Datasets:
dataset_info:
- config_name: dutch
features:
- name: wav_filesize
dtype: int64
- name: text
dtype: string
- name: transcript_wav2vec
dtype: string
- name: levenshtein
dtype: float64
- name: duration
dtype: float64
- name: num_words
dtype: int64
- name: speaker_id
dtype: int64
- name: utterance_pitch_mean
dtype: float32
- name: utterance_pitch_std
dtype: float32
- name: snr
dtype: float64
- name: c50
dtype: float64
- name: speaking_rate
dtype: string
- name: phonemes
dtype: string
- name: original_text
dtype: string
- name: gender
dtype: string
- name: stoi
dtype: float64
- name: si-sdr
dtype: float64
- name: pesq
dtype: float64
- name: pitch
dtype: string
- name: noise
dtype: string
- name: reverberation
dtype: string
- name: speech_monotony
dtype: string
- name: sdr_noise
dtype: string
- name: pesq_speech_quality
dtype: string
- name: text_description
dtype: string
- name: original_text_description
dtype: string
splits:
- name: train
num_bytes: 239921852
num_examples: 231177
- name: dev
num_bytes: 1787744
num_examples: 1641
- name: test
num_bytes: 1766102
num_examples: 1661
download_size: 108495579
dataset_size: 243475698
- config_name: french
features:
- name: wav_filesize
dtype: int64
- name: text
dtype: string
- name: transcript_wav2vec
dtype: string
- name: levenshtein
dtype: float64
- name: duration
dtype: float64
- name: num_words
dtype: int64
- name: speaker_id
dtype: int64
- name: utterance_pitch_mean
dtype: float32
- name: utterance_pitch_std
dtype: float32
- name: snr
dtype: float64
- name: c50
dtype: float64
- name: speaking_rate
dtype: string
- name: phonemes
dtype: string
- name: original_text
dtype: string
- name: gender
dtype: string
- name: stoi
dtype: float64
- name: si-sdr
dtype: float64
- name: pesq
dtype: float64
- name: pitch
dtype: string
- name: noise
dtype: string
- name: reverberation
dtype: string
- name: speech_monotony
dtype: string
- name: sdr_noise
dtype: string
- name: pesq_speech_quality
dtype: string
- name: text_description
dtype: string
- name: original_text_description
dtype: string
splits:
- name: train
num_bytes: 109864516
num_examples: 99997
- name: dev
num_bytes: 2438561
num_examples: 2293
- name: test
num_bytes: 2540344
num_examples: 2378
download_size: 53314347
dataset_size: 114843421
- config_name: german
features:
- name: wav_filesize
dtype: int64
- name: text
dtype: string
- name: transcript_wav2vec
dtype: string
- name: levenshtein
dtype: float64
- name: duration
dtype: float64
- name: num_words
dtype: int64
- name: speaker_id
dtype: int64
- name: utterance_pitch_mean
dtype: float32
- name: utterance_pitch_std
dtype: float32
- name: snr
dtype: float64
- name: c50
dtype: float64
- name: speaking_rate
dtype: string
- name: phonemes
dtype: string
- name: original_text
dtype: string
- name: gender
dtype: string
- name: stoi
dtype: float64
- name: si-sdr
dtype: float64
- name: pesq
dtype: float64
- name: pitch
dtype: string
- name: noise
dtype: string
- name: reverberation
dtype: string
- name: speech_monotony
dtype: string
- name: sdr_noise
dtype: string
- name: pesq_speech_quality
dtype: string
- name: text_description
dtype: string
- name: original_text_description
dtype: string
splits:
- name: train
num_bytes: 562200669
num_examples: 527484
- name: dev
num_bytes: 4014971
num_examples: 3628
- name: test
num_bytes: 3906399
num_examples: 3592
download_size: 256582021
dataset_size: 570122039
- config_name: italian
features:
- name: wav_filesize
dtype: int64
- name: text
dtype: string
- name: transcript_wav2vec
dtype: string
- name: levenshtein
dtype: float64
- name: duration
dtype: float64
- name: num_words
dtype: int64
- name: speaker_id
dtype: int64
- name: utterance_pitch_mean
dtype: float32
- name: utterance_pitch_std
dtype: float32
- name: snr
dtype: float64
- name: c50
dtype: float64
- name: speaking_rate
dtype: string
- name: phonemes
dtype: string
- name: original_text
dtype: string
- name: gender
dtype: string
- name: stoi
dtype: float64
- name: si-sdr
dtype: float64
- name: pesq
dtype: float64
- name: pitch
dtype: string
- name: noise
dtype: string
- name: reverberation
dtype: string
- name: speech_monotony
dtype: string
- name: sdr_noise
dtype: string
- name: pesq_speech_quality
dtype: string
- name: text_description
dtype: string
- name: original_text_description
dtype: string
splits:
- name: train
num_bytes: 50694410
num_examples: 47133
- name: dev
num_bytes: 787099
