unprocessed
stringlengths
1.83k
2.87k
processed
stringclasses
6 values
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: Agonist and antagonist actions of @CHEMICAL$ as compared to fluparoxan at @GENE$ (AR)s, serotonin (5-HT)(1A), 5-HT(1B), 5-HT(1D) and dopamine D(2) and D(3) receptors.
CPR:6
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: Agonist and antagonist actions of @CHEMICAL$ as compared to fluparoxan at @GENE$ (AR)s, serotonin (5-HT)(1A), 5-HT(1B), 5-HT(1D) and dopamine D(2) and D(3) receptors.
CPR:5
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: Agonist and antagonist actions of @CHEMICAL$ as compared to fluparoxan at alpha(2)-adrenergic receptors (AR)s, serotonin @GENE$, 5-HT(1B), 5-HT(1D) and dopamine D(2) and D(3) receptors.
CPR:6
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: Agonist and antagonist actions of @CHEMICAL$ as compared to fluparoxan at alpha(2)-adrenergic receptors (AR)s, serotonin @GENE$, 5-HT(1B), 5-HT(1D) and dopamine D(2) and D(3) receptors.
CPR:5
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: Agonist and antagonist actions of @CHEMICAL$ as compared to fluparoxan at alpha(2)-adrenergic receptors (AR)s, serotonin (5-HT)(1A), @GENE$, 5-HT(1D) and dopamine D(2) and D(3) receptors.
CPR:6
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: Agonist and antagonist actions of @CHEMICAL$ as compared to fluparoxan at alpha(2)-adrenergic receptors (AR)s, serotonin (5-HT)(1A), @GENE$, 5-HT(1D) and dopamine D(2) and D(3) receptors.
CPR:5
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: Agonist and antagonist actions of @CHEMICAL$ as compared to fluparoxan at alpha(2)-adrenergic receptors (AR)s, serotonin (5-HT)(1A), 5-HT(1B), @GENE$ and dopamine D(2) and D(3) receptors.
CPR:6
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: Agonist and antagonist actions of @CHEMICAL$ as compared to fluparoxan at alpha(2)-adrenergic receptors (AR)s, serotonin (5-HT)(1A), 5-HT(1B), @GENE$ and dopamine D(2) and D(3) receptors.
CPR:5
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: Agonist and antagonist actions of yohimbine as compared to @CHEMICAL$ at alpha(2)-adrenergic receptors @GENE$, serotonin (5-HT)(1A), 5-HT(1B), 5-HT(1D) and dopamine D(2) and D(3) receptors.
CPR:6
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: Agonist and antagonist actions of yohimbine as compared to @CHEMICAL$ at alpha(2)-adrenergic receptors @GENE$, serotonin (5-HT)(1A), 5-HT(1B), 5-HT(1D) and dopamine D(2) and D(3) receptors.
CPR:5
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: Agonist and antagonist actions of yohimbine as compared to @CHEMICAL$ at alpha(2)-adrenergic receptors (AR)s, serotonin (5-HT)(1A), 5-HT(1B), 5-HT(1D) and @GENE$.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: Agonist and antagonist actions of yohimbine as compared to @CHEMICAL$ at @GENE$ (AR)s, serotonin (5-HT)(1A), 5-HT(1B), 5-HT(1D) and dopamine D(2) and D(3) receptors.
CPR:6
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: Agonist and antagonist actions of yohimbine as compared to @CHEMICAL$ at @GENE$ (AR)s, serotonin (5-HT)(1A), 5-HT(1B), 5-HT(1D) and dopamine D(2) and D(3) receptors.
CPR:5
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: Agonist and antagonist actions of yohimbine as compared to @CHEMICAL$ at alpha(2)-adrenergic receptors (AR)s, serotonin @GENE$, 5-HT(1B), 5-HT(1D) and dopamine D(2) and D(3) receptors.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: Agonist and antagonist actions of yohimbine as compared to @CHEMICAL$ at alpha(2)-adrenergic receptors (AR)s, serotonin (5-HT)(1A), @GENE$, 5-HT(1D) and dopamine D(2) and D(3) receptors.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: Agonist and antagonist actions of yohimbine as compared to @CHEMICAL$ at alpha(2)-adrenergic receptors (AR)s, serotonin (5-HT)(1A), 5-HT(1B), @GENE$ and dopamine D(2) and D(3) receptors.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: Herein, we evaluate the interaction of the alpha(2)-AR antagonist, @CHEMICAL$, as compared to fluparoxan, at multiple @GENE$ and examine their roles in the modulation of adrenergic, dopaminergic and serotonergic transmission in freely-moving rats.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: Herein, we evaluate the interaction of the @CHEMICAL$, @GENE$, as compared to fluparoxan, at multiple monoaminergic receptors and examine their roles in the modulation of adrenergic, dopaminergic and serotonergic transmission in freely-moving rats.
