' f'{sphere} from {orig_sphere} for {ch_type}') pos = _find_topomap_coords( info, picks, ignore_overlap=True, to_sphere=to_sphere, sphere=sphere) outlines = _make_head_outlines(sphere, pos, 'head', clip_origin) return pos, outlines @fill_doc def plot_topomap(data, pos, vmin=None, vmax=None, cmap=None, sensors=True, res=64, axes=None, names=None, show_names=False, mask=None, mask_params=None, outlines='head', contours=6, image_interp='bilinear', show=True, onselect=None, extrapolate=_EXTRAPOLATE_DEFAULT, sphere=None, border=_BORDER_DEFAULT, ch_type='eeg', cnorm=None): """Plot a topographic map as image. Parameters ---------- data : array, shape (n_chan,) The data values to plot. pos : array, shape (n_chan, 2) | instance of Info Location information for the data points(/channels). If an array, for each data point, the x and y coordinates. If an Info object, it must contain only one data type and exactly ``len(data)`` data channels, and the x/y coordinates will be inferred from this Info object. vmin : float | callable | None The value specifying the lower bound of the color range. If None, and vmax is None, -vmax is used. Else np.min(data). If callable, the output equals vmin(data). Defaults to None. vmax : float | callable | None The value specifying the upper bound of the color range. If None, the maximum absolute value is used. If callable, the output equals vmax(data). Defaults to None. cmap : matplotlib colormap | None Colormap to use. If None, 'Reds' is used for all positive data, otherwise defaults to 'RdBu_r'. sensors : bool | str Add markers for sensor locations to the plot. Accepts matplotlib plot format string (e.g., 'r+' for red plusses). If True (default), circles will be used. res : int The resolution of the topomap image (n pixels along each side). axes : instance of Axes | None The axes to plot to. If None, the current axes will be used. names : list | None List of channel names. If None, channel names are not plotted. %(topomap_show_names)s If ``True``, a list of names must be provided (see ``names`` keyword). mask : ndarray of bool, shape (n_channels, n_times) | None The channels to be marked as significant at a given time point. Indices set to ``True`` will be considered. Defaults to None. mask_params : dict | None Additional plotting parameters for plotting significant sensors. Default (None) equals:: dict(marker='o', markerfacecolor='w', markeredgecolor='k', linewidth=0, markersize=4) %(topomap_outlines)s contours : int | array of float The number of contour lines to draw. If 0, no contours will be drawn. If an array, the values represent the levels for the contours. The values are in µV for EEG, fT for magnetometers and fT/m for gradiometers. Defaults to 6. image_interp : str The image interpolation to be used. All matplotlib options are accepted. show : bool Show figure if True. onselect : callable | None Handle for a function that is called when the user selects a set of channels by rectangle selection (matplotlib ``RectangleSelector``). If None interactive selection is disabled. Defaults to None. %(topomap_extrapolate)s .. versionadded:: 0.18 %(topomap_sphere)s %(topomap_border)s %(topomap_ch_type)s ..versionadded:: 0.24.0 cnorm : matplotlib.colors.Normalize | None Colormap normalization, default None means linear normalization. If not None, ``vmin`` and ``vmax`` arguments are ignored. See Notes for more details. .. versionadded:: 0.24 Returns ------- im : matplotlib.image.AxesImage The interpolated data. cn : matplotlib.contour.ContourSet The fieldlines. Notes ----- The ``cnorm`` parameter can be used to implement custom colormap normalization. By default, a linear mapping from vmin to vmax is used, which correspond to the first and last colors in the colormap. This might be undesired when vmin and vmax are not symmetrical around zero (or a value that can be interpreted as some midpoint). For example, assume we want to use the RdBu colormap (red to white to blue) for values ranging from -1 to 3, and 0 should be white. However, white corresponds to the midpoint in the data by default, i.e. 1. Therefore, we use the following colormap normalization ``cnorm`` and pass it as the the ``cnorm`` argument: from matplotlib.colors import TwoSlopeNorm cnorm = TwoSlopeNorm(vmin=-1, vcenter=0, vmax=3) Note that because we define ``vmin`` and ``vmax`` in the normalization, arguments ``vmin`` and ``vmax`` to ``plot_topomap`` will be ignored if a normalization is provided. See the :doc:`matplotlib docs <matplotlib:tutorials/colors/colormapnorms>` for more details on colormap normalization. """ sphere = _check_sphere(sphere) if check_version("matplotlib", "3.2.0"): from matplotlib.colors import TwoSlopeNorm else: from matplotlib.colors import DivergingNorm as TwoSlopeNorm _validate_type(cnorm, (TwoSlopeNorm, None), 'cnorm') if cnorm is not None: if vmin is not None: warn(f"vmin={cnorm.vmin} is implicitly defined by cnorm, ignoring " f"vmin={vmin}.") if vmax is not None: warn(f"vmax={cnorm.vmax} is implicitly defined by cnorm, ignoring " f"vmax={vmax}.") return _plot_topomap(data, pos, vmin, vmax, cmap, sensors, res, axes, names, show_names, mask, mask_params, outlines, contours, image_interp, show, onselect, extrapolate, sphere=sphere, border=border, ch_type=ch_type, cnorm=cnorm)[:2] def _setup_interp(pos, res, extrapolate, sphere, outlines, border): logger.debug(f'Interpolation mode {extrapolate} to {border}') xlim = np.inf, -np.inf, ylim = np.inf, -np.inf, mask_ = np.c_[outlines['mask_pos']] clip_radius = outlines['clip_radius'] clip_origin = outlines.get('clip_origin', (0., 0.)) xmin, xmax = (np.min(np.r_[xlim[0], mask_[:, 0], clip_origin[0] - clip_radius[0]]), np.max(np.r_[xlim[1], mask_[:, 0], clip_origin[0] + clip_radius[0]])) ymin, ymax = (np.min(np.r_[ylim[0], mask_[:, 1], clip_origin[1] - clip_radius[1]]), np.max(np.r_[ylim[1], mask_[:, 1], clip_origin[1] + clip_radius[1]])) xi = np.linspace(xmin, xmax, res) yi = np.linspace(ymin, ymax, res) Xi, Yi = np.meshgrid(xi, yi) interp = _GridData(pos, extrapolate, clip_origin, clip_radius, border) extent = (xmin, xmax, ymin, ymax) return extent, Xi, Yi, interp def _get_patch(outlines, extrapolate, interp, ax): from matplotlib import patches clip_radius = outlines['clip_radius'] clip_origin = outlines.get('clip_origin', (0., 0.)) _use_default_outlines = any(k.startswith('head') for k in outlines) patch_ = None if 'patch' in outlines: patch_ = outlines['patch'] patch_ = patch_() if callable(patch_) else patch_ patch_.set_clip_on(False) ax.add_patch(patch_) ax.set_transform(ax.transAxes) ax.set_clip_path(patch_) if _use_default_outlines: if extrapolate == 'local': patch_ = patches.Polygon( interp.mask_pts, clip_on=True, transform=ax.transData) else: patch_ = patches.Ellipse( clip_origin, 2 * clip_radius[0], 2 * clip_radius[1], clip_on=True, transform=ax.transData) return patch_ def _plot_topomap(data, pos, vmin=None, vmax=None, cmap=None, sensors=True, res=64, axes=None, names=None, show_names=False, mask=None, mask_params=None, outlines='head', contours=6, image_interp='bilinear', show=True, onselect=None, extrapolate=_EXTRAPOLATE_DEFAULT, sphere=None, border=_BORDER_DEFAULT, ch_type='eeg', cnorm=None): from matplotlib.colors import Normalize import matplotlib.pyplot as plt from matplotlib.widgets import RectangleSelector data = np.asarray(data) logger.debug(f'Plotting topomap for {ch_type} data shape {data.shape}') if isinstance(pos, Info): # infer pos from Info object picks = _pick_data_channels(pos, exclude=()) # pick only data channels pos = pick_info(pos, picks) # check if there is only 1 channel type, and n_chans matches the data ch_type = _get_channel_types(pos, unique=True) info_help = ("Pick Info with e.g. mne.pick_info and " "mne.io.pick.channel_indices_by_type.") if len(ch_type) > 1: raise ValueError("Multiple channel types in Info structure. " + info_help) elif len(pos["chs"]) != data.shape[0]: raise ValueError("Number of channels in the Info object (%s) and " "the data array (%s) do not match. " % (len(pos['chs']), data.shape[0]) + info_help) else: ch_type = ch_type.pop() if any(type_ in ch_type for type_ in ('planar', 'grad')): # deal with grad pairs picks = _pair_grad_sensors(pos, topomap_coords=False) pos = _find_topomap_coords(pos, picks=picks[::2], sphere=sphere) data, _ = _merge_ch_data(data[picks], ch_type, []) data = data.reshape(-1) else: picks = list(range(data.shape[0])) pos = _find_topomap_coords(pos, picks=picks, sphere=sphere) extrapolate = _check_extrapolate(extrapolate, ch_type) if data.ndim > 1: raise ValueError("Data needs to be array of shape (n_sensors,); got " "shape %s." % str(data.shape)) # Give a helpful error message for common mistakes regarding the position # matrix. pos_help = ("Electrode positions should be specified as a 2D array with " "shape (n_channels, 2). Each row in this matrix contains the " "(x, y) position of an electrode.") if pos.ndim != 2: error = ("{ndim}D array supplied as electrode positions, where a 2D " "array was expected").format(ndim=pos.ndim) raise ValueError(error + " " + pos_help) elif pos.shape[1] == 3: error = ("The supplied electrode positions matrix contains 3 columns. " "Are you trying to specify XYZ coordinates? Perhaps the " "mne.channels.create_eeg_layout function is useful for you.") raise ValueError(error + " " + pos_help) # No error is raised in case of pos.shape[1] == 4. In this case, it is # assumed the position matrix contains both (x, y) and (width, height) # values, such as Layout.pos. elif pos.shape[1] == 1 or pos.shape[1] > 4: raise ValueError(pos_help) pos = pos[:, :2] if len(data) != len(pos): raise ValueError("Data and pos need to be of same length. Got data of " "length %s, pos of length %s" % (len(data), len(pos))) norm = min(data) >= 0 vmin, vmax = _setup_vmin_vmax(data, vmin, vmax, norm) if cmap is None: cmap = 'Reds' if norm else 'RdBu_r' outlines = _make_head_outlines(sphere, pos, outlines, (0., 0.)) assert isinstance(outlines, dict) ax = axes if axes else plt.gca() _prepare_topomap(pos, ax) mask_params = _handle_default('mask_params', mask_params) # find mask limits extent, Xi, Yi, interp = _setup_interp( pos, res, extrapolate, sphere, outlines, border) interp.set_values(data) Zi = interp.set_locations(Xi, Yi)() # plot outline patch_ = _get_patch(outlines, extrapolate, interp, ax) # plot interpolated map if cnorm is None: cnorm = Normalize(vmin=vmin, vmax=vmax) im = ax.imshow(Zi, cmap=cmap, origin='lower', aspect='equal', extent=extent, interpolation=image_interp, norm=cnorm) # gh-1432 had a workaround for no contours here, but we'll remove it # because mpl has probably fixed it linewidth = mask_params['markeredgewidth'] cont = True if isinstance(contours, (np.ndarray, list)): pass elif contours == 0 or ((Zi == Zi[0, 0]) | np.isnan(Zi)).all(): cont = None # can't make contours for constant-valued functions if cont: with warnings.catch_warnings(record=True): warnings.simplefilter('ignore') cont = ax.contour(Xi, Yi, Zi, contours, colors='k', linewidths=linewidth / 2.) if patch_ is not None: im.set_clip_path(patch_) if cont is not None: for col in cont.collections: col.set_clip_path(patch_) pos_x, pos_y = pos.T if sensors is not False and mask is None: _topomap_plot_sensors(pos_x, pos_y, sensors=sensors, ax=ax) elif sensors and mask is not None: idx = np.where(mask)[0] ax.plot(pos_x[idx], pos_y[idx], **mask_params) idx = np.where(~mask)[0] _topomap_plot_sensors(pos_x[idx], pos_y[idx], sensors=sensors, ax=ax) elif not sensors and mask is not None: idx = np.where(mask)[0] ax.plot(pos_x[idx], pos_y[idx], **mask_params) if isinstance(outlines, dict): _draw_outlines(ax, outlines) if show_names: if names is None: raise ValueError("To show names, a list of names must be provided" " (see `names` keyword).") if show_names is True: def _show_names(x): return x else: _show_names = show_names show_idx = np.arange(len(names)) if mask is None else np.where(mask)[0] for ii, (p, ch_id) in enumerate(zip(pos, names)): if ii not in show_idx: continue ch_id = _show_names(ch_id) ax.text(p[0], p[1], ch_id, horizontalalignment='center', verticalalignment='center', size='x-small') plt.subplots_adjust(top=.95) if onselect is not None: lim = ax.dataLim x0, y0, width, height = lim.x0, lim.y0, lim.width, lim.height ax.RS = RectangleSelector(ax, onselect=onselect) ax.set(xlim=[x0, x0 + width], ylim=[y0, y0 + height]) plt_show(show) return im, cont, interp def _plot_ica_topomap(ica, idx=0, ch_type=None, res=64, vmin=None, vmax=None, cmap='RdBu_r', colorbar=False, title=None, show=True, outlines='head', contours=6, image_interp='bilinear', axes=None, sensors=True, allow_ref_meg=False, extrapolate=_EXTRAPOLATE_DEFAULT, sphere=None, border=_BORDER_DEFAULT): """Plot single ica map to axes.""" from matplotlib.axes import Axes if ica.info is None: raise RuntimeError('The ICA\'s measurement info is missing. Please ' 'fit the ICA or add the corresponding info object.') sphere = _check_sphere(sphere, ica.info) if not isinstance(axes, Axes): raise ValueError('axis has to be an instance of matplotlib Axes, ' 'got %s instead.' % type(axes)) ch_type = _get_ch_type(ica, ch_type, allow_ref_meg=ica.allow_ref_meg) if ch_type == "ref_meg": logger.info("Cannot produce topographies for MEG reference channels.") return data = ica.get_components()[:, idx] data_picks, pos, merge_channels, names, _, sphere, clip_origin = \ _prepare_topomap_plot(ica, ch_type, sphere=sphere) data = data[data_picks] outlines = _make_head_outlines(sphere, pos, outlines, clip_origin) if merge_channels: data, names = _merge_ch_data(data, ch_type, names) axes.set_title(ica._ica_names[idx], fontsize=12) vmin_, vmax_ = _setup_vmin_vmax(data, vmin, vmax) im = plot_topomap( data.ravel(), pos, vmin=vmin_, vmax=vmax_, res=res, axes=axes, cmap=cmap, outlines=outlines, contours=contours, sensors=sensors, image_interp=image_interp, show=show, extrapolate=extrapolate, sphere=sphere, border=border, ch_type=ch_type)[0] if colorbar: cbar, cax = _add_colorbar(axes, im, cmap, pad=.05, title="AU", format='%3.2f') cbar.ax.tick_params(labelsize=12) cbar.set_ticks((vmin_, vmax_)) _hide_frame(axes) @verbose def plot_ica_components(ica, picks=None, ch_type=None, res=64, vmin=None, vmax=None, cmap='RdBu_r', sensors=True, colorbar=False, title=None, show=True, outlines='head', contours=6, image_interp='bilinear', inst=None, plot_std=True, topomap_args=None, image_args=None, psd_args=None, reject='auto', sphere=None, *, verbose=None): """Project mixing matrix on interpolated sensor topography. Parameters ---------- ica : instance of mne.preprocessing.ICA The ICA solution. %(picks_all)s If None all are plotted in batches of 20. ch_type : 'mag' | 'grad' | 'planar1' | 'planar2' | 'eeg' | None The channel type to plot. For 'grad', the gradiometers are collected in pairs and the RMS for each pair is plotted. If None, then channels are chosen in the order given above. res : int The resolution of the topomap image (n pixels along each side). vmin : float | callable | None The value specifying the lower bound of the color range. If None, and vmax is None, -vmax is used. Else np.min(data). If callable, the output equals vmin(data). Defaults to None. vmax : float | callable | None The value specifying the upper bound of the color range. If None, the maximum absolute value is used. If callable, the output equals vmax(data). Defaults to None. cmap : matplotlib colormap | (colormap, bool) | 'interactive' | None Colormap to use. If tuple, the first value indicates the colormap to use and the second value is a boolean defining interactivity. In interactive mode the colors are adjustable by clicking and dragging the colorbar with left and right mouse button. Left mouse button moves the scale up and down and right mouse button adjusts the range. Hitting space bar resets the range. Up and down arrows can be used to change the colormap. If None, 'Reds' is used for all positive data, otherwise defaults to 'RdBu_r'. If 'interactive', translates to (None, True). Defaults to 'RdBu_r'. .. warning:: Interactive mode works smoothly only for a small amount of topomaps. sensors : bool | str Add markers for sensor locations to the plot. Accepts matplotlib plot format string (e.g., 'r+' for red plusses). If True (default), circles will be used. colorbar : bool Plot a colorbar. title : str | None Title to use. show : bool Show figure if True. %(topomap_outlines)s contours : int | array of float The number of contour lines to draw. If 0, no contours will be drawn. When an integer, matplotlib ticker locator is used to find suitable values for the contour thresholds (may sometimes be inaccurate, use array for accuracy). If an array, the values represent the levels for the contours. Defaults to 6. image_interp : str The image interpolation to be used. All matplotlib options are accepted. inst : Raw | Epochs | None To be able to see component properties after clicking on component topomap you need to pass relevant data - instances of Raw or Epochs (for example the data that ICA was trained on). This takes effect only when running matplotlib in interactive mode. plot_std : bool | float Whether to plot standard deviation in ERP/ERF and spectrum plots. Defaults to True, which plots one standard deviation above/below. If set to float allows to control how many standard deviations are plotted. For example 2.5 will plot 2.5 standard deviation above/below. topomap_args : dict | None Dictionary of arguments to ``plot_topomap``. If None, doesn't pass any additional arguments. Defaults to None. image_args : dict | None Dictionary of arguments to ``plot_epochs_image``. If None, doesn't pass any additional arguments. Defaults to None. psd_args : dict | None Dictionary of arguments to ``psd_multitaper``. If None, doesn't pass any additional arguments. Defaults to None. reject : 'auto' | dict | None Allows to specify rejection parameters used to drop epochs (or segments if continuous signal is passed as inst). If None, no rejection is applied. The default is 'auto', which applies the rejection parameters used when fitting the ICA object. %(topomap_sphere_auto)s %(verbose)s Returns ------- fig : instance of matplotlib.figure.Figure or list The figure object(s). Notes ----- When run in interactive mode, ``plot_ica_components`` allows to reject components by clicking on their title label. The state of each component is indicated by its label color (gray: rejected; black: retained). It is also possible to open component properties by clicking on the component topomap (this option is only available when the ``inst`` argument is supplied). """ from ..io import BaseRaw from ..epochs import BaseEpochs if ica.info is None: raise RuntimeError('The ICA\'s measurement info is missing. Please ' 'fit the ICA or add the corresponding info object.') topomap_args = dict() if topomap_args is None else topomap_args topomap_args = copy.copy(topomap_args) if 'sphere' not in topomap_args: topomap_args['sphere'] = sphere if picks is None: # plot components by sets of 20 ch_type = _get_ch_type(ica, ch_type) n_components = ica.mixing_matrix_.shape[1] p = 20 figs = [] for k in range(0, n_components, p): picks = range(k, min(k + p, n_components)) fig = plot_ica_components( ica, picks=picks, ch_type=ch_type, res=res, vmax=vmax, cmap=cmap, sensors=sensors, colorbar=colorbar, title=title, show=show, outlines=outlines, contours=contours, image_interp=image_interp, inst=inst, plot_std=plot_std, topomap_args=topomap_args, image_args=image_args, psd_args=psd_args, reject=reject, sphere=sphere) figs.append(fig) return figs else: picks = _picks_to_idx(ica.info, picks) ch_type = _get_ch_type(ica, ch_type) cmap = _setup_cmap(cmap, n_axes=len(picks)) data = np.dot(ica.mixing_matrix_[:, picks].T, ica.pca_components_[:ica.n_components_]) data_picks, pos, merge_channels, names, ch_type, sphere, clip_origin = \ _prepare_topomap_plot(ica, ch_type, sphere=sphere) outlines = _make_head_outlines(sphere, pos, outlines, clip_origin) data = np.atleast_2d(data) data = data[:, data_picks] # prepare data for iteration fig, axes, _, _ = _prepare_trellis(len(data), ncols=5) if title is None: title = 'ICA components' fig.suptitle(title) titles = list() for ii, data_, ax in zip(picks, data, axes): kwargs = dict(color='gray') if ii in ica.exclude else dict() titles.append(ax.set_title(ica._ica_names[ii], fontsize=12, **kwargs)) if merge_channels: data_, names_ = _merge_ch_data(data_, ch_type, names.copy()) vmin_, vmax_ = _setup_vmin_vmax(data_, vmin, vmax) im = plot_topomap( data_.flatten(), pos, vmin=vmin_, vmax=vmax_, res=res, axes=ax, cmap=cmap[0], outlines=outlines, contours=contours, image_interp=image_interp, show=False, sensors=sensors, ch_type=ch_type, **topomap_args)[0] im.axes.set_label(ica._ica_names[ii]) if colorbar: cbar, cax = _add_colorbar(ax, im, cmap, title="AU", side="right", pad=.05, format='%3.2f') cbar.ax.tick_params(labelsize=12) cbar.set_ticks((vmin_, vmax_)) _hide_frame(ax) del pos tight_layout(fig=fig) fig.subplots_adjust(top=0.88, bottom=0.) fig.canvas.draw() # add title selection interactivity def onclick_title(event, ica=ica, titles=titles): # check if any title was pressed title_pressed = None for title in titles: if title.contains(event)[0]: title_pressed = title break # title was pressed -> identify the IC if title_pressed is not None: label = title_pressed.get_text() ic = int(label[-3:]) # add or remove IC from exclude depending on current state if ic in ica.exclude: ica.exclude.remove(ic) title_pressed.set_color('k') else: ica.exclude.append(ic) title_pressed.set_color('gray') fig.canvas.draw() fig.canvas.mpl_connect('button_press_event', onclick_title) # add plot_properties interactivity only if inst was passed if isinstance(inst, (BaseRaw, BaseEpochs)): def onclick_topo(event, ica=ica, inst=inst): # check which component to plot if event.inaxes is not None: label = event.inaxes.get_label() if label.startswith('ICA'): ic = int(label[-3:]) ica.plot_properties(inst, picks=ic, show=True, plot_std=plot_std, topomap_args=topomap_args, image_args=image_args, psd_args=psd_args, reject=reject) fig.canvas.mpl_connect('button_press_event', onclick_topo) plt_show(show) return fig @fill_doc def plot_tfr_topomap(tfr, tmin=None, tmax=None, fmin=None, fmax=None, ch_type=None, baseline=None, mode='mean', vmin=None, vmax=None, cmap=None, sensors=True, colorbar=True, unit=None, res=64, size=2, cbar_fmt='%1.1e', show_names=False, title=None, axes=None, show=True, outlines='head', contours=6, sphere=None): """Plot topographic maps of specific time-frequency intervals of TFR data. Parameters ---------- tfr : AverageTFR The AverageTFR object. tmin : None | float The first time instant to display. If None the first time point available is used. tmax : None | float The last time instant to display. If None the last time point available is used. fmin : None | float The first frequency to display. If None the first frequency available is used. fmax : None | float The last frequency to display. If None the last frequency available is used. ch_type : 'mag' | 'grad' | 'planar1' | 'planar2' | 'eeg' | None The channel type to plot. For 'grad', the gradiometers are collected in pairs and the mean for each pair is plotted. If None, then channels are chosen in the order given above. baseline : tuple or list of length 2 The time interval to apply rescaling / baseline correction. If None do not apply it. If baseline is (a, b) the interval is between "a (s)" and "b (s)". If a is None the beginning of the data is used and if b is None then b is set to the end of the interval. If baseline is equal to (None, None) the whole time interval is used. mode : 'mean' | 'ratio' | 'logratio' | 'percent' | 'zscore' | 'zlogratio' | None Perform baseline correction by - subtracting the mean baseline power ('mean') - dividing by the mean baseline power ('ratio') - dividing by the mean baseline power and taking the log ('logratio') - subtracting the mean baseline power followed by dividing by the mean baseline power ('percent') - subtracting the mean baseline power and dividing by the standard deviation of the baseline power ('zscore') - dividing by the mean baseline power, taking the log, and dividing by the standard deviation of the baseline power ('zlogratio') If None no baseline correction is applied. vmin : float | callable | None The value specifying the lower bound of the color range. If None, and vmax is None, -vmax is used. Else np.min(data) or in case data contains only positive values 0. If callable, the output equals vmin(data). Defaults to None. vmax : float | callable | None The value specifying the upper bound of the color range. If None, the maximum value is used. If callable, the output equals vmax(data). Defaults to None. cmap : matplotlib colormap | (colormap, bool) | 'interactive' | None Colormap to use. If tuple, the first value indicates the colormap to use and the second value is a boolean defining interactivity. In interactive mode the colors are adjustable by clicking and dragging the colorbar with left and right mouse button. Left mouse button moves the scale up and down and right mouse button adjusts the range. Hitting space bar resets the range. Up and down arrows can be used to change the colormap. If None (default), 'Reds' is used for all positive data, otherwise defaults to 'RdBu_r'. If 'interactive', translates to (None, True). sensors : bool | str Add markers for sensor locations to the plot. Accepts matplotlib plot format string (e.g., 'r+'). If True (default), circles will be used. colorbar : bool Plot a colorbar. unit : str | None The unit of the channel type used for colorbar labels. res : int The resolution of the topomap image (n pixels along each side). size : float Side length per topomap in inches (only applies when plotting multiple topomaps at a time). cbar_fmt : str String format for colorbar values. %(topomap_show_names)s title : str | None Plot title. If None (default), no title is displayed. axes : instance of Axes | None The axes to plot to. If None the axes is defined automatically. show : bool Show figure if True. %(topomap_outlines)s contours : int | array of float The number of contour lines to draw. If 0, no contours will be drawn. When an integer, matplotlib ticker locator is used to find suitable values for the contour thresholds (may sometimes be inaccurate, use array for accuracy). If an array, the values represent the levels for the contours. If colorbar=True, the ticks in colorbar correspond to the contour levels. Defaults to 6. %(topomap_sphere_auto)s Returns ------- fig : matplotlib.figure.Figure The figure containing the topography. """ # noqa: E501 import matplotlib.pyplot as plt ch_type = _get_ch_type(tfr, ch_type) picks, pos, merge_channels, names, _, sphere, clip_origin = \ _prepare_topomap_plot(tfr, ch_type, sphere=sphere) outlines = _make_head_outlines(sphere, pos, outlines, clip_origin) if not show_names: names = None data = tfr.data[picks, :, :] # merging grads before rescaling makes ERDs visible if merge_channels: data, names = _merge_ch_data(data, ch_type, names, method='mean') data = rescale(data, tfr.times, baseline, mode, copy=True) # crop time itmin, itmax = None, None idx = np.where(_time_mask(tfr.times, tmin, tmax))[0] if tmin is not None: itmin = idx[0] if tmax is not None: itmax = idx[-1] + 1 # crop freqs ifmin, ifmax = None, None idx = np.where(_time_mask(tfr.freqs, fmin, fmax))[0] if fmin is not None: ifmin = idx[0] if fmax is not None: ifmax = idx[-1] + 1 data = data[:, ifmin:ifmax, itmin:itmax] data = np.mean(np.mean(data, axis=2), axis=1)[:, np.newaxis] norm = False if np.min(data) < 0 else True vmin, vmax = _setup_vmin_vmax(data, vmin, vmax, norm) cmap = _setup_cmap(cmap, norm=norm) axes = plt.subplots(figsize=(size, size))[1] if axes is None else axes fig = axes.figure _hide_frame(axes) locator = None if not isinstance(contours, (list, np.ndarray)): locator, contours = _set_contour_locator(vmin, vmax, contours) if title is not None: axes.set_title(title) fig_wrapper = list() selection_callback = partial(_onselect, tfr=tfr, pos=pos, ch_type=ch_type, itmin=itmin, itmax=itmax, ifmin=ifmin, ifmax=ifmax, cmap=cmap[0], fig=fig_wrapper) if not isinstance(contours, (list, np.ndarray)): _, contours = _set_contour_locator(vmin, vmax, contours) im, _ = plot_topomap(data[:, 0], pos, vmin=vmin, vmax=vmax, axes=axes, cmap=cmap[0], image_interp='bilinear', contours=contours, names=names, show_names=show_names, show=False, onselect=selection_callback, sensors=sensors, res=res, ch_type=ch_type, outlines=outlines, sphere=sphere) if colorbar: from matplotlib import ticker unit = _handle_default('units', unit)['misc'] cbar, cax = _add_colorbar(axes, im, cmap, title=unit, format=cbar_fmt) if locator is None: locator = ticker.MaxNLocator(nbins=5) cbar.locator = locator cbar.update_ticks() cbar.ax.tick_params(labelsize=12) plt_show(show) return fig @fill_doc def plot_evoked_topomap(evoked, times="auto", ch_type=None, vmin=None, vmax=None, cmap=None, sensors=True, colorbar=True, scalings=None, units=None, res=64, size=1, cbar_fmt='%3.1f', time_unit='s', time_format=None, proj=False, show=True, show_names=False, title=None, mask=None, mask_params=None, outlines='head', contours=6, image_interp='bilinear', average=None, axes=None, extrapolate=_EXTRAPOLATE_DEFAULT, sphere=None, border=_BORDER_DEFAULT, nrows=1, ncols='auto'): """Plot topographic maps of specific time points of evoked data. Parameters ---------- evoked : Evoked The Evoked object. times : float | array of float | "auto" | "peaks" | "interactive" The time point(s) to plot. If "auto", the number of ``axes`` determines the amount of time point(s). If ``axes`` is also None, at most 10 topographies will be shown with a regular time spacing between the first and last time instant. If "peaks", finds time points automatically by checking for local maxima in global field power. If "interactive", the time can be set interactively at run-time by using a slider. %(topomap_ch_type)s %(topomap_vmin_vmax)s %(topomap_cmap)s %(topomap_sensors)s %(topomap_colorbar)s %(topomap_scalings)s %(topomap_units)s %(topomap_res)s %(topomap_size)s %(topomap_cbar_fmt)s time_unit : str The units for the time axis, can be "ms" or "s" (default). .. versionadded:: 0.16 time_format : str | None String format for topomap values. Defaults (None) to "%%01d ms" if ``time_unit='ms'``, "%%0.3f s" if ``time_unit='s'``, and "%%g" otherwise. Can be an empty string to omit the time label. %(plot_proj)s %(show)s %(topomap_show_names)s %(title_None)s %(topomap_mask)s %(topomap_mask_params)s %(topomap_outlines)s %(topomap_contours)s %(topomap_image_interp)s %(topomap_average)s %(topomap_axes)s %(topomap_extrapolate)s .. versionadded:: 0.18 %(topomap_sphere_auto)s %(topomap_border)s nrows : int | 'auto' The number of rows of topographies to plot. Defaults to 1. If 'auto', obtains the number of rows depending on the amount of times to plot and the number of cols. Not valid when times == 'interactive'. .. versionadded:: 0.20 ncols : int | 'auto' The number of columns of topographies to plot. If 'auto' (default), obtains the number of columns depending on the amount of times to plot and the number of rows. Not valid when times == 'interactive'. .. versionadded:: 0.20 Returns ------- fig : instance of matplotlib.figure.Figure The figure. Notes ----- When existing ``axes`` are provided and ``colorbar=True``, note that the colorbar scale will only accurately reflect topomaps that are generated in the same call as the colorbar. Note also that the colorbar will not be resized automatically when ``axes`` are provided; use matplotlib's :meth:`axes.set_position() <matplotlib.axes.Axes.set_position>` method or :doc:`gridspec <matplotlib:tutorials/intermediate/gridspec>` interface to adjust the colorbar size yourself. """ import matplotlib.pyplot as plt from matplotlib.gridspec import GridSpec from matplotlib.widgets import Slider from ..evoked import Evoked _validate_type(evoked, Evoked, 'evoked') _validate_type(colorbar, bool, 'colorbar') evoked = evoked.copy() # make a copy, since we'll be picking ch_type = _get_ch_type(evoked, ch_type) # time units / formatting time_unit, _ = _check_time_unit(time_unit, evoked.times) scaling_time = 1. if time_unit == 's' else 1e3 _validate_type(time_format, (None, str), 'time_format') if time_format is None: time_format = '%0.3f s' if time_unit == 's' else '%01d ms' del time_unit # mask_params defaults mask_params = _handle_default('mask_params', mask_params) mask_params['markersize'] *= size / 2. mask_params['markeredgewidth'] *= size / 2. # setup various parameters, and prepare outlines picks, pos, merge_channels, names, ch_type, sphere, clip_origin = \ _prepare_topomap_plot(evoked, ch_type, sphere=sphere) outlines = _make_head_outlines(sphere, pos, outlines, clip_origin) # check interactive axes_given = axes is not None interactive = isinstance(times, str) and times == 'interactive' if interactive and axes_given: raise ValueError("User-provided axes not allowed when " "times='interactive'.") # units, scalings key = 'grad' if ch_type.startswith('planar') else ch_type scaling = _handle_default('scalings', scalings)[key] unit = _handle_default('units', units)[key] # ch_names (required for NIRS) ch_names = names if not show_names: names = None # apply projections before picking. NOTE: the `if proj is True` # anti-pattern is needed here to exclude proj='interactive' _check_option('proj', proj, (True, False, 'interactive', 'reconstruct')) if proj is True and not evoked.proj: evoked.apply_proj() elif proj == 'reconstruct': evoked._reconstruct_proj() data = evoked.data # remove compensation matrices (safe: only plotting & already made copy) evoked.info['comps'] = [] evoked = evoked._pick_drop_channels(picks) # determine which times to plot if isinstance(axes, plt.Axes): axes = [axes] n_peaks = len(axes) - int(colorbar) if axes_given else None times = _process_times(evoked, times, n_peaks) n_times = len(times) space = 1 / (2. * evoked.info['sfreq']) if (max(times) > max(evoked.times) + space or min(times) < min(evoked.times) - space): raise ValueError(f'Times should be between {evoked.times[0]:0.3} and ' f'{evoked.times[-1]:0.3}.') # create axes want_axes = n_times + int(colorbar) if interactive: height_ratios = [5, 1] nrows = 2 ncols = want_axes width = size * ncols height = size + max(0, 0.1 * (4 - size)) + bool(title) * 0.5 fig = figure_nobar(figsize=(width * 1.5, height * 1.5)) g_kwargs = {'left': 0.2, 'right': 0.8, 'bottom': 0.05, 'top': 0.9} gs = GridSpec(nrows, ncols, height_ratios=height_ratios, **g_kwargs) axes = [] for ax_idx in range(n_times): axes.append(plt.subplot(gs[0, ax_idx])) elif axes is None: fig, axes, ncols, nrows = _prepare_trellis( n_times, ncols=ncols, nrows=nrows, title=title, colorbar=colorbar, size=size) else: nrows, ncols = None, None # Deactivate ncols when axes were passed fig = axes[0].get_figure() # check: enough space for colorbar? if len(axes) != want_axes: cbar_err = ' plus one for the colorbar' if colorbar else '' raise RuntimeError(f'You must provide {want_axes} axes (one for ' f'each time{cbar_err}), got {len(axes)}.') # figure margins side_margin = plt.rcParams['figure.subplot.wspace'] / (2 * want_axes) top_margin = max((0.05 if title is None else 0.25), .2 / size) fig.subplots_adjust(left=side_margin, right=1 - side_margin, bottom=0, top=1 - top_margin) # find first index that's >= (to rounding error) to each time point time_idx = [np.where(_time_mask(evoked.times, tmin=t, tmax=None, sfreq=evoked.info['sfreq']))[0][0] for t in times] # do averaging if requested avg_err = '"average" must be `None` or a positive number of seconds' if average is None: data = data[np.ix_(picks, time_idx)] elif not _is_numeric(average): raise TypeError(f'{avg_err}; got type {type(average)}.') elif average <= 0: raise ValueError(f'{avg_err}; got {average}.') else: data_ = np.zeros((len(picks), len(time_idx))) ave_time = average / 2. iter_times = evoked.times[time_idx] for ii, (idx, tmin_, tmax_) in enumerate(zip(time_idx, iter_times - ave_time, iter_times + ave_time)): my_range = (tmin_ < evoked.times) & (evoked.times < tmax_) data_[:, ii] = data[picks][:, my_range].mean(-1) data = data_ # apply scalings and merge channels data *= scaling if merge_channels: data, ch_names = _merge_ch_data(data, ch_type, ch_names) if ch_type in _fnirs_types: merge_channels = False # apply mask if requested if mask is not None: if ch_type == 'grad': mask_ = (mask[np.ix_(picks[::2], time_idx)] | mask[np.ix_(picks[1::2], time_idx)]) else: # mag, eeg, planar1, planar2 mask_ = mask[np.ix_(picks, time_idx)] # set up colormap vlims = [_setup_vmin_vmax(data[:, i], vmin, vmax, norm=merge_channels) for i in range(n_times)] vmin = np.min(vlims) vmax = np.max(vlims) cmap = _setup_cmap(cmap, n_axes=n_times, norm=vmin >= 0) # set up contours if not isinstance(contours, (list, np.ndarray)): _, contours = _set_contour_locator(vmin, vmax, contours) # prepare for main loop over times kwargs = dict(vmin=vmin, vmax=vmax, sensors=sensors, res=res, names=names, show_names=show_names, cmap=cmap[0], mask_params=mask_params, outlines=outlines, contours=contours, image_interp=image_interp, show=False, extrapolate=extrapolate, sphere=sphere, border=border, ch_type=ch_type) images, contours_ = [], [] # loop over times for idx, time in enumerate(times): adjust_for_cbar = colorbar and ncols is not None and idx >= ncols - 1 ax_idx = idx + 1 if adjust_for_cbar else idx tp, cn, interp = _plot_topomap( data[:, idx], pos, axes=axes[ax_idx], mask=mask_[:, idx] if mask is not None else None, **kwargs) images.append(tp) if cn is not None: contours_.append(cn) if time_format != '': axes[ax_idx].set_title(time_format % (time * scaling_time)) if interactive: axes.append(plt.subplot(gs[1, :-1])) slider = Slider(axes[-1], 'Time', evoked.times[0], evoked.times[-1], times[0], valfmt='%1.2fs') slider.vline.remove() # remove initial point indicator func = _merge_ch_data if merge_channels else lambda x: x changed_callback = partial(_slider_changed, ax=axes[0], data=evoked.data, times=evoked.times, pos=pos, scaling=scaling, func=func, time_format=time_format, scaling_time=scaling_time, kwargs=kwargs) slider.on_changed(changed_callback) ts = np.tile(evoked.times, len(evoked.data)).reshape(evoked.data.shape) axes[-1].plot(ts, evoked.data, color='k') axes[-1].slider = slider if title is not None: plt.suptitle(title, verticalalignment='top', size='x-large') if colorbar: if interactive: cax = plt.subplot(gs[0, -1]) _resize_cbar(cax, ncols, size) elif nrows is None or ncols is None: # axes were given by the user, so don't resize the colorbar cax = axes[-1] else: # use the entire last column cax = axes[ncols - 1] _resize_cbar(cax, ncols, size) if unit is not None: cax.set_title(unit) cbar = fig.colorbar(images[-1], ax=cax, cax=cax, format=cbar_fmt) if cn is not None: cbar.set_ticks(contours) cbar.ax.tick_params(labelsize=7) if cmap[1]: for im in images: im.axes.CB = DraggableColorbar(cbar, im) if proj == 'interactive': _check_delayed_ssp(evoked) params = dict( evoked=evoked, fig=fig, projs=evoked.info['projs'], picks=picks, images=images, contours_=contours_, pos=pos, time_idx=time_idx, res=res, plot_update_proj_callback=_plot_update_evoked_topomap, merge_channels=merge_channels, scale=scaling, axes=axes, contours=contours, interp=interp, extrapolate=extrapolate) _draw_proj_checkbox(None, params) plt_show(show, block=False) if axes_given: fig.canvas.draw() return fig def _resize_cbar(cax, n_fig_axes, size=1): """Resize colorbar.""" cpos = cax.get_position() if size <= 1: cpos.x0 = 1 - (0.7 + 0.1 / size) / n_fig_axes cpos.x1 = cpos.x0 + 0.1 / n_fig_axes cpos.y0 = 0.2 cpos.y1 = 0.7 cax.set_position(cpos) def _slider_changed(val, ax, data, times, pos, scaling, func, time_format, scaling_time, kwargs): """Handle selection in interactive topomap.""" idx = np.argmin(np.abs(times - val)) data = func(data[:, idx]).ravel() * scaling ax.clear() im, _ = plot_topomap(data, pos, axes=ax, **kwargs) if hasattr(ax, 'CB'): ax.CB.mappable = im _resize_cbar(ax.CB.cbar.ax, 2) if time_format is not None: ax.set_title(time_format % (val * scaling_time)) def _plot_topomap_multi_cbar(data, pos, ax, title=None, unit=None, vmin=None, vmax=None, cmap=None, outlines='head', colorbar=False, cbar_fmt='%3.3f', sphere=None, ch_type='eeg'): """Plot topomap multi cbar.""" _hide_frame(ax) vmin = np.min(data) if vmin is None else vmin vmax = np.max(data) if vmax is None else vmax # this definition of "norm" allows non-diverging colormap for cases where # min & vmax are both negative (e.g., when they are power in dB) signs = np.sign([vmin, vmax]) norm = len(set(signs)) == 1 or np.any(signs == 0) cmap = _setup_cmap(cmap, norm=norm) if title is not None: ax.set_title(title, fontsize=10) im, _ = plot_topomap(data, pos, vmin=vmin, vmax=vmax, axes=ax, cmap=cmap[0], image_interp='bilinear', contours=0, outlines=outlines, show=False, sphere=sphere, ch_type=ch_type) if colorbar: cbar, cax = _add_colorbar(ax, im, cmap, pad=0.25, title=None, size="10%", format=cbar_fmt) cbar.set_ticks((vmin, vmax)) if unit is not None: cbar.ax.set_ylabel(unit, fontsize=8) cbar.ax.tick_params(labelsize=8) @verbose def plot_epochs_psd_topomap(epochs, bands=None, tmin=None, tmax=None, proj=False, bandwidth=None, adaptive=False, low_bias=True, normalization='length', ch_type=None, cmap=None, agg_fun=None, dB=False, n_jobs=1, normalize=False, cbar_fmt='auto', outlines='head', axes=None, show=True, sphere=None, vlim=(None, None), verbose=None): """Plot the topomap of the power spectral density across epochs. Parameters ---------- epochs : instance of Epochs The epochs object. %(psd_topo_bands)s tmin : float | None Start time to consider. tmax : float | None End time to consider. proj : bool Apply projection. bandwidth : float The bandwidth of the multi taper windowing function in Hz. The default value is a window half-bandwidth of 4 Hz. adaptive : bool Use adaptive weights to combine the tapered spectra into PSD (slow, use n_jobs >> 1 to speed up computation). low_bias : bool Only use tapers with more than 90%% spectral concentration within bandwidth. normalization : str Either "full" or "length" (default). If "full", the PSD will be normalized by the sampling rate as well as the length of the signal (as in nitime). ch_type : 'mag' | 'grad' | 'planar1' | 'planar2' | 'eeg' | None The channel type to plot. For 'grad', the gradiometers are collected in pairs and the mean for each pair is plotted. If None, then first available channel type from order given above is used. Defaults to None. %(psd_topo_cmap)s %(psd_topo_agg_fun)s %(psd_topo_dB)s %(n_jobs)s %(psd_topo_normalize)s %(psd_topo_cbar_fmt)s %(topomap_outlines)s %(psd_topo_axes)s show : bool Show figure if True. %(topomap_sphere_auto)s %(psd_topo_vlim_joint)s %(verbose)s Returns ------- fig : instance of Figure Figure distributing one image per channel across sensor topography. """ ch_type = _get_ch_type(epochs, ch_type) units = _handle_default('units', None) unit = units[ch_type] picks, pos, merge_channels, names, ch_type, sphere, clip_origin = \ _prepare_topomap_plot(epochs, ch_type, sphere=sphere) outlines = _make_head_outlines(sphere, pos, outlines, clip_origin) psds, freqs = psd_multitaper(epochs, tmin=tmin, tmax=tmax, bandwidth=bandwidth, adaptive=adaptive, low_bias=low_bias, normalization=normalization, picks=picks, proj=proj, n_jobs=n_jobs) psds = np.mean(psds, axis=0) if merge_channels: psds, names = _merge_ch_data(psds, ch_type, names, method='mean') return plot_psds_topomap( psds=psds, freqs=freqs, pos=pos, agg_fun=agg_fun, bands=bands, cmap=cmap, dB=dB, normalize=normalize, cbar_fmt=cbar_fmt, outlines=outlines, axes=axes, show=show, sphere=sphere, vlim=vlim, unit=unit, ch_type=ch_type) @fill_doc def plot_psds_topomap( psds, freqs, pos, agg_fun=None, bands=None, cmap=None, dB=True, normalize=False, cbar_fmt='%0.3f', outlines='head', axes=None, show=True, sphere=None, vlim=(None, None), unit=None, ch_type='eeg'): """Plot spatial maps of PSDs. Parameters ---------- psds : np.ndarray of float, shape (n_channels, n_freqs) Power spectral densities freqs : np.ndarray of float, shape (n_freqs) Frequencies used to compute psds. pos : numpy.ndarray of float, shape (n_sensors, 2) The positions of the sensors. %(psd_topo_agg_fun)s %(psd_topo_bands)s %(psd_topo_cmap)s %(psd_topo_dB)s %(psd_topo_normalize)s %(psd_topo_cbar_fmt)s %(topomap_outlines)s %(psd_topo_axes)s show : bool Show figure if True. %(topomap_sphere)s %(psd_topo_vlim_joint)s unit : str | None Measurement unit to be displayed with the colorbar. If ``None``, no unit is displayed (only "power" or "dB" as appropriate). %(topomap_ch_type)s Returns ------- fig : instance of matplotlib.figure.Figure Figure with a topomap subplot for each band. """ import matplotlib.pyplot as plt sphere = _check_sphere(sphere) if cbar_fmt == 'auto': cbar_fmt = '%0.1f' if dB else '%0.3f' if bands is None: bands = [(0, 4, 'Delta (0-4 Hz)'), (4, 8, 'Theta (4-8 Hz)'), (8, 12, 'Alpha (8-12 Hz)'), (12, 30, 'Beta (12-30 Hz)'), (30, 45, 'Gamma (30-45 Hz)')] else: # upconvert single freqs to band upper/lower edges as needed bin_spacing = np.diff(freqs)[0] bin_edges = np.array([0, bin_spacing]) - bin_spacing / 2 bands = [tuple(bin_edges + freqs[np.argmin(np.abs(freqs - band[0]))]) + (band[1],) if len(band) == 2 else band for band in bands] if agg_fun is None: agg_fun = np.sum if normalize else np.mean if normalize: psds /= psds.sum(axis=-1, keepdims=True) assert np.allclose(psds.sum(axis=-1), 1.) n_axes = len(bands) if axes is not None: _validate_if_list_of_axes(axes, n_axes) fig = axes[0].figure else: fig, axes = plt.subplots(1, n_axes, figsize=(2 * n_axes, 1.5)) if n_axes == 1: axes = [axes] # handle vmin/vmax if vlim == 'joint': _freq_masks = [(fmin < freqs) & (freqs < fmax) for (fmin, fmax, _) in bands] _datas = [agg_fun(psds[:, _freq_mask], axis=1) for _freq_mask in _freq_masks] _datas = [10 * np.log10(_d) if (dB and not normalize) else _d for _d in _datas] vmin = np.array(_datas).min() vmax = np.array(_datas).max() else: vmin, vmax = vlim if unit is None: unit = 'dB' if dB and not normalize else 'power' else: if '/' in unit: unit = '(%s)' % unit unit += '²/Hz' if dB and not normalize: unit += ' (dB)' for ax, (fmin, fmax, title) in zip(axes, bands): freq_mask = (fmin < freqs) & (freqs < fmax) if freq_mask.sum() == 0: raise RuntimeError('No frequencies in band "%s" (%s, %s)' % (title, fmin, fmax)) data = agg_fun(psds[:, freq_mask], axis=1) if dB and not normalize: data = 10 * np.log10(data) _plot_topomap_multi_cbar(data, pos, ax, title=title, vmin=vmin, vmax=vmax, cmap=cmap, outlines=outlines, colorbar=True, unit=unit, cbar_fmt=cbar_fmt, sphere=sphere, ch_type=ch_type) tight_layout(fig=fig) fig.canvas.draw() plt_show(show) return fig @fill_doc def plot_layout(layout, picks=None, show_axes=False, show=True): """Plot the sensor positions. Parameters ---------- layout : None | Layout Layout instance specifying sensor positions. %(picks_nostr)s show_axes : bool Show layout axes if True. Defaults to False. show : bool Show figure if True. Defaults to True. Returns ------- fig : instance of Figure Figure containing the sensor topography. Notes ----- .. versionadded:: 0.12.0 """ import matplotlib.pyplot as plt fig = plt.figure(figsize=(max(plt.rcParams['figure.figsize']),) * 2) ax = fig.add_subplot(111) fig.subplots_adjust(left=0, bottom=0, right=1, top=1, wspace=None, hspace=None) ax.set(xticks=[], yticks=[], aspect='equal') outlines = dict(border=([0, 1, 1, 0, 0], [0, 0, 1, 1, 0])) _draw_outlines(ax, outlines) picks = _picks_to_idx(len(layout.names), picks) pos = layout.pos[picks] names = np.array(layout.names)[picks] for ii, (p, ch_id) in enumerate(zip(pos, names)): center_pos = np.array((p[0] + p[2] / 2., p[1] + p[3] / 2.)) ax.annotate(ch_id, xy=center_pos, horizontalalignment='center', verticalalignment='center', size='x-small') if show_axes: x1, x2, y1, y2 = p[0], p[0] + p[2], p[1], p[1] + p[3] ax.plot([x1, x1, x2, x2, x1], [y1, y2, y2, y1, y1], color='k') ax.axis('off') tight_layout(fig=fig, pad=0, w_pad=0, h_pad=0) plt_show(show) return fig def _onselect(eclick, erelease, tfr, pos, ch_type, itmin, itmax, ifmin, ifmax, cmap, fig, layout=None): """Handle drawing average tfr over channels called from topomap.""" import matplotlib.pyplot as plt from matplotlib.collections import PathCollection ax = eclick.inaxes xmin = min(eclick.xdata, erelease.xdata) xmax = max(eclick.xdata, erelease.xdata) ymin = min(eclick.ydata, erelease.ydata) ymax = max(eclick.ydata, erelease.ydata) indices = ((pos[:, 0] < xmax) & (pos[:, 0] > xmin) & (pos[:, 1] < ymax) & (pos[:, 1] > ymin)) colors = ['r' if ii else 'k' for ii in indices] indices = np.where(indices)[0] for collection in ax.collections: if isinstance(collection, PathCollection): # this is our "scatter" collection.set_color(colors) ax.figure.canvas.draw() if len(indices) == 0: return data = tfr.data if ch_type == 'mag': picks = pick_types(tfr.info, meg=ch_type, ref_meg=False) data = np.mean(data[indices, ifmin:ifmax, itmin:itmax], axis=0) chs = [tfr.ch_names[picks[x]] for x in indices] elif ch_type == 'grad': grads = _pair_grad_sensors(tfr.info, layout=layout, topomap_coords=False) idxs = list() for idx in indices: idxs.append(grads[idx * 2]) idxs.append(grads[idx * 2 + 1]) # pair of grads data = np.mean(data[idxs, ifmin:ifmax, itmin:itmax], axis=0) chs = [tfr.ch_names[x] for x in idxs] elif ch_type == 'eeg': picks = pick_types(tfr.info, meg=False, eeg=True, ref_meg=False) data = np.mean(data[indices, ifmin:ifmax, itmin:itmax], axis=0) chs = [tfr.ch_names[picks[x]] for x in indices] logger.info('Averaging TFR over channels ' + str(chs)) if len(fig) == 0: fig.append(figure_nobar()) if not plt.fignum_exists(fig[0].number): fig[0] = figure_nobar() ax = fig[0].add_subplot(111) itmax = len(tfr.times) - 1 if itmax is None else min(itmax, len(tfr.times) - 1) ifmax = len(tfr.freqs) - 1 if ifmax is None else min(ifmax, len(tfr.freqs) - 1) if itmin is None: itmin = 0 if ifmin is None: ifmin = 0 extent = (tfr.times[itmin] * 1e3, tfr.times[itmax] * 1e3, tfr.freqs[ifmin], tfr.freqs[ifmax]) title = 'Average over %d %s channels.' % (len(chs), ch_type) ax.set_title(title) ax.set_xlabel('Time (ms)') ax.set_ylabel('Frequency (Hz)') img = ax.imshow(data, extent=extent, aspect="auto", origin="lower", cmap=cmap) if len(fig[0].get_axes()) < 2: fig[0].get_axes()[1].cbar = fig[0].colorbar(mappable=img) else: fig[0].get_axes()[1].cbar.on_mappable_changed(mappable=img) fig[0].canvas.draw() plt.figure(fig[0].number) plt_show(True) def _prepare_topomap(pos, ax, check_nonzero=True): """Prepare the topomap axis and check positions. Hides axis frame and check that position information is present. """ _hide_frame(ax) if check_nonzero and not pos.any(): raise RuntimeError('No position information found, cannot compute ' 'geometries for topomap.') def _hide_frame(ax): """Hide axis frame for topomaps.""" ax.get_yticks() ax.xaxis.set_ticks([]) ax.yaxis.set_ticks([]) ax.set_frame_on(False) def _check_extrapolate(extrapolate, ch_type): _check_option('extrapolate', extrapolate, ('box', 'local', 'head', 'auto')) if extrapolate == 'auto': extrapolate = 'local' if ch_type in _MEG_CH_TYPES_SPLIT else 'head' return extrapolate @verbose def _init_anim(ax, ax_line, ax_cbar, params, merge_channels, sphere, ch_type, extrapolate, verbose): """Initialize animated topomap.""" logger.info('Initializing animation...') data = params['data'] items = list() if params['butterfly']: all_times = params['all_times'] for idx in range(len(data)): ax_line.plot(all_times, data[idx], color='k', lw=1) vmin, vmax = _setup_vmin_vmax(data, None, None) ax_line.set(yticks=np.around(np.linspace(vmin, vmax, 5), -1), xlim=all_times[[0, -1]]) params['line'] = ax_line.axvline(all_times[0], color='r') items.append(params['line']) if merge_channels: from mne.channels.layout import _merge_ch_data data, _ = _merge_ch_data(data, 'grad', []) norm = True if np.min(data) > 0 else False cmap = 'Reds' if norm else 'RdBu_r' vmin, vmax = _setup_vmin_vmax(data, None, None, norm) outlines = _make_head_outlines(sphere, params['pos'], 'head', params['clip_origin']) _hide_frame(ax) extent, Xi, Yi, interp = _setup_interp( params['pos'], 64, extrapolate, sphere, outlines, 0) patch_ = _get_patch(outlines, extrapolate, interp, ax) params['Zis'] = list() for frame in params['frames']: params['Zis'].append(interp.set_values(data[:, frame])(Xi, Yi)) Zi = params['Zis'][0] zi_min = np.nanmin(params['Zis']) zi_max = np.nanmax(params['Zis']) cont_lims = np.linspace(zi_min, zi_max, 7, endpoint=False)[1:] params.update({'vmin': vmin, 'vmax': vmax, 'Xi': Xi, 'Yi': Yi, 'Zi': Zi, 'extent': extent, 'cmap': cmap, 'cont_lims': cont_lims}) # plot map and contour im = ax.imshow(Zi, cmap=cmap, vmin=vmin, vmax=vmax, origin='lower', aspect='equal', extent=extent, interpolation='bilinear') ax.autoscale(enable=True, tight=True) ax.figure.colorbar(im, cax=ax_cbar) cont = ax.contour(Xi, Yi, Zi, levels=cont_lims, colors='k', linewidths=1) im.set_clip_path(patch_) text = ax.text(0.55, 0.95, '', transform=ax.transAxes, va='center', ha='right') params['text'] = text items.append(im) items.append(text) for col in cont.collections: col.set_clip_path(patch_) outlines_ = _draw_outlines(ax, outlines) params.update({'patch': patch_, 'outlines': outlines_}) ax.figure.tight_layout() return tuple(items) + tuple(cont.collections) def _animate(frame, ax, ax_line, params): """Update animated topomap.""" if params['pause']: frame = params['frame'] time_idx = params['frames'][frame] if params['time_unit'] == 'ms': title = '%6.0f ms' % (params['times'][frame] * 1e3,) else: title = '%6.3f s' % (params['times'][frame],) if params['blit']: text = params['text'] else: ax.cla() # Clear old contours. text = ax.text(0.45, 1.15, '', transform=ax.transAxes) for k, (x, y) in params['outlines'].items(): if 'mask' in k: continue ax.plot(x, y, color='k', linewidth=1, clip_on=False) _hide_frame(ax) text.set_text(title) vmin = params['vmin'] vmax = params['vmax'] Xi = params['Xi'] Yi = params['Yi'] Zi = params['Zis'][frame] extent = params['extent'] cmap = params['cmap'] patch = params['patch'] im = ax.imshow(Zi, cmap=cmap, vmin=vmin, vmax=vmax, origin='lower', aspect='equal', extent=extent, interpolation='bilinear') cont_lims = params['cont_lims'] with warnings.catch_warnings(record=True): warnings.simplefilter('ignore') cont = ax.contour( Xi, Yi, Zi, levels=cont_lims, colors='k', linewidths=1) im.set_clip_path(patch) for col in cont.collections: col.set_clip_path(patch) items = [im, text] if params['butterfly']: all_times = params['all_times'] line = params['line'] line.remove() ylim = ax_line.get_ylim() params['line'] = ax_line.axvline(all_times[time_idx], color='r') ax_line.set_ylim(ylim) items.append(params['line']) params['frame'] = frame return tuple(items) + tuple(cont.collections) def _pause_anim(event, params): """Pause or continue the animation on mouse click.""" params['pause'] = not params['pause'] def _key_press(event, params): """Handle key presses for the animation.""" if event.key == 'left': params['pause'] = True params['frame'] = max(params['frame'] - 1, 0) elif event.key == 'right': params['pause'] = True params['frame'] = min(params['frame'] + 1, len(params['frames']) - 1) def _topomap_animation(evoked, ch_type, times, frame_rate, butterfly, blit, show, time_unit, sphere, extrapolate, *, verbose=None): """Make animation of evoked data as topomap timeseries. See mne.evoked.Evoked.animate_topomap. """ from matplotlib import pyplot as plt, animation if ch_type is None: ch_type = _picks_by_type(evoked.info)[0][0] if ch_type not in ('mag', 'grad', 'eeg', 'hbo', 'hbr', 'fnirs_od', 'fnirs_cw_amplitude'): raise ValueError("Channel type not supported. Supported channel " "types include 'mag', 'grad', 'eeg'. 'hbo', 'hbr', " "'fnirs_cw_amplitude', and 'fnirs_od'.") time_unit, _ = _check_time_unit(time_unit, evoked.times) if times is None: times = np.linspace(evoked.times[0], evoked.times[-1], 10) times = np.array(times) if times.ndim != 1: raise ValueError('times must be 1D, got %d dimensions' % times.ndim) if max(times) > evoked.times[-1] or min(times) < evoked.times[0]: raise ValueError('All times must be inside the evoked time series.') frames = [np.abs(evoked.times - time).argmin() for time in times] picks, pos, merge_channels, _, ch_type, sphere, clip_origin = \ _prepare_topomap_plot(evoked, ch_type, sphere=sphere) data = evoked.data[picks, :] data *= _handle_default('scalings')[ch_type] fig = plt.figure(figsize=(6, 5)) shape = (8, 12) colspan = shape[1] - 1 rowspan = shape[0] - bool(butterfly) ax = plt.subplot2grid(shape, (0, 0), rowspan=rowspan, colspan=colspan) if butterfly: ax_line = plt.subplot2grid(shape, (rowspan, 0), colspan=colspan) else: ax_line = None if isinstance(frames, Integral): frames = np.linspace(0, len(evoked.times) - 1, frames).astype(int) ax_cbar = plt.subplot2grid(shape, (0, colspan), rowspan=rowspan) ax_cbar.set_title(_handle_default('units')[ch_type], fontsize=10) extrapolate = _check_extrapolate(extrapolate, ch_type) params = dict(data=data, pos=pos, all_times=evoked.times, frame=0, frames=frames, butterfly=butterfly, blit=blit, pause=False, times=times, time_unit=time_unit, clip_origin=clip_origin) init_func = partial(_init_anim, ax=ax, ax_cbar=ax_cbar, ax_line=ax_line, params=params, merge_channels=merge_channels, sphere=sphere, ch_type=ch_type, extrapolate=extrapolate, verbose=verbose) animate_func = partial(_animate, ax=ax, ax_line=ax_line, params=params) pause_func = partial(_pause_anim, params=params) fig.canvas.mpl_connect('button_press_event', pause_func) key_press_func = partial(_key_press, params=params) fig.canvas.mpl_connect('key_press_event', key_press_func) if frame_rate is None: frame_rate = evoked.info['sfreq'] / 10. interval = 1000 / frame_rate # interval is in ms anim = animation.FuncAnimation(fig, animate_func, init_func=init_func, frames=len(frames), interval=interval, blit=blit) fig.mne_animation = anim # to make sure anim is not garbage collected plt_show(show, block=False) if 'line' in params: # Finally remove the vertical line so it does not appear in saved fig. params['line'].remove() return fig, anim def _set_contour_locator(vmin, vmax, contours): """Set correct contour levels.""" locator = None if isinstance(contours, Integral) and contours > 0: from matplotlib import ticker # nbins = ticks - 1, since 2 of the ticks are vmin and vmax, the # correct number of bins is equal to contours + 1. locator = ticker.MaxNLocator(nbins=contours + 1) contours = locator.tick_values(vmin, vmax) return locator, contours def _plot_corrmap(data, subjs, indices, ch_type, ica, label, show, outlines, cmap, contours, template=False, sphere=None): """Customize ica.plot_components for corrmap.""" if not template: title = 'Detected components' if label is not None: title += ' of type ' + label else: title = "Supplied template" picks = list(range(len(data))) p = 20 if len(picks) > p: # plot components by sets of 20 n_components = len(picks) figs = [_plot_corrmap(data[k:k + p], subjs[k:k + p], indices[k:k + p], ch_type, ica, label, show, outlines=outlines, cmap=cmap, contours=contours) for k in range(0, n_components, p)] return figs elif np.isscalar(picks): picks = [picks] data_picks, pos, merge_channels, names, _, sphere, clip_origin = \ _prepare_topomap_plot(ica, ch_type, sphere=sphere) outlines = _make_head_outlines(sphere, pos, outlines, clip_origin) data = np.atleast_2d(data) data = data[:, data_picks] # prepare data for iteration fig, axes, _, _ = _prepare_trellis(len(picks), ncols=5) fig.suptitle(title) for ii, data_, ax, subject, idx in zip(picks, data, axes, subjs, indices): if template: ttl = 'Subj. {}, {}'.format(subject, ica._ica_names[idx]) ax.set_title(ttl, fontsize=12) else: ax.set_title('Subj. {}'.format(subject)) if merge_channels: data_, _ = _merge_ch_data(data_, ch_type, []) vmin_, vmax_ = _setup_vmin_vmax(data_, None, None) plot_topomap(data_.flatten(), pos, vmin=vmin_, vmax=vmax_, res=64, axes=ax, cmap=cmap, outlines=outlines, contours=contours, show=False, image_interp='bilinear')[0] _hide_frame(ax) tight_layout(fig=fig) fig.subplots_adjust(top=0.8) fig.canvas.draw() plt_show(show) return fig def _trigradient(x, y, z): """Take gradients of z on a mesh.""" from matplotlib.tri import CubicTriInterpolator, Triangulation with warnings.catch_warnings(): # catch matplotlib warnings warnings.filterwarnings("ignore", category=DeprecationWarning) tri = Triangulation(x, y) tci = CubicTriInterpolator(tri, z) dx, dy = tci.gradient(tri.x, tri.y) return dx, dy @fill_doc def plot_arrowmap(data, info_from, info_to=None, scale=3e-10, vmin=None, vmax=None, cmap=None, sensors=True, res=64, axes=None, names=None, show_names=False, mask=None, mask_params=None, outlines='head', contours=6, image_interp='bilinear', show=True, onselect=None, extrapolate=_EXTRAPOLATE_DEFAULT, sphere=None): """Plot arrow map. Compute arrowmaps, based upon the Hosaka-Cohen transformation :footcite:`CohenHosaka1976`, these arrows represents an estimation of the current flow underneath the MEG sensors. They are a poor man's MNE. Since planar gradiometers takes gradients along latitude and longitude, they need to be projected to the flattened manifold span by magnetometer or radial gradiometers before taking the gradients in the 2D Cartesian coordinate system for visualization on the 2D topoplot. You can use the ``info_from`` and ``info_to`` parameters to interpolate from gradiometer data to magnetometer data. Parameters ---------- data : array, shape (n_channels,) The data values to plot. info_from : instance of Info The measurement info from data to interpolate from. info_to : instance of Info | None The measurement info to interpolate to. If None, it is assumed to be the same as info_from. scale : float, default 3e-10 To scale the arrows. vmin : float | callable | None The value specifying the lower bound of the color range. If None, and vmax is None, -vmax is used. Else np.min(data). If callable, the output equals vmin(data). Defaults to None. vmax : float | callable | None The value specifying the upper bound of the color range. If None, the maximum absolute value is used. If callable, the output equals vmax(data). Defaults to None. cmap : matplotlib colormap | None Colormap to use. If None, 'Reds' is used for all positive data, otherwise defaults to 'RdBu_r'. sensors : bool | str Add markers for sensor locations to the plot. Accepts matplotlib plot format string (e.g., 'r+' for red plusses). If True (default), circles will be used. res : int The resolution of the topomap image (n pixels along each side). axes : instance of Axes | None The axes to plot to. If None, a new figure will be created. names : list | None List of channel names. If None, channel names are not plotted. %(topomap_show_names)s If ``True``, a list of names must be provided (see ``names`` keyword). mask : ndarray of bool, shape (n_channels, n_times) | None The channels to be marked as significant at a given time point. Indices set to ``True`` will be considered. Defaults to None. mask_params : dict | None Additional plotting parameters for plotting significant sensors. Default (None) equals:: dict(marker='o', markerfacecolor='w', markeredgecolor='k', linewidth=0, markersize=4) %(topomap_outlines)s contours : int | array of float The number of contour lines to draw. If 0, no contours will be drawn. If an array, the values represent the levels for the contours. The values are in µV for EEG, fT for magnetometers and fT/m for gradiometers. Defaults to 6. image_interp : str The image interpolation to be used. All matplotlib options are accepted. show : bool Show figure if True. onselect : callable | None Handle for a function that is called when the user selects a set of channels by rectangle selection (matplotlib ``RectangleSelector``). If None interactive selection is disabled. Defaults to None. %(topomap_extrapolate)s .. versionadded:: 0.18 %(topomap_sphere_auto)s Returns ------- fig : matplotlib.figure.Figure The Figure of the plot. Notes ----- .. versionadded:: 0.17 References ---------- .. footbibliography:: """ from matplotlib import pyplot as plt from ..forward import _map_meg_or_eeg_channels sphere = _check_sphere(sphere, info_from) ch_type = _picks_by_type(info_from) if len(ch_type) > 1: raise ValueError('Multiple channel types are not supported.' 'All channels must either be of type \'grad\' ' 'or \'mag\'.') else: ch_type = ch_type[0][0] if ch_type not in ('mag', 'grad'): raise ValueError("Channel type '%s' not supported. Supported channel " "types are 'mag' and 'grad'." % ch_type) if info_to is None and ch_type == 'mag': info_to = info_from else: ch_type = _picks_by_type(info_to) if len(ch_type) > 1: raise ValueError("Multiple channel types are not supported.") else: ch_type = ch_type[0][0] if ch_type != 'mag': raise ValueError("only 'mag' channel type is supported. " "Got %s" % ch_type) if info_to is not info_from: info_to = pick_info(info_to, pick_types(info_to, meg=True)) info_from = pick_info(info_from, pick_types(info_from, meg=True)) # XXX should probably support the "origin" argument mapping = _map_meg_or_eeg_channels( info_from, info_to, origin=(0., 0., 0.04), mode='accurate') data = np.dot(mapping, data) _, pos, _, _, _, sphere, clip_origin = \ _prepare_topomap_plot(info_to, 'mag', sphere=sphere) outlines = _make_head_outlines( sphere, pos, outlines, clip_origin) if axes is None: fig, axes = plt.subplots() else: fig = axes.figure plot_topomap(data, pos, axes=axes, vmin=vmin, vmax=vmax, cmap=cmap, sensors=sensors, res=res, names=names, show_names=show_names, mask=mask, mask_params=mask_params, outlines=outlines, contours=contours, image_interp=image_interp, show=False, onselect=onselect, extrapolate=extrapolate, sphere=sphere, ch_type=ch_type) x, y = tuple(pos.T) dx, dy = _trigradient(x, y, data) dxx = dy.data dyy = -dx.data axes.quiver(x, y, dxx, dyy, scale=scale, color='k', lw=1, clip_on=False) axes.figure.canvas.draw_idle() with warnings.catch_warnings(record=True): warnings.simplefilter('ignore') tight_layout(fig=fig) plt_show(show) return fig
bsd-3-clause
457,051,150,807,582,500
40.261351
84
0.587548
false
alexgleith/Quantum-GIS
python/plugins/sextante/algs/AddTableField.py
2
4121
# -*- coding: utf-8 -*- """ *************************************************************************** AddTableField.py --------------------- Date : August 2012 Copyright : (C) 2012 by Victor Olaya Email : volayaf at gmail dot com *************************************************************************** * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * *************************************************************************** """ __author__ = 'Victor Olaya' __date__ = 'August 2012' __copyright__ = '(C) 2012, Victor Olaya' # This will get replaced with a git SHA1 when you do a git archive __revision__ = '$Format:%H$' from PyQt4.QtCore import * from PyQt4.QtGui import * from qgis.core import * from sextante.core.GeoAlgorithm import GeoAlgorithm from sextante.core.QGisLayers import QGisLayers from sextante.parameters.ParameterVector import ParameterVector from sextante.parameters.ParameterString import ParameterString from sextante.parameters.ParameterNumber import ParameterNumber from sextante.parameters.ParameterSelection import ParameterSelection from sextante.outputs.OutputVector import OutputVector class AddTableField(GeoAlgorithm): OUTPUT_LAYER = "OUTPUT_LAYER" INPUT_LAYER = "INPUT_LAYER" FIELD_NAME = "FIELD_NAME" FIELD_TYPE = "FIELD_TYPE" FIELD_LENGTH = "FIELD_LENGTH" FIELD_PRECISION = "FIELD_PRECISION" TYPE_NAMES = ["Integer", "Float", "String"] TYPES = [QVariant.Int, QVariant.Double, QVariant.String] #=========================================================================== # def getIcon(self): # return QtGui.QIcon(os.path.dirname(__file__) + "/../images/qgis.png") #=========================================================================== def defineCharacteristics(self): self.name = "Add field to attributes table" self.group = "Vector table tools" self.addParameter(ParameterVector(self.INPUT_LAYER, "Input layer", ParameterVector.VECTOR_TYPE_ANY, False)) self.addParameter(ParameterString(self.FIELD_NAME, "Field name")) self.addParameter(ParameterSelection(self.FIELD_TYPE, "Field type", self.TYPE_NAMES)) self.addParameter(ParameterNumber(self.FIELD_LENGTH, "Field length", 1, 255, 10)) self.addParameter(ParameterNumber(self.FIELD_PRECISION, "Field precision", 0, 10, 0)) self.addOutput(OutputVector(self.OUTPUT_LAYER, "Output layer")) def processAlgorithm(self, progress): fieldType = self.getParameterValue(self.FIELD_TYPE) fieldName = self.getParameterValue(self.FIELD_NAME) fieldLength = self.getParameterValue(self.FIELD_LENGTH) fieldPrecision = self.getParameterValue(self.FIELD_PRECISION) output = self.getOutputFromName(self.OUTPUT_LAYER) layer = QGisLayers.getObjectFromUri(self.getParameterValue(self.INPUT_LAYER)) provider = layer.dataProvider() fields = provider.fields() fields.append(QgsField(fieldName, self.TYPES[fieldType], "", fieldLength, fieldPrecision)) writer = output.getVectorWriter(fields, provider.geometryType(), layer.crs()) outFeat = QgsFeature() inGeom = QgsGeometry() nElement = 0 features = QGisLayers.features(layer) nFeat = len(features) for inFeat in features: progress.setPercentage(int((100 * nElement)/nFeat)) nElement += 1 inGeom = inFeat.geometry() outFeat.setGeometry( inGeom ) atMap = inFeat.attributes() atMap.append(None) outFeat.setAttributes(atMap) writer.addFeature( outFeat ) del writer
gpl-2.0
4,025,250,056,043,229,700
42.378947
115
0.583111
false
DANCEcollaborative/forum-xblock
XBlock Integration Files/xdjangobb/xblock/lib/python2.7/site-packages/django/contrib/gis/geos/libgeos.py
4
5646
""" This module houses the ctypes initialization procedures, as well as the notice and error handler function callbacks (get called when an error occurs in GEOS). This module also houses GEOS Pointer utilities, including get_pointer_arr(), and GEOM_PTR. """ import os import re import sys from ctypes import c_char_p, Structure, CDLL, CFUNCTYPE, POINTER from ctypes.util import find_library from django.contrib.gis.geos.error import GEOSException # Custom library path set? try: from django.conf import settings lib_path = settings.GEOS_LIBRARY_PATH except (AttributeError, EnvironmentError, ImportError): lib_path = None # Setting the appropriate names for the GEOS-C library. if lib_path: lib_names = None elif os.name == 'nt': # Windows NT libraries lib_names = ['geos_c', 'libgeos_c-1'] elif os.name == 'posix': # *NIX libraries lib_names = ['geos_c', 'GEOS'] else: raise ImportError('Unsupported OS "%s"' % os.name) # Using the ctypes `find_library` utility to find the path to the GEOS # shared library. This is better than manually specifiying each library name # and extension (e.g., libgeos_c.[so|so.1|dylib].). if lib_names: for lib_name in lib_names: lib_path = find_library(lib_name) if not lib_path is None: break # No GEOS library could be found. if lib_path is None: raise ImportError('Could not find the GEOS library (tried "%s"). ' 'Try setting GEOS_LIBRARY_PATH in your settings.' % '", "'.join(lib_names)) # Getting the GEOS C library. The C interface (CDLL) is used for # both *NIX and Windows. # See the GEOS C API source code for more details on the library function calls: # http://geos.refractions.net/ro/doxygen_docs/html/geos__c_8h-source.html lgeos = CDLL(lib_path) # The notice and error handler C function callback definitions. # Supposed to mimic the GEOS message handler (C below): # typedef void (*GEOSMessageHandler)(const char *fmt, ...); NOTICEFUNC = CFUNCTYPE(None, c_char_p, c_char_p) def notice_h(fmt, lst, output_h=sys.stdout): try: warn_msg = fmt % lst except: warn_msg = fmt output_h.write('GEOS_NOTICE: %s\n' % warn_msg) notice_h = NOTICEFUNC(notice_h) ERRORFUNC = CFUNCTYPE(None, c_char_p, c_char_p) def error_h(fmt, lst, output_h=sys.stderr): try: err_msg = fmt % lst except: err_msg = fmt output_h.write('GEOS_ERROR: %s\n' % err_msg) error_h = ERRORFUNC(error_h) #### GEOS Geometry C data structures, and utility functions. #### # Opaque GEOS geometry structures, used for GEOM_PTR and CS_PTR class GEOSGeom_t(Structure): pass class GEOSPrepGeom_t(Structure): pass class GEOSCoordSeq_t(Structure): pass class GEOSContextHandle_t(Structure): pass # Pointers to opaque GEOS geometry structures. GEOM_PTR = POINTER(GEOSGeom_t) PREPGEOM_PTR = POINTER(GEOSPrepGeom_t) CS_PTR = POINTER(GEOSCoordSeq_t) CONTEXT_PTR = POINTER(GEOSContextHandle_t) # Used specifically by the GEOSGeom_createPolygon and GEOSGeom_createCollection # GEOS routines def get_pointer_arr(n): "Gets a ctypes pointer array (of length `n`) for GEOSGeom_t opaque pointer." GeomArr = GEOM_PTR * n return GeomArr() # Returns the string version of the GEOS library. Have to set the restype # explicitly to c_char_p to ensure compatibility accross 32 and 64-bit platforms. geos_version = lgeos.GEOSversion geos_version.argtypes = None geos_version.restype = c_char_p # Regular expression should be able to parse version strings such as # '3.0.0rc4-CAPI-1.3.3', '3.0.0-CAPI-1.4.1', '3.4.0dev-CAPI-1.8.0' or '3.4.0dev-CAPI-1.8.0 r0' version_regex = re.compile( r'^(?P<version>(?P<major>\d+)\.(?P<minor>\d+)\.(?P<subminor>\d+))' r'((rc(?P<release_candidate>\d+))|dev)?-CAPI-(?P<capi_version>\d+\.\d+\.\d+)( r\d+)?$' ) def geos_version_info(): """ Returns a dictionary containing the various version metadata parsed from the GEOS version string, including the version number, whether the version is a release candidate (and what number release candidate), and the C API version. """ ver = geos_version() m = version_regex.match(ver) if not m: raise GEOSException('Could not parse version info string "%s"' % ver) return dict((key, m.group(key)) for key in ( 'version', 'release_candidate', 'capi_version', 'major', 'minor', 'subminor')) # Version numbers and whether or not prepared geometry support is available. _verinfo = geos_version_info() GEOS_MAJOR_VERSION = int(_verinfo['major']) GEOS_MINOR_VERSION = int(_verinfo['minor']) GEOS_SUBMINOR_VERSION = int(_verinfo['subminor']) del _verinfo GEOS_VERSION = (GEOS_MAJOR_VERSION, GEOS_MINOR_VERSION, GEOS_SUBMINOR_VERSION) GEOS_PREPARE = GEOS_VERSION >= (3, 1, 0) if GEOS_PREPARE: # Here we set up the prototypes for the initGEOS_r and finishGEOS_r # routines. These functions aren't actually called until they are # attached to a GEOS context handle -- this actually occurs in # geos/prototypes/threadsafe.py. lgeos.initGEOS_r.restype = CONTEXT_PTR lgeos.finishGEOS_r.argtypes = [CONTEXT_PTR] else: # When thread-safety isn't available, the initGEOS routine must be called # first. This function takes the notice and error functions, defined # as Python callbacks above, as parameters. Here is the C code that is # wrapped: # extern void GEOS_DLL initGEOS(GEOSMessageHandler notice_function, GEOSMessageHandler error_function); lgeos.initGEOS(notice_h, error_h) # Calling finishGEOS() upon exit of the interpreter. import atexit atexit.register(lgeos.finishGEOS)
mit
-2,832,675,149,344,871,000
37.148649
108
0.700496
false
tomchristie/django-rest-framework
tests/test_response.py
3
10775
from django.test import TestCase, override_settings from django.urls import include, path, re_path from rest_framework import generics, routers, serializers, status, viewsets from rest_framework.parsers import JSONParser from rest_framework.renderers import ( BaseRenderer, BrowsableAPIRenderer, JSONRenderer ) from rest_framework.response import Response from rest_framework.views import APIView from tests.models import BasicModel # Serializer used to test BasicModel class BasicModelSerializer(serializers.ModelSerializer): class Meta: model = BasicModel fields = '__all__' class MockPickleRenderer(BaseRenderer): media_type = 'application/pickle' class MockJsonRenderer(BaseRenderer): media_type = 'application/json' class MockTextMediaRenderer(BaseRenderer): media_type = 'text/html' DUMMYSTATUS = status.HTTP_200_OK DUMMYCONTENT = 'dummycontent' def RENDERER_A_SERIALIZER(x): return ('Renderer A: %s' % x).encode('ascii') def RENDERER_B_SERIALIZER(x): return ('Renderer B: %s' % x).encode('ascii') class RendererA(BaseRenderer): media_type = 'mock/renderera' format = "formata" def render(self, data, media_type=None, renderer_context=None): return RENDERER_A_SERIALIZER(data) class RendererB(BaseRenderer): media_type = 'mock/rendererb' format = "formatb" def render(self, data, media_type=None, renderer_context=None): return RENDERER_B_SERIALIZER(data) class RendererC(RendererB): media_type = 'mock/rendererc' format = 'formatc' charset = "rendererc" class MockView(APIView): renderer_classes = (RendererA, RendererB, RendererC) def get(self, request, **kwargs): return Response(DUMMYCONTENT, status=DUMMYSTATUS) class MockViewSettingContentType(APIView): renderer_classes = (RendererA, RendererB, RendererC) def get(self, request, **kwargs): return Response(DUMMYCONTENT, status=DUMMYSTATUS, content_type='setbyview') class JSONView(APIView): parser_classes = (JSONParser,) def post(self, request, **kwargs): assert request.data return Response(DUMMYCONTENT) class HTMLView(APIView): renderer_classes = (BrowsableAPIRenderer, ) def get(self, request, **kwargs): return Response('text') class HTMLView1(APIView): renderer_classes = (BrowsableAPIRenderer, JSONRenderer) def get(self, request, **kwargs): return Response('text') class HTMLNewModelViewSet(viewsets.ModelViewSet): serializer_class = BasicModelSerializer queryset = BasicModel.objects.all() class HTMLNewModelView(generics.ListCreateAPIView): renderer_classes = (BrowsableAPIRenderer,) permission_classes = [] serializer_class = BasicModelSerializer queryset = BasicModel.objects.all() new_model_viewset_router = routers.DefaultRouter() new_model_viewset_router.register(r'', HTMLNewModelViewSet) urlpatterns = [ path('setbyview', MockViewSettingContentType.as_view(renderer_classes=[RendererA, RendererB, RendererC])), re_path(r'^.*\.(?P<format>.+)$', MockView.as_view(renderer_classes=[RendererA, RendererB, RendererC])), path('', MockView.as_view(renderer_classes=[RendererA, RendererB, RendererC])), path('html', HTMLView.as_view()), path('json', JSONView.as_view()), path('html1', HTMLView1.as_view()), path('html_new_model', HTMLNewModelView.as_view()), path('html_new_model_viewset', include(new_model_viewset_router.urls)), path('restframework', include('rest_framework.urls', namespace='rest_framework')) ] # TODO: Clean tests bellow - remove duplicates with above, better unit testing, ... @override_settings(ROOT_URLCONF='tests.test_response') class RendererIntegrationTests(TestCase): """ End-to-end testing of renderers using an ResponseMixin on a generic view. """ def test_default_renderer_serializes_content(self): """If the Accept header is not set the default renderer should serialize the response.""" resp = self.client.get('/') self.assertEqual(resp['Content-Type'], RendererA.media_type + '; charset=utf-8') self.assertEqual(resp.content, RENDERER_A_SERIALIZER(DUMMYCONTENT)) self.assertEqual(resp.status_code, DUMMYSTATUS) def test_head_method_serializes_no_content(self): """No response must be included in HEAD requests.""" resp = self.client.head('/') self.assertEqual(resp.status_code, DUMMYSTATUS) self.assertEqual(resp['Content-Type'], RendererA.media_type + '; charset=utf-8') self.assertEqual(resp.content, b'') def test_default_renderer_serializes_content_on_accept_any(self): """If the Accept header is set to */* the default renderer should serialize the response.""" resp = self.client.get('/', HTTP_ACCEPT='*/*') self.assertEqual(resp['Content-Type'], RendererA.media_type + '; charset=utf-8') self.assertEqual(resp.content, RENDERER_A_SERIALIZER(DUMMYCONTENT)) self.assertEqual(resp.status_code, DUMMYSTATUS) def test_specified_renderer_serializes_content_default_case(self): """If the Accept header is set the specified renderer should serialize the response. (In this case we check that works for the default renderer)""" resp = self.client.get('/', HTTP_ACCEPT=RendererA.media_type) self.assertEqual(resp['Content-Type'], RendererA.media_type + '; charset=utf-8') self.assertEqual(resp.content, RENDERER_A_SERIALIZER(DUMMYCONTENT)) self.assertEqual(resp.status_code, DUMMYSTATUS) def test_specified_renderer_serializes_content_non_default_case(self): """If the Accept header is set the specified renderer should serialize the response. (In this case we check that works for a non-default renderer)""" resp = self.client.get('/', HTTP_ACCEPT=RendererB.media_type) self.assertEqual(resp['Content-Type'], RendererB.media_type + '; charset=utf-8') self.assertEqual(resp.content, RENDERER_B_SERIALIZER(DUMMYCONTENT)) self.assertEqual(resp.status_code, DUMMYSTATUS) def test_specified_renderer_serializes_content_on_format_query(self): """If a 'format' query is specified, the renderer with the matching format attribute should serialize the response.""" resp = self.client.get('/?format=%s' % RendererB.format) self.assertEqual(resp['Content-Type'], RendererB.media_type + '; charset=utf-8') self.assertEqual(resp.content, RENDERER_B_SERIALIZER(DUMMYCONTENT)) self.assertEqual(resp.status_code, DUMMYSTATUS) def test_specified_renderer_serializes_content_on_format_kwargs(self): """If a 'format' keyword arg is specified, the renderer with the matching format attribute should serialize the response.""" resp = self.client.get('/something.formatb') self.assertEqual(resp['Content-Type'], RendererB.media_type + '; charset=utf-8') self.assertEqual(resp.content, RENDERER_B_SERIALIZER(DUMMYCONTENT)) self.assertEqual(resp.status_code, DUMMYSTATUS) def test_specified_renderer_is_used_on_format_query_with_matching_accept(self): """If both a 'format' query and a matching Accept header specified, the renderer with the matching format attribute should serialize the response.""" resp = self.client.get('/?format=%s' % RendererB.format, HTTP_ACCEPT=RendererB.media_type) self.assertEqual(resp['Content-Type'], RendererB.media_type + '; charset=utf-8') self.assertEqual(resp.content, RENDERER_B_SERIALIZER(DUMMYCONTENT)) self.assertEqual(resp.status_code, DUMMYSTATUS) @override_settings(ROOT_URLCONF='tests.test_response') class UnsupportedMediaTypeTests(TestCase): def test_should_allow_posting_json(self): response = self.client.post('/json', data='{"test": 123}', content_type='application/json') self.assertEqual(response.status_code, 200) def test_should_not_allow_posting_xml(self): response = self.client.post('/json', data='<test>123</test>', content_type='application/xml') self.assertEqual(response.status_code, 415) def test_should_not_allow_posting_a_form(self): response = self.client.post('/json', data={'test': 123}) self.assertEqual(response.status_code, 415) @override_settings(ROOT_URLCONF='tests.test_response') class Issue122Tests(TestCase): """ Tests that covers #122. """ def test_only_html_renderer(self): """ Test if no infinite recursion occurs. """ self.client.get('/html') def test_html_renderer_is_first(self): """ Test if no infinite recursion occurs. """ self.client.get('/html1') @override_settings(ROOT_URLCONF='tests.test_response') class Issue467Tests(TestCase): """ Tests for #467 """ def test_form_has_label_and_help_text(self): resp = self.client.get('/html_new_model') self.assertEqual(resp['Content-Type'], 'text/html; charset=utf-8') # self.assertContains(resp, 'Text comes here') # self.assertContains(resp, 'Text description.') @override_settings(ROOT_URLCONF='tests.test_response') class Issue807Tests(TestCase): """ Covers #807 """ def test_does_not_append_charset_by_default(self): """ Renderers don't include a charset unless set explicitly. """ headers = {"HTTP_ACCEPT": RendererA.media_type} resp = self.client.get('/', **headers) expected = "{}; charset={}".format(RendererA.media_type, 'utf-8') self.assertEqual(expected, resp['Content-Type']) def test_if_there_is_charset_specified_on_renderer_it_gets_appended(self): """ If renderer class has charset attribute declared, it gets appended to Response's Content-Type """ headers = {"HTTP_ACCEPT": RendererC.media_type} resp = self.client.get('/', **headers) expected = "{}; charset={}".format(RendererC.media_type, RendererC.charset) self.assertEqual(expected, resp['Content-Type']) def test_content_type_set_explicitly_on_response(self): """ The content type may be set explicitly on the response. """ headers = {"HTTP_ACCEPT": RendererC.media_type} resp = self.client.get('/setbyview', **headers) self.assertEqual('setbyview', resp['Content-Type']) def test_form_has_label_and_help_text(self): resp = self.client.get('/html_new_model') self.assertEqual(resp['Content-Type'], 'text/html; charset=utf-8') # self.assertContains(resp, 'Text comes here') # self.assertContains(resp, 'Text description.')