num_examples: 786
- name: test
num_bytes: 940716
num_examples: 958
download_size: 24588039
dataset_size: 52422225
- config_name: polish
features:
- name: wav_filesize
dtype: int64
- name: text
dtype: string
- name: transcript_wav2vec
dtype: string
- name: levenshtein
dtype: float64
- name: duration
dtype: float64
- name: num_words
dtype: int64
- name: speaker_id
dtype: int64
- name: utterance_pitch_mean
dtype: float32
- name: utterance_pitch_std
dtype: float32
- name: snr
dtype: float64
- name: c50
dtype: float64
- name: speaking_rate
dtype: string
- name: phonemes
dtype: string
- name: original_text
dtype: string
- name: gender
dtype: string
- name: stoi
dtype: float64
- name: si-sdr
dtype: float64
- name: pesq
dtype: float64
- name: pitch
dtype: string
- name: noise
dtype: string
- name: reverberation
dtype: string
- name: speech_monotony
dtype: string
- name: text_description
dtype: string
- name: original_text_description
dtype: string
splits:
- name: train
num_bytes: 16459590
num_examples: 15136
- name: dev
num_bytes: 559635
num_examples: 564
- name: test
num_bytes: 649740
num_examples: 603
download_size: 9411733
dataset_size: 17668965
- config_name: portuguese
features:
- name: wav_filesize
dtype: int64
- name: text
dtype: string
- name: transcript_wav2vec
dtype: string
- name: levenshtein
dtype: float64
- name: duration
dtype: float64
- name: num_words
dtype: int64
- name: speaker_id
dtype: int64
- name: utterance_pitch_mean
dtype: float32
- name: utterance_pitch_std
dtype: float32
- name: snr
dtype: float64
- name: c50
dtype: float64
- name: speaking_rate
dtype: string
- name: phonemes
dtype: string
- name: original_text
dtype: string
- name: gender
dtype: string
- name: stoi
dtype: float64
- name: si-sdr
dtype: float64
- name: pesq
dtype: float64
- name: pitch
dtype: string
- name: noise
dtype: string
- name: reverberation
dtype: string
- name: speech_monotony
dtype: string
- name: sdr_noise
dtype: string
- name: pesq_speech_quality
dtype: string
- name: text_description
dtype: string
splits:
- name: train
num_bytes: 22702074
num_examples: 25732
- name: dev
num_bytes: 300602
num_examples: 352
- name: test
num_bytes: 204377
num_examples: 265
download_size: 11573093
dataset_size: 23207053
- config_name: spanish
features:
- name: wav_filesize
dtype: int64
- name: text
dtype: string
- name: transcript_wav2vec
dtype: string
- name: levenshtein
dtype: float64
- name: duration
dtype: float64
- name: num_words
dtype: int64
- name: speaker_id
dtype: int64
- name: utterance_pitch_mean
dtype: float32
- name: utterance_pitch_std
dtype: float32
- name: snr
dtype: float64
- name: c50
dtype: float64
- name: speaking_rate
dtype: string
- name: phonemes
dtype: string
- name: original_text
dtype: string
- name: gender
dtype: string
- name: pitch
dtype: string
- name: noise
dtype: string
- name: reverberation
dtype: string
- name: speech_monotony
dtype: string
- name: text_description
dtype: string
- name: original_text_description
dtype: string
splits:
- name: train
num_bytes: 159210207
num_examples: 153150
- name: dev
num_bytes: 2007744
num_examples: 1897
- name: test
num_bytes: 1731824
num_examples: 1662
download_size: 79579984
dataset_size: 162949775
configs:
- config_name: dutch
data_files:
- split: train
path: dutch/train-*
- split: dev
path: dutch/dev-*
- split: test
path: dutch/test-*
- config_name: french
data_files:
- split: train
path: french/train-*
- split: dev
path: french/dev-*
- split: test
path: french/test-*
- config_name: german
data_files:
- split: train
path: german/train-*
- split: dev
path: german/dev-*
- split: test
path: german/test-*
- config_name: italian
data_files:
- split: train
path: italian/train-*
- split: dev
path: italian/dev-*
- split: test
path: italian/test-*
- config_name: polish
data_files:
- split: train
path: polish/train-*
- split: dev
path: polish/dev-*
- split: test
path: polish/test-*
- config_name: portuguese
data_files:
- split: train
path: portuguese/train-*
- split: dev
path: portuguese/dev-*
- split: test
path: portuguese/test-*
- config_name: spanish
data_files:
- split: train
path: spanish/train-*
- split: dev
path: spanish/dev-*
- split: test
path: spanish/test-*
license: cc-by-4.0
task_categories:
- text-to-speech
language:
- fr
- de
- it
- es
- pl
- pt
- nl
Dataset Card for Filtred and annotated CML TTS
This dataset is an annotated and filtred version of a CML-TTS [1].
