unprocessed
stringlengths
1.83k
2.87k
processed
stringclasses
6 values
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: To identify selective compounds for nonadrenergic I1-@CHEMICAL$ receptors (I1), the affinities of 22 ligands for [125I]p-iodoclonidine binding have been compared at human platelet I1-imidazoline binding sites (analyzed under norepinephrine mask of @GENE$) and at human alpha-2A, alpha-2B and alpha-2C adrenoceptors stably expressed on transfected Chinese hamster ovary cells.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: To identify selective compounds for nonadrenergic I1-@CHEMICAL$ receptors (I1), the affinities of 22 ligands for [125I]p-iodoclonidine binding have been compared at human platelet I1-imidazoline binding sites (analyzed under norepinephrine mask of alpha-2 AR) and at @GENE$, alpha-2B and alpha-2C adrenoceptors stably expressed on transfected Chinese hamster ovary cells.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: To identify selective compounds for nonadrenergic I1-@CHEMICAL$ receptors (I1), the affinities of 22 ligands for [125I]p-iodoclonidine binding have been compared at human platelet I1-imidazoline binding sites (analyzed under norepinephrine mask of alpha-2 AR) and at human alpha-2A, @GENE$ and alpha-2C adrenoceptors stably expressed on transfected Chinese hamster ovary cells.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: To identify selective compounds for nonadrenergic I1-@CHEMICAL$ receptors (I1), the affinities of 22 ligands for [125I]p-iodoclonidine binding have been compared at human platelet I1-imidazoline binding sites (analyzed under norepinephrine mask of alpha-2 AR) and at human alpha-2A, alpha-2B and @GENE$ stably expressed on transfected Chinese hamster ovary cells.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: To identify selective compounds for nonadrenergic @CHEM-GENE$ (I1), the affinities of 22 ligands for [125I]p-iodoclonidine binding have been compared at human platelet I1-imidazoline binding sites (analyzed under norepinephrine mask of alpha-2 AR) and at human alpha-2A, alpha-2B and alpha-2C adrenoceptors stably expressed on transfected Chinese hamster ovary cells.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: To identify selective compounds for nonadrenergic I1-@CHEMICAL$ receptors (@GENE$), the affinities of 22 ligands for [125I]p-iodoclonidine binding have been compared at human platelet I1-imidazoline binding sites (analyzed under norepinephrine mask of alpha-2 AR) and at human alpha-2A, alpha-2B and alpha-2C adrenoceptors stably expressed on transfected Chinese hamster ovary cells.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: To identify selective compounds for nonadrenergic I1-imidazoline receptors (I1), the affinities of 22 ligands for @CHEMICAL$ binding have been compared at @GENE$ (analyzed under norepinephrine mask of alpha-2 AR) and at human alpha-2A, alpha-2B and alpha-2C adrenoceptors stably expressed on transfected Chinese hamster ovary cells.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: To identify selective compounds for nonadrenergic I1-imidazoline receptors (I1), the affinities of 22 ligands for @CHEMICAL$ binding have been compared at human platelet I1-imidazoline binding sites (analyzed under norepinephrine mask of @GENE$) and at human alpha-2A, alpha-2B and alpha-2C adrenoceptors stably expressed on transfected Chinese hamster ovary cells.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: To identify selective compounds for nonadrenergic I1-imidazoline receptors (I1), the affinities of 22 ligands for @CHEMICAL$ binding have been compared at human platelet I1-imidazoline binding sites (analyzed under norepinephrine mask of alpha-2 AR) and at @GENE$, alpha-2B and alpha-2C adrenoceptors stably expressed on transfected Chinese hamster ovary cells.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: To identify selective compounds for nonadrenergic I1-imidazoline receptors (I1), the affinities of 22 ligands for @CHEMICAL$ binding have been compared at human platelet I1-imidazoline binding sites (analyzed under norepinephrine mask of alpha-2 AR) and at human alpha-2A, @GENE$ and alpha-2C adrenoceptors stably expressed on transfected Chinese hamster ovary cells.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: To identify selective compounds for nonadrenergic I1-imidazoline receptors (I1), the affinities of 22 ligands for @CHEMICAL$ binding have been compared at human platelet I1-imidazoline binding sites (analyzed under norepinephrine mask of alpha-2 AR) and at human alpha-2A, alpha-2B and @GENE$ stably expressed on transfected Chinese hamster ovary cells.