bsd-2-clause
8,652,225,553,536,476,000
36.807018
110
0.684826
false
weolar/miniblink49
v8_5_1/tools/testrunner/network/endpoint.py
23
4536
# Copyright 2012 the V8 project authors. All rights reserved. # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided # with the distribution. # * Neither the name of Google Inc. nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import multiprocessing import os import Queue import threading import time from ..local import execution from ..local import progress from ..local import testsuite from ..local import utils from ..server import compression class EndpointProgress(progress.ProgressIndicator): def __init__(self, sock, server, ctx): super(EndpointProgress, self).__init__() self.sock = sock self.server = server self.context = ctx self.results_queue = [] # Accessors must synchronize themselves. self.sender_lock = threading.Lock() self.senderthread = threading.Thread(target=self._SenderThread) self.senderthread.start() def HasRun(self, test, has_unexpected_output): # The runners that call this have a lock anyway, so this is safe. self.results_queue.append(test) def _SenderThread(self): keep_running = True tests = [] self.sender_lock.acquire() while keep_running: time.sleep(0.1) # This should be "atomic enough" without locking :-) # (We don't care which list any new elements get appended to, as long # as we don't lose any and the last one comes last.) current = self.results_queue self.results_queue = [] for c in current: if c is None: keep_running = False else: tests.append(c) if keep_running and len(tests) < 1: continue # Wait for more results. if len(tests) < 1: break # We're done here. result = [] for t in tests: result.append(t.PackResult()) try: compression.Send(result, self.sock) except: self.runner.terminate = True for t in tests: self.server.CompareOwnPerf(t, self.context.arch, self.context.mode) tests = [] self.sender_lock.release() def Execute(workspace, ctx, tests, sock, server): suite_paths = utils.GetSuitePaths(os.path.join(workspace, "test")) suites = [] for root in suite_paths: suite = testsuite.TestSuite.LoadTestSuite( os.path.join(workspace, "test", root)) if suite: suite.SetupWorkingDirectory() suites.append(suite) suites_dict = {} for s in suites: suites_dict[s.name] = s s.tests = [] for t in tests: suite = suites_dict[t.suite] t.suite = suite suite.tests.append(t) suites = [ s for s in suites if len(s.tests) > 0 ] for s in suites: s.DownloadData() progress_indicator = EndpointProgress(sock, server, ctx) runner = execution.Runner(suites, progress_indicator, ctx) try: runner.Run(server.jobs) except IOError, e: if e.errno == 2: message = ("File not found: %s, maybe you forgot to 'git add' it?" % e.filename) else: message = "%s" % e compression.Send([[-1, message]], sock) progress_indicator.HasRun(None, None) # Sentinel to signal the end. progress_indicator.sender_lock.acquire() # Released when sending is done. progress_indicator.sender_lock.release()
apache-2.0
-4,016,352,023,141,227,000
35.288
76
0.690917
false
themad/xmenud
xmenud.py
1
6727
#!/usr/bin/env python2 # -*- coding: utf-8 -*- # xmenud - a small desktop menu # This is # # for launching the app import subprocess # for drawing the stuff import gtk # for catching the error import glib # for reading that stuff import xdg.Menu import xdg.DesktopEntry # for finding that stuff to draw import xdg.IconTheme # for finding what stuff to do import getopt # for not doing anything anymore import sys # regular expressions for funny parsing import re NAME="xmenud" VERSION="0.8" AUTHOR="Matthias Kühlke" EMAIL="[email protected]" YEAR="2010" TAGLINE="A desktop menu, with klickibunti." LICENSE=''' License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html> This is free software: you are free to change and redistribute it. There is NO WARRANTY, to the extent permitted by law. ''' def error(string): ''' output errors to stderr ''' print >>sys.stderr, string def launcher_execute(string): try: subprocess.Popen(string, shell=True) except: # well, the user probably doesn't want anything to happen, so I'll just pass def launcher_print(string): print string def create_menu(menu, use_icons=True, launch=launcher_execute): def launch_callback(widget, string): launch(string) def get_exec(string, terminal=False): ''' Parses the string according to the XDG Desktop Entry Specifications. ''' r1 = re.compile('(?<!%)%[fFuUdDnNickvm]') r2 = re.compile('%%') result=r2.sub('%', r1.sub('', string)) if(terminal): result = 'urxvt -e "%s"' % result return result def new_item(label, icon, use_icons): def get_icon(iconname): if (iconname=="" or iconname.find('.')<>-1): try: pixbuf = gtk.gdk.pixbuf_new_from_file(xdg.IconTheme.getIconPath(iconname)) ick = gtk.IconSet(pixbuf) scaled = ick.render_icon(gtk.Style(), gtk.TEXT_DIR_LTR, gtk.STATE_NORMAL, gtk.ICON_SIZE_LARGE_TOOLBAR, None, None) img = gtk.image_new_from_pixbuf(scaled) except (TypeError, glib.GError): img = gtk.image_new_from_stock(gtk.STOCK_DIALOG_QUESTION, gtk.ICON_SIZE_LARGE_TOOLBAR) else: img = gtk.image_new_from_icon_name(iconname, gtk.ICON_SIZE_LARGE_TOOLBAR) return img if use_icons: item = gtk.ImageMenuItem(stock_id=label) item.set_image(get_icon(icon)) else: if (label=="- - -"): item = gtk.SeparatorMenuItem() else: item = gtk.MenuItem(label=label) return item themenu = gtk.Menu() for entry in menu.getEntries(): if isinstance(entry, xdg.Menu.Menu): item = new_item(entry.getName(), entry.getIcon(), use_icons) submenu = create_menu(entry, use_icons, launch) item.set_submenu(submenu) themenu.append(item) item.set_tooltip_text(entry.getComment()) item.show() elif isinstance(entry, xdg.Menu.MenuEntry): item = new_item( ' - '.join(filter(None, [ entry.DesktopEntry.getName(), entry.DesktopEntry.getGenericName() ])), entry.DesktopEntry.getIcon(), use_icons) item.connect("activate", launch_callback, get_exec(entry.DesktopEntry.getExec(), entry.DesktopEntry.getTerminal())) themenu.append(item) item.set_tooltip_text(entry.DesktopEntry.getComment()) item.show() elif isinstance(entry, xdg.Menu.Separator): item = new_item('- - -', '', 0) themenu.append(item) item.show() themenu.show() return themenu def create_popup(): m=gtk.Menu() about = gtk.ImageMenuItem(stock_id=gtk.STOCK_ABOUT) quit = gtk.ImageMenuItem(stock_id=gtk.STOCK_QUIT) about.connect('activate', lambda w: about_dialog()) quit.connect('activate', lambda w: gtk.main_quit()) m.append(about) m.append(quit) about.show() quit.show() return m def about_dialog(): def close(w, r): if r == gtk.RESPONSE_CANCEL: w.hide() d = gtk.AboutDialog() d.set_name(NAME) d.set_version(VERSION) d.set_authors(['%s <%s>' % (AUTHOR,EMAIL)]) d.set_copyright("(C) %s %s" % (YEAR,AUTHOR)) d.set_license(LICENSE) d.connect('response', close) d.show() def tray(): i = gtk.StatusIcon() i.set_from_stock(gtk.STOCK_EXECUTE) i.set_tooltip("xmenud") i.set_visible(True) return i def main(): run_tray = False use_icons = True launch = launcher_execute try: opts, args = getopt.getopt(sys.argv[1:],"htvnp",["help", "tray", "version", "no-icons", "pipe-mode"]) except getopt.GetoptError, err: error(str(err)) usage() sys.exit(2) for o, a in opts: if o in ('-v', '--version'): showversion() sys.exit() elif o in ('-h', '--help'): usage(verbose=True) sys.exit() elif o in ('-t', '--tray'): run_tray = True elif o in ('-p', '--pipe-mode'): launch = launcher_print elif o in ('-n', '--no-icons'): use_icons = False try: desktopmenu = xdg.Menu.parse(filename = "/etc/xdg/menus/gnome-applications.menu") except xdg.Exceptions.ParsingError as e: error('Error parsing the menu files: \n' + e.__str__()) sys.exit(-1) mainmenu=create_menu(desktopmenu, use_icons, launch) if run_tray: popupmenu=create_popup() trayicon=tray() trayicon.connect("activate", lambda w: mainmenu.popup(None, None, None, 0, 0)) trayicon.connect("popup-menu", lambda w,b,t: popupmenu.popup(None, None, None, b, t)) else: mainmenu.connect("hide", lambda w: gtk.main_quit()) mainmenu.popup(None, None, None, 0, 0) try: gtk.main() except KeyboardInterrupt: pass return 0 def showversion(): print '%s %s- %s' % (NAME, VERSION, TAGLINE) print ' Copyright (C) %s %s <%s>' % (YEAR, AUTHOR, EMAIL) print LICENSE def usage(verbose=False): print 'usage: %s [--tray|--help] [--no-icons] [--pipe-mode] [--version]' % sys.argv[0] if verbose: print '''Options: --help,-h This help message. --tray,-t Instead of launching a menu right away, put an icon into the systray. --no-icons,-n Don't load or show program icons. --pipe-mode,-p Instead of launching a program, just output its name to stdout. --version,-v Show version information. ''' if __name__ == "__main__": main() # vim: set et ts=4 sw=4:
gpl-3.0
8,592,755,799,032,689,000
29.995392
166
0.592774
false
bitcraft/PURIKURA
pyrikura/smtp.py
1
1435
import smtplib import threading import pickle import email from .config import Config as pkConfig class SenderThread(threading.Thread): def __init__(self, address, filename): threading.Thread.__init__(self) self.address = address self.filename = filename def run(self): sender = pkConfig.get('email', 'sender') subject = pkConfig.get('email', 'subject') auth_file = '/home/mjolnir/git/PURIKURA/secrets' msg = email.MIMEMultipart.MIMEMultipart('mixed') msg['subject'] = subject msg['from'] = sender msg['to'] = self.address body = email.mime.Text.MIMEText('Here\'s your photo!\n\nThank you!\n\n') msg.attach(body) file_msg = email.mime.base.MIMEBase('image', 'jpeg') file_msg.set_payload(open(self.filename).read()) email.encoders.encode_base64(file_msg) file_msg.add_header( 'Content-Disposition', 'attachment;filname=photo.jpg') msg.attach(file_msg) with open(auth_file) as fh: auth = pickle.load(fh) auth = auth['smtp'] with open('email.log', 'a') as fh: fh.write('{}\t{}\n'.format(self.address, self.filename)) smtpout = smtplib.SMTP(auth['host']) smtpout.login(auth['username'], auth['password']) smtpout.sendmail(sender, [self.address], msg.as_string()) smtpout.quit()
gpl-3.0
-4,168,127,869,118,357,000
30.888889
80
0.599303
false
megmontero/tweevy
apps/oauth.py
1
4757
from flask import Flask, redirect, url_for, session, request, render_template from flask_oauth import OAuth import facebook as fb from flask import Blueprint from apps import app app_oauth = Blueprint('app_oauth', __name__,template_folder='templates') ###https://github.com/mitsuhiko/flask-oauth/tree/master/example SECRET_KEY = 'development key' DEBUG = True FACEBOOK_APP_ID = '236507713421072' FACEBOOK_APP_SECRET = '75cb7fb97ea05ea1f27f14e0fd5605df' method = None #app = Flask(__name__) #app.debug = DEBUG #app.secret_key = SECRET_KEY oauth = OAuth() facebook = oauth.remote_app('facebook', base_url='https://graph.facebook.com/', request_token_url=None, access_token_url='/oauth/access_token', authorize_url='https://www.facebook.com/dialog/oauth', consumer_key=FACEBOOK_APP_ID, consumer_secret=FACEBOOK_APP_SECRET, request_token_params={'scope': 'email,user_birthday'} #request_token_params={'scope': 'email,user_birthday,user_photos,publish_actions,user_friends,user_relationships,user_status'} ) google = oauth.remote_app('google', base_url='https://www.google.com/accounts/', authorize_url='https://accounts.google.com/o/oauth2/auth', request_token_url=None, request_token_params={'scope': 'https://www.googleapis.com/auth/userinfo.email', 'response_type': 'code'}, access_token_url='https://accounts.google.com/o/oauth2/token', access_token_method='POST', access_token_params={'grant_type': 'authorization_code'}, consumer_key='503619580307-c2idr2bfvuqvg42kd4477eegff04t2sm.apps.googleusercontent.com', consumer_secret='FBRYxnoR6hR6AsmRta-h49G0') def get_method(): global method return method def set_method(m): global method method = m def get_user_info(method): if method == 'google': return get_google_user_info() if method == 'facebook': return get_facebook_user_info() return {} def get_google_user_info(): #return {'email': 'prueba'} access_token = session.get('access_token') if access_token is None: return redirect(url_for('app_oauth.login_google')) access_token = access_token[0] from urllib2 import Request, urlopen, URLError headers = {'Authorization': 'OAuth '+access_token} req = Request('https://www.googleapis.com/oauth2/v1/userinfo', None, headers) try: res = urlopen(req) except URLError, e: if e.code == 401: # Unauthorized - bad token session.pop('access_token', None) return redirect('/') return res.read() for l in [item.split('":') for item in res.read().replace('{', '').replace('}','').split(',')]: k = l[0].replace('"', '').strip() if k == 'id': g_id = l[1].replace('"', '').strip() elif k == 'name': g_name = l[1].replace('"', '').strip() elif k == 'email': g_email = l[1].replace('"', '').strip() #user[k] = v return {'id': g_id, 'name': g_name, 'email': g_email} def get_facebook_user_info(): graph = fb.GraphAPI(session['oauth_token'][0]) #me = facebook.get('/me') me = graph.get_object("me?fields=email,first_name,last_name,name,birthday") return me @app_oauth.route('/login/facebook') def login_facebook(): global method method = 'facebook' return facebook.authorize(callback=url_for('app_oauth.facebook_authorized', next=request.args.get('next') or request.referrer or None, _external=True)) @app_oauth.route('/facebook_authorized') @facebook.authorized_handler def facebook_authorized(resp): global method if resp is None: return 'Access denied: reason=%s error=%s' % ( request.args['error_reason'], request.args['error_description'] ) session['oauth_token'] = (resp['access_token'], '') method = 'facebook' return redirect('/') @facebook.tokengetter def get_facebook_oauth_token(): return session.get('oauth_token') @app_oauth.route('/login/google') def login_google(): global method method = 'google' callback=url_for('app_oauth.authorized', _external=True) return google.authorize(callback=callback) @app_oauth.route('/authorized/google') @google.authorized_handler def authorized(resp): access_token = resp['access_token'] session['access_token'] = access_token, '' return redirect('/') @google.tokengetter def get_access_token(): return session.get('access_token')
bsd-3-clause
-6,090,719,618,717,257,000
28.918239
130
0.615094
false
qgis/QGIS-Django
qgis-app/models/migrations/0002_rename_Review_model_and_file_field.py
1
1156
# Custom migration, rename ModelReview to Review from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('models', '0001_initial'), ] operations = [ migrations.RenameField( model_name='model', old_name='model_file', new_name='file', ), migrations.RenameField( model_name='modelreview', old_name='model', new_name='resource', ), migrations.RenameModel( old_name='ModelReview', new_name='Review' ), migrations.AlterField( model_name='review', name='reviewer', field=models.ForeignKey(help_text='The user who reviewed this GeoPackage.', on_delete=django.db.models.deletion.CASCADE, related_name='models_review_related', to=settings.AUTH_USER_MODEL, verbose_name='Reviewed by'), ), ]
gpl-2.0
7,157,951,517,705,604,000
27.195122
118
0.564879
false
GenericStudent/home-assistant
tests/components/speedtestdotnet/test_config_flow.py
6
4464
"""Tests for SpeedTest config flow.""" from datetime import timedelta import pytest from speedtest import NoMatchedServers from homeassistant import data_entry_flow from homeassistant.components import speedtestdotnet from homeassistant.components.speedtestdotnet.const import ( CONF_MANUAL, CONF_SERVER_ID, CONF_SERVER_NAME, DOMAIN, SENSOR_TYPES, ) from homeassistant.const import CONF_MONITORED_CONDITIONS, CONF_SCAN_INTERVAL from . import MOCK_SERVERS from tests.async_mock import patch from tests.common import MockConfigEntry @pytest.fixture(name="mock_setup") def mock_setup(): """Mock entry setup.""" with patch( "homeassistant.components.speedtestdotnet.async_setup_entry", return_value=True, ): yield async def test_flow_works(hass, mock_setup): """Test user config.""" result = await hass.config_entries.flow.async_init( speedtestdotnet.DOMAIN, context={"source": "user"} ) assert result["type"] == data_entry_flow.RESULT_TYPE_FORM assert result["step_id"] == "user" result = await hass.config_entries.flow.async_configure( result["flow_id"], user_input={} ) assert result["type"] == data_entry_flow.RESULT_TYPE_CREATE_ENTRY assert result["title"] == "SpeedTest" async def test_import_fails(hass, mock_setup): """Test import step fails if server_id is not valid.""" with patch("speedtest.Speedtest") as mock_api: mock_api.return_value.get_servers.side_effect = NoMatchedServers result = await hass.config_entries.flow.async_init( speedtestdotnet.DOMAIN, context={"source": "import"}, data={ CONF_SERVER_ID: "223", CONF_MANUAL: True, CONF_SCAN_INTERVAL: timedelta(minutes=1), CONF_MONITORED_CONDITIONS: list(SENSOR_TYPES), }, ) assert result["type"] == data_entry_flow.RESULT_TYPE_ABORT assert result["reason"] == "wrong_server_id" async def test_import_success(hass, mock_setup): """Test import step is successful if server_id is valid.""" with patch("speedtest.Speedtest"): result = await hass.config_entries.flow.async_init( speedtestdotnet.DOMAIN, context={"source": "import"}, data={ CONF_SERVER_ID: "1", CONF_MANUAL: True, CONF_SCAN_INTERVAL: timedelta(minutes=1), CONF_MONITORED_CONDITIONS: list(SENSOR_TYPES), }, ) assert result["type"] == data_entry_flow.RESULT_TYPE_CREATE_ENTRY assert result["title"] == "SpeedTest" assert result["data"][CONF_SERVER_ID] == "1" assert result["data"][CONF_MANUAL] is True assert result["data"][CONF_SCAN_INTERVAL] == 1 async def test_options(hass): """Test updating options.""" entry = MockConfigEntry( domain=DOMAIN, title="SpeedTest", data={}, options={}, ) entry.add_to_hass(hass) with patch("speedtest.Speedtest") as mock_api: mock_api.return_value.get_servers.return_value = MOCK_SERVERS await hass.config_entries.async_setup(entry.entry_id) result = await hass.config_entries.options.async_init(entry.entry_id) assert result["type"] == data_entry_flow.RESULT_TYPE_FORM assert result["step_id"] == "init" result = await hass.config_entries.options.async_configure( result["flow_id"], user_input={ CONF_SERVER_NAME: "Country1 - Sponsor1 - Server1", CONF_SCAN_INTERVAL: 30, CONF_MANUAL: False, }, ) assert result["type"] == data_entry_flow.RESULT_TYPE_CREATE_ENTRY assert result["data"] == { CONF_SERVER_NAME: "Country1 - Sponsor1 - Server1", CONF_SERVER_ID: "1", CONF_SCAN_INTERVAL: 30, CONF_MANUAL: False, } async def test_integration_already_configured(hass): """Test integration is already configured.""" entry = MockConfigEntry( domain=DOMAIN, data={}, options={}, ) entry.add_to_hass(hass) result = await hass.config_entries.flow.async_init( speedtestdotnet.DOMAIN, context={"source": "user"} ) assert result["type"] == data_entry_flow.RESULT_TYPE_ABORT assert result["reason"] == "single_instance_allowed"
apache-2.0
1,362,920,396,697,211,400
31.347826
77
0.617608
false
pschmitt/home-assistant
tests/components/arlo/test_sensor.py
6
6961
"""The tests for the Netgear Arlo sensors.""" from collections import namedtuple import pytest from homeassistant.components.arlo import DATA_ARLO, sensor as arlo from homeassistant.const import ( ATTR_ATTRIBUTION, DEVICE_CLASS_HUMIDITY, DEVICE_CLASS_TEMPERATURE, UNIT_PERCENTAGE, ) from tests.async_mock import patch def _get_named_tuple(input_dict): return namedtuple("Struct", input_dict.keys())(*input_dict.values()) def _get_sensor(name="Last", sensor_type="last_capture", data=None): if data is None: data = {} return arlo.ArloSensor(name, data, sensor_type) @pytest.fixture() def default_sensor(): """Create an ArloSensor with default values.""" return _get_sensor() @pytest.fixture() def battery_sensor(): """Create an ArloSensor with battery data.""" data = _get_named_tuple({"battery_level": 50}) return _get_sensor("Battery Level", "battery_level", data) @pytest.fixture() def temperature_sensor(): """Create a temperature ArloSensor.""" return _get_sensor("Temperature", "temperature") @pytest.fixture() def humidity_sensor(): """Create a humidity ArloSensor.""" return _get_sensor("Humidity", "humidity") @pytest.fixture() def cameras_sensor(): """Create a total cameras ArloSensor.""" data = _get_named_tuple({"cameras": [0, 0]}) return _get_sensor("Arlo Cameras", "total_cameras", data) @pytest.fixture() def captured_sensor(): """Create a captured today ArloSensor.""" data = _get_named_tuple({"captured_today": [0, 0, 0, 0, 0]}) return _get_sensor("Captured Today", "captured_today", data) class PlatformSetupFixture: """Fixture for testing platform setup call to add_entities().""" def __init__(self): """Instantiate the platform setup fixture.""" self.sensors = None self.update = False def add_entities(self, sensors, update): """Mock method for adding devices.""" self.sensors = sensors self.update = update @pytest.fixture() def platform_setup(): """Create an instance of the PlatformSetupFixture class.""" return PlatformSetupFixture() @pytest.fixture() def sensor_with_hass_data(default_sensor, hass): """Create a sensor with async_dispatcher_connected mocked.""" hass.data = {} default_sensor.hass = hass return default_sensor @pytest.fixture() def mock_dispatch(): """Mock the dispatcher connect method.""" target = "homeassistant.components.arlo.sensor.async_dispatcher_connect" with patch(target) as _mock: yield _mock def test_setup_with_no_data(platform_setup, hass): """Test setup_platform with no data.""" arlo.setup_platform(hass, None, platform_setup.add_entities) assert platform_setup.sensors is None assert not platform_setup.update def test_setup_with_valid_data(platform_setup, hass): """Test setup_platform with valid data.""" config = { "monitored_conditions": [ "last_capture", "total_cameras", "captured_today", "battery_level", "signal_strength", "temperature", "humidity", "air_quality", ] } hass.data[DATA_ARLO] = _get_named_tuple( { "cameras": [_get_named_tuple({"name": "Camera", "model_id": "ABC1000"})], "base_stations": [ _get_named_tuple({"name": "Base Station", "model_id": "ABC1000"}) ], } ) arlo.setup_platform(hass, config, platform_setup.add_entities) assert len(platform_setup.sensors) == 8 assert platform_setup.update def test_sensor_name(default_sensor): """Test the name property.""" assert default_sensor.name == "Last" async def test_async_added_to_hass(sensor_with_hass_data, mock_dispatch): """Test dispatcher called when added.""" await sensor_with_hass_data.async_added_to_hass() assert len(mock_dispatch.mock_calls) == 1 kall = mock_dispatch.call_args args, kwargs = kall assert len(args) == 3 assert args[0] == sensor_with_hass_data.hass assert args[1] == "arlo_update" assert not kwargs def test_sensor_state_default(default_sensor): """Test the state property.""" assert default_sensor.state is None def test_sensor_icon_battery(battery_sensor): """Test the battery icon.""" assert battery_sensor.icon == "mdi:battery-50" def test_sensor_icon(temperature_sensor): """Test the icon property.""" assert temperature_sensor.icon == "mdi:thermometer" def test_unit_of_measure(default_sensor, battery_sensor): """Test the unit_of_measurement property.""" assert default_sensor.unit_of_measurement is None assert battery_sensor.unit_of_measurement == UNIT_PERCENTAGE def test_device_class(default_sensor, temperature_sensor, humidity_sensor): """Test the device_class property.""" assert default_sensor.device_class is None assert temperature_sensor.device_class == DEVICE_CLASS_TEMPERATURE assert humidity_sensor.device_class == DEVICE_CLASS_HUMIDITY def test_update_total_cameras(cameras_sensor): """Test update method for total_cameras sensor type.""" cameras_sensor.update() assert cameras_sensor.state == 2 def test_update_captured_today(captured_sensor): """Test update method for captured_today sensor type.""" captured_sensor.update() assert captured_sensor.state == 5 def _test_attributes(sensor_type): data = _get_named_tuple({"model_id": "TEST123"}) sensor = _get_sensor("test", sensor_type, data) attrs = sensor.device_state_attributes assert attrs.get(ATTR_ATTRIBUTION) == "Data provided by arlo.netgear.com" assert attrs.get("brand") == "Netgear Arlo" assert attrs.get("model") == "TEST123" def test_state_attributes(): """Test attributes for camera sensor types.""" _test_attributes("battery_level") _test_attributes("signal_strength") _test_attributes("temperature") _test_attributes("humidity") _test_attributes("air_quality") def test_attributes_total_cameras(cameras_sensor): """Test attributes for total cameras sensor type.""" attrs = cameras_sensor.device_state_attributes assert attrs.get(ATTR_ATTRIBUTION) == "Data provided by arlo.netgear.com" assert attrs.get("brand") == "Netgear Arlo" assert attrs.get("model") is None def _test_update(sensor_type, key, value): data = _get_named_tuple({key: value}) sensor = _get_sensor("test", sensor_type, data) sensor.update() assert sensor.state == value def test_update(): """Test update method for direct transcription sensor types.""" _test_update("battery_level", "battery_level", 100) _test_update("signal_strength", "signal_strength", 100) _test_update("temperature", "ambient_temperature", 21.4) _test_update("humidity", "ambient_humidity", 45.1) _test_update("air_quality", "ambient_air_quality", 14.2)
apache-2.0
-2,340,961,110,717,036,500
28.747863
85
0.666427
false
klenov/mashinka
main.py
1
1340
#!/usr/bin/env python # -*- coding: utf-8 -*- import serial radio = serial.Serial('/dev/tty.usbserial') # TODO: change this to command line argument pshyk_enabled = 0 def getch(): import sys, tty, termios fd = sys.stdin.fileno() old_settings = termios.tcgetattr(fd) try: tty.setraw(sys.stdin.fileno()) ch = sys.stdin.read(1) finally: termios.tcsetattr(fd, termios.TCSADRAIN, old_settings) return ch print "Press q for exit\n" print "Press a, s, w, d for movement and spacebar to paint\n" try: while True: key = getch() print "Key pressed is " + key if key == 'a': radio.write("\xA1") elif key == 'd': radio.write("\xA2") elif key == 'w': radio.write("\xA3") elif key == 's': radio.write("\xA4") elif key == ' ': if( not pshyk_enabled ): radio.write("\x3F") pshyk_enabled = 1 print "paint enabled" else: radio.write('a') pshyk_enabled = 0 print "paint disabled" elif key == 'q': break # Exit the while loop except KeyboardInterrupt: pass finally: radio.close()
gpl-2.0
-3,078,600,315,873,372,000
21.928571
88
0.493284
false
wenxichen/tensorflow_yolo2
src/slim_dir/preprocessing/preprocessing_factory.py
14
2762
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Contains a factory for building various models.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf from preprocessing import cifarnet_preprocessing from preprocessing import inception_preprocessing from preprocessing import lenet_preprocessing from preprocessing import vgg_preprocessing slim = tf.contrib.slim def get_preprocessing(name, is_training=False): """Returns preprocessing_fn(image, height, width, **kwargs). Args: name: The name of the preprocessing function. is_training: `True` if the model is being used for training and `False` otherwise. Returns: preprocessing_fn: A function that preprocessing a single image (pre-batch). It has the following signature: image = preprocessing_fn(image, output_height, output_width, ...). Raises: ValueError: If Preprocessing `name` is not recognized. """ preprocessing_fn_map = { 'cifarnet': cifarnet_preprocessing, 'inception': inception_preprocessing, 'inception_v1': inception_preprocessing, 'inception_v2': inception_preprocessing, 'inception_v3': inception_preprocessing, 'inception_v4': inception_preprocessing, 'inception_resnet_v2': inception_preprocessing, 'lenet': lenet_preprocessing, 'resnet_v1_50': vgg_preprocessing, 'resnet_v1_101': vgg_preprocessing, 'resnet_v1_152': vgg_preprocessing, 'resnet_v2_50': vgg_preprocessing, 'resnet_v2_101': vgg_preprocessing, 'resnet_v2_152': vgg_preprocessing, 'vgg': vgg_preprocessing, 'vgg_a': vgg_preprocessing, 'vgg_16': vgg_preprocessing, 'vgg_19': vgg_preprocessing, } if name not in preprocessing_fn_map: raise ValueError('Preprocessing name [%s] was not recognized' % name) def preprocessing_fn(image, output_height, output_width, **kwargs): return preprocessing_fn_map[name].preprocess_image( image, output_height, output_width, is_training=is_training, **kwargs) return preprocessing_fn
mit
2,041,764,836,220,496,600
35.826667
80
0.701665
false
abdhaleegit/avocado-misc-tests
memory/memhotplug.py
4
8438
#!/usr/bin/env python # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # # See LICENSE for more details. # # Copyright: 2017 IBM # Author: Abdul Haleem <[email protected]> import os import glob import re import platform import multiprocessing from avocado import Test from avocado.utils import process, memory, build, archive from avocado.utils.software_manager import SoftwareManager MEM_PATH = '/sys/devices/system/memory' ERRORLOG = ['WARNING: CPU:', 'Oops', 'Segfault', 'soft lockup', 'Unable to handle paging request', 'rcu_sched detected stalls', 'NMI backtrace for cpu', 'WARNING: at', 'INFO: possible recursive locking detected', 'Kernel BUG at', 'Kernel panic - not syncing:', 'double fault:', 'BUG: Bad page state in'] def clear_dmesg(): process.run("dmesg -C ", sudo=True) def online(block): try: memory.hotplug(block) return "" except IOError: return "memory%s : Resource is busy" % block def offline(block): try: memory.hotunplug(block) return "" except IOError: return "memory%s : Resource is busy" % block def get_hotpluggable_blocks(path, ratio): mem_blocks = [] for mem_blk in glob.glob(path): block = re.findall(r"\d+", os.path.basename(mem_blk))[0] block = re.sub(r'^\s*$', '', block) if memory.is_hot_pluggable(block): mem_blocks.append(block) def chunks(num): """ Return number of blocks in chunks of 100 """ if num % 2: return num // 100 + 1 return num // 100 count = chunks(len(mem_blocks) * ratio) return mem_blocks[:count] def collect_dmesg(object): object.whiteboard = process.system_output("dmesg") class MemStress(Test): ''' Stress test to excersize memory component This test performs memory hotunplug/hotplug tests with below scenarios: 1. hotunplug one by one in a loop for all 2. Toggle memory blocks by making off/on in a loop 3. hot unplug % of memory for different ratios 4. dlpar memory hotplug using drmgr 5. shared resource : dlpar in CMO mode 6. try hotplug each different numa node memblocks 7. run stress memory in background :avocado: tags=memory,privileged ''' def setUp(self): if not memory.check_hotplug(): self.cancel("UnSupported : memory hotplug not enabled\n") smm = SoftwareManager() if not smm.check_installed('stress') and not smm.install('stress'): tarball = self.fetch_asset( 'https://fossies.org/linux/privat/stress-1.0.4.tar.gz') archive.extract(tarball, self.teststmpdir) self.sourcedir = os.path.join( self.teststmpdir, os.path.basename(tarball.split('.tar.')[0])) os.chdir(self.sourcedir) process.run('[ -x configure ] && ./configure', shell=True) build.make(self.sourcedir) build.make(self.sourcedir, extra_args='install') self.iteration = self.params.get('iteration', default=1) self.stresstime = self.params.get('stresstime', default=10) self.vmcount = self.params.get('vmcount', default=4) self.iocount = self.params.get('iocount', default=4) self.memratio = self.params.get('memratio', default=5) self.blocks_hotpluggable = get_hotpluggable_blocks( (os.path.join('%s', 'memory*') % MEM_PATH), self.memratio) if os.path.exists("%s/auto_online_blocks" % MEM_PATH): if not self.__is_auto_online(): self.hotplug_all(self.blocks_hotpluggable) clear_dmesg() def hotunplug_all(self, blocks): for block in blocks: if memory._check_memory_state(block): err = offline(block) if err: self.log.error(err) def hotplug_all(self, blocks): for block in blocks: if not memory._check_memory_state(block): err = online(block) if err: self.log.error(err) @staticmethod def __is_auto_online(): with open('%s/auto_online_blocks' % MEM_PATH, 'r') as auto_file: if auto_file.read() == 'online\n': return True return False def __error_check(self): err_list = [] logs = process.system_output("dmesg -Txl 1,2,3,4").splitlines() for error in ERRORLOG: for log in logs: if error in log.decode(): err_list.append(log) if "\n".join(err_list): collect_dmesg(self) self.fail('ERROR: Test failed, please check the dmesg logs') def run_stress(self): mem_free = memory.meminfo.MemFree.m // 4 cpu_count = int(multiprocessing.cpu_count()) // 2 process.run("stress --cpu %s --io %s --vm %s --vm-bytes %sM --timeout %ss" % (cpu_count, self.iocount, self.vmcount, mem_free, self.stresstime), ignore_status=True, sudo=True, shell=True) def test_hotplug_loop(self): self.log.info("\nTEST: hotunplug and hotplug in a loop\n") for _ in range(self.iteration): self.log.info("\nhotunplug all memory\n") self.hotunplug_all(self.blocks_hotpluggable) self.run_stress() self.log.info("\nReclaim back memory\n") self.hotplug_all(self.blocks_hotpluggable) self.__error_check() def test_hotplug_toggle(self): self.log.info("\nTEST: Memory toggle\n") for _ in range(self.iteration): for block in self.blocks_hotpluggable: err = offline(block) if err: self.log.error(err) self.log.info("memory%s block hotunplugged", block) self.run_stress() err = online(block) if err: self.log.error(err) self.log.info("memory%s block hotplugged", block) self.__error_check() def test_dlpar_mem_hotplug(self): if 'ppc' in platform.processor() and 'PowerNV' not in open('/proc/cpuinfo', 'r').read(): if b"mem_dlpar=yes" in process.system_output("drmgr -C", ignore_status=True, shell=True): self.log.info("\nDLPAR remove memory operation\n") for _ in range(len(self.blocks_hotpluggable) // 2): process.run( "drmgr -c mem -d 5 -w 30 -r", shell=True, ignore_status=True, sudo=True) self.run_stress() self.log.info("\nDLPAR add memory operation\n") for _ in range(len(self.blocks_hotpluggable) // 2): process.run( "drmgr -c mem -d 5 -w 30 -a", shell=True, ignore_status=True, sudo=True) self.__error_check() else: self.log.info('UNSUPPORTED: dlpar not configured..') else: self.log.info("UNSUPPORTED: Test not supported on this platform") def test_hotplug_per_numa_node(self): self.log.info("\nTEST: Numa Node memory off on\n") with open('/sys/devices/system/node/has_normal_memory', 'r') as node_file: nodes = node_file.read() for node in re.split("[,-]", nodes): node = node.strip('\n') self.log.info("Hotplug all memory in Numa Node %s", node) mem_blocks = get_hotpluggable_blocks(( '/sys/devices/system/node/node%s/memory*' % node), self.memratio) for block in mem_blocks: self.log.info( "offline memory%s in numa node%s", block, node) err = offline(block) if err: self.log.error(err) self.run_stress() self.__error_check() def tearDown(self): self.hotplug_all(self.blocks_hotpluggable)
gpl-2.0
5,729,532,073,415,297,000
36.336283
130
0.580351
false
rebost/django
tests/regressiontests/utils/crypto.py
41
4931
import math import timeit import hashlib from django.utils import unittest from django.utils.crypto import pbkdf2 class TestUtilsCryptoPBKDF2(unittest.TestCase): # http://tools.ietf.org/html/draft-josefsson-pbkdf2-test-vectors-06 rfc_vectors = [ { "args": { "password": "password", "salt": "salt", "iterations": 1, "dklen": 20, "digest": hashlib.sha1, }, "result": "0c60c80f961f0e71f3a9b524af6012062fe037a6", }, { "args": { "password": "password", "salt": "salt", "iterations": 2, "dklen": 20, "digest": hashlib.sha1, }, "result": "ea6c014dc72d6f8ccd1ed92ace1d41f0d8de8957", }, { "args": { "password": "password", "salt": "salt", "iterations": 4096, "dklen": 20, "digest": hashlib.sha1, }, "result": "4b007901b765489abead49d926f721d065a429c1", }, # # this takes way too long :( # { # "args": { # "password": "password", # "salt": "salt", # "iterations": 16777216, # "dklen": 20, # "digest": hashlib.sha1, # }, # "result": "eefe3d61cd4da4e4e9945b3d6ba2158c2634e984", # }, { "args": { "password": "passwordPASSWORDpassword", "salt": "saltSALTsaltSALTsaltSALTsaltSALTsalt", "iterations": 4096, "dklen": 25, "digest": hashlib.sha1, }, "result": "3d2eec4fe41c849b80c8d83662c0e44a8b291a964cf2f07038", }, { "args": { "password": "pass\0word", "salt": "sa\0lt", "iterations": 4096, "dklen": 16, "digest": hashlib.sha1, }, "result": "56fa6aa75548099dcc37d7f03425e0c3", }, ] regression_vectors = [ { "args": { "password": "password", "salt": "salt", "iterations": 1, "dklen": 20, "digest": hashlib.sha256, }, "result": "120fb6cffcf8b32c43e7225256c4f837a86548c9", }, { "args": { "password": "password", "salt": "salt", "iterations": 1, "dklen": 20, "digest": hashlib.sha512, }, "result": "867f70cf1ade02cff3752599a3a53dc4af34c7a6", }, { "args": { "password": "password", "salt": "salt", "iterations": 1000, "dklen": 0, "digest": hashlib.sha512, }, "result": ("afe6c5530785b6cc6b1c6453384731bd5ee432ee" "549fd42fb6695779ad8a1c5bf59de69c48f774ef" "c4007d5298f9033c0241d5ab69305e7b64eceeb8d" "834cfec"), }, # Check leading zeros are not stripped (#17481) { "args": { "password": chr(186), "salt": "salt", "iterations": 1, "dklen": 20, "digest": hashlib.sha1, }, "result": '0053d3b91a7f1e54effebd6d68771e8a6e0b2c5b', }, ] def test_public_vectors(self): for vector in self.rfc_vectors: result = pbkdf2(**vector['args']) self.assertEqual(result.encode('hex'), vector['result']) def test_regression_vectors(self): for vector in self.regression_vectors: result = pbkdf2(**vector['args']) self.assertEqual(result.encode('hex'), vector['result']) def test_performance_scalability(self): """ Theory: If you run with 100 iterations, it should take 100 times as long as running with 1 iteration. """ # These values are chosen as a reasonable tradeoff between time # to run the test suite and false positives caused by imprecise # measurement. n1, n2 = 200000, 800000 elapsed = lambda f: timeit.Timer(f, 'from django.utils.crypto import pbkdf2').timeit(number=1) t1 = elapsed('pbkdf2("password", "salt", iterations=%d)' % n1) t2 = elapsed('pbkdf2("password", "salt", iterations=%d)' % n2) measured_scale_exponent = math.log(t2 / t1, n2 / n1) # This should be less than 1. We allow up to 1.2 so that tests don't # fail nondeterministically too often. self.assertLess(measured_scale_exponent, 1.2)
bsd-3-clause
-2,955,672,078,975,782,400
31.873333
78
0.46887
false
drcapulet/sentry
src/sentry/tasks/email.py
27
1947
""" sentry.tasks.email ~~~~~~~~~~~~~~~~~~ :copyright: (c) 2010-2014 by the Sentry Team, see AUTHORS for more details. :license: BSD, see LICENSE for more details. """ from __future__ import absolute_import, print_function import logging from django.core.mail import get_connection from sentry.tasks.base import instrumented_task logger = logging.getLogger(__name__) def _get_user_from_email(group, email): from sentry.models import Project, User # TODO(dcramer): we should encode the userid in emails so we can avoid this for user in User.objects.filter(email__iexact=email): # Make sure that the user actually has access to this project if group.project not in Project.objects.get_for_user( team=group.team, user=user): logger.warning('User %r does not have access to group %r', user, group) continue return user @instrumented_task( name='sentry.tasks.email.process_inbound_email', queue='email') def process_inbound_email(mailfrom, group_id, payload): """ """ from sentry.models import Event, Group from sentry.web.forms import NewNoteForm try: group = Group.objects.select_related('project', 'team').get(pk=group_id) except Group.DoesNotExist: logger.warning('Group does not exist: %d', group_id) return user = _get_user_from_email(group, mailfrom) if user is None: logger.warning('Inbound email from unknown address: %s', mailfrom) return event = group.get_latest_event() or Event() Event.objects.bind_nodes([event], 'data') event.group = group event.project = group.project form = NewNoteForm({'text': payload}) if form.is_valid(): form.save(event, user) @instrumented_task( name='sentry.tasks.email.send_email', queue='email') def send_email(message): connection = get_connection() connection.send_messages([message])
bsd-3-clause
8,166,124,854,748,269,000
26.814286
83
0.665639
false
raphaelm/python-sepadd
tests/debit/test_00800302.py
1
5356
import datetime import pytest from sepaxml import SepaDD from tests.utils import clean_ids, validate_xml @pytest.fixture def sdd(): return SepaDD({ "name": "TestCreditor", "IBAN": "NL50BANK1234567890", "BIC": "BANKNL2A", "batch": True, "creditor_id": "DE26ZZZ00000000000", "currency": "EUR" }, schema="pain.008.003.02") SAMPLE_RESULT = b""" <Document xmlns="urn:iso:std:iso:20022:tech:xsd:pain.008.003.02" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <CstmrDrctDbtInitn> <GrpHdr> <MsgId>20012017014921-ba2dab283fdd</MsgId> <CreDtTm>2017-01-20T13:49:21</CreDtTm> <NbOfTxs>2</NbOfTxs> <CtrlSum>60.12</CtrlSum> <InitgPty> <Nm>TestCreditor</Nm> <Id> <OrgId> <Othr> <Id>DE26ZZZ00000000000</Id> </Othr> </OrgId> </Id> </InitgPty> </GrpHdr> <PmtInf> <PmtInfId>TestCreditor-ecd6a2f680ce</PmtInfId> <PmtMtd>DD</PmtMtd> <BtchBookg>true</BtchBookg> <NbOfTxs>1</NbOfTxs> <CtrlSum>10.12</CtrlSum> <PmtTpInf> <SvcLvl> <Cd>SEPA</Cd> </SvcLvl> <LclInstrm> <Cd>CORE</Cd> </LclInstrm> <SeqTp>FRST</SeqTp> </PmtTpInf> <ReqdColltnDt>2017-01-20</ReqdColltnDt> <Cdtr> <Nm>TestCreditor</Nm> </Cdtr> <CdtrAcct> <Id> <IBAN>NL50BANK1234567890</IBAN> </Id> </CdtrAcct> <CdtrAgt> <FinInstnId> <BIC>BANKNL2A</BIC> </FinInstnId> </CdtrAgt> <ChrgBr>SLEV</ChrgBr> <CdtrSchmeId> <Id> <PrvtId> <Othr> <Id>DE26ZZZ00000000000</Id> <SchmeNm> <Prtry>SEPA</Prtry> </SchmeNm> </Othr> </PrvtId> </Id> </CdtrSchmeId> <DrctDbtTxInf> <PmtId> <EndToEndId>TestCreditor-4431989789fb</EndToEndId> </PmtId> <InstdAmt Ccy="EUR">10.12</InstdAmt> <DrctDbtTx> <MndtRltdInf> <MndtId>1234</MndtId> <DtOfSgntr>2017-01-20</DtOfSgntr> </MndtRltdInf> </DrctDbtTx> <DbtrAgt> <FinInstnId> <BIC>BANKNL2A</BIC> </FinInstnId> </DbtrAgt> <Dbtr> <Nm>Test von Testenstein</Nm> </Dbtr> <DbtrAcct> <Id> <IBAN>NL50BANK1234567890</IBAN> </Id> </DbtrAcct> <RmtInf> <Ustrd>Test transaction1</Ustrd> </RmtInf> </DrctDbtTxInf> </PmtInf> <PmtInf> <PmtInfId>TestCreditor-d547a1b3882f</PmtInfId> <PmtMtd>DD</PmtMtd> <BtchBookg>true</BtchBookg> <NbOfTxs>1</NbOfTxs> <CtrlSum>50.00</CtrlSum> <PmtTpInf> <SvcLvl> <Cd>SEPA</Cd> </SvcLvl> <LclInstrm> <Cd>CORE</Cd> </LclInstrm> <SeqTp>RCUR</SeqTp> </PmtTpInf> <ReqdColltnDt>2017-01-20</ReqdColltnDt> <Cdtr> <Nm>TestCreditor</Nm> </Cdtr> <CdtrAcct> <Id> <IBAN>NL50BANK1234567890</IBAN> </Id> </CdtrAcct> <CdtrAgt> <FinInstnId> <BIC>BANKNL2A</BIC> </FinInstnId> </CdtrAgt> <ChrgBr>SLEV</ChrgBr> <CdtrSchmeId> <Id> <PrvtId> <Othr> <Id>DE26ZZZ00000000000</Id> <SchmeNm> <Prtry>SEPA</Prtry> </SchmeNm> </Othr> </PrvtId> </Id> </CdtrSchmeId> <DrctDbtTxInf> <PmtId> <EndToEndId>TestCreditor-7e989083e265</EndToEndId> </PmtId> <InstdAmt Ccy="EUR">50.00</InstdAmt> <DrctDbtTx> <MndtRltdInf> <MndtId>1234</MndtId> <DtOfSgntr>2017-01-20</DtOfSgntr> </MndtRltdInf> </DrctDbtTx> <DbtrAgt> <FinInstnId> <BIC>BANKNL2A</BIC> </FinInstnId> </DbtrAgt> <Dbtr> <Nm>Test du Test</Nm> </Dbtr> <DbtrAcct> <Id> <IBAN>NL50BANK1234567890</IBAN> </Id> </DbtrAcct> <RmtInf> <Ustrd>Test transaction2</Ustrd> </RmtInf> </DrctDbtTxInf> </PmtInf> </CstmrDrctDbtInitn> </Document> """ def test_two_debits(sdd): payment1 = { "name": "Test von Testenstein", "IBAN": "NL50BANK1234567890", "BIC": "BANKNL2A", "amount": 1012, "type": "FRST", "collection_date": datetime.date.today(), "mandate_id": "1234", "mandate_date": datetime.date.today(), "description": "Test transaction1" } payment2 = { "name": "Test du Test", "IBAN": "NL50BANK1234567890", "BIC": "BANKNL2A", "amount": 5000, "type": "RCUR", "collection_date": datetime.date.today(), "mandate_id": "1234", "mandate_date": datetime.date.today(), "description": "Test transaction2" } sdd.add_payment(payment1) sdd.add_payment(payment2) xmlout = sdd.export() xmlpretty = validate_xml(xmlout, "pain.008.003.02") assert clean_ids(xmlpretty.strip()) == clean_ids(SAMPLE_RESULT.strip())
mit
500,254,502,575,483,400
23.911628
119
0.50224
false
piotr-rusin/url-shortener
test/unit/test_views.py
1
9267
# -*- coding: utf-8 -*- # pylint: disable=C0103 """Tests for view classes and functions.""" import unittest from unittest.mock import Mock, patch, MagicMock from nose_parameterized import parameterized from werkzeug.exceptions import HTTPException from url_shortener.views import shorten_url, ShowURL class BaseViewTest(object): """A class providing mocks used by all tested view functions.""" def setUp(self): self.render_template_patcher = patch( 'url_shortener.views.render_template' ) self.render_template_mock = self.render_template_patcher.start() self.redirect_patcher = patch('url_shortener.views.redirect') self.redirect_mock = self.redirect_patcher.start() self.target_url_class_mock = Mock() def tearDown(self): self.render_template_patcher.stop() self.redirect_patcher.stop() class ShortenURLTest(BaseViewTest, unittest.TestCase): """Tests for shorten_url function.""" def setUp(self): self.form_class_mock = Mock() self.form_mock = self.form_class_mock() self.form_mock.errors.values = MagicMock() self.commit_changes_mock = Mock() self.markup_patcher = patch('url_shortener.views.Markup') self.markup_mock = self.markup_patcher.start() self.url_for_patcher = patch('url_shortener.views.url_for') self.url_for_mock = self.url_for_patcher.start() self.flash_patcher = patch('url_shortener.views.flash') self.flash_mock = self.flash_patcher.start() super(ShortenURLTest, self).setUp() def tearDown(self): self.markup_patcher.stop() self.url_for_patcher.stop() self.flash_patcher.stop() super(ShortenURLTest, self).tearDown() def _call(self): """Call tested function with all arguments.""" return shorten_url( self.target_url_class_mock, self.form_class_mock, self.commit_changes_mock ) def test_gets_or_creates_a_target_url(self): """Test if get_or_create method of target URL class is called.""" self._call() self.target_url_class_mock.get_or_create.assert_called_once_with( self.form_mock.url.data ) def test_registers_new_short_url(self): """Test if commit_changes function is called.""" self._call() self.assertTrue(self.commit_changes_mock.called) def test_redirects_to_the_same_route(self): """Test if a user is redirected to form page.""" self._call() self.url_for_mock.assert_called_once_with('url_shortener.shorten_url') redirect_url = self.url_for_mock.return_value self.redirect_mock.assert_called_once_with(redirect_url) def test_returns_redirect_response(self): """Test if a redirection result is returned.""" expected = self.redirect_mock.return_value actual = self._call() self.assertEqual(expected, actual) def test_prepares_success_message(self): """Test if a message with specified elements is prepared.""" url_mock = self.target_url_class_mock.get_or_create.return_value self._call() assert_called = ( self.markup_mock.return_value.format.assert_any_call ) assert_called('Original URL', url_mock, ' class=truncated') assert_called('Short URL', url_mock.short_url, '') assert_called('Preview available at', url_mock.preview_url, '') def test_flashes_success_message(self): """Test if all elements of the success message are flashed.""" message_mock = self.markup_mock.return_value.format.return_value self._call() self.flash_mock.assert_called_with(message_mock) self.assertEqual(3, self.flash_mock.call_count) def test_renders_form_template(self): """Test if render_template is called for a GET request.""" self.form_mock.validate_on_submit.return_value = False self._call() self.render_template_mock.assert_called_once_with( 'shorten_url.html', form=self.form_mock ) def test_returns_rendered_template(self): """Test if rendered template is returned for a GET request.""" self.form_mock.validate_on_submit.return_value = False expected = self.render_template_mock.return_value actual = self._call() self.assertEqual(expected, actual) class TestShowURL(BaseViewTest, unittest.TestCase): """Tests for ShowURL class view. :cvar PREVIEW_NOT_PREVIEW_SETUP: parameters for tests differing only with the value of 'preview' constructor argument :cvar WHEN_PREVIEW_SETUP: parameters for tests differing in combinations of conditions expected to lead to rendering and returning of a preview template :ivar validator_mock: mock for a BlacklistValidator instance to be used by the view instance :ivar get_msg_if_blacklisted_mock: a mock for get_msg_if_blacklisted method of blacklist validator. """ PREVIEW_NOT_PREVIEW_SETUP = [ ('preview', True), ('redirect', False) ] WHEN_PREVIEW_SETUP = [ ('always', True, ''), ('always_and_with_spam_message', True, 'This is spam'), ('with_spam_message', False, 'This is spam.') ] def setUp(self): bval = Mock() self.validator_mock = bval self.get_msg_if_blacklisted_mock = bval.get_msg_if_blacklisted self.get_msg_if_blacklisted_mock.return_value = '' super(TestShowURL, self).setUp() self.get_or_404_mock = self.target_url_class_mock.query.get_or_404 def create_view_and_call_dispatch_request(self, preview, alias='abc'): """Prepare view instance and call dispatch request method. :param preview: a preview parameter of ShowURL constructor :param alias: an alias parameter to be passed to the method """ obj = ShowURL( preview, self.target_url_class_mock, self.validator_mock ) return obj.dispatch_request(alias) @parameterized.expand(PREVIEW_NOT_PREVIEW_SETUP) def test_dispatch_request_queries_for_target_url_to(self, _, preview): """Test if the method queries for target URL with the alias. :param preview: a preview parameter for ShowURL constructor """ alias = 'xyz' self.create_view_and_call_dispatch_request(preview, alias) self.get_or_404_mock.assert_called_once_with(alias) @parameterized.expand(PREVIEW_NOT_PREVIEW_SETUP) def test_dispatch_request_raises_http_error_for(self, _, preview): """Test for a HTTPError occurence. :param preview: a preview parameter for ShowURL constructor """ self.get_or_404_mock.side_effect = HTTPException with self.assertRaises(HTTPException): self.create_view_and_call_dispatch_request(preview) @parameterized.expand(PREVIEW_NOT_PREVIEW_SETUP) def test_dispatch_request_validates_url(self, _, preview): """Test if the URL is validated. :param preview: a preview parameter for ShowURL constructor """ self.create_view_and_call_dispatch_request(preview) target_url = self.get_or_404_mock() self.get_msg_if_blacklisted_mock.assert_called_once_with( str(target_url) ) @parameterized.expand(WHEN_PREVIEW_SETUP) def test_dispatch_request_renders_preview(self, _, preview, spam_msg): """Test if the method calls render_preview. :param preview: a preview parameter for ShowURL constructor :param spam_msg: a message to be provided by the validator """ self.get_msg_if_blacklisted_mock.return_value = spam_msg self.create_view_and_call_dispatch_request(preview) self.render_template_mock.assert_called_once_with( 'preview.html', target_url=self.get_or_404_mock(), warning=spam_msg ) @parameterized.expand(WHEN_PREVIEW_SETUP) def test_dispatch_request_shows_preview(self, _, preview, spam_msg): """Test if the method returns preview. :param preview: a preview parameter for ShowURL constructor :param spam_msg: a message to be provided by the validator """ self.get_msg_if_blacklisted_mock.return_value = spam_msg expected = self.render_template_mock() actual = self.create_view_and_call_dispatch_request(preview) self.assertEqual(expected, actual) def test_dispatch_request_redirects(self): """Test if redirect function is called.""" self.create_view_and_call_dispatch_request(False) self.redirect_mock.assert_called_once_with(self.get_or_404_mock()) def test_dispatch_request_returns_redirect(self): """Test if the method returns result of redirection.""" self.get_msg_if_blacklisted_mock.return_value = None expected = self.redirect_mock() actual = self.create_view_and_call_dispatch_request(False) self.assertEqual(expected, actual) if __name__ == "__main__": # import sys;sys.argv = ['', 'Test.testName'] unittest.main()
mit
6,918,351,025,694,210,000
33.578358
78
0.64843
false
SUSE/azure-sdk-for-python
azure-mgmt-compute/azure/mgmt/compute/compute/v2016_03_30/models/hardware_profile.py
2
2068
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.serialization import Model class HardwareProfile(Model): """Describes a hardware profile. :param vm_size: The virtual machine size name. Possible values include: 'Basic_A0', 'Basic_A1', 'Basic_A2', 'Basic_A3', 'Basic_A4', 'Standard_A0', 'Standard_A1', 'Standard_A2', 'Standard_A3', 'Standard_A4', 'Standard_A5', 'Standard_A6', 'Standard_A7', 'Standard_A8', 'Standard_A9', 'Standard_A10', 'Standard_A11', 'Standard_D1', 'Standard_D2', 'Standard_D3', 'Standard_D4', 'Standard_D11', 'Standard_D12', 'Standard_D13', 'Standard_D14', 'Standard_D1_v2', 'Standard_D2_v2', 'Standard_D3_v2', 'Standard_D4_v2', 'Standard_D5_v2', 'Standard_D11_v2', 'Standard_D12_v2', 'Standard_D13_v2', 'Standard_D14_v2', 'Standard_D15_v2', 'Standard_DS1', 'Standard_DS2', 'Standard_DS3', 'Standard_DS4', 'Standard_DS11', 'Standard_DS12', 'Standard_DS13', 'Standard_DS14', 'Standard_DS1_v2', 'Standard_DS2_v2', 'Standard_DS3_v2', 'Standard_DS4_v2', 'Standard_DS5_v2', 'Standard_DS11_v2', 'Standard_DS12_v2', 'Standard_DS13_v2', 'Standard_DS14_v2', 'Standard_DS15_v2', 'Standard_G1', 'Standard_G2', 'Standard_G3', 'Standard_G4', 'Standard_G5', 'Standard_GS1', 'Standard_GS2', 'Standard_GS3', 'Standard_GS4', 'Standard_GS5' :type vm_size: str or :class:`VirtualMachineSizeTypes <azure.mgmt.compute.compute.v2016_03_30.models.VirtualMachineSizeTypes>` """ _attribute_map = { 'vm_size': {'key': 'vmSize', 'type': 'str'}, } def __init__(self, vm_size=None): self.vm_size = vm_size
mit
1,034,907,025,080,892,800
46
79
0.609284
false
danielballan/scikit-xray
skbeam/core/speckle.py
7
12322
# ###################################################################### # Copyright (c) 2014, Brookhaven Science Associates, Brookhaven # # National Laboratory. All rights reserved. # # # # Developed at the NSLS-II, Brookhaven National Laboratory # # Developed by Sameera K. Abeykoon and Yugang Zhang, June 2015 # # # # Redistribution and use in source and binary forms, with or without # # modification, are permitted provided that the following conditions # # are met: # # # # * Redistributions of source code must retain the above copyright # # notice, this list of conditions and the following disclaimer. # # # # * Redistributions in binary form must reproduce the above copyright # # notice this list of conditions and the following disclaimer in # # the documentation and/or other materials provided with the # # distribution. # # # # * Neither the name of the Brookhaven Science Associates, Brookhaven # # National Laboratory nor the names of its contributors may be used # # to endorse or promote products derived from this software without # # specific prior written permission. # # # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # # COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, # # INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) # # HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, # # STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OTHERWISE) ARISING # # IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # # POSSIBILITY OF SUCH DAMAGE. # ######################################################################## """ X-ray speckle visibility spectroscopy(XSVS) - Dynamic information of the speckle patterns are obtained by analyzing the speckle statistics and calculating the speckle contrast in single scattering patterns. This module will provide XSVS analysis tools """ from __future__ import (absolute_import, division, print_function) import numpy as np import time from . import roi from .utils import bin_edges_to_centers, geometric_series import logging logger = logging.getLogger(__name__) def xsvs(image_sets, label_array, number_of_img, timebin_num=2, max_cts=None): """ This function will provide the probability density of detecting photons for different integration times. The experimental probability density P(K) of detecting photons K is obtained by histogramming the speckle counts over an ensemble of equivalent pixels and over a number of speckle patterns recorded with the same integration time T under the same condition. Bad images need to be represented as an array filled with np.nan. Using bad_to_nan function in mask.py the bad images can be converted into np.nan arrays. Parameters ---------- image_sets : array sets of images label_array : array labeled array; 0 is background. Each ROI is represented by a distinct label (i.e., integer). number_of_img : int number of images (how far to go with integration times when finding the time_bin, using skbeam.utils.geometric function) timebin_num : int, optional integration time; default is 2 max_cts : int, optional the brightest pixel in any ROI in any image in the image set. defaults to using skbeam.core.roi.roi_max_counts to determine the brightest pixel in any of the ROIs Returns ------- prob_k_all : array probability density of detecting photons prob_k_std_dev : array standard deviation of probability density of detecting photons Notes ----- These implementation is based on following references References: text [1]_, text [2]_ .. [1] L. Li, P. Kwasniewski, D. Oris, L Wiegart, L. Cristofolini, C. Carona and A. Fluerasu , "Photon statistics and speckle visibility spectroscopy with partially coherent x-rays" J. Synchrotron Rad., vol 21, p 1288-1295, 2014. .. [2] R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P.K. Dixon and D.J. Durian "Speckle-visibilty Spectroscopy: A tool to study time-varying dynamics" Rev. Sci. Instrum. vol 76, p 093110, 2005. There is an example in https://github.com/scikit-beam/scikit-beam-examples It will demonstrate the use of these functions in this module for experimental data. """ if max_cts is None: max_cts = roi.roi_max_counts(image_sets, label_array) # find the label's and pixel indices for ROI's labels, indices = roi.extract_label_indices(label_array) # number of ROI's u_labels = list(np.unique(labels)) num_roi = len(u_labels) # create integration times time_bin = geometric_series(timebin_num, number_of_img) # number of times in the time bin num_times = len(time_bin) # probability density of detecting photons prob_k_all = np.zeros([num_times, num_roi], dtype=np.object) # square of probability density of detecting photons prob_k_pow_all = np.zeros_like(prob_k_all) # standard deviation of probability density of detecting photons prob_k_std_dev = np.zeros_like(prob_k_all) # get the bin edges for each time bin for each ROI bin_edges = np.zeros(prob_k_all.shape[0], dtype=prob_k_all.dtype) for i in range(num_times): bin_edges[i] = np.arange(max_cts*2**i) start_time = time.time() # used to log the computation time (optionally) for i, images in enumerate(image_sets): # Ring buffer, a buffer with periodic boundary conditions. # Images must be keep for up to maximum delay in buf. buf = np.zeros([num_times, timebin_num], dtype=np.object) # matrix of buffers # to track processing each time level track_level = np.zeros(num_times) # to track bad images in each time level track_bad = np.zeros(num_times) # bad images, represented as an array filled with np.nan # (using bad_to_nan function in mask.py all the bad # images are converted into np.nan arrays) # to increment buffer cur = np.full(num_times, timebin_num) # to track how many images processed in each level img_per_level = np.zeros(num_times, dtype=np.int64) prob_k = np.zeros_like(prob_k_all) prob_k_pow = np.zeros_like(prob_k_all) for n, img in enumerate(images): cur[0] = (1 + cur[0]) % timebin_num # read each frame # Put the image into the ring buffer. buf[0, cur[0] - 1] = (np.ravel(img))[indices] _process(num_roi, 0, cur[0] - 1, buf, img_per_level, labels, max_cts, bin_edges[0], prob_k, prob_k_pow, track_bad) # check whether the number of levels is one, otherwise # continue processing the next level level = 1 while level < num_times: if not track_level[level]: track_level[level] = 1 else: prev = 1 + (cur[level - 1] - 2) % timebin_num cur[level] = 1 + cur[level] % timebin_num buf[level, cur[level]-1] = (buf[level-1, prev-1] + buf[level-1, cur[level - 1] - 1]) track_level[level] = 0 _process(num_roi, level, cur[level]-1, buf, img_per_level, labels, max_cts, bin_edges[level], prob_k, prob_k_pow, track_bad) level += 1 prob_k_all += (prob_k - prob_k_all)/(i + 1) prob_k_pow_all += (prob_k_pow - prob_k_pow_all)/(i + 1) prob_k_std_dev = np.power((prob_k_pow_all - np.power(prob_k_all, 2)), .5) logger.info("Processing time for XSVS took %s seconds." "", (time.time() - start_time)) return prob_k_all, prob_k_std_dev def _process(num_roi, level, buf_no, buf, img_per_level, labels, max_cts, bin_edges, prob_k, prob_k_pow, track_bad): """ Internal helper function. This modifies inputs in place. This helper function calculate probability of detecting photons for each integration time. .. warning :: This function mutates the input values. Parameters ---------- num_roi : int number of ROI's level : int current time level(integration time) buf_no : int current buffer number buf : array image data array to use for XSVS img_per_level : int to track how many images processed in each level labels : array labels of the required region of interests(ROI's) max_cts: int maximum pixel count bin_edges : array bin edges for each integration times and each ROI prob_k : array probability density of detecting photons prob_k_pow : array squares of probability density of detecting photons track_bad : array to track bad images in each level """ img_per_level[level] += 1 u_labels = list(np.unique(labels)) # Check if there are any bad images, represented as an array filled # with np.nan (using bad_to_nan function in mask.py all the bad # images are converted into np.nan arrays) if np.isnan(buf[level, buf_no]).any(): track_bad[level] += 1 return for j, label in enumerate(u_labels): roi_data = buf[level, buf_no][labels == label] spe_hist, bin_edges = np.histogram(roi_data, bins=bin_edges, density=True) spe_hist = np.nan_to_num(spe_hist) prob_k[level, j] += ((spe_hist - prob_k[level, j]) / (img_per_level[level] - track_bad[level])) prob_k_pow[level, j] += ((np.power(spe_hist, 2) - prob_k_pow[level, j]) / (img_per_level[level] - track_bad[level])) def normalize_bin_edges(num_times, num_rois, mean_roi, max_cts): """ This will provide the normalized bin edges and bin centers for each integration time. Parameters ---------- num_times : int number of integration times for XSVS num_rois : int number of ROI's mean_roi : array mean intensity of each ROI shape (number of ROI's) max_cts : int maximum pixel counts Returns ------- norm_bin_edges : array normalized speckle count bin edges shape (num_times, num_rois) norm_bin_centers :array normalized speckle count bin centers shape (num_times, num_rois) """ norm_bin_edges = np.zeros((num_times, num_rois), dtype=object) norm_bin_centers = np.zeros_like(norm_bin_edges) for i in range(num_times): for j in range(num_rois): norm_bin_edges[i, j] = np.arange(max_cts*2**i)/(mean_roi[j]*2**i) norm_bin_centers[i, j] = bin_edges_to_centers(norm_bin_edges[i, j]) return norm_bin_edges, norm_bin_centers
bsd-3-clause
4,274,667,901,027,297,000
39.4
79
0.581967
false
harymitchell/mscs-ml
MLWorker/worker.py
1
9607
