Dataset Viewer
Full Screen Viewer
Full Screen
The dataset viewer is not available for this dataset.
Cannot get the config names for the dataset.
Error code: ConfigNamesError Exception: ImportError Message: To be able to use SEACrowd/ccmatrix, you need to install the following dependency: seacrowd. Please install it using 'pip install seacrowd' for instance. Traceback: Traceback (most recent call last): File "/src/services/worker/src/worker/job_runners/dataset/config_names.py", line 66, in compute_config_names_response config_names = get_dataset_config_names( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/inspect.py", line 347, in get_dataset_config_names dataset_module = dataset_module_factory( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1914, in dataset_module_factory raise e1 from None File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1880, in dataset_module_factory return HubDatasetModuleFactoryWithScript( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1504, in get_module local_imports = _download_additional_modules( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 354, in _download_additional_modules raise ImportError( ImportError: To be able to use SEACrowd/ccmatrix, you need to install the following dependency: seacrowd. Please install it using 'pip install seacrowd' for instance.
Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
YAML Metadata
Warning:
The task_categories "machine-translation" is not in the official list: text-classification, token-classification, table-question-answering, question-answering, zero-shot-classification, translation, summarization, feature-extraction, text-generation, text2text-generation, fill-mask, sentence-similarity, text-to-speech, text-to-audio, automatic-speech-recognition, audio-to-audio, audio-classification, voice-activity-detection, depth-estimation, image-classification, object-detection, image-segmentation, text-to-image, image-to-text, image-to-image, image-to-video, unconditional-image-generation, video-classification, reinforcement-learning, robotics, tabular-classification, tabular-regression, tabular-to-text, table-to-text, multiple-choice, text-retrieval, time-series-forecasting, text-to-video, image-text-to-text, visual-question-answering, document-question-answering, zero-shot-image-classification, graph-ml, mask-generation, zero-shot-object-detection, text-to-3d, image-to-3d, image-feature-extraction, other
The CCMatrix dataset was collected from web crawls and released by Meta. The dataset is constructed based on the margin-based bitext mining which can be applied to monolingual corpora of billions of sentences to produce high quality aligned translation data.
Languages
jav, eng, vie, ind, tgl, mya, zlm
Supported Tasks
Machine Translation
Dataset Usage
Using datasets
library
from datasets import load_dataset
dset = datasets.load_dataset("SEACrowd/ccmatrix", trust_remote_code=True)
Using seacrowd
library
# Load the dataset using the default config
dset = sc.load_dataset("ccmatrix", schema="seacrowd")
# Check all available subsets (config names) of the dataset
print(sc.available_config_names("ccmatrix"))
# Load the dataset using a specific config
dset = sc.load_dataset_by_config_name(config_name="<config_name>")
More details on how to load the seacrowd
library can be found here.
Dataset Homepage
https://opus.nlpl.eu/CCMatrix/corpus/version/CCMatrix
Dataset Version
Source: 1.0.0. SEACrowd: 2024.06.20.
Dataset License
BSD license family (bsd)
Citation
If you are using the Ccmatrix dataloader in your work, please cite the following:
@inproceedings{schwenk-etal-2021-ccmatrix,
title = "{CCM}atrix: Mining Billions of High-Quality Parallel Sentences on the Web",
author = "Schwenk, Holger and
Wenzek, Guillaume and
Edunov, Sergey and
Grave, Edouard and
Joulin, Armand and
Fan, Angela",
editor = "Zong, Chengqing and
Xia, Fei and
Li, Wenjie and
Navigli, Roberto",
booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)",
month = aug,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.acl-long.507",
doi = "10.18653/v1/2021.acl-long.507",
pages = "6490--6500",
abstract = "We show that margin-based bitext mining in a multilingual sentence space can be successfully scaled to operate on monolingual corpora of billions of sentences. We use 32 snapshots of a curated common crawl corpus (Wenzel et al, 2019) totaling 71 billion unique sentences. Using one unified approach for 90 languages, we were able to mine 10.8 billion parallel sentences, out of which only 2.9 billions are aligned with English. We illustrate the capability of our scalable mining system to create high quality training sets from one language to any other by training hundreds of different machine translation models and evaluating them on the many-to-many TED benchmark. Further, we evaluate on competitive translation benchmarks such as WMT and WAT. Using only mined bitext, we set a new state of the art for a single system on the WMT{'}19 test set for English-German/Russian/Chinese. In particular, our English/German and English/Russian systems outperform the best single ones by over 4 BLEU points and are on par with best WMT{'}19 systems, which train on the WMT training data and augment it with backtranslation. We also achieve excellent results for distant languages pairs like Russian/Japanese, outperforming the best submission at the 2020 WAT workshop. All of the mined bitext will be freely available.",
}
@article{lovenia2024seacrowd,
title={SEACrowd: A Multilingual Multimodal Data Hub and Benchmark Suite for Southeast Asian Languages},
author={Holy Lovenia and Rahmad Mahendra and Salsabil Maulana Akbar and Lester James V. Miranda and Jennifer Santoso and Elyanah Aco and Akhdan Fadhilah and Jonibek Mansurov and Joseph Marvin Imperial and Onno P. Kampman and Joel Ruben Antony Moniz and Muhammad Ravi Shulthan Habibi and Frederikus Hudi and Railey Montalan and Ryan Ignatius and Joanito Agili Lopo and William Nixon and Börje F. Karlsson and James Jaya and Ryandito Diandaru and Yuze Gao and Patrick Amadeus and Bin Wang and Jan Christian Blaise Cruz and Chenxi Whitehouse and Ivan Halim Parmonangan and Maria Khelli and Wenyu Zhang and Lucky Susanto and Reynard Adha Ryanda and Sonny Lazuardi Hermawan and Dan John Velasco and Muhammad Dehan Al Kautsar and Willy Fitra Hendria and Yasmin Moslem and Noah Flynn and Muhammad Farid Adilazuarda and Haochen Li and Johanes Lee and R. Damanhuri and Shuo Sun and Muhammad Reza Qorib and Amirbek Djanibekov and Wei Qi Leong and Quyet V. Do and Niklas Muennighoff and Tanrada Pansuwan and Ilham Firdausi Putra and Yan Xu and Ngee Chia Tai and Ayu Purwarianti and Sebastian Ruder and William Tjhi and Peerat Limkonchotiwat and Alham Fikri Aji and Sedrick Keh and Genta Indra Winata and Ruochen Zhang and Fajri Koto and Zheng-Xin Yong and Samuel Cahyawijaya},
year={2024},
eprint={2406.10118},
journal={arXiv preprint arXiv: 2406.10118}
}
- Downloads last month
- 37