text
stringlengths
0
4.99k
# 1. Read wav file
file = tf.io.read_file(wavs_path + wav_file + \".wav\")
# 2. Decode the wav file
audio, _ = tf.audio.decode_wav(file)
audio = tf.squeeze(audio, axis=-1)
# 3. Change type to float
audio = tf.cast(audio, tf.float32)
# 4. Get the spectrogram
spectrogram = tf.signal.stft(
audio, frame_length=frame_length, frame_step=frame_step, fft_length=fft_length
)
# 5. We only need the magnitude, which can be derived by applying tf.abs
spectrogram = tf.abs(spectrogram)
spectrogram = tf.math.pow(spectrogram, 0.5)
# 6. normalisation
means = tf.math.reduce_mean(spectrogram, 1, keepdims=True)
stddevs = tf.math.reduce_std(spectrogram, 1, keepdims=True)
spectrogram = (spectrogram - means) / (stddevs + 1e-10)
###########################################
## Process the label
##########################################
# 7. Convert label to Lower case
label = tf.strings.lower(label)
# 8. Split the label
label = tf.strings.unicode_split(label, input_encoding=\"UTF-8\")
# 9. Map the characters in label to numbers
label = char_to_num(label)
# 10. Return a dict as our model is expecting two inputs
return spectrogram, label
Creating Dataset objects
We create a tf.data.Dataset object that yields the transformed elements, in the same order as they appeared in the input.
batch_size = 32
# Define the trainig dataset
train_dataset = tf.data.Dataset.from_tensor_slices(
(list(df_train[\"file_name\"]), list(df_train[\"normalized_transcription\"]))
)
train_dataset = (
train_dataset.map(encode_single_sample, num_parallel_calls=tf.data.AUTOTUNE)
.padded_batch(batch_size)
.prefetch(buffer_size=tf.data.AUTOTUNE)
)
# Define the validation dataset
validation_dataset = tf.data.Dataset.from_tensor_slices(
(list(df_val[\"file_name\"]), list(df_val[\"normalized_transcription\"]))
)
validation_dataset = (
validation_dataset.map(encode_single_sample, num_parallel_calls=tf.data.AUTOTUNE)
.padded_batch(batch_size)
.prefetch(buffer_size=tf.data.AUTOTUNE)
)
Visualize the data
Let's visualize an example in our dataset, including the audio clip, the spectrogram and the corresponding label.
fig = plt.figure(figsize=(8, 5))
for batch in train_dataset.take(1):
spectrogram = batch[0][0].numpy()
spectrogram = np.array([np.trim_zeros(x) for x in np.transpose(spectrogram)])
label = batch[1][0]
# Spectrogram
label = tf.strings.reduce_join(num_to_char(label)).numpy().decode(\"utf-8\")
ax = plt.subplot(2, 1, 1)
ax.imshow(spectrogram, vmax=1)
ax.set_title(label)
ax.axis(\"off\")
# Wav
file = tf.io.read_file(wavs_path + list(df_train[\"file_name\"])[0] + \".wav\")
audio, _ = tf.audio.decode_wav(file)
audio = audio.numpy()
ax = plt.subplot(2, 1, 2)
plt.plot(audio)
ax.set_title(\"Signal Wave\")
ax.set_xlim(0, len(audio))
display.display(display.Audio(np.transpose(audio), rate=16000))
plt.show()
2021-09-28 21:16:34.014170: I tensorflow/compiler/mlir/mlir_graph_optimization_pass.cc:185] None of the MLIR Optimization Passes are enabled (registered 2)
png
Model
We first define the CTC Loss function.
def CTCLoss(y_true, y_pred):
# Compute the training-time loss value
batch_len = tf.cast(tf.shape(y_true)[0], dtype=\"int64\")
input_length = tf.cast(tf.shape(y_pred)[1], dtype=\"int64\")
label_length = tf.cast(tf.shape(y_true)[1], dtype=\"int64\")
input_length = input_length * tf.ones(shape=(batch_len, 1), dtype=\"int64\")
label_length = label_length * tf.ones(shape=(batch_len, 1), dtype=\"int64\")
loss = keras.backend.ctc_batch_cost(y_true, y_pred, input_length, label_length)
return loss
We now define our model. We will define a model similar to DeepSpeech2.
def build_model(input_dim, output_dim, rnn_layers=5, rnn_units=128):
\"\"\"Model similar to DeepSpeech2.\"\"\"
# Model's input
input_spectrogram = layers.Input((None, input_dim), name=\"input\")