Dataset Card for "hyperpartisan_news_detection"
Table of Contents
- Dataset Description
- Dataset Structure
- Dataset Creation
- Considerations for Using the Data
- Additional Information
Dataset Description
- Homepage: https://pan.webis.de/semeval19/semeval19-web/
- Repository: More Information Needed
- Paper: More Information Needed
- Point of Contact: More Information Needed
- Size of downloaded dataset files: 957.68 MB
- Size of the generated dataset: 5354.14 MB
- Total amount of disk used: 6311.82 MB
Dataset Summary
Hyperpartisan News Detection was a dataset created for PAN @ SemEval 2019 Task 4. Given a news article text, decide whether it follows a hyperpartisan argumentation, i.e., whether it exhibits blind, prejudiced, or unreasoning allegiance to one party, faction, cause, or person.
There are 2 parts:
- byarticle: Labeled through crowdsourcing on an article basis. The data contains only articles for which a consensus among the crowdsourcing workers existed.
- bypublisher: Labeled by the overall bias of the publisher as provided by BuzzFeed journalists or MediaBiasFactCheck.com.
Supported Tasks
Languages
Dataset Structure
We show detailed information for up to 5 configurations of the dataset.
Data Instances
byarticle
- Size of downloaded dataset files: 0.95 MB
- Size of the generated dataset: 2.67 MB
- Total amount of disk used: 3.63 MB
An example of 'train' looks as follows.
This example was too long and was cropped:
{
"hyperpartisan": true,
"published_at": "2020-01-01",
"text": "\"<p>This is a sample article which will contain lots of text</p>\\n \\n<p>Lorem ipsum dolor sit amet, consectetur adipiscing el...",
"title": "Example article 1",
"url": "http://www.example.com/example1"
}
bypublisher
- Size of downloaded dataset files: 956.72 MB
- Size of the generated dataset: 5351.47 MB
- Total amount of disk used: 6308.19 MB
An example of 'train' looks as follows.
This example was too long and was cropped:
{
"bias": 3,
"hyperpartisan": false,
"published_at": "2020-01-01",
"text": "\"<p>This is a sample article which will contain lots of text</p>\\n \\n<p>Phasellus bibendum porta nunc, id venenatis tortor fi...",
"title": "Example article 4",
"url": "https://example.com/example4"
}
Data Fields
The data fields are the same among all splits.
byarticle
text
: astring
feature.title
: astring
feature.hyperpartisan
: abool
feature.url
: astring
feature.published_at
: astring
feature.
bypublisher
text
: astring
feature.title
: astring
feature.hyperpartisan
: abool
feature.url
: astring
feature.published_at
: astring
feature.bias
: a classification label, with possible values includingright
(0),right-center
(1),least
(2),left-center
(3),left
(4).
Data Splits Sample Size
byarticle
train | |
---|---|
byarticle | 645 |
bypublisher
train | validation | |
---|---|---|
bypublisher | 600000 | 600000 |
Dataset Creation
Curation Rationale
Source Data
Annotations
Personal and Sensitive Information
Considerations for Using the Data
Social Impact of Dataset
Discussion of Biases
Other Known Limitations
Additional Information
Dataset Curators
Licensing Information
Citation Information
@article{kiesel2019data,
title={Data for pan at semeval 2019 task 4: Hyperpartisan news detection},
author={Kiesel, Johannes and Mestre, Maria and Shukla, Rishabh and Vincent, Emmanuel and Corney, David and Adineh, Payam and Stein, Benno and Potthast, Martin},
year={2019}
}
Contributions
Thanks to @thomwolf, @ghomasHudson for adding this dataset.