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: To identify selective compounds for nonadrenergic @CHEMICAL$ (I1), the affinities of 22 ligands for @GENE$ binding have been compared at human platelet I1-imidazoline binding sites (analyzed under norepinephrine mask of alpha-2 AR) and at human alpha-2A, alpha-2B and alpha-2C adrenoceptors stably expressed on transfected Chinese hamster ovary cells.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: To identify selective compounds for nonadrenergic I1-imidazoline receptors (@CHEMICAL$), the affinities of 22 ligands for @GENE$ binding have been compared at human platelet I1-imidazoline binding sites (analyzed under norepinephrine mask of alpha-2 AR) and at human alpha-2A, alpha-2B and alpha-2C adrenoceptors stably expressed on transfected Chinese hamster ovary cells.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: To identify selective compounds for nonadrenergic I1-imidazoline receptors (I1), the affinities of 22 ligands for [125I]p-iodoclonidine binding have been compared at @CHEM-GENE$ (analyzed under norepinephrine mask of alpha-2 AR) and at human alpha-2A, alpha-2B and alpha-2C adrenoceptors stably expressed on transfected Chinese hamster ovary cells.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: To identify selective compounds for nonadrenergic I1-imidazoline receptors (I1), the affinities of 22 ligands for [125I]p-iodoclonidine binding have been compared at human platelet I1-@CHEMICAL$ binding sites (analyzed under norepinephrine mask of @GENE$) and at human alpha-2A, alpha-2B and alpha-2C adrenoceptors stably expressed on transfected Chinese hamster ovary cells.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: To identify selective compounds for nonadrenergic I1-imidazoline receptors (I1), the affinities of 22 ligands for [125I]p-iodoclonidine binding have been compared at human platelet I1-@CHEMICAL$ binding sites (analyzed under norepinephrine mask of alpha-2 AR) and at @GENE$, alpha-2B and alpha-2C adrenoceptors stably expressed on transfected Chinese hamster ovary cells.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: To identify selective compounds for nonadrenergic I1-imidazoline receptors (I1), the affinities of 22 ligands for [125I]p-iodoclonidine binding have been compared at human platelet I1-@CHEMICAL$ binding sites (analyzed under norepinephrine mask of alpha-2 AR) and at human alpha-2A, @GENE$ and alpha-2C adrenoceptors stably expressed on transfected Chinese hamster ovary cells.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: To identify selective compounds for nonadrenergic I1-imidazoline receptors (I1), the affinities of 22 ligands for [125I]p-iodoclonidine binding have been compared at human platelet I1-@CHEMICAL$ binding sites (analyzed under norepinephrine mask of alpha-2 AR) and at human alpha-2A, alpha-2B and @GENE$ stably expressed on transfected Chinese hamster ovary cells.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: To identify selective compounds for nonadrenergic @CHEMICAL$ (I1), the affinities of 22 ligands for [125I]p-iodoclonidine binding have been compared at human platelet I1-@GENE$ binding sites (analyzed under norepinephrine mask of alpha-2 AR) and at human alpha-2A, alpha-2B and alpha-2C adrenoceptors stably expressed on transfected Chinese hamster ovary cells.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: To identify selective compounds for nonadrenergic I1-imidazoline receptors (@CHEMICAL$), the affinities of 22 ligands for [125I]p-iodoclonidine binding have been compared at human platelet I1-@GENE$ binding sites (analyzed under norepinephrine mask of alpha-2 AR) and at human alpha-2A, alpha-2B and alpha-2C adrenoceptors stably expressed on transfected Chinese hamster ovary cells.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: To identify selective compounds for nonadrenergic I1-imidazoline receptors (I1), the affinities of 22 ligands for [125I]p-iodoclonidine binding have been compared at @CHEMICAL$ (analyzed under @GENE$ mask of alpha-2 AR) and at human alpha-2A, alpha-2B and alpha-2C adrenoceptors stably expressed on transfected Chinese hamster ovary cells.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: To identify selective compounds for nonadrenergic I1-imidazoline receptors (I1), the affinities of 22 ligands for [125I]p-iodoclonidine binding have been compared at human platelet I1-imidazoline binding sites (analyzed under @CHEMICAL$ mask of @GENE$) and at human alpha-2A, alpha-2B and alpha-2C adrenoceptors stably expressed on transfected Chinese hamster ovary cells.