import os import pprint import pandas import numpy as np from pymongo import MongoClient import gridfs from bson import ObjectId import Queue from keras_evaluator import KerasEvaluator from keras.models import load_model from sklearn.externals import joblib from evaluation_service import evaluation_service from model_service import model_service from dataset_service import dataset_service from settings import MONGO_HOST, MONGO_PORT, MONGO_USERNAME, MONGO_PASSWORD, MONGO_DBNAME, WORKER_ID, SLEEP_TIME, DEPLOY_DIRECTORY import time, sys, os, traceback from sklearn.pipeline import Pipeline class Worker (object): """Object which processes OPEN evaluations from the DB and writes back results""" def __init__(self, mongo_uri=None, db=None, worker_id=None, client=None): self.serviceURL = os.environ.get('SERVICE_URL', None) self.worker_id = worker_id self.mongo_uri = mongo_uri if client: self.client = client else: self.client = MongoClient(mongo_uri) self.evaluation_service = evaluation_service(client=self.client, db=db, worker_id=worker_id) self.model_service = model_service(db=db, client=self.evaluation_service.client) self.dataset_service = dataset_service(db=db, client=self.evaluation_service.client) # gridFS setup self.db = self.client[db] self.fs = gridfs.GridFS(self.db) def run(self, in_q=None, out_q=None): """Run application""" print ("starting worker node") while True: if in_q: try: got = in_q.get(block=False) if got and len(got) == 3: modelID, input_data, input_columns = got prediction = self.predictFromModel(modelID, input_data, input_columns) out_q.put({'prediction': prediction}) except Queue.Empty: pass except Exception as e: traceback.print_exc() out_q.put({'error': e}) self.run_once() time.sleep(SLEEP_TIME) def run_once(self): """Attempt to retrieve a single open evaluation""" self.evaluation = self.evaluation_service.retrieveOpenEvaluation() if self.evaluation: self.process_current_evaluation() def process_current_evaluation(self): """Process the current evaluation""" try: print ("Processing evaluation: {}".format(self.evaluation['_id'])) self.model = self.evaluation['model_ref'] self.dataset = self.dataset_service.getDatasetByID(self.model['dataset']) self.keras_evaluator = KerasEvaluator(self.dataset, self.model, self.evaluation)#, gridfs=self.fs, model_service=self.model_service) evaluated_model = self.keras_evaluator.build_and_evaluate_new_model() print 'model evaluated' self.saveModel(evaluated_model) if len(self.keras_evaluator.errors) > 0: self.handle_errored_evaluation(self.keras_evaluator.errors) else: self.handle_successful_evaluation() except Exception as e: type_, value_, traceback_ = sys.exc_info() ex = traceback.format_exception(type_, value_, traceback_) print (ex) self.handle_errored_evaluation(ex) def saveModel(self, evaluated_model): """write back the h5 file to the DB""" print 'saving model' if not os.path.exists(DEPLOY_DIRECTORY): print 'creating deploy directory' os.makedirs(DEPLOY_DIRECTORY) model_file_name = str(self.model.get('_id'))+'.h5' model_full_path = os.path.join(DEPLOY_DIRECTORY, model_file_name) print 'saving to file '+ model_full_path evaluated_model.save(model_full_path) try: # save weights to gridfs f = open(model_full_path, 'r') fileId = self.fs.put(f) print self.model print self.model['_id'] print {'$set': {'serviceURL': self.serviceURL, 'pathToHDF5': model_full_path, 'deployID': fileId}} res = self.model_service.updateModel(self.model, {'$set': {'serviceURL': self.serviceURL, 'pathToHDF5': model_full_path, 'deployID': fileId}}) print 'model updated' print res.raw_result except Exception as e: print 'error saving file' print e finally: f.close() def savePipeline(self, pipeline): # Save the Keras model first: pipeline.named_steps['keras_model'].model.save('deploys/keras_model.h5') # This hack allows us to save the sklearn pipeline: pipeline.named_steps['keras_model'].model = None # Finally, save the pipeline: joblib.dump(pipeline, 'deploys/sklearn_pipeline.pkl') def saveWeightsJson(self, evaluated_model): ### ## write back the h5 file and json separately ### if not os.path.exists(DEPLOY_DIRECTORY): os.makedirs(DEPLOY_DIRECTORY) model_file_name = str(self.model.get('_id'))+'.h5' model_full_path = os.path.join(DEPLOY_DIRECTORY, model_file_name) json_file_name = str(self.model.get('_id'))+'.json' json_full_path = os.path.join(DEPLOY_DIRECTORY, json_file_name) # evaluated_model.save(model_full_path) # save architecture model_json = evaluated_model.to_json() with open(json_full_path, "w") as json_file: json_file.write(model_json) # save weights evaluated_model.save_weights(model_full_path) try: # save weights to gridfs f = open(model_full_path, 'r') fileId = self.fs.put(f) # save architecture to gridfs f_json = open(json_full_path, 'r') fileId_json = self.fs.put(f_json) self.model_service.updateModel(self.model, {'$set': {'serviceURL': self.serviceURL, 'pathToHDF5': model_full_path, 'deployID': fileId, 'jsonFileID': fileId_json}}) finally: f.close() def handle_successful_evaluation(self): """Handles successful evaluation by writing to DB with DONE status and metrics""" self.evaluation_service.updateEvaluation(self.evaluation, { '$set': { 'status': 'DONE', 'metrics_names': self.keras_evaluator.model.metrics_names, 'scores': self.keras_evaluator.scores, 'model_ref': self.model } }) def handle_errored_evaluation(self, errors): """Handles failure in processing write evaluation to DB with FAILED status and errors""" self.evaluation_service.updateEvaluation(self.evaluation, { '$set': { 'status': 'FAILED', 'errors': errors } }) def predictFromModel(self, modelID, input_data, input_columns): """Return a prediction for modelID""" print modelID, input_data, input_columns # setup input data if not isinstance(input_data, list): input_data = [input_data] df = pandas.DataFrame(input_data)[input_columns] X = df.as_matrix().astype(np.float) if not os.path.exists(DEPLOY_DIRECTORY): os.makedirs(DEPLOY_DIRECTORY) model_file_name = str(modelID)+'.h5' model_full_path = os.path.join(DEPLOY_DIRECTORY, model_file_name) # json_file_name = str(modelID)+'.json' # json_full_path = os.path.join(DEPLOY_DIRECTORY, json_file_name) if not os.path.isfile(model_full_path): print 'loading model from gridfs' model_ref = self.model_service.getModelByID(ObjectId(modelID)) # load and save weights grid_out = self.fs.get(model_ref.get('deployID')) f = open(model_full_path, 'w') f.write(grid_out.read()) f.close() # load and save json # grid_out = self.fs.get(model_ref.get('jsonFileID')) # f = open(json_full_path, 'w') # f.write(grid_out.read()) f.close() else: print 'loading model from file' # load json and create model # json_file = open(json_full_path, 'r') # loaded_model_json = json_file.read() # json_file.close() # model = model_from_json(loaded_model_json) # # load weights into new model # model.load_weights(model_full_path) model = load_model(model_full_path) # model._make_predict_function() predictions = model.predict(X) return predictions if __name__ == '__main__': mongo_uri = os.environ.get('MONGOLAB_URI', "mongodb://{username}:{password}@{host}:{port}/{database}".format( username=MONGO_USERNAME, password=MONGO_PASSWORD, host=MONGO_HOST, port=MONGO_PORT, database=MONGO_DBNAME)) print ("starting against "+mongo_uri) worker = Worker(mongo_uri=mongo_uri, db=os.environ.get('MONGO_DBNAME', MONGO_DBNAME), worker_id=WORKER_ID) worker.run_once()
mit
-6,986,750,958,680,871,000
41.089686
175
0.577183
false
rgardler/acs-cli
tests/commands/test_demo.py
2
1547
"""Tests for `acs demo` subcommand.""" import pytest import urllib.request class TestDemo(): slow = pytest.mark.skipif( not pytest.config.getoption("--runslow"), reason="need --runslow option to run" ) def test_lbweb(self, demo, service): """Tests the creation of the lbweb demo. This version of the test will fail if the test cluster dows not already exist. """ assert(service.exists()) demo.args = {'<command>': 'lbweb', "--remove": False} try: result = demo.lbweb() assert("Application deployed" in result) assert(self.isSimpleWebUp(service)) except RuntimeWarning as e: demo.logger.warning("The application was already installed so the test was not as thorough as it could have been") # remove the appliction demo.args["--remove"] = True result = demo.lbweb() assert("Application removed" in result) def isSimpleWebUp(self, service): isConnected = False attempts = 0 while not isConnected and attempts < 50: req = urllib.request.Request("http://" + service.getAgentEndpoint()) try: with urllib.request.urlopen(req) as response: html = response.read() if "Real Visit Results" in html: isConnected = True except urllib.error.URLError as e: isConnected = False attempts = attempts + 1 time.sleep(0.1)
apache-2.0
-8,817,229,131,061,007,000
32.630435
127
0.581125
false
prometheanfire/openstack-guest-agents-unix
install_modules.py
4
5003
#!/usr/bin/env python # vim: tabstop=4 shiftwidth=4 softtabstop=4 # # Copyright (c) 2011 Openstack, LLC. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # import os import shutil import re import sys import zipfile import commands.command_list # Other modules here that get lazy loaded.. :-/ import bz2 import gzip import httplib import zlib # Make sure we get at least one of these try: import anyjson except Exception: pass try: import json except Exception: pass try: import simplejson except Exception: pass def install_modules(system_paths, installdir): c = commands.init(testmode=True) to_install = set() def copy_tree(srcdir, destdir): if not os.path.exists(destdir): os.mkdir(destdir) for root, dirs, files in os.walk(srcdir): for d in dirs: if not os.path.exists(os.path.join(destdir, d)): os.mkdir(os.path.join(destdir, d)) d = destdir + root[len(srcdir):] if not os.path.exists(d): os.mkdir(d) for f in files: # Only install .pyc or .sos, etc if not f.endswith('.py'): fname = os.path.join(d, f) shutil.copy2(os.path.join(root, f), fname) def _do_install(src, destdir, subdirs_only=False): print "Installing %s" % src if os.path.isdir(src): if not subdirs_only: subdir = src.rsplit('/', 1)[1] copy_tree(src, os.path.join(destdir, subdir)) return for d in os.listdir(src): if d == "EGG-INFO": continue path = os.path.join(src, d) if os.path.isdir(path): copy_tree(path, os.path.join(destdir, d)) else: shutil.copy2(path, destdir) else: shutil.copy2(src, destdir) for modname in sys.modules: if modname == "__main__": continue try: mod_fn = sys.modules[modname].__file__ except: continue mod_fn = os.path.normpath(mod_fn) base_dir = '' for p in system_paths: p_len = len(p) if mod_fn.startswith(p) and p > len(base_dir): base_dir = p # Only install modules that are in the system paths. We install # our command modules separately. if base_dir: # Turn /usr/lib/python2.6/Crypto/Cipher/AES into: # /usr/lib/python2.6/Crypto rest_dir = mod_fn[len(base_dir) + 1:] if '/' in rest_dir: rest_dir = rest_dir.split('/', 1)[0] if base_dir.endswith('site-packages'): idir = installdir + '/site-packages' else: idir = installdir if re.match('.*\.egg', rest_dir): full_srcdir = os.path.join(base_dir, rest_dir) if os.path.isdir(full_srcdir): _do_install(os.path.join(base_dir, rest_dir), idir, True) else: z = zipfile.ZipFile(full_srcdir) files = z.infolist() for f in files: if f.filename == "EGG-INFO" or \ f.filename.startswith("EGG-INFO/"): continue z.extract(f, idir) z.close() else: _do_install(os.path.join(base_dir, rest_dir), idir) if __name__ == "__main__": prog_name = sys.argv[0] if len(sys.argv) != 2: print "Usage: %s <install_dir>" % prog_name sys.exit(1) installdir = sys.argv[1] sys_paths = sys.path # Pop off the first directory, which is the directory of this script. # We do this so we can ignore *our* modules, which are installed # separately sys_paths.pop(0) if not os.path.exists(installdir): os.makedirs(installdir) if not os.path.exists(installdir + '/site-packages'): os.mkdir(installdir + '/site-packages') if not os.path.isdir(installdir + '/site-packages'): print "Error: '%s/site-packages' exists and is not a directory" % \ installdir sys.exit(1) install_modules(sys_paths, installdir)
apache-2.0
-6,336,809,742,655,173,000
29.882716
79
0.538277
false
gabstopper/smc-python
smc-monitoring/smc_monitoring/monitors/connections.py
1
5154
""" A connection query returns all currently connected sessions on the given target. Create a query to obtain all connections for a given engine:: query = ConnectionQuery('sg_vm') Add a timezone to the query:: query.format.timezone('CST') Add a filter to only get connections if the source address is 172.18.1.252:: query.add_in_filter(FieldValue(LogField.SRC), [IPValue('172.18.1.252')]) Only connections that match a specific service:: query.add_in_filter(FieldValue(LogField.SERVICE), [ServiceValue('TCP/443', 'UDP/53')]) Execute query and return raw results:: for records in query.fetch_raw(): ... Execute query and return as an :class:`.Connection` element:: for records in query.fetch_as_element(): ... Retrieving live streaming results:: for records in query.fetch_live(): ... .. seealso:: :class:`smc_monitoring.models.filters` for more information on creating filters """ from smc_monitoring.models.query import Query from smc_monitoring.models.constants import LogField class ConnectionQuery(Query): """ Show all current connections on the specified target. :ivar list field_ids: field IDs are the default fields for this entry type and are constants found in :class:`smc_monitoring.models.constants.LogField` :param str target: name of target engine/cluster """ location = '/monitoring/session/socket' field_ids = [ LogField.TIMESTAMP, LogField.NODEID, LogField.SRC, LogField.SPORT, LogField.SRCZONE, LogField.DST, LogField.DPORT, LogField.DSTZONE, LogField.SERVICE, LogField.IPSAPPID, LogField.PROTOCOL, LogField.STATE] def __init__(self, target, **kw): super(ConnectionQuery, self).__init__('CONNECTIONS', target, **kw) def fetch_as_element(self, **kw): """ Fetch the results and return as a Connection element. The original query is not modified. :return: generator of elements :rtype: :class:`.Connection` """ clone = self.copy() clone.format.field_format('id') for custom_field in ['field_ids', 'field_names']: clone.format.data.pop(custom_field, None) for list_of_results in clone.fetch_raw(**kw): for entry in list_of_results: yield Connection(**entry) class Connection(object): """ Connection represents a state table entry. This is the result of making a :class:`~ConnectionQuery` and using :meth:`~ConnectionQuery.fetch_as_element`. """ def __init__(self, **data): self.cxn = data @property def timestamp(self): """ Timestamp of this connection. It is recommended to set the timezone on the query to view this timestamp in the systems local time. For example:: query.format.timezone('CST') :return: timestamp in string format :rtype: str """ return self.cxn.get(str(LogField.TIMESTAMP)) @property def engine(self): """ The engine/cluster for this state table entry :return: engine or cluster for this entry :rtype: str """ return self.cxn.get(str(LogField.NODEID)) @property def source_addr(self): """ Source address for this entry :rtype: str """ return self.cxn.get(str(LogField.SRC)) @property def dest_addr(self): """ Destination address for this entry :rtype: str """ return self.cxn.get(str(LogField.DST)) @property def service(self): """ Service for this entry :return: service (HTTP/HTTPS, etc) :rtype: str """ return self.cxn.get(str(LogField.SERVICE)) @property def protocol(self): """ Protocol for this entry :return: protocol (UDP/TCP/ICMP, etc) :rtype: str """ return self.cxn.get(str(LogField.PROTOCOL), 'ANY') @property def source_port(self): """ Source port for the entry. :rtype: int """ return int(self.cxn.get(str(LogField.SPORT), 0)) @property def dest_port(self): """ Destination port for the entry. :rtype: int """ return int(self.cxn.get(str(LogField.DPORT),0)) @property def state(self): """ State of the connection. :return: state, i.e. UDP established, TCP established, etc. :rtype: str """ return self.cxn.get(str(LogField.STATE)) def __str__(self): return '{}(src={},dst={},proto={},dst_port={},state={})'.format( self.__class__.__name__, self.source_addr, self.dest_addr, self.protocol, self.dest_port, self.state) def __repr__(self): return str(self)
apache-2.0
-1,224,112,347,497,343,500
25.435897
92
0.574699
false
sposs/DIRAC
Core/scripts/dirac-stop-component.py
10
1357
#!/usr/bin/env python # $HeadURL: svn+ssh://svn.cern.ch/reps/dirac/DIRAC/trunk/DIRAC/Core/scripts/dirac-install.py $ """ Do the initial installation and configuration of the DIRAC MySQL server """ __RCSID__ = "$Id: dirac-install.py 26844 2010-07-16 08:44:22Z rgracian $" # from DIRAC.Core.Base import Script Script.disableCS() Script.setUsageMessage( '\n'.join( ['Stop DIRAC component using runsvctrl utility', 'Usage:', ' %s [option|cfgfile] ... [system [service|agent]]' % Script.scriptName, 'Arguments:', ' system: Name of the system for the component (default *: all)', ' service|agent: Name of the particular component (default *: all)' ] ) ) Script.parseCommandLine() args = Script.getPositionalArgs() if len( args ) > 2: Script.showHelp() exit( -1 ) system = '*' component = '*' if len( args ) > 0: system = args[0] if system != '*': if len( args ) > 1: component = args[1] # from DIRAC.Core.Utilities import InstallTools # InstallTools.exitOnError = True # result = InstallTools.runsvctrlComponent( system, component, 'd' ) if not result['OK']: print 'ERROR:', result['Message'] exit( -1 ) InstallTools.printStartupStatus( result['Value'] )
gpl-3.0
5,934,246,798,086,425,000
33.794872
110
0.596905
false
spring01/libPSI
lib/python/qmmm.py
1
5432
# #@BEGIN LICENSE # # PSI4: an ab initio quantum chemistry software package # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License along # with this program; if not, write to the Free Software Foundation, Inc., # 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. # #@END LICENSE # """Module with classes to integrate MM charges into a QM calculation. """ import psi4 import re import os import math import p4const from molutil import * from driver import * class Diffuse(object): def __init__(self, molecule, basisname, ribasisname): self.molecule = molecule self.basisname = basisname self.ribasisname = ribasisname self.basis = None self.ribasis = None self.da = None self.Da = None self.wfn = None def __str__(self): s = ' => Diffuse <=\n\n' s = s + ' ' + str(self.molecule) + '\n' s = s + ' ' + self.basisname + '\n' s = s + ' ' + self.ribasisname + '\n' s = s + '\n' return s def fitScf(self): """Function to run scf and fit a system of diffuse charges to resulting density. """ basisChanged = psi4.has_option_changed("BASIS") ribasisChanged = psi4.has_option_changed("DF_BASIS_SCF") scftypeChanged = psi4.has_option_changed("SCF_TYPE") basis = psi4.get_option("BASIS") ribasis = psi4.get_option("DF_BASIS_SCF") scftype = psi4.get_option("SCF_TYPE") psi4.print_out(" => Diffuse SCF (Determines Da) <=\n\n") activate(self.molecule) psi4.set_global_option("BASIS", self.basisname) psi4.set_global_option("DF_BASIS_SCF", self.ribasisname) psi4.set_global_option("SCF_TYPE", "DF") energy('scf') psi4.print_out("\n") self.fitGeneral() psi4.clean() psi4.set_global_option("BASIS", basis) psi4.set_global_option("DF_BASIS_SCF", ribasis) psi4.set_global_option("SCF_TYPE", scftype) if not basisChanged: psi4.revoke_option_changed("BASIS") if not ribasisChanged: psi4.revoke_option_changed("DF_BASIS_SCF") if not scftypeChanged: psi4.revoke_option_changed("SCF_TYPE") def fitGeneral(self): """Function to perform a general fit of diffuse charges to wavefunction density. """ psi4.print_out(" => Diffuse Charge Fitting (Determines da) <=\n\n") self.wfn = psi4.wavefunction() self.Da = self.wfn.Da() self.basis = self.wfn.basisset() parser = psi4.Gaussian94BasisSetParser() self.ribasis = psi4.BasisSet.construct(parser, self.molecule, "DF_BASIS_SCF") fitter = psi4.DFChargeFitter() fitter.setPrimary(self.basis) fitter.setAuxiliary(self.ribasis) fitter.setD(self.Da) self.da = fitter.fit() self.da.scale(2.0) def populateExtern(self, extern): # Electronic Part extern.addBasis(self.ribasis, self.da) # Nuclear Part for A in range(0, self.molecule.natom()): extern.addCharge(self.molecule.Z(A), self.molecule.x(A), self.molecule.y(A), self.molecule.z(A)) class QMMM(object): def __init__(self): self.charges = [] self.diffuses = [] self.extern = psi4.ExternalPotential() def addDiffuse(self, diffuse): """Function to add a diffuse charge field *diffuse*.""" self.diffuses.append(diffuse) def addChargeBohr(self, Q, x, y, z): """Function to add a point charge of magnitude *Q* at position (*x*, *y*, *z*) Bohr. """ self.charges.append([Q, x, y, z]) def addChargeAngstrom(self, Q, x, y, z): """Function to add a point charge of magnitude *Q* at position (*x*, *y*, *z*) Angstroms. """ self.charges.append([Q, x / p4const.psi_bohr2angstroms, y / p4const.psi_bohr2angstroms, z / p4const.psi_bohr2angstroms]) def __str__(self): s = ' ==> QMMM <==\n\n' s = s + ' => Charges (a.u.) <=\n\n' s = s + ' %11s %11s %11s %11s\n' % ('Z', 'x', 'y', 'z') for k in range(0, len(self.charges)): s = s + ' %11.7f %11.3E %11.3E %11.3E\n' % (self.charges[k][0], self.charges[k][1], self.charges[k][2], self.charges[k][3]) s = s + '\n' s = s + ' => Diffuses <=\n\n' for k in range(0, len(self.diffuses)): s = s + str(self.diffuses[k]) return s def populateExtern(self): """Function to define a charge field external to the molecule through point and diffuse charges. """ # Charges for charge in self.charges: self.extern.addCharge(charge[0], charge[1], charge[2], charge[3]) # Diffuses for diffuse in self.diffuses: diffuse.populateExtern(self.extern)
gpl-2.0
3,787,478,945,669,114,000
30.04
138
0.594993
false
BNUCNL/FreeROI
doc/conf.py
5
8241
# -*- coding: utf-8 -*- # # FreeROI documentation build configuration file, created by # sphinx-quickstart on Tue Aug 6 09:54:19 2013. # # This file is execfile()d with the current directory set to its containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys, os # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. #sys.path.insert(0, os.path.abspath('.')) # -- General configuration ----------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. #needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be extensions # coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = ['sphinx.ext.autodoc', 'sphinx.ext.doctest', 'sphinx.ext.intersphinx', 'sphinx.ext.pngmath', 'sphinx.ext.mathjax', 'sphinxcontrib.googleanalytics'] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = u'FreeROI' copyright = u'2012-2014, Neuroinformatic Team in LiuLab from Beijing Normal University' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = '0.2.2' # The full version, including alpha/beta/rc tags. release = '0.2.2' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. #language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ['_build'] # The reST default role (used for this markup: `text`) to use for all documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # -- Options for HTML output --------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. #html_theme = 'default' html_theme = 'sphinxdoc' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. #html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. #html_theme_path = [] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. #html_logo = None html_logo = '_static/logo_200.png' # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. html_favicon = '_static/logo.ico' # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. #html_domain_indices = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. #html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. #html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = None # Output file base name for HTML help builder. htmlhelp_basename = 'FreeROIdoc' # -- Options for LaTeX output -------------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). #'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). #'pointsize': '10pt', # Additional stuff for the LaTeX preamble. #'preamble': '', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass [howto/manual]). latex_documents = [ ('index', 'FreeROI.tex', u'FreeROI Documentation', u'FreeROI Team', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # If true, show page references after internal links. #latex_show_pagerefs = False # If true, show URL addresses after external links. #latex_show_urls = False # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_domain_indices = True # -- Options for manual page output -------------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ ('index', 'freeroi', u'FreeROI Documentation', [u'FreeROI Team'], 1) ] # If true, show URL addresses after external links. #man_show_urls = False # -- Options for Texinfo output ------------------------------------------------ # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ ('index', 'FreeROI', u'FreeROI Documentation', u'FreeROI Team', 'FreeROI', 'One line description of project.', 'Miscellaneous'), ] # Documents to append as an appendix to all manuals. #texinfo_appendices = [] # If false, no module index is generated. #texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. #texinfo_show_urls = 'footnote' # Example configuration for intersphinx: refer to the Python standard library. intersphinx_mapping = {'http://docs.python.org/': None} # google analytics extension config googleanalytics_id = 'UA-51205611-1' googleanalytics_enable = True
bsd-3-clause
8,521,173,106,514,029,000
31.573123
160
0.70756
false
MoritzS/django
django/core/management/utils.py
44
3490
import os from subprocess import PIPE, Popen from django.apps import apps as installed_apps from django.utils.crypto import get_random_string from django.utils.encoding import DEFAULT_LOCALE_ENCODING, force_text from .base import CommandError def popen_wrapper(args, os_err_exc_type=CommandError, stdout_encoding='utf-8'): """ Friendly wrapper around Popen. Return stdout output, stderr output, and OS status code. """ try: p = Popen(args, shell=False, stdout=PIPE, stderr=PIPE, close_fds=os.name != 'nt') except OSError as err: raise os_err_exc_type('Error executing %s' % args[0]) from err output, errors = p.communicate() return ( force_text(output, stdout_encoding, strings_only=True, errors='strict'), force_text(errors, DEFAULT_LOCALE_ENCODING, strings_only=True, errors='replace'), p.returncode ) def handle_extensions(extensions): """ Organize multiple extensions that are separated with commas or passed by using --extension/-e multiple times. For example: running 'django-admin makemessages -e js,txt -e xhtml -a' would result in an extension list: ['.js', '.txt', '.xhtml'] >>> handle_extensions(['.html', 'html,js,py,py,py,.py', 'py,.py']) {'.html', '.js', '.py'} >>> handle_extensions(['.html, txt,.tpl']) {'.html', '.tpl', '.txt'} """ ext_list = [] for ext in extensions: ext_list.extend(ext.replace(' ', '').split(',')) for i, ext in enumerate(ext_list): if not ext.startswith('.'): ext_list[i] = '.%s' % ext_list[i] return set(ext_list) def find_command(cmd, path=None, pathext=None): if path is None: path = os.environ.get('PATH', '').split(os.pathsep) if isinstance(path, str): path = [path] # check if there are funny path extensions for executables, e.g. Windows if pathext is None: pathext = os.environ.get('PATHEXT', '.COM;.EXE;.BAT;.CMD').split(os.pathsep) # don't use extensions if the command ends with one of them for ext in pathext: if cmd.endswith(ext): pathext = [''] break # check if we find the command on PATH for p in path: f = os.path.join(p, cmd) if os.path.isfile(f): return f for ext in pathext: fext = f + ext if os.path.isfile(fext): return fext return None def get_random_secret_key(): """ Return a 50 character random string usable as a SECRET_KEY setting value. """ chars = 'abcdefghijklmnopqrstuvwxyz0123456789!@#$%^&*(-_=+)' return get_random_string(50, chars) def parse_apps_and_model_labels(labels): """ Parse a list of "app_label.ModelName" or "app_label" strings into actual objects and return a two-element tuple: (set of model classes, set of app_configs). Raise a CommandError if some specified models or apps don't exist. """ apps = set() models = set() for label in labels: if '.' in label: try: model = installed_apps.get_model(label) except LookupError: raise CommandError('Unknown model: %s' % label) models.add(model) else: try: app_config = installed_apps.get_app_config(label) except LookupError as e: raise CommandError(str(e)) apps.add(app_config) return models, apps
bsd-3-clause
-892,076,316,083,853,700
31.314815
89
0.605444
false
popazerty/beyonwiz-sh4
lib/python/Components/Harddisk.py
1
31986
import os import time from Tools.CList import CList from SystemInfo import SystemInfo from Components.Console import Console import Task from boxbranding import getMachineName def readFile(filename): file = open(filename) data = file.read().strip() file.close() return data def getPartitionNames(): partitions = [] try: f = open('/proc/partitions', 'r') for line in f.readlines(): parts = line.strip().split() if not parts: continue device = parts[3] if device in partitions or not device[-1].isdigit(): continue partitions.append(device) except IOError, ex: print "[Harddisk] Failed to open /proc/partitions", ex return partitions def getProcMounts(): try: mounts = open("/proc/mounts", 'r') result = [] tmp = [line.strip().split(' ') for line in mounts] mounts.close() for item in tmp: # Spaces are encoded as \040 in mounts item[1] = item[1].replace('\\040', ' ') result.append(item) return result except IOError, ex: print "[Harddisk] Failed to open /proc/mounts", ex return [] def isFileSystemSupported(filesystem): try: file = open('/proc/filesystems', 'r') for fs in file: if fs.strip().endswith(filesystem): file.close() return True file.close() return False except Exception, ex: print "[Harddisk] Failed to read /proc/filesystems:", ex def findMountPoint(path): """ Example: findMountPoint("/media/hdd/some/file") returns "/media/hdd\" """ path = os.path.abspath(path) while not os.path.ismount(path): path = os.path.dirname(path) return path DEVTYPE_UDEV = 0 DEVTYPE_DEVFS = 1 class Harddisk: def __init__(self, device, removable = False): self.device = device if os.access("/dev/.udev", 0): self.type = DEVTYPE_UDEV elif os.access("/dev/.devfsd", 0): self.type = DEVTYPE_DEVFS else: print "[Harddisk] Unable to determine structure of /dev" self.max_idle_time = 0 self.idle_running = False self.last_access = time.time() self.last_stat = 0 self.timer = None self.is_sleeping = False self.dev_path = '' self.disk_path = '' self.mount_path = None self.mount_device = None self.phys_path = os.path.realpath(self.sysfsPath('device')) if self.type == DEVTYPE_UDEV: self.dev_path = '/dev/' + self.device self.disk_path = self.dev_path elif self.type == DEVTYPE_DEVFS: tmp = readFile(self.sysfsPath('dev')).split(':') s_major = int(tmp[0]) s_minor = int(tmp[1]) for disc in os.listdir("/dev/discs"): dev_path = os.path.realpath('/dev/discs/' + disc) disk_path = dev_path + '/disc' try: rdev = os.stat(disk_path).st_rdev except OSError: continue if s_major == os.major(rdev) and s_minor == os.minor(rdev): self.dev_path = dev_path self.disk_path = disk_path break print "[Harddisk] new Harddisk", self.device, '->', self.dev_path, '->', self.disk_path if not removable: self.startIdle() def __lt__(self, ob): return self.device < ob.device def partitionPath(self, n): if self.type == DEVTYPE_UDEV: return self.dev_path + n elif self.type == DEVTYPE_DEVFS: return self.dev_path + '/part' + n def sysfsPath(self, filename): return os.path.join('/sys/block/', self.device, filename) def stop(self): if self.timer: self.timer.stop() self.timer.callback.remove(self.runIdle) def bus(self): ret = _("External") # SD/MMC(F1 specific) if self.type == DEVTYPE_UDEV: card = "sdhci" in self.phys_path type_name = " (SD/MMC)" # CF(7025 specific) elif self.type == DEVTYPE_DEVFS: card = self.device[:2] == "hd" and "host0" not in self.dev_path type_name = " (CF)" internal = ("pci" or "ahci") in self.phys_path if card: ret += type_name elif internal: ret = _("Internal") return ret def diskSize(self): cap = 0 try: line = readFile(self.sysfsPath('size')) cap = int(line) except: dev = self.findMount() if dev: stat = os.statvfs(dev) cap = int(stat.f_blocks * stat.f_bsize) return cap / 1000 / 1000 else: return cap return cap / 1000 * 512 / 1000 def capacity(self): cap = self.diskSize() if cap == 0: return "" if cap < 1000: return "%03d MB" % cap return "%d.%03d GB" % (cap/1000, cap%1000) def model(self): try: if self.device[:2] == "hd": return readFile('/proc/ide/' + self.device + '/model') elif self.device[:2] == "sd": vendor = readFile(self.phys_path + '/vendor') model = readFile(self.phys_path + '/model') return vendor + '(' + model + ')' elif self.device.startswith('mmcblk0'): return readFile(self.sysfsPath('device/name')) else: raise Exception, "no hdX or sdX or mmcX" except Exception, e: print "[Harddisk] Failed to get model:", e return "-?-" def free(self): dev = self.findMount() if dev: if not os.path.exists(dev): os.mkdir(dev) stat = os.statvfs(dev) return int((stat.f_bfree/1000) * (stat.f_bsize/1000)) return -1 def numPartitions(self): numPart = -1 if self.type == DEVTYPE_UDEV: try: devdir = os.listdir('/dev') except OSError: return -1 for filename in devdir: if filename.startswith(self.device): numPart += 1 elif self.type == DEVTYPE_DEVFS: try: idedir = os.listdir(self.dev_path) except OSError: return -1 for filename in idedir: if filename.startswith("disc"): numPart += 1 if filename.startswith("part"): numPart += 1 return numPart def mountDevice(self): for parts in getProcMounts(): if os.path.realpath(parts[0]).startswith(self.dev_path): self.mount_device = parts[0] self.mount_path = parts[1] return parts[1] def enumMountDevices(self): for parts in getProcMounts(): if os.path.realpath(parts[0]).startswith(self.dev_path): yield parts[1] def findMount(self): if self.mount_path is None: return self.mountDevice() return self.mount_path def unmount(self): dev = self.mountDevice() if dev is None: # not mounted, return OK return 0 cmd = 'umount ' + dev print "[Harddisk]", cmd res = os.system(cmd) return res >> 8 def createPartition(self): cmd = 'printf "8,\n;0,0\n;0,0\n;0,0\ny\n" | sfdisk -f -uS ' + self.disk_path res = os.system(cmd) return res >> 8 def mkfs(self): # No longer supported, use createInitializeJob instead return 1 def mount(self): # try mounting through fstab first if self.mount_device is None: dev = self.partitionPath("1") else: # if previously mounted, use the same spot dev = self.mount_device try: fstab = open("/etc/fstab") lines = fstab.readlines() fstab.close() except IOError: return -1 for line in lines: parts = line.strip().split(" ") fspath = os.path.realpath(parts[0]) if fspath == dev: print "[Harddisk] mounting:", fspath cmd = "mount -t auto " + fspath res = os.system(cmd) return res >> 8 # device is not in fstab res = -1 if self.type == DEVTYPE_UDEV: # we can let udev do the job, re-read the partition table res = os.system('sfdisk -R ' + self.disk_path) # give udev some time to make the mount, which it will do asynchronously from time import sleep sleep(3) return res >> 8 def fsck(self): # No longer supported, use createCheckJob instead return 1 def killPartitionTable(self): zero = 512 * '\0' h = open(self.dev_path, 'wb') # delete first 9 sectors, which will likely kill the first partition too for i in range(9): h.write(zero) h.close() def killPartition(self, n): zero = 512 * '\0' part = self.partitionPath(n) h = open(part, 'wb') for i in range(3): h.write(zero) h.close() def createInitializeJob(self): job = Task.Job(_("Initializing storage device...")) size = self.diskSize() print "[Harddisk] size: %s MB" % size task = UnmountTask(job, self) task = Task.PythonTask(job, _("Removing partition table")) task.work = self.killPartitionTable task.weighting = 1 task = Task.LoggingTask(job, _("Rereading partition table")) task.weighting = 1 task.setTool('sfdisk') task.args.append('-R') task.args.append(self.disk_path) task = Task.ConditionTask(job, _("Waiting for partition"), timeoutCount=20) task.check = lambda: not os.path.exists(self.partitionPath("1")) task.weighting = 1 if os.path.exists('/usr/sbin/parted'): use_parted = True else: if size > 2097151: addInstallTask(job, 'parted') use_parted = True else: use_parted = False task = Task.LoggingTask(job, _("Creating partition")) task.weighting = 5 if use_parted: task.setTool('parted') if size < 1024: # On very small devices, align to block only alignment = 'min' else: # Prefer optimal alignment for performance alignment = 'opt' task.args += ['-a', alignment, '-s', self.disk_path, 'mklabel', 'gpt', 'mkpart', 'primary', '0%', '100%'] else: task.setTool('sfdisk') task.args.append('-f') task.args.append('-uS') task.args.append(self.disk_path) if size > 128000: # Start at sector 8 to better support 4k aligned disks print "[Harddisk] Detected >128GB disk, using 4k alignment" task.initial_input = "8,\n;0,0\n;0,0\n;0,0\ny\n" else: # Smaller disks (CF cards, sticks etc) don't need that task.initial_input = "0,\n;\n;\n;\ny\n" task = Task.ConditionTask(job, _("Waiting for partition")) task.check = lambda: os.path.exists(self.partitionPath("1")) task.weighting = 1 task = MkfsTask(job, _("Creating file system")) big_o_options = ["dir_index", "filetype"] if isFileSystemSupported("ext4"): task.setTool("mkfs.ext4") big_o_options +=["extent", "flex_bg", "uninit_bg"] else: task.setTool("mkfs.ext3") if size > 250000: # No more than 256k i-nodes (prevent problems with fsck memory requirements) task.args += ["-T", "largefile", "-N", "262144"] big_o_options.append("sparse_super") elif size > 16384: # between 16GB and 250GB: 1 i-node per megabyte task.args += ["-T", "largefile"] big_o_options.append("sparse_super") elif size > 2048: # Over 2GB: 32 i-nodes per megabyte task.args += ["-T", "largefile", "-N", str(size * 32)] task.args += ["-L", getMachineName(), "-m0", "-O", ",".join(big_o_options), self.partitionPath("1")] task = MountTask(job, self) task.weighting = 3 task = Task.ConditionTask(job, _("Waiting for mount"), timeoutCount=20) task.check = self.mountDevice task.weighting = 1 return job def initialize(self): # no longer supported return -5 def check(self): # no longer supported return -5 def createCheckJob(self): job = Task.Job(_("Checking file system...")) if self.findMount(): # Create unmount task if it was not mounted UnmountTask(job, self) dev = self.mount_device else: # otherwise, assume there is one partition dev = self.partitionPath("1") task = Task.LoggingTask(job, "fsck") if isFileSystemSupported("ext4"): task.setTool("fsck.ext4") else: task.setTool('fsck.ext3') # fsck.ext? return codes less than 4 are not real errors class FsckReturncodePostCondition(Task.ReturncodePostcondition): def check(self, task): return task.returncode < 4 task.postconditions = [FsckReturncodePostCondition()] task.args += ["-D", "-f", "-p", dev] MountTask(job, self) task = Task.ConditionTask(job, _("Waiting for mount")) task.check = self.mountDevice return job def createExt4ConversionJob(self): if not isFileSystemSupported('ext4'): raise Exception, _("You system does not support ext4") job = Task.Job(_("Converting ext3 to ext4...")) if not os.path.exists('/sbin/tune2fs'): addInstallTask(job, 'e2fsprogs-tune2fs') if self.findMount(): # Create unmount task if it was not mounted UnmountTask(job, self) dev = self.mount_device else: # otherwise, assume there is one partition dev = self.partitionPath("1") task = Task.LoggingTask(job, "fsck") task.setTool('fsck.ext3') task.args.append('-p') task.args.append(dev) task = Task.LoggingTask(job, "tune2fs") task.setTool('tune2fs') task.args.append('-O') task.args.append('extent,flex_bg,uninit_bg,dir_index,filetype') task.args.append('-o') task.args.append('journal_data_writeback') task.args.append(dev) task = Task.LoggingTask(job, "fsck") task.setTool('fsck.ext4') task.postconditions = [] # ignore result, it will always "fail" task.args.append('-f') task.args.append('-p') task.args.append('-D') task.args.append(dev) MountTask(job, self) task = Task.ConditionTask(job, _("Waiting for mount")) task.check = self.mountDevice return job def getDeviceDir(self): return self.dev_path def getDeviceName(self): return self.disk_path def getDevicePhysicalName(self): return self.phys_path # the HDD idle poll daemon. # as some harddrives have a buggy standby timer, we are doing this by hand here. # first, we disable the hardware timer. then, we check every now and then if # any access has been made to the disc. If there has been no access over a specifed time, # we set the hdd into standby. def readStats(self): if os.path.exists("/sys/block/%s/stat" % self.device): f = open("/sys/block/%s/stat" % self.device) l = f.read() f.close() data = l.split(None,5) return int(data[0]), int(data[4]) else: return -1,-1 def startIdle(self): from enigma import eTimer # disable HDD standby timer if self.bus() == _("External"): Console().ePopen(("sdparm", "sdparm", "--set=SCT=0", self.disk_path)) else: Console().ePopen(("hdparm", "hdparm", "-S0", self.disk_path)) self.timer = eTimer() self.timer.callback.append(self.runIdle) self.idle_running = True self.setIdleTime(self.max_idle_time) # kick the idle polling loop def runIdle(self): if not self.max_idle_time: return t = time.time() idle_time = t - self.last_access stats = self.readStats() l = sum(stats) if l != self.last_stat and l >= 0: # access self.last_stat = l self.last_access = t idle_time = 0 self.is_sleeping = False if idle_time >= self.max_idle_time and not self.is_sleeping: self.setSleep() self.is_sleeping = True def setSleep(self): if self.bus() == _("External"): Console().ePopen(("sdparm", "sdparm", "--flexible", "--readonly", "--command=stop", self.disk_path)) else: Console().ePopen(("hdparm", "hdparm", "-y", self.disk_path)) def setIdleTime(self, idle): self.max_idle_time = idle if self.idle_running: if not idle: self.timer.stop() else: self.timer.start(idle * 100, False) # poll 10 times per period. def isSleeping(self): return self.is_sleeping class Partition: # for backward compatibility, force_mounted actually means "hotplug" def __init__(self, mountpoint, device = None, description = "", shortdescription="", force_mounted = False): self.mountpoint = mountpoint self.description = description if not shortdescription: shortdescription = description self.shortdescription = shortdescription self.force_mounted = mountpoint and force_mounted self.is_hotplug = force_mounted # so far; this might change. self.device = device def __str__(self): return "Partition(mountpoint=%s,description=%s,shortdescription=%s,device=%s)" % (self.mountpoint,self.description,self.shortdescription,self.device) def stat(self): if self.mountpoint: return os.statvfs(self.mountpoint) else: raise OSError, "Device %s is not mounted" % self.device def free(self): try: s = self.stat() return s.f_bavail * s.f_bsize except OSError: return None def total(self): try: s = self.stat() return s.f_blocks * s.f_bsize except OSError: return None def tabbedDescription(self): if self.mountpoint.startswith('/media/net') or self.mountpoint.startswith('/media/autofs'): # Network devices have a user defined name return self.description return self.description + '\t' + self.mountpoint def tabbedShortDescription(self): if self.mountpoint.startswith('/media/net') or self.mountpoint.startswith('/media/autofs'): # Network devices have a user defined name return self.shortdescription return self.shortdescription + '\t' + self.mountpoint def mounted(self, mounts = None): # THANK YOU PYTHON FOR STRIPPING AWAY f_fsid. # TODO: can os.path.ismount be used? if self.force_mounted: return True if self.mountpoint: if mounts is None: mounts = getProcMounts() for parts in mounts: if self.mountpoint.startswith(parts[1]): # use startswith so a mount not ending with '/' is also detected. return True return False def filesystem(self, mounts = None): if self.mountpoint: if mounts is None: mounts = getProcMounts() for fields in mounts: if self.mountpoint.endswith('/') and not self.mountpoint == '/': if fields[1] + '/' == self.mountpoint: return fields[2] else: if fields[1] == self.mountpoint: return fields[2] return '' DEVICEDB = { "dm8000": { # dm8000: "/devices/platform/brcm-ehci.0/usb1/1-1/1-1.1/1-1.1:1.0": "Front USB Slot", "/devices/platform/brcm-ehci.0/usb1/1-1/1-1.2/1-1.2:1.0": "Back, upper USB Slot", "/devices/platform/brcm-ehci.0/usb1/1-1/1-1.3/1-1.3:1.0": "Back, lower USB Slot", "/devices/platform/brcm-ehci-1.1/usb2/2-1/2-1:1.0/host1/target1:0:0/1:0:0:0": "DVD Drive", }, "dm800": { # dm800: "/devices/platform/brcm-ehci.0/usb1/1-2/1-2:1.0": "Upper USB Slot", "/devices/platform/brcm-ehci.0/usb1/1-1/1-1:1.0": "Lower USB Slot", }, "dm800se": { # USB-1 "/devices/platform/ohci-brcm.1/usb4/4-1/": "Front USB Slot", "/devices/platform/ohci-brcm.0/usb3/3-2/": "Back, upper USB Slot", "/devices/platform/ohci-brcm.0/usb3/3-1/": "Back, lower USB Slot", # USB-2 "/devices/platform/ehci-brcm.1/usb2/2-1/": "Front USB Slot", "/devices/platform/ehci-brcm.0/usb1/1-2/": "Back, upper USB Slot", "/devices/platform/ehci-brcm.0/usb1/1-1/": "Back, lower USB Slot", "/devices/pci0000:01/0000:01:00.0/ata1/": "Internal HDD", "/devices/pci0000:01/0000:01:00.0/ata2/": "eSATA HDD", }, "dm7025": { # dm7025: "/devices/pci0000:00/0000:00:14.1/ide1/1.0": "CF Card Slot", #hdc "/devices/pci0000:00/0000:00:14.1/ide0/0.0": "Internal Harddisk", }, } def addInstallTask(job, package): task = Task.LoggingTask(job, "update packages") task.setTool('opkg') task.args.append('update') task = Task.LoggingTask(job, "Install " + package) task.setTool('opkg') task.args.append('install') task.args.append(package) class VolumeLabels: def __init__(self): self.stale = True self.volume_labels = {} def fetchVolumeLabels(self): import subprocess self.volume_labels = {} try: lines = subprocess.check_output(["blkid", "-s", "LABEL"]).split("\n") except Exception, e: print "[HarddiskManager] fetchVolumeLabels", str(e) for l in lines: if l: l = l.strip() l = l.replace('"', "") l = l.replace("LABEL=", "").replace("/dev/", "") d = l.split() if len(d) == 2 and d[0][-1] == ':': d[0] = d[0][:-1] self.volume_labels[d[0]] = d[1] print "[Harddisk] volume labels:", self.volume_labels self.stale = False def getVolumeLabel(self, device): if self.stale: self.fetchVolumeLabels() if device in self.volume_labels: return self.volume_labels[device] return None def makeStale(self): self.stale = True class HarddiskManager: def __init__(self): self.hdd = [] self.cd = "" # Partitions should always have a trailing / self.partitions = [ ] self.volume_labels = VolumeLabels() self.devices_scanned_on_init = [ ] self.on_partition_list_change = CList() self.enumerateBlockDevices() # Find stuff not detected by the enumeration self.enumerateNetworkMounts() # Find stuff not detected by the enumeration p = [("/", _("Internal Flash")),("/media/upnp/", _("DLNA")),] self.partitions.extend([ Partition(mountpoint = x[0], description = x[1], shortdescription=x[1]) for x in p ]) def getBlockDevInfo(self, blockdev): devpath = "/sys/block/" + blockdev error = False removable = False blacklisted = False is_cdrom = False partitions = [] try: if os.path.exists(devpath + "/removable"): removable = bool(int(readFile(devpath + "/removable"))) if os.path.exists(devpath + "/dev"): dev = int(readFile(devpath + "/dev").split(':')[0]) else: dev = None if dev in (1, 7, 31, 253): # ram, loop, mtdblock, romblock blacklisted = True if blockdev[0:2] == 'sr': is_cdrom = True if blockdev[0:2] == 'hd': try: media = readFile("/proc/ide/%s/media" % blockdev) if "cdrom" in media: is_cdrom = True except IOError: error = True # check for partitions if not is_cdrom and os.path.exists(devpath): for partition in os.listdir(devpath): if partition[0:len(blockdev)] != blockdev: continue partitions.append(partition) else: self.cd = blockdev except IOError: error = True # check for medium medium_found = True try: if os.path.exists("/dev/" + blockdev): open("/dev/" + blockdev).close() except IOError, err: if err.errno == 159: # no medium present medium_found = False return error, blacklisted, removable, is_cdrom, partitions, medium_found def enumerateBlockDevices(self): print "[Harddisk] enumerating block devices..." self.volume_labels.makeStale() for blockdev in os.listdir("/sys/block"): error, blacklisted, removable, is_cdrom, partitions, medium_found = self.addHotplugPartition(blockdev, makestale=False) if not error and not blacklisted and medium_found: for part in partitions: self.addHotplugPartition(part, makestale=False) self.devices_scanned_on_init.append((blockdev, removable, is_cdrom, medium_found)) def enumerateNetworkMounts(self): print "[Harddisk] enumerating network mounts..." netmount = (os.path.exists('/media/net') and os.listdir('/media/net')) or "" if len(netmount) > 0: for fil in netmount: if os.path.ismount('/media/net/' + fil): print "[Harddisk] new Network Mount", fil, '->', os.path.join('/media/net/',fil) self.partitions.append(Partition(mountpoint = os.path.join('/media/net/',fil + '/'), description = fil, shortdescription = fil)) autofsmount = (os.path.exists('/media/autofs') and os.listdir('/media/autofs')) or "" if len(autofsmount) > 0: for fil in autofsmount: if os.path.ismount('/media/autofs/' + fil) or os.path.exists('/media/autofs/' + fil): print "[Harddisk] new Network Mount", fil, '->', os.path.join('/media/autofs/',fil) self.partitions.append(Partition(mountpoint = os.path.join('/media/autofs/',fil + '/'), description = fil, shortdescription = fil)) if os.path.ismount('/media/hdd') and '/media/hdd/' not in [p.mountpoint for p in self.partitions]: print "[Harddisk] new Network Mount being used as HDD replacement -> /media/hdd/" self.partitions.append(Partition(mountpoint = '/media/hdd/', description = '/media/hdd', shortdescription = '/media/hdd')) def getAutofsMountpoint(self, device): return "/autofs/%s" % device def getMountpoint(self, device): dev = "/dev/%s" % device for item in getProcMounts(): if item[0] == dev: return item[1] + '/' return None def addHotplugPartition(self, device, physdev = None, makestale=True): # device is the device name, without /dev # physdev is the physical device path, which we (might) use to determine the userfriendly name if not physdev: dev, part = self.splitDeviceName(device) try: physdev = os.path.realpath('/sys/block/' + dev + '/device')[4:] except OSError: physdev = dev print "[Harddisk] couldn't determine physdev for device", device else: physdev = os.path.realpath('/sys' + physdev)[4:] error, blacklisted, removable, is_cdrom, partitions, medium_found = self.getBlockDevInfo(self.splitDeviceName(device)[0]) if not blacklisted and medium_found: if makestale: self.volume_labels.makeStale() (description, shortdescription) = self._getUserfriendlyDeviceName(device, physdev) p = Partition(mountpoint = self.getMountpoint(device), description = description, shortdescription = shortdescription, force_mounted = True, device = device) self.partitions.append(p) if p.mountpoint: # Plugins won't expect unmounted devices self.on_partition_list_change("add", p) # see if this is a harddrive l = len(device) if l and (not device[l-1].isdigit() or device == 'mmcblk0'): self.hdd.append(Harddisk(device, removable)) self.hdd.sort() SystemInfo["Harddisk"] = True return error, blacklisted, removable, is_cdrom, partitions, medium_found def removeHotplugPartition(self, device): for x in self.partitions[:]: if x.device == device: self.partitions.remove(x) if x.mountpoint: # Plugins won't expect unmounted devices self.on_partition_list_change("remove", x) l = len(device) if l and not device[l-1].isdigit(): for hdd in self.hdd: if hdd.device == device: hdd.stop() self.hdd.remove(hdd) break SystemInfo["Harddisk"] = len(self.hdd) > 0 def HDDCount(self): return len(self.hdd) def HDDList(self): list = [ ] for hd in self.hdd: try: hdd = self.getUserfriendlyDeviceName(hd.disk_path, os.path.realpath(hd.phys_path)) except Exception as ex: print "[Harddisk] couldn't get friendly name for %s: %s" % (hd.phys_path, ex) hdd = hd.model() + " - " + hd.bus() cap = hd.capacity() if cap != "": hdd += " (" + cap + ")" list.append((hdd, hd)) return list def getCD(self): return self.cd def getMountedPartitions(self, onlyhotplug = False, mounts=None): if mounts is None: mounts = getProcMounts() parts = [x for x in self.partitions if (x.is_hotplug or not onlyhotplug) and x.mounted(mounts)] devs = set([x.device for x in parts]) for devname in devs.copy(): if not devname: continue dev, part = self.splitDeviceName(devname) if part and dev in devs: # if this is a partition and we still have the wholedisk, remove wholedisk devs.remove(dev) # return all devices which are not removed due to being a wholedisk when a partition exists return [x for x in parts if not x.device or x.device in devs] def splitDeviceName(self, devname): # this works for: sdaX, hdaX, sr0 (which is in fact dev="sr0", part=""). It doesn't work for other names like mtdblock3, but they are blacklisted anyway. dev = devname[:3] part = devname[3:] for p in part: if not p.isdigit(): return devname, 0 return dev, part and int(part) or 0 def getPhysicalDeviceLocation(self, phys): from Tools.HardwareInfo import HardwareInfo if phys.startswith("/sys"): phys = phys[4:] for physdevprefix, pdescription in DEVICEDB.get(HardwareInfo().device_name,{}).items(): if phys.startswith(physdevprefix): return pdescription return None def _getUserfriendlyDeviceName(self, device, phys): dev, part = self.splitDeviceName(device) if phys.startswith("/sys"): phys = phys[4:] shortdescription = description = "External Storage %s" % dev volume_label = self.volume_labels.getVolumeLabel(device) if volume_label: shortdescription = description = volume_label if not volume_label: try: description = readFile("/sys" + phys + "/model") except IOError, s: print "[Harddisk] couldn't read %s: %s" % ("/sys" + phys + "/model", s) pdescription = self.getPhysicalDeviceLocation(phys) if pdescription is not None: if volume_label: description = "%s (%s)" % (description, pdescription) else: description = "%s (%s)" % (pdescription, description) shortdescription = pdescription # not wholedisk and not partition 1 if not volume_label and part and part != 1: description += _(" (Partition %d)") % part return (description, shortdescription) def getUserfriendlyDeviceName(self, device, phys): return self._getUserfriendlyDeviceName(device, phys)[0] def getUserfriendlyDeviceShortName(self, device, phys): return self._getUserfriendlyDeviceName(device, phys)[1] def addMountedPartition(self, device, desc): # Ensure we have a trailing / if device and device[-1] != "/": device += "/" for x in self.partitions: if x.mountpoint == device: #already_mounted return self.partitions.append(Partition(mountpoint=device, description=desc, shortdescription=desc)) def removeMountedPartition(self, mountpoint): if mountpoint and dmountpoint[-1] != "/": mountpoint += "/" for x in self.partitions[:]: if x.mountpoint == mountpoint: self.partitions.remove(x) self.on_partition_list_change("remove", x) def setDVDSpeed(self, device, speed = 0): ioctl_flag=int(0x5322) if not device.startswith('/'): device = "/dev/" + device try: from fcntl import ioctl cd = open(device) ioctl(cd.fileno(), ioctl_flag, speed) cd.close() except Exception, ex: print "[Harddisk] Failed to set %s speed to %s" % (device, speed), ex class UnmountTask(Task.LoggingTask): def __init__(self, job, hdd): Task.LoggingTask.__init__(self, job, _("Unmount")) self.hdd = hdd self.mountpoints = [] def prepare(self): try: dev = self.hdd.disk_path.split('/')[-1] open('/dev/nomount.%s' % dev, "wb").close() except Exception, e: print "[Harddisk] Failed to create /dev/nomount.%s:" % dev, e self.setTool('umount') self.args.append('-f') for dev in self.hdd.enumMountDevices(): self.args.append(dev) self.postconditions.append(Task.ReturncodePostcondition()) self.mountpoints.append(dev) if not self.mountpoints: print "[Harddisk] UnmountTask: No mountpoints found?" self.cmd = 'true' self.args = [self.cmd] def afterRun(self): for path in self.mountpoints: try: os.rmdir(path) except Exception, ex: print "[Harddisk] Failed to remove path '%s':" % path, ex class MountTask(Task.LoggingTask): def __init__(self, job, hdd): Task.LoggingTask.__init__(self, job, _("Mount")) self.hdd = hdd def prepare(self): try: dev = self.hdd.disk_path.split('/')[-1] os.unlink('/dev/nomount.%s' % dev) except Exception, e: print "[Harddisk] Failed to remove /dev/nomount.%s:" % dev, e # try mounting through fstab first if self.hdd.mount_device is None: dev = self.hdd.partitionPath("1") else: # if previously mounted, use the same spot dev = self.hdd.mount_device fstab = open("/etc/fstab") lines = fstab.readlines() fstab.close() for line in lines: parts = line.strip().split(" ") fspath = os.path.realpath(parts[0]) if os.path.realpath(fspath) == dev: self.setCmdline("mount -t auto " + fspath) self.postconditions.append(Task.ReturncodePostcondition()) return # device is not in fstab if self.hdd.type == DEVTYPE_UDEV: # we can let udev do the job, re-read the partition table # Sorry for the sleep 2 hack... self.setCmdline('sleep 2; sfdisk -R ' + self.hdd.disk_path) self.postconditions.append(Task.ReturncodePostcondition()) class MkfsTask(Task.LoggingTask): def prepare(self): self.fsck_state = None def processOutput(self, data): print "[Harddisk] mkfs", data if 'Writing inode tables:' in data: self.fsck_state = 'inode' elif 'Creating journal' in data: self.fsck_state = 'journal' self.setProgress(80) elif 'Writing superblocks ' in data: self.setProgress(95) elif self.fsck_state == 'inode': if '/' in data: try: d = data.strip(' \x08\r\n').split('/',1) if '\x08' in d[1]: d[1] = d[1].split('\x08',1)[0] self.setProgress(80*int(d[0])/int(d[1])) except Exception, e: print "[Harddisk] mkfs E:", e return # don't log the progess self.log.append(data) def internalHDDNotSleeping(): if harddiskmanager.HDDCount(): for hdd in harddiskmanager.HDDList(): if ("pci" in hdd[1].phys_path or "ahci" in hdd[1].phys_path) and hdd[1].max_idle_time and not hdd[1].isSleeping(): return True return False harddiskmanager = HarddiskManager() SystemInfo["ext4"] = isFileSystemSupported("ext4")
gpl-2.0
277,355,841,702,303,140
29.462857
160
0.664853
false
bswartz/manila
manila/policies/share_snapshot.py
1
3967
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from oslo_policy import policy from manila.policies import base BASE_POLICY_NAME = 'share_snapshot:%s' share_snapshot_policies = [ policy.DocumentedRuleDefault( name=BASE_POLICY_NAME % 'get_snapshot', check_str=base.RULE_DEFAULT, description="Get share snapshot.", operations=[ { 'method': 'GET', 'path': '/snapshots/{snapshot_id}' } ]), policy.DocumentedRuleDefault( name=BASE_POLICY_NAME % 'get_all_snapshots', check_str=base.RULE_DEFAULT, description="Get all share snapshots.", operations=[ { 'method': 'GET', 'path': '/snapshots' }, { 'method': 'GET', 'path': '/snapshots/detail' }, { 'method': 'GET', 'path': '/snapshots?{query}' }, { 'method': 'GET', 'path': '/snapshots/detail?{query}' } ]), policy.DocumentedRuleDefault( name=BASE_POLICY_NAME % 'force_delete', check_str=base.RULE_ADMIN_API, description="Force Delete a share snapshot.", operations=[ { 'method': 'DELETE', 'path': '/snapshots/{snapshot_id}' } ]), policy.DocumentedRuleDefault( name=BASE_POLICY_NAME % 'manage_snapshot', check_str=base.RULE_ADMIN_API, description="Manage share snapshot.", operations=[ { 'method': 'POST', 'path': '/snapshots/manage' } ]), policy.DocumentedRuleDefault( name=BASE_POLICY_NAME % 'unmanage_snapshot', check_str=base.RULE_ADMIN_API, description="Unmanage share snapshot.", operations=[ { 'method': 'POST', 'path': '/snapshots/{snapshot_id}/action' } ]), policy.DocumentedRuleDefault( name=BASE_POLICY_NAME % 'reset_status', check_str=base.RULE_ADMIN_API, description="Reset status.", operations=[ { 'method': 'POST', 'path': '/snapshots/{snapshot_id}/action', } ]), policy.DocumentedRuleDefault( name=BASE_POLICY_NAME % 'access_list', check_str=base.RULE_DEFAULT, description="List access rules of a share snapshot.", operations=[ { 'method': 'GET', 'path': '/snapshots/{snapshot_id}/access-list' } ]), policy.DocumentedRuleDefault( name=BASE_POLICY_NAME % 'allow_access', check_str=base.RULE_DEFAULT, description="Allow access to a share snapshot.", operations=[ { 'method': 'POST', 'path': '/snapshots/{snapshot_id}/action' } ]), policy.DocumentedRuleDefault( name=BASE_POLICY_NAME % 'deny_access', check_str=base.RULE_DEFAULT, description="Deny access to a share snapshot.", operations=[ { 'method': 'POST', 'path': '/snapshots/{snapshot_id}/action' } ]), ] def list_rules(): return share_snapshot_policies
apache-2.0
215,645,173,443,318,100
29.992188
78
0.522309
false
sujoykroy/motion-picture
editor/MotionPicture/shapes/curve_shape.py
1
50789