CPR:6
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: Herein, we evaluate the interaction of the alpha(2)-AR antagonist, yohimbine, as compared to @CHEMICAL$, at multiple @GENE$ and examine their roles in the modulation of adrenergic, dopaminergic and serotonergic transmission in freely-moving rats.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: Herein, we evaluate the interaction of the @CHEMICAL$, yohimbine, as compared to @GENE$, at multiple monoaminergic receptors and examine their roles in the modulation of adrenergic, dopaminergic and serotonergic transmission in freely-moving rats.
CPR:6
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: @CHEMICAL$ displays marked affinity at @GENE$, significant affinity for h5-HT(1A), h5-HT(1B), h5-HT(1D), and hD(2) receptors and weak affinity for hD(3) receptors.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: @CHEMICAL$ displays marked affinity at human (h)alpha(2A)-, halpha(2B)- and halpha(2C)-ARs, significant affinity for @GENE$, h5-HT(1B), h5-HT(1D), and hD(2) receptors and weak affinity for hD(3) receptors.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: @CHEMICAL$ displays marked affinity at human (h)alpha(2A)-, halpha(2B)- and halpha(2C)-ARs, significant affinity for h5-HT(1A), @GENE$, h5-HT(1D), and hD(2) receptors and weak affinity for hD(3) receptors.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: @CHEMICAL$ displays marked affinity at human (h)alpha(2A)-, halpha(2B)- and halpha(2C)-ARs, significant affinity for h5-HT(1A), h5-HT(1B), @GENE$, and hD(2) receptors and weak affinity for hD(3) receptors.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: @CHEMICAL$ displays marked affinity at human (h)alpha(2A)-, halpha(2B)- and halpha(2C)-ARs, significant affinity for h5-HT(1A), h5-HT(1B), h5-HT(1D), and @GENE$ and weak affinity for hD(3) receptors.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: @CHEMICAL$ displays marked affinity at human (h)alpha(2A)-, halpha(2B)- and halpha(2C)-ARs, significant affinity for h5-HT(1A), h5-HT(1B), h5-HT(1D), and hD(2) receptors and weak affinity for @GENE$.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: In [@CHEMICAL$]GTPgammaS binding protocols, yohimbine exerts antagonist actions at @GENE$, h5-HT(1B), h5-HT(1D), and hD(2) sites, yet partial agonist actions at h5-HT(1A) sites.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: In [@CHEMICAL$]GTPgammaS binding protocols, yohimbine exerts antagonist actions at halpha(2A)-AR, @GENE$, h5-HT(1D), and hD(2) sites, yet partial agonist actions at h5-HT(1A) sites.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: In [@CHEMICAL$]GTPgammaS binding protocols, yohimbine exerts antagonist actions at halpha(2A)-AR, h5-HT(1B), @GENE$, and hD(2) sites, yet partial agonist actions at h5-HT(1A) sites.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: In [@CHEMICAL$]GTPgammaS binding protocols, yohimbine exerts antagonist actions at halpha(2A)-AR, h5-HT(1B), h5-HT(1D), and @GENE$ sites, yet partial agonist actions at h5-HT(1A) sites.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: In [@CHEMICAL$]GTPgammaS binding protocols, yohimbine exerts antagonist actions at halpha(2A)-AR, h5-HT(1B), h5-HT(1D), and hD(2) sites, yet partial agonist actions at @GENE$ sites.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: In [(35)S]GTPgammaS binding protocols, @CHEMICAL$ exerts antagonist actions at @GENE$, h5-HT(1B), h5-HT(1D), and hD(2) sites, yet partial agonist actions at h5-HT(1A) sites.
CPR:6
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: In [(35)S]GTPgammaS binding protocols, @CHEMICAL$ exerts antagonist actions at halpha(2A)-AR, @GENE$, h5-HT(1D), and hD(2) sites, yet partial agonist actions at h5-HT(1A) sites.
