hyperedge
int64
2
74.8k
nodes
stringlengths
6
24
timestamp
float64
0
98.1k
2
[1, 2]
0
3
[8, 11]
0
4
[11, 12]
0
5
[6, 7]
0
6
[9, 10]
0
7
[8, 6]
0
8
[3, 4]
0
10
[1, 2]
20
11
[16, 15]
20
12
[11, 12]
20
13
[6, 7]
20
14
[9, 10]
20
15
[8, 6]
20
17
[17, 2, 1]
40
19
[20, 21]
40
20
[9, 10]
40
21
[18, 19]
40
22
[8, 6]
40
23
[20, 22]
40
24
[3, 4]
40
27
[17, 2, 1]
60
28
[11, 6]
60
29
[20, 21]
60
30
[6, 7]
60
31
[9, 10]
60
32
[25, 26]
60
33
[8, 6]
60
37
[1, 2]
80
38
[16, 15]
80
39
[9, 10]
80
40
[25, 31]
80
41
[8, 6]
80
42
[27, 28]
80
43
[42, 47]
100
44
[32, 33, 34]
100
45
[40, 39]
100
46
[45, 46]
100
47
[43, 44]
100
48
[9, 10]
100
50
[41, 42]
100
52
[19, 31]
100
53
[36, 37]
100
54
[38, 23]
100
55
[32, 33, 48]
120
56
[33, 27]
120
58
[1, 2]
120
60
[50, 36]
120
61
[32, 49]
120
63
[40, 39]
120
64
[16, 56, 15]
120
65
[45, 46]
120
66
[9, 10]
120
67
[25, 19]
120
68
[25, 57]
120
70
[34, 27]
120
72
[49, 27]
120
73
[51, 36]
120
74
[52, 53]
120
75
[38, 23]
120
76
[32, 33, 34]
140
77
[49, 34, 33]
140
78
[49, 27, 33]
140
79
[32, 34, 48]
140
80
[32, 48, 61]
140
81
[16, 56]
140
82
[59, 60, 62]
140
83
[61, 62]
140
84
[45, 46]
140
85
[6, 7]
140
86
[9, 10]
140
87
[58, 59, 60]
140
89
[3, 4]
140
90
[52, 53]
140
91
[38, 23]
140
92
[20, 63]
140
93
[68, 13]
160
95
[40, 39]
160
96
[45, 46]
160
97
[25, 57]
160
98
[65, 66]
160
99
[20, 21, 22]
160
100
[70, 47]
160
101
[33, 34, 27]
160
102
[43, 69]
160
104
[17, 1]
160
105
[64, 50]
160
106
[32, 48, 37]
160
107
[3, 4]
160
108
[67, 13]
160
109
[32, 48, 61]
160
110
[9, 10]
160
111
[6, 7]
160
112
[51, 60]
160
113
[36, 61, 62]
160
114
[16, 56]
160
115
[32, 33, 34]
180
116
[33, 27]
180
117
[70, 47]
180
118
[53, 54]
180
119
[32, 34, 48]
180

Source Paper: https://arxiv.org/abs/1802.06916

Usage

from torch_geometric.datasets.cornell import CornellTemporalHyperGraphDataset

dataset = CornellTemporalHyperGraphDataset(root = "./", name="contact-primary-school", split="train")

Citation

@article{Benson-2018-simplicial,
 author = {Benson, Austin R. and Abebe, Rediet and Schaub, Michael T. and Jadbabaie, Ali and Kleinberg, Jon},
 title = {Simplicial closure and higher-order link prediction},
 year = {2018},
 doi = {10.1073/pnas.1800683115},
 publisher = {National Academy of Sciences},
 issn = {0027-8424},
 journal = {Proceedings of the National Academy of Sciences}
}
Downloads last month
87

Models trained or fine-tuned on SauravMaheshkar/contact-primary-school

Collection including SauravMaheshkar/contact-primary-school