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: To identify selective compounds for nonadrenergic I1-imidazoline receptors (I1), the affinities of 22 ligands for [125I]p-iodoclonidine binding have been compared at human platelet I1-imidazoline binding sites (analyzed under @CHEMICAL$ mask of alpha-2 AR) and at @GENE$, alpha-2B and alpha-2C adrenoceptors stably expressed on transfected Chinese hamster ovary cells.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: To identify selective compounds for nonadrenergic I1-imidazoline receptors (I1), the affinities of 22 ligands for [125I]p-iodoclonidine binding have been compared at human platelet I1-imidazoline binding sites (analyzed under @CHEMICAL$ mask of alpha-2 AR) and at human alpha-2A, @GENE$ and alpha-2C adrenoceptors stably expressed on transfected Chinese hamster ovary cells.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: To identify selective compounds for nonadrenergic I1-imidazoline receptors (I1), the affinities of 22 ligands for [125I]p-iodoclonidine binding have been compared at human platelet I1-imidazoline binding sites (analyzed under @CHEMICAL$ mask of alpha-2 AR) and at human alpha-2A, alpha-2B and @GENE$ stably expressed on transfected Chinese hamster ovary cells.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: To identify selective compounds for nonadrenergic @CHEMICAL$ (I1), the affinities of 22 ligands for [125I]p-iodoclonidine binding have been compared at human platelet I1-imidazoline binding sites (analyzed under @GENE$ mask of alpha-2 AR) and at human alpha-2A, alpha-2B and alpha-2C adrenoceptors stably expressed on transfected Chinese hamster ovary cells.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: To identify selective compounds for nonadrenergic I1-imidazoline receptors (@CHEMICAL$), the affinities of 22 ligands for [125I]p-iodoclonidine binding have been compared at human platelet I1-imidazoline binding sites (analyzed under @GENE$ mask of alpha-2 AR) and at human alpha-2A, alpha-2B and alpha-2C adrenoceptors stably expressed on transfected Chinese hamster ovary cells.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: Competition curves at the platelet @CHEM-GENE$ were biphasic for most compounds.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: @CHEMICAL$, an endogenous neurotransmitter candidate for the I1-imidazoline receptor, was identified as the most selective agent for a subcomponent of platelet @GENE$.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: @CHEMICAL$, an endogenous neurotransmitter candidate for the @GENE$, was identified as the most selective agent for a subcomponent of platelet I1 sites.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: Agmatine, an endogenous neurotransmitter candidate for the I1-@CHEMICAL$ receptor, was identified as the most selective agent for a subcomponent of platelet @GENE$.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: Agmatine, an endogenous neurotransmitter candidate for the @CHEM-GENE$, was identified as the most selective agent for a subcomponent of platelet I1 sites.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: The affinity of @CHEMICAL$ at the high affinity component of platelet @GENE$ was 1400-fold selective over alpha-2A adrenoceptors, 5000-fold selective over alpha-2B adrenoceptors and 800-fold selective over alpha-2C adrenoceptors.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: The affinity of @CHEMICAL$ at the high affinity component of platelet I1 sites was 1400-fold selective over @GENE$, 5000-fold selective over alpha-2B adrenoceptors and 800-fold selective over alpha-2C adrenoceptors.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: The affinity of @CHEMICAL$ at the high affinity component of platelet I1 sites was 1400-fold selective over alpha-2A adrenoceptors, 5000-fold selective over @GENE$ and 800-fold selective over alpha-2C adrenoceptors.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: The affinity of @CHEMICAL$ at the high affinity component of platelet I1 sites was 1400-fold selective over alpha-2A adrenoceptors, 5000-fold selective over alpha-2B adrenoceptors and 800-fold selective over @GENE$.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: @CHEMICAL$ and tizanidine also displayed selectivities for a high affinity component of the platelet @GENE$ over alpha-2 adrenoceptors.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: @CHEMICAL$ and tizanidine also displayed selectivities for a high affinity component of the platelet I1 binding sites over @GENE$.