Dataset Preview
Full Screen
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed because of a cast error
Error code:   DatasetGenerationCastError
Exception:    DatasetGenerationCastError
Message:      An error occurred while generating the dataset

All the data files must have the same columns, but at some point there are 1 new columns ({'score'})

This happened while the json dataset builder was generating data using

zip://asm_train.json::/tmp/hf-datasets-cache/heavy/datasets/32350809506324-config-parquet-and-info-ai4bharat-Aksharantar-b37e448d/downloads/3c3f99420a34268b8e9c098500c8f2a2b060e17ebbe6b65d63bebb608ea7313e

Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 2011, in _prepare_split_single
                  writer.write_table(table)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 585, in write_table
                  pa_table = table_cast(pa_table, self._schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2302, in table_cast
                  return cast_table_to_schema(table, schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2256, in cast_table_to_schema
                  raise CastError(
              datasets.table.CastError: Couldn't cast
              unique_identifier: string
              native word: string
              english word: string
              source: string
              score: double
              to
              {'unique_identifier': Value(dtype='string', id=None), 'native word': Value(dtype='string', id=None), 'english word': Value(dtype='string', id=None), 'source': Value(dtype='string', id=None)}
              because column names don't match
              
              During handling of the above exception, another exception occurred:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1321, in compute_config_parquet_and_info_response
                  parquet_operations = convert_to_parquet(builder)
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 935, in convert_to_parquet
                  builder.download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1027, in download_and_prepare
                  self._download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1122, in _download_and_prepare
                  self._prepare_split(split_generator, **prepare_split_kwargs)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1882, in _prepare_split
                  for job_id, done, content in self._prepare_split_single(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 2013, in _prepare_split_single
                  raise DatasetGenerationCastError.from_cast_error(
              datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset
              
              All the data files must have the same columns, but at some point there are 1 new columns ({'score'})
              
              This happened while the json dataset builder was generating data using
              
              zip://asm_train.json::/tmp/hf-datasets-cache/heavy/datasets/32350809506324-config-parquet-and-info-ai4bharat-Aksharantar-b37e448d/downloads/3c3f99420a34268b8e9c098500c8f2a2b060e17ebbe6b65d63bebb608ea7313e
              
              Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

unique_identifier
string
native word
string
english word
string
source
string
asm1
লক্ষীনগৰস্থিত
lakhyeenogorsthito
AK-Freq
asm2
চতুৰ্থ
soturtho
AK-Freq
asm3
এইখন
eikhan
AK-Freq
asm4
প্ৰতিমূৰ্তিসমূহ
protimurtixomuh
AK-Freq
asm5
প্ৰতিযোগিতাতে
protijugitate
AK-Freq
asm6
নিয়া
niya
AK-Freq
asm7
আঁচন
aason
AK-Freq
asm8
দেউতালৈ
deutaloi
AK-Freq
asm9
ঈগলনেষ্ট
eaglenest
AK-Freq
asm10
সিহঁতক
xeehotok
AK-Freq
asm11
পূর্বাঞ্চলজুৰি
poorbancholjuri
AK-Freq
asm12
পৰিদৰ্শক
poridorxok
AK-Freq
asm13
হেৰুৱাইছিলো
heruwaisilu
AK-Freq
asm14
সদস্যসকলে
sodoxyosokole
AK-Freq
asm15
সংক্রান্তিৰ
xongkrantir
AK-Freq
asm16
শিক্ষাগতভাৱে
xikhyagotobhabe
AK-Freq
asm17
কৰিলো
korilu
AK-Freq
asm18
তচেন
tosen
AK-Freq
asm19
গোৰ্খাসকলক
gurkhahokolok
AK-Freq
asm20
ছাত্ৰগৰাকীক
satrogorakik
AK-Freq
asm21
প্ৰতিযোগীগৰাকীক
protizugeegorakeek
AK-Freq
asm22
ভালেসংখ্যক
bhalexonkhyok
AK-Freq
asm23
বাক্য
bakyo
AK-Freq
asm24
তাৎপৰ্য্যপূৰ্ণৰূপে
tatporzyopurnorupe
AK-Freq
asm25
প্ৰতিনিধিয়ে
protinidhiye
AK-Freq
asm26
কার্যক্রমৰ
karzokromor
AK-Freq
asm27
কোকৰাঝাৰত
kokrajharot
AK-Freq
asm28
নামিলেই
namilae
AK-Freq
asm29
ভোলাৰামে
bhularame
AK-Freq
asm30
ৰাজ্যপাল
rajjyopal
AK-Freq
asm31
টকামানৰ
tokamanor
AK-Freq
asm32
আন্দোলনত
aandulonot
AK-Freq
asm33
ঐচিছক
oisichok
AK-Freq
asm34
আঁঠুৱাটোৰ
athuwatur
AK-Freq
asm35
দুর্নীতি
durneeti
AK-Freq
asm36
মুখ্য
mukhyo
AK-Freq
asm37
শাসিত
xasito
AK-Freq
asm38
উপৰিও
upario
AK-Freq
asm39
আবৃত্তিও
abrittiu
AK-Freq
asm40
কাৰ্যসূচীৰপৰা
karzyoxusirpora
AK-Freq
asm41
লাহে
lahe
AK-Freq
asm42
কাৰ্যসূচীৰ
karzoxuseer
AK-Freq
asm43
তেতিয়ালৈকে
tetiyaloike
AK-Freq
asm44
মিনিটতকৈ
minitotkoy
AK-Freq
asm45
য়হা
yaha
AK-Freq
asm46
এমৰ
emor
AK-Freq
asm47
শিল্পীগৰাকীৰ
xilpeegorakeer
AK-Freq
asm48
বেগ
beg
AK-Freq
asm49
ঘটাৰ
ghotar
AK-Freq
asm50
সামান্য
xamanyo
AK-Freq
asm51
শুদ্ধ
xuddho
AK-Freq
asm52
ৰাভাই
rabhai
AK-Freq
asm53
খালৈআটি
khaaloiaati
AK-Freq
asm54
প্ৰশিক্ষকসকল
prosikhyokhokol
AK-Freq
asm55
সর্বাধিক
xorbadhik
AK-Freq
asm56
মিঃ
mih
AK-Freq
asm57
ৰফী
rofi
AK-Freq
asm58
টাকৈ
takoy
AK-Freq
asm59
কাজকে
kajoke
AK-Freq
asm60
স্বাস্থ্যমন্ত্ৰীয়ে
swasthyomontreeye
AK-Freq
asm61
এমৰ
amor
AK-Freq
asm62
ভোলাৰামে
vularame
AK-Freq
asm63
বসুদেৱৰ
bosudebor
AK-Freq
asm64
নিৰ্মাণ
nirman
AK-Freq
asm65
প্রতিক্রিয়াৰ
protikriyaar
AK-Freq
asm66
নিয়াত
niyaat
AK-Freq
asm67
বিক্ৰীৰ
bikreer
AK-Freq
asm68
কেঁচা
kesaa
AK-Freq
asm69
নিৰ্মমভাবে
nirmombhabe
AK-Freq
asm70
বিভাগকেইটাৰ
bivagkeytar
AK-Freq
asm71
বাৰিষা
barixa
AK-Freq
asm72
বিস্ফোৰণকেইটাত
bishforonkeitat
AK-Freq
asm73
সকীয়াই
xokeeyai
AK-Freq
asm74
ফটকা
fotoka
AK-Freq
asm75
নহয়
nohoy
AK-Freq
asm76
মহোৎসৱস্থলীত
mohutxowstholit
AK-Freq
asm77
শুভেচ্ছাবাৰ্তা
xubhessabarta
AK-Freq
asm78
দানবীৰ
daanbir
AK-Freq
asm79
খোজেপতি
khujepoti
AK-Freq
asm80
আগুৱাই
aguwai
AK-Freq
asm81
আপত্তি
aapottee
AK-Freq
asm82
পশ্চিম
poschim
AK-Freq
asm83
ৱাই
y
AK-Freq
asm84
ভোটকেন্দ্রত
bhotkendrot
AK-Freq
asm85
ৰইল
royl
AK-Freq
asm86
বসুদেৱৰ
boxudebor
AK-Freq
asm87
প্রতিনিধি
protinidhi
AK-Freq
asm88
পণ্ডিচেৰীত
pondicherryt
AK-Freq
asm89
ইতিহাসেৰে
itihaaxere
AK-Freq
asm90
উৎসৱৰ
utsovor
AK-Freq
asm91
ডিমা
dimaa
AK-Freq
asm92
শিক্ষাৰ্থীসকললৈ
xikhyarthixokololoi
AK-Freq
asm93
নগৰত
nogorot
AK-Freq
asm94
ভাষমান
bhaxoman
AK-Freq
asm95
দহটি
dohti
AK-Freq
asm96
শিক্ষাবিদগৰাকী
xikhyabidgoraki
AK-Freq
asm97
মুখলৈ
mukholoi
AK-Freq
asm98
বাউন্সাৰ
bouncer
AK-Freq
asm99
নিৰুক্ত
nirookto
AK-Freq
asm100
এৰি
eri
AK-Freq
End of preview.