from ..commons import * from .shape import Shape from .shape_list import ShapeList from .curves_form import CurvesForm from .curve_point_group_shape import CurvePointGroupShape from xml.etree.ElementTree import Element as XmlElement from .mirror import * REL_ABS_ANCHOR_AT = "rel_abs_anchor_at" class CurveShape(Shape, Mirror): TYPE_NAME = "curve_shape" def __init__(self, anchor_at=None, border_color="000000", border_width=1, fill_color=None, width=1., height=1.): if anchor_at is None: anchor_at = Point(width*.5, height*.5) Shape.__init__(self, anchor_at, border_color, border_width, fill_color, width, height) Mirror.__init__(self) self.curves = [] self.forms = dict() self.show_points = True self.point_group_shapes = ShapeList() self.baked_points = None self.form_pixbufs = dict() self.curve_point_map = dict() self.exposure = 1. def get_form_pixbuf(self, form_name): if form_name not in self.form_pixbufs: curve_shape = self.copy() curve_shape.set_form_raw(self.get_form_by_name(form_name)) curve_shape.reset_transformations() curve_shape.parent_shape = None pixbuf = curve_shape.get_pixbuf(64, 64) self.form_pixbufs[form_name] = pixbuf return self.form_pixbufs[form_name] def delete_form_pixbuf(self, form_name): if form_name in self.form_pixbufs: del self.form_pixbufs[form_name] def get_interior_shapes(self): return self.point_group_shapes def has_poses(self): return True @classmethod def get_pose_prop_names(cls): prop_names = super(CurveShape, cls).get_pose_prop_names() prop_names.extend(["form_raw"]) return prop_names def replace_curves(self, curves): del self.curves[:] self.forms.clear() self.show_points = True self.point_group_shapes.clear() self.curves.extend(curves) def add_new_point_group_shape(self, point_group): point_group_shape = CurvePointGroupShape(curve_shape=self, curve_point_group=point_group) point_group_shape.build() self.point_group_shapes.add(point_group_shape) self.rebuild_curve_point_map() return point_group_shape def delete_point_group_shape(self, point_group_shape): for curve_point in point_group_shape.curve_point_group.points.values(): self.delete_curve_point(curve_point) self.point_group_shapes.remove(point_group_shape) self.rebuild_curve_point_map() return True def add_curve_point(self, curve_point, shape): self.curve_point_map[curve_point.get_key()] = shape def delete_curve_point(self, curve_point): if curve_point.get_key() in self.curve_point_map: curve_point_shape = self.curve_point_map[curve_point.get_key()] if curve_point_shape != self: location = self.get_point_location(curve_point) self.curve_point_map[curve_point.get_key()] = self self.set_point_location(curve_point, location) self.rebuild_curve_point_map() def is_curve_point_owned(self, curve_point): if not self.curve_point_map: return True owner_shape = self.curve_point_map.get(curve_point.get_key()) return owner_shape == self def rebuild_curve_point_map(self): self.curve_point_map.clear() if not self.point_group_shapes: return for i in range(len(self.curves)): curve = self.curves[i] self.add_curve_point( CurvePoint(i, -1, CurvePoint.POINT_TYPE_ORIGIN), self) for j in range(len(curve.bezier_points)): self.add_curve_point( CurvePoint(i, j, CurvePoint.POINT_TYPE_CONTROL_1), self) self.add_curve_point( CurvePoint(i, j, CurvePoint.POINT_TYPE_CONTROL_2), self) self.add_curve_point( CurvePoint(i, j, CurvePoint.POINT_TYPE_DEST), self) for point_group_shape in self.point_group_shapes: point_group = point_group_shape.curve_point_group for curve_point in point_group.points.values(): self.add_curve_point(curve_point, point_group_shape) def rename_shape(self, shape, name): old_name = shape.get_name() if self.point_group_shapes.rename(old_name, name): for form in self.forms.values(): if not form.shapes_props: continue if old_name in form.shapes_props: form.shapes_props[name] = form.shapes_props[old_name] del form.shapes_props[old_name] return True def get_point_group_shapes_model(self): model = [["", None]] for shape in self.point_group_shapes: model.append([shape.get_name(), shape]) return model def copy_data_from_linked(self, build_lock=True): super(CurveShape, self).copy_data_from_linked(build_lock) if not self.linked_to: return self.forms = copy_value(self.linked_to.forms) self.form_pixbufs.clear() del self.curves[:] if self.linked_to.point_group_shapes: abs_anchor_at = self.get_abs_anchor_at() self.anchor_at.copy_from(self.linked_to.anchor_at) for curve in self.linked_to.curves: self.curves.append(curve.copy()) fresh_pgs_list = [] lock_list = [] for pgs in self.linked_to.point_group_shapes: pgs = pgs.copy(copy_name=True, deep_copy=True) pgs.set_curve_shape(self) exist_pgs = self.point_group_shapes.get_item_by_name(pgs.get_name()) pre_lock = None if exist_pgs: if exist_pgs.locked_to_shape: pre_lock = exist_pgs.get_locked_to() if exist_pgs.locked_shapes: for locked_shape in exist_pgs.locked_shapes: if self.point_group_shapes.contain(locked_shape): continue#ignore the sibling locking locked_shape.set_locked_to(None) lock_list.append((locked_shape, pgs)) fresh_pgs_list.append((pgs, pre_lock)) self.point_group_shapes.clear(destroy_items=True) for pgs, pre_lock in fresh_pgs_list: pgs.set_pre_locked_to(pre_lock) self.point_group_shapes.add(pgs) if build_lock: self.build_locked_to(up=-1000000) for locked_shape, locked_to_shape in lock_list: locked_shape.set_locked_to(locked_to_shape) self.move_to(abs_anchor_at.x, abs_anchor_at.y) else: linked_to_anchor_at = self.linked_to.anchor_at.copy() linked_to_anchor_at.scale(1./self.linked_to.width, 1./self.linked_to.height) self_anchor_at = self.anchor_at.copy() self_anchor_at.scale(1./self.width, 1./self.height) diff_x = self_anchor_at.x-linked_to_anchor_at.x diff_y = self_anchor_at.y-linked_to_anchor_at.y for curve in self.linked_to.curves: curve = curve.copy() curve.translate(diff_x, diff_y) self.curves.append(curve) self.fit_size_to_include_all() self.rebuild_curve_point_map() def get_form_by_name(self, form): if form in self.forms: return self.forms[form] return None def get_form_raw(self): curves = [] anchor_at = self.anchor_at.copy() anchor_at.scale(1./self.width, 1./self.height) for curve in self.curves: curve = curve.copy() curve.translate(-anchor_at.x, -anchor_at.y) curves.append(curve) if self.point_group_shapes: shapes_props = dict() for point_group_shape in self.point_group_shapes: prop_dict = point_group_shape.get_pose_prop_dict() shapes_props[point_group_shape.get_name()] = prop_dict if not point_group_shape.locked_to_shape: rel_abs_anchor_at = point_group_shape.get_abs_anchor_at() rel_abs_anchor_at.translate(-self.anchor_at.x, -self.anchor_at.y) prop_dict[REL_ABS_ANCHOR_AT] = rel_abs_anchor_at else: shapes_props = None form = CurvesForm(width=self.width, height=self.height, curves=curves, shapes_props=shapes_props) return form def save_form(self, form_name): if form_name is None: i = len(self.forms) while True: i += 1 form_name = "Form_{0}".format(i) if form_name not in self.forms: break form = self.get_form_raw() form.set_name(form_name) self.forms[form_name] = form self.delete_form_pixbuf(form_name) return form_name def delete_form(self, form_name): if form_name in self.forms: del self.forms[form_name] self.delete_form_pixbuf(form_name) def set_form_raw(self, form): diff_width = form.width - self.width diff_height = form.height - self.height abs_anchor_at = self.get_abs_anchor_at() self.width = form.width self.height = form.height form_curves = form.curves anchor_at = self.anchor_at.copy() anchor_at.scale(1./self.width, 1./self.height) for i in range(min(len(form_curves), len(self.curves))): self_curve = self.curves[i] form_curve = form_curves[i] self_curve.copy_from(form_curve) self_curve.translate(anchor_at.x, anchor_at.y) self_curve.adjust_origin() if form.shapes_props: for point_group_shape in self.point_group_shapes: shape_name = point_group_shape.get_name() prop_dict = form.shapes_props.get(shape_name) if prop_dict is None: continue point_group_shape.set_pose_prop_from_dict(prop_dict) if not point_group_shape.locked_to_shape: if REL_ABS_ANCHOR_AT in prop_dict: abs_anchor_at = prop_dict[REL_ABS_ANCHOR_AT].copy() abs_anchor_at.translate(self.anchor_at.x, self.anchor_at.y) point_group_shape.move_to(abs_anchor_at.x, abs_anchor_at.y) self.fit_size_to_include_all() #self.move_to(abs_anchor_at.x, abs_anchor_at.y) def set_form(self, form_name): if form_name not in self.forms: return form = self.forms[form_name] self.set_form_raw(form) #wrapper around set_form def set_pose(self, pose_name): self.set_form(pose_name) def set_form_name(self, form_name): self.set_form(form_name) def get_form_list(self): forms = [] for form_name in sorted(self.forms.keys()): forms.append([self.get_form_pixbuf(form_name), form_name]) return forms #wrapper around get_form_list def get_pose_list(self, interior_shape=None): return self.get_form_list() def update_forms_for_point_group(self, point_group_shape, old_translation, old_anchor_at): translation_shift = point_group_shape.translation.diff(old_translation) anchor_at_shift = point_group_shape.anchor_at.diff(old_anchor_at) shape_name = point_group_shape.get_name() for form in self.forms.values(): if not form.shapes_props: continue prop_dict = form.shapes_props.get(shape_name) if not prop_dict: continue #prop_dict["translation"].translate(translation_shift.x, translation_shift.y) prop_dict["anchor_at"].translate(anchor_at_shift.x, anchor_at_shift.y) prop_dict["width"] = point_group_shape.get_width() prop_dict["height"] = point_group_shape.get_height() #wrapper around form transition def set_pose_transition(self, start_pose, end_pose, value): prop_data = dict(start_form=start_pose, end_form=end_pose) self.set_prop_value("internal", value, prop_data) def set_prop_value(self, prop_name, value, prop_data=None): if prop_name == "internal": if "start_form" in prop_data: start_form_name = prop_data["start_form"] end_form_name = prop_data.get("end_form") if end_form_name is None or end_form_name not in self.forms: self.set_form(start_form_name) return start_form = self.forms[start_form_name] end_form = self.forms[end_form_name] else: start_form = prop_data["start_form_raw"] end_form = prop_data.get("end_form_raw") new_width = start_form.width + (end_form.width-start_form.width)*value new_height = start_form.height + (end_form.height-start_form.height)*value diff_width = new_width - self.width diff_height = new_height - self.height abs_anchor_at = self.get_abs_anchor_at() self.width = new_width self.height = new_height start_form_curves = start_form.curves end_form_curves = end_form.curves anchor_at = self.anchor_at.copy() anchor_at.scale(1./self.width, 1./self.height) minc = min(len(start_form_curves), len(end_form_curves), len(self.curves)) i = 0 start_curves = [] end_curves = [] while i<minc: self_curve = self.curves[i] start_form_curve = start_form_curves[i] end_form_curve = end_form_curves[i] i += 1 self_curve.set_inbetween( start_form_curve, (start_form.width, start_form.height), end_form_curve, (end_form.width, end_form.height), value, (self.width, self.height)) self_curve.translate(anchor_at.x, anchor_at.y) if start_form.shapes_props and end_form.shapes_props: start_shapes_props = start_form.shapes_props end_shapes_props = end_form.shapes_props for point_group_shape in self.point_group_shapes: shape_name = point_group_shape.get_name() start_prop_dict = start_form.shapes_props.get(shape_name) end_prop_dict = end_form.shapes_props.get(shape_name) if not start_prop_dict or not end_prop_dict: continue point_group_shape.set_transition_pose_prop_from_dict( start_prop_dict, end_prop_dict, frac=value) if not point_group_shape.locked_to_shape and \ REL_ABS_ANCHOR_AT in start_prop_dict and \ REL_ABS_ANCHOR_AT in end_prop_dict: start_rel_abs_anchor_at = start_prop_dict[REL_ABS_ANCHOR_AT].copy() end_rel_abs_anchor_at = end_prop_dict[REL_ABS_ANCHOR_AT].copy() abs_anchor_at = Point(0, 0) abs_anchor_at.set_inbetween(start_rel_abs_anchor_at, end_rel_abs_anchor_at, value) abs_anchor_at.translate(self.anchor_at.x, self.anchor_at.y) point_group_shape.move_to(abs_anchor_at.x, abs_anchor_at.y) self.fit_size_to_include_all() else: Shape.set_prop_value(self, prop_name, value, prop_data) def rename_form(self, old_form, new_form): if new_form in self.forms: return False self.forms[new_form] = self.forms[old_form] self.forms[new_form].set_name(new_form) del self.forms[old_form] return True def get_xml_element(self): elm = Shape.get_xml_element(self) for curve in self.curves: elm.append(curve.get_xml_element()) if not self.show_points: elm.attrib["show_points"] = "False" for form_name, form in self.forms.items(): elm.append(form.get_xml_element()) for point_group_shape in self.point_group_shapes: elm.append(point_group_shape.get_xml_element()) return elm @classmethod def create_from_xml_element(cls, elm): arr = Shape.get_params_array_from_xml_element(elm) shape = cls(*arr) shape.show_points = (elm.attrib.get("show_points", "True") != "False") default_point = Point(0,0) for curve_elm in elm.findall(Curve.TAG_NAME): curve = Curve.create_from_xml_element(curve_elm) shape.curves.append(curve) for form_elm in elm.findall(CurvesForm.TAG_NAME): form = CurvesForm.create_from_xml_element(form_elm) shape.forms[form.name] = form for point_group_elm in elm.findall(CurvePointGroupShape.TAG_NAME): point_group_shape = CurvePointGroupShape.create_from_xml_element(point_group_elm, shape) if point_group_shape: shape.point_group_shapes.add(point_group_shape) shape.assign_params_from_xml_element(elm) shape.rebuild_curve_point_map() return shape def build_locked_to(self, up=0): super(CurveShape, self).build_locked_to(up) self.build_interior_locked_to(up+1) def build_interior_locked_to(self, up=0): if self.point_group_shapes: for point_group_shape in self.point_group_shapes: point_group_shape.build_locked_to(up) def copy(self, copy_name=False, deep_copy=False, form=None): newob = CurveShape(self.anchor_at.copy(), copy_value(self.border_color), self.border_width, copy_value(self.fill_color), self.width, self.height) self.copy_into(newob, copy_name) for curve in self.curves: newob.curves.append(curve.copy()) if deep_copy: newob.forms = copy_value(self.forms) newob.show_points = self.show_points for point_group_shape in self.point_group_shapes: point_group_shape = point_group_shape.copy(copy_name=True, deep_copy=True) point_group_shape.set_curve_shape(newob) newob.point_group_shapes.add(point_group_shape) newob.build_interior_locked_to() newob.rebuild_curve_point_map() return newob def is_empty(self): return len(self.curves) == 0 def add_curve(self, curve): self.curves.append(curve) self.fit_size_to_include_all() def get_curve_point_location(self, curve_point): point = curve_point.get_point(self.curves) if not point: return Point(0., 0.) point = point.copy() point.scale(self.width, self.height) return point def set_curve_point_location(self, curve_point, location): point = curve_point.get_point(self.curves) location = location.copy() location.scale(1./self.width, 1./self.height) point.copy_from(location) def get_point_location(self, curve_point): if self.curve_point_map: curve_point_shape = self.curve_point_map[curve_point.get_key()] location = curve_point_shape.get_curve_point_location(curve_point) if curve_point_shape != self: location = self.transform_locked_shape_point( location, root_shape=curve_point_shape, exclude_last=False) return location return self.get_curve_point_location(curve_point) def break_points_into_point_shapes(self): curve_points = [] for i in range(len(self.curves)): curve = self.curves[i] curve_points.append(CurvePoint(i, -1, CurvePoint.POINT_TYPE_ORIGIN)) for j in range(len(curve.bezier_points)): curve_points.append(CurvePoint(i, j, CurvePoint.POINT_TYPE_CONTROL_1)) curve_points.append(CurvePoint(i, j, CurvePoint.POINT_TYPE_CONTROL_2)) curve_points.append(CurvePoint(i, j, CurvePoint.POINT_TYPE_DEST)) for curve_point in curve_points: if self.curve_point_map: curve_point_shape = self.curve_point_map[curve_point.get_key()] if curve_point_shape != self and \ len(curve_point_shape.curve_point_group.points)==1: continue else: curve_point_shape = None curve_point_group = CurvePointGroup() curve_point_group.add_point(curve_point) new_point_group_shape = self.add_new_point_group_shape(curve_point_group) new_point_group_shape.set_locked_to(curve_point_shape) attempt = 0 while True: name = curve_point.get_formatted_name() if attempt>0: name = u"{0}_{1}".formatted(name, attempt) if not self.point_group_shapes.contain(name): break attemp += 1 self.point_group_shapes.rename(new_point_group_shape.get_name(), name) def set_point_location(self, curve_point, location): if self.curve_point_map: curve_point_shape = self.curve_point_map[curve_point.get_key()] location = curve_point_shape.transform_locked_shape_point( location, root_shape=self, exclude_last=False) curve_point_shape.set_curve_point_location(curve_point, location) return self.set_curve_point_location(curve_point, location) def adjust_origins(self): for i in range(len(self.curves)): curve = self.curves[i] if not curve.closed: continue origin = CurvePoint(i, -1, CurvePoint.POINT_TYPE_ORIGIN) last_dest = CurvePoint(i, len(curve.bezier_points)-1, CurvePoint.POINT_TYPE_DEST) location = self.get_point_location(last_dest) self.set_point_location(origin, location) def get_shape_of_curve_point(self, curve_point): shape = self.curve_point_map.get(curve_point.get_key()) if shape is None: shape = self return shape def draw_curve(self, ctx, curve_index, scale=None, angle=None, new_path=True, reverse=False, line_to=False): ctx.save() if angle is not None: ctx.translate(self.anchor_at.x, self.anchor_at.y) ctx.rotate(angle*RAD_PER_DEG) ctx.translate(-self.anchor_at.x, -self.anchor_at.y) if curve_index>=len(self.curves): return curve = self.curves[curve_index] if self.point_group_shapes: #ctx.scale(1./self.width, 1./self.height) origin_curve_point = CurvePoint(curve_index, -1, CurvePoint.POINT_TYPE_ORIGIN) origin_shape = self.get_shape_of_curve_point(origin_curve_point) origin = origin_shape.get_curve_point_location(origin_curve_point) origin = self.transform_locked_shape_point(origin, root_shape=origin_shape, exclude_last=False) if reverse: dest_curve_point = CurvePoint( curve_index, len(curve.bezier_points)-1, CurvePoint.POINT_TYPE_DEST) dest_shape = self.get_shape_of_curve_point(dest_curve_point) dest = dest_shape.get_curve_point_location(dest_curve_point) dest = self.transform_locked_shape_point( dest, root_shape=dest_shape, exclude_last=False) start_point = dest else: start_point = origin if new_path: ctx.new_path() if line_to: ctx.line_to(start_point.x, start_point.y) else: ctx.move_to(start_point.x, start_point.y) if reverse: range_object = range(len(curve.bezier_points)-1, -2, -1) else: range_object = range(len(curve.bezier_points)) for point_index in range_object: if reverse and point_index==-1: dest = origin else: dest_curve_point = CurvePoint(curve_index, point_index, CurvePoint.POINT_TYPE_DEST) dest_shape = self.get_shape_of_curve_point(dest_curve_point) dest = dest_shape.get_curve_point_location(dest_curve_point) dest = self.transform_locked_shape_point( dest, root_shape=dest_shape, exclude_last=False) if reverse: if point_index<len(curve.bezier_points)-1: ctx.curve_to( c2.x, c2.y, c1.x, c1.y, dest.x, dest.y) if point_index==-1: break c1_curve_point = CurvePoint(curve_index, point_index, CurvePoint.POINT_TYPE_CONTROL_1) c1_shape = self.get_shape_of_curve_point(c1_curve_point) c1 = c1_shape.get_curve_point_location(c1_curve_point) c1 = self.transform_locked_shape_point(c1, root_shape=c1_shape, exclude_last=False) c2_curve_point = CurvePoint(curve_index, point_index, CurvePoint.POINT_TYPE_CONTROL_2) c2_shape = self.get_shape_of_curve_point(c2_curve_point) c2 = c2_shape.get_curve_point_location(c2_curve_point) c2 = self.transform_locked_shape_point(c2, root_shape=c2_shape, exclude_last=False) if not reverse: ctx.curve_to( c1.x, c1.y, c2.x, c2.y, dest.x, dest.y) if new_path and curve.closed: ctx.close_path() else: ctx.scale(self.width, self.height) if scale: if scale[0] == -1 and scale[1] == 1: ctx.translate(2*self.anchor_at.x/self.width, 0) elif scale[0] == 1 and scale[1] == -1: ctx.translate(0, 2*self.anchor_at.y/self.height) elif scale[0] == -1 and scale[1] == -1: ctx.translate(2*self.anchor_at.x/self.width, 2*self.anchor_at.y/self.height) ctx.scale(*scale) if reverse: curve.reverse_draw_path(ctx, new_path=new_path, line_to=line_to) else: if self.exposure<1.0: self.draw_through_baked_points(ctx, curve_index) else: curve.draw_path(ctx, new_path=new_path, line_to=line_to) ctx.restore() def draw_through_baked_points(self, ctx, curve_index): self.build_baked_points(curve_index) baked_points = self.baked_points[curve_index] count = int(round(baked_points.shape[0]*self.exposure)) for i in range(count): x = baked_points[i][0] y = baked_points[i][1] if i == 0: ctx.move_to(x, y) else: ctx.line_to(x, y) def draw_path(self, ctx, for_fill=False): if for_fill and not self.fill_color: return if not for_fill and not self.border_color: return paths = [] for curve_index in range(len(self.curves)): self.draw_curve(ctx, curve_index) paths.append(ctx.copy_path()) if self.mirror != 0: scales, rotations = self.get_scales_n_rotations() for scale in scales: for curve_index in range(len(self.curves)): curve = self.curves[curve_index] if not for_fill or (for_fill and curve.closed): self.draw_curve(ctx, curve_index, scale=scale) paths.append(ctx.copy_path()) for angle in rotations: for curve_index in range(len(self.curves)): curve = self.curves[curve_index] if not for_fill or (for_fill and curve.closed): self.draw_curve(ctx, curve_index, angle=angle) paths.append(ctx.copy_path()) ctx.new_path() for path in paths: ctx.append_path(path) def get_curve_outline(self, curve_index): curve = self.curves[curve_index] if self.curve_point_map: points = CurvePoint.get_curve_points_for_curve(curve_index, self.curves) for i in range(len(points)): points[i] = self.get_point_location(points[i]) outline = Polygon(points=points).get_outline() else: outline = curve.get_outline() if outline: outline.scale(self.width, self.height) return outline def translate_curve(self, curve_index, dx, dy): curve = self.curves[curve_index] if self.curve_point_map: curve_points = CurvePoint.get_curve_points_for_curve(curve_index, self.curves) for curve_point in curve_points: if self.curve_point_map[curve_point.get_key()] == self: point = curve_point.get_point(self.curves) if point: point.translate(dx, dy) else: curve.translate(dx, dy) def scale_curve(self, curve_index, sx, sy): curve = self.curves[curve_index] if self.curve_point_map: curve_points = CurvePoint.get_curve_points_for_curve(curve_index, self.curves) for curve_point in curve_points: if self.curve_point_map[curve_point.get_key()] == self: point = curve_point.get_point(self.curves) if point: point.scale(sx, sy) else: curve.scale(sx, sy) def fit_size_to_include_all(self): self.adjust_origins() outline = None for curve_index in range(len(self.curves)): if outline is None: outline = self.get_curve_outline(curve_index) else: outline.expand_include(self.get_curve_outline(curve_index)) if not outline: return abs_anchor_at = self.get_abs_anchor_at() shift = Point(-outline.left, -outline.top) self.anchor_at.translate(shift.x, shift.y) self.move_to(abs_anchor_at.x, abs_anchor_at.y) if outline.height==0: sy = None else: sy = self.height/outline.height if outline.width==0: sx = None else: sx = self.width/outline.width dx = -outline.left/self.width dy = -outline.top/self.height for curve_index in range(len(self.curves)): self.translate_curve(curve_index, dx, dy) if sx is not None and sy is not None: self.scale_curve(curve_index, sx, sy) for point_group_shape in self.point_group_shapes: if point_group_shape.locked_to_shape: continue point_group_shape.shift_abs_anchor_at(shift) if self.locked_shapes: for shape in self.locked_shapes: shape.shift_abs_anchor_at(shift) self.set_width(outline.width, fixed_anchor=False) self.set_height(outline.height, fixed_anchor=False) self.baked_points = None def build_baked_points(self, curve_index): if self.baked_points is None: self.baked_points = dict() if self.baked_points.get(curve_index) is None: self.baked_points[curve_index] = \ self.curves[curve_index].get_baked_points(self.width, self.height) def get_baked_point(self, frac, curve_index=0): self.build_baked_points(curve_index) baked_points = self.baked_points[curve_index] if frac<0: frac += 1 if frac>1: frac %= 1 pos = int(baked_points.shape[0]*frac) if pos>=baked_points.shape[0]: pos=baked_points.shape[0]-1 x, y = list(baked_points[pos]) point = self.reverse_transform_point(Point(x*self.width, y*self.height)) if pos<baked_points.shape[0]-1: x, y = list(baked_points[pos+1]) point2 = self.reverse_transform_point(Point(x*self.width, y*self.height)) diffp = point2.diff(point) angle = diffp.get_angle() else: angle = 0. return point, angle def get_baked_points(self, curve_index=0): self.build_baked_points(curve_index) baked_points = self.baked_points[curve_index] return baked_points*(self.width, self.height) def find_point_location(self, point): point = point.copy() point.scale(1./self.width, 1./self.height) tolerance = 5./max(self.width, self.height) for curve_index in range(len(self.curves)): curve = self.curves[curve_index] found = curve.get_closest_control_point(point, self.width, self.height, tolerance) if found: bezier_point_index, t = found return (curve_index, bezier_point_index, t) return None def insert_point_at(self, point): found = self.find_point_location(point) if not found: return False curve_index, bezier_point_index, t = found curve = self.curves[curve_index] curve.insert_point_at(bezier_point_index, t) for point_group_shape in self.point_group_shapes: curve_point_group = point_group_shape.curve_point_group curve_point_group.shift( curve_index=curve_index, from_point_index=bezier_point_index, point_index_shift=1) self.rebuild_curve_point_map() return True def insert_break_at(self, curve_index, bezier_point_index): if curve_index>=len(self.curves): return False prev_curve = self.curves[curve_index] if bezier_point_index>= len(prev_curve.bezier_points): return False if bezier_point_index == len(prev_curve.bezier_points)-1: if prev_curve.closed: #Just open up the closed curve prev_curve.closed = False return True else: return False bezier_points_count = len(prev_curve.bezier_points) if prev_curve.closed: prev_curve.closed = False prev_curve.add_bezier_points(prev_curve.bezier_points[:bezier_point_index+1]) prev_curve.remove_bezier_point_indices(0, bezier_point_index) prev_curve.origin.copy_from(prev_curve.bezier_points[0].dest) prev_curve.remove_bezier_point_index(0) for point_group_shape in self.point_group_shapes: curve_point_group = point_group_shape.curve_point_group curve_point_group.shift( curve_index=curve_index, from_point_index=0, to_point_index=bezier_point_index+1, point_index_shift=bezier_points_count) curve_point_group.shift( curve_index=curve_index, from_point_index=0, point_index_shift=-bezier_point_index-1) else: bezier_point = prev_curve.bezier_points[bezier_point_index] new_curve = Curve(origin=bezier_point.dest.copy(), bezier_points=prev_curve.bezier_points[bezier_point_index+1:]) prev_curve.remove_bezier_point_indices(bezier_point_index+1, len(prev_curve.bezier_points)) self.curves.insert(curve_index+1, new_curve) for point_group_shape in self.point_group_shapes: curve_point_group = point_group_shape.curve_point_group curve_point_group.shift( curve_index=curve_index, from_point_index=bezier_point_index+1, curve_index_shift=1, point_index_shift=-bezier_point_index-1) self.rebuild_curve_point_map() return True def join_points(self, curve_index_1, is_start_1, curve_index_2, is_start_2): if curve_index_1>=len(self.curves): return False if curve_index_1>=len(self.curves): return False curve_1 = self.curves[curve_index_1] curve_2 = self.curves[curve_index_2] if curve_index_1 == curve_index_2: if is_start_1 != is_start_2: curve_1.closed = True curve_1.origin.x = (curve_1.origin.x+curve_1.bezier_points[-1].dest.x)*.5 curve_1.origin.y = (curve_1.origin.y+curve_1.bezier_points[-1].dest.y)*.5 curve_1.bezier_points[-1].dest.copy_from(curve_1.origin) return True return False if curve_1.closed: return False if curve_2.closed: return False dist_lapse = .01 if is_start_1 == is_start_2:#reverse curve_2 rev_curve = curve_2.reverse_copy() curve_2.origin.copy_from(rev_curve.origin) for bpi in range(len(rev_curve.bezier_points)): curve_2.bezier_points[bpi].control_1.copy_from(rev_curve.bezier_points[bpi].control_1) curve_2.bezier_points[bpi].control_2.copy_from(rev_curve.bezier_points[bpi].control_2) curve_2.bezier_points[bpi].dest.copy_from(rev_curve.bezier_points[bpi].dest) for point_group_shape in self.point_group_shapes: point_group_shape.curve_point_group.reverse_shift( curve_index=curve_index_2, point_index_max=len(curve_2.bezier_points)-1) if is_start_1:#swap curves curve_1, curve_2 = curve_2, curve_1 curve_index_1, curve_index_2 = curve_index_2, curve_index_1 #curve_2 get attached at the end of curve_1 curve_1.bezier_points[-1].dest.x = (curve_1.bezier_points[-1].dest.x + curve_2.origin.x)*.5 curve_1.bezier_points[-1].dest.y = (curve_1.bezier_points[-1].dest.y + curve_2.origin.y)*.5 for point_group_shape in self.point_group_shapes: point_group_shape.curve_point_group.shift( curve_index=curve_index_2, point_index_shift=len(curve_1.bezier_points)) for point_group_shape in self.point_group_shapes: point_group_shape.curve_point_group.shift( curve_index=curve_index_2, curve_index_shift=curve_index_1-curve_index_2) curve_1.add_bezier_points(curve_2.bezier_points) del self.curves[curve_index_2] return True def extend_point(self, curve_index, is_start, point_index): if curve_index>=len(self.curves): return False curve = self.curves[curve_index] #if curve.closed: return False if is_start: curve.insert_point_at(0, t=0.0) else: curve.insert_point_at(point_index, t=1.0) return True def delete_point_group_curve(self, curve_index): for point_group_shape in self.point_group_shapes: point_group_shape.curve_point_group.delete_curve(curve_index) self.cleanup_point_groups() def delete_point_group_point(self, curve_index, point_index): for point_group_shape in self.point_group_shapes: point_group_shape.curve_point_group.delete_point_index(curve_index, point_index) self.cleanup_point_groups() def cleanup_point_groups(self): i = 0 while i <len(self.point_group_shapes): point_group_shape = self.point_group_shapes.get_at_index(i) point_group = point_group_shape.curve_point_group if len(point_group.points)<1: self.point_group_shapes.remove(point_group_shape) else: i += 1 def delete_point_at(self, curve_index, bezier_point_index, break_allowed=False): if curve_index>=len(self.curves): return False curve = self.curves[curve_index] if bezier_point_index>=len(curve.bezier_points): return False if bezier_point_index<-1: return False if len(curve.bezier_points)>1: if bezier_point_index == -1: curve.origin.copy_from(curve.bezier_points[0].dest) curve.update_origin() curve.remove_bezier_point_index(0) self.delete_point_group_point(curve_index, 0) if curve.closed: curve.bezier_points[-1].dest.copy_from(curve.origin) curve.update_bezier_point_index(-1)# elif bezier_point_index == len(curve.bezier_points)-1: if curve.closed and curve.bezier_points: curve.origin.copy_from(curve.bezier_points[0].dest) curve.bezier_points[-1].dest.copy_from(curve.origin) curve.update_bezier_point_index(-1)# curve.remove_bezier_point_index(0) self.delete_point_group_point(curve_index, 0) else: curve.remove_bezier_point_index(-1) self.delete_point_group_point(curve_index, len(curve.bezier_points)-1) else: if break_allowed: new_curve = Curve(origin=curve.bezier_points[bezier_point_index].dest.copy()) new_curve.add_bezier_points(curve.bezier_points[bezier_point_index+1:]) curve.remove_bezier_point_indices( bezier_point_index+1, len(curve.bezier_points)) self.curves.insert(curve_index+1, new_curve) curve.remove_bezier_point_index(bezier_point_index) self.delete_point_group_point(curve_index, bezier_point_index) if len(curve.bezier_points)<3: curve.closed = False if len(self.curves)>1: if (len(curve.bezier_points)<=1 and curve.closed) or len(curve.bezier_points)==0: del self.curves[curve_index] self.delete_point_group_curve(curve_index) elif len(self.curves)>1: del self.curves[curve_index] self.delete_point_group_curve(curve_index) self.rebuild_curve_point_map() return True def delete_dest_points_inside_rect(self, center, radius): center = self.transform_point(center) radius /= (self.width+self.height)*.5 center.scale(1./self.width, 1./self.height) curve_point_indices = dict() for curve_index in range(len(self.curves)): curve = self.curves[curve_index] curve_point_indices[curve_index] = curve.get_indices_within(center, radius) #for bezier_point_index in range(-1, len(curve.bezier_points)): # if bezier_point_index == -1: # point = curve.origin.copy() # else: # point = curve.bezier_points[bezier_point_index].dest.copy() # if point.distance(center)<radius: # if curve_index not in curve_point_indices: # curve_point_indices[curve_index] = [] # curve_point_indices[curve_index].append(bezier_point_index) delete_count = 0 for curve_index in reversed(sorted(curve_point_indices.keys())): for bezier_point_index in reversed(sorted(curve_point_indices[curve_index])): if self.delete_point_at(curve_index, bezier_point_index, break_allowed=True): delete_count += 1 return delete_count>0 @staticmethod def create_from_rectangle_shape(rectangle_shape): if rectangle_shape.corner_radius==0: return None curve_shape = CurveShape(Point(0,0), None, None, None, None, None) crsx = rectangle_shape.corner_radius/rectangle_shape.width crsy = rectangle_shape.corner_radius/rectangle_shape.height k = .5522847498*.5#magic number #crsx = crsy = .5 curved_points = [ BezierPoint(control_1=Point(.5+k, 0), control_2=Point(1., .5-k), dest=Point(1., .5)), BezierPoint(control_1=Point(1., .5+k), control_2=Point(.5+k, 1.), dest=Point(.5, 1.)), BezierPoint(control_1=Point(.5-k, 1.), control_2=Point(0, .5+k), dest=Point(0., .5)), BezierPoint(control_1=Point(0., .5-k), control_2=Point(0.5-k, 0.), dest=Point(.5, 0.)) ] curved_points[0].scale(2*crsx, 2*crsy).translate(1.-2*crsx, 0) curved_points[1].scale(2*crsx, 2*crsy).translate(1.-2*crsx, 1-2*crsy) curved_points[2].scale(2*crsx, 2*crsy).translate(0, 1-2*crsy) curved_points[3].scale(2*crsx, 2*crsy).translate(0, 0) p1 = Point(1., 1-crsy) p2 = Point(crsx, 1.) p3 = Point(0., crsy) p4 = Point(1.-crsx, 0) final_points= [ curved_points[0], BezierPoint(control_1=p1.copy(), control_2=p1.copy(), dest=p1.copy()), curved_points[1], BezierPoint(control_1=p2.copy(), control_2=p2.copy(), dest=p2.copy()), curved_points[2], BezierPoint(control_1=p3.copy(), control_2=p3.copy(), dest=p3.copy()), curved_points[3], BezierPoint(control_1=p4.copy(), control_2=p4.copy(), dest=p4.copy()), ] final_points[1].align_straight_with(final_points[0].dest) final_points[3].align_straight_with(final_points[2].dest) final_points[5].align_straight_with(final_points[4].dest) final_points[7].align_straight_with(final_points[6].dest) curve_shape.curves.append(Curve( origin=Point(1.-crsx, 0), bezier_points=final_points, closed=True)) rectangle_shape.copy_into(curve_shape, all_fields=True, copy_name=False) curve_shape.fit_size_to_include_all() return curve_shape @staticmethod def create_from_oval_shape(oval_shape): curve_shape = CurveShape(Point(0,0), None, None, None, None, None) k = .5522847498*.5#magic number bezier_points = [ BezierPoint(control_1=Point(.5+k, 0), control_2=Point(1., .5-k), dest=Point(1., .5)), BezierPoint(control_1=Point(1., .5+k), control_2=Point(.5+k, 1.), dest=Point(.5, 1.)), BezierPoint(control_1=Point(.5-k, 1.), control_2=Point(0, .5+k), dest=Point(0., .5)), BezierPoint(control_1=Point(0., .5-k), control_2=Point(0.5-k, 0.), dest=Point(.5, 0.)) ] #curve_shape.curves.append(Curve(origin=Point(.5, 0.), bezier_points=bezier_points, closed=True)) curve_shape.curves.append(Curve.create_circle(sweep_angle=oval_shape.sweep_angle)) oval_shape.copy_into(curve_shape, all_fields=True, copy_name=False) curve_shape.fit_size_to_include_all() return curve_shape @staticmethod def create_from_polygon_shape(polygon_shape): curve_shape = CurveShape(Point(0,0), None, None, None, None, None) for polygon in polygon_shape.polygons: curve = None for i in range(len(polygon.points)): point = polygon.points[i] if i == 0: curve = Curve(origin=point.copy()) else: bzp = BezierPoint( control_1 = point.copy(), control_2 = point.copy(), dest = point.copy()) curve.add_bezier_point(bzp) bzp.align_straight_with(polygon.points[i-1]) curve.closed = polygon.closed if polygon.closed: point = polygon.points[0] bzp = BezierPoint( control_1 = point.copy(), control_2 = point.copy(), dest = point.copy()) curve.add_bezier_point(bzp) bzp.align_straight_with(polygon.points[-1]) curve_shape.curves.append(curve) polygon_shape.copy_into(curve_shape, all_fields=True, copy_name=False) curve_shape.fit_size_to_include_all() return curve_shape def flip(self, direction): percent_anchor_at = self.anchor_at.copy() percent_anchor_at.scale(1./self.width, 1./self.height) for curve in self.curves: if direction == "x": curve.origin.x = 2*percent_anchor_at.x-curve.origin.x elif direction == "y": curve.origin.y = 2*percent_anchor_at.y-curve.origin.y for bezier_point in curve.bezier_points: if direction == "x": bezier_point.control_1.x = 2*percent_anchor_at.x-bezier_point.control_1.x bezier_point.control_2.x = 2*percent_anchor_at.x-bezier_point.control_2.x bezier_point.dest.x = 2*percent_anchor_at.x-bezier_point.dest.x elif direction == "y": bezier_point.control_1.y = 2*percent_anchor_at.y-bezier_point.control_1.y bezier_point.control_2.y = 2*percent_anchor_at.y-bezier_point.control_2.y bezier_point.dest.y = 2*percent_anchor_at.y-bezier_point.dest.y self.fit_size_to_include_all() def _transform_point_from_shape(self, shape, point): point.scale(shape.width, shape.height) point = shape.reverse_transform_point(point) point = self.transform_point(point) point.scale(1./self.width, 1./self.height) return point def include_inside(self, shape): if not isinstance(shape, CurveShape): return False for curve in shape.curves: curve = curve.copy() curve.origin.copy_from(self._transform_point_from_shape(shape, curve.origin)) for i in range(len(curve.bezier_points)): bp = curve.bezier_points[i] bp.control_1.copy_from(self._transform_point_from_shape(shape, bp.control_1)) bp.control_2.copy_from(self._transform_point_from_shape(shape, bp.control_2)) bp.dest.copy_from(self._transform_point_from_shape(shape, bp.dest)) self.curves.append(curve) return True
gpl-3.0
-5,911,548,169,782,067,000
42.595708
107
0.572151
false
0x00ach/zer0m0n
signatures/recon_systeminfo.py
6
1252
# Copyright (C) 2012 Claudio "nex" Guarnieri (@botherder) # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. from lib.cuckoo.common.abstracts import Signature class SystemInfo(Signature): name = "recon_systeminfo" description = "Collects information on the system (ipconfig, netstat, systeminfo)" severity = 3 categories = ["recon"] authors = ["nex"] minimum = "1.0" evented = True def on_call(self, call, process): return self.check_argument_call( call, pattern="(^cmd\.exe).*[(systeminfo)|(ipconfig)|(netstat)]", name="CommandLine", category="process", regex=True )
gpl-3.0
1,236,607,287,380,904,400
36.939394
86
0.691693
false
FreekingDean/home-assistant
tests/components/test_configurator.py
29
4435
"""The tests for the Configurator component.""" # pylint: disable=protected-access import unittest import homeassistant.components.configurator as configurator from homeassistant.const import EVENT_TIME_CHANGED, ATTR_FRIENDLY_NAME from tests.common import get_test_home_assistant class TestConfigurator(unittest.TestCase): """Test the Configurator component.""" # pylint: disable=invalid-name def setUp(self): """Setup things to be run when tests are started.""" self.hass = get_test_home_assistant() # pylint: disable=invalid-name def tearDown(self): """Stop everything that was started.""" self.hass.stop() def test_request_least_info(self): """Test request config with least amount of data.""" request_id = configurator.request_config( self.hass, "Test Request", lambda _: None) self.assertEqual( 1, len(self.hass.services.services.get(configurator.DOMAIN, [])), "No new service registered") states = self.hass.states.all() self.assertEqual(1, len(states), "Expected a new state registered") state = states[0] self.assertEqual(configurator.STATE_CONFIGURE, state.state) self.assertEqual( request_id, state.attributes.get(configurator.ATTR_CONFIGURE_ID)) def test_request_all_info(self): """Test request config with all possible info.""" exp_attr = { ATTR_FRIENDLY_NAME: "Test Request", configurator.ATTR_DESCRIPTION: "config description", configurator.ATTR_DESCRIPTION_IMAGE: "config image url", configurator.ATTR_SUBMIT_CAPTION: "config submit caption", configurator.ATTR_FIELDS: [], configurator.ATTR_LINK_NAME: "link name", configurator.ATTR_LINK_URL: "link url", configurator.ATTR_ENTITY_PICTURE: "config entity picture", configurator.ATTR_CONFIGURE_ID: configurator.request_config( self.hass, name="Test Request", callback=lambda _: None, description="config description", description_image="config image url", submit_caption="config submit caption", fields=None, link_name="link name", link_url="link url", entity_picture="config entity picture", ) } states = self.hass.states.all() self.assertEqual(1, len(states)) state = states[0] self.assertEqual(configurator.STATE_CONFIGURE, state.state) assert exp_attr == dict(state.attributes) def test_callback_called_on_configure(self): """Test if our callback gets called when configure service called.""" calls = [] request_id = configurator.request_config( self.hass, "Test Request", lambda _: calls.append(1)) self.hass.services.call( configurator.DOMAIN, configurator.SERVICE_CONFIGURE, {configurator.ATTR_CONFIGURE_ID: request_id}) self.hass.block_till_done() self.assertEqual(1, len(calls), "Callback not called") def test_state_change_on_notify_errors(self): """Test state change on notify errors.""" request_id = configurator.request_config( self.hass, "Test Request", lambda _: None) error = "Oh no bad bad bad" configurator.notify_errors(request_id, error) state = self.hass.states.all()[0] self.assertEqual(error, state.attributes.get(configurator.ATTR_ERRORS)) def test_notify_errors_fail_silently_on_bad_request_id(self): """Test if notify errors fails silently with a bad request id.""" configurator.notify_errors(2015, "Try this error") def test_request_done_works(self): """Test if calling request done works.""" request_id = configurator.request_config( self.hass, "Test Request", lambda _: None) configurator.request_done(request_id) self.assertEqual(1, len(self.hass.states.all())) self.hass.bus.fire(EVENT_TIME_CHANGED) self.hass.block_till_done() self.assertEqual(0, len(self.hass.states.all())) def test_request_done_fail_silently_on_bad_request_id(self): """Test that request_done fails silently with a bad request id.""" configurator.request_done(2016)
mit
-5,437,386,868,304,473,000
37.565217
79
0.629989
false
PaloAltoNetworks-BD/SplunkforPaloAltoNetworks
Splunk_TA_paloalto/bin/splunk_ta_paloalto/aob_py2/solnlib/packages/schematics/contrib/enum_type.py
3
2419
"""Type supporting native Python3 enum. It depends either on Py3.4+ or e.g. enum34. """ from __future__ import unicode_literals, absolute_import try: from enum import Enum except ImportError: pass from ..exceptions import ConversionError from ..translator import _ from ..types import BaseType from ..compat import string_type class EnumType(BaseType): """A field type allowing to use native enums as values. Restricts values to enum members and (optionally) enum values. `use_values` - if set to True allows do assign enumerated values to the field. >>> import enum >>> class E(enum.Enum): ... A = 1 ... B = 2 >>> from schematics import Model >>> class AModel(Model): ... foo = EnumType(E) >>> a = AModel() >>> a.foo = E.A >>> a.foo.value == 1 """ MESSAGES = { 'convert': _("Couldn't interpret '{0}' as member of {1}."), } def __init__(self, enum, use_values=False, **kwargs): """ :param enum: Enum class to which restrict values assigned to the field. :param use_values: If true, also values of the enum (right-hand side) can be assigned here. Other args are passed to superclass. """ self._enum_class = enum self._use_values = use_values super(EnumType, self).__init__(**kwargs) def to_native(self, value, context=None): if isinstance(value, self._enum_class): return value else: by_name = self._find_by_name(value) if by_name: return by_name by_value = self._find_by_value(value) if by_value: return by_value raise ConversionError(self.messages['convert'].format(value, self._enum_class)) def _find_by_name(self, value): if isinstance(value, string_type): try: return self._enum_class[value] except KeyError: pass def _find_by_value(self, value): if not self._use_values: return for member in self._enum_class: if member.value == value: return member def to_primitive(self, value, context=None): if isinstance(value, Enum): if self._use_values: return value.value else: return value.name else: return str(value)
isc
-4,532,396,976,938,578,400
29.620253
99
0.57131
false
AndreasMadsen/tensorflow
tensorflow/contrib/learn/python/learn/utils/saved_model_export_utils.py
4
11253
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Utilities supporting export to SavedModel.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import copy import os import re import time from tensorflow.contrib.learn.python.learn import export_strategy from tensorflow.contrib.learn.python.learn.estimators import constants from tensorflow.contrib.learn.python.learn.estimators import prediction_key from tensorflow.contrib.learn.python.learn.utils import gc from tensorflow.contrib.learn.python.learn.utils import input_fn_utils from tensorflow.python.platform import gfile from tensorflow.python.saved_model import signature_constants from tensorflow.python.saved_model import signature_def_utils from tensorflow.python.util import compat # A key for use in the input_alternatives dict indicating the default input. # This is the input that will be expected when a serving request does not # specify a specific signature. # The default input alternative specifies placeholders that the input_fn # requires to be fed (in the typical case, a single placeholder for a # serialized tf.Example). DEFAULT_INPUT_ALTERNATIVE_KEY = 'default_input_alternative' # A key for use in the input_alternatives dict indicating the features input. # The features inputs alternative specifies the feature Tensors provided as # input to the model_fn, i.e. the outputs of the input_fn. FEATURES_INPUT_ALTERNATIVE_KEY = 'features_input_alternative' # A key for use in the output_alternatives dict indicating the default output. # This is the output that will be provided when a serving request does not # specify a specific signature. # In a single-headed model, the single output is automatically the default. # In a multi-headed model, the name of the desired default head should be # provided to get_output_alternatives. DEFAULT_OUTPUT_ALTERNATIVE_KEY = 'default_output_alternative' def build_standardized_signature_def( input_tensors, output_tensors, problem_type): """Build a SignatureDef using problem type and input and output Tensors. Note that this delegates the actual creation of the signatures to methods in //third_party/tensorflow/python/saved_model/signature_def_utils.py, which may assign names to the input and output tensors (depending on the problem type) that are standardized in the context of SavedModel. Args: input_tensors: a dict of string key to `Tensor` output_tensors: a dict of string key to `Tensor` problem_type: an instance of constants.ProblemType, specifying classification, regression, etc. Returns: A SignatureDef using SavedModel standard keys where possible. Raises: ValueError: if input_tensors or output_tensors is None or empty. """ if not input_tensors: raise ValueError('input_tensors must be provided.') if not output_tensors: raise ValueError('output_tensors must be provided.') # Per-method signature_def functions will standardize the keys if possible if _is_classification_problem(problem_type, input_tensors, output_tensors): (_, examples), = input_tensors.items() classes = output_tensors.get(prediction_key.PredictionKey.CLASSES) scores = output_tensors.get(prediction_key.PredictionKey.SCORES) if not (classes or scores): (_, classes), = output_tensors.items() return signature_def_utils.classification_signature_def( examples, classes, scores) elif _is_regression_problem(problem_type, input_tensors, output_tensors): (_, examples), = input_tensors.items() (_, predictions), = output_tensors.items() return signature_def_utils.regression_signature_def(examples, predictions) else: return signature_def_utils.predict_signature_def( input_tensors, output_tensors) def _is_classification_problem(problem_type, input_tensors, output_tensors): classes = output_tensors.get(prediction_key.PredictionKey.CLASSES) scores = output_tensors.get(prediction_key.PredictionKey.SCORES) return ((problem_type == constants.ProblemType.CLASSIFICATION or problem_type == constants.ProblemType.LOGISTIC_REGRESSION) and len(input_tensors) == 1 and (classes or scores or len(output_tensors) == 1)) def _is_regression_problem(problem_type, input_tensors, output_tensors): return (problem_type == constants.ProblemType.LINEAR_REGRESSION and len(input_tensors) == 1 and len(output_tensors) == 1) def get_input_alternatives(input_ops): """Obtain all input alternatives using the input_fn output and heuristics.""" input_alternatives = {} if isinstance(input_ops, input_fn_utils.InputFnOps): features, unused_labels, default_inputs = input_ops input_alternatives[DEFAULT_INPUT_ALTERNATIVE_KEY] = default_inputs else: features, unused_labels = input_ops if not features: raise ValueError('Features must be defined.') # Add the "features" input_signature in any case. # Note defensive copy because model_fns alter the features dict. input_alternatives[FEATURES_INPUT_ALTERNATIVE_KEY] = ( copy.copy(features)) return input_alternatives, features def get_output_alternatives( model_fn_ops, default_output_alternative_key=DEFAULT_OUTPUT_ALTERNATIVE_KEY): """Obtain all output alternatives using the model_fn output and heuristics.""" output_alternatives = model_fn_ops.output_alternatives # Identify the default outputs, creating them if needed. if (output_alternatives and default_output_alternative_key not in output_alternatives): raise ValueError('default_output_alternative_key not in ' 'output_alternatives: %s' % default_output_alternative_key) if (output_alternatives and default_output_alternative_key in output_alternatives): # If a default head is provided, use it. actual_default_output_alternative_key = default_output_alternative_key return output_alternatives, actual_default_output_alternative_key if output_alternatives and len(output_alternatives) == 1: # If there is only one head, use it as the default. (actual_default_output_alternative_key, _), = output_alternatives.items() return output_alternatives, actual_default_output_alternative_key # Lacking provided output alternatives, the best we can do is to # interpret the model as single-headed of unknown type. default_problem_type = constants.ProblemType.UNSPECIFIED default_outputs = model_fn_ops.predictions actual_default_output_alternative_key = DEFAULT_OUTPUT_ALTERNATIVE_KEY output_alternatives = {actual_default_output_alternative_key: (default_problem_type, default_outputs)} return output_alternatives, actual_default_output_alternative_key def build_all_signature_defs(input_alternatives, output_alternatives, actual_default_output_alternative_key): """Build `SignatureDef`s from all pairs of input and output alternatives.""" signature_def_map = { ('%s:%s' % (input_key, output_key or 'None')): build_standardized_signature_def( inputs, outputs, problem_type) for input_key, inputs in input_alternatives.items() for output_key, (problem_type, outputs) in output_alternatives.items()} # Add the default SignatureDef default_inputs = input_alternatives[DEFAULT_INPUT_ALTERNATIVE_KEY] if not default_inputs: default_inputs = input_alternatives[FEATURES_INPUT_ALTERNATIVE_KEY] # default outputs are guaranteed to exist above (default_problem_type, default_outputs) = ( output_alternatives[actual_default_output_alternative_key]) signature_def_map[signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY] = ( build_standardized_signature_def( default_inputs, default_outputs, default_problem_type)) return signature_def_map def get_timestamped_export_dir(export_dir_base): """Builds a path to a new subdirectory within the base directory. Each export is written into a new subdirectory named using the current time. This guarantees monotonically increasing version numbers even across multiple runs of the pipeline. The timestamp used is the number of milliseconds since epoch UTC. Args: export_dir_base: A string containing a directory to write the exported graph and checkpoints. Returns: The full path of the new subdirectory (which is not actually created yet). """ export_timestamp = int(time.time() * 1e3) export_dir = os.path.join( compat.as_bytes(export_dir_base), compat.as_bytes(str(export_timestamp))) return export_dir def garbage_collect_exports(export_dir_base, exports_to_keep): """Deletes older exports, retaining only a given number of the most recent. Export subdirectories are assumed to be named with monotonically increasing integers; the most recent are taken to be those with the largest values. Args: export_dir_base: the base directory under which each export is in a versioned subdirectory. exports_to_keep: the number of recent exports to retain. """ if exports_to_keep is None: return keep_filter = gc.largest_export_versions(exports_to_keep) delete_filter = gc.negation(keep_filter) # Export dir must not end with / or it will break the re match below. if export_dir_base.endswith('/'): export_dir_base = export_dir_base[:-1] # create a simple parser that pulls the export_version from the directory. def parser(path): match = re.match('^' + export_dir_base + '/(\\d{13})$', path.path) if not match: return None return path._replace(export_version=int(match.group(1))) for p in delete_filter(gc.get_paths(export_dir_base, parser=parser)): gfile.DeleteRecursively(p.path) def make_export_strategy(export_input_fn, default_output_alternative_key='default', assets_extra=None, export_as_text=False, exports_to_keep=None): """Create an ExportStrategy for use with Experiment.""" def export_fn(estimator, export_dir_base): """Exports the given Estimator as a SavedModel.""" export_result = estimator.export_savedmodel( export_dir_base, export_input_fn, default_output_alternative_key=default_output_alternative_key, assets_extra=assets_extra, export_as_text=export_as_text, exports_to_keep=exports_to_keep) garbage_collect_exports(export_dir_base, exports_to_keep) return export_result return export_strategy.ExportStrategy('Servo', export_fn)
apache-2.0
-7,599,987,610,211,274,000
40.371324
80
0.730916
false
salfab/CouchPotatoServer
couchpotato/core/providers/torrent/yify/__init__.py
6
1482
from main import Yify def start(): return Yify() config = [{ 'name': 'yify', 'groups': [ { 'tab': 'searcher', 'list': 'torrent_providers', 'name': 'Yify', 'description': 'Free provider, less accurate. Small HD movies, encoded by <a href="https://yify-torrents.com/">Yify</a>.', 'wizard': False, 'options': [ { 'name': 'enabled', 'type': 'enabler', 'default': 0 }, { 'name': 'seed_ratio', 'label': 'Seed ratio', 'type': 'float', 'default': 1, 'description': 'Will not be (re)moved until this seed ratio is met.', }, { 'name': 'seed_time', 'label': 'Seed time', 'type': 'int', 'default': 40, 'description': 'Will not be (re)moved until this seed time (in hours) is met.', }, { 'name': 'extra_score', 'advanced': True, 'label': 'Extra Score', 'type': 'int', 'default': 0, 'description': 'Starting score for each release found via this provider.', } ], } ] }]
gpl-3.0
3,132,631,932,905,831,000
31.217391
134
0.360999
false
SUSE/azure-sdk-for-python
azure-mgmt-compute/azure/mgmt/compute/compute/v2015_06_15/models/virtual_machine_scale_set_vm_extensions_summary.py
2
1407
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.serialization import Model class VirtualMachineScaleSetVMExtensionsSummary(Model): """Extensions summary for virtual machines of a virtual machine scale set. Variables are only populated by the server, and will be ignored when sending a request. :ivar name: The extension name. :vartype name: str :ivar statuses_summary: The extensions information. :vartype statuses_summary: list of :class:`VirtualMachineStatusCodeCount <azure.mgmt.compute.compute.v2015_06_15.models.VirtualMachineStatusCodeCount>` """ _validation = { 'name': {'readonly': True}, 'statuses_summary': {'readonly': True}, } _attribute_map = { 'name': {'key': 'name', 'type': 'str'}, 'statuses_summary': {'key': 'statusesSummary', 'type': '[VirtualMachineStatusCodeCount]'}, } def __init__(self): self.name = None self.statuses_summary = None
mit
-8,594,863,412,857,004,000
34.175
98
0.616205
false
fintech-circle/edx-platform
common/djangoapps/third_party_auth/settings.py
2
4345
"""Settings for the third-party auth module. The flow for settings registration is: The base settings file contains a boolean, ENABLE_THIRD_PARTY_AUTH, indicating whether this module is enabled. startup.py probes the ENABLE_THIRD_PARTY_AUTH. If true, it: a) loads this module. b) calls apply_settings(), passing in the Django settings """ from openedx.features.enterprise_support.api import insert_enterprise_pipeline_elements _FIELDS_STORED_IN_SESSION = ['auth_entry', 'next'] _MIDDLEWARE_CLASSES = ( 'third_party_auth.middleware.ExceptionMiddleware', 'third_party_auth.middleware.PipelineQuarantineMiddleware', ) _SOCIAL_AUTH_LOGIN_REDIRECT_URL = '/dashboard' def apply_settings(django_settings): """Set provider-independent settings.""" # Whitelisted URL query parameters retrained in the pipeline session. # Params not in this whitelist will be silently dropped. django_settings.FIELDS_STORED_IN_SESSION = _FIELDS_STORED_IN_SESSION # Inject exception middleware to make redirects fire. django_settings.MIDDLEWARE_CLASSES += _MIDDLEWARE_CLASSES # Where to send the user if there's an error during social authentication # and we cannot send them to a more specific URL # (see middleware.ExceptionMiddleware). django_settings.SOCIAL_AUTH_LOGIN_ERROR_URL = '/' # Where to send the user once social authentication is successful. django_settings.SOCIAL_AUTH_LOGIN_REDIRECT_URL = _SOCIAL_AUTH_LOGIN_REDIRECT_URL # Inject our customized auth pipeline. All auth backends must work with # this pipeline. django_settings.SOCIAL_AUTH_PIPELINE = [ 'third_party_auth.pipeline.parse_query_params', 'social.pipeline.social_auth.social_details', 'social.pipeline.social_auth.social_uid', 'social.pipeline.social_auth.auth_allowed', 'social.pipeline.social_auth.social_user', 'third_party_auth.pipeline.associate_by_email_if_login_api', 'social.pipeline.user.get_username', 'third_party_auth.pipeline.set_pipeline_timeout', 'third_party_auth.pipeline.ensure_user_information', 'social.pipeline.user.create_user', 'social.pipeline.social_auth.associate_user', 'social.pipeline.social_auth.load_extra_data', 'social.pipeline.user.user_details', 'third_party_auth.pipeline.set_logged_in_cookies', 'third_party_auth.pipeline.login_analytics', ] # Add enterprise pipeline elements if the enterprise app is installed insert_enterprise_pipeline_elements(django_settings.SOCIAL_AUTH_PIPELINE) # Required so that we can use unmodified PSA OAuth2 backends: django_settings.SOCIAL_AUTH_STRATEGY = 'third_party_auth.strategy.ConfigurationModelStrategy' # We let the user specify their email address during signup. django_settings.SOCIAL_AUTH_PROTECTED_USER_FIELDS = ['email'] # Disable exceptions by default for prod so you get redirect behavior # instead of a Django error page. During development you may want to # enable this when you want to get stack traces rather than redirections. django_settings.SOCIAL_AUTH_RAISE_EXCEPTIONS = False # Allow users to login using social auth even if their account is not verified yet # This is required since we [ab]use django's 'is_active' flag to indicate verified # accounts; without this set to True, python-social-auth won't allow us to link the # user's account to the third party account during registration (since the user is # not verified at that point). # We also generally allow unverified third party auth users to login (see the logic # in ensure_user_information in pipeline.py) because otherwise users who use social # auth to register with an invalid email address can become "stuck". # TODO: Remove the following if/when email validation is separated from the is_active flag. django_settings.SOCIAL_AUTH_INACTIVE_USER_LOGIN = True django_settings.SOCIAL_AUTH_INACTIVE_USER_URL = '/auth/inactive' # Context processors required under Django. django_settings.SOCIAL_AUTH_UUID_LENGTH = 4 django_settings.DEFAULT_TEMPLATE_ENGINE['OPTIONS']['context_processors'] += ( 'social.apps.django_app.context_processors.backends', 'social.apps.django_app.context_processors.login_redirect', )
agpl-3.0
6,532,993,894,143,038,000
46.228261
97
0.733257
false
jzaremba/sima
runtests.py
3
13217
#!/usr/bin/env python """ runtests.py [OPTIONS] [-- ARGS] Run tests, building the project first. Examples:: $ python runtests.py $ python runtests.py -s {SAMPLE_SUBMODULE} $ python runtests.py -t {SAMPLE_TEST} $ python runtests.py --ipython $ python runtests.py --python somescript.py $ python runtests.py --bench Run a debugger: $ gdb --args python runtests.py [...other args...] Generate C code coverage listing under build/lcov/: (requires http://ltp.sourceforge.net/coverage/lcov.php) $ python runtests.py --gcov [...other args...] $ python runtests.py --lcov-html """ import sys import os import shutil import subprocess import time import imp from argparse import ArgumentParser, REMAINDER # # This is a generic test runner script for projects using Numpy's test # framework. Change the following values to adapt to your project: # PROJECT_MODULE = "sima" PROJECT_ROOT_FILES = ['sima', 'license.txt', 'setup.py'] SAMPLE_TEST = "sima/tests/test_imaging.py:test_ImagingDataset_2d" SAMPLE_SUBMODULE = "motion" EXTRA_PATH = ['/usr/lib/ccache', '/usr/lib/f90cache', '/usr/local/lib/ccache', '/usr/local/lib/f90cache'] # --------------------------------------------------------------------- if __doc__ is None: __doc__ = "Run without -OO if you want usage info" else: __doc__ = __doc__.format(**globals()) # In case we are run from the source directory, we don't want to import the # project from there: sys.path.pop(0) ROOT_DIR = os.path.abspath(os.path.join(os.path.dirname(__file__))) def main(argv): parser = ArgumentParser(usage=__doc__.lstrip()) parser.add_argument("--verbose", "-v", action="count", default=1, help="more verbosity") parser.add_argument( "--no-build", "-n", action="store_true", default=False, help="do not build the project (use system installed version)") parser.add_argument( "--build-only", "-b", action="store_true", default=False, help="just build, do not run any tests") parser.add_argument("--doctests", action="store_true", default=False, help="Run doctests in module") parser.add_argument( "--coverage", action="store_true", default=False, help=( "report coverage of project code. HTML output goes " "under build/coverage")) parser.add_argument( "--gcov", action="store_true", default=False, help=( "enable C code coverage via gcov (requires GCC). " "gcov output goes to build/**/*.gc*")) parser.add_argument("--lcov-html", action="store_true", default=False, help=("produce HTML for C code coverage information " "from a previous run with --gcov. " "HTML output goes to build/lcov/")) parser.add_argument("--mode", "-m", default="fast", help="'fast', 'full', or something that could be " "passed to nosetests -A [default: fast]") parser.add_argument( "--submodule", "-s", default=None, help="Submodule whose tests to run (cluster, constants, ...)") parser.add_argument("--pythonpath", "-p", default=None, help="Paths to prepend to PYTHONPATH") parser.add_argument("--tests", "-t", action='append', help="Specify tests to run") parser.add_argument("--python", action="store_true", help="Start a Python shell with PYTHONPATH set") parser.add_argument("--ipython", "-i", action="store_true", help="Start IPython shell with PYTHONPATH set") parser.add_argument("--shell", action="store_true", help="Start Unix shell with PYTHONPATH set") parser.add_argument("--debug", "-g", action="store_true", help="Debug build") parser.add_argument("--show-build-log", action="store_true", help="Show build output rather than using a log file") parser.add_argument("--bench", action="store_true", help="Run benchmark suite instead of test suite") parser.add_argument("args", metavar="ARGS", default=[], nargs=REMAINDER, help="Arguments to pass to Nose, Python or shell") args = parser.parse_args(argv) if args.lcov_html: # generate C code coverage output lcov_generate() sys.exit(0) if args.pythonpath: for p in reversed(args.pythonpath.split(os.pathsep)): sys.path.insert(0, p) if args.gcov: gcov_reset_counters() if not args.no_build: site_dir = build_project(args) sys.path.insert(0, site_dir) os.environ['PYTHONPATH'] = site_dir extra_argv = args.args[:] if extra_argv and extra_argv[0] == '--': extra_argv = extra_argv[1:] if args.python: if extra_argv: # Don't use subprocess, since we don't want to include the # current path in PYTHONPATH. sys.argv = extra_argv with open(extra_argv[0], 'r') as f: script = f.read() sys.modules['__main__'] = imp.new_module('__main__') ns = dict(__name__='__main__', __file__=extra_argv[0]) exec_(script, ns) sys.exit(0) else: import code code.interact() sys.exit(0) if args.ipython: import IPython IPython.embed(user_ns={}) sys.exit(0) if args.shell: shell = os.environ.get('SHELL', 'sh') print("Spawning a Unix shell...") os.execv(shell, [shell] + extra_argv) sys.exit(1) if args.coverage: dst_dir = os.path.join(ROOT_DIR, 'build', 'coverage') fn = os.path.join(dst_dir, 'coverage_html.js') if os.path.isdir(dst_dir) and os.path.isfile(fn): shutil.rmtree(dst_dir) extra_argv += ['--cover-html', '--cover-html-dir=' + dst_dir] test_dir = os.path.join(ROOT_DIR, 'build', 'test') if args.build_only: sys.exit(0) elif args.submodule: modname = PROJECT_MODULE + '.' + args.submodule try: __import__(modname) if args.bench: test = sys.modules[modname].bench else: test = sys.modules[modname].test except (ImportError, KeyError, AttributeError) as e: print("Cannot run tests for %s (%s)" % (modname, e)) sys.exit(2) elif args.tests: def fix_test_path(x): # fix up test path p = x.split(':') p[0] = os.path.relpath(os.path.abspath(p[0]), test_dir) return ':'.join(p) tests = [fix_test_path(x) for x in args.tests] def test(*a, **kw): extra_argv = kw.pop('extra_argv', ()) extra_argv = extra_argv + tests[1:] kw['extra_argv'] = extra_argv from numpy.testing import Tester if args.bench: return Tester(tests[0]).bench(*a, **kw) else: return Tester(tests[0]).test(*a, **kw) else: __import__(PROJECT_MODULE) if args.bench: test = sys.modules[PROJECT_MODULE].bench else: test = sys.modules[PROJECT_MODULE].test # Run the tests under build/test try: shutil.rmtree(test_dir) except OSError: pass try: os.makedirs(test_dir) except OSError: pass cwd = os.getcwd() try: os.chdir(test_dir) if args.bench: result = test(args.mode, verbose=args.verbose, extra_argv=extra_argv) else: result = test(args.mode, verbose=args.verbose, extra_argv=extra_argv, doctests=args.doctests, coverage=args.coverage) finally: os.chdir(cwd) if isinstance(result, bool): sys.exit(0 if result else 1) elif result.wasSuccessful(): sys.exit(0) else: sys.exit(1) def build_project(args): """ Build a dev version of the project. Returns ------- site_dir site-packages directory where it was installed """ root_ok = [os.path.exists(os.path.join(ROOT_DIR, fn)) for fn in PROJECT_ROOT_FILES] if not all(root_ok): print("To build the project, run runtests.py in " "git checkout or unpacked source") sys.exit(1) dst_dir = os.path.join(ROOT_DIR, 'build', 'testenv') env = dict(os.environ) cmd = [sys.executable, 'setup.py'] # Always use ccache, if installed env['PATH'] = os.pathsep.join( EXTRA_PATH + env.get('PATH', '').split(os.pathsep)) if args.debug or args.gcov: # assume everyone uses gcc/gfortran env['OPT'] = '-O0 -ggdb' env['FOPT'] = '-O0 -ggdb' if args.gcov: import distutils.sysconfig cvars = distutils.sysconfig.get_config_vars() env['OPT'] = '-O0 -ggdb' env['FOPT'] = '-O0 -ggdb' env['CC'] = cvars['CC'] + ' --coverage' env['CXX'] = cvars['CXX'] + ' --coverage' env['F77'] = 'gfortran --coverage ' env['F90'] = 'gfortran --coverage ' env['LDSHARED'] = cvars['LDSHARED'] + ' --coverage' env['LDFLAGS'] = " ".join( cvars['LDSHARED'].split()[1:]) + ' --coverage' cmd += ["build"] cmd += ['install', '--prefix=' + dst_dir] log_filename = os.path.join(ROOT_DIR, 'build.log') if args.show_build_log: ret = subprocess.call(cmd, env=env, cwd=ROOT_DIR) else: log_filename = os.path.join(ROOT_DIR, 'build.log') print("Building, see build.log...") with open(log_filename, 'w') as log: p = subprocess.Popen(cmd, env=env, stdout=log, stderr=log, cwd=ROOT_DIR) # Wait for it to finish, and print something to indicate the # process is alive, but only if the log file has grown (to # allow continuous integration environments kill a hanging # process accurately if it produces no output) last_blip = time.time() last_log_size = os.stat(log_filename).st_size while p.poll() is None: time.sleep(0.5) if time.time() - last_blip > 60: log_size = os.stat(log_filename).st_size if log_size > last_log_size: print(" ... build in progress") last_blip = time.time() last_log_size = log_size ret = p.wait() if ret == 0: print("Build OK") else: if not args.show_build_log: with open(log_filename, 'r') as f: print(f.read()) print("Build failed!") sys.exit(1) from distutils.sysconfig import get_python_lib site_dir = get_python_lib(prefix=dst_dir, plat_specific=True) return site_dir # # GCOV support # def gcov_reset_counters(): print("Removing previous GCOV .gcda files...") build_dir = os.path.join(ROOT_DIR, 'build') for dirpath, dirnames, filenames in os.walk(build_dir): for fn in filenames: if fn.endswith('.gcda') or fn.endswith('.da'): pth = os.path.join(dirpath, fn) os.unlink(pth) # # LCOV support # LCOV_OUTPUT_FILE = os.path.join(ROOT_DIR, 'build', 'lcov.out') LCOV_HTML_DIR = os.path.join(ROOT_DIR, 'build', 'lcov') def lcov_generate(): try: os.unlink(LCOV_OUTPUT_FILE) except OSError: pass try: shutil.rmtree(LCOV_HTML_DIR) except OSError: pass print("Capturing lcov info...") subprocess.call(['lcov', '-q', '-c', '-d', os.path.join(ROOT_DIR, 'build'), '-b', ROOT_DIR, '--output-file', LCOV_OUTPUT_FILE]) print("Generating lcov HTML output...") ret = subprocess.call(['genhtml', '-q', LCOV_OUTPUT_FILE, '--output-directory', LCOV_HTML_DIR, '--legend', '--highlight']) if ret != 0: print("genhtml failed!") else: print("HTML output generated under build/lcov/") # # Python 3 support # if sys.version_info[0] >= 3: import builtins exec_ = getattr(builtins, "exec") else: def exec_(code, globs=None, locs=None): """Execute code in a namespace.""" if globs is None: frame = sys._getframe(1) globs = frame.f_globals if locs is None: locs = frame.f_locals del frame elif locs is None: locs = globs exec("""exec code in globs, locs""") if __name__ == "__main__": main(argv=sys.argv[1:])
gpl-2.0
-3,302,051,674,599,771,600
30.544153
78
0.536355
false
WhittKinley/aima-python
submissions/Kinley/Actual Project/GUI.py
2
6660
from tkinter import * import ConnectFour from ConnectFour import C4Game from random import randint import games g = C4Game class GUI: elementSize = 50 gridBorder = 3 gridColor = "#000000" p1Color = "#FF0000" p2Color = "#FFFF00" backgroundColor = "#add8e6" gameOn = False def __init__(self, master): self.master = master master.title('Connect Four') label = Label(master, text="Connect Four", font=("Times New Roman", 50)) label.grid(row=0,column=1) player1label = Label(master,text="If Player 1 is Computer") player2label = Label(master,text="If Player 2 is Computer") player1button1 = Button(master,text="Click Here!", command=self.cpuDrop1) player2button1 = Button(master,text="Click Here!",command=self.cpuDrop2) player1label.grid(row=2,column=0,) player2label.grid(row=2,column=2) player1button1.grid(row=3,column=0,) player2button1.grid(row=3,column=2) button = Button(master, text="New Game!", command=self._newGameButton) button.grid(row=3,column=1) self.canvas = Canvas(master, width=200, height=50, background=self.backgroundColor, highlightthickness=0) self.canvas.grid(row=5,column=1) self.currentPlayerVar = StringVar(self.master, value="") self.currentPlayerLabel = Label(self.master, textvariable=self.currentPlayerVar, anchor=W) self.currentPlayerLabel.grid(row=6,column=1) self.canvas.bind('<Button-1>', self._canvasClick) self.newGame() def cpuDrop1(self): if(self.gameState.first_player == True): if not self.gameOn: return if self.gameState.game_over: return self.adrop(self) self.master.update() self.drawGrid() self.draw() self._updateCurrentPlayer() if self.gameState.game_over: x = self.canvas.winfo_width() // 2 y = self.canvas.winfo_height() // 2 if self.gameState.game_over == 'draw': t = 'DRAW!' else: winner = self.p1 if self.gameState.first_player else self.p2 t = winner + ' won!' self.canvas.create_text(x, y, text=t, font=("Helvetica", 32), fill="#333") def cpuDrop2(self): if(self.gameState.first_player == False): if not self.gameOn: return if self.gameState.game_over: return self.bdrop(self) self.master.update() self.drawGrid() self.draw() self._updateCurrentPlayer() if self.gameState.game_over: x = self.canvas.winfo_width() // 2 y = self.canvas.winfo_height() // 2 if self.gameState.game_over == 'draw': t = 'DRAW!' else: winner = self.p1 if self.gameState.first_player else self.p2 t = winner + ' won!' self.canvas.create_text(x, y, text=t, font=("Helvetica", 32), fill="#333") def draw(self): for c in range(self.gameState.size['c']): for r in range(self.gameState.size['r']): if r >= len(self.gameState.grid[c]): continue x0 = c * self.elementSize y0 = r * self.elementSize x1 = (c + 1) * self.elementSize y1 = (r + 1) * self.elementSize fill = self.p1Color if self.gameState.grid[c][r] == self.gameState.players[True] else self.p2Color self.canvas.create_oval(x0 + 2, self.canvas.winfo_height() - (y0 + 2), x1 - 2, self.canvas.winfo_height() - (y1 - 2), fill=fill, outline=self.gridColor) def drawGrid(self): x0, x1 = 0, self.canvas.winfo_width() for r in range(1, self.gameState.size['r']): y = r * self.elementSize self.canvas.create_line(x0, y, x1, y, fill=self.gridColor) y0, y1 = 0, self.canvas.winfo_height() for c in range(1, self.gameState.size['c']): x = c * self.elementSize self.canvas.create_line(x, y0, x, y1, fill=self.gridColor) def drop(self, column): return self.gameState.drop(column) def adrop(self,column): if(self.gameState.first_player): guess = randint(0,6) return self.gameState.drop(guess) else: return self.gameState.drop(column) def bdrop(self, column): if(self.gameState.first_player): return self.gameState.drop(column) else: guess = games.alphabeta_search(self.gameState, self.game, 4) return self.gameState.drop(guess) def newGame(self): self.p1 = 'Player 1' self.p2 = 'Player 2' columns = 7 rows = 6 self.gameState = ConnectFour.ConnectFour(columns=columns, rows=rows) self.game = ConnectFour.C4Game(self.gameState) self.canvas.delete(ALL) self.canvas.config(width=(self.elementSize) * self.gameState.size['c'], height=(self.elementSize) * self.gameState.size['r']) self.master.update() self.drawGrid() self.draw() self._updateCurrentPlayer() self.gameOn = True def _updateCurrentPlayer(self): p = self.p1 if self.gameState.first_player else self.p2 self.currentPlayerVar.set('Current player: ' + p) def _canvasClick(self, event): if not self.gameOn: return if self.gameState.game_over: return c = event.x // self.elementSize if (0 <= c < self.gameState.size['c']): self.drop(c) self.draw() self._updateCurrentPlayer() if self.gameState.game_over: x = self.canvas.winfo_width() // 2 y = self.canvas.winfo_height() // 2 if self.gameState.game_over == 'draw': t = 'DRAW!' else: winner = self.p1 if self.gameState.first_player else self.p2 t = winner + ' won!' self.canvas.create_text(175, y-120, text=t, font=("Times New Roman", 42), fill="#333") def _newGameButton(self): self.newGame() def check_win(self, board): if board[0] == 0 and board[1] == 0 and board[2] == 0: return 1 return 0 root = Tk() app = GUI(root) root.wm_iconbitmap('4.ico') root.mainloop()
