Datasets:

Modalities:
Tabular
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
Dask
License:
PHBJT's picture
Update README.md
9985714 verified
metadata
dataset_info:
  - config_name: dutch
    features:
      - name: wav_filesize
        dtype: int64
      - name: text
        dtype: string
      - name: transcript_wav2vec
        dtype: string
      - name: levenshtein
        dtype: float64
      - name: duration
        dtype: float64
      - name: num_words
        dtype: int64
      - name: speaker_id
        dtype: int64
      - name: utterance_pitch_mean
        dtype: float32
      - name: utterance_pitch_std
        dtype: float32
      - name: snr
        dtype: float64
      - name: c50
        dtype: float64
      - name: speaking_rate
        dtype: string
      - name: phonemes
        dtype: string
      - name: original_text
        dtype: string
      - name: gender
        dtype: string
      - name: stoi
        dtype: float64
      - name: si-sdr
        dtype: float64
      - name: pesq
        dtype: float64
      - name: pitch
        dtype: string
      - name: noise
        dtype: string
      - name: reverberation
        dtype: string
      - name: speech_monotony
        dtype: string
      - name: sdr_noise
        dtype: string
      - name: pesq_speech_quality
        dtype: string
      - name: text_description
        dtype: string
      - name: original_text_description
        dtype: string
    splits:
      - name: train
        num_bytes: 239921852
        num_examples: 231177
      - name: dev
        num_bytes: 1787744
        num_examples: 1641
      - name: test
        num_bytes: 1766102
        num_examples: 1661
    download_size: 108495579
    dataset_size: 243475698
  - config_name: french
    features:
      - name: wav_filesize
        dtype: int64
      - name: text
        dtype: string
      - name: transcript_wav2vec
        dtype: string
      - name: levenshtein
        dtype: float64
      - name: duration
        dtype: float64
      - name: num_words
        dtype: int64
      - name: speaker_id
        dtype: int64
      - name: utterance_pitch_mean
        dtype: float32
      - name: utterance_pitch_std
        dtype: float32
      - name: snr
        dtype: float64
      - name: c50
        dtype: float64
      - name: speaking_rate
        dtype: string
      - name: phonemes
        dtype: string
      - name: original_text
        dtype: string
      - name: gender
        dtype: string
      - name: stoi
        dtype: float64
      - name: si-sdr
        dtype: float64
      - name: pesq
        dtype: float64
      - name: pitch
        dtype: string
      - name: noise
        dtype: string
      - name: reverberation
        dtype: string
      - name: speech_monotony
        dtype: string
      - name: sdr_noise
        dtype: string
      - name: pesq_speech_quality
        dtype: string
      - name: text_description
        dtype: string
      - name: original_text_description
        dtype: string
    splits:
      - name: train
        num_bytes: 109864516
        num_examples: 99997
      - name: dev
        num_bytes: 2438561
        num_examples: 2293
      - name: test
        num_bytes: 2540344
        num_examples: 2378
    download_size: 53314347
    dataset_size: 114843421
  - config_name: german
    features:
      - name: wav_filesize
        dtype: int64
      - name: text
        dtype: string
      - name: transcript_wav2vec
        dtype: string
      - name: levenshtein
        dtype: float64
      - name: duration
        dtype: float64
      - name: num_words
        dtype: int64
      - name: speaker_id
        dtype: int64
      - name: utterance_pitch_mean
        dtype: float32
      - name: utterance_pitch_std
        dtype: float32
      - name: snr
        dtype: float64
      - name: c50
        dtype: float64
      - name: speaking_rate
        dtype: string
      - name: phonemes
        dtype: string
      - name: original_text
        dtype: string
      - name: gender
        dtype: string
      - name: stoi
        dtype: float64
      - name: si-sdr
        dtype: float64
      - name: pesq
        dtype: float64
      - name: pitch
        dtype: string
      - name: noise
        dtype: string
      - name: reverberation
        dtype: string
      - name: speech_monotony
        dtype: string
      - name: sdr_noise
        dtype: string
      - name: pesq_speech_quality
        dtype: string
      - name: text_description
        dtype: string
      - name: original_text_description
        dtype: string
    splits:
      - name: train
        num_bytes: 562200669
        num_examples: 527484
      - name: dev
        num_bytes: 4014971
        num_examples: 3628
      - name: test
        num_bytes: 3906399
        num_examples: 3592
    download_size: 256582021
    dataset_size: 570122039
  - config_name: italian
    features:
      - name: wav_filesize
        dtype: int64
      - name: text
        dtype: string
      - name: transcript_wav2vec
        dtype: string
      - name: levenshtein
        dtype: float64
      - name: duration
        dtype: float64
      - name: num_words
        dtype: int64
      - name: speaker_id
        dtype: int64
      - name: utterance_pitch_mean
        dtype: float32
      - name: utterance_pitch_std
        dtype: float32
      - name: snr
        dtype: float64
      - name: c50
        dtype: float64
      - name: speaking_rate
        dtype: string
      - name: phonemes
        dtype: string
      - name: original_text
        dtype: string
      - name: gender
        dtype: string
      - name: stoi
        dtype: float64
      - name: si-sdr
        dtype: float64
      - name: pesq
        dtype: float64
      - name: pitch
        dtype: string
      - name: noise
        dtype: string
      - name: reverberation
        dtype: string
      - name: speech_monotony
        dtype: string
      - name: sdr_noise
        dtype: string
      - name: pesq_speech_quality
        dtype: string
      - name: text_description
        dtype: string
