nkjp-pos / README.md
albertvillanova's picture
Fix task tags
9375d96
|
raw
history blame
6.19 kB
---
annotations_creators:
- expert-generated
language_creators:
- other
language:
- pl
license:
- gpl-3.0
multilinguality:
- monolingual
size_categories:
- unknown
source_datasets:
- original
task_categories:
- other
task_ids:
- part-of-speech
pretty_name: nkjp-pos
tags:
- structure-prediction
---
# nkjp-pos
## Description
NKJP-POS is a part the National Corpus of Polish (*Narodowy Korpus Języka Polskiego*). Its objective is part-of-speech tagging, e.g. nouns, verbs, adjectives, adverbs, etc. During the creation of corpus, texts of were annotated by humans from various sources, covering many domains and genres.
## Tasks (input, output and metrics)
Part-of-speech tagging (POS tagging) - tagging words in text with their corresponding part of speech.
**Input** ('*tokens'* column): sequence of tokens
**Output** ('*pos_tags'* column): sequence of predicted tokens’ classes (35 possible classes, described in detail in the annotation guidelines)
**Measurements**: F1-score (seqeval)
**Example***:*
Input: `['Zarejestruj', 'się', 'jako', 'bezrobotny', '.']`
Input (translated by DeepL): `Register as unemployed.`
Output: `['impt', 'qub', 'conj', 'subst', 'interp']`
## Data splits
| Subset | Cardinality (sentences) |
| ----------- | ----------------------: |
| train | 78219 |
| dev | 0 |
| test | 7444 |
## Class distribution
| Class | train | dev | test |
|:--------|--------:|------:|--------:|
| subst | 0.27345 | - | 0.27656 |
| interp | 0.18101 | - | 0.17944 |
| adj | 0.10611 | - | 0.10919 |
| prep | 0.09567 | - | 0.09547 |
| qub | 0.05670 | - | 0.05491 |
| fin | 0.04939 | - | 0.04648 |
| praet | 0.04409 | - | 0.04348 |
| conj | 0.03711 | - | 0.03724 |
| adv | 0.03512 | - | 0.03333 |
| inf | 0.01591 | - | 0.01547 |
| comp | 0.01476 | - | 0.01439 |
| num | 0.01322 | - | 0.01436 |
| ppron3 | 0.01111 | - | 0.01018 |
| ppas | 0.01086 | - | 0.01085 |
| ger | 0.00961 | - | 0.01050 |
| brev | 0.00856 | - | 0.01181 |
| ppron12 | 0.00670 | - | 0.00665 |
| aglt | 0.00629 | - | 0.00602 |
| pred | 0.00539 | - | 0.00540 |
| pact | 0.00454 | - | 0.00452 |
| bedzie | 0.00229 | - | 0.00243 |
| pcon | 0.00218 | - | 0.00189 |
| impt | 0.00203 | - | 0.00226 |
| siebie | 0.00177 | - | 0.00158 |
| imps | 0.00174 | - | 0.00177 |
| interj | 0.00131 | - | 0.00102 |
| xxx | 0.00070 | - | 0.00048 |
| adjp | 0.00069 | - | 0.00065 |
| winien | 0.00068 | - | 0.00057 |
| adja | 0.00048 | - | 0.00058 |
| pant | 0.00012 | - | 0.00018 |
| burk | 0.00011 | - | 0.00006 |
| numcol | 0.00011 | - | 0.00013 |
| depr | 0.00010 | - | 0.00004 |
| adjc | 0.00007 | - | 0.00008 |
## Citation
```
@book{przepiorkowski_narodowy_2012,
title = {Narodowy korpus języka polskiego},
isbn = {978-83-01-16700-4},
language = {pl},
publisher = {Wydawnictwo Naukowe PWN},
editor = {Przepiórkowski, Adam and Bańko, Mirosław and Górski, Rafał L. and Lewandowska-Tomaszczyk, Barbara},
year = {2012}
}
```
## License
```
GNU GPL v.3
```
## Links
[HuggingFace](https://huggingface.co/datasets/clarin-pl/nkjp-pos)
[Source](http://clip.ipipan.waw.pl/NationalCorpusOfPolish)
[Paper](http://nkjp.pl/settings/papers/NKJP_ksiazka.pdf)
## Examples
### Loading
```python
from pprint import pprint
from datasets import load_dataset
dataset = load_dataset("clarin-pl/nkjp-pos")
pprint(dataset['train'][5000])
# {'id': '130-2-900005_morph_49.49-s',
# 'pos_tags': [16, 4, 3, 30, 12, 18, 3, 16, 14, 6, 14, 26, 1, 30, 12],
# 'tokens': ['Najwyraźniej',
# 'źle',
# 'ocenił',
# 'odległość',
# ',',
# 'bo',
# 'zderzył',
# 'się',
# 'z',
# 'jadącą',
# 'z',
# 'naprzeciwka',
# 'ciężarową',
# 'scanią',
# '.']}
```
### Evaluation
```python
import random
from pprint import pprint
from datasets import load_dataset, load_metric
dataset = load_dataset("clarin-pl/nkjp-pos")
references = dataset["test"]["pos_tags"]
# generate random predictions
predictions = [
[
random.randrange(dataset["train"].features["pos_tags"].feature.num_classes)
for _ in range(len(labels))
]
for labels in references
]
# transform to original names of labels
references_named = [
[dataset["train"].features["pos_tags"].feature.names[label] for label in labels]
for labels in references
]
predictions_named = [
[dataset["train"].features["pos_tags"].feature.names[label] for label in labels]
for labels in predictions
]
# transform to BILOU scheme
references_named = [
[f"U-{label}" if label != "O" else label for label in labels]
for labels in references_named
]
predictions_named = [
[f"U-{label}" if label != "O" else label for label in labels]
for labels in predictions_named
]
# utilise seqeval to evaluate
seqeval = load_metric("seqeval")
seqeval_score = seqeval.compute(
predictions=predictions_named,
references=references_named,
scheme="BILOU",
mode="strict",
)
pprint(seqeval_score, depth=1)
# {'adj': {...},
# 'adja': {...},
# 'adjc': {...},
# 'adjp': {...},
# 'adv': {...},
# 'aglt': {...},
# 'bedzie': {...},
# 'brev': {...},
# 'burk': {...},
# 'comp': {...},
# 'conj': {...},
# 'depr': {...},
# 'fin': {...},
# 'ger': {...},
# 'imps': {...},
# 'impt': {...},
# 'inf': {...},
# 'interj': {...},
# 'interp': {...},
# 'num': {...},
# 'numcol': {...},
# 'overall_accuracy': 0.027855061488566583,
# 'overall_f1': 0.027855061488566583,
# 'overall_precision': 0.027855061488566583,
# 'overall_recall': 0.027855061488566583,
# 'pact': {...},
# 'pant': {...},
# 'pcon': {...},
# 'ppas': {...},
# 'ppron12': {...},
# 'ppron3': {...},
# 'praet': {...},
# 'pred': {...},
# 'prep': {...},
# 'qub': {...},
# 'siebie': {...},
# 'subst': {...},
# 'winien': {...},
# 'xxx': {...}}
```