mit
-5,327,300,413,814,643,000
34.057895
114
0.551201
false
naototty/pyflag
src/pyflag/Exgrep.py
7
7228
#!/usr/bin/env python # ****************************************************** # Copyright 2004: Commonwealth of Australia. # # Developed by the Computer Network Vulnerability Team, # Information Security Group. # Department of Defence. # # Michael Cohen <[email protected]> # # ****************************************************** # Version: FLAG $Version: 0.87-pre1 Date: Thu Jun 12 00:48:38 EST 2008$ # ****************************************************** # # * This program is free software; you can redistribute it and/or # * modify it under the terms of the GNU General Public License # * as published by the Free Software Foundation; either version 2 # * of the License, or (at your option) any later version. # * # * This program is distributed in the hope that it will be useful, # * but WITHOUT ANY WARRANTY; without even the implied warranty of # * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # * GNU General Public License for more details. # * # * You should have received a copy of the GNU General Public License # * along with this program; if not, write to the Free Software # * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. # ****************************************************** """ An extracting Grep implementation This module will extract files from an image by using their magic. """ import re,types import pyflag.conf import pyflag.pyflaglog as pyflaglog config=pyflag.conf.ConfObject() ## This initialises the cut definition stack: definitions=[] def add_definition(i): i["CStartRE"]=re.compile(i["StartRE"]) try: i["CEndRE"]=re.compile(i["EndRE"]) except: pass definitions.append(i) add_definition(dict( Extension="jpg", StartRE="\\xff\\xd8....(JFIF|Exif)", MaxLength=1500000, Comment="JPEG picture file type", )) add_definition(dict( Extension="gif", StartRE="GIF8[79]a", MaxLength=50000, Comment="GIF picture file type", )) add_definition(dict( Extension="png", StartRE="\\x89PNG\\x0d\\x0a\\x1a\\x0a", EndRE="\\x45\\x4e\\x44\\xae\\x42\\x60\\x82", MaxLength=500000, Comment="PNG picture file type", )) add_definition(dict( Extension="tif", StartRE="\\x4d\\x4d\\x00\\x2a\\x00", MaxLength=1000000, Comment="TIF picture file type 2", )) add_definition(dict( Extension="doc", StartRE="\\xd0\\xcf\\x11\\xe0", MaxLength=500000, Comment="MS Word document", )) add_definition(dict( Extension="pdf", StartRE="%PDF-", EndRE=".%%EOF\\x0d", MaxLength=1000000, Comment="Portable Document Format", )) add_definition(dict( Extension="eps", StartRE="%!PS-Adobe", EndRE="end.%%.trailer", MaxLength=1000000, Comment='Encapsulated Postscript', )) add_definition(dict( Extension="eps", StartRE="%!PS-Adobe", EndRE="%%EOF.", MaxLength=1000000, Comment='Encapsulated Postscript', )) add_definition(dict( Extension="ie_hist", StartRE="Client UrlCache", MaxLength=300000, Comment="Internet Explorer URL cache", )) add_definition(dict( Extension="url", StartRE="URL \\x03\\x00\\x00\\x00", MaxLength=384, Comment="Internet Explorer URL cache", )) add_definition(dict( Extension="wmv", StartRE="\\x30\\x26\\xb2\\x75\\x8e\\x66", MaxLength=1000000, Comment="Windows movie file", )) add_definition(dict( Extension="zip", StartRE= "PK\\x03\\x04", EndRE="PK\\x05\\x06.{18}", MaxLength=1000000, Comment="Zip file", )) add_definition(dict( Extension="pst", StartRE ="!BDNF", MaxLength = 10000000, Comment = "Outlook PST File", )) add_definition(dict( Extension = 'gz', StartRE='\x1F\x8B\x08[\x00\x08]', MaxLength=10000, Comment = "Gziped files" )) def add_definition(i): i["CStartRE"]=re.compile(i["StartRE"]) try: i["CEndRE"]=re.compile(i["EndRE"]) except: pass definitions.append(i) import pyflag.IO as IO def process_string(string,extension=None): """ This is just like process except it operates on a string """ for cut in definitions: offset=0 if extension and cut['Extension'] not in extension: continue while 1: match=cut['CStartRE'].search(string,offset) if match: offset=match.start() length=cut['MaxLength'] ## If there is an end RE, we try to read the entire length in, and then look for the end to we can adjust the length acurately. This is essential for certain file types which do not tolerate garbage at the end of the file, e.g. pdfs. if cut.has_key('CEndRE'): end_match=cut['CEndRE'].search(string,offset) if end_match: length=end_match.end()-offset yield({'offset':offset,'length':length,'type':cut['Extension']}) offset+=1 else: break def process(case,subsys,extension=None): """ A generator to produce all the recoverable files within the io object identified by identifier @arg subsys: Either an IO object to use, or the string name of an io object that will be opened using IO.open(). @arg extension: A list of extensions we would like to see """ if type(subsys)==types.StringType: io=IO.open(case,subsys) else: io=subsys blocksize=1024*1024*10 windowsize=100 count=0 bytes_read=0 window='' while(1): ## This implements a sliding window of window bytes to ensure ## we do not miss a signature that was split across blocksize: try: data=io.read(blocksize) if not len(data): break except IOError: break f=window+data bytes_read+=len(data) pyflaglog.log(pyflaglog.INFO,"Processed %u Mb" % (bytes_read/1024/1024)) for cut in definitions: if extension and cut['Extension'] not in extension: continue pos=0 while pos<blocksize: match=cut['CStartRE'].search(f,pos) if match: offset=match.start()+count-len(window) length=cut['MaxLength'] ## If there is an end RE, we try to read the entire length in, and then look for the end to we can adjust the length acurately. This is essential for certain file types which do not tolerate garbage at the end of the file, e.g. pdfs. if cut.has_key('CEndRE'): tell=io.tell() io.seek(offset) file_data=io.read(length) io.seek(tell) end_match=cut['CEndRE'].search(file_data,0) if end_match: length=end_match.end() yield({'offset':offset,'length':length,'type':cut['Extension']}) pos=match.start()+1 else: pos=blocksize window=f[-windowsize:] count+=blocksize io.close()
gpl-2.0
-3,298,805,256,687,948,000
29.242678
253
0.585916
false
KonradBreitsprecher/espresso
testsuite/observables.py
1
5112
# # Copyright (C) 2013,2014,2015,2016 The ESPResSo project # # This file is part of ESPResSo. # # ESPResSo is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # ESPResSo is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # # Tests particle property setters/getters from __future__ import print_function import unittest as ut import espressomd import numpy as np from numpy.random import random from espressomd.interactions import FeneBond from espressomd.observables import * class Observables(ut.TestCase): # Error tolerance when comparing arrays/tuples... tol = 1E-9 # Handle for espresso system es = espressomd.System(box_l=[1.0, 1.0, 1.0]) def setUp(self): if not len(self.es.part): for i in range(1000): self.es.part.add(pos=random(3), v=random(3), id=i) if espressomd.has_features(["MASS"]): self.es.part[i].mass = random() if espressomd.has_features(["DIPOLES"]): self.es.part[i].dip = random(3) if espressomd.has_features(["ROTATION"]): self.es.part[i].omega_lab = random(3) def generate_test_for_pid_observable( _obs_name, _pprop_name, _agg_type=None): """Generates test cases for observables working on particle id lists""" pprop_name = _pprop_name obs_name = _obs_name agg_type = _agg_type def func(self): # This code is run at the execution of the generated function. # It will use the state of the variables in the outer function, # which was there, when the outer function was called # Get data from particles id_list = range(100, 500, 2) part_data = getattr(self.es.part[id_list], pprop_name) # Reshape and aggregate to linear array if len(part_data.shape) > 1: if (agg_type == "average"): part_data = average(part_data, 0) if (agg_type == "sum"): part_data = sum(part_data, 0) part_data = part_data.reshape(part_data.size) # Data from observable obs_data = obs_name(ids=id_list).calculate() np.testing.assert_array_almost_equal( obs_data, part_data, err_msg="Data did not agree for observable " + str(obs_name) + " and particle property " + pprop_name, decimal=9) return func test_pos = generate_test_for_pid_observable(ParticlePositions, "pos") test_v = generate_test_for_pid_observable(ParticleVelocities, "v") test_f = generate_test_for_pid_observable(ParticleForces, "f") com_force = generate_test_for_pid_observable(ComForce, "f", "sum") if espressomd.has_features(["DIPOLES"]): test_mag_dip = generate_test_for_pid_observable( MagneticDipoleMoment, "dip", "sum") # This is disabled as it does not currently work # if espressomd.has_features(["ROTATION"]): # test_omega_body = generate_test_for_pid_observable(ParticleBodyVelocities,"omega_body") def test_stress_tensor(self): s = self.es.analysis.stress_tensor()["total"].reshape(9) obs_data = np.array(StressTensor().calculate()) np.testing.assert_array_almost_equal( s, obs_data, err_msg="Stress tensor from analysis and observable did not agree", decimal=9) def test_com_position(self): if espressomd.has_features(["MASS"]): com = sum( (self.es.part[:].mass * self.es.part[:].pos.T).T, 0) / sum(self.es.part[:].mass) else: com = sum((self.es.part[:].pos.T).T, 0) / len(self.es.part) obs_data = ComPosition(ids=range(1000)).calculate() np.testing.assert_array_almost_equal( com, obs_data, err_msg="Center of mass observable wrong value", decimal=9) def test_com_velocity(self): if espressomd.has_features(["MASS"]): com_vel = sum( (self.es.part[:].mass * self.es.part[:].v.T).T, 0) / sum(self.es.part[:].mass) else: com_vel = sum((self.es.part[:].v.T).T, 0) / len(self.es.part) obs_data = ComVelocity(ids=range(1000)).calculate() np.testing.assert_array_almost_equal( com_vel, obs_data, err_msg="Center of mass velocity observable wrong value", decimal=9) if __name__ == "__main__": #print("Features: ", espressomd.features()) ut.main()
gpl-3.0
-8,551,781,302,959,550,000
37.43609
96
0.602504
false
DarthMaulware/EquationGroupLeaks
Leak #5 - Lost In Translation/windows/Resources/Ops/PyScripts/nsg.py
1
3405
import dsz import traceback, sys import re import ops.cmd import os.path from ops.pprint import pprint def main(): connection_list = [] proc_list = [] ppid = '' path = '' user = '' if (len(sys.argv) > 1): pattern = (('.*' + sys.argv[1]) + '.*') else: pattern = '.*' print (('\nFiltering connections with regex:: ' + pattern) + '\n') regex = re.compile(pattern, (re.I | re.UNICODE)) dsz.control.echo.Off() cmd = ops.cmd.getDszCommand('netconnections -list') conn_items = cmd.execute() if cmd.success: proc_list = getProcList() for conn_item in conn_items.initialconnectionlistitem.connectionitem: type = conn_item.type.encode('utf-8') pid = str(conn_item.pid) state = conn_item.state.encode('utf-8') valid = conn_item.valid remote_type = str(conn_item.remote.type) remote_port = str(conn_item.remote.port) remote_address = str(conn_item.remote.address) local_type = conn_item.local.type.encode('utf-8') local_port = str(conn_item.local.port) local_address = str(conn_item.local.address) print_local_address = '' if ((len(local_address) > 0) and (local_address != 'None')): print_local_address = ((local_address + ':') + local_port) else: print_local_address = '*.*' if ((len(remote_address) > 0) and (remote_address != 'None')): print_remote_address = ((remote_address + ':') + remote_port) else: print_remote_address = '*.*' connection = [type, print_local_address, print_remote_address, state, pid, ppid, path, user] mergeProcessInfo(connection, proc_list) if regex: tmp_str = ' '.join(connection) if re.search(regex, tmp_str): connection_list.append(connection) if (connection_list > 1): pprint(connection_list, header=['TYPE', 'LOCAL', 'REMOTE', 'STATE', 'PID', 'PPID', 'PATH', 'USER']) dsz.control.echo.On() def getProcList(): cmd = ops.cmd.getDszCommand('processes -list') proc_items = cmd.execute() retval = [] if cmd.success: for proc_item in proc_items.initialprocesslistitem.processitem: process = [str(proc_item.id), str(proc_item.parentid), str(proc_item.path.encode('utf-8')), str(proc_item.name.encode('utf-8')), str(proc_item.user.encode('utf-8'))] retval.append(process) else: dsz.ui.Echo('Could not find any processes.', dsz.ERROR) return 0 return retval def mergeProcessInfo(connection, proc_list): if (proc_list == 0): dsz.ui.Echo('Could not find any processes.', dsz.ERROR) return 0 if (connection != None): for process in filter((lambda x: (x[0] == connection[4])), proc_list): connection[5] = process[1].encode('utf-8') connection[6] = os.path.join(process[2], str(process[3])) connection[7] = process[4] else: dsz.ui.Echo('Could not find any processes.', dsz.ERROR) return 0 return connection if (__name__ == '__main__'): usage = 'nsg [regex]\n ' try: main() except RuntimeError as e: dsz.ui.Echo(('\n RuntimeError Occured: %s' % e), dsz.ERROR)
unlicense
-2,748,614,402,388,846,600
38.149425
177
0.56652
false
pfmoore/pip
src/pip/_internal/pyproject.py
6
7061
import os from collections import namedtuple from typing import Any, List, Optional from pip._vendor import toml from pip._vendor.packaging.requirements import InvalidRequirement, Requirement from pip._internal.exceptions import InstallationError def _is_list_of_str(obj): # type: (Any) -> bool return ( isinstance(obj, list) and all(isinstance(item, str) for item in obj) ) def make_pyproject_path(unpacked_source_directory): # type: (str) -> str return os.path.join(unpacked_source_directory, 'pyproject.toml') BuildSystemDetails = namedtuple('BuildSystemDetails', [ 'requires', 'backend', 'check', 'backend_path' ]) def load_pyproject_toml( use_pep517, # type: Optional[bool] pyproject_toml, # type: str setup_py, # type: str req_name # type: str ): # type: (...) -> Optional[BuildSystemDetails] """Load the pyproject.toml file. Parameters: use_pep517 - Has the user requested PEP 517 processing? None means the user hasn't explicitly specified. pyproject_toml - Location of the project's pyproject.toml file setup_py - Location of the project's setup.py file req_name - The name of the requirement we're processing (for error reporting) Returns: None if we should use the legacy code path, otherwise a tuple ( requirements from pyproject.toml, name of PEP 517 backend, requirements we should check are installed after setting up the build environment directory paths to import the backend from (backend-path), relative to the project root. ) """ has_pyproject = os.path.isfile(pyproject_toml) has_setup = os.path.isfile(setup_py) if has_pyproject: with open(pyproject_toml, encoding="utf-8") as f: pp_toml = toml.load(f) build_system = pp_toml.get("build-system") else: build_system = None # The following cases must use PEP 517 # We check for use_pep517 being non-None and falsey because that means # the user explicitly requested --no-use-pep517. The value 0 as # opposed to False can occur when the value is provided via an # environment variable or config file option (due to the quirk of # strtobool() returning an integer in pip's configuration code). if has_pyproject and not has_setup: if use_pep517 is not None and not use_pep517: raise InstallationError( "Disabling PEP 517 processing is invalid: " "project does not have a setup.py" ) use_pep517 = True elif build_system and "build-backend" in build_system: if use_pep517 is not None and not use_pep517: raise InstallationError( "Disabling PEP 517 processing is invalid: " "project specifies a build backend of {} " "in pyproject.toml".format( build_system["build-backend"] ) ) use_pep517 = True # If we haven't worked out whether to use PEP 517 yet, # and the user hasn't explicitly stated a preference, # we do so if the project has a pyproject.toml file. elif use_pep517 is None: use_pep517 = has_pyproject # At this point, we know whether we're going to use PEP 517. assert use_pep517 is not None # If we're using the legacy code path, there is nothing further # for us to do here. if not use_pep517: return None if build_system is None: # Either the user has a pyproject.toml with no build-system # section, or the user has no pyproject.toml, but has opted in # explicitly via --use-pep517. # In the absence of any explicit backend specification, we # assume the setuptools backend that most closely emulates the # traditional direct setup.py execution, and require wheel and # a version of setuptools that supports that backend. build_system = { "requires": ["setuptools>=40.8.0", "wheel"], "build-backend": "setuptools.build_meta:__legacy__", } # If we're using PEP 517, we have build system information (either # from pyproject.toml, or defaulted by the code above). # Note that at this point, we do not know if the user has actually # specified a backend, though. assert build_system is not None # Ensure that the build-system section in pyproject.toml conforms # to PEP 518. error_template = ( "{package} has a pyproject.toml file that does not comply " "with PEP 518: {reason}" ) # Specifying the build-system table but not the requires key is invalid if "requires" not in build_system: raise InstallationError( error_template.format(package=req_name, reason=( "it has a 'build-system' table but not " "'build-system.requires' which is mandatory in the table" )) ) # Error out if requires is not a list of strings requires = build_system["requires"] if not _is_list_of_str(requires): raise InstallationError(error_template.format( package=req_name, reason="'build-system.requires' is not a list of strings.", )) # Each requirement must be valid as per PEP 508 for requirement in requires: try: Requirement(requirement) except InvalidRequirement: raise InstallationError( error_template.format( package=req_name, reason=( "'build-system.requires' contains an invalid " "requirement: {!r}".format(requirement) ), ) ) backend = build_system.get("build-backend") backend_path = build_system.get("backend-path", []) check = [] # type: List[str] if backend is None: # If the user didn't specify a backend, we assume they want to use # the setuptools backend. But we can't be sure they have included # a version of setuptools which supplies the backend, or wheel # (which is needed by the backend) in their requirements. So we # make a note to check that those requirements are present once # we have set up the environment. # This is quite a lot of work to check for a very specific case. But # the problem is, that case is potentially quite common - projects that # adopted PEP 518 early for the ability to specify requirements to # execute setup.py, but never considered needing to mention the build # tools themselves. The original PEP 518 code had a similar check (but # implemented in a different way). backend = "setuptools.build_meta:__legacy__" check = ["setuptools>=40.8.0", "wheel"] return BuildSystemDetails(requires, backend, check, backend_path)
mit
4,901,165,454,857,345,000
37.584699
79
0.62739
false
livoras/feifanote-server
test/test_db.py
1
1192
from models.user import User from models.notebook import Notebook from models.page import Page from common import db from app import app session = db.session def setup(self): user = User(**dict( email="[email protected]", username="jerry", password="123456", active_notebook_id=1 )) notebook1 = Notebook(**dict( user_id=1, active_page_id=1, name="notebook1", index=1 )) notebook2 = Notebook(**dict( user_id=1, active_page_id=1, name="notebook1", index=2 )) page1 = Page(**dict( notebook_id=1, content="This is my first love", index=1 )) page2 = Page(**dict( notebook_id=1, content="This is my first love", index=2 )) session.add_all([user, notebook1, notebook2, page1, page2]) session.commit() def test_db(): u = session.query(User).filter_by(id=1).first() assert u.username == 'jerry' assert len(u.notebooks) == 2 notebooks = session.query(Notebook).all() assert len(notebooks) == 2 notebook1 = session.query(Notebook).first() assert len(notebook1.pages) == 2
mit
-5,159,109,710,840,907,000
20.285714
63
0.580537
false
Kvoti/ditto
fabfile.py
1
3400
import os import smtplib from email.mime.text import MIMEText from fabric.api import env, cd, run, shell_env, sudo, hosts, execute, settings, local from fabric.colors import green env.hosts = ['134.213.147.235'] env.user = 'root' env.key_filename = '~/.ssh/id_di' env.forward_agent = True def deploy(js=False): if js: # TODO automatically figure out if produciton build needs updated # (we don't run webpack watch with produciton settings as that # generates files for intermediate states. We only want to run it # once before deployment) local('./node_modules/.bin/webpack -p --config webpack.prod.config.js') local('git add webpack-stats-prod.json ditto/static/dist') # TODO if last commit isn't pushed we could --amend and avoid # the extra commit local('git commit -m "Update production assets"') changes = local('git log heroku/master.. --oneline --no-color --reverse > /tmp/log; cat /tmp/log', capture=True) local('git push origin master') local('git push heroku master') for line in changes.splitlines(): print green(line) with settings(warn_only=True): execute(email, changes) def builddb(): with cd('/srv/venv/ditto/ditto'): with shell_env(DJANGO_CONFIGURATION='Production', DJANGO_SETTINGS_MODULE='config.production'): sudo("echo 'drop database app_data;create database app_data' | ../../bin/python manage.py dbshell", user="pydev") sudo("echo 'source /usr/lib/mongooseim//lib/ejabberd-2.1.8+mim-1.5.0/priv/mysql.sql' | ../../bin/python manage.py dbshell", user="pydev") # Set up data for main site sudo(' ../../bin/python manage.py migrate', user="pydev") sudo(' ../../bin/python manage.py runscript setup_test_data', user="pydev") # Delete the mnesia database sudo('rm -rf /usr/lib/mongooseim/Mnesia*') # Restart chat so anything cached by the chat server is forgotten sudo('mongooseimctl restart') # Set up data for example network for Kvoti #newnetwork('di') def newnetwork(name): # TODO this needs to create the Tenant record in the main 'database' with cd('/srv/venv/ditto/ditto'): with shell_env(DJANGO_CONFIGURATION='Production', DJANGO_TENANT=name): sudo(' ../../bin/python manage.py migrate', user="pydev") sudo(' ../../bin/python manage.py runscript setup_test_data', user="pydev") sudo(' ../../bin/python manage.py runscript setup_test_form', user="pydev") # don't set up chat data for now while we're playing with the chat bot # sudo(' ../../bin/python manage.py runscript setup_chat_data', # user="pydev") @hosts('localhost') def email(body): fromaddr = '[email protected]' toaddrs = ['[email protected]', '[email protected]'] msg = MIMEText(body) msg['Subject'] = '[DITTO] deployment' msg['From'] = fromaddr msg['To'] = ','.join(toaddrs) username = '[email protected]' password = os.environ['FAB_EMAIL_PASS'] server = smtplib.SMTP('smtp.gmail.com:587') server.starttls() server.login(username, password) server.sendmail(fromaddr, toaddrs, msg.as_string()) server.quit()
bsd-3-clause
8,849,704,638,203,996,000
39
135
0.626176
false
edmorley/django
tests/backends/postgresql/tests.py
17
6011
import unittest import warnings from unittest import mock from django.db import DatabaseError, connection from django.test import TestCase @unittest.skipUnless(connection.vendor == 'postgresql', 'PostgreSQL tests') class Tests(TestCase): def test_nodb_connection(self): """ The _nodb_connection property fallbacks to the default connection database when access to the 'postgres' database is not granted. """ def mocked_connect(self): if self.settings_dict['NAME'] is None: raise DatabaseError() return '' nodb_conn = connection._nodb_connection self.assertIsNone(nodb_conn.settings_dict['NAME']) # Now assume the 'postgres' db isn't available with warnings.catch_warnings(record=True) as w: with mock.patch('django.db.backends.base.base.BaseDatabaseWrapper.connect', side_effect=mocked_connect, autospec=True): warnings.simplefilter('always', RuntimeWarning) nodb_conn = connection._nodb_connection self.assertIsNotNone(nodb_conn.settings_dict['NAME']) self.assertEqual(nodb_conn.settings_dict['NAME'], connection.settings_dict['NAME']) # Check a RuntimeWarning has been emitted self.assertEqual(len(w), 1) self.assertEqual(w[0].message.__class__, RuntimeWarning) def test_connect_and_rollback(self): """ PostgreSQL shouldn't roll back SET TIME ZONE, even if the first transaction is rolled back (#17062). """ new_connection = connection.copy() try: # Ensure the database default time zone is different than # the time zone in new_connection.settings_dict. We can # get the default time zone by reset & show. cursor = new_connection.cursor() cursor.execute("RESET TIMEZONE") cursor.execute("SHOW TIMEZONE") db_default_tz = cursor.fetchone()[0] new_tz = 'Europe/Paris' if db_default_tz == 'UTC' else 'UTC' new_connection.close() # Invalidate timezone name cache, because the setting_changed # handler cannot know about new_connection. del new_connection.timezone_name # Fetch a new connection with the new_tz as default # time zone, run a query and rollback. with self.settings(TIME_ZONE=new_tz): new_connection.set_autocommit(False) cursor = new_connection.cursor() new_connection.rollback() # Now let's see if the rollback rolled back the SET TIME ZONE. cursor.execute("SHOW TIMEZONE") tz = cursor.fetchone()[0] self.assertEqual(new_tz, tz) finally: new_connection.close() def test_connect_non_autocommit(self): """ The connection wrapper shouldn't believe that autocommit is enabled after setting the time zone when AUTOCOMMIT is False (#21452). """ new_connection = connection.copy() new_connection.settings_dict['AUTOCOMMIT'] = False try: # Open a database connection. new_connection.cursor() self.assertFalse(new_connection.get_autocommit()) finally: new_connection.close() def test_connect_isolation_level(self): """ The transaction level can be configured with DATABASES ['OPTIONS']['isolation_level']. """ import psycopg2 from psycopg2.extensions import ( ISOLATION_LEVEL_READ_COMMITTED as read_committed, ISOLATION_LEVEL_SERIALIZABLE as serializable, ) # Since this is a django.test.TestCase, a transaction is in progress # and the isolation level isn't reported as 0. This test assumes that # PostgreSQL is configured with the default isolation level. # Check the level on the psycopg2 connection, not the Django wrapper. default_level = read_committed if psycopg2.__version__ < '2.7' else None self.assertEqual(connection.connection.isolation_level, default_level) new_connection = connection.copy() new_connection.settings_dict['OPTIONS']['isolation_level'] = serializable try: # Start a transaction so the isolation level isn't reported as 0. new_connection.set_autocommit(False) # Check the level on the psycopg2 connection, not the Django wrapper. self.assertEqual(new_connection.connection.isolation_level, serializable) finally: new_connection.close() def _select(self, val): with connection.cursor() as cursor: cursor.execute('SELECT %s', (val,)) return cursor.fetchone()[0] def test_select_ascii_array(self): a = ['awef'] b = self._select(a) self.assertEqual(a[0], b[0]) def test_select_unicode_array(self): a = ['ᄲawef'] b = self._select(a) self.assertEqual(a[0], b[0]) def test_lookup_cast(self): from django.db.backends.postgresql.operations import DatabaseOperations do = DatabaseOperations(connection=None) lookups = ( 'iexact', 'contains', 'icontains', 'startswith', 'istartswith', 'endswith', 'iendswith', 'regex', 'iregex', ) for lookup in lookups: with self.subTest(lookup=lookup): self.assertIn('::text', do.lookup_cast(lookup)) def test_correct_extraction_psycopg2_version(self): from django.db.backends.postgresql.base import psycopg2_version with mock.patch('psycopg2.__version__', '4.2.1 (dt dec pq3 ext lo64)'): self.assertEqual(psycopg2_version(), (4, 2, 1)) with mock.patch('psycopg2.__version__', '4.2b0.dev1 (dt dec pq3 ext lo64)'): self.assertEqual(psycopg2_version(), (4, 2))
bsd-3-clause
-883,465,429,207,508,400
39.877551
91
0.615244
false
apagac/robottelo
tests/foreman/ui/test_partitiontable.py
2
6384
# -*- encoding: utf-8 -*- """Test class for Partition Table UI""" from ddt import ddt from fauxfactory import gen_string from robottelo.common.decorators import data, run_only_on, skip_if_bug_open from robottelo.common.constants import PARTITION_SCRIPT_DATA_FILE from robottelo.common.helpers import read_data_file, generate_strings_list from robottelo.test import UITestCase from robottelo.ui.factory import make_partitiontable from robottelo.ui.locators import common_locators from robottelo.ui.session import Session @run_only_on('sat') @ddt class PartitionTable(UITestCase): """Implements the partition table tests from UI""" @data(*generate_strings_list(len1=10)) def test_positive_create_partition_table(self, name): """@Test: Create a new partition table @Feature: Partition table - Positive Create @Assert: Partition table is created """ layout = read_data_file(PARTITION_SCRIPT_DATA_FILE) os_family = "Red Hat" with Session(self.browser) as session: make_partitiontable(session, name=name, layout=layout, os_family=os_family) self.assertIsNotNone(self.partitiontable.search(name)) @data(*generate_strings_list(len1=256)) def test_negative_create_partition_table_1(self, name): """@Test: Create a new partition table with 256 characters in name @Feature: Partition table - Negative Create @Assert: Partition table is not created """ layout = read_data_file(PARTITION_SCRIPT_DATA_FILE) os_family = "Red Hat" with Session(self.browser) as session: make_partitiontable(session, name=name, layout=layout, os_family=os_family) self.assertIsNotNone(self.partitiontable.wait_until_element (common_locators["name_haserror"])) self.assertIsNone(self.partitiontable.search(name)) @data("", " ") def test_negative_create_partition_table_2(self, name): """@Test: Create partition table with blank and whitespace in name @Feature: Partition table - Negative Create @Assert: Partition table is not created """ layout = read_data_file(PARTITION_SCRIPT_DATA_FILE) os_family = "Red Hat" with Session(self.browser) as session: make_partitiontable(session, name=name, layout=layout, os_family=os_family) self.assertIsNotNone(self.partitiontable.wait_until_element (common_locators["name_haserror"])) @data(*generate_strings_list(len1=10)) def test_negative_create_partition_table_3(self, name): """@Test: Create a new partition table with same name @Feature: Partition table - Negative Create @Assert: Partition table is not created """ layout = read_data_file(PARTITION_SCRIPT_DATA_FILE) os_family = "Red Hat" with Session(self.browser) as session: make_partitiontable(session, name=name, layout=layout, os_family=os_family) self.assertIsNotNone(self.partitiontable.search(name)) make_partitiontable(session, name=name, layout=layout, os_family=os_family) self.assertIsNotNone(self.partitiontable.wait_until_element (common_locators["name_haserror"])) @data(*generate_strings_list(len1=10)) def test_negative_create_partition_table_4(self, name): """@Test: Create a new partition table with empty layout @Feature: Partition table - Negative Create @Assert: Partition table is not created """ layout = "" os_family = "Red Hat" with Session(self.browser) as session: make_partitiontable(session, name=name, layout=layout, os_family=os_family) self.assertIsNotNone(self.partitiontable.wait_until_element (common_locators["haserror"])) self.assertIsNone(self.partitiontable.search(name)) @skip_if_bug_open('bugzilla', 1177591) @data(*generate_strings_list(len1=10)) def test_remove_partition_table(self, name): """@Test: Delete a partition table @Feature: Partition table - Positive Delete @Assert: Partition table is deleted """ layout = "test layout" os_family = "Red Hat" with Session(self.browser) as session: make_partitiontable(session, name=name, layout=layout, os_family=os_family) self.assertIsNotNone(self.partitiontable.search(name)) self.partitiontable.delete(name, really=True) self.assertIsNotNone(self.partitiontable.wait_until_element (common_locators["notif.success"])) self.assertIsNone(self.partitiontable.search(name)) @data({u'name': gen_string('alpha'), u'new_name': gen_string('alpha')}, {u'name': gen_string('html'), u'new_name': gen_string('html')}, {u'name': gen_string('utf8'), u'new_name': gen_string('utf8')}, {u'name': gen_string('alphanumeric'), u'new_name': gen_string('alphanumeric')}) def test_update_partition_table(self, test_data): """@Test: Update partition table with its name, layout and OS family @Feature: Partition table - Positive Update @Assert: Partition table is updated """ layout = "test layout" new_layout = read_data_file(PARTITION_SCRIPT_DATA_FILE) os_family = "Debian" new_os_family = "Red Hat" with Session(self.browser) as session: make_partitiontable(session, name=test_data['name'], layout=layout, os_family=os_family) self.assertIsNotNone(self.partitiontable.search(test_data['name'])) self.partitiontable.update(test_data['name'], test_data['new_name'], new_layout, new_os_family) self.assertIsNotNone(self.partitiontable.search (test_data['new_name']))
gpl-3.0
-3,273,960,328,868,190,000
39.66242
79
0.605576
false
mlperf/training_results_v0.6
Fujitsu/benchmarks/resnet/implementations/mxnet/python/mxnet/symbol/symbol.py
1
107410
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # coding: utf-8 # pylint: disable=invalid-name, protected-access, too-many-arguments, too-many-lines # pylint: disable=import-error, no-name-in-module """Symbolic configuration API of MXNet.""" from __future__ import absolute_import as _abs try: from __builtin__ import slice as py_slice except ImportError: from builtins import slice as py_slice from array import array import ctypes import warnings from numbers import Number import numpy as _numpy from ..attribute import AttrScope from ..base import _LIB, numeric_types, c_array, c_array_buf, c_str, c_str_array, c_handle_array from ..base import mx_uint, py_str, string_types, integer_types from ..base import NDArrayHandle, ExecutorHandle, SymbolHandle from ..base import check_call, MXNetError, NotImplementedForSymbol from ..context import Context, current_context from ..ndarray import NDArray, _DTYPE_NP_TO_MX, _DTYPE_MX_TO_NP, _GRAD_REQ_MAP from ..ndarray.ndarray import _STORAGE_TYPE_STR_TO_ID from ..ndarray import _ndarray_cls from ..executor import Executor from . import _internal from . import op from ._internal import SymbolBase, _set_symbol_class __all__ = ["Symbol", "var", "Variable", "Group", "load", "load_json", "pow", "maximum", "minimum", "hypot", "eye", "zeros", "ones", "full", "arange", "histogram"] class Symbol(SymbolBase): """Symbol is symbolic graph of the mxnet.""" # disable dictionary storage, also do not have parent type. # pylint: disable=no-member __slots__ = [] # Make numpy functions return Symbol instead of numpy object array __array_priority__ = 1000.0 def __repr__(self): """Gets a string representation of the symbol.""" name = self.name if name is None: name = ', '.join([i.name for i in self]) return '<%s group [%s]>' % (self.__class__.__name__, name) else: return '<%s %s>' % (self.__class__.__name__, name) def __iter__(self): """Returns a generator object of symbol. One can loop through the returned object list to get outputs. Example ------- >>> a = mx.sym.Variable('a') >>> b = mx.sym.Variable('b') >>> c = a+b >>> d = mx.sym.Variable('d') >>> e = d+c >>> out = e.get_children() >>> out <Symbol Grouped> >>> for i in out: ... i ... <Symbol d> <Symbol _plus0> """ return (self[i] for i in self.list_outputs()) def __add__(self, other): """x.__add__(y) <=> x+y Scalar input is supported. Broadcasting is not supported. Use `broadcast_add` instead. """ if isinstance(other, Symbol): return _internal._Plus(self, other) if isinstance(other, Number): return _internal._PlusScalar(self, scalar=other) else: raise TypeError('type %s not supported' % str(type(other))) def __bool__(self): raise NotImplementedForSymbol(self.__bool__, 'bool') __nonzero__ = __bool__ def __iadd__(self, other): raise NotImplementedForSymbol(self.__iadd__, '+=', other, 1) def __radd__(self, other): return self.__add__(other) def __sub__(self, other): """x.__sub__(y) <=> x-y Scalar input is supported. Broadcasting is not supported. Use `broadcast_sub` instead. """ if isinstance(other, Symbol): return _internal._Minus(self, other) if isinstance(other, Number): return _internal._MinusScalar(self, scalar=other) else: raise TypeError('type %s not supported' % str(type(other))) def __isub__(self, other): raise NotImplementedForSymbol(self.__isub__, '-=', other) def __rsub__(self, other): """x.__rsub__(y) <=> y-x Only `NDArray` is supported for now. Example ------- >>> x = mx.nd.ones((2,3))*3 >>> y = mx.nd.ones((2,3)) >>> x.__rsub__(y).asnumpy() array([[-2., -2., -2.], [-2., -2., -2.]], dtype=float32) """ if isinstance(other, Number): return _internal._RMinusScalar(self, scalar=other) else: raise TypeError('type %s not supported' % str(type(other))) def __mul__(self, other): """x.__mul__(y) <=> x*y Scalar input is supported. Broadcasting is not supported. Use `broadcast_mul` instead. """ if isinstance(other, Symbol): return _internal._Mul(self, other) if isinstance(other, Number): return _internal._MulScalar(self, scalar=other) else: raise TypeError('type %s not supported' % str(type(other))) def __imul__(self, other): raise NotImplementedForSymbol(self.__imul__, '*=', other) def __rmul__(self, other): return self.__mul__(other) def __div__(self, other): """x.__div__(y) <=> x/y Scalar input is supported. Broadcasting is not supported. Use `broadcast_div` instead. """ if isinstance(other, Symbol): return _internal._Div(self, other) if isinstance(other, Number): return _internal._DivScalar(self, scalar=other) else: raise TypeError('type %s not supported' % str(type(other))) def __rdiv__(self, other): """x.__rdiv__(y) <=> y/x Only `NDArray` is supported for now. Example ------- >>> x = mx.nd.ones((2,3))*3 >>> y = mx.nd.ones((2,3)) >>> x.__rdiv__(y).asnumpy() array([[ 0.33333334, 0.33333334, 0.33333334], [ 0.33333334, 0.33333334, 0.33333334]], dtype=float32) """ if isinstance(other, Number): return _internal._RDivScalar(self, scalar=other) else: raise TypeError('type %s not supported' % str(type(other))) def __mod__(self, other): """x.__mod__(y) <=> x%y Scalar input is supported. Broadcasting is not supported. Use `broadcast_mod` instead. """ if isinstance(other, Symbol): return _internal._Mod(self, other) if isinstance(other, Number): return _internal._ModScalar(self, scalar=other) else: raise TypeError('type %s not supported' % str(type(other))) def __rmod__(self, other): """x.__rmod__(y) <=> y%x Only `NDArray` is supported for now. Example ------- >>> x = mx.nd.ones((2,3))*3 >>> y = mx.nd.ones((2,3)) >>> x.__rmod__(y).asnumpy() array([[ 1., 1., 1., [ 1., 1., 1., dtype=float32) """ if isinstance(other, Number): return _internal._RModScalar(self, scalar=other) else: raise TypeError('type %s not supported' % str(type(other))) def __idiv__(self, other): raise NotImplementedForSymbol(self.__idiv__, '/=', other) def __truediv__(self, other): return self.__div__(other) def __rtruediv__(self, other): return self.__rdiv__(other) def __itruediv__(self, other): raise NotImplementedForSymbol(self.__itruediv__, '/=', other) def __pow__(self, other): """x.__pow__(y) <=> x**y Scalar input is supported. Broadcasting is not supported. Use `broadcast_pow` instead. """ if isinstance(other, Symbol): return _internal._Power(self, other) if isinstance(other, Number): return _internal._PowerScalar(self, scalar=other) else: raise TypeError('type %s not supported' % str(type(other))) def __rpow__(self, other): raise NotImplementedForSymbol(self.__rpow__, 'y**x', other) def __neg__(self): """x.__neg__() <=> -x Numerical negative, element-wise. Example ------- >>> a = mx.sym.Variable('a') >>> a <Symbol a> >>> -a <Symbol _mulscalar0> >>> a_neg = a.__neg__() >>> c = a_neg*b >>> ex = c.eval(ctx=mx.cpu(), a=mx.nd.ones([2,3]), b=mx.nd.ones([2,3])) >>> ex[0].asnumpy() array([[-1., -1., -1.], [-1., -1., -1.]], dtype=float32) """ return self.__mul__(-1.0) def __copy__(self): return self.__deepcopy__(None) def __deepcopy__(self, _): """Returns a deep copy of the input object. This function returns a deep copy of the input object including the current state of all its parameters such as weights, biases, etc. Any changes made to the deep copy do not reflect in the original object. Example ------- >>> import copy >>> data = mx.sym.Variable('data') >>> data_1 = copy.deepcopy(data) >>> data_1 = 2*data >>> data_1.tojson() >>> data_1 is data # Data got modified False """ handle = SymbolHandle() check_call(_LIB.MXSymbolCopy(self.handle, ctypes.byref(handle))) return Symbol(handle) def __eq__(self, other): """x.__eq__(y) <=> x==y Scalar input is supported. Broadcasting is not supported. Use `broadcast_equal` instead. """ if isinstance(other, Symbol): return _internal._equal(self, other) if isinstance(other, numeric_types): return _internal._equal_scalar(self, scalar=other) else: raise TypeError('type %s not supported' % str(type(other))) def __ne__(self, other): """x.__ne__(y) <=> x!=y Scalar input is supported. Broadcasting is not supported. Use `broadcast_not_equal` instead. """ if isinstance(other, Symbol): return _internal._not_equal(self, other) if isinstance(other, numeric_types): return _internal._not_equal_scalar(self, scalar=other) else: raise TypeError('type %s not supported' % str(type(other))) def __gt__(self, other): """x.__gt__(y) <=> x>y Scalar input is supported. Broadcasting is not supported. Use `broadcast_greater` instead. """ if isinstance(other, Symbol): return _internal._greater(self, other) if isinstance(other, numeric_types): return _internal._greater_scalar(self, scalar=other) else: raise TypeError('type %s not supported' % str(type(other))) def __ge__(self, other): """x.__ge__(y) <=> x>=y Scalar input is supported. Broadcasting is not supported. Use `broadcast_greater_equal` instead. """ if isinstance(other, Symbol): return _internal._greater_equal(self, other) if isinstance(other, numeric_types): return _internal._greater_equal_scalar(self, scalar=other) else: raise TypeError('type %s not supported' % str(type(other))) def __lt__(self, other): """x.__lt__(y) <=> x<y Scalar input is supported. Broadcasting is not supported. Use `broadcast_lesser` instead. """ if isinstance(other, Symbol): return _internal._lesser(self, other) if isinstance(other, numeric_types): return _internal._lesser_scalar(self, scalar=other) else: raise TypeError('type %s not supported' % str(type(other))) def __le__(self, other): """x.__le__(y) <=> x<=y Scalar input is supported. Broadcasting is not supported. Use `broadcast_lesser_equal` instead. """ if isinstance(other, Symbol): return _internal._lesser_equal(self, other) if isinstance(other, numeric_types): return _internal._lesser_equal_scalar(self, scalar=other) else: raise TypeError('type %s not supported' % str(type(other))) def __getstate__(self): handle = self.handle if handle is not None: return {'handle': self.tojson()} else: return {'handle': None} def __setstate__(self, state): # pylint: disable=assigning-non-slot handle = state['handle'] if handle is not None: json_str = handle handle = SymbolHandle() check_call(_LIB.MXSymbolCreateFromJSON(c_str(json_str), ctypes.byref(handle))) self.handle = handle else: self.handle = None def __call__(self, *args, **kwargs): """Composes symbol using inputs. x.__call__(y, z) <=> x(y,z) This function internally calls `_compose` to compose the symbol and returns the composed symbol. Example ------- >>> data = mx.symbol.Variable('data') >>> net1 = mx.symbol.FullyConnected(data=data, name='fc1', num_hidden=10) >>> net2 = mx.symbol.FullyConnected(name='fc3', num_hidden=10) >>> composed = net2(fc3_data=net1, name='composed') >>> composed <Symbol composed> >>> called = net2.__call__(fc3_data=net1, name='composed') >>> called <Symbol composed> Parameters ---------- args: Positional arguments. kwargs: Keyword arguments. Returns ------- The resulting symbol. """ s = self.__copy__() s._compose(*args, **kwargs) return s def _compose(self, *args, **kwargs): """Composes symbol using inputs. x._compose(y, z) <=> x(y,z) This function mutates the current symbol. Example ------- >>> data = mx.symbol.Variable('data') >>> net1 = mx.symbol.FullyConnected(data=data, name='fc1', num_hidden=10) >>> net2 = mx.symbol.FullyConnected(name='fc3', num_hidden=10) >>> net2 <Symbol fc3> >>> net2._compose(fc3_data=net1, name='composed') >>> net2 <Symbol composed> Parameters ---------- args: Positional arguments. kwargs: Keyword arguments. Returns ------- The resulting symbol. """ name = kwargs.pop('name', None) if name: name = c_str(name) if len(args) != 0 and len(kwargs) != 0: raise TypeError('compose only accept input Symbols \ either as positional or keyword arguments, not both') for arg in args: if not isinstance(arg, Symbol): raise TypeError('Compose expect `Symbol` as arguments') for val in kwargs.values(): if not isinstance(val, Symbol): raise TypeError('Compose expect `Symbol` as arguments') num_args = len(args) + len(kwargs) if len(kwargs) != 0: keys = c_str_array(kwargs.keys()) args = c_handle_array(kwargs.values()) else: keys = None args = c_handle_array(args) check_call(_LIB.MXSymbolCompose( self.handle, name, num_args, keys, args)) def __getitem__(self, index): """x.__getitem__(i) <=> x[i] Returns a sliced view of the input symbol. Example ------- >>> a = mx.sym.var('a') >>> a.__getitem__(0) <Symbol a> >>> a[0] <Symbol a> Parameters ---------- index : int or str Indexing key """ output_count = len(self) if isinstance(index, py_slice): start = 0 if index.start is None else index.start stop = output_count if index.stop is None else index.stop step = 1 if index.step is None else index.step return Group([self[i] for i in range(start, stop, step)]) if isinstance(index, string_types): # Returning this list of names is expensive. Some symbols may have hundreds of outputs output_names = self.list_outputs() idx = None for i, name in enumerate(output_names): if name == index: if idx is not None: raise ValueError('There are multiple outputs with name \"%s\"' % index) idx = i if idx is None: raise ValueError('Cannot find output that matches name \"%s\"' % index) index = idx if not isinstance(index, int): raise TypeError('Symbol only support integer index to fetch i-th output') if index >= output_count: # Important, python determines the end by this exception raise IndexError handle = SymbolHandle() check_call(_LIB.MXSymbolGetOutput( self.handle, mx_uint(index), ctypes.byref(handle))) return Symbol(handle=handle) @property def name(self): """Gets name string from the symbol, this function only works for non-grouped symbol. Returns ------- value : str The name of this symbol, returns ``None`` for grouped symbol. """ ret = ctypes.c_char_p() success = ctypes.c_int() check_call(_LIB.MXSymbolGetName( self.handle, ctypes.byref(ret), ctypes.byref(success))) if success.value != 0: return py_str(ret.value) else: return None def attr(self, key): """Returns the attribute string for corresponding input key from the symbol. This function only works for non-grouped symbols. Example ------- >>> data = mx.sym.Variable('data', attr={'mood': 'angry'}) >>> data.attr('mood') 'angry' Parameters ---------- key : str The key corresponding to the desired attribute. Returns ------- value : str The desired attribute value, returns ``None`` if the attribute does not exist. """ ret = ctypes.c_char_p() success = ctypes.c_int() check_call(_LIB.MXSymbolGetAttr( self.handle, c_str(key), ctypes.byref(ret), ctypes.byref(success))) if success.value != 0: return py_str(ret.value) else: return None def list_attr(self, recursive=False): """Gets all attributes from the symbol. Example ------- >>> data = mx.sym.Variable('data', attr={'mood': 'angry'}) >>> data.list_attr() {'mood': 'angry'} Returns ------- ret : Dict of str to str A dictionary mapping attribute keys to values. """ if recursive: raise DeprecationWarning("Symbol.list_attr with recursive=True has been deprecated. " "Please use attr_dict instead.") size = mx_uint() pairs = ctypes.POINTER(ctypes.c_char_p)() f_handle = _LIB.MXSymbolListAttrShallow check_call(f_handle(self.handle, ctypes.byref(size), ctypes.byref(pairs))) return {py_str(pairs[i * 2]): py_str(pairs[i * 2 + 1]) for i in range(size.value)} def attr_dict(self): """Recursively gets all attributes from the symbol and its children. Example ------- >>> a = mx.sym.Variable('a', attr={'a1':'a2'}) >>> b = mx.sym.Variable('b', attr={'b1':'b2'}) >>> c = a+b >>> c.attr_dict() {'a': {'a1': 'a2'}, 'b': {'b1': 'b2'}} Returns ------- ret : Dict of str to dict There is a key in the returned dict for every child with non-empty attribute set. For each symbol, the name of the symbol is its key in the dict and the correspond value is that symbol's attribute list (itself a dictionary). """ size = mx_uint() pairs = ctypes.POINTER(ctypes.c_char_p)() f_handle = _LIB.MXSymbolListAttr check_call(f_handle(self.handle, ctypes.byref(size), ctypes.byref(pairs))) ret = {} for i in range(size.value): name, key = py_str(pairs[i * 2]).split('$') val = py_str(pairs[i * 2 + 1]) if name not in ret: ret[name] = {} ret[name][key] = val return ret def _set_attr(self, **kwargs): """Sets an attribute of the symbol. For example. A._set_attr(foo="bar") adds the mapping ``"{foo: bar}"`` to the symbol's attribute dictionary. Parameters ---------- **kwargs The attributes to set """ for key, value in kwargs.items(): if not isinstance(value, string_types): raise ValueError("Set Attr only accepts string values") check_call(_LIB.MXSymbolSetAttr( self.handle, c_str(key), c_str(str(value)))) def get_internals(self): """Gets a new grouped symbol `sgroup`. The output of `sgroup` is a list of outputs of all of the internal nodes. Consider the following code: Example ------- >>> a = mx.sym.var('a') >>> b = mx.sym.var('b') >>> c = a + b >>> d = c.get_internals() >>> d <Symbol Grouped> >>> d.list_outputs() ['a', 'b', '_plus4_output'] Returns ------- sgroup : Symbol A symbol group containing all internal and leaf nodes of the computation graph used to compute the symbol. """ handle = SymbolHandle() check_call(_LIB.MXSymbolGetInternals( self.handle, ctypes.byref(handle))) return Symbol(handle=handle) def get_children(self): """Gets a new grouped symbol whose output contains inputs to output nodes of the original symbol. Example ------- >>> x = mx.sym.Variable('x') >>> y = mx.sym.Variable('y') >>> z = mx.sym.Variable('z') >>> a = y+z >>> b = x+a >>> b.get_children() <Symbol Grouped> >>> b.get_children().list_outputs() ['x', '_plus10_output'] >>> b.get_children().get_children().list_outputs() ['y', 'z'] Returns ------- sgroup : Symbol or None The children of the head node. If the symbol has no inputs then ``None`` will be returned. """ handle = SymbolHandle() check_call(_LIB.MXSymbolGetChildren( self.handle, ctypes.byref(handle))) ret = Symbol(handle=handle) if len(ret.list_outputs()) == 0: return None return ret def list_arguments(self): """Lists all the arguments in the symbol. Example ------- >>> a = mx.sym.var('a') >>> b = mx.sym.var('b') >>> c = a + b >>> c.list_arguments ['a', 'b'] Returns ------- args : list of string List containing the names of all the arguments required to compute the symbol. """ size = ctypes.c_uint() sarr = ctypes.POINTER(ctypes.c_char_p)() check_call(_LIB.MXSymbolListArguments( self.handle, ctypes.byref(size), ctypes.byref(sarr))) return [py_str(sarr[i]) for i in range(size.value)] def list_outputs(self): """Lists all the outputs in the symbol. Example ------- >>> a = mx.sym.var('a') >>> b = mx.sym.var('b') >>> c = a + b >>> c.list_outputs() ['_plus12_output'] Returns ------- list of str List of all the outputs. For most symbols, this list contains only the name of this symbol. For symbol groups, this is a list with the names of all symbols in the group. """ size = ctypes.c_uint() sarr = ctypes.POINTER(ctypes.c_char_p)() check_call(_LIB.MXSymbolListOutputs( self.handle, ctypes.byref(size), ctypes.byref(sarr))) return [py_str(sarr[i]) for i in range(size.value)] # pylint: disable=invalid-length-returned def __len__(self): """Get number of outputs for the symbol. Example ------- >>> a = mx.sym.var('a') >>> b = mx.sym.var('b') >>> c = a + b >>> len(c) Returns ------- len(self): Number of outputs Number of outputs """ output_count = mx_uint() check_call(_LIB.MXSymbolGetNumOutputs(self.handle, ctypes.byref(output_count))) return output_count.value def list_auxiliary_states(self): """Lists all the auxiliary states in the symbol. Example ------- >>> a = mx.sym.var('a') >>> b = mx.sym.var('b') >>> c = a + b >>> c.list_auxiliary_states() [] Example of auxiliary states in `BatchNorm`. >>> data = mx.symbol.Variable('data') >>> weight = mx.sym.Variable(name='fc1_weight') >>> fc1 = mx.symbol.FullyConnected(data = data, weight=weight, name='fc1', num_hidden=128) >>> fc2 = mx.symbol.BatchNorm(fc1, name='batchnorm0') >>> fc2.list_auxiliary_states() ['batchnorm0_moving_mean', 'batchnorm0_moving_var'] Returns ------- aux_states : list of str List of the auxiliary states in input symbol. Notes ----- Auxiliary states are special states of symbols that do not correspond to an argument, and are not updated by gradient descent. Common examples of auxiliary states include the `moving_mean` and `moving_variance` in `BatchNorm`. Most operators do not have auxiliary states. """ size = ctypes.c_uint() sarr = ctypes.POINTER(ctypes.c_char_p)() check_call(_LIB.MXSymbolListAuxiliaryStates( self.handle, ctypes.byref(size), ctypes.byref(sarr))) return [py_str(sarr[i]) for i in range(size.value)] def list_inputs(self): """Lists all arguments and auxiliary states of this Symbol. Returns ------- inputs : list of str List of all inputs. Examples -------- >>> bn = mx.sym.BatchNorm(name='bn') >>> bn.list_arguments() ['bn_data', 'bn_gamma', 'bn_beta'] >>> bn.list_auxiliary_states() ['bn_moving_mean', 'bn_moving_var'] >>> bn.list_inputs() ['bn_data', 'bn_gamma', 'bn_beta', 'bn_moving_mean', 'bn_moving_var'] """ size = ctypes.c_uint() sarr = ctypes.POINTER(ctypes.c_char_p)() check_call(_LIB.NNSymbolListInputNames( self.handle, 0, ctypes.byref(size), ctypes.byref(sarr))) return [py_str(sarr[i]) for i in range(size.value)] def infer_type(self, *args, **kwargs): """Infers the type of all arguments and all outputs, given the known types for some arguments. This function takes the known types of some arguments in either positional way or keyword argument way as input. It returns a tuple of `None` values if there is not enough information to deduce the missing types. Inconsistencies in the known types will cause an error to be raised. Example ------- >>> a = mx.sym.var('a') >>> b = mx.sym.var('b') >>> c = a + b >>> arg_types, out_types, aux_types = c.infer_type(a='float32') >>> arg_types [<type 'numpy.float32'>, <type 'numpy.float32'>] >>> out_types [<type 'numpy.float32'>] >>> aux_types [] Parameters ---------- *args : Type of known arguments in a positional way. Unknown type can be marked as None. **kwargs : Keyword arguments of known types. Returns ------- arg_types : list of numpy.dtype or None List of argument types. The order is same as the order of list_arguments(). out_types : list of numpy.dtype or None List of output types. The order is same as the order of list_outputs(). aux_types : list of numpy.dtype or None List of auxiliary state types. The order is same as the order of list_auxiliary_states(). """ # pylint: disable=too-many-locals if len(args) != 0 and len(kwargs) != 0: raise ValueError('Can only specify known argument \ types either by positional or kwargs way.') sdata = [] if len(args) != 0: keys = c_array(ctypes.c_char_p, []) for s in args: if s is not None: s = _numpy.dtype(s).type if s not in _DTYPE_NP_TO_MX: raise TypeError('Argument need to be one of ' + str(_DTYPE_NP_TO_MX)) sdata.append(_DTYPE_NP_TO_MX[s]) else: sdata.append(-1) else: str_keys = [] for k, v in kwargs.items(): v = _numpy.dtype(v).type if v in _DTYPE_NP_TO_MX: str_keys.append(k) sdata.append(_DTYPE_NP_TO_MX[v]) keys = c_str_array(str_keys) arg_type_size = mx_uint() arg_type_data = ctypes.POINTER(ctypes.c_int)() out_type_size = mx_uint() out_type_data = ctypes.POINTER(ctypes.c_int)() aux_type_size = mx_uint() aux_type_data = ctypes.POINTER(ctypes.c_int)() complete = ctypes.c_int() check_call(_LIB.MXSymbolInferType( self.handle, mx_uint(len(sdata)), keys, c_array_buf(ctypes.c_int, array('i', sdata)), ctypes.byref(arg_type_size), ctypes.byref(arg_type_data), ctypes.byref(out_type_size), ctypes.byref(out_type_data), ctypes.byref(aux_type_size), ctypes.byref(aux_type_data), ctypes.byref(complete))) if complete.value != 0: arg_types = [ _DTYPE_MX_TO_NP[arg_type_data[i]] for i in range(arg_type_size.value)] out_types = [ _DTYPE_MX_TO_NP[out_type_data[i]] for i in range(out_type_size.value)] aux_types = [ _DTYPE_MX_TO_NP[aux_type_data[i]] for i in range(aux_type_size.value)] return (arg_types, out_types, aux_types) else: return (None, None, None) # pylint: enable=too-many-locals def infer_shape(self, *args, **kwargs): """Infers the shapes of all arguments and all outputs given the known shapes of some arguments. This function takes the known shapes of some arguments in either positional way or keyword argument way as input. It returns a tuple of `None` values if there is not enough information to deduce the missing shapes. Example ------- >>> a = mx.sym.var('a') >>> b = mx.sym.var('b') >>> c = a + b >>> arg_shapes, out_shapes, aux_shapes = c.infer_shape(a=(3,3)) >>> arg_shapes [(3L, 3L), (3L, 3L)] >>> out_shapes [(3L, 3L)] >>> aux_shapes [] >>> c.infer_shape(a=(0,3)) # 0s in shape means unknown dimensions. So, returns None. (None, None, None) Inconsistencies in the known shapes will cause an error to be raised. See the following example: >>> data = mx.sym.Variable('data') >>> out = mx.sym.FullyConnected(data=data, name='fc1', num_hidden=1000) >>> out = mx.sym.Activation(data=out, act_type='relu') >>> out = mx.sym.FullyConnected(data=out, name='fc2', num_hidden=10) >>> weight_shape= (1, 100) >>> data_shape = (100, 100) >>> out.infer_shape(data=data_shape, fc1_weight=weight_shape) Error in operator fc1: Shape inconsistent, Provided=(1,100), inferred shape=(1000,100) Parameters ---------- *args : Shape of arguments in a positional way. Unknown shape can be marked as None. **kwargs : Keyword arguments of the known shapes. Returns ------- arg_shapes : list of tuple or None List of argument shapes. The order is same as the order of list_arguments(). out_shapes : list of tuple or None List of output shapes. The order is same as the order of list_outputs(). aux_shapes : list of tuple or None List of auxiliary state shapes. The order is same as the order of list_auxiliary_states(). """ try: res = self._infer_shape_impl(False, *args, **kwargs) if res[1] is None: arg_shapes, _, _ = self._infer_shape_impl(True, *args, **kwargs) arg_names = self.list_arguments() unknowns = [] for name, shape in zip(arg_names, arg_shapes): if not shape or not _numpy.prod(shape): if len(unknowns) >= 10: unknowns.append('...') break unknowns.append('%s: %s' % (name, str(shape))) warnings.warn( "Cannot decide shape for the following arguments " + "(0s in shape means unknown dimensions). " + "Consider providing them as input:\n\t" + "\n\t".join(unknowns), stacklevel=2) return res except MXNetError: print("infer_shape error. Arguments:") for i, arg in enumerate(args): print(" #%d: %s" % (i, arg)) for k, v in kwargs.items(): print(" %s: %s" % (k, v)) raise def infer_shape_partial(self, *args, **kwargs): """Infers the shape partially. This functions works the same way as `infer_shape`, except that this function can return partial results. In the following example, information about fc2 is not available. So, `infer_shape` will return a tuple of `None` values but `infer_shape_partial` will return partial values. Example ------- >>> data = mx.sym.Variable('data') >>> prev = mx.sym.Variable('prev') >>> fc1 = mx.sym.FullyConnected(data=data, name='fc1', num_hidden=128) >>> fc2 = mx.sym.FullyConnected(data=prev, name='fc2', num_hidden=128) >>> out = mx.sym.Activation(data=mx.sym.elemwise_add(fc1, fc2), act_type='relu') >>> out.list_arguments() ['data', 'fc1_weight', 'fc1_bias', 'prev', 'fc2_weight', 'fc2_bias'] >>> out.infer_shape(data=(10,64)) (None, None, None) >>> out.infer_shape_partial(data=(10,64)) ([(10L, 64L), (128L, 64L), (128L,), (), (), ()], [(10L, 128L)], []) >>> # infers shape if you give information about fc2 >>> out.infer_shape(data=(10,64), prev=(10,128)) ([(10L, 64L), (128L, 64L), (128L,), (10L, 128L), (128L, 128L), (128L,)], [(10L, 128L)], []) Parameters ---------- *args : Shape of arguments in a positional way. Unknown shape can be marked as None **kwargs : Keyword arguments of known shapes. Returns ------- arg_shapes : list of tuple or None List of argument shapes. The order is same as the order of list_arguments(). out_shapes : list of tuple or None List of output shapes. The order is same as the order of list_outputs(). aux_shapes : list of tuple or None List of auxiliary state shapes. The order is same as the order of list_auxiliary_states(). """ return self._infer_shape_impl(True, *args, **kwargs) def _infer_shape_impl(self, partial, *args, **kwargs): """The actual implementation for calling shape inference API.""" # pylint: disable=too-many-locals if len(args) != 0 and len(kwargs) != 0: raise ValueError('Can only specify known argument \ shapes either by positional or kwargs way.') sdata = [] indptr = [0] if len(args) != 0: keys = c_array(ctypes.c_char_p, []) for i, s in enumerate(args): if s is not None: if not isinstance(s, tuple): raise TypeError("Arguments need to be shapes (tuple), " "but argument %d is %s." % (i, type(s))) sdata.extend(s) indptr.append(len(sdata)) else: str_keys = [] for k, v in kwargs.items(): if not isinstance(v, tuple): raise TypeError("Arguments need to be shapes (tuple), " "but '%s' is %s." % (k, type(v))) str_keys.append(k) sdata.extend(v) indptr.append(len(sdata)) keys = c_str_array(str_keys) arg_shape_size = mx_uint() arg_shape_ndim = ctypes.POINTER(mx_uint)() arg_shape_data = ctypes.POINTER(ctypes.POINTER(mx_uint))() out_shape_size = mx_uint() out_shape_ndim = ctypes.POINTER(mx_uint)() out_shape_data = ctypes.POINTER(ctypes.POINTER(mx_uint))() aux_shape_size = mx_uint() aux_shape_ndim = ctypes.POINTER(mx_uint)() aux_shape_data = ctypes.POINTER(ctypes.POINTER(mx_uint))() complete = ctypes.c_int() if partial: infer_func = _LIB.MXSymbolInferShapePartial else: infer_func = _LIB.MXSymbolInferShape check_call(infer_func( self.handle, mx_uint(len(indptr) - 1), keys, c_array_buf(mx_uint, array('I', indptr)), c_array_buf(mx_uint, array('I', sdata)), ctypes.byref(arg_shape_size), ctypes.byref(arg_shape_ndim), ctypes.byref(arg_shape_data), ctypes.byref(out_shape_size), ctypes.byref(out_shape_ndim), ctypes.byref(out_shape_data), ctypes.byref(aux_shape_size), ctypes.byref(aux_shape_ndim), ctypes.byref(aux_shape_data), ctypes.byref(complete))) if complete.value != 0: arg_shapes = [ tuple(arg_shape_data[i][:arg_shape_ndim[i]]) for i in range(arg_shape_size.value)] out_shapes = [ tuple(out_shape_data[i][:out_shape_ndim[i]]) for i in range(out_shape_size.value)] aux_shapes = [ tuple(aux_shape_data[i][:aux_shape_ndim[i]]) for i in range(aux_shape_size.value)] return (arg_shapes, out_shapes, aux_shapes) else: return (None, None, None) # pylint: enable=too-many-locals def debug_str(self): """Gets a debug string of symbol. It contains Symbol output, variables and operators in the computation graph with their inputs, variables and attributes. Returns ------- string Debug string of the symbol. Examples -------- >>> a = mx.sym.Variable('a') >>> b = mx.sym.sin(a) >>> c = 2 * a + b >>> d = mx.sym.FullyConnected(data=c, num_hidden=10) >>> d.debug_str() >>> print d.debug_str() Symbol Outputs: output[0]=fullyconnected0(0) Variable:a -------------------- Op:_mul_scalar, Name=_mulscalar0 Inputs: arg[0]=a(0) version=0 Attrs: scalar=2 -------------------- Op:sin, Name=sin0 Inputs: arg[0]=a(0) version=0 -------------------- Op:elemwise_add, Name=_plus0 Inputs: arg[0]=_mulscalar0(0) arg[1]=sin0(0) Variable:fullyconnected0_weight Variable:fullyconnected0_bias -------------------- Op:FullyConnected, Name=fullyconnected0 Inputs: arg[0]=_plus0(0) arg[1]=fullyconnected0_weight(0) version=0 arg[2]=fullyconnected0_bias(0) version=0 Attrs: num_hidden=10 """ debug_str = ctypes.c_char_p() check_call(_LIB.MXSymbolPrint( self.handle, ctypes.byref(debug_str))) return py_str(debug_str.value) def save(self, fname): """Saves symbol to a file. You can also use pickle to do the job if you only work on python. The advantage of `load`/`save` functions is that the file contents are language agnostic. This means the model saved by one language binding can be loaded by a different language binding of `MXNet`. You also get the benefit of being able to directly load/save from cloud storage(S3, HDFS). Parameters ---------- fname : str The name of the file. - "s3://my-bucket/path/my-s3-symbol" - "hdfs://my-bucket/path/my-hdfs-symbol" - "/path-to/my-local-symbol" See Also -------- symbol.load : Used to load symbol from file. """ if not isinstance(fname, string_types): raise TypeError('fname need to be string') check_call(_LIB.MXSymbolSaveToFile(self.handle, c_str(fname))) def tojson(self): """Saves symbol to a JSON string. See Also -------- symbol.load_json : Used to load symbol from JSON string. """ json_str = ctypes.c_char_p() check_call(_LIB.MXSymbolSaveToJSON(self.handle, ctypes.byref(json_str))) return py_str(json_str.value) @staticmethod def _get_ndarray_inputs(arg_key, args, arg_names, allow_missing): """Helper function to get NDArray lists handles