import datasets import pandas from seacrowd.utils import schemas from seacrowd.utils.configs import SEACrowdConfig from seacrowd.utils.constants import (DEFAULT_SEACROWD_VIEW_NAME, DEFAULT_SOURCE_VIEW_NAME, Tasks, Licenses) _DATASETNAME = "id_vaccines_tweets" _SOURCE_VIEW_NAME = DEFAULT_SOURCE_VIEW_NAME _UNIFIED_VIEW_NAME = DEFAULT_SEACROWD_VIEW_NAME _LANGUAGES = ["ind"] # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data) _LOCAL = False _CITATION = """\ @article{febriyanti2021analisis, title={ANALISIS SENTIMEN MASYARAKAT INDONESIA TERHADAP PELAKSANAAN VAKSIN COVID'19}, author={Febriyanti, Syintya and Nursidah, Dea Ratu and Gustiara, Dela and Yulianti, Rika}, journal={Khazanah: Jurnal Mahasiswa}, volume={13}, number={2}, year={2021} } """ _DESCRIPTION = """\ Dataset containing tweets about COVID-19 vaccines with manually labelled information about whether they are a subjective tweet and their sentiment polarity. Tweets are from 20-27 June 2021 and 15-22 July 2021. """ _HOMEPAGE = "https://github.com/rayendito/id-vaccines-tweets" _LICENSE = Licenses.UNKNOWN.value _URL = "https://raw.githubusercontent.com/rayendito/id-vaccines-tweets/main/id_vaccines_tweets.csv" _SUPPORTED_TASKS = [Tasks.SENTIMENT_ANALYSIS] _SOURCE_VERSION = "1.0.0" _SEACROWD_VERSION = "2024.06.20" class IdVaccinesTweetsDataset(datasets.GeneratorBasedBuilder): """This is a seacrowd dataloader for id_vaccines_tweets, for every example in the dataset, it contains a subjective tweet and their sentiment polarity. Tweets are from 20-27 June 2021 and 15-22 July 2021.""" BUILDER_CONFIGS = [ SEACrowdConfig( name=f"{_DATASETNAME}_source", version=datasets.Version(_SOURCE_VERSION), description=_DESCRIPTION, schema="source", subset_id=f"{_DATASETNAME}", ), SEACrowdConfig( name=f"{_DATASETNAME}_seacrowd_text", version=datasets.Version(_SEACROWD_VERSION), description=_DESCRIPTION, schema="seacrowd_text", subset_id=f"{_DATASETNAME}", ), ] DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" def _info(self): if self.config.schema == "source": features = datasets.Features( { "idx": datasets.Value("string"), "form_text": datasets.Value("string"), "norm_text": datasets.Value("string"), "subjective": datasets.Value("float"), "sentiment": datasets.Value("float"), } ) elif self.config.schema == "seacrowd_text": features = schemas.text_features([-1.0, 0.0, 1.0]) else: raise ValueError(f"Invalid config: {self.config.name}") return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): """ "return splitGenerators""" downloaded_files = dl_manager.download_and_extract(_URL) return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files})] def _generate_examples(self, filepath): data_lines = pandas.read_csv(filepath, skip_blank_lines=True) keys = data_lines.keys() indexes = data_lines[keys[0]][1:] norms = data_lines[keys[1]][1:] formals = data_lines[keys[2]][1:] subjs = data_lines[keys[3]][1:] posnegs = data_lines[keys[4]][1:] if self.config.schema == "source": for idx, (ind, norm, form, subj, posneg) in enumerate(zip(indexes, norms, formals, subjs, posnegs)): yield idx, { "idx": str(ind), "form_text": form, "norm_text": norm, "subjective": float(subj), "sentiment": float(posneg), } if self.config.schema == "seacrowd_text": for idx, (ind, norm, posneg) in enumerate(zip(indexes, norms, posnegs)): yield idx, {"id": str(ind), "text": norm, "label": float(posneg)}