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: Moxonidine and @CHEMICAL$ also displayed selectivities for a high affinity component of the platelet @GENE$ over alpha-2 adrenoceptors.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: Moxonidine and @CHEMICAL$ also displayed selectivities for a high affinity component of the platelet I1 binding sites over @GENE$.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: @CHEMICAL$ was the most selective compound for the high affinity state of the alpha-2A adrenoceptor, displaying 7-, 23- and 9-fold higher affinity than alpha-2B, alpha-2C and platelet @GENE$, respectively.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: @CHEMICAL$ was the most selective compound for the high affinity state of the @GENE$, displaying 7-, 23- and 9-fold higher affinity than alpha-2B, alpha-2C and platelet I1-midazoline binding sites, respectively.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: @CHEMICAL$ was the most selective compound for the high affinity state of the alpha-2A adrenoceptor, displaying 7-, 23- and 9-fold higher affinity than @GENE$, alpha-2C and platelet I1-midazoline binding sites, respectively.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: @CHEMICAL$ was the most selective compound for the high affinity state of the alpha-2A adrenoceptor, displaying 7-, 23- and 9-fold higher affinity than alpha-2B, @GENE$ and platelet I1-midazoline binding sites, respectively.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: Naphazoline was the most selective compound for the high affinity state of the alpha-2A adrenoceptor, displaying 7-, 23- and 9-fold higher affinity than alpha-2B, alpha-2C and platelet @CHEM-GENE$, respectively.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: Naphazoline was the most selective compound for the high affinity state of the @CHEMICAL$, displaying 7-, 23- and 9-fold higher affinity than alpha-2B, alpha-2C and platelet I1-@GENE$ binding sites, respectively.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: Naphazoline was the most selective compound for the high affinity state of the alpha-2A adrenoceptor, displaying 7-, 23- and 9-fold higher affinity than @CHEMICAL$, alpha-2C and platelet I1-@GENE$ binding sites, respectively.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: Naphazoline was the most selective compound for the high affinity state of the alpha-2A adrenoceptor, displaying 7-, 23- and 9-fold higher affinity than alpha-2B, @CHEMICAL$ and platelet I1-@GENE$ binding sites, respectively.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: @CHEMICAL$ displayed, respectively, 18- and 31-fold selectivity for the high affinity state of the alpha-2C adrenoceptor as compared to alpha-2A- or alpha-2B adrenoceptors, and was > 100,000- fold selective over platelet @GENE$.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: @CHEMICAL$ displayed, respectively, 18- and 31-fold selectivity for the high affinity state of the @GENE$ as compared to alpha-2A- or alpha-2B adrenoceptors, and was > 100,000- fold selective over platelet I1-imidazoline sites.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: @CHEMICAL$ displayed, respectively, 18- and 31-fold selectivity for the high affinity state of the alpha-2C adrenoceptor as compared to @GENE$- or alpha-2B adrenoceptors, and was > 100,000- fold selective over platelet I1-imidazoline sites.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: @CHEMICAL$ displayed, respectively, 18- and 31-fold selectivity for the high affinity state of the alpha-2C adrenoceptor as compared to alpha-2A- or @GENE$, and was > 100,000- fold selective over platelet I1-imidazoline sites.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: Norepinephrine displayed, respectively, 18- and 31-fold selectivity for the high affinity state of the alpha-2C adrenoceptor as compared to alpha-2A- or alpha-2B adrenoceptors, and was > 100,000- fold selective over platelet @CHEM-GENE$.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: Norepinephrine displayed, respectively, 18- and 31-fold selectivity for the high affinity state of the @CHEMICAL$ as compared to alpha-2A- or alpha-2B adrenoceptors, and was > 100,000- fold selective over platelet I1-@GENE$ sites.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: Norepinephrine displayed, respectively, 18- and 31-fold selectivity for the high affinity state of the alpha-2C adrenoceptor as compared to @CHEMICAL$- or alpha-2B adrenoceptors, and was > 100,000- fold selective over platelet I1-@GENE$ sites.