      - name: original_text_description
        dtype: string
    splits:
      - name: train
        num_bytes: 50694410
        num_examples: 47133
      - name: dev
        num_bytes: 787099
        num_examples: 786
      - name: test
        num_bytes: 940716
        num_examples: 958
    download_size: 24588039
    dataset_size: 52422225
  - config_name: polish
    features:
      - name: wav_filesize
        dtype: int64
      - name: text
        dtype: string
      - name: transcript_wav2vec
        dtype: string
      - name: levenshtein
        dtype: float64
      - name: duration
        dtype: float64
      - name: num_words
        dtype: int64
      - name: speaker_id
        dtype: int64
      - name: utterance_pitch_mean
        dtype: float32
      - name: utterance_pitch_std
        dtype: float32
      - name: snr
        dtype: float64
      - name: c50
        dtype: float64
      - name: speaking_rate
        dtype: string
      - name: phonemes
        dtype: string
      - name: original_text
        dtype: string
      - name: gender
        dtype: string
      - name: stoi
        dtype: float64
      - name: si-sdr
        dtype: float64
      - name: pesq
        dtype: float64
      - name: pitch
        dtype: string
      - name: noise
        dtype: string
      - name: reverberation
        dtype: string
      - name: speech_monotony
        dtype: string
      - name: text_description
        dtype: string
      - name: original_text_description
        dtype: string
    splits:
      - name: train
        num_bytes: 16459590
        num_examples: 15136
      - name: dev
        num_bytes: 559635
        num_examples: 564
      - name: test
        num_bytes: 649740
        num_examples: 603
    download_size: 9411733
    dataset_size: 17668965
  - config_name: portuguese
    features:
      - name: wav_filesize
        dtype: int64
      - name: text
        dtype: string
      - name: transcript_wav2vec
        dtype: string
      - name: levenshtein
        dtype: float64
      - name: duration
        dtype: float64
      - name: num_words
        dtype: int64
      - name: speaker_id
        dtype: int64
      - name: utterance_pitch_mean
        dtype: float32
      - name: utterance_pitch_std
        dtype: float32
      - name: snr
        dtype: float64
      - name: c50
        dtype: float64
      - name: speaking_rate
        dtype: string
      - name: phonemes
        dtype: string
      - name: original_text
        dtype: string
      - name: gender
        dtype: string
      - name: stoi
        dtype: float64
      - name: si-sdr
        dtype: float64
      - name: pesq
        dtype: float64
      - name: pitch
        dtype: string
      - name: noise
        dtype: string
      - name: reverberation
        dtype: string
      - name: speech_monotony
        dtype: string
      - name: sdr_noise
        dtype: string
      - name: pesq_speech_quality
        dtype: string
      - name: text_description
        dtype: string
    splits:
      - name: train
        num_bytes: 22702074
        num_examples: 25732
      - name: dev
        num_bytes: 300602
        num_examples: 352
      - name: test
        num_bytes: 204377
        num_examples: 265
    download_size: 11573093
    dataset_size: 23207053
  - config_name: spanish
    features:
      - name: wav_filesize
        dtype: int64
      - name: text
        dtype: string
      - name: transcript_wav2vec
        dtype: string
      - name: levenshtein
        dtype: float64
      - name: duration
        dtype: float64
      - name: num_words
        dtype: int64
      - name: speaker_id
        dtype: int64
      - name: utterance_pitch_mean
        dtype: float32
      - name: utterance_pitch_std
        dtype: float32
      - name: snr
        dtype: float64
      - name: c50
        dtype: float64
      - name: speaking_rate
        dtype: string
      - name: phonemes
        dtype: string
      - name: original_text
        dtype: string
      - name: gender
        dtype: string
      - name: pitch
        dtype: string
      - name: noise
        dtype: string
      - name: reverberation
        dtype: string
      - name: speech_monotony
        dtype: string
      - name: text_description
        dtype: string
      - name: original_text_description
        dtype: string
    splits:
      - name: train
        num_bytes: 159210207
        num_examples: 153150
      - name: dev
        num_bytes: 2007744
        num_examples: 1897
      - name: test
        num_bytes: 1731824
        num_examples: 1662
    download_size: 79579984
    dataset_size: 162949775
configs:
  - config_name: dutch
    data_files:
      - split: train
        path: dutch/train-*
      - split: dev
        path: dutch/dev-*
      - split: test
        path: dutch/test-*
  - config_name: french
    data_files:
      - split: train
        path: french/train-*
      - split: dev
        path: french/dev-*
      - split: test
        path: french/test-*
  - config_name: german
    data_files:
      - split: train
        path: german/train-*
      - split: dev
        path: german/dev-*
      - split: test
        path: german/test-*
  - config_name: italian
    data_files:
      - split: train
        path: italian/train-*
      - split: dev
        path: italian/dev-*
      - split: test
        path: italian/test-*
  - config_name: polish
    data_files:
      - split: train
        path: polish/train-*
      - split: dev
        path: polish/dev-*
      - split: test
        path: polish/test-*
  - config_name: portuguese
    data_files:
      - split: train
        path: portuguese/train-*
      - split: dev
        path: portuguese/dev-*
      - split: test
        path: portuguese/test-*
  - config_name: spanish
    data_files:
      - split: train
        path: spanish/train-*
      - split: dev
        path: spanish/dev-*
      - split: test
        path: spanish/test-*
license: cc-by-4.0
task_categories:
  - text-to-speech
language:
  - fr
  - de
  - it
  - es
  - pl
  - pt
  - nl