CPR:6
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: In [(35)S]GTPgammaS binding protocols, @CHEMICAL$ exerts antagonist actions at halpha(2A)-AR, h5-HT(1B), @GENE$, and hD(2) sites, yet partial agonist actions at h5-HT(1A) sites.
CPR:6
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: In [(35)S]GTPgammaS binding protocols, @CHEMICAL$ exerts antagonist actions at halpha(2A)-AR, h5-HT(1B), h5-HT(1D), and @GENE$ sites, yet partial agonist actions at h5-HT(1A) sites.
CPR:6
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: In [(35)S]GTPgammaS binding protocols, @CHEMICAL$ exerts antagonist actions at halpha(2A)-AR, h5-HT(1B), h5-HT(1D), and hD(2) sites, yet partial agonist actions at @GENE$ sites.
CPR:5
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: In vivo, agonist actions of @CHEMICAL$ at @GENE$ sites are revealed by WAY100,635-reversible induction of hypothermia in the rat.
CPR:5
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: In vivo, agonist actions of yohimbine at @CHEM-GENE$ sites are revealed by WAY100,635-reversible induction of hypothermia in the rat.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: In vivo, agonist actions of yohimbine at @CHEMICAL$ sites are revealed by @GENE$-reversible induction of hypothermia in the rat.
CPR:6
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: In guinea pigs, antagonist actions of @CHEMICAL$ at @GENE$ receptors are revealed by blockade of hypothermia evoked by the 5-HT(1B) agonist, GR46,611.
CPR:6
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: In guinea pigs, antagonist actions of @CHEMICAL$ at 5-HT(1B) receptors are revealed by blockade of hypothermia evoked by the @GENE$ agonist, GR46,611.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: In guinea pigs, antagonist actions of yohimbine at @CHEM-GENE$ receptors are revealed by blockade of hypothermia evoked by the 5-HT(1B) agonist, GR46,611.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: In guinea pigs, antagonist actions of yohimbine at @CHEMICAL$(1B) receptors are revealed by blockade of hypothermia evoked by the @GENE$ agonist, GR46,611.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: In guinea pigs, antagonist actions of yohimbine at @CHEMICAL$ receptors are revealed by blockade of hypothermia evoked by the @GENE$(1B) agonist, GR46,611.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: In guinea pigs, antagonist actions of yohimbine at 5-HT(1B) receptors are revealed by blockade of hypothermia evoked by the @CHEM-GENE$ agonist, GR46,611.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: In guinea pigs, antagonist actions of yohimbine at @CHEMICAL$ receptors are revealed by blockade of hypothermia evoked by the 5-HT(1B) agonist, @GENE$.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: In guinea pigs, antagonist actions of yohimbine at 5-HT(1B) receptors are revealed by blockade of hypothermia evoked by the @CHEMICAL$ agonist, @GENE$.
CPR:5
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: In distinction to @CHEMICAL$, fluparoxan shows only modest partial agonist actions at h5-HT(1A) sites versus marked antagonist actions at @GENE$.
CPR:6
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: In distinction to @CHEMICAL$, fluparoxan shows only modest partial agonist actions at @GENE$ sites versus marked antagonist actions at halpha(2)-ARs.
CPR:5
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: In distinction to yohimbine, @CHEMICAL$ shows only modest partial agonist actions at h5-HT(1A) sites versus marked antagonist actions at @GENE$.
CPR:6
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: In distinction to yohimbine, @CHEMICAL$ shows only modest partial agonist actions at @GENE$ sites versus marked antagonist actions at halpha(2)-ARs.
CPR:5
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: In conclusion, the @CHEMICAL$ antagonist properties of @GENE$ increase DA and NAD levels both alone and in association with fluoxetine.
CPR:6
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: In conclusion, the @CHEMICAL$ antagonist properties of yohimbine increase @GENE$ and NAD levels both alone and in association with fluoxetine.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: In conclusion, the @CHEMICAL$ antagonist properties of yohimbine increase DA and @GENE$ levels both alone and in association with fluoxetine.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: However, in contrast to the selective @CHEMICAL$ antagonist, @GENE$, the 5-HT(1A) agonist actions of yohimbine suppress 5-HT levels alone and underlie its inability to augment the influence of fluoxetine upon 5-HT levels.