Dataset Card for Aksharantar

Dataset Summary

Aksharantar is the largest publicly available transliteration dataset for 20 Indic languages. The corpus has 26M Indic language-English transliteration pairs.

Supported Tasks and Leaderboards

[More Information Needed]

Languages

Assamese (asm) Hindi (hin) Maithili (mai) Marathi (mar) Punjabi (pan) Tamil (tam)
Bengali (ben) Kannada (kan) Malayalam (mal) Nepali (nep) Sanskrit (san) Telugu (tel)
Bodo(brx) Kashmiri (kas) Manipuri (mni) Oriya (ori) Sindhi (snd) Urdu (urd)
Gujarati (guj) Konkani (kok) Dogri (doi)

Dataset Structure

Data Instances

A random sample from Hindi (hin) Train dataset.

{
'unique_identifier': 'hin1241393', 
'native word': 'स्वाभिमानिक', 
'english word': 'swabhimanik', 
'source': 'IndicCorp', 
'score': -0.1028788579
}

Data Fields

  • unique_identifier (string): 3-letter language code followed by a unique number in each set (Train, Test, Val).

  • native word (string): A word in Indic language.

  • english word (string): Transliteration of native word in English (Romanised word).

  • source (string): Source of the data.

  • score (num): Character level log probability of indic word given roman word by IndicXlit (model). Pairs with average threshold of the 0.35 are considered.

    For created data sources, depending on the destination/sampling method of a pair in a language, it will be one of:

    • Dakshina Dataset
    • IndicCorp
    • Samanantar
    • Wikidata
    • Existing sources
    • Named Entities Indian (AK-NEI)
    • Named Entities Foreign (AK-NEF)
    • Data from Uniform Sampling method. (Ak-Uni)
    • Data from Most Frequent words sampling method. (Ak-Freq)

Data Splits

Subset asm-en ben-en brx-en guj-en hin-en kan-en kas-en kok-en mai-en mal-en mni-en mar-en nep-en ori-en pan-en san-en sid-en tam-en tel-en urd-en
Training 179K 1231K 36K 1143K 1299K 2907K 47K 613K 283K 4101K 10K 1453K 2397K 346K 515K 1813K 60K 3231K 2430K 699K
Validation 4K 11K 3K 12K 6K 7K 4K 4K 4K 8K 3K 8K 3K 3K 9K 3K 8K 9K 8K 12K
Test 5531 5009 4136 7768 5693 6396 7707 5093 5512 6911 4925 6573 4133 4256 4316 5334 - 4682 4567 4463

Dataset Creation

Information in the paper. Aksharantar: Towards building open transliteration tools for the next billion users

Curation Rationale

[More Information Needed]

Source Data

Initial Data Collection and Normalization

Information in the paper. Aksharantar: Towards building open transliteration tools for the next billion users

Who are the source language producers?

[More Information Needed]

Annotations

Information in the paper. Aksharantar: Towards building open transliteration tools for the next billion users

Annotation process

Information in the paper. Aksharantar: Towards building open transliteration tools for the next billion users

Who are the annotators?

Information in the paper. Aksharantar: Towards building open transliteration tools for the next billion users

Personal and Sensitive Information

[More Information Needed]

Considerations for Using the Data

Social Impact of Dataset

[More Information Needed]

Discussion of Biases

[More Information Needed]

Other Known Limitations

[More Information Needed]

Additional Information

Dataset Curators

[More Information Needed]

Licensing Information

This data is released under the following licensing scheme:

  • Manually collected data: Released under CC-BY license.
  • Mined dataset (from Samanantar and IndicCorp): Released under CC0 license.
  • Existing sources: Released under CC0 license.

CC-BY License

CC-BY

CC0 License Statement

CC0

  • We do not own any of the text from which this data has been extracted.
  • We license the actual packaging of the mined data under the Creative Commons CC0 license (“no rights reserved”).
  • To the extent possible under law, AI4Bharat has waived all copyright and related or neighboring rights to Aksharantar manually collected data and existing sources.
  • This work is published from: India.

Citation Information

@misc{madhani2022aksharantar,
      title={Aksharantar: Towards Building Open Transliteration Tools for the Next Billion Users}, 
      author={Yash Madhani and Sushane Parthan and Priyanka Bedekar and Ruchi Khapra and Anoop Kunchukuttan and Pratyush Kumar and Mitesh Shantadevi Khapra},
      year={2022},
      eprint={},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}

Contributions

Downloads last month
359