Dataset Card for Filtred and annotated CML TTS

This dataset is an annotated and filtred version of a CML-TTS [1].

CML-TTS [1] CML-TTS is a recursive acronym for CML-Multi-Lingual-TTS, a Text-to-Speech (TTS) dataset developed at the Center of Excellence in Artificial Intelligence (CEIA) of the Federal University of Goias (UFG). CML-TTS is a dataset comprising audiobooks sourced from the public domain books of Project Gutenberg, read by volunteers from the LibriVox project. The dataset includes recordings in Dutch, German, French, Italian, Polish, Portuguese, and Spanish, all at a sampling rate of 24kHz.

The original dataset has been cleaned by removing all rows with a Levenshtein score inferior to 0.9. In the text_description column, it provides natural language annotations on the characteristics of speakers and utterances, that have been generated using the Data-Speech repository.

This dataset was used alongside the LibriTTS-R English dataset and the Non English subset of MLS to train [Parler-TTS Multilingual Mini v1.1. A training recipe is available in the Parler-TTS library.

Motivation

This dataset is a reproduction of work from the paper Natural language guidance of high-fidelity text-to-speech with synthetic annotations by Dan Lyth and Simon King, from Stability AI and Edinburgh University respectively. It was designed to fine tune the Parler-TTS Mini v1.1 on 8 european languages (including English).

Contrarily to other TTS models, Parler-TTS is a fully open-source release. All of the datasets, pre-processing, training code and weights are released publicly under permissive license, enabling the community to build on our work and develop their own powerful TTS models. Parler-TTS was released alongside:

Usage

Here is an example on how to oad the clean config with only the train.clean.360 split.

from datasets import load_dataset

load_dataset("https://huggingface.co/datasets/PHBJT/cml-tts-filtered", "french", split="train")

Note: This dataset doesn't actually keep track of the audio column of the original version. You can merge it back to the original dataset using this script from Parler-TTS or, even better, get inspiration from the training script of Parler-TTS, that efficiently process multiple annotated datasets. You can find the original dataset here

Dataset Description

  • License: CC BY 4.0

Dataset Sources

Citation

@misc{oliveira2023cmltts,
      title={CML-TTS A Multilingual Dataset for Speech Synthesis in Low-Resource Languages}, 
      author={Frederico S. Oliveira and Edresson Casanova and Arnaldo Cândido Júnior and Anderson S. Soares and Arlindo R. Galvão Filho},
      year={2023},
      eprint={2306.10097},
      archivePrefix={arXiv},
      primaryClass={eess.AS}
}
@misc{lacombe-etal-2024-dataspeech,
  author = {Yoach Lacombe and Vaibhav Srivastav and Sanchit Gandhi},
  title = {Data-Speech},
  year = {2024},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/ylacombe/dataspeech}}
}
@misc{lyth2024natural,
      title={Natural language guidance of high-fidelity text-to-speech with synthetic annotations},
      author={Dan Lyth and Simon King},
      year={2024},
      eprint={2402.01912},
      archivePrefix={arXiv},
      primaryClass={cs.SD}
}