CPR:6
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: However, in contrast to the selective alpha(2)-AR antagonist, @CHEMICAL$, the @GENE$ agonist actions of yohimbine suppress 5-HT levels alone and underlie its inability to augment the influence of fluoxetine upon 5-HT levels.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: However, in contrast to the selective @CHEMICAL$ antagonist, fluparoxan, the @GENE$(1A) agonist actions of yohimbine suppress 5-HT levels alone and underlie its inability to augment the influence of fluoxetine upon 5-HT levels.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: However, in contrast to the selective alpha(2)-AR antagonist, fluparoxan, the @CHEM-GENE$ agonist actions of yohimbine suppress 5-HT levels alone and underlie its inability to augment the influence of fluoxetine upon 5-HT levels.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: However, in contrast to the selective @CHEMICAL$ antagonist, fluparoxan, the 5-HT(1A) agonist actions of @GENE$ suppress 5-HT levels alone and underlie its inability to augment the influence of fluoxetine upon 5-HT levels.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: However, in contrast to the selective alpha(2)-AR antagonist, fluparoxan, the @CHEMICAL$ agonist actions of @GENE$ suppress 5-HT levels alone and underlie its inability to augment the influence of fluoxetine upon 5-HT levels.
CPR:5
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: However, in contrast to the selective @CHEMICAL$ antagonist, fluparoxan, the 5-HT(1A) agonist actions of yohimbine suppress @GENE$ levels alone and underlie its inability to augment the influence of fluoxetine upon 5-HT levels.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: However, in contrast to the selective alpha(2)-AR antagonist, fluparoxan, the @CHEMICAL$ agonist actions of yohimbine suppress @GENE$ levels alone and underlie its inability to augment the influence of fluoxetine upon 5-HT levels.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: However, in contrast to the selective @CHEMICAL$ antagonist, fluparoxan, the 5-HT(1A) agonist actions of yohimbine suppress 5-HT levels alone and underlie its inability to augment the influence of @GENE$ upon 5-HT levels.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: However, in contrast to the selective alpha(2)-AR antagonist, fluparoxan, the @CHEMICAL$ agonist actions of yohimbine suppress 5-HT levels alone and underlie its inability to augment the influence of @GENE$ upon 5-HT levels.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: However, in contrast to the selective @CHEMICAL$ antagonist, fluparoxan, the 5-HT(1A) agonist actions of yohimbine suppress 5-HT levels alone and underlie its inability to augment the influence of fluoxetine upon @GENE$ levels.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: However, in contrast to the selective alpha(2)-AR antagonist, fluparoxan, the @CHEMICAL$ agonist actions of yohimbine suppress 5-HT levels alone and underlie its inability to augment the influence of fluoxetine upon @GENE$ levels.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: In this study, the activity of the @CHEMICAL$ subtype-selective agonist, @GENE$, was investigated in a guinea pig model of citric acid-induced cough.
CPR:5
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: In this study, the activity of the @CHEMICAL$ subtype-selective agonist, SB 227122, was investigated in a guinea pig model of @GENE$-induced cough.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: Parenteral administration of selective agonists of the @CHEMICAL$ (SB 227122), mu-opioid receptor (codeine and hydrocodone), and kappa-opioid receptor (@GENE$) produced dose-related inhibition of citric acid-induced cough with ED(50) values of 7.3, 5.2, 5.1, and 5.3 mg/kg, respectively.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: Parenteral administration of selective agonists of the delta-opioid receptor (SB 227122), @CHEMICAL$ (codeine and hydrocodone), and kappa-opioid receptor (@GENE$) produced dose-related inhibition of citric acid-induced cough with ED(50) values of 7.3, 5.2, 5.1, and 5.3 mg/kg, respectively.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: Parenteral administration of selective agonists of the delta-opioid receptor (SB 227122), mu-opioid receptor (codeine and hydrocodone), and @CHEMICAL$ (@GENE$) produced dose-related inhibition of citric acid-induced cough with ED(50) values of 7.3, 5.2, 5.1, and 5.3 mg/kg, respectively.