CML-TTS [1] CML-TTS is a recursive acronym for CML-Multi-Lingual-TTS, a Text-to-Speech (TTS) dataset developed at the Center of Excellence in Artificial Intelligence (CEIA) of the Federal University of Goias (UFG). CML-TTS is a dataset comprising audiobooks sourced from the public domain books of Project Gutenberg, read by volunteers from the LibriVox project. The dataset includes recordings in Dutch, German, French, Italian, Polish, Portuguese, and Spanish, all at a sampling rate of 24kHz.
The original dataset has been cleaned by removing all rows with a Levenshtein score inferior to 0.9. In the text_description
column, it provides natural language annotations on the characteristics of speakers and utterances, that have been generated using the Data-Speech repository.
This dataset was used alongside the LibriTTS-R English dataset and the Non English subset of MLS to train [Parler-TTS Multilingual Mini v1.1. A training recipe is available in the Parler-TTS library.
Motivation
This dataset is a reproduction of work from the paper Natural language guidance of high-fidelity text-to-speech with synthetic annotations by Dan Lyth and Simon King, from Stability AI and Edinburgh University respectively. It was designed to fine tune the Parler-TTS Mini v1.1 on 8 european languages (including English).
Contrarily to other TTS models, Parler-TTS is a fully open-source release. All of the datasets, pre-processing, training code and weights are released publicly under permissive license, enabling the community to build on our work and develop their own powerful TTS models. Parler-TTS was released alongside:
- The Parler-TTS repository - you can train and fine-tuned your own version of the model.
- The Data-Speech repository - a suite of utility scripts designed to annotate speech datasets.
- The Parler-TTS organization - where you can find the annotated datasets as well as the future checkpoints.
Usage
Here is an example on how to oad the clean
config with only the train.clean.360
split.
from datasets import load_dataset
load_dataset("https://huggingface.co/datasets/PHBJT/cml-tts-filtered", "french", split="train")
Note: This dataset doesn't actually keep track of the audio column of the original version. You can merge it back to the original dataset using this script from Parler-TTS or, even better, get inspiration from the training script of Parler-TTS, that efficiently process multiple annotated datasets. You can find the original dataset here
Dataset Description
- License: CC BY 4.0
Dataset Sources
- Homepage: https://www.openslr.org/141/
- Paper: https://arxiv.org/abs/2305.18802
Citation
@misc{oliveira2023cmltts,
title={CML-TTS A Multilingual Dataset for Speech Synthesis in Low-Resource Languages},
author={Frederico S. Oliveira and Edresson Casanova and Arnaldo Cândido Júnior and Anderson S. Soares and Arlindo R. Galvão Filho},
year={2023},
eprint={2306.10097},
archivePrefix={arXiv},
primaryClass={eess.AS}
}
@misc{lacombe-etal-2024-dataspeech,
author = {Yoach Lacombe and Vaibhav Srivastav and Sanchit Gandhi},
title = {Data-Speech},
year = {2024},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/ylacombe/dataspeech}}
}
@misc{lyth2024natural,
title={Natural language guidance of high-fidelity text-to-speech with synthetic annotations},
author={Dan Lyth and Simon King},
year={2024},
eprint={2402.01912},
archivePrefix={arXiv},
primaryClass={cs.SD}
}