|
import datasets |
|
import pandas |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import (DEFAULT_SEACROWD_VIEW_NAME, |
|
DEFAULT_SOURCE_VIEW_NAME, Tasks, Licenses) |
|
|
|
_DATASETNAME = "id_vaccines_tweets" |
|
_SOURCE_VIEW_NAME = DEFAULT_SOURCE_VIEW_NAME |
|
_UNIFIED_VIEW_NAME = DEFAULT_SEACROWD_VIEW_NAME |
|
|
|
_LANGUAGES = ["ind"] |
|
_LOCAL = False |
|
_CITATION = """\ |
|
@article{febriyanti2021analisis, |
|
title={ANALISIS SENTIMEN MASYARAKAT INDONESIA TERHADAP PELAKSANAAN VAKSIN COVID'19}, |
|
author={Febriyanti, Syintya and Nursidah, Dea Ratu and Gustiara, Dela and Yulianti, Rika}, |
|
journal={Khazanah: Jurnal Mahasiswa}, |
|
volume={13}, |
|
number={2}, |
|
year={2021} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
Dataset containing tweets about COVID-19 vaccines with manually labelled information about whether they are a |
|
subjective tweet and their sentiment polarity. Tweets are from 20-27 June 2021 and 15-22 July 2021. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/rayendito/id-vaccines-tweets" |
|
|
|
_LICENSE = Licenses.UNKNOWN.value |
|
|
|
_URL = "https://raw.githubusercontent.com/rayendito/id-vaccines-tweets/main/id_vaccines_tweets.csv" |
|
|
|
_SUPPORTED_TASKS = [Tasks.SENTIMENT_ANALYSIS] |
|
_SOURCE_VERSION = "1.0.0" |
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class IdVaccinesTweetsDataset(datasets.GeneratorBasedBuilder): |
|
"""This is a seacrowd dataloader for id_vaccines_tweets, for every example in the dataset, it contains a subjective |
|
tweet and their sentiment polarity. Tweets are from 20-27 June 2021 and 15-22 July 2021.""" |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_source", |
|
version=datasets.Version(_SOURCE_VERSION), |
|
description=_DESCRIPTION, |
|
schema="source", |
|
subset_id=f"{_DATASETNAME}", |
|
), |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_seacrowd_text", |
|
version=datasets.Version(_SEACROWD_VERSION), |
|
description=_DESCRIPTION, |
|
schema="seacrowd_text", |
|
subset_id=f"{_DATASETNAME}", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" |
|
|
|
def _info(self): |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"idx": datasets.Value("string"), |
|
"form_text": datasets.Value("string"), |
|
"norm_text": datasets.Value("string"), |
|
"subjective": datasets.Value("float"), |
|
"sentiment": datasets.Value("float"), |
|
} |
|
) |
|
elif self.config.schema == "seacrowd_text": |
|
features = schemas.text_features([-1.0, 0.0, 1.0]) |
|
else: |
|
raise ValueError(f"Invalid config: {self.config.name}") |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
""" "return splitGenerators""" |
|
downloaded_files = dl_manager.download_and_extract(_URL) |
|
return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files})] |
|
|
|
def _generate_examples(self, filepath): |
|
data_lines = pandas.read_csv(filepath, skip_blank_lines=True) |
|
keys = data_lines.keys() |
|
indexes = data_lines[keys[0]][1:] |
|
norms = data_lines[keys[1]][1:] |
|
formals = data_lines[keys[2]][1:] |
|
subjs = data_lines[keys[3]][1:] |
|
posnegs = data_lines[keys[4]][1:] |
|
if self.config.schema == "source": |
|
for idx, (ind, norm, form, subj, posneg) in enumerate(zip(indexes, norms, formals, subjs, posnegs)): |
|
yield idx, { |
|
"idx": str(ind), |
|
"form_text": form, |
|
"norm_text": norm, |
|
"subjective": float(subj), |
|
"sentiment": float(posneg), |
|
} |
|
if self.config.schema == "seacrowd_text": |
|
for idx, (ind, norm, posneg) in enumerate(zip(indexes, norms, posnegs)): |
|
yield idx, {"id": str(ind), "text": norm, "label": float(posneg)} |
|
|