Issue with TypeError in GAIR/MathPile Dataset Loading
I attempted to load the 'validation' split of the dataset with the following code:
dataset = load_dataset("GAIR/MathPile", split='validation', cache_dir=output_dir)
However, I encountered a TypeError during this process. The error message indicates a problem with casting an array of a specific structure to a different format. Here is the complete error message for your reference:
TypeError: Couldn't cast array of type
struct<char_num_after_normalized: int64, contain_at_least_two_stop_words: bool, ellipsis_line_ratio: double, idx: int64, language_detection_score: double, lines_start_with_bullet_point_ratio: double, mean_length_of_alpha_words: double, non_alphabetical_char_ratio: double, path: string, symbols_to_words_ratio: double, uppercase_word_ratio: double>
to
{'id': Value(dtype='string', id=None), 'language_detection_score': Value(dtype='float64', id=None)}
I would greatly appreciate any guidance or suggestions you could provide on resolving this issue.
I am getting the same error when i try to dowload the train dataset.
Hi, thanks for your feedback.
Currently, we recommend that you download it locally from the command line (such as huggingface-cli
) instead of the python function load_dataset("GAIR/MathPile")
(due to a possible network issue), unpack the gz files, and then load the jsonl files. Some commands that might be helpful are as follows
$ huggingface-cli download --resume-download --repo-type dataset GAIR/MathPile --local-dir /your/path/ --local-dir-use-symlinks False
$ cd /your/path/
$ find . -type f -name "*.gz" -exec gzip -d {} \;
Later we will also support the datasets loading via load_dataset("GAIR/MathPile")
. Stay tuned.
Moreover, we have released a new version (v0.2
) of MathPile. We suggest you download the latest version. We look forward to your latest feedback.
Thank you so much for taking the time to respond to my issue. Your solution was really helpful and addressed my concerns perfectly.
Hi, thanks for your feedback.
Currently, we recommend that you download it locally from the command line (such as
huggingface-cli
) instead of the python functionload_dataset("GAIR/MathPile")
(due to a possible network issue), unpack the gz files, and then load the jsonl files. Some commands that might be helpful are as follows$ huggingface-cli download --resume-download --repo-type dataset GAIR/MathPile --local-dir /your/path/ --local-dir-use-symlinks False $ cd /your/path/ $ find . -type f -name "*.gz" -exec gzip -d {} \;
Later we will also support the datasets loading via
load_dataset("GAIR/MathPile")
. Stay tuned.Moreover, we have released a new version (
v0.2
) of MathPile. We suggest you download the latest version. We look forward to your latest feedback.
Does this solution mean that you have to load every jsonl file seperatly?
my error
Resolving data files: 100%|βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 22/22 [00:00<00:00, 161037.85it/s]
Setting num_proc from 255 to 22 for the train split as it only contains 22 shards.
Generating train split: 727874 examples [00:35, 20536.47 examples/s]
multiprocess.pool.RemoteTraceback:
"""
Traceback (most recent call last):
File "/lfs/hyperturing1/0/brando9/miniconda/envs/beyond_scale_2/lib/python3.11/site-packages/datasets/builder.py", line 1869, in _prepare_split_single
writer.write_table(table)
File "/lfs/hyperturing1/0/brando9/miniconda/envs/beyond_scale_2/lib/python3.11/site-packages/datasets/arrow_writer.py", line 580, in write_table
pa_table = table_cast(pa_table, self._schema)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/lfs/hyperturing1/0/brando9/miniconda/envs/beyond_scale_2/lib/python3.11/site-packages/datasets/table.py", line 2283, in table_cast
return cast_table_to_schema(table, schema)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/lfs/hyperturing1/0/brando9/miniconda/envs/beyond_scale_2/lib/python3.11/site-packages/datasets/table.py", line 2242, in cast_table_to_schema
