metadata
license: gpl-3.0
tags:
- tracking
- VOT
pretty_name: >-
TrackingNet: A Large-Scale Dataset and Benchmark for Object Tracking in the
Wild
size_categories:
- 10K<n<100K
TrackingNet devkit
Download from HuggingFace
from huggingface_hub import hf_hub_download
from huggingface_hub import HfApi
from huggingface_hub import login
# Login
login(token = <YOUR_TOKEN>) # https://huggingface.co/settings/tokens -> Create new token
# List files
api = HfApi()
files = api.list_repo_files(repo_id="SilvioGiancola/TrackingNet", repo_type="dataset")
# [Optional] Filter files for "TRAIN_0" spliut only
files = [file for file in files if "TRAIN_0/" in file]
# Download all files from the list
for file in files:
hf_hub_download(repo_id="SilvioGiancola/TrackingNet", filename=file, repo_type="dataset", local_dir="TrackingNet_HF")
# Download zipped TEST set
hf_hub_download(repo_id="SilvioGiancola/TrackingNet", filename="TEST.zip", repo_type="dataset", local_dir="TrackingNet_HF")
TrackingNet pip package
conda create -n TrackingNet python pip
pip install TrackingNet
Utility functions for TrackingNet
from TrackingNet.utils import getListSplit
# Get list of codenames for the 12 training + testing split
TrackingNetSplits = getListSplit()
print(getListSplit())
# returns ["TEST", "TRAIN_0", "TRAIN_1", "TRAIN_2", "TRAIN_3", "TRAIN_4", "TRAIN_5", "TRAIN_6", "TRAIN_7", "TRAIN_8", "TRAIN_9", "TRAIN_10", "TRAIN_11"]
# Get list of tracking sequences
print(getListSequence(split=TrackingNetSplits[1])) # return list of tracking sequences in that split
print(getListSequence(split="TEST")) # return list of tracking sequences for testing
print(getListSequence(split=["TRAIN_0", "TRAIN_1"])) # return list of tracking sequences for train splits 0 and 1
print(getListSequence(split="TRAIN")) # return list of tracking sequences for al train splits
Downloading TrackingNet
from TrackingNet.Downloader import TrackingNetDownloader
from TrackingNet.utils import getListSplit
downloader = TrackingNetDownloader(LocalDirectory="path/to/TrackingNet")
for split in getListSplit():
downloader.downloadSplit(split)