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: Norepinephrine displayed, respectively, 18- and 31-fold selectivity for the high affinity state of the alpha-2C adrenoceptor as compared to alpha-2A- or @CHEMICAL$, and was > 100,000- fold selective over platelet I1-@GENE$ sites.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: Thus, @CHEMICAL$ and the platelet I1-@GENE$ binding site can be clearly discriminated based on their affinities for certain compounds.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: Thus, human alpha-2 adrenoceptors and the platelet @CHEM-GENE$ can be clearly discriminated based on their affinities for certain compounds.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: Activation of cytoprotective @CHEM-GENE$ by minoxidil as a possible explanation for its hair growth-stimulating effect.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: Activation of cytoprotective @CHEMICAL$ by @GENE$ as a possible explanation for its hair growth-stimulating effect.
CPR:3
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: These NSAIDs are well-known inhibitors of both the cytoprotective isoform of @CHEM-GENE$ (PGHS-1) and of the inducible form (PGHS-2).
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: These NSAIDs are well-known inhibitors of both the cytoprotective isoform of @CHEMICAL$ endoperoxide synthase-1 (@GENE$) and of the inducible form (PGHS-2).
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: These NSAIDs are well-known inhibitors of both the cytoprotective isoform of @CHEMICAL$ endoperoxide synthase-1 (PGHS-1) and of the inducible form (@GENE$).
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: We thus speculated that activation of @CHEMICAL$ might be a mechanism by which @GENE$ (2,4-diamino-6-piperidinopyrimidine-3-oxyde) stimulates hair growth in vivo.
CPR:3
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: We thus speculated that activation of @CHEMICAL$ might be a mechanism by which minoxidil (@GENE$) stimulates hair growth in vivo.
CPR:3
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: We demonstrate here that @CHEMICAL$ is a potent activator of purified @GENE$ (AC50 = 80 microM), as assayed by oxygen consumption and PGE2 production.
CPR:3
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: We demonstrate here that minoxidil is a potent activator of purified @CHEMICAL$ (AC50 = 80 microM), as assayed by @GENE$ consumption and PGE2 production.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: Clonal T cells defined as a predominance of a single @CHEMICAL$ gene usage, in one case verified by TCR CDR3 fragment analysis and @GENE$ sequencing, emerged within the CD52-/CD8+ cell population during Campath-1H therapy in 2 CLL patients, both achieving a long-lasting remission.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: Clonal T cells defined as a predominance of a single T cell receptor (TCR) V gene usage, in one case verified by @CHEMICAL$ CDR3 fragment analysis and @GENE$ sequencing, emerged within the CD52-/CD8+ cell population during Campath-1H therapy in 2 CLL patients, both achieving a long-lasting remission.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: Female precocious puberty may require hyperactivity of both @CHEMICAL$ axes because of the "two-cell' arrangement required for ovarian @GENE$ production.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: Evolution of the @CHEM-GENE$ family and the organization of the Drosophila glutamyl-prolyl-tRNA synthetase gene.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: Evolution of the @CHEMICAL$-tRNA synthetase family and the organization of the Drosophila @GENE$ gene.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: Evolution of the @CHEMICAL$ family and the organization of the Drosophila @GENE$-prolyl-tRNA synthetase gene.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: Evolution of the aminoacyl-tRNA synthetase family and the organization of the Drosophila @CHEM-GENE$ gene.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: In Drosophila, @CHEMICAL$ is a multifunctional synthetase encoded by a unique gene and composed of three domains: the @GENE$- and carboxy-terminal domains catalyze the aminoacylation of glutamic acid and proline tRNA species, respectively, and the central domain is made of 75 amino acids repeated six times amongst which 46 are highly conserved and constitute the repeated motifs [Cerini, C., Kerjan, P., Astier, M., Gratecos, D., Mirande, M. & Semeriva, M. (1991) EMBO J. 10, 4267-4277].