from various inputs. Parameters ---------- arg_key : str The name of argument, used for error message. args : list of NDArray or dict of str to NDArray Input arguments to the symbols. If type is list of NDArray, the position is in the same order of arg_names. If type is dict of str to NDArray, then it maps the name of arguments to the corresponding NDArray, args_names : list of string List of argument names. allow_missing : boolean Whether missing argument is allowed. When allowed, the missing handle will be set to None(null) Returns ------- handles : list of NDArrayHandle The positional list of NDArrayHandles generated from input. """ # setup args arg_handles = [] arg_arrays = [] if isinstance(args, list): if len(args) != len(arg_names): raise ValueError('Length of %s does not match the number of arguments' % arg_key) for narr in args: if narr is None and allow_missing: arg_handles.append(None) elif not isinstance(narr, NDArray): raise TypeError('Only accept list of NDArrays or dict of str to NDArray') else: arg_handles.append(narr.handle) arg_arrays = args elif isinstance(args, dict): for name in arg_names: if name in args: narr = args[name] if not isinstance(narr, NDArray): raise TypeError('Only accept list of NDArrays or dict of str to NDArray') arg_handles.append(narr.handle) arg_arrays.append(narr) else: if allow_missing: arg_handles.append(None) arg_arrays.append(None) else: raise ValueError('key `%s` is missing in `%s`' % (name, arg_key)) else: raise TypeError('Only accept list of NDArrays or dict of str to NDArray') return c_array(NDArrayHandle, arg_handles), arg_arrays # pylint: disable=too-many-locals def simple_bind(self, ctx, grad_req='write', type_dict=None, stype_dict=None, group2ctx=None, shared_arg_names=None, shared_exec=None, shared_buffer=None, **kwargs): """Bind current symbol to get an executor, allocate all the arguments needed. Allows specifying data types. This function simplifies the binding procedure. You need to specify only input data shapes. Before binding the executor, the function allocates arguments and auxiliary states that were not explicitly specified. Allows specifying data types. Example ------- >>> x = mx.sym.Variable('x') >>> y = mx.sym.FullyConnected(x, num_hidden=4) >>> exe = y.simple_bind(mx.cpu(), x=(5,4), grad_req='null') >>> exe.forward() [<NDArray 5x4 @cpu(0)>] >>> exe.outputs[0].asnumpy() array([[ 0., 0., 0., 0.], [ 0., 0., 0., 0.], [ 0., 0., 0., 0.], [ 0., 0., 0., 0.], [ 0., 0., 0., 0.]], dtype=float32) >>> exe.arg_arrays [<NDArray 5x4 @cpu(0)>, <NDArray 4x4 @cpu(0)>, <NDArray 4 @cpu(0)>] >>> exe.grad_arrays [<NDArray 5x4 @cpu(0)>, <NDArray 4x4 @cpu(0)>, <NDArray 4 @cpu(0)>] Parameters ---------- ctx : Context The device context the generated executor to run on. grad_req: string {'write', 'add', 'null'}, or list of str or dict of str to str, optional To specify how we should update the gradient to the `args_grad`. - 'write' means every time gradient is written to specified `args_grad` NDArray. - 'add' means every time gradient is added to the specified NDArray. - 'null' means no action is taken, the gradient may not be calculated. type_dict : Dict of str->numpy.dtype Input type dictionary, name->dtype stype_dict : Dict of str->str Input storage type dictionary, name->storage_type group2ctx : Dict of string to mx.Context The dict mapping the `ctx_group` attribute to the context assignment. shared_arg_names : List of string The argument names whose `NDArray` of shared_exec can be reused for initializing the current executor. shared_exec : Executor The executor whose arg_arrays, arg_arrays, grad_arrays, and aux_arrays can be reused for initializing the current executor. shared_buffer : Dict of string to `NDArray` The dict mapping argument names to the `NDArray` that can be reused for initializing the current executor. This buffer will be checked for reuse if one argument name of the current executor is not found in `shared_arg_names`. The `NDArray` s are expected have default storage type. kwargs : Dict of str->shape Input shape dictionary, name->shape Returns ------- executor : mxnet.Executor The generated executor """ # data types num_provided_arg_types = 0 provided_arg_type_names = ctypes.POINTER(ctypes.c_char_p)() # provided type argument names provided_arg_type_data = ctypes.POINTER(mx_uint)() # provided types if type_dict is not None: provided_arg_type_names = [] provided_arg_type_data = [] for k, v in type_dict.items(): v = _numpy.dtype(v).type if v in _DTYPE_NP_TO_MX: provided_arg_type_names.append(k) provided_arg_type_data.append(_DTYPE_NP_TO_MX[v]) num_provided_arg_types = mx_uint(len(provided_arg_type_names)) provided_arg_type_names = c_str_array(provided_arg_type_names) provided_arg_type_data = c_array_buf(ctypes.c_int, array('i', provided_arg_type_data)) # storage types num_provided_arg_stypes = 0 # provided storage type argument names provided_arg_stype_names = ctypes.POINTER(ctypes.c_char_p)() provided_arg_stype_data = ctypes.POINTER(mx_uint)() # provided storage types if stype_dict is not None: provided_arg_stype_names = [] provided_arg_stype_data = [] for k, v in stype_dict.items(): if v in _STORAGE_TYPE_STR_TO_ID: provided_arg_stype_names.append(k) provided_arg_stype_data.append(_STORAGE_TYPE_STR_TO_ID[v]) num_provided_arg_stypes = mx_uint(len(provided_arg_stype_names)) provided_arg_stype_names = c_str_array(provided_arg_stype_names) provided_arg_stype_data = c_array_buf(ctypes.c_int, array('i', provided_arg_stype_data)) provided_arg_shape_data = [] # shape data # argument shape index in sdata, # e.g. [sdata[indptr[0]], sdata[indptr[1]]) is the shape of the first arg provided_arg_shape_idx = [0] provided_arg_shape_names = [] # provided argument names for k, v in kwargs.items(): # if k not in listed_arguments and k not in listed_aux_states: # raise ValueError('arg name %s is not valid', k) if isinstance(v, tuple): provided_arg_shape_names.append(k) provided_arg_shape_data.extend(v) provided_arg_shape_idx.append(len(provided_arg_shape_data)) provided_req_type_list_len = 0 provided_grad_req_types = ctypes.POINTER(ctypes.c_char_p)() provided_grad_req_names = ctypes.POINTER(ctypes.c_char_p)() if grad_req is not None: if isinstance(grad_req, string_types): # use provided_req_type_list_len = 0 to indicate this situation provided_req_type_list_len = 0 provided_grad_req_types = [grad_req] elif isinstance(grad_req, list): if len(grad_req) == 0: raise RuntimeError('grad_req in simple_bind cannot be an empty list') provided_grad_req_types = grad_req provided_req_type_list_len = len(provided_grad_req_types) elif isinstance(grad_req, dict): if len(grad_req) == 0: raise RuntimeError('grad_req in simple_bind cannot be an empty dict') provided_grad_req_names = [] provided_grad_req_types = [] for k, v in grad_req.items(): provided_grad_req_names.append(k) provided_grad_req_types.append(v) provided_grad_req_names = c_str_array(provided_grad_req_names) provided_req_type_list_len = len(provided_grad_req_types) provided_grad_req_types = c_str_array(provided_grad_req_types) num_ctx_map_keys = mx_uint(0) ctx_map_keys = ctypes.POINTER(ctypes.c_char_p)() ctx_map_dev_types = ctypes.POINTER(ctypes.c_int)() ctx_map_dev_ids = ctypes.POINTER(ctypes.c_int)() if group2ctx is not None: ctx_map_keys = [] ctx_map_dev_types = [] ctx_map_dev_ids = [] for key, val in group2ctx.items(): ctx_map_keys.append(key) ctx_map_dev_types.append(val.device_typeid) ctx_map_dev_ids.append(val.device_id) num_ctx_map_keys = mx_uint(len(ctx_map_keys)) ctx_map_keys = c_str_array(ctx_map_keys) ctx_map_dev_types = c_array(ctypes.c_int, array('i', ctx_map_dev_types)) ctx_map_dev_ids = c_array(ctypes.c_int, array('i', ctx_map_dev_ids)) # prepare param names shared_arg_name_list = [] if shared_arg_names is not None: if not isinstance(shared_arg_names, list): raise ValueError('shared_arg_names in simple_bind must be a list or None') shared_arg_name_list = shared_arg_names # prepare shared_buffer if shared_buffer is None: shared_buffer_len = ctypes.c_int(-1) shared_buffer_names = ctypes.POINTER(ctypes.c_char_p)() shared_buffer_handles = ctypes.POINTER(NDArrayHandle)() else: if not isinstance(shared_buffer, dict): raise ValueError('shared_buffer in simple_bind must be dict or None') buffer_names = shared_buffer.keys() buffer_arrays = shared_buffer.values() for v in buffer_arrays: assert(v.stype == 'default'), \ "shared_buffer is expected to only contain NDArrays with default storage" shared_buffer_names = c_str_array(buffer_names) shared_buffer_len = ctypes.c_int(len(buffer_arrays)) shared_buffer_handles = c_handle_array(buffer_arrays) updated_shared_buffer_names = ctypes.POINTER(ctypes.c_char_p)() updated_shared_buffer_handles = ctypes.POINTER(NDArrayHandle)() # prepare shared_exec_handle shared_exec_handle = shared_exec.handle if shared_exec is not None else ExecutorHandle() # prepare current executor handle exe_handle = ExecutorHandle() # prepare current executor's in_args, arg_grads, and aux_states num_in_args = ctypes.c_uint() in_arg_handles = ctypes.POINTER(NDArrayHandle)() arg_grad_handles = ctypes.POINTER(NDArrayHandle)() num_aux_states = ctypes.c_uint() aux_state_handles = ctypes.POINTER(NDArrayHandle)() try: check_call(_LIB.MXExecutorSimpleBind(self.handle, ctypes.c_int(ctx.device_typeid), ctypes.c_int(ctx.device_id), num_ctx_map_keys, ctx_map_keys, ctx_map_dev_types, ctx_map_dev_ids, mx_uint(provided_req_type_list_len), provided_grad_req_names, provided_grad_req_types, mx_uint(len(provided_arg_shape_names)), c_str_array(provided_arg_shape_names), c_array_buf(mx_uint, array('I', provided_arg_shape_data)), c_array_buf(mx_uint, array('I', provided_arg_shape_idx)), num_provided_arg_types, provided_arg_type_names, provided_arg_type_data, num_provided_arg_stypes, provided_arg_stype_names, provided_arg_stype_data, mx_uint(len(shared_arg_name_list)), c_str_array(shared_arg_name_list), ctypes.byref(shared_buffer_len), shared_buffer_names, shared_buffer_handles, ctypes.byref(updated_shared_buffer_names), ctypes.byref(updated_shared_buffer_handles), ctypes.byref(num_in_args), ctypes.byref(in_arg_handles), ctypes.byref(arg_grad_handles), ctypes.byref(num_aux_states), ctypes.byref(aux_state_handles), shared_exec_handle, ctypes.byref(exe_handle))) except MXNetError as e: error_msg = "simple_bind error. Arguments:\n" for k, v in kwargs.items(): error_msg += "%s: %s\n" % (k, v) error_msg += "%s" % e raise RuntimeError(error_msg) # update shared_buffer if shared_buffer is not None: for i in range(shared_buffer_len.value): k = py_str(updated_shared_buffer_names[i]) v = NDArray(NDArrayHandle(updated_shared_buffer_handles[i])) shared_buffer[k] = v # create in_args, arg_grads, and aux_states for the current executor arg_arrays = [_ndarray_cls(NDArrayHandle(in_arg_handles[i])) for i in range(num_in_args.value)] grad_arrays = [_ndarray_cls(NDArrayHandle(arg_grad_handles[i])) if arg_grad_handles[i] is not None else None for i in range(num_in_args.value)] aux_arrays = [_ndarray_cls(NDArrayHandle(aux_state_handles[i])) for i in range(num_aux_states.value)] executor = Executor(exe_handle, self, ctx, grad_req, group2ctx) executor.arg_arrays = arg_arrays executor.grad_arrays = grad_arrays executor.aux_arrays = aux_arrays return executor def bind(self, ctx, args, args_grad=None, grad_req='write', aux_states=None, group2ctx=None, shared_exec=None): """Binds the current symbol to an executor and returns it. We first declare the computation and then bind to the data to run. This function returns an executor which provides method `forward()` method for evaluation and a `outputs()` method to get all the results. Example ------- >>> a = mx.sym.Variable('a') >>> b = mx.sym.Variable('b') >>> c = a + b <Symbol _plus1> >>> ex = c.bind(ctx=mx.cpu(), args={'a' : mx.nd.ones([2,3]), 'b' : mx.nd.ones([2,3])}) >>> ex.forward() [<NDArray 2x3 @cpu(0)>] >>> ex.outputs[0].asnumpy() [[ 2. 2. 2.] [ 2. 2. 2.]] Parameters ---------- ctx : Context The device context the generated executor to run on. args : list of NDArray or dict of str to NDArray Input arguments to the symbol. - If the input type is a list of `NDArray`, the order should be same as the order of `list_arguments()`. - If the input type is a dict of str to `NDArray`, then it maps the name of arguments to the corresponding `NDArray`. - In either case, all the arguments must be provided. args_grad : list of NDArray or dict of str to `NDArray`, optional When specified, `args_grad` provides NDArrays to hold the result of gradient value in backward. - If the input type is a list of `NDArray`, the order should be same as the order of `list_arguments()`. - If the input type is a dict of str to `NDArray`, then it maps the name of arguments to the corresponding NDArray. - When the type is a dict of str to `NDArray`, one only need to provide the dict for required argument gradient. Only the specified argument gradient will be calculated. grad_req : {'write', 'add', 'null'}, or list of str or dict of str to str, optional To specify how we should update the gradient to the `args_grad`. - 'write' means everytime gradient is write to specified `args_grad` `NDArray`. - 'add' means everytime gradient is add to the specified NDArray. - 'null' means no action is taken, the gradient may not be calculated. aux_states : list of `NDArray`, or dict of str to `NDArray`, optional Input auxiliary states to the symbol, only needed when the output of `list_auxiliary_states()` is not empty. - If the input type is a list of `NDArray`, the order should be same as the order of `list_auxiliary_states()`. - If the input type is a dict of str to `NDArray`, then it maps the name of `auxiliary_states` to the corresponding `NDArray`, - In either case, all the auxiliary states need to be provided. group2ctx : Dict of string to mx.Context The dict mapping the `ctx_group` attribute to the context assignment. shared_exec : mx.executor.Executor Executor to share memory with. This is intended for runtime reshaping, variable length sequences, etc. The returned executor shares state with `shared_exec`, and should not be used in parallel with it. Returns ------- executor : Executor The generated executor Notes ----- Auxiliary states are the special states of symbols that do not correspond to an argument, and do not have gradient but are still useful for the specific operations. Common examples of auxiliary states include the `moving_mean` and `moving_variance` states in `BatchNorm`. Most operators do not have auxiliary states and in those cases, this parameter can be safely ignored. One can give up gradient by using a dict in `args_grad` and only specify gradient they interested in. """ # pylint: disable=too-many-locals, too-many-branches if not isinstance(ctx, Context): raise TypeError("Context type error") listed_arguments = self.list_arguments() args_handle, args = self._get_ndarray_inputs('args', args, listed_arguments, False) # setup args gradient if args_grad is None: args_grad_handle = c_array(NDArrayHandle, [None] * len(args)) else: args_grad_handle, args_grad = self._get_ndarray_inputs( 'args_grad', args_grad, listed_arguments, True) if aux_states is None: aux_states = [] aux_args_handle, aux_states = self._get_ndarray_inputs( 'aux_states', aux_states, self.list_auxiliary_states(), False) # setup requirements if isinstance(grad_req, string_types): if grad_req not in _GRAD_REQ_MAP: raise ValueError('grad_req must be in %s' % str(_GRAD_REQ_MAP)) reqs_array = c_array_buf(mx_uint, array('I', [_GRAD_REQ_MAP[grad_req]] * len(listed_arguments))) elif isinstance(grad_req, list): reqs_array = c_array_buf(mx_uint, array('I', [_GRAD_REQ_MAP[item] for item in grad_req])) elif isinstance(grad_req, dict): req_array = [] for name in listed_arguments: if name in grad_req: req_array.append(_GRAD_REQ_MAP[grad_req[name]]) else: req_array.append(0) reqs_array = c_array_buf(mx_uint, array('I', req_array)) ctx_map_keys = [] ctx_map_dev_types = [] ctx_map_dev_ids = [] if group2ctx: for key, val in group2ctx.items(): ctx_map_keys.append(key) ctx_map_dev_types.append(val.device_typeid) ctx_map_dev_ids.append(val.device_id) handle = ExecutorHandle() shared_handle = shared_exec.handle if shared_exec is not None else ExecutorHandle() check_call(_LIB.MXExecutorBindEX(self.handle, ctypes.c_int(ctx.device_typeid), ctypes.c_int(ctx.device_id), mx_uint(len(ctx_map_keys)), c_str_array(ctx_map_keys), c_array_buf(ctypes.c_int, array('i', ctx_map_dev_types)), c_array_buf(ctypes.c_int, array('i', ctx_map_dev_ids)), mx_uint(len(args)), args_handle, args_grad_handle, reqs_array, mx_uint(len(aux_states)), aux_args_handle, shared_handle, ctypes.byref(handle))) executor = Executor(handle, self, ctx, grad_req, group2ctx) executor.arg_arrays = args executor.grad_arrays = args_grad executor.aux_arrays = aux_states return executor def gradient(self, wrt): """Gets the autodiff of current symbol. This function can only be used if current symbol is a loss function. .. note:: This function is currently not implemented. Parameters ---------- wrt : Array of String keyword arguments of the symbol that the gradients are taken. Returns ------- grad : Symbol A gradient Symbol with returns to be the corresponding gradients. """ handle = SymbolHandle() c_wrt = c_str_array(wrt) check_call(_LIB.MXSymbolGrad(self.handle, mx_uint(len(wrt)), c_wrt, ctypes.byref(handle))) return Symbol(handle) # pylint: enable= no-member def eval(self, ctx=None, **kwargs): """Evaluates a symbol given arguments. The `eval` method combines a call to `bind` (which returns an executor) with a call to `forward` (executor method). For the common use case, where you might repeatedly evaluate with same arguments, eval is slow. In that case, you should call `bind` once and then repeatedly call forward. This function allows simpler syntax for less cumbersome introspection. Example ------- >>> a = mx.sym.Variable('a') >>> b = mx.sym.Variable('b') >>> c = a + b >>> ex = c.eval(ctx = mx.cpu(), a = mx.nd.ones([2,3]), b = mx.nd.ones([2,3])) >>> ex [<NDArray 2x3 @cpu(0)>] >>> ex[0].asnumpy() array([[ 2., 2., 2.], [ 2., 2., 2.]], dtype=float32) Parameters ---------- ctx : Context The device context the generated executor to run on. kwargs : Keyword arguments of type `NDArray` Input arguments to the symbol. All the arguments must be provided. Returns ---------- result : a list of NDArrays corresponding to the values taken by each symbol when evaluated on given args. When called on a single symbol (not a group), the result will be a list with one element. """ if ctx is None: ctx = current_context() return self.bind(ctx, kwargs).forward() def reshape(self, *args, **kwargs): """Convenience fluent method for :py:func:`reshape`. The arguments are the same as for :py:func:`reshape`, with this array as data. """ return op.reshape(self, *args, **kwargs) def reshape_like(self, *args, **kwargs): """Convenience fluent method for :py:func:`reshape_like`. The arguments are the same as for :py:func:`reshape_like`, with this array as data. """ return op.reshape_like(self, *args, **kwargs) def astype(self, *args, **kwargs): """Convenience fluent method for :py:func:`cast`. The arguments are the same as for :py:func:`cast`, with this array as data. """ return op.cast(self, *args, **kwargs) def zeros_like(self, *args, **kwargs): """Convenience fluent method for :py:func:`zeros_like`. The arguments are the same as for :py:func:`zeros_like`, with this array as data. """ return op.zeros_like(self, *args, **kwargs) def ones_like(self, *args, **kwargs): """Convenience fluent method for :py:func:`ones_like`. The arguments are the same as for :py:func:`ones_like`, with this array as data. """ return op.ones_like(self, *args, **kwargs) def broadcast_axes(self, *args, **kwargs): """Convenience fluent method for :py:func:`broadcast_axes`. The arguments are the same as for :py:func:`broadcast_axes`, with this array as data. """ return op.broadcast_axes(self, *args, **kwargs) def repeat(self, *args, **kwargs): """Convenience fluent method for :py:func:`repeat`. The arguments are the same as for :py:func:`repeat`, with this array as data. """ return op.repeat(self, *args, **kwargs) def pad(self, *args, **kwargs): """Convenience fluent method for :py:func:`pad`. The arguments are the same as for :py:func:`pad`, with this array as data. """ return op.pad(self, *args, **kwargs) def swapaxes(self, *args, **kwargs): """Convenience fluent method for :py:func:`swapaxes`. The arguments are the same as for :py:func:`swapaxes`, with this array as data. """ return op.swapaxes(self, *args, **kwargs) def split(self, *args, **kwargs): """Convenience fluent method for :py:func:`split`. The arguments are the same as for :py:func:`split`, with this array as data. """ return op.split(self, *args, **kwargs) def slice(self, *args, **kwargs): """Convenience fluent method for :py:func:`slice`. The arguments are the same as for :py:func:`slice`, with this array as data. """ return op.slice(self, *args, **kwargs) def slice_axis(self, *args, **kwargs): """Convenience fluent method for :py:func:`slice_axis`. The arguments are the same as for :py:func:`slice_axis`, with this array as data. """ return op.slice_axis(self, *args, **kwargs) def slice_like(self, *args, **kwargs): """Convenience fluent method for :py:func:`slice_like`. The arguments are the same as for :py:func:`slice_like`, with this array as data. """ return op.slice_like(self, *args, **kwargs) def take(self, *args, **kwargs): """Convenience fluent method for :py:func:`take`. The arguments are the same as for :py:func:`take`, with this array as data. """ return op.take(self, *args, **kwargs) def one_hot(self, *args, **kwargs): """Convenience fluent method for :py:func:`one_hot`. The arguments are the same as for :py:func:`one_hot`, with this array as data. """ return op.one_hot(self, *args, **kwargs) def pick(self, *args, **kwargs): """Convenience fluent method for :py:func:`pick`. The arguments are the same as for :py:func:`pick`, with this array as data. """ return op.pick(self, *args, **kwargs) def sort(self, *args, **kwargs): """Convenience fluent method for :py:func:`sort`. The arguments are the same as for :py:func:`sort`, with this array as data. """ return op.sort(self, *args, **kwargs) def topk(self, *args, **kwargs): """Convenience fluent method for :py:func:`topk`. The arguments are the same as for :py:func:`topk`, with this array as data. """ return op.topk(self, *args, **kwargs) def argsort(self, *args, **kwargs): """Convenience fluent method for :py:func:`argsort`. The arguments are the same as for :py:func:`argsort`, with this array as data. """ return op.argsort(self, *args, **kwargs) def argmax(self, *args, **kwargs): """Convenience fluent method for :py:func:`argmax`. The arguments are the same as for :py:func:`argmax`, with this array as data. """ return op.argmax(self, *args, **kwargs) def argmax_channel(self, *args, **kwargs): """Convenience fluent method for :py:func:`argmax_channel`. The arguments are the same as for :py:func:`argmax_channel`, with this array as data. """ return op.argmax_channel(self, *args, **kwargs) def argmin(self, *args, **kwargs): """Convenience fluent method for :py:func:`argmin`. The arguments are the same as for :py:func:`argmin`, with this array as data. """ return op.argmin(self, *args, **kwargs) def clip(self, *args, **kwargs): """Convenience fluent method for :py:func:`clip`. The arguments are the same as for :py:func:`clip`, with this array as data. """ return op.clip(self, *args, **kwargs) def abs(self, *args, **kwargs): """Convenience fluent method for :py:func:`abs`. The arguments are the same as for :py:func:`abs`, with this array as data. """ return op.abs(self, *args, **kwargs) def sign(self, *args, **kwargs): """Convenience fluent method for :py:func:`sign`. The arguments are the same as for :py:func:`sign`, with this array as data. """ return op.sign(self, *args, **kwargs) def flatten(self, *args, **kwargs): """Convenience fluent method for :py:func:`flatten`. The arguments are the same as for :py:func:`flatten`, with this array as data. """ return op.flatten(self, *args, **kwargs) def shape_array(self, *args, **kwargs): """Convenience fluent method for :py:func:`shape_array`. The arguments are the same as for :py:func:`shape_op`, with this array as data. """ return op.shape_array(self, *args, **kwargs) def size_array(self, *args, **kwargs): """Convenience fluent method for :py:func:`size_array`. The arguments are the same as for :py:func:`size_array`, with this array as data. """ return op.size_array(self, *args, **kwargs) def expand_dims(self, *args, **kwargs): """Convenience fluent method for :py:func:`expand_dims`. The arguments are the same as for :py:func:`expand_dims`, with this array as data. """ return op.expand_dims(self, *args, **kwargs) def broadcast_to(self, *args, **kwargs): """Convenience fluent method for :py:func:`broadcast_to`. The arguments are the same as for :py:func:`broadcast_to`, with this array as data. """ return op.broadcast_to(self, *args, **kwargs) def broadcast_like(self, *args, **kwargs): """Convenience fluent method for :py:func:`broadcast_like`. The arguments are the same as for :py:func:`broadcast_like`, with this array as data. """ return op.broadcast_like(self, *args, **kwargs) def tile(self, *args, **kwargs): """Convenience fluent method for :py:func:`tile`. The arguments are the same as for :py:func:`tile`, with this array as data. """ return op.tile(self, *args, **kwargs) def transpose(self, *args, **kwargs): """Convenience fluent method for :py:func:`transpose`. The arguments are the same as for :py:func:`transpose`, with this array as data. """ return op.transpose(self, *args, **kwargs) def flip(self, *args, **kwargs): """Convenience fluent method for :py:func:`flip`. The arguments are the same as for :py:func:`flip`, with this array as data. """ return op.flip(self, *args, **kwargs) def depth_to_space(self, *args, **kwargs): """Convenience fluent method for :py:func:`depth_to_space`. The arguments are the same as for :py:func:`depth_to_space`, with this array as data. """ return op.depth_to_space(self, *args, **kwargs) def space_to_depth(self, *args, **kwargs): """Convenience fluent method for :py:func:`space_to_depth`. The arguments are the same as for :py:func:`space_to_depth`, with this array as data. """ return op.space_to_depth(self, *args, **kwargs) def diag(self, k=0, **kwargs): """Convenience fluent method for :py:func:`diag`. The arguments are the same as for :py:func:`diag`, with this array as data. """ return op.diag(self, k, **kwargs) def sum(self, *args, **kwargs): """Convenience fluent method for :py:func:`sum`. The arguments are the same as for :py:func:`sum`, with this array as data. """ return op.sum(self, *args, **kwargs) def nansum(self, *args, **kwargs): """Convenience fluent method for :py:func:`nansum`. The arguments are the same as for :py:func:`nansum`, with this array as data. """ return op.nansum(self, *args, **kwargs) def prod(self, *args, **kwargs): """Convenience fluent method for :py:func:`prod`. The arguments are the same as for :py:func:`prod`, with this array as data. """ return op.prod(self, *args, **kwargs) def nanprod(self, *args, **kwargs): """Convenience fluent method for :py:func:`nanprod`. The arguments are the same as for :py:func:`nanprod`, with this array as data. """ return op.nanprod(self, *args, **kwargs) def mean(self, *args, **kwargs): """Convenience fluent method for :py:func:`mean`. The arguments are the same as for :py:func:`mean`, with this array as data. """ return op.mean(self, *args, **kwargs) def max(self, *args, **kwargs): """Convenience fluent method for :py:func:`max`. The arguments are the same as for :py:func:`max`, with this array as data. """ return op.max(self, *args, **kwargs) def min(self, *args, **kwargs): """Convenience fluent method for :py:func:`min`. The arguments are the same as for :py:func:`min`, with this array as data. """ return op.min(self, *args, **kwargs) def norm(self, *args, **kwargs): """Convenience fluent method for :py:func:`norm`. The arguments are the same as for :py:func:`norm`, with this array as data. """ return op.norm(self, *args, **kwargs) def round(self, *args, **kwargs): """Convenience fluent method for :py:func:`round`. The arguments are the same as for :py:func:`round`, with this array as data. """ return op.round(self, *args, **kwargs) def rint(self, *args, **kwargs): """Convenience fluent method for :py:func:`rint`. The arguments are the same as for :py:func:`rint`, with this array as data. """ return op.rint(self, *args, **kwargs) def fix(self, *args, **kwargs): """Convenience fluent method for :py:func:`fix`. The arguments are the same as for :py:func:`fix`, with this array as data. """ return op.fix(self, *args, **kwargs) def floor(self, *args, **kwargs): """Convenience fluent method for :py:func:`floor`. The arguments are the same as for :py:func:`floor`, with this array as data. """ return op.floor(self, *args, **kwargs) def ceil(self, *args, **kwargs): """Convenience fluent method for :py:func:`ceil`. The arguments are the same as for :py:func:`ceil`, with this array as data. """ return op.ceil(self, *args, **kwargs) def trunc(self, *args, **kwargs): """Convenience fluent method for :py:func:`trunc`. The arguments are the same as for :py:func:`trunc`, with this array as data. """ return op.trunc(self, *args, **kwargs) def sin(self, *args, **kwargs): """Convenience fluent method for :py:func:`sin`. The arguments are the same as for :py:func:`sin`, with this array as data. """ return op.sin(self, *args, **kwargs) def cos(self, *args, **kwargs): """Convenience fluent method for :py:func:`cos`. The arguments are the same as for :py:func:`cos`, with this array as data. """ return op.cos(self, *args, **kwargs) def tan(self, *args, **kwargs): """Convenience fluent method for :py:func:`tan`. The arguments are the same as for :py:func:`tan`, with this array as data. """ return op.tan(self, *args, **kwargs) def arcsin(self, *args, **kwargs): """Convenience fluent method for :py:func:`arcsin`. The arguments are the same as for :py:func:`arcsin`, with this array as data. """ return op.arcsin(self, *args, **kwargs) def arccos(self, *args, **kwargs): """Convenience fluent method for :py:func:`arccos`. The arguments are the same as for :py:func:`arccos`, with this array as data. """ return op.arccos(self, *args, **kwargs) def arctan(self, *args, **kwargs): """Convenience fluent method for :py:func:`arctan`. The arguments are the same as for :py:func:`arctan`, with this array as data. """ return op.arctan(self, *args, **kwargs) def degrees(self, *args, **kwargs): """Convenience fluent method for :py:func:`degrees`. The arguments are the same as for :py:func:`degrees`, with this array as data. """ return op.degrees(self, *args, **kwargs) def radians(self, *args, **kwargs): """Convenience fluent method for :py:func:`radians`. The arguments are the same as for :py:func:`radians`, with this array as data. """ return op.radians(self, *args, **kwargs) def sinh(self, *args, **kwargs): """Convenience fluent method for :py:func:`sinh`. The arguments are the same as for :py:func:`sinh`, with this array as data. """ return op.sinh(self, *args, **kwargs) def cosh(self, *args, **kwargs): """Convenience fluent method for :py:func:`cosh`. The arguments are the same as for :py:func:`cosh`, with this array as data. """ return op.cosh(self, *args, **kwargs) def tanh(self, *args, **kwargs): """Convenience fluent method for :py:func:`tanh`. The arguments are the same as for :py:func:`tanh`, with this array as data. """ return op.tanh(self, *args, **kwargs) def arcsinh(self, *args, **kwargs): """Convenience fluent method for :py:func:`arcsinh`. The arguments are the same as for :py:func:`arcsinh`, with this array as data. """ return op.arcsinh(self, *args, **kwargs) def arccosh(self, *args, **kwargs): """Convenience fluent method for :py:func:`arccosh`. The arguments are the same as for :py:func:`arccosh`, with this array as data. """ return op.arccosh(self, *args, **kwargs) def arctanh(self, *args, **kwargs): """Convenience fluent method for :py:func:`arctanh`. The arguments are the same as for :py:func:`arctanh`, with this array as data. """ return op.arctanh(self, *args, **kwargs) def exp(self, *args, **kwargs): """Convenience fluent method for :py:func:`exp`. The arguments are the same as for :py:func:`exp`, with this array as data. """ return op.exp(self, *args, **kwargs) def expm1(self, *args, **kwargs): """Convenience fluent method for :py:func:`expm1`. The arguments are the same as for :py:func:`expm1`, with this array as data. """ return op.expm1(self, *args, **kwargs) def log(self, *args, **kwargs): """Convenience fluent method for :py:func:`log`. The arguments are the same as for :py:func:`log`, with this array as data. """ return op.log(self, *args, **kwargs) def log10(self, *args, **kwargs): """Convenience fluent method for :py:func:`log10`. The arguments are the same as for :py:func:`log10`, with this array as data. """ return op.log10(self, *args, **kwargs) def log2(self, *args, **kwargs): """Convenience fluent method for :py:func:`log2`. The arguments are the same as for :py:func:`log2`, with this array as data. """ return op.log2(self, *args, **kwargs) def log1p(self, *args, **kwargs): """Convenience fluent method for :py:func:`log1p`. The arguments are the same as for :py:func:`log1p`, with this array as data. """ return op.log1p(self, *args, **kwargs) def sqrt(self, *args, **kwargs): """Convenience fluent method for :py:func:`sqrt`. The arguments are the same as for :py:func:`sqrt`, with this array as data. """ return op.sqrt(self, *args, **kwargs) def rsqrt(self, *args, **kwargs): """Convenience fluent method for :py:func:`rsqrt`. The arguments are the same as for :py:func:`rsqrt`, with this array as data. """ return op.rsqrt(self, *args, **kwargs) def cbrt(self, *args, **kwargs): """Convenience fluent method for :py:func:`cbrt`. The arguments are the same as for :py:func:`cbrt`, with this array as data. """ return op.cbrt(self, *args, **kwargs) def rcbrt(self, *args, **kwargs): """Convenience fluent method for :py:func:`rcbrt`. The arguments are the same as for :py:func:`rcbrt`, with this array as data. """ return op.rcbrt(self, *args, **kwargs) def square(self, *args, **kwargs): """Convenience fluent method for :py:func:`square`. The arguments are the same as for :py:func:`square`, with this array as data. """ return op.square(self, *args, **kwargs) def reciprocal(self, *args, **kwargs): """Convenience fluent method for :py:func:`reciprocal`. The arguments are the same as for :py:func:`reciprocal`, with this array as data. """ return op.reciprocal(self, *args, **kwargs) def relu(self, *args, **kwargs): """Convenience fluent method for :py:func:`relu`. The arguments are the same as for :py:func:`relu`, with this array as data. """ return op.relu(self, *args, **kwargs) def sigmoid(self, *args, **kwargs): """Convenience fluent method for :py:func:`sigmoid`. The arguments are the same as for :py:func:`sigmoid`, with this array as data. """ return op.sigmoid(self, *args, **kwargs) def softmax(self, *args, **kwargs): """Convenience fluent method for :py:func:`softmax`. The arguments are the same as for :py:func:`softmax`, with this array as data. """ return op.softmax(self, *args, **kwargs) def log_softmax(self, *args, **kwargs): """Convenience fluent method for :py:func:`log_softmax`. The arguments are the same as for :py:func:`log_softmax`, with this array as data. """ return op.log_softmax(self, *args, **kwargs) def softmin(self, *args, **kwargs): """Convenience fluent method for :py:func:`softmin`. The arguments are the same as for :py:func:`softmin`, with this array as data. """ return op.softmin(self, *args, **kwargs) def squeeze(self, *args, **kwargs): """Convenience fluent method for :py:func:`squeeze`. The arguments are the same as for :py:func:`squeeze`, with this array as data. """ return op.squeeze(self, *args, **kwargs) def get_backend_symbol(self, backend): """Return symbol for target backend. Parameters ---------- backend : str The backend names. Returns ------- out : Symbol The created Symbol for target backend. """ out = SymbolHandle() check_call(_LIB.MXGenBackendSubgraph(self.handle, c_str(backend), ctypes.byref(out))) return Symbol(out) def wait_to_read(self): raise NotImplementedForSymbol(self.wait_to_read, None) def asnumpy(self): raise NotImplementedForSymbol(self.asnumpy, None) def asscalar(self): raise NotImplementedForSymbol(self.asscalar, None) def copy(self): raise NotImplementedForSymbol(self.copy, None) def as_in_context(self): raise NotImplementedForSymbol(self.as_in_context, None) def detach(self): raise NotImplementedForSymbol(self.detach, None) def backward(self): raise NotImplementedForSymbol(self.backward, None) def var(name, attr=None, shape=None, lr_mult=None, wd_mult=None, dtype=None, init=None, stype=None, **kwargs): """Creates a symbolic variable with specified name. Example ------- >>> data = mx.sym.Variable('data', attr={'a': 'b'}) >>> data <Symbol data> >>> csr_data = mx.sym.Variable('csr_data', stype='csr') >>> csr_data <Symbol csr_data> >>> row_sparse_weight = mx.sym.Variable('weight', stype='row_sparse') >>> row_sparse_weight <Symbol weight> Parameters ---------- name : str Variable name. attr : Dict of strings Additional attributes to set on the variable. Format {string : string}. shape : tuple The shape of a variable. If specified, this will be used during the shape inference. If one has specified a different shape for this variable using a keyword argument when calling shape inference, this shape information will be ignored. lr_mult : float The learning rate multiplier for input variable. wd_mult : float Weight decay multiplier for input variable. dtype : str or numpy.dtype The dtype for input variable. If not specified, this value will be inferred. init : initializer (mxnet.init.*) Initializer for this variable to (optionally) override the default initializer. stype : str The storage type of the variable, such as 'row_sparse', 'csr', 'default', etc kwargs : Additional attribute variables Additional attributes must start and end with double underscores. Returns ------- variable : Symbol A symbol corresponding to an input to the computation graph. """ if not isinstance(name, string_types): raise TypeError('Expect a string for variable `name`') handle = SymbolHandle() check_call(_LIB.MXSymbolCreateVariable(c_str(name), ctypes.byref(handle))) ret = Symbol(handle) if not hasattr(AttrScope._current, "value"): AttrScope._current.value = AttrScope() attr = AttrScope._current.value.get(attr) attr = {} if attr is None else attr if shape is not None: attr['__shape__'] = str(shape) if lr_mult is not None: attr['__lr_mult__'] = str(lr_mult) if wd_mult is not None: attr['__wd_mult__'] = str(wd_mult) if dtype is not None: attr['__dtype__'] = str(_DTYPE_NP_TO_MX[_numpy.dtype(dtype).type]) if init is not None: if not isinstance(init, string_types): init = init.dumps() attr['__init__'] = init if stype is not None: attr['__storage_type__'] = str(_STORAGE_TYPE_STR_TO_ID[stype]) for k, v in kwargs.items(): if k.startswith('__') and k.endswith('__'): attr[k] = str(v) else: raise ValueError('Attribute name=%s is not supported.' ' Additional attributes must start and end with double underscores,' ' e.g, __yourattr__' % k) ret._set_attr(**attr) return ret # for back compatibility Variable = var def Group(symbols): """Creates a symbol that contains a collection of other symbols, grouped together. Example ------- >>> a = mx.sym.Variable('a') >>> b = mx.sym.Variable('b') >>> mx.sym.Group([a,b]) <Symbol Grouped> Parameters ---------- symbols : list List of symbols to be grouped. Returns ------- sym : Symbol A group symbol. """ if not symbols or any(not isinstance(sym, Symbol) for sym in symbols): raise TypeError('Expected a list of symbols as input') handle = SymbolHandle() check_call(_LIB.MXSymbolCreateGroup( mx_uint(len(symbols)), c_handle_array(symbols), ctypes.byref(handle))) return Symbol(handle) def load(fname): """Loads symbol from a JSON file. You can also use pickle to do the job if you only work on python. The advantage of load/save is the file is language agnostic. This means the file saved using save can be loaded by other language binding of mxnet. You also get the benefit being able to directly load/save from cloud storage(S3, HDFS). Parameters ---------- fname : str The name of the file, examples: - `s3://my-bucket/path/my-s3-symbol` - `hdfs://my-bucket/path/my-hdfs-symbol` - `/path-to/my-local-symbol` Returns ------- sym : Symbol The loaded symbol. See Also -------- Symbol.save : Used to save symbol into file. """ if not isinstance(fname, string_types): raise TypeError('fname need to be string') handle = SymbolHandle() check_call(_LIB.MXSymbolCreateFromFile(c_str(fname), ctypes.byref(handle))) return Symbol(handle) def load_json(json_str): """Loads symbol from json string. Parameters ---------- json_str : str A JSON string. Returns ------- sym : Symbol The loaded symbol. See Also -------- Symbol.tojson : Used to save symbol into json string. """ if not isinstance(json_str, string_types): raise TypeError('fname required to be string') handle = SymbolHandle() check_call(_LIB.MXSymbolCreateFromJSON(c_str(json_str), ctypes.byref(handle))) return Symbol(handle) # pylint: disable=no-member # pylint: disable=redefined-builtin def pow(base, exp): """Returns element-wise result of base element raised to powers from exp element. Both inputs can be Symbol or scalar number. Broadcasting is not supported. Use `broadcast_pow` instead. Parameters --------- base : Symbol or scalar The base symbol exp : Symbol or scalar The exponent symbol Returns ------- Symbol or scalar The bases in x raised to the exponents in y. Examples -------- >>> mx.sym.pow(2, 3) 8 >>> x = mx.sym.Variable('x') >>> y = mx.sym.Variable('y') >>> z = mx.sym.pow(x, 2) >>> z.eval(x=mx.nd.array([1,2]))[0].asnumpy() array([ 1., 4.], dtype=float32) >>> z = mx.sym.pow(3, y) >>> z.eval(y=mx.nd.array([2,3]))[0].asnumpy() array([ 9., 27.], dtype=float32) >>> z = mx.sym.pow(x, y) >>> z.eval(x=mx.nd.array([3,4]), y=mx.nd.array([2,3]))[0].asnumpy() array([ 9., 64.], dtype=float32) """ if isinstance(base, Symbol) and isinstance(exp, Symbol): return _internal._Power(base, exp) if isinstance(base, Symbol) and isinstance(exp, Number): return _internal._PowerScalar(base, scalar=exp) if isinstance(base, Number) and isinstance(exp, Symbol): return _internal._RPowerScalar(exp, scalar=base) if isinstance(base, Number) and isinstance(exp, Number): return base**exp else: raise TypeError('types (%s, %s) not supported' % (str(type(base)), str(type(exp)))) # pylint: disable=no-member # pylint: disable=redefined-builtin def maximum(left, right): """Returns element-wise maximum of the input elements. Both inputs can be Symbol or scalar number. Broadcasting is not supported. Parameters --------- left : Symbol or scalar First symbol to be compared. right : Symbol or scalar Second symbol to be compared. Returns ------- Symbol or scalar The element-wise maximum of the input symbols. Examples -------- >>> mx.sym.maximum(2, 3.5) 3.5 >>> x = mx.sym.Variable('x') >>> y = mx.sym.Variable('y') >>> z = mx.sym.maximum(x, 4) >>> z.eval(x=mx.nd.array([3,5,2,10]))[0].asnumpy() array([ 4., 5., 4., 10.], dtype=float32) >>> z = mx.sym.maximum(x, y) >>> z.eval(x=mx.nd.array([3,4]), y=mx.nd.array([10,2]))[0].asnumpy() array([ 10., 4.], dtype=float32) """ if isinstance(left, Symbol) and isinstance(right, Symbol): return _internal._Maximum(left, right) if isinstance(left, Symbol) and isinstance(right, Number): return _internal._MaximumScalar(left, scalar=right) if isinstance(left, Number) and isinstance(right, Symbol): return _internal._MaximumScalar(right, scalar=left) if isinstance(left, Number) and isinstance(right, Number): return left if left > right else right else: raise TypeError('types (%s, %s) not supported' % (str(type(left)), str(type(right)))) # pylint: disable=no-member # pylint: disable=redefined-builtin def minimum(left, right): """Returns element-wise minimum of the input elements. Both inputs can be Symbol or scalar number. Broadcasting is not supported. Parameters --------- left : Symbol or scalar First symbol to be compared. right : Symbol or scalar Second symbol to be compared. Returns ------- Symbol or scalar The element-wise minimum of the input symbols. Examples -------- >>> mx.sym.minimum(2, 3.5) 2 >>> x = mx.sym.Variable('x') >>> y = mx.sym.Variable('y') >>> z = mx.sym.minimum(x, 4) >>> z.eval(x=mx.nd.array([3,5,2,10]))[0].asnumpy() array([ 3., 4., 2., 4.], dtype=float32) >>> z = mx.sym.minimum(x, y) >>> z.eval(x=mx.nd.array([3,4]), y=mx.nd.array([10,2]))[0].asnumpy() array([ 3., 2.], dtype=float32) """ if isinstance(left, Symbol) and isinstance(right, Symbol): return _internal._Minimum(left, right) if isinstance(left, Symbol) and isinstance(right, Number): return _internal._MinimumScalar(left, scalar=right) if isinstance(left, Number) and isinstance(right, Symbol): return _internal._MinimumScalar(right, scalar=left) if isinstance(left, Number) and isinstance(right, Number): return left if left < right else right else: raise TypeError('types (%s, %s) not supported' % (str(type(left)), str(type(right)))) # pylint: disable=no-member # pylint: disable=redefined-builtin def hypot(left, right): """Given the "legs" of a right triangle, returns its hypotenuse. Equivalent to :math:`\\sqrt(left^2 + right^2)`, element-wise. Both inputs can be Symbol or scalar number. Broadcasting is not supported. Parameters --------- left : Symbol or scalar First leg of the triangle(s). right : Symbol or scalar Second leg of the triangle(s). Returns ------- Symbol or scalar The hypotenuse of the triangle(s) Examples -------- >>> mx.sym.hypot(3, 4) 5.0 >>> x = mx.sym.Variable('x') >>> y = mx.sym.Variable('y') >>> z = mx.sym.hypot(x, 4) >>> z.eval(x=mx.nd.array([3,5,2]))[0].asnumpy() array([ 5., 6.40312433, 4.47213602], dtype=float32) >>> z = mx.sym.hypot(x, y) >>> z.eval(x=mx.nd.array([3,4]), y=mx.nd.array([10,2]))[0].asnumpy() array([ 10.44030666, 4.47213602], dtype=float32) """ if isinstance(left, Symbol) and isinstance(right, Symbol): return _internal._Hypot(left, right) if isinstance(left, Symbol) and isinstance(right, Number): return _internal._HypotScalar(left, scalar=right) if isinstance(left, Number) and isinstance(right, Symbol): return _internal._HypotScalar(right, scalar=left) if isinstance(left, Number) and isinstance(right, Number): return _numpy.hypot(left, right) else: raise TypeError('types (%s, %s) not supported' % (str(type(left)), str(type(right)))) def eye(N, M=0, k=0, dtype=None, **kwargs): """Returns a new symbol of 2-D shpae, filled with ones on the diagonal and zeros elsewhere. Parameters ---------- N: int Number of rows in the output. M: int, optional Number of columns in the output. If 0, defaults to N. k: int, optional Index of the diagonal: 0 (the default) refers to the main diagonal, a positive value refers to an upper diagonal, and a negative value to a lower diagonal. dtype : str or numpy.dtype, optional The value type of the inner value, default to ``np.float32``. Returns ------- out : Symbol The created Symbol. """ if dtype is None: dtype = _numpy.float32 return _internal._eye(N, M, k, dtype=dtype, **kwargs) def zeros(shape, dtype=None, **kwargs): """Returns a new symbol of given shape and type, filled with zeros. Parameters ---------- shape : int or sequence of ints Shape of the new array. dtype : str or numpy.dtype, optional The value type of the inner value, default to ``np.float32``. Returns ------- out : Symbol The created Symbol. """ if dtype is None: dtype = _numpy.float32 return _internal._zeros(shape=shape, dtype=dtype, **kwargs) def ones(shape, dtype=None, **kwargs): """Returns a new symbol of given shape and type, filled with ones. Parameters ---------- shape : int or sequence of ints Shape of the new array. dtype : str or numpy.dtype, optional The value type of the inner value, default to ``np.float32``. Returns ------- out : Symbol The created Symbol """ if dtype is None: dtype = _numpy.float32 return _internal._ones(shape=shape, dtype=dtype, **kwargs) def full(shape, val, dtype=None, **kwargs): """Returns a new array of given shape and type, filled with the given value `val`. Parameters ---------- shape : int or sequence of ints Shape of the new array. val : scalar Fill value. dtype : str or numpy.dtype, optional The value type of the inner value, default to ``np.float32``. Returns ------- out : Symbol The created Symbol """ if dtype is None: dtype = _numpy.float32 return _internal._full(shape=shape, dtype=dtype, value=float(val), **kwargs) # pylint: disable=redefined-outer-name def arange(start, stop=None, step=1.0, repeat=1, infer_range=False, name=None, dtype=None): """Returns evenly spaced values within a given interval. Parameters ---------- start : number Start of interval. The interval includes this value. The default start value is 0. stop : number, optional End of interval. The interval does not include this value. step : number, optional Spacing between values. repeat : int, optional "The repeating time of all elements. E.g repeat=3, the element a will be repeated three times --> a, a, a. infer_range : boolean, optional When set to True, infer the stop position from the start, step, repeat, and output tensor size. dtype : str or numpy.dtype, optional The value type of the inner value, default to ``np.float32``. Returns ------- out : Symbol The created Symbol """ if dtype is None: dtype = _numpy.float32 return _internal._arange(start=start, stop=stop, step=step, repeat=repeat, infer_range=infer_range, name=name, dtype=dtype) def histogram(a, bins=10, range=None, **kwargs): """Compute the histogram of the input data. Parameters ---------- a : NDArray Input data. The histogram is computed over the flattened array. bins : int or sequence of scalars If bins is an int, it defines the number of equal-width bins in the given range (10, by default). If bins is a sequence, it defines the bin edges, including the rightmost edge, allowing for non-uniform bin widths. range : (float, float), required if bins is an integer The lower and upper range of the bins. If not provided, range is simply (a.min(), a.max()). Values outside the range are ignored. The first element of the range must be less than or equal to the second. range affects the automatic bin computation as well, the range will be equally divided by the number of bins. """ if isinstance(bins, Symbol): return _internal._histogram(data=a, bins=bins, **kwargs) elif isinstance(bins, integer_types): if range is None: raise ValueError("null range is not supported in symbol mode") return _internal._histogram(data=a, bin_cnt=bins, range=range, **kwargs) raise ValueError("bins argument should be either an integer or an NDArray") _set_symbol_class(Symbol)
apache-2.0
3,714,805,258,863,992,000
35.164983
100
0.555302
false
Chippers255/nb_twitter
nb_twitter/bayes/multivariate.py
1
3457
# -*- coding: utf-8 -*- # multivariate.py # nb_twitter/nb_twitter/bayes # # Created by Thomas Nelson <[email protected]> # Preston Engstrom <[email protected]> # Created..........................2015-06-23 # Modified.........................2015-06-30 # # This script was developed for use as part of the nb_twitter package import math import nb_twitter.bayes.bayes as bayes import nb_twitter.bayes.decorators as decorators class Multivariate (bayes.Bayes): """The Bernoulli variation, as described by Manning et al (2008), generates a Boolean indicator about each term of the vocabulary equal to 1 if the term belongs to the examining document and 0 if it does not. The model of this variation is significantly different from Multinomial not only because it does not take into consideration the number of occurrences of each word, but also because it takes into account the non-occurring terms within the document. While in Multinomial model the non-occurring terms are completely ignored, in Bernoulli model they are factored when computing the conditional probabilities and thus the absence of terms is taken into account. Bernoulli model is known to make many mistakes while classifying long documents, primarily because it does not take into account the multiple occurrences of the words. Note that it is particularly sensitive to the presence of noisy features. Multivariate Reference Page: http://nlp.stanford.edu/IR-book/html/htmledition/the-bernoulli-model-1.html """ def train(self): """This method will train a multivariate naive bayes text classifier. The classifier will by trained using the provided classes and documents from the initializer. """ for c in self.C: self.prior[c] = float(self.Nc[c]) / float(self.N) self.prob[c] = {} for w in self.V: Ncw = self.count_documents_from_class_term(c, w) self.prob[c][w] = (Ncw + 1.0) / (self.Nc[c] + 2.0) # end def train @decorators.string_check def run(self, d): """This method will run the trained multivariate naive bayes text classifier. This method will classify the provided document into a class. :param d: The new document to be classified. :return score: A dictionary of scores for this document in each class. """ score = {} W = self.extract_words_from_document('multivariate', d) for c in self.C: score[c] = math.log(self.prior[c]) for w in self.V: if w in W: score[c] += math.log(self.prob[c][w]) else: score[c] += math.log(1 - self.prob[c][w]) return score # end def run @decorators.string_check def count_documents_from_class_term(self, c, w): """This method will count the number of documents belonging to a class 'c' that contain the word 'w'. :param c: The class of documents to count. :param w: The word a counted document must contain. :return Ncw: The count of documents in a class with a specific word. """ Ncw = 0 for d in self.D: if d[0] == c and w in d[1].split(): Ncw += 1 return Ncw # end def count_documents_from_class_term # end class Multivariate
mit
8,744,180,279,110,490,000
31.613208
79
0.632051
false
redhat-openstack/heat
heat/api/openstack/v1/software_configs.py
3
2535
# # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from webob import exc from heat.api.openstack.v1 import util from heat.common import serializers from heat.common import wsgi from heat.rpc import client as rpc_client class SoftwareConfigController(object): """ WSGI controller for Software config in Heat v1 API Implements the API actions """ REQUEST_SCOPE = 'software_configs' def __init__(self, options): self.options = options self.rpc_client = rpc_client.EngineClient() def default(self, req, **args): raise exc.HTTPNotFound() @util.policy_enforce def show(self, req, config_id): """ Gets detailed information for a software config """ sc = self.rpc_client.show_software_config( req.context, config_id) return {'software_config': sc} @util.policy_enforce def create(self, req, body): """ Create a new software config """ create_data = { 'name': body.get('name'), 'group': body.get('group'), 'config': body.get('config'), 'inputs': body.get('inputs'), 'outputs': body.get('outputs'), 'options': body.get('options'), } sc = self.rpc_client.create_software_config( req.context, **create_data) return {'software_config': sc} @util.policy_enforce def delete(self, req, config_id): """ Delete an existing software config """ res = self.rpc_client.delete_software_config(req.context, config_id) if res is not None: raise exc.HTTPBadRequest(res['Error']) raise exc.HTTPNoContent() def create_resource(options): """ Software configs resource factory method. """ deserializer = wsgi.JSONRequestDeserializer() serializer = serializers.JSONResponseSerializer() return wsgi.Resource( SoftwareConfigController(options), deserializer, serializer)
apache-2.0
3,816,841,114,749,897,700
29.542169
78
0.634714
false
sotdjin/glibglab
venv/lib/python2.7/site-packages/sqlalchemy/engine/reflection.py
13
30187
# engine/reflection.py # Copyright (C) 2005-2016 the SQLAlchemy authors and contributors # <see AUTHORS file> # # This module is part of SQLAlchemy and is released under # the MIT License: http://www.opensource.org/licenses/mit-license.php """Provides an abstraction for obtaining database schema information. Usage Notes: Here are some general conventions when accessing the low level inspector methods such as get_table_names, get_columns, etc. 1. Inspector methods return lists of dicts in most cases for the following reasons: * They're both standard types that can be serialized. * Using a dict instead of a tuple allows easy expansion of attributes. * Using a list for the outer structure maintains order and is easy to work with (e.g. list comprehension [d['name'] for d in cols]). 2. Records that contain a name, such as the column name in a column record use the key 'name'. So for most return values, each record will have a 'name' attribute.. """ from .. import exc, sql from ..sql import schema as sa_schema from .. import util from ..sql.type_api import TypeEngine from ..util import deprecated from ..util import topological from .. import inspection from .base import Connectable @util.decorator def cache(fn, self, con, *args, **kw): info_cache = kw.get('info_cache', None) if info_cache is None: return fn(self, con, *args, **kw) key = ( fn.__name__, tuple(a for a in args if isinstance(a, util.string_types)), tuple((k, v) for k, v in kw.items() if isinstance(v, util.string_types + util.int_types + (float, ) ) ) ) ret = info_cache.get(key) if ret is None: ret = fn(self, con, *args, **kw) info_cache[key] = ret return ret class Inspector(object): """Performs database schema inspection. The Inspector acts as a proxy to the reflection methods of the :class:`~sqlalchemy.engine.interfaces.Dialect`, providing a consistent interface as well as caching support for previously fetched metadata. A :class:`.Inspector` object is usually created via the :func:`.inspect` function:: from sqlalchemy import inspect, create_engine engine = create_engine('...') insp = inspect(engine) The inspection method above is equivalent to using the :meth:`.Inspector.from_engine` method, i.e.:: engine = create_engine('...') insp = Inspector.from_engine(engine) Where above, the :class:`~sqlalchemy.engine.interfaces.Dialect` may opt to return an :class:`.Inspector` subclass that provides additional methods specific to the dialect's target database. """ def __init__(self, bind): """Initialize a new :class:`.Inspector`. :param bind: a :class:`~sqlalchemy.engine.Connectable`, which is typically an instance of :class:`~sqlalchemy.engine.Engine` or :class:`~sqlalchemy.engine.Connection`. For a dialect-specific instance of :class:`.Inspector`, see :meth:`.Inspector.from_engine` """ # this might not be a connection, it could be an engine. self.bind = bind # set the engine if hasattr(bind, 'engine'): self.engine = bind.engine else: self.engine = bind if self.engine is bind: # if engine, ensure initialized bind.connect().close() self.dialect = self.engine.dialect self.info_cache = {} @classmethod def from_engine(cls, bind): """Construct a new dialect-specific Inspector object from the given engine or connection. :param bind: a :class:`~sqlalchemy.engine.Connectable`, which is typically an instance of :class:`~sqlalchemy.engine.Engine` or :class:`~sqlalchemy.engine.Connection`. This method differs from direct a direct constructor call of :class:`.Inspector` in that the :class:`~sqlalchemy.engine.interfaces.Dialect` is given a chance to provide a dialect-specific :class:`.Inspector` instance, which may provide additional methods. See the example at :class:`.Inspector`. """ if hasattr(bind.dialect, 'inspector'): return bind.dialect.inspector(bind) return Inspector(bind) @inspection._inspects(Connectable) def _insp(bind): return Inspector.from_engine(bind) @property def default_schema_name(self): """Return the default schema name presented by the dialect for the current engine's database user. E.g. this is typically ``public`` for PostgreSQL and ``dbo`` for SQL Server. """ return self.dialect.default_schema_name def get_schema_names(self): """Return all schema names. """ if hasattr(self.dialect, 'get_schema_names'): return self.dialect.get_schema_names(self.bind, info_cache=self.info_cache) return [] def get_table_names(self, schema=None, order_by=None): """Return all table names in referred to within a particular schema. The names are expected to be real tables only, not views. Views are instead returned using the :meth:`.Inspector.get_view_names` method. :param schema: Schema name. If ``schema`` is left at ``None``, the database's default schema is used, else the named schema is searched. If the database does not support named schemas, behavior is undefined if ``schema`` is not passed as ``None``. For special quoting, use :class:`.quoted_name`. :param order_by: Optional, may be the string "foreign_key" to sort the result on foreign key dependencies. Does not automatically resolve cycles, and will raise :class:`.CircularDependencyError` if cycles exist. .. deprecated:: 1.0.0 - see :meth:`.Inspector.get_sorted_table_and_fkc_names` for a version of this which resolves foreign key cycles between tables automatically. .. versionchanged:: 0.8 the "foreign_key" sorting sorts tables in order of dependee to dependent; that is, in creation order, rather than in drop order. This is to maintain consistency with similar features such as :attr:`.MetaData.sorted_tables` and :func:`.util.sort_tables`. .. seealso:: :meth:`.Inspector.get_sorted_table_and_fkc_names` :attr:`.MetaData.sorted_tables` """ if hasattr(self.dialect, 'get_table_names'): tnames = self.dialect.get_table_names( self.bind, schema, info_cache=self.info_cache) else: tnames = self.engine.table_names(schema) if order_by == 'foreign_key': tuples = [] for tname in tnames: for fkey in self.get_foreign_keys(tname, schema): if tname != fkey['referred_table']: tuples.append((fkey['referred_table'], tname)) tnames = list(topological.sort(tuples, tnames)) return tnames def get_sorted_table_and_fkc_names(self, schema=None): """Return dependency-sorted table and foreign key constraint names in referred to within a particular schema. This will yield 2-tuples of ``(tablename, [(tname, fkname), (tname, fkname), ...])`` consisting of table names in CREATE order grouped with the foreign key constraint names that are not detected as belonging to a cycle. The final element will be ``(None, [(tname, fkname), (tname, fkname), ..])`` which will consist of remaining foreign key constraint names that would require a separate CREATE step after-the-fact, based on dependencies between tables. .. versionadded:: 1.0.