CPR:5
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: Parenteral administration of selective agonists of the @CHEMICAL$ (SB 227122), mu-opioid receptor (codeine and hydrocodone), and kappa-opioid receptor (BRL 52974) produced dose-related inhibition of @GENE$-induced cough with ED(50) values of 7.3, 5.2, 5.1, and 5.3 mg/kg, respectively.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: Parenteral administration of selective agonists of the delta-opioid receptor (SB 227122), @CHEMICAL$ (codeine and hydrocodone), and kappa-opioid receptor (BRL 52974) produced dose-related inhibition of @GENE$-induced cough with ED(50) values of 7.3, 5.2, 5.1, and 5.3 mg/kg, respectively.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: Parenteral administration of selective agonists of the delta-opioid receptor (SB 227122), mu-opioid receptor (codeine and hydrocodone), and @CHEMICAL$ (BRL 52974) produced dose-related inhibition of @GENE$-induced cough with ED(50) values of 7.3, 5.2, 5.1, and 5.3 mg/kg, respectively.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: Parenteral administration of selective agonists of the @CHEMICAL$ (@GENE$), mu-opioid receptor (codeine and hydrocodone), and kappa-opioid receptor (BRL 52974) produced dose-related inhibition of citric acid-induced cough with ED(50) values of 7.3, 5.2, 5.1, and 5.3 mg/kg, respectively.
CPR:5
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: Parenteral administration of selective agonists of the delta-opioid receptor (@CHEMICAL$), @GENE$ (codeine and hydrocodone), and kappa-opioid receptor (BRL 52974) produced dose-related inhibition of citric acid-induced cough with ED(50) values of 7.3, 5.2, 5.1, and 5.3 mg/kg, respectively.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: Parenteral administration of selective agonists of the delta-opioid receptor (@CHEMICAL$), mu-opioid receptor (codeine and hydrocodone), and @GENE$ (BRL 52974) produced dose-related inhibition of citric acid-induced cough with ED(50) values of 7.3, 5.2, 5.1, and 5.3 mg/kg, respectively.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: Parenteral administration of selective agonists of the @CHEMICAL$ (SB 227122), mu-opioid receptor (@GENE$ and hydrocodone), and kappa-opioid receptor (BRL 52974) produced dose-related inhibition of citric acid-induced cough with ED(50) values of 7.3, 5.2, 5.1, and 5.3 mg/kg, respectively.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: Parenteral administration of selective agonists of the delta-opioid receptor (SB 227122), @CHEMICAL$ (@GENE$ and hydrocodone), and kappa-opioid receptor (BRL 52974) produced dose-related inhibition of citric acid-induced cough with ED(50) values of 7.3, 5.2, 5.1, and 5.3 mg/kg, respectively.
CPR:5
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: Parenteral administration of selective agonists of the delta-opioid receptor (SB 227122), mu-opioid receptor (@CHEMICAL$ and hydrocodone), and @GENE$ (BRL 52974) produced dose-related inhibition of citric acid-induced cough with ED(50) values of 7.3, 5.2, 5.1, and 5.3 mg/kg, respectively.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: Parenteral administration of selective agonists of the @CHEMICAL$ (SB 227122), mu-opioid receptor (codeine and @GENE$), and kappa-opioid receptor (BRL 52974) produced dose-related inhibition of citric acid-induced cough with ED(50) values of 7.3, 5.2, 5.1, and 5.3 mg/kg, respectively.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: Parenteral administration of selective agonists of the delta-opioid receptor (SB 227122), @CHEMICAL$ (codeine and @GENE$), and kappa-opioid receptor (BRL 52974) produced dose-related inhibition of citric acid-induced cough with ED(50) values of 7.3, 5.2, 5.1, and 5.3 mg/kg, respectively.
CPR:5
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: Parenteral administration of selective agonists of the delta-opioid receptor (SB 227122), mu-opioid receptor (codeine and @CHEMICAL$), and @GENE$ (BRL 52974) produced dose-related inhibition of citric acid-induced cough with ED(50) values of 7.3, 5.2, 5.1, and 5.3 mg/kg, respectively.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: The nonselective @CHEMICAL$ antagonist, @GENE$ (3 mg/kg, i.m.), attenuated the antitussive effects of codeine or SB 227122, indicating that the antitussive activity of both compounds is opioid receptor-mediated.
CPR:6
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: The nonselective opioid receptor antagonist, @CHEMICAL$ (3 mg/kg, i.m.), attenuated the antitussive effects of codeine or SB 227122, indicating that the antitussive activity of both compounds is @GENE$-mediated.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: The nonselective @CHEMICAL$ antagonist, naloxone (3 mg/kg, i.m.), attenuated the antitussive effects of @GENE$ or SB 227122, indicating that the antitussive activity of both compounds is opioid receptor-mediated.
CPR:5
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: The nonselective opioid receptor antagonist, naloxone (3 mg/kg, i.m.), attenuated the antitussive effects of @CHEMICAL$ or SB 227122, indicating that the antitussive activity of both compounds is @GENE$-mediated.