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: In Drosophila, @CHEMICAL$ is a multifunctional synthetase encoded by a unique gene and composed of three domains: the amino- and @GENE$-terminal domains catalyze the aminoacylation of glutamic acid and proline tRNA species, respectively, and the central domain is made of 75 amino acids repeated six times amongst which 46 are highly conserved and constitute the repeated motifs [Cerini, C., Kerjan, P., Astier, M., Gratecos, D., Mirande, M. & Semeriva, M. (1991) EMBO J. 10, 4267-4277].
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: In Drosophila, @CHEM-GENE$ is a multifunctional synthetase encoded by a unique gene and composed of three domains: the amino- and carboxy-terminal domains catalyze the aminoacylation of glutamic acid and proline tRNA species, respectively, and the central domain is made of 75 amino acids repeated six times amongst which 46 are highly conserved and constitute the repeated motifs [Cerini, C., Kerjan, P., Astier, M., Gratecos, D., Mirande, M. & Semeriva, M. (1991) EMBO J. 10, 4267-4277].
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: In Drosophila, @CHEMICAL$ is a multifunctional synthetase encoded by a unique gene and composed of three domains: the amino- and carboxy-terminal domains catalyze the aminoacylation of @GENE$ and proline tRNA species, respectively, and the central domain is made of 75 amino acids repeated six times amongst which 46 are highly conserved and constitute the repeated motifs [Cerini, C., Kerjan, P., Astier, M., Gratecos, D., Mirande, M. & Semeriva, M. (1991) EMBO J. 10, 4267-4277].
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: In Drosophila, @CHEMICAL$ is a multifunctional synthetase encoded by a unique gene and composed of three domains: the amino- and carboxy-terminal domains catalyze the aminoacylation of glutamic acid and proline tRNA species, respectively, and the central domain is made of 75 @GENE$ repeated six times amongst which 46 are highly conserved and constitute the repeated motifs [Cerini, C., Kerjan, P., Astier, M., Gratecos, D., Mirande, M. & Semeriva, M. (1991) EMBO J. 10, 4267-4277].
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: The small mRNA promoter resides in the 4th intron and evidence is provided that the mRNA encodes only the domain corresponding to @CHEM-GENE$ and is functional in vivo.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: Binding and transactivation assays were used to compare affinities and transcriptional activities of adapalene and @CHEMICAL$ for the @GENE$, retinoic acid receptors (RARs).
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: Binding and transactivation assays were used to compare affinities and transcriptional activities of adapalene and @CHEMICAL$ for the nuclear transcription factors, @GENE$ (RARs).
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: Binding and transactivation assays were used to compare affinities and transcriptional activities of adapalene and @CHEMICAL$ for the nuclear transcription factors, retinoic acid receptors (@GENE$).
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: Binding and transactivation assays were used to compare affinities and transcriptional activities of adapalene and tretinoin for the @CHEMICAL$, @GENE$ receptors (RARs).
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: Binding and transactivation assays were used to compare affinities and transcriptional activities of adapalene and tretinoin for the nuclear transcription factors, @CHEM-GENE$ (RARs).