- .. seealso:: :meth:`.Inspector.get_table_names` :func:`.sort_tables_and_constraints` - similar method which works with an already-given :class:`.MetaData`. """ if hasattr(self.dialect, 'get_table_names'): tnames = self.dialect.get_table_names( self.bind, schema, info_cache=self.info_cache) else: tnames = self.engine.table_names(schema) tuples = set() remaining_fkcs = set() fknames_for_table = {} for tname in tnames: fkeys = self.get_foreign_keys(tname, schema) fknames_for_table[tname] = set( [fk['name'] for fk in fkeys] ) for fkey in fkeys: if tname != fkey['referred_table']: tuples.add((fkey['referred_table'], tname)) try: candidate_sort = list(topological.sort(tuples, tnames)) except exc.CircularDependencyError as err: for edge in err.edges: tuples.remove(edge) remaining_fkcs.update( (edge[1], fkc) for fkc in fknames_for_table[edge[1]] ) candidate_sort = list(topological.sort(tuples, tnames)) return [ (tname, fknames_for_table[tname].difference(remaining_fkcs)) for tname in candidate_sort ] + [(None, list(remaining_fkcs))] def get_temp_table_names(self): """return a list of temporary table names for the current bind. This method is unsupported by most dialects; currently only SQLite implements it. .. versionadded:: 1.0.0 """ return self.dialect.get_temp_table_names( self.bind, info_cache=self.info_cache) def get_temp_view_names(self): """return a list of temporary view names for the current bind. This method is unsupported by most dialects; currently only SQLite implements it. .. versionadded:: 1.0.0 """ return self.dialect.get_temp_view_names( self.bind, info_cache=self.info_cache) def get_table_options(self, table_name, schema=None, **kw): """Return a dictionary of options specified when the table of the given name was created. This currently includes some options that apply to MySQL tables. :param table_name: string name of the table. For special quoting, use :class:`.quoted_name`. :param schema: string schema name; if omitted, uses the default schema of the database connection. For special quoting, use :class:`.quoted_name`. """ if hasattr(self.dialect, 'get_table_options'): return self.dialect.get_table_options( self.bind, table_name, schema, info_cache=self.info_cache, **kw) return {} def get_view_names(self, schema=None): """Return all view names in `schema`. :param schema: Optional, retrieve names from a non-default schema. For special quoting, use :class:`.quoted_name`. """ return self.dialect.get_view_names(self.bind, schema, info_cache=self.info_cache) def get_view_definition(self, view_name, schema=None): """Return definition for `view_name`. :param schema: Optional, retrieve names from a non-default schema. For special quoting, use :class:`.quoted_name`. """ return self.dialect.get_view_definition( self.bind, view_name, schema, info_cache=self.info_cache) def get_columns(self, table_name, schema=None, **kw): """Return information about columns in `table_name`. Given a string `table_name` and an optional string `schema`, return column information as a list of dicts with these keys: name the column's name type :class:`~sqlalchemy.types.TypeEngine` nullable boolean default the column's default value attrs dict containing optional column attributes :param table_name: string name of the table. For special quoting, use :class:`.quoted_name`. :param schema: string schema name; if omitted, uses the default schema of the database connection. For special quoting, use :class:`.quoted_name`. """ col_defs = self.dialect.get_columns(self.bind, table_name, schema, info_cache=self.info_cache, **kw) for col_def in col_defs: # make this easy and only return instances for coltype coltype = col_def['type'] if not isinstance(coltype, TypeEngine): col_def['type'] = coltype() return col_defs @deprecated('0.7', 'Call to deprecated method get_primary_keys.' ' Use get_pk_constraint instead.') def get_primary_keys(self, table_name, schema=None, **kw): """Return information about primary keys in `table_name`. Given a string `table_name`, and an optional string `schema`, return primary key information as a list of column names. """ return self.dialect.get_pk_constraint(self.bind, table_name, schema, info_cache=self.info_cache, **kw)['constrained_columns'] def get_pk_constraint(self, table_name, schema=None, **kw): """Return information about primary key constraint on `table_name`. Given a string `table_name`, and an optional string `schema`, return primary key information as a dictionary with these keys: constrained_columns a list of column names that make up the primary key name optional name of the primary key constraint. :param table_name: string name of the table. For special quoting, use :class:`.quoted_name`. :param schema: string schema name; if omitted, uses the default schema of the database connection. For special quoting, use :class:`.quoted_name`. """ return self.dialect.get_pk_constraint(self.bind, table_name, schema, info_cache=self.info_cache, **kw) def get_foreign_keys(self, table_name, schema=None, **kw): """Return information about foreign_keys in `table_name`. Given a string `table_name`, and an optional string `schema`, return foreign key information as a list of dicts with these keys: constrained_columns a list of column names that make up the foreign key referred_schema the name of the referred schema referred_table the name of the referred table referred_columns a list of column names in the referred table that correspond to constrained_columns name optional name of the foreign key constraint. :param table_name: string name of the table. For special quoting, use :class:`.quoted_name`. :param schema: string schema name; if omitted, uses the default schema of the database connection. For special quoting, use :class:`.quoted_name`. """ return self.dialect.get_foreign_keys(self.bind, table_name, schema, info_cache=self.info_cache, **kw) def get_indexes(self, table_name, schema=None, **kw): """Return information about indexes in `table_name`. Given a string `table_name` and an optional string `schema`, return index information as a list of dicts with these keys: name the index's name column_names list of column names in order unique boolean dialect_options dict of dialect-specific index options. May not be present for all dialects. .. versionadded:: 1.0.0 :param table_name: string name of the table. For special quoting, use :class:`.quoted_name`. :param schema: string schema name; if omitted, uses the default schema of the database connection. For special quoting, use :class:`.quoted_name`. """ return self.dialect.get_indexes(self.bind, table_name, schema, info_cache=self.info_cache, **kw) def get_unique_constraints(self, table_name, schema=None, **kw): """Return information about unique constraints in `table_name`. Given a string `table_name` and an optional string `schema`, return unique constraint information as a list of dicts with these keys: name the unique constraint's name column_names list of column names in order :param table_name: string name of the table. For special quoting, use :class:`.quoted_name`. :param schema: string schema name; if omitted, uses the default schema of the database connection. For special quoting, use :class:`.quoted_name`. .. versionadded:: 0.8.4 """ return self.dialect.get_unique_constraints( self.bind, table_name, schema, info_cache=self.info_cache, **kw) def get_check_constraints(self, table_name, schema=None, **kw): """Return information about check constraints in `table_name`. Given a string `table_name` and an optional string `schema`, return check constraint information as a list of dicts with these keys: name the check constraint's name sqltext the check constraint's SQL expression :param table_name: string name of the table. For special quoting, use :class:`.quoted_name`. :param schema: string schema name; if omitted, uses the default schema of the database connection. For special quoting, use :class:`.quoted_name`. .. versionadded:: 1.1.0 """ return self.dialect.get_check_constraints( self.bind, table_name, schema, info_cache=self.info_cache, **kw) def reflecttable(self, table, include_columns, exclude_columns=()): """Given a Table object, load its internal constructs based on introspection. This is the underlying method used by most dialects to produce table reflection. Direct usage is like:: from sqlalchemy import create_engine, MetaData, Table from sqlalchemy.engine import reflection engine = create_engine('...') meta = MetaData() user_table = Table('user', meta) insp = Inspector.from_engine(engine) insp.reflecttable(user_table, None) :param table: a :class:`~sqlalchemy.schema.Table` instance. :param include_columns: a list of string column names to include in the reflection process. If ``None``, all columns are reflected. """ dialect = self.bind.dialect schema = self.bind.schema_for_object(table) table_name = table.name # get table-level arguments that are specifically # intended for reflection, e.g. oracle_resolve_synonyms. # these are unconditionally passed to related Table # objects reflection_options = dict( (k, table.dialect_kwargs.get(k)) for k in dialect.reflection_options if k in table.dialect_kwargs ) # reflect table options, like mysql_engine tbl_opts = self.get_table_options( table_name, schema, **table.dialect_kwargs) if tbl_opts: # add additional kwargs to the Table if the dialect # returned them table._validate_dialect_kwargs(tbl_opts) if util.py2k: if isinstance(schema, str): schema = schema.decode(dialect.encoding) if isinstance(table_name, str): table_name = table_name.decode(dialect.encoding) found_table = False cols_by_orig_name = {} for col_d in self.get_columns( table_name, schema, **table.dialect_kwargs): found_table = True self._reflect_column( table, col_d, include_columns, exclude_columns, cols_by_orig_name) if not found_table: raise exc.NoSuchTableError(table.name) self._reflect_pk( table_name, schema, table, cols_by_orig_name, exclude_columns) self._reflect_fk( table_name, schema, table, cols_by_orig_name, exclude_columns, reflection_options) self._reflect_indexes( table_name, schema, table, cols_by_orig_name, include_columns, exclude_columns, reflection_options) self._reflect_unique_constraints( table_name, schema, table, cols_by_orig_name, include_columns, exclude_columns, reflection_options) self._reflect_check_constraints( table_name, schema, table, cols_by_orig_name, include_columns, exclude_columns, reflection_options) def _reflect_column( self, table, col_d, include_columns, exclude_columns, cols_by_orig_name): orig_name = col_d['name'] table.dispatch.column_reflect(self, table, col_d) # fetch name again as column_reflect is allowed to # change it name = col_d['name'] if (include_columns and name not in include_columns) \ or (exclude_columns and name in exclude_columns): return coltype = col_d['type'] col_kw = dict( (k, col_d[k]) for k in ['nullable', 'autoincrement', 'quote', 'info', 'key'] if k in col_d ) colargs = [] if col_d.get('default') is not None: # the "default" value is assumed to be a literal SQL # expression, so is wrapped in text() so that no quoting # occurs on re-issuance. colargs.append( sa_schema.DefaultClause( sql.text(col_d['default']), _reflected=True ) ) if 'sequence' in col_d: self._reflect_col_sequence(col_d, colargs) cols_by_orig_name[orig_name] = col = \ sa_schema.Column(name, coltype, *colargs, **col_kw) if col.key in table.primary_key: col.primary_key = True table.append_column(col) def _reflect_col_sequence(self, col_d, colargs): if 'sequence' in col_d: # TODO: mssql and sybase are using this. seq = col_d['sequence'] sequence = sa_schema.Sequence(seq['name'], 1, 1) if 'start' in seq: sequence.start = seq['start'] if 'increment' in seq: sequence.increment = seq['increment'] colargs.append(sequence) def _reflect_pk( self, table_name, schema, table, cols_by_orig_name, exclude_columns): pk_cons = self.get_pk_constraint( table_name, schema, **table.dialect_kwargs) if pk_cons: pk_cols = [ cols_by_orig_name[pk] for pk in pk_cons['constrained_columns'] if pk in cols_by_orig_name and pk not in exclude_columns ] # update pk constraint name table.primary_key.name = pk_cons.get('name') # tell the PKConstraint to re-initialize # its column collection table.primary_key._reload(pk_cols) def _reflect_fk( self, table_name, schema, table, cols_by_orig_name, exclude_columns, reflection_options): fkeys = self.get_foreign_keys( table_name, schema, **table.dialect_kwargs) for fkey_d in fkeys: conname = fkey_d['name'] # look for columns by orig name in cols_by_orig_name, # but support columns that are in-Python only as fallback constrained_columns = [ cols_by_orig_name[c].key if c in cols_by_orig_name else c for c in fkey_d['constrained_columns'] ] if exclude_columns and set(constrained_columns).intersection( exclude_columns): continue referred_schema = fkey_d['referred_schema'] referred_table = fkey_d['referred_table'] referred_columns = fkey_d['referred_columns'] refspec = [] if referred_schema is not None: sa_schema.Table(referred_table, table.metadata, autoload=True, schema=referred_schema, autoload_with=self.bind, **reflection_options ) for column in referred_columns: refspec.append(".".join( [referred_schema, referred_table, column])) else: sa_schema.Table(referred_table, table.metadata, autoload=True, autoload_with=self.bind, schema=sa_schema.BLANK_SCHEMA, **reflection_options ) for column in referred_columns: refspec.append(".".join([referred_table, column])) if 'options' in fkey_d: options = fkey_d['options'] else: options = {} table.append_constraint( sa_schema.ForeignKeyConstraint(constrained_columns, refspec, conname, link_to_name=True, **options)) def _reflect_indexes( self, table_name, schema, table, cols_by_orig_name, include_columns, exclude_columns, reflection_options): # Indexes indexes = self.get_indexes(table_name, schema) for index_d in indexes: name = index_d['name'] columns = index_d['column_names'] unique = index_d['unique'] flavor = index_d.get('type', 'index') dialect_options = index_d.get('dialect_options', {}) duplicates = index_d.get('duplicates_constraint') if include_columns and \ not set(columns).issubset(include_columns): util.warn( "Omitting %s key for (%s), key covers omitted columns." % (flavor, ', '.join(columns))) continue if duplicates: continue # look for columns by orig name in cols_by_orig_name, # but support columns that are in-Python only as fallback idx_cols = [] for c in columns: try: idx_col = cols_by_orig_name[c] \ if c in cols_by_orig_name else table.c[c] except KeyError: util.warn( "%s key '%s' was not located in " "columns for table '%s'" % ( flavor, c, table_name )) else: idx_cols.append(idx_col) sa_schema.Index( name, *idx_cols, **dict(list(dialect_options.items()) + [('unique', unique)]) ) def _reflect_unique_constraints( self, table_name, schema, table, cols_by_orig_name, include_columns, exclude_columns, reflection_options): # Unique Constraints try: constraints = self.get_unique_constraints(table_name, schema) except NotImplementedError: # optional dialect feature return for const_d in constraints: conname = const_d['name'] columns = const_d['column_names'] duplicates = const_d.get('duplicates_index') if include_columns and \ not set(columns).issubset(include_columns): util.warn( "Omitting unique constraint key for (%s), " "key covers omitted columns." % ', '.join(columns)) continue if duplicates: continue # look for columns by orig name in cols_by_orig_name, # but support columns that are in-Python only as fallback constrained_cols = [] for c in columns: try: constrained_col = cols_by_orig_name[c] \ if c in cols_by_orig_name else table.c[c] except KeyError: util.warn( "unique constraint key '%s' was not located in " "columns for table '%s'" % (c, table_name)) else: constrained_cols.append(constrained_col) table.append_constraint( sa_schema.UniqueConstraint(*constrained_cols, name=conname)) def _reflect_check_constraints( self, table_name, schema, table, cols_by_orig_name, include_columns, exclude_columns, reflection_options): try: constraints = self.get_check_constraints(table_name, schema) except NotImplementedError: # optional dialect feature return for const_d in constraints: table.append_constraint( sa_schema.CheckConstraint(**const_d))
mit
8,901,063,157,590,984,000
35.238896
78
0.573558
false
Scarzy/LazyWorship
python_src/read_wav.py
1
1312
import wave, struct import json def getAmplitude(windowData): accumulator = 0 for i in range(0, len(windowData)): accumulator += abs(windowData[i]) amplitude = accumulator / len(windowData) return amplitude def readWaveData(waveFile): # read wave data length = waveFile.getnframes() waveData = [] for i in range(0, length): waveDataTemp = waveFile.readframes(1) data = struct.unpack("<h", waveDataTemp) #print int(data[0]) waveData.append(int(data[0])) return (waveData, length) waveFile = wave.open('sine.wav', 'r') waveData, length = readWaveData(waveFile); print 'length = ', length frameRate = waveFile.getframerate() print 'frame rate = ', frameRate windowSizeMS = 100 windowSizeFrames = int((windowSizeMS * 0.001) * frameRate) + 1 print 'windowSizeFrames = ', windowSizeFrames windowStart = 0 amplitudeList = [] while windowStart < length: window = waveData[windowStart:windowStart+windowSizeFrames] amplitudeList.append( getAmplitude(window) ) windowStart += windowSizeFrames for i in range(0, len(amplitudeList)): print amplitudeList[i] sample = {'ObjectInterpolator': 1629, 'PointInterpolator': 1675, 'RectangleInterpolator': 2042} with open('result.json', 'w') as fp: json.dump(sample, fp)
gpl-3.0
-523,624,021,010,301,440
22.872727
96
0.692073
false
adrienbrault/home-assistant
homeassistant/components/alexa/const.py
5
5980
"""Constants for the Alexa integration.""" from collections import OrderedDict from homeassistant.components.climate import const as climate from homeassistant.const import TEMP_CELSIUS, TEMP_FAHRENHEIT DOMAIN = "alexa" EVENT_ALEXA_SMART_HOME = "alexa_smart_home" # Flash briefing constants CONF_UID = "uid" CONF_TITLE = "title" CONF_AUDIO = "audio" CONF_TEXT = "text" CONF_DISPLAY_URL = "display_url" CONF_FILTER = "filter" CONF_ENTITY_CONFIG = "entity_config" CONF_ENDPOINT = "endpoint" CONF_LOCALE = "locale" ATTR_UID = "uid" ATTR_UPDATE_DATE = "updateDate" ATTR_TITLE_TEXT = "titleText" ATTR_STREAM_URL = "streamUrl" ATTR_MAIN_TEXT = "mainText" ATTR_REDIRECTION_URL = "redirectionURL" SYN_RESOLUTION_MATCH = "ER_SUCCESS_MATCH" DATE_FORMAT = "%Y-%m-%dT%H:%M:%S.0Z" API_DIRECTIVE = "directive" API_ENDPOINT = "endpoint" API_EVENT = "event" API_CONTEXT = "context" API_HEADER = "header" API_PAYLOAD = "payload" API_SCOPE = "scope" API_CHANGE = "change" API_PASSWORD = "password" CONF_DISPLAY_CATEGORIES = "display_categories" CONF_SUPPORTED_LOCALES = ( "de-DE", "en-AU", "en-CA", "en-GB", "en-IN", "en-US", "es-ES", "es-MX", "es-US", "fr-CA", "fr-FR", "hi-IN", "it-IT", "ja-JP", "pt-BR", ) API_TEMP_UNITS = {TEMP_FAHRENHEIT: "FAHRENHEIT", TEMP_CELSIUS: "CELSIUS"} # Needs to be ordered dict for `async_api_set_thermostat_mode` which does a # reverse mapping of this dict and we want to map the first occurrence of OFF # back to HA state. API_THERMOSTAT_MODES = OrderedDict( [ (climate.HVAC_MODE_HEAT, "HEAT"), (climate.HVAC_MODE_COOL, "COOL"), (climate.HVAC_MODE_HEAT_COOL, "AUTO"), (climate.HVAC_MODE_AUTO, "AUTO"), (climate.HVAC_MODE_OFF, "OFF"), (climate.HVAC_MODE_FAN_ONLY, "OFF"), (climate.HVAC_MODE_DRY, "CUSTOM"), ] ) API_THERMOSTAT_MODES_CUSTOM = {climate.HVAC_MODE_DRY: "DEHUMIDIFY"} API_THERMOSTAT_PRESETS = {climate.PRESET_ECO: "ECO"} class Cause: """Possible causes for property changes. https://developer.amazon.com/docs/smarthome/state-reporting-for-a-smart-home-skill.html#cause-object """ # Indicates that the event was caused by a customer interaction with an # application. For example, a customer switches on a light, or locks a door # using the Alexa app or an app provided by a device vendor. APP_INTERACTION = "APP_INTERACTION" # Indicates that the event was caused by a physical interaction with an # endpoint. For example manually switching on a light or manually locking a # door lock PHYSICAL_INTERACTION = "PHYSICAL_INTERACTION" # Indicates that the event was caused by the periodic poll of an appliance, # which found a change in value. For example, you might poll a temperature # sensor every hour, and send the updated temperature to Alexa. PERIODIC_POLL = "PERIODIC_POLL" # Indicates that the event was caused by the application of a device rule. # For example, a customer configures a rule to switch on a light if a # motion sensor detects motion. In this case, Alexa receives an event from # the motion sensor, and another event from the light to indicate that its # state change was caused by the rule. RULE_TRIGGER = "RULE_TRIGGER" # Indicates that the event was caused by a voice interaction with Alexa. # For example a user speaking to their Echo device. VOICE_INTERACTION = "VOICE_INTERACTION" class Inputs: """Valid names for the InputController. https://developer.amazon.com/docs/device-apis/alexa-property-schemas.html#input """ VALID_SOURCE_NAME_MAP = { "antenna": "TUNER", "antennatv": "TUNER", "aux": "AUX 1", "aux1": "AUX 1", "aux2": "AUX 2", "aux3": "AUX 3", "aux4": "AUX 4", "aux5": "AUX 5", "aux6": "AUX 6", "aux7": "AUX 7", "bluray": "BLURAY", "blurayplayer": "BLURAY", "cable": "CABLE", "cd": "CD", "coax": "COAX 1", "coax1": "COAX 1", "coax2": "COAX 2", "composite": "COMPOSITE 1", "composite1": "COMPOSITE 1", "dvd": "DVD", "game": "GAME", "gameconsole": "GAME", "hdradio": "HD RADIO", "hdmi": "HDMI 1", "hdmi1": "HDMI 1", "hdmi2": "HDMI 2", "hdmi3": "HDMI 3", "hdmi4": "HDMI 4", "hdmi5": "HDMI 5", "hdmi6": "HDMI 6", "hdmi7": "HDMI 7", "hdmi8": "HDMI 8", "hdmi9": "HDMI 9", "hdmi10": "HDMI 10", "hdmiarc": "HDMI ARC", "input": "INPUT 1", "input1": "INPUT 1", "input2": "INPUT 2", "input3": "INPUT 3", "input4": "INPUT 4", "input5": "INPUT 5", "input6": "INPUT 6", "input7": "INPUT 7", "input8": "INPUT 8", "input9": "INPUT 9", "input10": "INPUT 10", "ipod": "IPOD", "line": "LINE 1", "line1": "LINE 1", "line2": "LINE 2", "line3": "LINE 3", "line4": "LINE 4", "line5": "LINE 5", "line6": "LINE 6", "line7": "LINE 7", "mediaplayer": "MEDIA PLAYER", "optical": "OPTICAL 1", "optical1": "OPTICAL 1", "optical2": "OPTICAL 2", "phono": "PHONO", "playstation": "PLAYSTATION", "playstation3": "PLAYSTATION 3", "playstation4": "PLAYSTATION 4", "rokumediaplayer": "MEDIA PLAYER", "satellite": "SATELLITE", "satellitetv": "SATELLITE", "smartcast": "SMARTCAST", "tuner": "TUNER", "tv": "TV", "usbdac": "USB DAC", "video": "VIDEO 1", "video1": "VIDEO 1", "video2": "VIDEO 2", "video3": "VIDEO 3", "xbox": "XBOX", } VALID_SOUND_MODE_MAP = { "movie": "MOVIE", "music": "MUSIC", "night": "NIGHT", "sport": "SPORT", "tv": "TV", }
mit
-140,176,370,243,246,670
28.170732
104
0.582107
false
niphlod/w2p_scheduler_tests
languages/ro.py
1
16746
# coding: utf8 { '!=': '!=', '"update" is an optional expression like "field1=\'newvalue\'". You cannot update or delete the results of a JOIN': '"update" (actualizează) este o expresie opțională precum "câmp1=\'valoare_nouă\'". Nu puteți actualiza sau șterge rezultatele unui JOIN', '%(nrows)s records found': '%(nrows)s înregistrări găsite', '%Y-%m-%d': '%Y-%m-%d', '%Y-%m-%d %H:%M:%S': '%Y-%m-%d %H:%M:%S', '%s rows deleted': '%s linii șterse', '%s rows updated': '%s linii actualizate', '(something like "it-it")': '(ceva ce seamănă cu "it-it")', '<': '<', '<=': '<=', '=': '=', '>': '>', '>=': '>=', 'A new version of web2py is available': 'O nouă versiune de web2py este disponibilă', 'A new version of web2py is available: %s': 'O nouă versiune de web2py este disponibilă: %s', 'ATTENTION: Login requires a secure (HTTPS) connection or running on localhost.': 'ATENȚIE: Nu vă puteți conecta decât utilizând o conexiune securizată (HTTPS) sau rulând aplicația pe computerul local.', 'ATTENTION: TESTING IS NOT THREAD SAFE SO DO NOT PERFORM MULTIPLE TESTS CONCURRENTLY.': 'ATENȚIE: Nu puteți efectua mai multe teste o dată deoarece lansarea în execuție a mai multor subpocese nu este sigură.', 'ATTENTION: you cannot edit the running application!': 'ATENȚIE: nu puteți edita o aplicație în curs de execuție!', 'About': 'Despre', 'About application': 'Despre aplicație', 'Access Control': 'Control acces', 'Add': 'Adaugă', 'Admin is disabled because insecure channel': 'Adminstrarea este dezactivată deoarece conexiunea nu este sigură', 'Admin is disabled because unsecure channel': 'Administrarea este dezactivată deoarece conexiunea nu este securizată', 'Administration': 'Administrare', 'Administrative Interface': 'Interfață administrare', 'Administrator Password:': 'Parolă administrator:', 'Ajax Recipes': 'Rețete Ajax', 'And': 'Și', 'Are you sure you want to delete file "%s"?': 'Sigur ștergeți fișierul "%s"?', 'Are you sure you want to delete this object?': 'Sigur ștergeți acest obiect?', 'Are you sure you want to uninstall application "%s"': 'Sigur dezinstalați aplicația "%s"', 'Are you sure you want to uninstall application "%s"?': 'Sigur dezinstalați aplicația "%s"?', 'Authentication': 'Autentificare', 'Available databases and tables': 'Baze de date și tabele disponibile', 'Back': 'Înapoi', 'Buy this book': 'Cumpără această carte', 'Cache Keys': 'Chei cache', 'Cannot be empty': 'Nu poate fi vid', 'Cannot compile: there are errors in your app. Debug it, correct errors and try again.': 'Compilare imposibilă: aplicația conține erori. Debogați aplicația și încercați din nou.', 'Change Password': 'Schimbare parolă', 'Change password': 'Schimbare parolă', 'Check to delete': 'Coșați pentru a șterge', 'Clear': 'Golește', 'Client IP': 'IP client', 'Community': 'Comunitate', 'Components and Plugins': 'Componente și plugin-uri', 'Controller': 'Controlor', 'Controllers': 'Controlori', 'Copyright': 'Drepturi de autor', 'Create new application': 'Creați aplicație nouă', 'Current request': 'Cerere curentă', 'Current response': 'Răspuns curent', 'Current session': 'Sesiune curentă', 'DB Model': 'Model bază de date', 'DESIGN': 'DESIGN', 'Database': 'Baza de date', 'Date and Time': 'Data și ora', 'Delete': 'Șterge', 'Delete:': 'Șterge:', 'Demo': 'Demo', 'Deploy on Google App Engine': 'Instalare pe Google App Engine', 'Deployment Recipes': 'Rețete de instalare', 'Description': 'Descriere', 'Design for': 'Design pentru', 'Disk Cache Keys': 'Chei cache de disc', 'Documentation': 'Documentație', "Don't know what to do?": 'Nu știți ce să faceți?', 'Download': 'Descărcare', 'E-mail': 'E-mail', 'E-mail invalid': 'E-mail invalid', 'EDIT': 'EDITARE', 'Edit': 'Editare', 'Edit Profile': 'Editare profil', 'Edit This App': 'Editați această aplicație', 'Edit application': 'Editare aplicație', 'Edit current record': 'Editare înregistrare curentă', 'Editing file': 'Editare fișier', 'Editing file "%s"': 'Editare fișier "%s"', 'Email and SMS': 'E-mail și SMS', 'Error logs for "%(app)s"': 'Log erori pentru "%(app)s"', 'Errors': 'Erori', 'Export': 'Export', 'FAQ': 'Întrebări frecvente', 'False': 'Neadevărat', 'First name': 'Prenume', 'Forbidden': 'Interzis', 'Forms and Validators': 'Formulare și validatori', 'Free Applications': 'Aplicații gratuite', 'Functions with no doctests will result in [passed] tests.': 'Funcțiile fără doctests vor genera teste [trecute].', 'Group %(group_id)s created': 'Grup %(group_id)s creat', 'Group ID': 'ID grup', 'Group uniquely assigned to user %(id)s': 'Grup asociat în mod unic utilizatorului %(id)s', 'Groups': 'Grupuri', 'Hello World': 'Salutare lume', 'Home': 'Acasă', 'How did you get here?': 'Cum ați ajuns aici?', 'Import/Export': 'Import/Export', 'Index': 'Index', 'Installed applications': 'Aplicații instalate', 'Internal State': 'Stare internă', 'Introduction': 'Introducere', 'Invalid Query': 'Interogare invalidă', 'Invalid action': 'Acțiune invalidă', 'Invalid email': 'E-mail invalid', 'Invalid password': 'Parolă invalidă', 'Language files (static strings) updated': 'Fișierele de limbă (șirurile statice de caractere) actualizate', 'Languages': 'Limbi', 'Last name': 'Nume', 'Last saved on:': 'Ultima salvare:', 'Layout': 'Șablon', 'Layout Plugins': 'Șablon plugin-uri', 'Layouts': 'Șabloane', 'License for': 'Licență pentru', 'Live Chat': 'Chat live', 'Logged in': 'Logat', 'Logged out': 'Delogat', 'Login': 'Autentificare', 'Login to the Administrative Interface': 'Logare interfață de administrare', 'Logout': 'Ieșire', 'Lost Password': 'Parolă pierdută', 'Lost password?': 'Parolă pierdută?', 'Main Menu': 'Meniu principal', 'Menu Model': 'Model meniu', 'Models': 'Modele', 'Modules': 'Module', 'My Sites': 'Site-urile mele', 'NO': 'NU', 'Name': 'Nume', 'New': 'Nou', 'New Record': 'Înregistrare nouă', 'New password': 'Parola nouă', 'No databases in this application': 'Aplicație fără bază de date', 'Object or table name': 'Obiect sau nume de tabel', 'Old password': 'Parola veche', 'Online examples': 'Exemple online', 'Or': 'Sau', 'Origin': 'Origine', 'Original/Translation': 'Original/Traducere', 'Other Plugins': 'Alte plugin-uri', 'Other Recipes': 'Alte rețete', 'Overview': 'Prezentare de ansamblu', 'Password': 'Parola', "Password fields don't match": 'Câmpurile de parolă nu se potrivesc', 'Peeking at file': 'Vizualizare fișier', 'Plugins': 'Plugin-uri', 'Powered by': 'Pus în mișcare de', 'Preface': 'Prefață', 'Profile': 'Profil', 'Python': 'Python', 'Query': 'Interogare', 'Query:': 'Interogare:', 'Quick Examples': 'Exemple rapide', 'RAM Cache Keys': 'Chei cache RAM', 'Recipes': 'Rețete', 'Record ID': 'ID înregistrare', 'Register': 'Înregistrare', 'Registration identifier': 'Identificator de autentificare', 'Registration key': 'Cheie înregistrare', 'Registration successful': 'Autentificare reușită', 'Remember me (for 30 days)': 'Ține-mă minte (timp de 30 de zile)', 'Request reset password': 'Cerere resetare parolă', 'Reset Password key': 'Cheie restare parolă', 'Resolve Conflict file': 'Fișier rezolvare conflict', 'Role': 'Rol', 'Rows in table': 'Linii în tabel', 'Rows selected': 'Linii selectate', 'Save profile': 'Salvează profil', 'Saved file hash:': 'Hash fișier salvat:', 'Search': 'Căutare', 'Semantic': 'Semantică', 'Services': 'Servicii', 'Static files': 'Fișiere statice', 'Stylesheet': 'Foaie de stiluri', 'Submit': 'Înregistrează', 'Support': 'Suport', 'Sure you want to delete this object?': 'Sigur ștergeți acest obiect?', 'Table name': 'Nume tabel', 'Testing application': 'Testare aplicație', 'The "query" is a condition like "db.table1.field1==\'value\'". Something like "db.table1.field1==db.table2.field2" results in a SQL JOIN.': '"Interogarea (query)" este o condiție de tipul "db.tabel1.câmp1==\'valoare\'". Ceva de genul "db.tabel1.câmp1==db.tabel2.câmp2" generează un JOIN SQL.', 'The Core': 'Nucleul', 'The Views': 'Vederile', 'The output of the file is a dictionary that was rendered by the view': 'Fișierul produce un dicționar care a fost prelucrat de vederea', 'There are no controllers': 'Nu există controlori', 'There are no models': 'Nu există modele', 'There are no modules': 'Nu există module', 'There are no static files': 'Nu există fișiere statice', 'There are no translators, only default language is supported': 'Nu există traduceri, doar limba implicită este suportată', 'There are no views': 'Nu există vederi', 'This App': 'Această aplicație', 'This is a copy of the scaffolding application': 'Aceasta este o copie a aplicației schelet', 'This is the %(filename)s template': 'Aceasta este șablonul fișierului %(filename)s', 'Ticket': 'Tichet', 'Timestamp': 'Moment în timp (timestamp)', 'True': 'Adevărat', 'Twitter': 'Twitter', 'Unable to check for upgrades': 'Imposibil de verificat dacă există actualizări', 'Unable to download': 'Imposibil de descărcat', 'Unable to download app': 'Imposibil de descărcat aplicația', 'Update:': 'Actualizare:', 'Upload existing application': 'Încarcă aplicația existentă', 'Use (...)&(...) for AND, (...)|(...) for OR, and ~(...) for NOT to build more complex queries.': 'Folosiți (...)&(...) pentru AND, (...)|(...) pentru OR, și ~(...) pentru NOT, pentru a crea interogări complexe.', 'User %(id)s Logged-in': 'Utilizator %(id)s autentificat', 'User %(id)s Logged-out': 'Utilizator %(id)s delogat', 'User %(id)s Password changed': 'Parola utilizatorului %(id)s a fost schimbată', 'User %(id)s Password reset': 'Resetare parola utilizator %(id)s', 'User %(id)s Profile updated': 'Profil utilizator %(id)s actualizat', 'User %(id)s Registered': 'Utilizator %(id)s înregistrat', 'User ID': 'ID utilizator', 'Verify Password': 'Verifică parola', 'Videos': 'Video-uri', 'View': 'Vedere', 'Views': 'Vederi', 'Welcome': 'Bine ați venit', 'Welcome %s': 'Bine ați venit %s', 'Welcome to web2py': 'Bun venit la web2py', 'Welcome to web2py!': 'Bun venit la web2py!', 'Which called the function': 'Care a apelat funcția', 'YES': 'DA', 'You are successfully running web2py': 'Rulați cu succes web2py', 'You can modify this application and adapt it to your needs': 'Puteți modifica și adapta aplicația nevoilor dvs.', 'You visited the url': 'Ați vizitat adresa', 'about': 'despre', 'additional code for your application': 'cod suplimentar pentru aplicația dvs.', 'admin disabled because no admin password': 'administrare dezactivată deoarece parola de administrator nu a fost furnizată', 'admin disabled because not supported on google app engine': 'administrare dezactivată deoarece funcționalitatea nu e suportat pe Google App Engine', 'admin disabled because unable to access password file': 'administrare dezactivată deoarece nu există acces la fișierul cu parole', 'and rename it (required):': 'și renumiți (obligatoriu):', 'and rename it:': ' și renumiți:', 'appadmin': 'appadmin', 'appadmin is disabled because insecure channel': 'appadmin dezactivat deoarece conexiunea nu e sigură', 'application "%s" uninstalled': 'aplicația "%s" a fost dezinstalată', 'application compiled': 'aplicația a fost compilată', 'application is compiled and cannot be designed': 'aplicația este compilată și nu poate fi editată', 'cache': 'cache', 'cache, errors and sessions cleaned': 'cache, erori și sesiuni golite', 'cannot create file': 'fișier imposibil de creat', 'cannot upload file "%(filename)s"': 'imposibil de încărcat fișierul "%(filename)s"', 'change password': 'schimbare parolă', 'check all': 'coșați tot', 'clean': 'golire', 'click to check for upgrades': 'Clic pentru a verifica dacă există upgrade-uri', 'compile': 'compilare', 'compiled application removed': 'aplicația compilată a fost ștearsă', 'contains': 'conține', 'controllers': 'controlori', 'create file with filename:': 'crează fișier cu numele:', 'create new application:': 'crează aplicație nouă:', 'crontab': 'crontab', 'currently saved or': 'în prezent salvat sau', 'customize me!': 'Personalizează-mă!', 'data uploaded': 'date încărcate', 'database': 'bază de date', 'database %s select': 'selectare bază de date %s', 'database administration': 'administrare bază de date', 'db': 'db', 'defines tables': 'definire tabele', 'delete': 'șterge', 'delete all checked': 'șterge tot ce e coșat', 'design': 'design', 'done!': 'gata!', 'edit': 'editare', 'edit controller': 'editare controlor', 'edit profile': 'editare profil', 'enter a number between %(min)g and %(max)g': 'introduceți un număr între %(min)g și %(max)g', 'enter an integer between %(min)g and %(max)g': 'introduceți un întreg între %(min)g și %(max)g', 'errors': 'erori', 'export as csv file': 'exportă ca fișier csv', 'exposes': 'expune', 'extends': 'extinde', 'failed to reload module': 'reîncarcare modul nereușită', 'file "%(filename)s" created': 'fișier "%(filename)s" creat', 'file "%(filename)s" deleted': 'fișier "%(filename)s" șters', 'file "%(filename)s" uploaded': 'fișier "%(filename)s" încărcat', 'file "%(filename)s" was not deleted': 'fișierul "%(filename)s" n-a fost șters', 'file "%s" of %s restored': 'fișier "%s" de %s restaurat', 'file changed on disk': 'fișier modificat pe disc', 'file does not exist': 'fișier inexistent', 'file saved on %(time)s': 'fișier salvat %(time)s', 'file saved on %s': 'fișier salvat pe %s', 'help': 'ajutor', 'htmledit': 'editare html', 'includes': 'include', 'insert new': 'adaugă nou', 'insert new %s': 'adaugă nou %s', 'internal error': 'eroare internă', 'invalid password': 'parolă invalidă', 'invalid request': 'cerere invalidă', 'invalid ticket': 'tichet invalid', 'language file "%(filename)s" created/updated': 'fișier de limbă "%(filename)s" creat/actualizat', 'languages': 'limbi', 'languages updated': 'limbi actualizate', 'loading...': 'încarc...', 'located in the file': 'prezentă în fișierul', 'login': 'autentificare', 'logout': 'ieșire', 'merge': 'unește', 'models': 'modele', 'modules': 'module', 'new application "%s" created': 'aplicația nouă "%s" a fost creată', 'new record inserted': 'înregistrare nouă adăugată', 'next 100 rows': 'următoarele 100 de linii', 'or import from csv file': 'sau importă din fișier csv', 'or provide application url:': 'sau furnizează adresă url:', 'pack all': 'împachetează toate', 'pack compiled': 'pachet compilat', 'please input your password again': 'introduceți parola din nou', 'previous 100 rows': '100 de linii anterioare', 'record': 'înregistrare', 'record does not exist': 'înregistrare inexistentă', 'record id': 'id înregistrare', 'register': 'înregistrare', 'remove compiled': 'șterge compilate', 'restore': 'restaurare', 'revert': 'revenire', 'save': 'salvare', 'selected': 'selectat(e)', 'session expired': 'sesiune expirată', 'shell': 'line de commandă', 'site': 'site', 'some files could not be removed': 'anumite fișiere n-au putut fi șterse', 'starts with': 'începe cu', 'state': 'stare', 'static': 'static', 'table': 'tabel', 'test': 'test', 'the application logic, each URL path is mapped in one exposed function in the controller': 'logica aplicației, fiecare rută URL este mapată într-o funcție expusă de controlor', 'the data representation, define database tables and sets': 'reprezentarea datelor, definește tabelele bazei de date și seturile (de date)', 'the presentations layer, views are also known as templates': 'nivelul de prezentare, vederile sunt de asemenea numite și șabloane', 'these files are served without processing, your images go here': 'aceste fișiere sunt servite fără procesare, imaginea se plasează acolo', 'to previous version.': 'la versiunea anterioară.', 'too short': 'prea scurt', 'translation strings for the application': 'șiruri de caractere folosite la traducerea aplicației', 'try': 'încearcă', 'try something like': 'încearcă ceva de genul', 'unable to create application "%s"': 'imposibil de creat aplicația "%s"', 'unable to delete file "%(filename)s"': 'imposibil de șters fișierul "%(filename)s"', 'unable to parse csv file': 'imposibil de analizat fișierul csv', 'unable to uninstall "%s"': 'imposibil de dezinstalat "%s"', 'uncheck all': 'decoșează tot', 'uninstall': 'dezinstalează', 'update': 'actualizează', 'update all languages': 'actualizează toate limbile', 'upload application:': 'incarcă aplicația:', 'upload file:': 'încarcă fișier:', 'value already in database or empty': 'Valoare existentă în baza de date sau vidă', 'versioning': 'versiuni', 'view': 'vedere', 'views': 'vederi', 'web2py Recent Tweets': 'Ultimele tweet-uri web2py', 'web2py is up to date': 'web2py este la zi', }
lgpl-3.0
8,991,768,111,454,995,000
45.245763
294
0.709059
false
ElDeveloper/qiime
tests/test_make_2d_plots.py
15
13517
#!/usr/bin/env python # file test_make_2d_plots.py __author__ = "Jesse Stombaugh" __copyright__ = "Copyright 2011, The QIIME Project" # consider project name # remember to add yourself __credits__ = ["Jesse Stombaugh", "Jose Antonio Navas Molina"] __license__ = "GPL" __version__ = "1.9.1-dev" __maintainer__ = "Jesse Stombaugh" __email__ = "[email protected]" from string import digits import matplotlib from matplotlib import use use('Agg', warn=False) from numpy import array from os.path import exists, join from StringIO import StringIO from unittest import TestCase, main from numpy.testing import assert_almost_equal from os import remove from qiime.make_2d_plots import (make_interactive_scatter, transform_xy_coords, draw_scatterplot, draw_pcoa_graph, extract_and_color_xy_coords, write_html_file, create_html_filename, convert_coord_data_to_dict, generate_xmap, draw_scree_graph, make_line_plot) from qiime.colors import data_colors from qiime.util import get_qiime_temp_dir class TopLevelTests(TestCase): """Tests of top-level functions""" def setUp(self): """define some top-level data""" self.tmp_dir = get_qiime_temp_dir() self.props = { "title": "PCoA - PC1 vs PC2", "ylabel": "PC2", "xlabel": "PC1"} self.props_scree = { "title": "Scree plor", "ylabel": "Fraction of variance", "xlabel": "Principal component"} self.data = {} self.data['coord'] = [['Sample1', 'Sample2'], array([[-0.2, 0.07], [-0.04, 0.2]]), array( [0.7, 0.6]), array([25.00, 30.00])] self.data[ 'map'] = [['#SampleID', 'Day'], ['Sample1', 'Day1'], ['Sample2', 'Day1']] self.coord_tups = [("1", "2"), ("3", "2"), ("1", "3")] self.generate_eps = True self.data['alpha'] = 0.33 self.groups = {} self.groups['Day1'] = ['Sample1', 'Sample2'] self.colors = {} self.colors['Day1'] = 'blue1' self.prefs = {} self.prefs['Sample'] = {} self.prefs['Sample']['column'] = 'Day' self.data_color_hsv = { 'blue1': (240, 100, 100) } self.data_color_order = ['blue1', []] self.background_color = 'black' self.label_color = 'white' self.dir_path = '/tmp/' self.data_file_link = '/tmp/' self.xy_coords = {} self.xy_coords['Sample1'] = ([-0.2], [0.07], ['Sample1: Day1'], ['#0000ff'], ['s'], [None], [None], [None]) self.xy_coords['Sample2'] = ([-0.04], [0.2], ['Sample2: Day1'], ['#0000ff'], ['s'], [None], [None], [None]) self.xy_coords_scree = {} self.xy_coords_scree['Variance'] = ([1, 2], [0.28, 0.12], 's', 'b') self.xy_coords_scree['Cum Variance'] = ([1, 2], [0.28, 0.40], 'o', 'r') self.coord_1 = '1' self.coord_2 = '2' self.p2d = {} self.p2d['Sample1'] = -0.2 self.p2d['Sample2'] = -0.04 self.p1d = {} self.p1d['Sample1'] = 0.07 self.p1d['Sample2'] = 0.2 self.all_cids = {} self.all_cids = ['Sample1: Day1', 'Sample2: Day1'] self.all_xcoords = [100.79999999999998, 279.36000000000001] self.all_ycoords = [54.000000000000014, 288.0] self.plot_label = 'SampleID' self.coords = {'pc vector number': ['Sample1', 'Sample2'], '1': array([-0.2, -0.04]), '2': array([0.07, 0.2])} self.x_len = 4.5 self.y_len = 4.5 self.size = 20 self.alpha = 0.33 self._paths_to_clean_up = [] def tearDown(self): map(remove, self._paths_to_clean_up) def remove_nums(self, text): """Removes all digits from the given string. Returns the string will all digits removed. Useful for testing strings for equality in unit tests where you don't care about numeric values, or if some values are random. This code was taken from http://bytes.com/topic/python/answers/ 850562-finding-all-numbers-string-replacing Arguments: text - the string to remove digits from """ return text.translate(None, digits) def test_make_line_plot(self): """ make_line_plot: creates HTML source for scree plot""" filename1 = join(self.tmp_dir, 'scree_plot.png') filename2 = join(self.tmp_dir, 'scree_plot.eps.gz') self._paths_to_clean_up = [filename1, filename2] obs1, obs2 = make_line_plot(self.tmp_dir, self.tmp_dir, self.background_color, self.label_color, self.xy_coords_scree, self.props_scree, x_len=4.5, y_len=4.5, generate_eps=True) self.assertEqual(obs1, filename_scree % filename1) self.assertEqual(obs2, expdownlink_scree % filename2) self.assertTrue( exists(filename1), 'The png file was not created in the appropiate location') self.assertTrue( exists(filename2), 'The eps file was not created in the appropiate location') def test_make_interactive_scatter(self): """make_interactive_scatter: creates HTML source for interactive \ images""" filename1 = '/tmp/PC1_vs_PC2_plot.png' filename2 = '/tmp/PC1vsPC2plot.eps.gz' self._paths_to_clean_up = [filename1, filename2] obs1, obs2, obs3 = make_interactive_scatter( self.plot_label, self.dir_path, self.data_file_link, self.background_color, self.label_color, None, self.alpha, self.xy_coords, self.props, self.x_len, self.y_len, self.size, draw_axes=False, generate_eps=True) self.assertEqual(self.remove_nums(obs1), self.remove_nums(expsrcmap1)) self.assertEqual(self.remove_nums(obs2), self.remove_nums(expimgmap1)) self.assertEqual(self.remove_nums(obs3), self.remove_nums(expeps1)) self.assertTrue(exists(filename1), 'The png file was not created in \ the appropriate location') self.assertTrue(exists(filename2), 'The eps file was not created in \ the appropriate location') def test_generate_xmap(self): """generate_xmap: generates the html area map""" exp2 = 360 exp3 = 360 obs1, obs2, obs3 = generate_xmap(self.x_len, self.y_len, self.all_cids, self.all_xcoords, self.all_ycoords) self.assertEqual(obs1, exparea) self.assertEqual(obs2, exp2) self.assertEqual(obs3, exp3) def test_draw_scatterplot(self): """draw_scatterplot: draws the matplotlib scatterplot""" exp = array([[-0.04, 0.2]]) sc_plot = draw_scatterplot(self.props, self.xy_coords, self.x_len, self.y_len, self.size, self.background_color, self.label_color, None, self.alpha) obs = sc_plot.get_offsets() assert_almost_equal(obs, exp) def test_transform_xy_coords(self): """transform_xy_coords: transforms the xy coords from the matplotlib \ plot into html spatial coords which allows for mouseovers""" sc_plot = draw_scatterplot(self.props, self.xy_coords, self.x_len, self.y_len, self.size, self.background_color, self.label_color, None, self.alpha) obs1, obs2, obs3 = transform_xy_coords(self.xy_coords, sc_plot) self.assertEqual(len(obs1), len(self.all_cids)) self.assertEqual(len(obs2), len(self.all_xcoords)) self.assertEqual(len(obs3), len(self.all_ycoords)) def test_draw_scree_graph(self): """draw_scree_graph: draws the matplotlib figure""" filename1 = join(self.tmp_dir, 'scree_plot.png') filename2 = join(self.tmp_dir, 'scree_plot.eps.gz') self._paths_to_clean_up = [filename1, filename2] obs1, obs2 = draw_scree_graph(self.tmp_dir, self.tmp_dir, self.background_color, self.label_color, generate_eps=True, data=self.data) self.assertEqual(obs1, expimgsrc_scree % filename1) self.assertEqual(obs2, expdownlink_scree % filename2) self.assertTrue( exists(filename1), 'The png file was not created in the appropriate location') self.assertTrue( exists(filename2), 'The eps file was not created in the appropriate location') def test_draw_pcoa_graph(self): """draw_pcoa_graph: draws the matplotlib figure""" filename1 = '/tmp/PC1_vs_PC2_plot.png' filename2 = '/tmp/PC1vsPC2plot.eps.gz' self._paths_to_clean_up = [filename1, filename2] obs1, obs2 = draw_pcoa_graph(self.plot_label, self.dir_path, self.data_file_link, self.coord_1, self.coord_2, None, None, None, None, self.data, self.prefs, self.groups, self.colors, self.background_color, self.label_color, data_colors, self.data_color_order, generate_eps=True) self.assertEqual(obs1, expsrcmap2 + expimgmap2) self.assertEqual(obs2, expeps2) self.assertTrue(exists(filename1), 'The png file was not created in \ the appropriate location') self.assertTrue(exists(filename2), 'The eps file was not created in \ the appropriate location') def test_extract_and_color_xy_coords(self): """extract_and_color_xy_coords: gets coords from coords file and \ associates colors to those coords based on its group""" obs = extract_and_color_xy_coords( self.p1d, self.p2d, None, None, None, self.colors, data_colors, self.groups, self.coords) self.assertEqual(obs['Sample1'], self.xy_coords['Sample1']) self.assertEqual(obs['Sample2'], self.xy_coords['Sample2']) def test_create_html_filename(self): """create_html_filename: using the pcoa filename, generates an html \ filename for the plots""" exp = 'test_2D.html' obs = create_html_filename( coord_filename='test', name_ending='_2D.html') self.assertEqual(obs, exp) def test_convert_coord_data_to_dict(self): """convert_coord_data_to_dict: converts the coords list into a \ dictionary""" exp1 = { 'pc vector number': ['Sample1', 'Sample2'], '1': array([-0.2, -0.04]), '2': array([0.07, 0.2])} exp2 = {'1': [25.00], '2': [30.00], } obs1, obs2 = convert_coord_data_to_dict(self.data) self.assertEqual(exp1['pc vector number'], obs1['pc vector number']) assert_almost_equal(exp1['1'], obs1['1']) assert_almost_equal(exp1['2'], obs1['2']) assert_almost_equal(exp2['1'], obs2['1']) assert_almost_equal(exp2['2'], obs2['2']) def test_write_html_file(self): "Write html and make sure it gets cleaned up""" filename1 = '/tmp/test.html' self._paths_to_clean_up = [filename1] write_html_file('Test', '/tmp/test.html') self.assertTrue(exists(filename1), 'The file was not created in \ the appropriate location') # expected results for the unit testing exparea = [ '<AREA shape="circle" coords="100,306,5" href="#Sample1: Day1" onmouseover="return overlib(\'Sample1: Day1\');" onmouseout="return nd();">\n', '<AREA shape="circle" coords="279,72,5" href="#Sample2: Day1" onmouseover="return overlib(\'Sample2: Day1\');" onmouseout="return nd();">\n'] expsrcmap1 = '<img src="/tmp/PC1_vs_PC2_plot.png" border="0" ismap usemap="#pointsSampleID12" width="360" height="360" />\n' expimgmap1 = '\n<MAP name="pointsSampleID12">\n\ <AREA shape="circle" coords="100,306,5" href="#Sample1: Day1" onmouseover="return overlib(\'Sample1: Day1\');" onmouseout="return nd();">\n\ <AREA shape="circle" coords="279,72,5" href="#Sample2: Day1" onmouseover="return overlib(\'Sample2: Day1\');" onmouseout="return nd();">\n\n\ </MAP>\n' expeps1 = '<a href="/tmp/PC1vsPC2plot.eps.gz" >Download Figure</a>' expsrcmap2 = '<img src="/tmp/PC1_vs_PC2_plot.png" border="0" ismap usemap="#pointsSampleID12" width="360" height="360" />\n' expimgmap2 = '\n<MAP name="pointsSampleID12">\n\ <AREA shape="circle" coords="100,208,5" href="#Sample1: Day1" onmouseover="return overlib(\'Sample1: Day1\');" onmouseout="return nd();">\n\ <AREA shape="circle" coords="279,84,5" href="#Sample2: Day1" onmouseover="return overlib(\'Sample2: Day1\');" onmouseout="return nd();">\n\n\ </MAP>\n' expeps2 = '<a href="/tmp/PC1vsPC2plot.eps.gz" >Download Figure</a>' filename_scree = '%s' expdownlink_scree = '<a href="%s" >Download Figure</a>' expimgsrc_scree = '<img src="%s" border=0 />' # run tests if called from command line if __name__ == "__main__": main()
gpl-2.0
2,405,689,031,635,484,700
41.109034
147
0.570689
false
onceuponatimeforever/oh-mainline
vendor/packages/zope.interface/src/zope/interface/tests/test_document.py
22
1450
############################################################################## # # Copyright (c) 2001, 2002 Zope Foundation and Contributors. # All Rights Reserved. # # This software is subject to the provisions of the Zope Public License, # Version 2.1 (ZPL). A copy of the ZPL should accompany this distribution. # THIS SOFTWARE IS PROVIDED "AS IS" AND ANY AND ALL EXPRESS OR IMPLIED # WARRANTIES ARE DISCLAIMED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF TITLE, MERCHANTABILITY, AGAINST INFRINGEMENT, AND FITNESS # FOR A PARTICULAR PURPOSE. # ############################################################################## """Documentation tests. """ from unittest import TestCase, main, makeSuite from zope.interface import Interface, Attribute class Test(TestCase): def testBlech(self): from zope.interface.document import asStructuredText self.assertEqual(asStructuredText(I2), '''\ I2 I2 doc This interface extends: o _I1 Attributes: a1 -- no documentation a2 -- a2 doc Methods: f21() -- f21 doc f22() -- no documentation f23() -- f23 doc ''') def test_suite(): return makeSuite(Test) class _I1(Interface): def f11(): pass def f12(): pass class I2(_I1): "I2 doc" a1 = Attribute('a1') a2 = Attribute('a2', 'a2 doc') def f21(): "f21 doc" def f22(): pass def f23(): "f23 doc" if __name__=='__main__': main(defaultTest='test_suite')
agpl-3.0
7,525,929,161,569,225,000
20.014493
78
0.59931
false
KiChjang/servo
tests/wpt/web-platform-tests/tools/manifest/manifest.py
4
18236
import io import os import sys from atomicwrites import atomic_write from copy import deepcopy from multiprocessing import Pool, cpu_count from six import ensure_text from . import jsonlib from . import vcs from .item import (ConformanceCheckerTest, CrashTest, ManifestItem, ManualTest, PrintRefTest, RefTest, SupportFile, TestharnessTest, VisualTest, WebDriverSpecTest) from .log import get_logger from .sourcefile import SourceFile from .typedata import TypeData MYPY = False if MYPY: # MYPY is set to True when run under Mypy. from logging import Logger from typing import Any from typing import Container from typing import Dict from typing import IO from typing import Iterator from typing import Iterable from typing import Optional from typing import Set from typing import Text from typing import Tuple from typing import Type from typing import Union CURRENT_VERSION = 8 # type: int class ManifestError(Exception): pass class ManifestVersionMismatch(ManifestError): pass class InvalidCacheError(Exception): pass item_classes = {u"testharness": TestharnessTest, u"reftest": RefTest, u"print-reftest": PrintRefTest, u"crashtest": CrashTest, u"manual": ManualTest, u"wdspec": WebDriverSpecTest, u"conformancechecker": ConformanceCheckerTest, u"visual": VisualTest, u"support": SupportFile} # type: Dict[Text, Type[ManifestItem]] def compute_manifest_items(source_file): # type: (SourceFile) -> Tuple[Tuple[Text, ...], Text, Set[ManifestItem], Text] rel_path_parts = source_file.rel_path_parts new_type, manifest_items = source_file.manifest_items() file_hash = source_file.hash return rel_path_parts, new_type, set(manifest_items), file_hash if MYPY: ManifestDataType = Dict[Any, TypeData] else: ManifestDataType = dict class ManifestData(ManifestDataType): def __init__(self, manifest): # type: (Manifest) -> None """Dictionary subclass containing a TypeData instance for each test type, keyed by type name""" self.initialized = False # type: bool for key, value in item_classes.items(): self[key] = TypeData(manifest, value) self.initialized = True self.json_obj = None # type: None def __setitem__(self, key, value): # type: (Text, TypeData) -> None if self.initialized: raise AttributeError dict.__setitem__(self, key, value) def paths(self): # type: () -> Set[Text] """Get a list of all paths containing test items without actually constructing all the items""" rv = set() # type: Set[Text] for item_data in self.values(): for item in item_data: rv.add(os.path.sep.join(item)) return rv def type_by_path(self): # type: () -> Dict[Tuple[Text, ...], Text] rv = {} for item_type, item_data in self.items(): for item in item_data: rv[item] = item_type return rv class Manifest(object): def __init__(self, tests_root, url_base="/"): # type: (Text, Text) -> None assert url_base is not None self._data = ManifestData(self) # type: ManifestData self.tests_root = tests_root # type: Text self.url_base = url_base # type: Text def __iter__(self): # type: () -> Iterator[Tuple[Text, Text, Set[ManifestItem]]] return self.itertypes() def itertypes(self, *types): # type: (*Text) -> Iterator[Tuple[Text, Text, Set[ManifestItem]]] for item_type in (types or sorted(self._data.keys())): for path in self._data[item_type]: rel_path = os.sep.join(path) tests = self._data[item_type][path] yield item_type, rel_path, tests def iterpath(self, path): # type: (Text) -> Iterable[ManifestItem] tpath = tuple(path.split(os.path.sep)) for type_tests in self._data.values(): i = type_tests.get(tpath, set()) assert i is not None for test in i: yield test def iterdir(self, dir_name): # type: (Text) -> Iterable[ManifestItem] tpath = tuple(dir_name.split(os.path.sep)) tpath_len = len(tpath) for type_tests in self._data.values(): for path, tests in type_tests.items(): if path[:tpath_len] == tpath: for test in tests: yield test def update(self, tree, parallel=True): # type: (Iterable[Tuple[Text, Optional[Text], bool]], bool) -> bool """Update the manifest given an iterable of items that make up the updated manifest. The iterable must either generate tuples of the form (SourceFile, True) for paths that are to be updated, or (path, False) for items that are not to be updated. This unusual API is designed as an optimistaion meaning that SourceFile items need not be constructed in the case we are not updating a path, but the absence of an item from the iterator may be used to remove defunct entries from the manifest.""" logger = get_logger() changed = False # Create local variable references to these dicts so we avoid the # attribute access in the hot loop below data = self._data types = data.type_by_path() remaining_manifest_paths = set(types) to_update = [] for path, file_hash, updated in tree: path_parts = tuple(path.split(os.path.sep)) is_new = path_parts not in remaining_manifest_paths if not updated and is_new: # This is kind of a bandaid; if we ended up here the cache # was invalid but we've been using it anyway. That's obviously # bad; we should fix the underlying issue that we sometimes # use an invalid cache. But at least this fixes the immediate # problem raise InvalidCacheError if not updated: remaining_manifest_paths.remove(path_parts) else: assert self.tests_root is not None source_file = SourceFile(self.tests_root, path, self.url_base, file_hash) hash_changed = False # type: bool if not is_new: if file_hash is None: file_hash = source_file.hash remaining_manifest_paths.remove(path_parts) old_type = types[path_parts] old_hash = data[old_type].hashes[path_parts] if old_hash != file_hash: hash_changed = True del data[old_type][path_parts] if is_new or hash_changed: to_update.append(source_file) if to_update: logger.debug("Computing manifest update for %s items" % len(to_update)) changed = True # 25 items was derived experimentally (2020-01) to be approximately the # point at which it is quicker to create a Pool and parallelize update. pool = None if parallel and len(to_update) > 25 and cpu_count() > 1: # On Python 3 on Windows, using >= MAXIMUM_WAIT_OBJECTS processes # causes a crash in the multiprocessing module. Whilst this enum # can technically have any value, it is usually 64. For safety, # restrict manifest regeneration to 48 processes on Windows. # # See https://bugs.python.org/issue26903 and https://bugs.python.org/issue40263 processes = cpu_count() if sys.platform == "win32" and processes > 48: processes = 48 pool = Pool(processes) # chunksize set > 1 when more than 10000 tests, because # chunking is a net-gain once we get to very large numbers # of items (again, experimentally, 2020-01) chunksize = max(1, len(to_update) // 10000) logger.debug("Doing a multiprocessed update. CPU count: %s, " "processes: %s, chunksize: %s" % (cpu_count(), processes, chunksize)) results = pool.imap_unordered(compute_manifest_items, to_update, chunksize=chunksize ) # type: Iterator[Tuple[Tuple[Text, ...], Text, Set[ManifestItem], Text]] else: results = map(compute_manifest_items, to_update) for result in results: rel_path_parts, new_type, manifest_items, file_hash = result data[new_type][rel_path_parts] = manifest_items data[new_type].hashes[rel_path_parts] = file_hash # Make sure to terminate the Pool, to avoid hangs on Python 3. # https://docs.python.org/3/library/multiprocessing.html#multiprocessing.pool.Pool if pool is not None: pool.terminate() if remaining_manifest_paths: changed = True for rel_path_parts in remaining_manifest_paths: for test_data in data.values(): if rel_path_parts in test_data: del test_data[rel_path_parts] return changed def to_json(self, caller_owns_obj=True): # type: (bool) -> Dict[Text, Any] """Dump a manifest into a object which can be serialized as JSON If caller_owns_obj is False, then the return value remains owned by the manifest; it is _vitally important_ that _no_ (even read) operation is done on the manifest, as otherwise objects within the object graph rooted at the return value can be mutated. This essentially makes this mode very dangerous and only to be used under extreme care. """ out_items = { test_type: type_paths.to_json() for test_type, type_paths in self._data.items() if type_paths } if caller_owns_obj: out_items = deepcopy(out_items) rv = {"url_base": self.url_base, "items": out_items, "version": CURRENT_VERSION} # type: Dict[Text, Any] return rv @classmethod def from_json(cls, tests_root, obj, types=None, callee_owns_obj=False): # type: (Text, Dict[Text, Any], Optional[Container[Text]], bool) -> Manifest """Load a manifest from a JSON object This loads a manifest for a given local test_root path from an object obj, potentially partially loading it to only load the types given by types. If callee_owns_obj is True, then ownership of obj transfers to this function when called, and the caller must never mutate the obj or anything referred to in the object graph rooted at obj. """ version = obj.get("version") if version != CURRENT_VERSION: raise ManifestVersionMismatch self = cls(tests_root, url_base=obj.get("url_base", "/")) if not hasattr(obj, "items"): raise ManifestError for test_type, type_paths in obj["items"].items(): if test_type not in item_classes: raise ManifestError if types and test_type not in types: continue if not callee_owns_obj: type_paths = deepcopy(type_paths) self._data[test_type].set_json(type_paths) return self def load(tests_root, manifest, types=None): # type: (Text, Union[IO[bytes], Text], Optional[Container[Text]]) -> Optional[Manifest] logger = get_logger() logger.warning("Prefer load_and_update instead") return _load(logger, tests_root, manifest, types) __load_cache = {} # type: Dict[Text, Manifest] def _load(logger, # type: Logger tests_root, # type: Text manifest, # type: Union[IO[bytes], Text] types=None, # type: Optional[Container[Text]] allow_cached=True # type: bool ): # type: (...) -> Optional[Manifest] manifest_path = (manifest if isinstance(manifest, str) else manifest.name) if allow_cached and manifest_path in __load_cache: return __load_cache[manifest_path] if isinstance(manifest, str): if os.path.exists(manifest): logger.debug("Opening manifest at %s" % manifest) else: logger.debug("Creating new manifest at %s" % manifest) try: with io.open(manifest, "r", encoding="utf-8") as f: rv = Manifest.from_json(tests_root, jsonlib.load(f), types=types, callee_owns_obj=True) except IOError: return None except ValueError: logger.warning("%r may be corrupted", manifest) return None else: rv = Manifest.from_json(tests_root, jsonlib.load(manifest), types=types, callee_owns_obj=True) if allow_cached: __load_cache[manifest_path] = rv return rv def load_and_update(tests_root, # type: Union[Text, bytes] manifest_path, # type: Union[Text, bytes] url_base, # type: Text update=True, # type: bool rebuild=False, # type: bool metadata_path=None, # type: Optional[Union[Text, bytes]] cache_root=None, # type: Optional[Union[Text, bytes]] working_copy=True, # type: bool types=None, # type: Optional[Container[Text]] write_manifest=True, # type: bool allow_cached=True, # type: bool parallel=True # type: bool ): # type: (...) -> Manifest # This function is now a facade for the purposes of type conversion, so that # the external API can accept paths as text or (utf8) bytes, but internal # functions always use Text. metadata_path_text = ensure_text(metadata_path) if metadata_path is not None else None cache_root_text = ensure_text(cache_root) if cache_root is not None else None return _load_and_update(ensure_text(tests_root), ensure_text(manifest_path), url_base, update=update, rebuild=rebuild, metadata_path=metadata_path_text, cache_root=cache_root_text, working_copy=working_copy, types=types, write_manifest=write_manifest, allow_cached=allow_cached, parallel=parallel) def _load_and_update(tests_root, # type: Text manifest_path, # type: Text url_base, # type: Text update=True, # type: bool rebuild=False, # type: bool metadata_path=None, # type: Optional[Text] cache_root=None, # type: Optional[Text] working_copy=True, # type: bool types=None, # type: Optional[Container[Text]] write_manifest=True, # type: bool allow_cached=True, # type: bool parallel=True # type: bool ): # type: (...) -> Manifest logger = get_logger() manifest = None if not rebuild: try: manifest = _load(logger, tests_root, manifest_path, types=types, allow_cached=allow_cached) except ManifestVersionMismatch: logger.info("Manifest version changed, rebuilding") except ManifestError: logger.warning("Failed to load manifest, rebuilding") if manifest is not None and manifest.url_base != url_base: logger.info("Manifest url base did not match, rebuilding") manifest = None if manifest is None: manifest = Manifest(tests_root, url_base) rebuild = True update = True if rebuild or update: logger.info("Updating manifest") for retry in range(2): try: tree = vcs.get_tree(tests_root, manifest, manifest_path, cache_root, working_copy, rebuild) changed = manifest.update(tree, parallel) break except InvalidCacheError: logger.warning("Manifest cache was invalid, doing a complete rebuild") rebuild = True else: # If we didn't break there was an error raise if write_manifest and changed: write(manifest, manifest_path) tree.dump_caches() return manifest def write(manifest, manifest_path): # type: (Manifest, Text) -> None dir_name = os.path.dirname(manifest_path) if not os.path.exists(dir_name): os.makedirs(dir_name) with atomic_write(manifest_path, overwrite=True) as f: # Use ',' instead of the default ', ' separator to prevent trailing # spaces: https://docs.python.org/2/library/json.html#json.dump jsonlib.dump_dist(manifest.to_json(caller_owns_obj=True), f) f.write("\n")
mpl-2.0
8,873,013,402,789,353,000
36.292434
117
0.556098
false
almlab/adaptml-angst-server
adaptmlprogram/wrapper/clusters/trunk/branch.py
6
1502
import copy; class branch: def __init__(self,length): self.ends = [] # nodes connected to self.length = float(length) # length (can change during rooting) self.immutable_length = self.length # don't ever change this self.visited = False # used for traversing the tree def __repr__(self): if len(self.ends) == 2: print_string = "(" + self.ends[0].name + "," print_string += self.ends[1].name + "):" + str(self.immutable_length) else: print_string = ":" + str(self.immutable_length) return print_string def addNode(self,node): self.ends.append(node) node.branch_list.append(self) # recursion for finding all of the branches in an unrooted tree def findBranches(self,all_branches): all_branches.append(self) self.visited = True for node in self.ends: for brch in node.branch_list: if not brch.visited: all_branches = brch.findBranches(all_branches) return all_branches # recusion to dump all the branches of an unrooted tree into the # provided dictionary def FillBranchDict(this_branch,branch_dict): for parent_node in this_branch.ends: for branch in parent_node.branch_list: if branch is not this_branch: for child_node in branch.ends: if child_node is not parent_node: print child_node print child_node.leaves
mit
6,430,824,306,003,370,000
30.291667
74
0.604527
false
AdrianNunez/deeplearning-activity-recognition
temporalnet_working.py
1
25255