CPR:5
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: The nonselective @CHEMICAL$ antagonist, naloxone (3 mg/kg, i.m.), attenuated the antitussive effects of codeine or @GENE$, indicating that the antitussive activity of both compounds is opioid receptor-mediated.
CPR:5
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: The nonselective opioid receptor antagonist, naloxone (3 mg/kg, i.m.), attenuated the antitussive effects of codeine or @CHEMICAL$, indicating that the antitussive activity of both compounds is @GENE$-mediated.
CPR:5
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: The @CHEMICAL$ antagonist, @GENE$ (10 mg/kg, i.p.), inhibited the antitussive effect of SB 227122 (20 mg/kg, i.p.).
CPR:6
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: The @CHEMICAL$ antagonist, SB 244525 (10 mg/kg, i.p.), inhibited the antitussive effect of @GENE$ (20 mg/kg, i.p.).
CPR:5
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: In contrast, combined pretreatment with @CHEMICAL$ (mu-receptor antagonist; 20 mg/kg, s.c.) and norbinaltorphimine (kappa-receptor antagonist; 20 mg/kg, s.c.), at doses that inhibited the antitussive activity of @GENE$ agonists, respectively, was without effect on the antitussive response of SB 227122 (20 mg/kg, i.p.).
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: In contrast, combined pretreatment with @CHEMICAL$ (@GENE$ antagonist; 20 mg/kg, s.c.) and norbinaltorphimine (kappa-receptor antagonist; 20 mg/kg, s.c.), at doses that inhibited the antitussive activity of mu- and kappa-receptor agonists, respectively, was without effect on the antitussive response of SB 227122 (20 mg/kg, i.p.).
CPR:6
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: In contrast, combined pretreatment with @CHEMICAL$ (mu-receptor antagonist; 20 mg/kg, s.c.) and norbinaltorphimine (@GENE$ antagonist; 20 mg/kg, s.c.), at doses that inhibited the antitussive activity of mu- and kappa-receptor agonists, respectively, was without effect on the antitussive response of SB 227122 (20 mg/kg, i.p.).
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: In contrast, combined pretreatment with beta-funaltrexamine (mu-receptor antagonist; 20 mg/kg, s.c.) and @CHEMICAL$ (kappa-receptor antagonist; 20 mg/kg, s.c.), at doses that inhibited the antitussive activity of @GENE$ agonists, respectively, was without effect on the antitussive response of SB 227122 (20 mg/kg, i.p.).
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: In contrast, combined pretreatment with beta-funaltrexamine (@CHEMICAL$ antagonist; 20 mg/kg, s.c.) and @GENE$ (kappa-receptor antagonist; 20 mg/kg, s.c.), at doses that inhibited the antitussive activity of mu- and kappa-receptor agonists, respectively, was without effect on the antitussive response of SB 227122 (20 mg/kg, i.p.).
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: In contrast, combined pretreatment with beta-funaltrexamine (mu-receptor antagonist; 20 mg/kg, s.c.) and @CHEMICAL$ (@GENE$ antagonist; 20 mg/kg, s.c.), at doses that inhibited the antitussive activity of mu- and kappa-receptor agonists, respectively, was without effect on the antitussive response of SB 227122 (20 mg/kg, i.p.).
CPR:6
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: In contrast, combined pretreatment with beta-funaltrexamine (mu-receptor antagonist; 20 mg/kg, s.c.) and norbinaltorphimine (kappa-receptor antagonist; 20 mg/kg, s.c.), at doses that inhibited the antitussive activity of @CHEMICAL$ agonists, respectively, was without effect on the antitussive response of @GENE$ (20 mg/kg, i.p.).
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: In contrast, combined pretreatment with beta-funaltrexamine (@CHEMICAL$ antagonist; 20 mg/kg, s.c.) and norbinaltorphimine (kappa-receptor antagonist; 20 mg/kg, s.c.), at doses that inhibited the antitussive activity of mu- and kappa-receptor agonists, respectively, was without effect on the antitussive response of @GENE$ (20 mg/kg, i.p.).
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: In contrast, combined pretreatment with beta-funaltrexamine (mu-receptor antagonist; 20 mg/kg, s.c.) and norbinaltorphimine (@CHEMICAL$ antagonist; 20 mg/kg, s.c.), at doses that inhibited the antitussive activity of mu- and kappa-receptor agonists, respectively, was without effect on the antitussive response of @GENE$ (20 mg/kg, i.p.).
false