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: Binding and transactivation assays were used to compare affinities and transcriptional activities of adapalene and tretinoin for the nuclear transcription factors, @CHEMICAL$ receptors (@GENE$).
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: Binding and transactivation assays were used to compare affinities and transcriptional activities of @CHEMICAL$ and tretinoin for the @GENE$, retinoic acid receptors (RARs).
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: Binding and transactivation assays were used to compare affinities and transcriptional activities of @CHEMICAL$ and tretinoin for the nuclear transcription factors, @GENE$ (RARs).
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: Binding and transactivation assays were used to compare affinities and transcriptional activities of @CHEMICAL$ and tretinoin for the nuclear transcription factors, retinoic acid receptors (@GENE$).
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: The @CHEMICAL$ RAR beta and RAR gamma mediate the @GENE$ activity of adapalene.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: The nuclear gene transcription factors @CHEMICAL$ and RAR gamma mediate the @GENE$ activity of adapalene.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: The nuclear gene transcription factors RAR beta and @CHEMICAL$ mediate the @GENE$ activity of adapalene.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: The @CHEMICAL$ RAR beta and RAR gamma mediate the retinoid activity of @GENE$.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: The nuclear gene transcription factors @CHEMICAL$ and RAR gamma mediate the retinoid activity of @GENE$.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: The nuclear gene transcription factors RAR beta and @CHEMICAL$ mediate the retinoid activity of @GENE$.
false
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: This study was designed to determine the gastroprotective properties of @CHEMICAL$ (CNT), a novel prokinetic benzamide derivative agonist of 5-HT4 and @GENE$ receptors and 5-HT2 antagonist, on mucosal injury produced by 50% (v/v) ethanol.
CPR:5
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: This study was designed to determine the gastroprotective properties of @CHEMICAL$ (CNT), a novel prokinetic benzamide derivative agonist of 5-HT4 and 5-HT1 receptors and @GENE$ antagonist, on mucosal injury produced by 50% (v/v) ethanol.
CPR:6
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: This study was designed to determine the gastroprotective properties of @CHEMICAL$ (CNT), a novel prokinetic benzamide derivative agonist of @GENE$ and 5-HT1 receptors and 5-HT2 antagonist, on mucosal injury produced by 50% (v/v) ethanol.
CPR:5
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: This study was designed to determine the gastroprotective properties of cinitapride (CNT), a novel prokinetic @CHEMICAL$ derivative agonist of 5-HT4 and @GENE$ receptors and 5-HT2 antagonist, on mucosal injury produced by 50% (v/v) ethanol.
CPR:5
TASK: the task is to classify relations between a chemical and a gene for a sentence. INPUT: the input is a sentence where the chemical is labeled as @CHEMICAL$ and the gene is labeled as @GENE$ accordingly in a sentence. OUTPUT: your task is to select one out of the six types of relations ('CPR:3', 'CPR:4', 'CPR:5', 'CPR:6', 'CPR:9', and 'false') for the gene and chemical without any explanation or other characters: CPR:3, which includes UPREGULATOR, ACTIVATOR, and INDIRECT UPREGULATOR CPR:4, which includes DOWNREGULATOR, INHIBITOR ,and INDIRECT DOWNREGULATOR CPR:5, which includes AGONIST, AGONIST ACTIVATOR, and AGONIST INHIBITOR CPR:6, which includes ANTAGONIST CPR:9, which includes SUBSTRATE, PRODUCT OF and SUBSTRATE PRODUCT OF false, which indicates no relations The following examples are provided: Example-1 Q: Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of @CHEMICAL$; using pressure microinjection, we introduced up to a 100-fold excess of @GENE$ over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. Example-1 A: false Q: This study was designed to determine the gastroprotective properties of cinitapride (CNT), a novel prokinetic @CHEMICAL$ derivative agonist of 5-HT4 and 5-HT1 receptors and @GENE$ antagonist, on mucosal injury produced by 50% (v/v) ethanol.
CPR:6