# -*- coding: utf-8 -*- """ Created on Tue Jan 17 11:08:21 2017 @author: adrian """ from __future__ import print_function import sys import caffe sys.path.insert(0, './keras-Spatial-Transformer-Layer/') sys.path.insert(0, '/home/adrian/caffe/python') import numpy as np import matplotlib matplotlib.use('Agg') from matplotlib import pyplot as plt import os import time import urllib2 from zipfile import ZipFile from PIL import Image import io from sklearn.model_selection import StratifiedShuffleSplit from functions import load_gazeplus_dataset, load_adl_dataset, load_model, save_model, createGenerator #from keras.applications.vgg16 import VGG16 from vgg16module import VGG16 from keras.applications.resnet50 import ResNet50 from keras.models import Model, model_from_json, model_from_yaml, Sequential from keras.layers import Input, Convolution2D, MaxPooling2D, LSTM, Reshape, Merge, TimeDistributed, Flatten, Activation, Dense, Dropout, merge, AveragePooling2D from keras.regularizers import l2, activity_l2 from keras.optimizers import Adam, SGD from keras.layers.normalization import BatchNormalization from keras import backend as K K.set_image_dim_ordering('th') from attention import SpatialTransformer from keras.utils import np_utils from keras.utils.np_utils import probas_to_classes from sklearn.metrics import confusion_matrix from skimage.io import imsave from keras.callbacks import Callback, ModelCheckpoint, EarlyStopping, ReduceLROnPlateau, LearningRateScheduler from keras.utils.np_utils import to_categorical import json from scipy.ndimage import minimum, maximum, imread import math from mpl_toolkits.axes_grid1 import make_axes_locatable import numpy.ma as ma import matplotlib.cm as cm import h5py import random from collections import OrderedDict import scipy.io as sio import cv2 import glob import gc #import transcaffe as tc def get_caffe_params(netname, paramname): net = caffe.Net(netname, paramname, caffe.TEST) net.save_hdf5('/home/adrian/project/caffedata.h5') params = OrderedDict() for layername in net.params: caffelayer = net.params[layername] params[layername] = [] for sublayer in caffelayer: params[layername].append(sublayer.data) print("layer " +layername+ " has " +str(len(caffelayer))+ " sublayers, shape "+str(params[layername][0].shape)) return params, net def make_mosaic(imgs, nrows, ncols, border=1): """ Given a set of images with all the same shape, makes a mosaic with nrows and ncols """ nimgs = imgs.shape[0] imshape = imgs.shape[1:] mosaic = ma.masked_all((nrows * imshape[0] + (nrows - 1) * border, ncols * imshape[1] + (ncols - 1) * border), dtype=np.float32) paddedh = imshape[0] + border paddedw = imshape[1] + border for i in xrange(nimgs): row = int(np.floor(i / ncols)) col = i % ncols mosaic[row * paddedh:row * paddedh + imshape[0], col * paddedw:col * paddedw + imshape[1]] = imgs[i] return mosaic def nice_imshow(ax, data, vmin=None, vmax=None, cmap=None): """Wrapper around pl.imshow""" if cmap is None: cmap = cm.jet if vmin is None: vmin = data.min() if vmax is None: vmax = data.max() #divider = make_axes_locatable(ax) #cax = divider.append_axes("right", size="5%", pad=0.05) fig = plt.figure() plt.plot(data) #im = ax.imshow(data, vmin=vmin, vmax=vmax, interpolation='nearest', cmap=cmap) plt.savefig('imagen.jpg') plt.gcf().clear() plt.close(fig) class printbatch(Callback): def on_batch_end(self, epoch, logs={}): print(logs) def plot_training_info(case, metrics, save, history): # summarize history for accuracy plt.ioff() if 'accuracy' in metrics: fig = plt.figure() plt.plot(history['acc']) plt.plot(history['val_acc']) plt.title('model accuracy') plt.ylabel('accuracy') plt.xlabel('epoch') plt.legend(['train', 'test'], loc='upper left') if save == True: plt.savefig(case + 'accuracy.png') plt.gcf().clear() else: plt.show() plt.close(fig) # summarize history for loss if 'loss' in metrics: fig = plt.figure() plt.plot(history['loss']) plt.plot(history['val_loss']) plt.title('model loss') plt.ylabel('loss') plt.xlabel('epoch') #plt.ylim(1e-3, 1e-2) plt.yscale("log") plt.legend(['train', 'test'], loc='upper left') if save == True: plt.savefig(case + 'loss.png') plt.gcf().clear() else: plt.show() plt.close(fig) def step_decay(epoch): initial_lrate = 0.1 drop = 0.5 epochs_drop = 10.0 lrate = initial_lrate * math.pow(drop, math.floor((1+epoch)/epochs_drop)) return lrate def countData(): data_folder = '/ssd_drive/ucf101_flow_img_tvl1_gpu/' total_data = np.zeros((9)) idx = 0 data = ['training', 'validation', 'testing'] start = time.time() for set in data: if set == 'training': end = 7 elif set == 'validation': end = 1 elif set == 'testing': end = 1 for j in range(0,end): activity_folders = [f for f in os.listdir(data_folder) if os.path.isdir(os.path.join(data_folder, f))] activity_folders.sort() for activity_folder in activity_folders: path1 = data_folder + activity_folder + '/' video_folders = [f for f in os.listdir(path1) if os.path.isdir(os.path.join(path1, f))] video_folders.sort() l = len(video_folders) if data == 'training': s = 0.10*j t = s + 0.10 video_folders = video_folders[int(l*s):int(l*t)] elif data == 'validation': video_folders = video_folders[int(l*0.7):int(l*0.85)] else: video_folders = video_folders[int(l*0.85):] for video_folder in video_folders[0:1]: path2 = path1 + video_folder + '/' images = [f for f in os.listdir(path2) if os.path.isfile(os.path.join(path2, f))] total_data[idx] += len(images) total_data[idx] /= 2 idx += 1 return total_data def getData(param, classes, batch_size, data, specific_set, instances): if data == 'training': print('='*30) print(' PART %d OF THE TRAINING SET' % specific_set) print('='*30) data_folder = 'opticalflow_ucf101/' activities = [] i = 0 X, Y = [], [] batches = [] activity_folders = [f for f in os.listdir(data_folder) if os.path.isdir(os.path.join(data_folder, f))] activity_folders.sort() j = 0 print('Starting the loading') start = time.time() for activity_folder in activity_folders: print('Loading %d/%d' % (j, len(activity_folders))) j += 1 activities.append(activity_folder) path1 = data_folder + activity_folder + '/' video_folders = [f for f in os.listdir(path1) if os.path.isdir(os.path.join(path1, f))] video_folders.sort() l = len(video_folders) if data == 'training': if specific_set == 1: video_folders = video_folders[:int(l*0.15)] elif specific_set == 2: video_folders = video_folders[int(l*0.15):int(l*0.3)] elif specific_set == 3: video_folders = video_folders[int(l*0.3):int(l*0.45)] elif specific_set == 4: video_folders = video_folders[int(l*0.45):int(l*0.6)] elif data == 'validation': video_folders = video_folders[int(l*0.6):int(l*0.7)] instances[1] += len(video_folders) else: if specific_set == 1: video_folders = video_folders[int(l*0.7):int(l*0.8)] elif specific_set == 2: video_folders = video_folders[int(l*0.8):int(l*0.9)] elif specific_set == 3: video_folders = video_folders[int(l*0.9):] instances[2] += len(video_folders) for video_folder in video_folders: path2 = path1 + video_folder + '/' images = [f for f in os.listdir(path2) if os.path.isfile(os.path.join(path2, f))] images.sort() if data == 'training': instances[0] += len(video_folders) elif data == 'validation': instances[1] += len(video_folders) else: instances[2] += len(video_folders) stack = [] #stack.append(np.zeros((1, 1, 227, 227)).astype('uint8')) for image in images: x = np.asarray(imread(path2 + image)) x = np.dstack([x[...,0],x[...,2]]) # Optical flow is not normalized #m = minimum(x) #x = (x-m)/(maximum(x)-m+param['epsilon']) x = np.expand_dims(np.transpose(x, (2,0,1)), 0).astype('uint8') stack.append(x) del x if len(stack) == 10: #stack.append(np.zeros((1, 1, 227, 227)).astype('uint8')) X.append(np.hstack(stack)) Y.append(to_categorical([i], classes).astype('uint8')) del stack stack = [] #stack.append(np.zeros((1, 1, 227, 227)).astype('uint8')) if len(X) == batch_size: batches.append([np.vstack(X).astype('uint8'), np.vstack(Y).astype('uint8')]) del X, Y X, Y = [], [] i += 1 print('Tiempo para cargar: ', str(time.time()-start)) while True: print('='*20) print(' Full dataset segment seen') print('='*20) random.shuffle(batches) for batch in batches: yield batch[0], batch[1] def getDataChinese(param, classes, batch_size, segment, amount_of_data): while True: data_folder = '/ssd_drive/ucf101_flow_img_tvl1_gpu/' mean_file = '/home/anunez/project/flow_mean.mat' L = 10 num_samples = int(int(amount_of_data[8]/20)/10) num_batches = int(num_samples/batch_size) i, j, h = 0, 0, 0 label = 0 dim = (256, 340, 2*L, num_samples) flow = np.zeros(shape=dim, dtype=np.float64) flow_flip = np.zeros(shape=dim, dtype=np.float64) labels = np.zeros(shape=(num_samples, classes), dtype=np.float64) print('Number of samples: {}'.format(num_samples)) # =============================================== print('Starting the loading') start = time.time() activity_folders = [f for f in os.listdir(data_folder) if os.path.isdir(os.path.join(data_folder, f))] activity_folders.sort() for activity_folder in activity_folders: if i == num_samples: break h += 1 path1 = data_folder + activity_folder + '/' video_folders = [f for f in os.listdir(path1) if os.path.isdir(os.path.join(path1, f))] video_folders.sort() l = len(video_folders) offset = segment*0.015 video_folders = video_folders[int(l*(0.85+offset)):int(l*(0.85+offset+0.015))] print('Loading %d/%d - samples: %d' % (h+1, len(activity_folders), len(video_folders))) for video_folder in video_folders: if i == num_samples: break path2 = path1 + video_folder + '/' x_images = glob.glob(path2 + 'flow_x*.jpg') x_images.sort() y_images = glob.glob(path2 + 'flow_y*.jpg') y_images.sort() j = 0 for flow_x_file, flow_y_file in zip(x_images, y_images): img_x = cv2.imread(flow_x_file, cv2.IMREAD_GRAYSCALE) img_y = cv2.imread(flow_y_file, cv2.IMREAD_GRAYSCALE) img_x = cv2.resize(img_x, dim[1::-1]) img_y = cv2.resize(img_y, dim[1::-1]) flow[:,:,j*2 ,i] = img_x flow[:,:,j*2+1,i] = img_y flow_flip[:,:,j*2 ,i] = 255 - img_x[:, ::-1] flow_flip[:,:,j*2+1,i] = img_y[:, ::-1] j += 1 if j == 10: labels[i, label] = 1 i += 1 if i == num_samples: break j = 0 label += 1 print('Transformaciones') flow = flow[:224, :224, :,:] print('Cargar media') # substract mean d = sio.loadmat(mean_file) flow_mean = d['image_mean'] print('flow mean shape' + str(flow_mean.shape)) flow = flow - np.tile(flow_mean[...,np.newaxis], (1, 1, 1, flow.shape[3])) # width, height, channels, nb_samples if K.image_dim_ordering() == 'th': flow = np.transpose(flow, (3, 2, 0, 1)) else: flow = np.transpose(flow, (3, 0, 1, 2)) print('Tiempo para cargar: ', str(time.time()-start)) for bb in range(num_batches): print(bb) span = range(batch_size*bb, min(flow.shape[0],batch_size*(bb+1))) if len(span) == batch_size: print('yielded') yield flow[span, :,:,:].astype(np.float32), labels[span,:].astype(np.float32) #del flow_1 del flow del labels gc.collect() continue flow_2 = flow[:224, -224:, :,:] flow_3 = flow[16:240, 60:284, :,:] flow_4 = flow[-224:, :224, :,:] flow_5 = flow[-224:, -224:, :,:] flow_f_1 = flow_flip[:224, :224, :,:] flow_f_2 = flow_flip[:224, -224:, :,:] flow_f_3 = flow_flip[16:240, 60:284, :,:] flow_f_4 = flow_flip[-224:, :224, :,:] flow_f_5 = flow_flip[-224:, -224:, :,:] def getDataFromHDF5(filename, classes, batch_size, set): while True: lim = 0 if set == 'training': lim = 10 data = 'training_images_' labels = 'training_labels' elif set == 'validation': data = 'validation_images_' labels = 'validation_labels' lim = 2 else: data = 'testing_images_' labels = 'testing_labels' lim = 5 Y = [] with hdf5.File(filename, 'r') as f: Y = f[labels].value for i in range(0,lim): X = [] with hdf5.File(filename, 'r') as f: X = f[data + '{}'.format(i)].value for i in range(0, len(X)/batch_size): pos = i*batch_size yield X[pos:pos+batch_size,...], Y[pos:pos+batch_size,...] i += 1 def main(parameter_file): netname = 'caffe_vgg16_temporalnet/cuhk_action_temporal_vgg_16_flow_deploy.prototxt' paramname = 'caffe_vgg16_temporalnet/cuhk_action_temporal_vgg_16_split2.caffemodel' best_model = 'best_weights.hdf5' with open(parameter_file) as data_file: param = json.load(data_file) #params, net = get_caffe_params(netname, paramname) if K.image_dim_ordering() == 'th': data = Input(shape=(param['input_channels'], param['input_width'], param['input_height']), dtype='float32', name='input') else: data = Input(shape=(param['input_width'], param['input_height'], param['input_channels']), dtype='float32', name='input') # VGG16 ===================================================== vgg16 = VGG16(weights=None, include_top=True, input_tensor=data, classes=101) # VGG16 ===================================================== x = vgg16.output #x = Flatten(name='flatten')(x) #for (i, nb_neurons) in zip(range(len(param['final_dense'])), param['final_dense']): # if not param['batch_normalization']['add']: # x = Dense(nb_neurons, activation='relu', init='glorot_uniform', W_regularizer=l2(param['w_regularizer']), b_regularizer=l2(param['b_regularizer']), name='final_fc%d' % (i+1))(x) # else: # x = Dense(nb_neurons, init='glorot_uniform', W_regularizer=l2(param['w_regularizer']), b_regularizer=l2(param['w_regularizer']), name='final_fc%d' % (i+1))(x) # x = BatchNormalization(epsilon=param['batch_normalization']['epsilon'], mode=param['batch_normalization']['mode'], axis=param['batch_normalization']['axis'], momentum=param['batch_normalization']['momentum'])(x) # x = Activation(param['activation_function'])(x) # if param['dropout']['add']: # x = Dropout(param['dropout']['p'])(x) # #final = Dense(param['classes'], activation='softmax', name='predictions')(x) model = Model(data, x) #weights = np.load('./weights/weights.npy').item() #weights = np.load('../caffe-tensorflow/weights.npy').item() #keys = weights.keys() layerskeras = ['block1_conv1', 'block1_conv2', 'block2_conv1', 'block2_conv2', 'block3_conv1', 'block3_conv2', 'block3_conv3', 'block4_conv1', 'block4_conv2', 'block4_conv3', 'block5_conv1', 'block5_conv2', 'block5_conv3', 'fc1', 'fc2', 'predictions'] layerscaffe = ['conv1_1', 'conv1_2', 'conv2_1', 'conv2_2', 'conv3_1', 'conv3_2', 'conv3_3', 'conv4_1', 'conv4_2', 'conv4_3', 'conv5_1', 'conv5_2', 'conv5_3', 'fc6', 'fc7', 'fc8'] #keys.sort() #print(params.keys()) i = 0 #w2, b2 = model.layers[1].get_weights() #for layer in layerscaffe[:-3]: # w, b = model.get_layer(layerskeras[i]).get_weights() # params[layer][0][...] = params[layer][0][:,:,::-1,::-1] # model.get_layer(layerskeras[i]).W.set_value(params[layer][0]) # model.get_layer(layerskeras[i]).b.set_value(params[layer][1]) # print(layer, params[layer][0].shape, params[layer][1].shape, w.shape, b.shape) # i += 1 #for layer in layerscaffe[-3:]: # w, b = model.get_layer(layerskeras[i]).get_weights() # # model.get_layer(layerskeras[i]).W.set_value(np.transpose(params[layer][0],(1, 0))) # model.get_layer(layerskeras[i]).b.set_value(params[layer][1]) # print(layer, params[layer][0].shape, params[layer][1].shape, w.shape, b.shape) # i += 1 #w, b = model.layers[1].get_weights() h5 = h5py.File('/home/anunez/project/caffedata.h5') for layer in layerscaffe[:-3]: w, b = model.get_layer(layerskeras[i]).get_weights() print('--') print(model.get_layer(layerskeras[i]).output_shape) #print(w.shape, b.shape) w2, b2 = h5['data'][layer]['0'], h5['data'][layer]['1'] if K.image_dim_ordering() == 'tf': w2 = np.transpose(w2, (0,2,3,1)) w2 = w2[:, ::-1, ::-1, :] else: w2 = np.transpose(w2, (0,1,2,3)) w2 = w2[:, :, ::-1, ::-1] b2 = np.asarray(b2) model.get_layer(layerskeras[i]).W.set_value(w2) model.get_layer(layerskeras[i]).b.set_value(b2) print(model.get_layer(layerskeras[i]).output_shape) print('--') i += 1 for layer in layerscaffe[-3:]: w, b = model.get_layer(layerskeras[i]).get_weights() w2, b2 = [], [] #print(w.shape[1]) for j in range(w.shape[1]): w2.append(h5['data'][layer]['0'][j]) b2.append(h5['data'][layer]['1'][j]) print(w.shape, b.shape) w2 = np.vstack([w2]) w2 = np.transpose(w2,(1,0)) b2 = np.squeeze(np.vstack(b2)) print(w2.shape, b2.shape) model.get_layer(layerskeras[i]).set_weights([w2, b2]) i += 1 #rows = 4 #cols = 20 #w, b = model.layers[1].get_weights() #fig = plt.figure() #nb = 1 #for i in range(20): # ax = plt.subplot(rows, cols, nb) # nb+=1 # ax.imshow(w[0,i,...], interpolation='nearest', cmap=plt.get_cmap('gray')) #for i in range(20): ## ax = plt.subplot(rows, cols, nb) # nb+=1 # ax.imshow(w[1,i,...], interpolation='nearest', cmap=plt.get_cmap('gray')) #for i in range(20): # ax = plt.subplot(rows, cols, nb) # nb+=1 # ax.imshow(w[2,i,...], interpolation='nearest', cmap=plt.get_cmap('gray')) #for i in range(20): # ax = plt.subplot(rows, cols, nb) # nb+=1 # ax.imshow(w[3,i,...], interpolation='nearest', cmap=plt.get_cmap('gray')) #plt.show() #plt.close(fig) #i = 0 #for layer in layers: # layer_weights = weights[keys[i]] # b = layer_weights['biases'] # w = layer_weights['weights'] # print(w.shape) # if 'conv' in layer: # w = np.flip(w, axis=0) # w = np.flip(w, axis=1) # w = np.transpose(w, (3,2,0,1)) # model.get_layer(layer).W.set_value(w) # model.get_layer(layer).b.set_value(b) # i += 1 #model.summary() #model = tc.load(netname, paramname, target_lib="keras") for layer in model.layers: layer.trainable = False if param['load_model'] and os.path.exists(param['weights_file']) and os.path.exists(param['model_file']): pass #model = load_model(param['weights_file'], param['model_file']) adam = Adam(lr=param['lr'], beta_1=param['beta_1'], beta_2=param['beta_2'], epsilon=param['adam_eps'], decay=param['decay']) model.compile(optimizer=adam, loss='categorical_crossentropy', metrics=param['metrics']) #model.optimizer.lr.set_value(param['lr']) c = ModelCheckpoint(filepath=best_model, monitor='val_acc', verbose=1, save_best_only=True, save_weights_only=False, mode='auto') #e = EarlyStopping(monitor='loss', min_delta=0, patience=10, verbose=0, mode='auto') r = ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=10, verbose=0, mode='auto', epsilon=0.0001, cooldown=0, min_lr=0) #l = LearningRateScheduler(step_decay) #pb = printbatch() callbacks = [c, r] amount_of_data = countData() print(amount_of_data) idx = 0 nb_instances = [0, 0, 0] #validationGenerator = getData(param, param['classes'], param['batch_size'], 'validation', -1, nb_instances) if not os.path.isdir('train_history_results'): os.mkdir('train_history_results') #model.load_weights(best_model) for i in range(1,1): trainingGenerator = getData(param, param['classes'], param['batch_size'], 'training', i, nb_instances) #history = model.fit_generator(trainingGenerator, param['samples_per_epoch'], param['epochs'], validation_data=validationGenerator, nb_val_samples=1000, nb_worker=param['nb_worker'], pickle_safe=param['pickle_safe'], max_q_size=param['max_q_size'], callbacks=callbacks) del trainingGenerator #with open('train_history_results/test' + parameter_file[:-5] + str(i) + '.txt', 'w+') as metrics_file: #metrics_file.write(history.history) #plot_training_info('train_' + parameter_file[:-5] + str(i), param['metrics'], param['save_plots'], history.history) model.load_weights(best_model) model.optimizer.lr.set_value(param['lr']) #save_model(model, param['weights_file'], param['model_file']) if not os.path.isdir('test_metrics_results'): os.mkdir('test_metrics_results') print('TEST TIME') for i in range(10): print('='*20) print('Iteration {} of testing'.format(i)) print('='*20) testingGenerator = getDataChinese(param, param['classes'], param['batch_size'], i, amount_of_data) metrics = model.evaluate_generator(testingGenerator, (int(amount_of_data[8]/20)/10), nb_worker=param['nb_worker'], pickle_safe=param['pickle_safe'], max_q_size=param['max_q_size']) print('Evaluation results: {}'.format(metrics)) print('Loss: {}, Accuracy: {}'.format(metrics[0], metrics[1])) with open('test_metrics_results/test' + parameter_file[:-5] + str(i) + '.txt', 'w+') as metrics_file: metrics_file.write(str(metrics)) del testingGenerator #plot_training_info('test_' + parameter_file[:-5] + str(i), param['metrics'], param['save_plots'], history.history) with open('stats.txt', 'a+') as stats: stats.write('Training instances: ' + str(nb_instances[0]) +'\n') stats.write('Validation instances: ' + str(nb_instances[1]) +'\n') stats.write('Testing instances: ' + str(nb_instances[2])+'\n') if __name__ == '__main__': parameter_files = ['not_freezed.json', 'last_block_freezed.json', 'first_layer_and_last_block_freezed.json'] for parameter_file in parameter_files: main(parameter_file)
mit
5,728,998,120,165,741,000
40.199021
277
0.551455
false
bboe/reddit_irc
reddit_irc.py
1
5933
#!/usr/bin/env python import asyncore import re import praw import sys import time from ircutils import bot from six import text_type from six.moves import configparser debug = True __version__ = '0.1.3' class RedditBot(bot.SimpleBot): MSG_FORMAT = u'{shortlink} New post to /r/{subreddit} by {author}: {title}' IGNORE_EVENTS = set(('CONN_CONNECT', 'CTCP_VERSION', 'JOIN', 'KICK', 'MODE', 'NICK', 'PART', 'PING', 'PRIVMSG', 'QUIT', 'RPL_BOUNCE', 'RPL_CREATED', 'RPL_ENDOFMOTD', 'RPL_ENDOFNAMES', 'RPL_GLOBALUSERS', 'RPL_LOCALUSERS', 'RPL_LUSERCHANNELS', 'RPL_LUSERCLIENT', 'RPL_LUSERME', 'RPL_LUSEROP', 'RPL_LUSERUNKNOWN', 'RPL_MOTD', 'RPL_MOTDSTART', 'RPL_MYINFO', 'RPL_NAMREPLY', 'RPL_STATSCONN', 'RPL_TOPIC', 'RPL_TOPICWHOTIME', 'RPL_YOURHOST', 'RPL_YOURID', 'RPL_WELCOME', 'TOPIC')) def __init__(self, nick, server): bot.SimpleBot.__init__(self, nick) self.real_name = '%s (https://github.com/bboe/reddit_irc)' % nick self.server = server def on_any(self, event): if event.command in self.IGNORE_EVENTS: return print('\t%r %s (%s->%s) %s' % (self.server, event.command, event.source, event.target, event.params)) def on_channel_message(self, event): sys.stderr.write('%r (%s) <%s> %s\n' % (self.server, event.target, event.source, event.message)) sys.stderr.flush() def on_private_message(self, event): print('(PRIVATE %r) <%s> %s' % (self.server, event.source, event.message)) def announce(self, submission, channel): msg = self.MSG_FORMAT.format( url=submission.url, permalink=submission.permalink, shortlink=submission.short_link, subreddit=text_type(submission.subreddit), author=text_type(submission.author), title=submission.title).encode('utf-8') msg = re.sub('\s+', ' ', msg).strip() if debug: print(msg) self.send_message(channel, msg) class RedditUpdater(object): MSG_LIMIT = 3 class_reddit = None def __init__(self, subreddit): self.sr_name = subreddit self.subreddit = self.class_reddit.get_subreddit(subreddit) self.previous = self.subreddit.get_new().next() self.associations = [] if debug: print('Added %s' % subreddit) print('\tLast submission: %r' % self.previous.title) def add(self, server_bot, channel): self.associations.append((server_bot, channel)) def update(self): submissions = [] try: for submission in self.subreddit.get_new(): if submission.created_utc <= self.previous.created_utc: break submissions.append(submission) except Exception as error: print(text_type(error)) return if not submissions: return if len(submissions) > self.MSG_LIMIT: submissions = submissions[-self.MSG_LIMIT:] self.previous = submissions[0] for submission in reversed(submissions): for server_bot, channel in self.associations: server_bot.announce(submission, channel) class Runner(object): CHECK_TIME = 30 def __init__(self): self.bots = {} self.reddits = {} self.load_configuration() def load_configuration(self): config = configparser.RawConfigParser() if not config.read(['reddit_irc.ini']): raise Exception('Could not find settings file.') RedditUpdater.class_reddit = praw.Reddit(config.get('DEFAULT', 'reddit_agent')) if config.has_option('DEFAULT', 'check_time'): self.CHECK_TIME = int(config.get('DEFAULT', 'check_time')) for server in config.sections(): self.parse_server(server, dict(config.items(server))) def parse_server(self, server, items): mappings = re.sub('\s', '', items['mapping']).split(',') if not mappings: raise Exception('No mappings for %r' % server) bot = RedditBot(items['irc_name'], server) self.bots[server] = bot channels = [] for mapping in mappings: channel, subs = mapping.split(':', 1) norm_subs = '+'.join(sorted(subs.split('+'))) if not norm_subs: raise Exception('No subreddits for %r:%r' % (server, channel)) channels.append(channel) if norm_subs not in self.reddits: self.reddits[norm_subs] = RedditUpdater(norm_subs) self.reddits[norm_subs].add(bot, channel) use_ssl = items['irc_ssl'].lower() in ('1', 'yes', 'true', 'on') bot.connect(items['irc_host'], int(items['irc_port']), channel=channels, use_ssl=use_ssl) if 'irc_msg' in items: bot.MSG_FORMAT = text_type(items['irc_msg']) if 'irc_pswd' in items: bot.identify(items['irc_pswd']) def run(self): now = time.time() check_time = now + self.CHECK_TIME while True: wait_time = check_time - now asyncore.loop(timeout=wait_time, count=1) now = time.time() if now >= check_time: for reddit in self.reddits.values(): reddit.update() check_time = now + self.CHECK_TIME def main(): runner = Runner() runner.run() if __name__ == '__main__': sys.exit(main())
bsd-2-clause
-3,101,209,999,318,727,000
35.398773
79
0.537839
false
lucienfostier/gaffer
python/GafferTest/ArrayPlugTest.py
7
17171
########################################################################## # # Copyright (c) 2013, Image Engine Design Inc. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above # copyright notice, this list of conditions and the following # disclaimer. # # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided with # the distribution. # # * Neither the name of John Haddon nor the names of # any other contributors to this software may be used to endorse or # promote products derived from this software without specific prior # written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS # IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF # LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ########################################################################## import unittest import gc import imath import IECore import Gaffer import GafferTest class ArrayPlugTest( GafferTest.TestCase ) : def test( self ) : a = GafferTest.AddNode() n = GafferTest.ArrayPlugNode() self.assertTrue( "e1" in n["in"] ) self.assertTrue( "e2" not in n["in"] ) self.assertEqual( len( n["in"] ), 1 ) self.assertTrue( n["in"]["e1"].isSame( n["in"][0] ) ) n["in"][0].setInput( a["sum"] ) self.assertEqual( len( n["in"] ), 2 ) self.assertTrue( "e1" in n["in"] ) self.assertTrue( "e2" in n["in"] ) n["in"][0].setInput( None ) self.assertTrue( "e1" in n["in"] ) self.assertTrue( "e2" not in n["in"] ) self.assertEqual( len( n["in"] ), 1 ) def testConnectionGaps( self ) : a = GafferTest.AddNode() n = GafferTest.ArrayPlugNode() n["in"][0].setInput( a["sum"] ) n["in"][1].setInput( a["sum"] ) n["in"][2].setInput( a["sum"] ) self.assertEqual( len( n["in"] ), 4 ) self.assertEqual( n["in"]["e1"].getInput(), a["sum"] ) self.assertEqual( n["in"]["e2"].getInput(), a["sum"] ) self.assertEqual( n["in"]["e3"].getInput(), a["sum"] ) self.assertIsNone( n["in"]["e4"].getInput() ) n["in"][1].setInput( None ) self.assertEqual( len( n["in"] ), 4 ) self.assertEqual( n["in"]["e1"].getInput(), a["sum"] ) self.assertIsNone( n["in"]["e2"].getInput() ) self.assertEqual( n["in"]["e3"].getInput(), a["sum"] ) self.assertIsNone( n["in"]["e4"].getInput() ) def testSerialisation( self ) : s = Gaffer.ScriptNode() s["a"] = GafferTest.AddNode() s["n"] = GafferTest.ArrayPlugNode() s["n"]["in"][0].setInput( s["a"]["sum"] ) s["n"]["in"][1].setInput( s["a"]["sum"] ) s["n"]["in"][2].setInput( s["a"]["sum"] ) s["n"]["in"][1].setInput( None ) self.assertEqual( len( s["n"]["in"] ), 4 ) self.assertTrue( s["n"]["in"]["e1"].isSame( s["n"]["in"][0] ) ) self.assertTrue( s["n"]["in"]["e2"].isSame( s["n"]["in"][1] ) ) self.assertTrue( s["n"]["in"]["e3"].isSame( s["n"]["in"][2] ) ) self.assertTrue( s["n"]["in"]["e4"].isSame( s["n"]["in"][3] ) ) self.assertEqual( s["n"]["in"]["e1"].getInput(), s["a"]["sum"] ) self.assertIsNone( s["n"]["in"]["e2"].getInput() ) self.assertEqual( s["n"]["in"]["e3"].getInput(), s["a"]["sum"] ) self.assertIsNone( s["n"]["in"]["e4"].getInput() ) s2 = Gaffer.ScriptNode() s2.execute( s.serialise() ) self.assertEqual( len( s2["n"]["in"] ), 4 ) self.assertTrue( s2["n"]["in"]["e1"].isSame( s2["n"]["in"][0] ) ) self.assertTrue( s2["n"]["in"]["e2"].isSame( s2["n"]["in"][1] ) ) self.assertTrue( s2["n"]["in"]["e3"].isSame( s2["n"]["in"][2] ) ) self.assertTrue( s2["n"]["in"]["e4"].isSame( s2["n"]["in"][3] ) ) self.assertEqual( s2["n"]["in"]["e1"].getInput(), s2["a"]["sum"] ) self.assertIsNone( s2["n"]["in"]["e2"].getInput() ) self.assertEqual( s2["n"]["in"]["e3"].getInput(), s2["a"]["sum"] ) self.assertIsNone( s2["n"]["in"]["e4"].getInput() ) def testMaximumInputs( self ) : a = GafferTest.AddNode() n = GafferTest.ArrayPlugNode() # connect all inputs for i in range( 0, 6 ) : n["in"][i].setInput( a["sum"] ) self.assertEqual( len( n["in"] ), 6 ) for i in range( 0, 6 ) : self.assertTrue( n["in"][i].getInput().isSame( a["sum"] ) ) # check that removing the one before the last # leaves the last in place. n["in"][4].setInput( None ) self.assertEqual( len( n["in"] ), 6 ) for i in range( 0, 6 ) : if i != 4 : self.assertTrue( n["in"][i].getInput().isSame( a["sum"] ) ) else : self.assertTrue( n["in"][i].getInput() is None ) def testMakeConnectionAndUndoAndRedo( self ) : s = Gaffer.ScriptNode() s["a"] = GafferTest.AddNode() s["n"] = GafferTest.ArrayPlugNode() with Gaffer.UndoScope( s ) : s["n"]["in"][0].setInput( s["a"]["sum"] ) self.assertEqual( len( s["n"]["in"] ), 2 ) self.assertTrue( s["n"]["in"][0].isSame( s["n"]["in"]["e1"] ) ) self.assertTrue( s["n"]["in"][1].isSame( s["n"]["in"]["e2"] ) ) s.undo() self.assertEqual( len( s["n"]["in"] ), 1 ) self.assertTrue( s["n"]["in"][0].isSame( s["n"]["in"]["e1"] ) ) s.redo() self.assertEqual( len( s["n"]["in"] ), 2 ) self.assertTrue( s["n"]["in"][0].isSame( s["n"]["in"]["e1"] ) ) self.assertTrue( s["n"]["in"][1].isSame( s["n"]["in"]["e2"] ) ) s.undo() self.assertEqual( len( s["n"]["in"] ), 1 ) self.assertTrue( s["n"]["in"][0].isSame( s["n"]["in"]["e1"] ) ) self.assertTrue( "in" in s["n"] ) self.assertFalse( "in1" in s["n"] ) def testMinimumInputs( self ) : a = GafferTest.AddNode() n = Gaffer.Node() n["in"] = Gaffer.ArrayPlug( "in", element = Gaffer.IntPlug( "e1" ), minSize=3 ) self.assertEqual( len( n["in"] ), 3 ) # connecting to the middle input shouldn't create # any new inputs, because there is still one free on the end n["in"]["e2"].setInput( a["sum"] ) self.assertEqual( len( n["in"] ), 3 ) # connecting to the last input should create a new # one - there should always be one free input on the # end (until the maximum is reached). n["in"]["e3"].setInput( a["sum"] ) self.assertEqual( len( n["in"] ), 4 ) n["in"]["e3"].setInput( None ) self.assertEqual( len( n["in"] ), 3 ) def testDeleteAndUndoAndRedo( self ) : s = Gaffer.ScriptNode() s["a"] = GafferTest.AddNode() s["n"] = GafferTest.ArrayPlugNode() s["n"]["in"]["e1"].setInput( s["a"]["sum"] ) s["n"]["in"]["e2"].setInput( s["a"]["sum"] ) s["n"]["in"]["e3"].setInput( s["a"]["sum"] ) self.assertEqual( len( s["n"]["in"] ), 4 ) self.assertTrue( s["n"]["in"]["e1"].getInput().isSame( s["a"]["sum"] ) ) self.assertTrue( s["n"]["in"]["e2"].getInput().isSame( s["a"]["sum"] ) ) self.assertTrue( s["n"]["in"]["e3"].getInput().isSame( s["a"]["sum"] ) ) with Gaffer.UndoScope( s ) : s.deleteNodes( s, Gaffer.StandardSet( [ s["n"] ] ) ) self.assertFalse( "n" in s ) s.undo() self.assertEqual( len( s["n"]["in"] ), 4 ) self.assertTrue( s["n"]["in"]["e1"].getInput().isSame( s["a"]["sum"] ) ) self.assertTrue( s["n"]["in"]["e2"].getInput().isSame( s["a"]["sum"] ) ) self.assertTrue( s["n"]["in"]["e3"].getInput().isSame( s["a"]["sum"] ) ) s.redo() self.assertFalse( "n" in s ) s.undo() self.assertEqual( len( s["n"]["in"] ), 4 ) self.assertTrue( s["n"]["in"]["e1"].getInput().isSame( s["a"]["sum"] ) ) self.assertTrue( s["n"]["in"]["e2"].getInput().isSame( s["a"]["sum"] ) ) self.assertTrue( s["n"]["in"]["e3"].getInput().isSame( s["a"]["sum"] ) ) def testDeleteInputNodeAndUndoAndRedo( self ) : s = Gaffer.ScriptNode() s["a"] = GafferTest.AddNode() s["n"] = GafferTest.ArrayPlugNode() s["n"]["in"][0].setInput( s["a"]["sum"] ) s["n"]["in"][1].setInput( s["a"]["sum"] ) s["n"]["in"][2].setInput( s["a"]["sum"] ) n = s["n"] self.assertEqual( len( s["n"]["in"] ), 4 ) self.assertTrue( s["n"]["in"][0].getInput().isSame( s["a"]["sum"] ) ) self.assertTrue( s["n"]["in"][1].getInput().isSame( s["a"]["sum"] ) ) self.assertTrue( s["n"]["in"][2].getInput().isSame( s["a"]["sum"] ) ) with Gaffer.UndoScope( s ) : s.deleteNodes( s, Gaffer.StandardSet( [ s["a"] ] ) ) self.assertFalse( "a" in s ) s.undo() self.assertEqual( len( s["n"]["in"] ), 4 ) self.assertTrue( s["n"]["in"][0].getInput().isSame( s["a"]["sum"] ) ) self.assertTrue( s["n"]["in"][1].getInput().isSame( s["a"]["sum"] ) ) self.assertTrue( s["n"]["in"][2].getInput().isSame( s["a"]["sum"] ) ) s.redo() self.assertFalse( "a" in s ) s.undo() self.assertEqual( len( s["n"]["in"] ), 4 ) self.assertTrue( s["n"]["in"][0].getInput().isSame( s["a"]["sum"] ) ) self.assertTrue( s["n"]["in"][1].getInput().isSame( s["a"]["sum"] ) ) self.assertTrue( s["n"]["in"][2].getInput().isSame( s["a"]["sum"] ) ) def testFixedLengthDynamic( self ) : s = Gaffer.ScriptNode() s["a"] = GafferTest.AddNode() s["n"] = Gaffer.Node() s["n"]["a"] = Gaffer.ArrayPlug( "a", element = Gaffer.IntPlug(), minSize = 4, maxSize = 4, flags = Gaffer.Plug.Flags.Default | Gaffer.Plug.Flags.Dynamic ) s["n"]["a"][1].setInput( s["a"]["sum"] ) s["n"]["a"][2].setInput( s["a"]["sum"] ) self.assertEqual( s["n"]["a"].minSize(), 4 ) self.assertEqual( s["n"]["a"].maxSize(), 4 ) self.assertEqual( len( s["n"]["a"] ), 4 ) self.assertTrue( s["n"]["a"][0].getInput() is None ) self.assertTrue( s["n"]["a"][1].getInput().isSame( s["a"]["sum"] ) ) self.assertTrue( s["n"]["a"][1].getInput().isSame( s["a"]["sum"] ) ) self.assertTrue( s["n"]["a"][3].getInput() is None ) s2 = Gaffer.ScriptNode() s2.execute( s.serialise() ) self.assertEqual( s2["n"]["a"].minSize(), 4 ) self.assertEqual( s2["n"]["a"].maxSize(), 4 ) self.assertEqual( len( s2["n"]["a"] ), 4 ) self.assertTrue( s2["n"]["a"][0].getInput() is None ) self.assertTrue( s2["n"]["a"][1].getInput().isSame( s2["a"]["sum"] ) ) self.assertTrue( s2["n"]["a"][1].getInput().isSame( s2["a"]["sum"] ) ) self.assertTrue( s2["n"]["a"][3].getInput() is None ) def testPythonElement( self ) : class PythonElement( Gaffer.Plug ) : def __init__( self, name = "PythonElement", direction = Gaffer.Plug.Direction.In, flags = Gaffer.Plug.Flags.Default ) : Gaffer.Plug.__init__( self, name, direction, flags ) def createCounterpart( self, name, direction ) : return PythonElement( name, direction, self.getFlags() ) n = Gaffer.Node() n["a"] = Gaffer.ArrayPlug( element = PythonElement() ) self.assertEqual( len( n["a"] ), 1 ) self.assertTrue( isinstance( n["a"][0], PythonElement ) ) p = PythonElement() n["a"][0].setInput( p ) self.assertEqual( len( n["a"] ), 2 ) self.assertTrue( isinstance( n["a"][1], PythonElement ) ) def testTopLevelConnection( self ) : n = Gaffer.Node() n["a"] = Gaffer.ArrayPlug( element = Gaffer.IntPlug() ) n["b"] = Gaffer.ArrayPlug( element = Gaffer.IntPlug() ) n["b"].setInput( n["a"] ) def assertInput( plug, input ) : self.assertEqual( len( plug ), len( input ) ) for i in range( 0, len( plug ) ) : self.assertTrue( plug[i].getInput().isSame( input[i] ) ) assertInput( n["b"], n["a"] ) a = GafferTest.AddNode() n["a"][0].setInput( a["sum"] ) self.assertEqual( len( n["a"] ), 2 ) assertInput( n["b"], n["a"] ) n["a"][1].setInput( a["sum"] ) self.assertEqual( len( n["a"] ), 3 ) assertInput( n["b"], n["a"] ) n["a"][0].setInput( None ) self.assertEqual( len( n["a"] ), 3 ) assertInput( n["b"], n["a"] ) def testArrayPlugCopiesColors( self ) : n = Gaffer.Node() n2 = Gaffer.Node() n2.addChild(Gaffer.IntPlug("test")) connectionColor = imath.Color3f( 0.1 , 0.2 , 0.3 ) noodleColor = imath.Color3f( 0.4, 0.5 , 0.6 ) element = Gaffer.IntPlug() Gaffer.Metadata.registerValue( element, "connectionGadget:color", connectionColor ) Gaffer.Metadata.registerValue( element, "nodule:color", noodleColor ) n["a"] = Gaffer.ArrayPlug( element = element ) n["a"][0].setInput(n2["test"]) self.assertEqual( Gaffer.Metadata.value( n["a"][1], "connectionGadget:color" ), connectionColor ) self.assertEqual( Gaffer.Metadata.value( n["a"][1], "nodule:color" ), noodleColor ) def testOnlyOneChildType( self ) : p = Gaffer.ArrayPlug( element = Gaffer.IntPlug() ) self.assertTrue( p.acceptsChild( Gaffer.IntPlug() ) ) self.assertFalse( p.acceptsChild( Gaffer.FloatPlug() ) ) def testDenyInputFromNonArrayPlugs( self ) : a = Gaffer.ArrayPlug( element = Gaffer.IntPlug() ) p = Gaffer.V2iPlug() self.assertFalse( a.acceptsInput( p ) ) def testPartialConnections( self ) : n = Gaffer.Node() n["p"] = Gaffer.ArrayPlug( element = Gaffer.V3fPlug( "e" ) ) self.assertEqual( len( n["p"] ), 1 ) p = Gaffer.FloatPlug() n["p"][0]["x"].setInput( p ) self.assertEqual( len( n["p"] ), 2 ) n["p"][0]["y"].setInput( p ) self.assertEqual( len( n["p"] ), 2 ) n["p"][1]["y"].setInput( p ) self.assertEqual( len( n["p"] ), 3 ) n["p"][2]["z"].setInput( p ) self.assertEqual( len( n["p"] ), 4 ) n["p"][1]["y"].setInput( None ) self.assertEqual( len( n["p"] ), 4 ) n["p"][2]["z"].setInput( None ) self.assertEqual( len( n["p"] ), 2 ) def testResizeWhenInputsChange( self ) : s = Gaffer.ScriptNode() s["a"] = GafferTest.AddNode() s["n"] = Gaffer.Node() s["n"]["user"]["p"] = Gaffer.ArrayPlug( element = Gaffer.IntPlug(), flags = Gaffer.Plug.Flags.Default | Gaffer.Plug.Flags.Dynamic, resizeWhenInputsChange = False ) self.assertEqual( s["n"]["user"]["p"].resizeWhenInputsChange(), False ) self.assertEqual( len( s["n"]["user"]["p"] ), 1 ) s["n"]["user"]["p"][0].setInput( s["a"]["sum"] ) self.assertEqual( len( s["n"]["user"]["p"] ), 1 ) s["n"]["user"]["p"][0].setInput( None ) self.assertEqual( len( s["n"]["user"]["p"] ), 1 ) p = s["n"]["user"]["p"].createCounterpart( "p", Gaffer.Plug.Direction.In ) self.assertEqual( p.resizeWhenInputsChange(), False ) def testNext( self ) : a = GafferTest.AddNode() n = Gaffer.Node() n["a1"] = Gaffer.ArrayPlug( element = Gaffer.IntPlug() ) n["a2"] = Gaffer.ArrayPlug( element = Gaffer.IntPlug(), maxSize = 3, resizeWhenInputsChange = False ) self.assertEqual( len( n["a1"] ), 1 ) self.assertEqual( len( n["a2"] ), 1 ) self.assertEqual( n["a1"].next(), n["a1"][0] ) self.assertEqual( n["a2"].next(), n["a2"][0] ) n["a1"][0].setInput( a["sum"] ) n["a2"][0].setInput( a["sum"] ) self.assertEqual( len( n["a1"] ), 2 ) self.assertEqual( len( n["a2"] ), 1 ) self.assertEqual( n["a1"].next(), n["a1"][1] ) self.assertEqual( n["a2"].next(), n["a2"][1] ) self.assertEqual( len( n["a2"] ), 2 ) self.assertEqual( n["a1"].next(), n["a1"][1] ) self.assertEqual( n["a2"].next(), n["a2"][1] ) n["a2"].next().setInput( a["sum"] ) n["a2"].next().setInput( a["sum"] ) self.assertEqual( len( n["a2"] ), 3 ) self.assertEqual( n["a2"].next(), None ) def testResize( self ) : p = Gaffer.ArrayPlug( element = Gaffer.IntPlug(), minSize = 1, maxSize = 3, resizeWhenInputsChange = False ) self.assertEqual( len( p ), p.minSize() ) p.resize( 2 ) self.assertEqual( len( p ), 2 ) self.assertIsInstance( p[1], Gaffer.IntPlug ) p.resize( 3 ) self.assertEqual( len( p ), 3 ) self.assertIsInstance( p[2], Gaffer.IntPlug ) with self.assertRaises( RuntimeError ) : p.resize( p.minSize() - 1 ) with self.assertRaises( RuntimeError ) : p.resize( p.maxSize() + 1 ) def testSerialisationUsesIndices( self ) : s = Gaffer.ScriptNode() s["a"] = GafferTest.AddNode() s["n"] = GafferTest.ArrayPlugNode() s["n"]["in"][0].setInput( s["a"]["sum"] ) s["n"]["in"][1].setInput( s["a"]["sum"] ) ss = s.serialise() self.assertNotIn( "[\"" + s["n"]["in"][0].getName() + "\"]", ss ) self.assertNotIn( "[\"" + s["n"]["in"][1].getName() + "\"]", ss ) self.assertIn( "[0].setInput", ss ) self.assertIn( "[1].setInput", ss ) s2 = Gaffer.ScriptNode() s2.execute( ss ) self.assertEqual( s2["n"]["in"][0].getInput(), s2["a"]["sum"] ) self.assertEqual( s2["n"]["in"][1].getInput(), s2["a"]["sum"] ) def tearDown( self ) : # some bugs in the InputGenerator only showed themselves when # the ScriptNode was deleted during garbage collection, often # in totally unrelated tests. so we run the garbage collector # here to localise any problems to this test, making them # easier to diagnose and fix. while gc.collect() : pass IECore.RefCounted.collectGarbage() if __name__ == "__main__": unittest.main()
bsd-3-clause
-2,321,613,042,768,154,600
31.3371
165
0.58558
false
mwmuni/LIGGGHTS_GUI
networkx/algorithms/connectivity/connectivity.py
21
29325
# -*- coding: utf-8 -*- """ Flow based connectivity algorithms """ from __future__ import division import itertools import networkx as nx # Define the default maximum flow function to use in all flow based # connectivity algorithms. from networkx.algorithms.flow import edmonds_karp, shortest_augmenting_path from networkx.algorithms.flow import build_residual_network default_flow_func = edmonds_karp from .utils import (build_auxiliary_node_connectivity, build_auxiliary_edge_connectivity) __author__ = '\n'.join(['Jordi Torrents <[email protected]>']) __all__ = ['average_node_connectivity', 'local_node_connectivity', 'node_connectivity', 'local_edge_connectivity', 'edge_connectivity', 'all_pairs_node_connectivity'] def local_node_connectivity(G, s, t, flow_func=None, auxiliary=None, residual=None, cutoff=None): r"""Computes local node connectivity for nodes s and t. Local node connectivity for two non adjacent nodes s and t is the minimum number of nodes that must be removed (along with their incident edges) to disconnect them. This is a flow based implementation of node connectivity. We compute the maximum flow on an auxiliary digraph build from the original input graph (see below for details). Parameters ---------- G : NetworkX graph Undirected graph s : node Source node t : node Target node flow_func : function A function for computing the maximum flow among a pair of nodes. The function has to accept at least three parameters: a Digraph, a source node, and a target node. And return a residual network that follows NetworkX conventions (see :meth:`maximum_flow` for details). If flow_func is None, the default maximum flow function (:meth:`edmonds_karp`) is used. See below for details. The choice of the default function may change from version to version and should not be relied on. Default value: None. auxiliary : NetworkX DiGraph Auxiliary digraph to compute flow based node connectivity. It has to have a graph attribute called mapping with a dictionary mapping node names in G and in the auxiliary digraph. If provided it will be reused instead of recreated. Default value: None. residual : NetworkX DiGraph Residual network to compute maximum flow. If provided it will be reused instead of recreated. Default value: None. cutoff : integer, float If specified, the maximum flow algorithm will terminate when the flow value reaches or exceeds the cutoff. This is only for the algorithms that support the cutoff parameter: :meth:`edmonds_karp` and :meth:`shortest_augmenting_path`. Other algorithms will ignore this parameter. Default value: None. Returns ------- K : integer local node connectivity for nodes s and t Examples -------- This function is not imported in the base NetworkX namespace, so you have to explicitly import it from the connectivity package: >>> from networkx.algorithms.connectivity import local_node_connectivity We use in this example the platonic icosahedral graph, which has node connectivity 5. >>> G = nx.icosahedral_graph() >>> local_node_connectivity(G, 0, 6) 5 If you need to compute local connectivity on several pairs of nodes in the same graph, it is recommended that you reuse the data structures that NetworkX uses in the computation: the auxiliary digraph for node connectivity, and the residual network for the underlying maximum flow computation. Example of how to compute local node connectivity among all pairs of nodes of the platonic icosahedral graph reusing the data structures. >>> import itertools >>> # You also have to explicitly import the function for >>> # building the auxiliary digraph from the connectivity package >>> from networkx.algorithms.connectivity import ( ... build_auxiliary_node_connectivity) ... >>> H = build_auxiliary_node_connectivity(G) >>> # And the function for building the residual network from the >>> # flow package >>> from networkx.algorithms.flow import build_residual_network >>> # Note that the auxiliary digraph has an edge attribute named capacity >>> R = build_residual_network(H, 'capacity') >>> result = dict.fromkeys(G, dict()) >>> # Reuse the auxiliary digraph and the residual network by passing them >>> # as parameters >>> for u, v in itertools.combinations(G, 2): ... k = local_node_connectivity(G, u, v, auxiliary=H, residual=R) ... result[u][v] = k ... >>> all(result[u][v] == 5 for u, v in itertools.combinations(G, 2)) True You can also use alternative flow algorithms for computing node connectivity. For instance, in dense networks the algorithm :meth:`shortest_augmenting_path` will usually perform better than the default :meth:`edmonds_karp` which is faster for sparse networks with highly skewed degree distributions. Alternative flow functions have to be explicitly imported from the flow package. >>> from networkx.algorithms.flow import shortest_augmenting_path >>> local_node_connectivity(G, 0, 6, flow_func=shortest_augmenting_path) 5 Notes ----- This is a flow based implementation of node connectivity. We compute the maximum flow using, by default, the :meth:`edmonds_karp` algorithm (see: :meth:`maximum_flow`) on an auxiliary digraph build from the original input graph: For an undirected graph G having `n` nodes and `m` edges we derive a directed graph H with `2n` nodes and `2m+n` arcs by replacing each original node `v` with two nodes `v_A`, `v_B` linked by an (internal) arc in H. Then for each edge (`u`, `v`) in G we add two arcs (`u_B`, `v_A`) and (`v_B`, `u_A`) in H. Finally we set the attribute capacity = 1 for each arc in H [1]_ . For a directed graph G having `n` nodes and `m` arcs we derive a directed graph H with `2n` nodes and `m+n` arcs by replacing each original node `v` with two nodes `v_A`, `v_B` linked by an (internal) arc (`v_A`, `v_B`) in H. Then for each arc (`u`, `v`) in G we add one arc (`u_B`, `v_A`) in H. Finally we set the attribute capacity = 1 for each arc in H. This is equal to the local node connectivity because the value of a maximum s-t-flow is equal to the capacity of a minimum s-t-cut. See also -------- :meth:`local_edge_connectivity` :meth:`node_connectivity` :meth:`minimum_node_cut` :meth:`maximum_flow` :meth:`edmonds_karp` :meth:`preflow_push` :meth:`shortest_augmenting_path` References ---------- .. [1] Kammer, Frank and Hanjo Taubig. Graph Connectivity. in Brandes and Erlebach, 'Network Analysis: Methodological Foundations', Lecture Notes in Computer Science, Volume 3418, Springer-Verlag, 2005. http://www.informatik.uni-augsburg.de/thi/personen/kammer/Graph_Connectivity.pdf """ if flow_func is None: flow_func = default_flow_func if auxiliary is None: H = build_auxiliary_node_connectivity(G) else: H = auxiliary mapping = H.graph.get('mapping', None) if mapping is None: raise nx.NetworkXError('Invalid auxiliary digraph.') kwargs = dict(flow_func=flow_func, residual=residual) if flow_func is shortest_augmenting_path: kwargs['cutoff'] = cutoff kwargs['two_phase'] = True elif flow_func is edmonds_karp: kwargs['cutoff'] = cutoff return nx.maximum_flow_value(H, '%sB' % mapping[s], '%sA' % mapping[t], **kwargs) def node_connectivity(G, s=None, t=None, flow_func=None): r"""Returns node connectivity for a graph or digraph G. Node connectivity is equal to the minimum number of nodes that must be removed to disconnect G or render it trivial. If source and target nodes are provided, this function returns the local node connectivity: the minimum number of nodes that must be removed to break all paths from source to target in G. Parameters ---------- G : NetworkX graph Undirected graph s : node Source node. Optional. Default value: None. t : node Target node. Optional. Default value: None. flow_func : function A function for computing the maximum flow among a pair of nodes. The function has to accept at least three parameters: a Digraph, a source node, and a target node. And return a residual network that follows NetworkX conventions (see :meth:`maximum_flow` for details). If flow_func is None, the default maximum flow function (:meth:`edmonds_karp`) is used. See below for details. The choice of the default function may change from version to version and should not be relied on. Default value: None. Returns ------- K : integer Node connectivity of G, or local node connectivity if source and target are provided. Examples -------- >>> # Platonic icosahedral graph is 5-node-connected >>> G = nx.icosahedral_graph() >>> nx.node_connectivity(G) 5 You can use alternative flow algorithms for the underlying maximum flow computation. In dense networks the algorithm :meth:`shortest_augmenting_path` will usually perform better than the default :meth:`edmonds_karp`, which is faster for sparse networks with highly skewed degree distributions. Alternative flow functions have to be explicitly imported from the flow package. >>> from networkx.algorithms.flow import shortest_augmenting_path >>> nx.node_connectivity(G, flow_func=shortest_augmenting_path) 5 If you specify a pair of nodes (source and target) as parameters, this function returns the value of local node connectivity. >>> nx.node_connectivity(G, 3, 7) 5 If you need to perform several local computations among different pairs of nodes on the same graph, it is recommended that you reuse the data structures used in the maximum flow computations. See :meth:`local_node_connectivity` for details. Notes ----- This is a flow based implementation of node connectivity. The algorithm works by solving `O((n-\delta-1+\delta(\delta-1)/2))` maximum flow problems on an auxiliary digraph. Where `\delta` is the minimum degree of G. For details about the auxiliary digraph and the computation of local node connectivity see :meth:`local_node_connectivity`. This implementation is based on algorithm 11 in [1]_. See also -------- :meth:`local_node_connectivity` :meth:`edge_connectivity` :meth:`maximum_flow` :meth:`edmonds_karp` :meth:`preflow_push` :meth:`shortest_augmenting_path` References ---------- .. [1] Abdol-Hossein Esfahanian. Connectivity Algorithms. http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf """ if (s is not None and t is None) or (s is None and t is not None): raise nx.NetworkXError('Both source and target must be specified.') # Local node connectivity if s is not None and t is not None: if s not in G: raise nx.NetworkXError('node %s not in graph' % s) if t not in G: raise nx.NetworkXError('node %s not in graph' % t) return local_node_connectivity(G, s, t, flow_func=flow_func) # Global node connectivity if G.is_directed(): if not nx.is_weakly_connected(G): return 0 iter_func = itertools.permutations # It is necessary to consider both predecessors # and successors for directed graphs def neighbors(v): return itertools.chain.from_iterable([G.predecessors_iter(v), G.successors_iter(v)]) else: if not nx.is_connected(G): return 0 iter_func = itertools.combinations neighbors = G.neighbors_iter # Reuse the auxiliary digraph and the residual network H = build_auxiliary_node_connectivity(G) R = build_residual_network(H, 'capacity') kwargs = dict(flow_func=flow_func, auxiliary=H, residual=R) # Pick a node with minimum degree degree = G.degree() minimum_degree = min(degree.values()) v = next(n for n, d in degree.items() if d == minimum_degree) # Node connectivity is bounded by degree. K = minimum_degree # compute local node connectivity with all its non-neighbors nodes for w in set(G) - set(neighbors(v)) - set([v]): kwargs['cutoff'] = K K = min(K, local_node_connectivity(G, v, w, **kwargs)) # Also for non adjacent pairs of neighbors of v for x, y in iter_func(neighbors(v), 2): if y in G[x]: continue kwargs['cutoff'] = K K = min(K, local_node_connectivity(G, x, y, **kwargs)) return K def average_node_connectivity(G, flow_func=None): r"""Returns the average connectivity of a graph G. The average connectivity `\bar{\kappa}` of a graph G is the average of local node connectivity over all pairs of nodes of G [1]_ . .. math:: \bar{\kappa}(G) = \frac{\sum_{u,v} \kappa_{G}(u,v)}{{n \choose 2}} Parameters ---------- G : NetworkX graph Undirected graph flow_func : function A function for computing the maximum flow among a pair of nodes. The function has to accept at least three parameters: a Digraph, a source node, and a target node. And return a residual network that follows NetworkX conventions (see :meth:`maximum_flow` for details). If flow_func is None, the default maximum flow function (:meth:`edmonds_karp`) is used. See :meth:`local_node_connectivity` for details. The choice of the default function may change from version to version and should not be relied on. Default value: None. Returns ------- K : float Average node connectivity See also -------- :meth:`local_node_connectivity` :meth:`node_connectivity` :meth:`edge_connectivity` :meth:`maximum_flow` :meth:`edmonds_karp` :meth:`preflow_push` :meth:`shortest_augmenting_path` References ---------- .. [1] Beineke, L., O. Oellermann, and R. Pippert (2002). The average connectivity of a graph. Discrete mathematics 252(1-3), 31-45. http://www.sciencedirect.com/science/article/pii/S0012365X01001807 """ if G.is_directed(): iter_func = itertools.permutations else: iter_func = itertools.combinations # Reuse the auxiliary digraph and the residual network H = build_auxiliary_node_connectivity(G) R = build_residual_network(H, 'capacity') kwargs = dict(flow_func=flow_func, auxiliary=H, residual=R) num, den = 0, 0 for u, v in iter_func(G, 2): num += local_node_connectivity(G, u, v, **kwargs) den += 1 if den == 0: # Null Graph return 0 return num / den def all_pairs_node_connectivity(G, nbunch=None, flow_func=None): """Compute node connectivity between all pairs of nodes of G. Parameters ---------- G : NetworkX graph Undirected graph nbunch: container Container of nodes. If provided node connectivity will be computed only over pairs of nodes in nbunch. flow_func : function A function for computing the maximum flow among a pair of nodes. The function has to accept at least three parameters: a Digraph, a source node, and a target node. And return a residual network that follows NetworkX conventions (see :meth:`maximum_flow` for details). If flow_func is None, the default maximum flow function (:meth:`edmonds_karp`) is used. See below for details. The choice of the default function may change from version to version and should not be relied on. Default value: None. Returns ------- all_pairs : dict A dictionary with node connectivity between all pairs of nodes in G, or in nbunch if provided. See also -------- :meth:`local_node_connectivity` :meth:`edge_connectivity` :meth:`local_edge_connectivity` :meth:`maximum_flow` :meth:`edmonds_karp` :meth:`preflow_push` :meth:`shortest_augmenting_path` """ if nbunch is None: nbunch = G else: nbunch = set(nbunch) directed = G.is_directed() if directed: iter_func = itertools.permutations else: iter_func = itertools.combinations all_pairs = {n: {} for n in nbunch} # Reuse auxiliary digraph and residual network H = build_auxiliary_node_connectivity(G) mapping = H.graph['mapping'] R = build_residual_network(H, 'capacity') kwargs = dict(flow_func=flow_func, auxiliary=H, residual=R) for u, v in iter_func(nbunch, 2): K = local_node_connectivity(G, u, v, **kwargs) all_pairs[u][v] = K if not directed: all_pairs[v][u] = K return all_pairs def local_edge_connectivity(G, u, v, flow_func=None, auxiliary=None, residual=None, cutoff=None): r"""Returns local edge connectivity for nodes s and t in G. Local edge connectivity for two nodes s and t is the minimum number of edges that must be removed to disconnect them. This is a flow based implementation of edge connectivity. We compute the maximum flow on an auxiliary digraph build from the original network (see below for details). This is equal to the local edge connectivity because the value of a maximum s-t-flow is equal to the capacity of a minimum s-t-cut (Ford and Fulkerson theorem) [1]_ . Parameters ---------- G : NetworkX graph Undirected or directed graph s : node Source node t : node Target node flow_func : function A function for computing the maximum flow among a pair of nodes. The function has to accept at least three parameters: a Digraph, a source node, and a target node. And return a residual network that follows NetworkX conventions (see :meth:`maximum_flow` for details). If flow_func is None, the default maximum flow function (:meth:`edmonds_karp`) is used. See below for details. The choice of the default function may change from version to version and should not be relied on. Default value: None. auxiliary : NetworkX DiGraph Auxiliary digraph for computing flow based edge connectivity. If provided it will be reused instead of recreated. Default value: None. residual : NetworkX DiGraph Residual network to compute maximum flow. If provided it will be reused instead of recreated. Default value: None. cutoff : integer, float If specified, the maximum flow algorithm will terminate when the flow value reaches or exceeds the cutoff. This is only for the algorithms that support the cutoff parameter: :meth:`edmonds_karp` and :meth:`shortest_augmenting_path`. Other algorithms will ignore this parameter. Default value: None. Returns ------- K : integer local edge connectivity for nodes s and t. Examples -------- This function is not imported in the base NetworkX namespace, so you have to explicitly import it from the connectivity package: >>> from networkx.algorithms.connectivity import local_edge_connectivity We use in this example the platonic icosahedral graph, which has edge connectivity 5. >>> G = nx.icosahedral_graph() >>> local_edge_connectivity(G, 0, 6) 5 If you need to compute local connectivity on several pairs of nodes in the same graph, it is recommended that you reuse the data structures that NetworkX uses in the computation: the auxiliary digraph for edge connectivity, and the residual network for the underlying maximum flow computation. Example of how to compute local edge connectivity among all pairs of nodes of the platonic icosahedral graph reusing the data structures. >>> import itertools >>> # You also have to explicitly import the function for >>> # building the auxiliary digraph from the connectivity package >>> from networkx.algorithms.connectivity import ( ... build_auxiliary_edge_connectivity) >>> H = build_auxiliary_edge_connectivity(G) >>> # And the function for building the residual network from the >>> # flow package >>> from networkx.algorithms.flow import build_residual_network >>> # Note that the auxiliary digraph has an edge attribute named capacity >>> R = build_residual_network(H, 'capacity') >>> result = dict.fromkeys(G, dict()) >>> # Reuse the auxiliary digraph and the residual network by passing them >>> # as parameters >>> for u, v in itertools.combinations(G, 2): ... k = local_edge_connectivity(G, u, v, auxiliary=H, residual=R) ... result[u][v] = k >>> all(result[u][v] == 5 for u, v in itertools.combinations(G, 2)) True You can also use alternative flow algorithms for computing edge connectivity. For instance, in dense networks the algorithm :meth:`shortest_augmenting_path` will usually perform better than the default :meth:`edmonds_karp` which is faster for sparse networks with highly skewed degree distributions. Alternative flow functions have to be explicitly imported from the flow package. >>> from networkx.algorithms.flow import shortest_augmenting_path >>> local_edge_connectivity(G, 0, 6, flow_func=shortest_augmenting_path) 5 Notes ----- This is a flow based implementation of edge connectivity. We compute the maximum flow using, by default, the :meth:`edmonds_karp` algorithm on an auxiliary digraph build from the original input graph: If the input graph is undirected, we replace each edge (`u`,`v`) with two reciprocal arcs (`u`, `v`) and (`v`, `u`) and then we set the attribute 'capacity' for each arc to 1. If the input graph is directed we simply add the 'capacity' attribute. This is an implementation of algorithm 1 in [1]_. The maximum flow in the auxiliary network is equal to the local edge connectivity because the value of a maximum s-t-flow is equal to the capacity of a minimum s-t-cut (Ford and Fulkerson theorem). See also -------- :meth:`edge_connectivity` :meth:`local_node_connectivity` :meth:`node_connectivity` :meth:`maximum_flow` :meth:`edmonds_karp` :meth:`preflow_push` :meth:`shortest_augmenting_path` References ---------- .. [1] Abdol-Hossein Esfahanian. Connectivity Algorithms. http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf """ if flow_func is None: flow_func = default_flow_func if auxiliary is None: H = build_auxiliary_edge_connectivity(G) else: H = auxiliary kwargs = dict(flow_func=flow_func, residual=residual) if flow_func is shortest_augmenting_path: kwargs['cutoff'] = cutoff kwargs['two_phase'] = True elif flow_func is edmonds_karp: kwargs['cutoff'] = cutoff return nx.maximum_flow_value(H, u, v, **kwargs) def edge_connectivity(G, s=None, t=None, flow_func=None): r"""Returns the edge connectivity of the graph or digraph G. The edge connectivity is equal to the minimum number of edges that must be removed to disconnect G or render it trivial. If source and target nodes are provided, this function returns the local edge connectivity: the minimum number of edges that must be removed to break all paths from source to target in G. Parameters ---------- G : NetworkX graph Undirected or directed graph s : node Source node. Optional. Default value: None. t : node Target node. Optional. Default value: None. flow_func : function A function for computing the maximum flow among a pair of nodes. The function has to accept at least three parameters: a Digraph, a source node, and a target node. And return a residual network that follows NetworkX conventions (see :meth:`maximum_flow` for details). If flow_func is None, the default maximum flow function (:meth:`edmonds_karp`) is used. See below for details. The choice of the default function may change from version to version and should not be relied on. Default value: None. Returns ------- K : integer Edge connectivity for G, or local edge connectivity if source and target were provided Examples -------- >>> # Platonic icosahedral graph is 5-edge-connected >>> G = nx.icosahedral_graph() >>> nx.edge_connectivity(G) 5 You can use alternative flow algorithms for the underlying maximum flow computation. In dense networks the algorithm :meth:`shortest_augmenting_path` will usually perform better than the default :meth:`edmonds_karp`, which is faster for sparse networks with highly skewed degree distributions. Alternative flow functions have to be explicitly imported from the flow package. >>> from networkx.algorithms.flow import shortest_augmenting_path >>> nx.edge_connectivity(G, flow_func=shortest_augmenting_path) 5 If you specify a pair of nodes (source and target) as parameters, this function returns the value of local edge connectivity. >>> nx.edge_connectivity(G, 3, 7) 5 If you need to perform several local computations among different pairs of nodes on the same graph, it is recommended that you reuse the data structures used in the maximum flow computations. See :meth:`local_edge_connectivity` for details. Notes ----- This is a flow based implementation of global edge connectivity. For undirected graphs the algorithm works by finding a 'small' dominating set of nodes of G (see algorithm 7 in [1]_ ) and computing local maximum flow (see :meth:`local_edge_connectivity`) between an arbitrary node in the dominating set and the rest of nodes in it. This is an implementation of algorithm 6 in [1]_ . For directed graphs, the algorithm does n calls to the maximum flow function. This is an implementation of algorithm 8 in [1]_ . See also -------- :meth:`local_edge_connectivity` :meth:`local_node_connectivity` :meth:`node_connectivity` :meth:`maximum_flow` :meth:`edmonds_karp` :meth:`preflow_push` :meth:`shortest_augmenting_path` References ---------- .. [1] Abdol-Hossein Esfahanian. Connectivity Algorithms. http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf """ if (s is not None and t is None) or (s is None and t is not None): raise nx.NetworkXError('Both source and target must be specified.') # Local edge connectivity if s is not None and t is not None: if s not in G: raise nx.NetworkXError('node %s not in graph' % s) if t not in G: raise nx.NetworkXError('node %s not in graph' % t) return local_edge_connectivity(G, s, t, flow_func=flow_func) # Global edge connectivity # reuse auxiliary digraph and residual network H = build_auxiliary_edge_connectivity(G) R = build_residual_network(H, 'capacity') kwargs = dict(flow_func=flow_func, auxiliary=H, residual=R) if G.is_directed(): # Algorithm 8 in [1] if not nx.is_weakly_connected(G): return 0 # initial value for \lambda is minimum degree L = min(G.degree().values()) nodes = G.nodes() n = len(nodes) for i in range(n): kwargs['cutoff'] = L try: L = min(L, local_edge_connectivity(G, nodes[i], nodes[i+1], **kwargs)) except IndexError: # last node! L = min(L, local_edge_connectivity(G, nodes[i], nodes[0], **kwargs)) return L else: # undirected # Algorithm 6 in [1] if not nx.is_connected(G): return 0 # initial value for \lambda is minimum degree L = min(G.degree().values()) # A dominating set is \lambda-covering # We need a dominating set with at least two nodes for node in G: D = nx.dominating_set(G, start_with=node) v = D.pop() if D: break else: # in complete graphs the dominating sets will always be of one node # thus we return min degree return L for w in D: kwargs['cutoff'] = L L = min(L, local_edge_connectivity(G, v, w, **kwargs)) return L
gpl-3.0
-6,581,907,839,444,734,000
36.073325
88
0.658721
false
hsarmiento/people_finder_chile
tests/test_main.py
15
3414
#!/usr/bin/python2.7 # encoding: utf-8 # Copyright 2010 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for the Main handler.""" import unittest from google.appengine.ext import webapp import webob import config import django.utils import main import test_handler def setup_request(path): """Constructs a webapp.Request object for a given request path.""" return webapp.Request(webob.Request.blank(path).environ) class MainTests(unittest.TestCase): def test_get_repo_and_action(self): def check(path, repo, action): request = setup_request(path) assert main.get_repo_and_action(request) == (repo, action) check('/personfinder/foo', 'foo', '') check('/personfinder/foo/query', 'foo', 'query') check('/personfinder', None, '') check('/personfinder/global', None, '') check('/personfinder/global/faq', None, 'faq') check('/foo', 'foo', '') check('/foo/view', 'foo', 'view') def test_lang_vulnerability(self): """Regression test for bad characters in the lang parameter.""" request = setup_request('/haiti/start&lang=abc%0adef:ghi') env = main.setup_env(request) assert '\n' not in env.lang, env.lang assert ':' not in env.lang, env.lang def test_shiftjis_get(self): """Tests Shift-JIS encoding of GET query parameters.""" request = setup_request( '/japan/results?charsets=shift_jis&query=%8D%B2%93%A1&role=seek&') handler = main.Main(request, webapp.Response()) assert handler.env.charset == 'shift_jis' assert request.charset == 'shift_jis' assert request.get('query') == u'\u4F50\u85E4' def test_shiftjis_post(self): """Tests Shift-JIS encoding of POST query parameters.""" request = setup_request('/japan/post?') request.body = 'charsets=shift_jis&given_name=%8D%B2%93%A1' request.method = 'POST' handler = main.Main(request, webapp.Response()) assert handler.env.charset == 'shift_jis' assert request.charset == 'shift_jis' assert request.get('given_name') == u'\u4F50\u85E4' def test_default_language(self): """Verify that language_menu_options[0] is used as the default.""" request = setup_request('/haiti/start') handler = main.Main(request, webapp.Response()) assert handler.env.lang == 'en' # first language in the options list assert django.utils.translation.get_language() == 'en' config.set_for_repo('haiti', language_menu_options=['fr', 'ht', 'es']) request = setup_request('/haiti/start') handler = main.Main(request, webapp.Response()) assert handler.env.lang == 'fr' # first language in the options list assert django.utils.translation.get_language() == 'fr' if __name__ == '__main__': unittest.main()
apache-2.0
-3,671,082,563,253,596,000
38.241379
78
0.650557
false
debuti/checksystemcron
src/checks/dropboxCheck.py
1
1281
#!/usr/bin/env python ############################################################################################### # Author: _author = '<a href="mailto:[email protected]">Borja Garcia</a>' # Program: _name = 'dropboxCheck' # Descrip: _description = '''Check if there are errors or inconsistencies in dropbox''' # Version: _version = '0.0.1' # Date: _date = '20101107' # License: This script doesn't require any license since it's not intended to be redistributed. # In such case, unless stated otherwise, the purpose of the author is to follow GPLv3. # History: # 0.0.1 (20101107) # -Initial release ############################################################################################### # Imports import logging import sys import doctest import datetime, time import os import subprocess import optparse import inspect import glob import shellutils def check (properties): '''This procedure checks the whole dropbox tree looking for errors and returns a list with suspicious file ''' try: code, output, error = shellutils.run(["find", properties.get('dropboxCheck', 'dropboxpath')]) return shellutils.grep("Case Conflict", output) except Exception as error: print "Error:", error
gpl-3.0
1,989,935,058,595,374,000
30.243902
101
0.583919
false