arrays = [cast_array_to_feature(table[name], feature) for name, feature in features.items()]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/lfs/hyperturing1/0/brando9/miniconda/envs/beyond_scale_2/lib/python3.11/site-packages/datasets/table.py", line 2242, in <listcomp>
arrays = [cast_array_to_feature(table[name], feature) for name, feature in features.items()]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/lfs/hyperturing1/0/brando9/miniconda/envs/beyond_scale_2/lib/python3.11/site-packages/datasets/table.py", line 1795, in wrapper
return pa.chunked_array([func(chunk, *args, **kwargs) for chunk in array.chunks])
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/lfs/hyperturing1/0/brando9/miniconda/envs/beyond_scale_2/lib/python3.11/site-packages/datasets/table.py", line 1795, in <listcomp>
return pa.chunked_array([func(chunk, *args, **kwargs) for chunk in array.chunks])
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/lfs/hyperturing1/0/brando9/miniconda/envs/beyond_scale_2/lib/python3.11/site-packages/datasets/table.py", line 2006, in cast_array_to_feature
arrays = [_c(array.field(name), subfeature) for name, subfeature in feature.items()]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/lfs/hyperturing1/0/brando9/miniconda/envs/beyond_scale_2/lib/python3.11/site-packages/datasets/table.py", line 2006, in <listcomp>
arrays = [_c(array.field(name), subfeature) for name, subfeature in feature.items()]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/lfs/hyperturing1/0/brando9/miniconda/envs/beyond_scale_2/lib/python3.11/site-packages/datasets/table.py", line 1797, in wrapper
return func(array, *args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/lfs/hyperturing1/0/brando9/miniconda/envs/beyond_scale_2/lib/python3.11/site-packages/datasets/table.py", line 2100, in cast_array_to_feature
return array_cast(
^^^^^^^^^^^
File "/lfs/hyperturing1/0/brando9/miniconda/envs/beyond_scale_2/lib/python3.11/site-packages/datasets/table.py", line 1797, in wrapper
return func(array, *args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/lfs/hyperturing1/0/brando9/miniconda/envs/beyond_scale_2/lib/python3.11/site-packages/datasets/table.py", line 1948, in array_cast
raise TypeError(f"Couldn't cast array of type {_short_str(array.type)} to {_short_str(pa_type)}")
TypeError: Couldn't cast array of type string to null
The above exception was the direct cause of the following exception:
Traceback (most recent call last):
File "/lfs/hyperturing1/0/brando9/miniconda/envs/beyond_scale_2/lib/python3.11/site-packages/multiprocess/pool.py", line 125, in worker
result = (True, func(*args, **kwds))
^^^^^^^^^^^^^^^^^^^
File "/lfs/hyperturing1/0/brando9/miniconda/envs/beyond_scale_2/lib/python3.11/site-packages/datasets/utils/py_utils.py", line 678, in _write_generator_to_queue
for i, result in enumerate(func(**kwargs)):
File "/lfs/hyperturing1/0/brando9/miniconda/envs/beyond_scale_2/lib/python3.11/site-packages/datasets/builder.py", line 1896, in _prepare_split_single
raise DatasetGenerationError("An error occurred while generating the dataset") from e
datasets.exceptions.DatasetGenerationError: An error occurred while generating the dataset
"""
The above exception was the direct cause of the following exception:
Traceback (most recent call last):
File "/lfs/hyperturing1/0/brando9/beyond-scale-2-alignment-coeff/py_src/alignment/synth_data_gen/af/math_nl_2_lean4.py", line 101, in <module>
fire.Fire(main)
File "/lfs/hyperturing1/0/brando9/miniconda/envs/beyond_scale_2/lib/python3.11/site-packages/fire/core.py", line 143, in Fire
component_trace = _Fire(component, args, parsed_flag_args, context, name)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/lfs/hyperturing1/0/brando9/miniconda/envs/beyond_scale_2/lib/python3.11/site-packages/fire/core.py", line 477, in _Fire
component, remaining_args = _CallAndUpdateTrace(
^^^^^^^^^^^^^^^^^^^^
File "/lfs/hyperturing1/0/brando9/miniconda/envs/beyond_scale_2/lib/python3.11/site-packages/fire/core.py", line 693, in _CallAndUpdateTrace
component = fn(*varargs, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^
File "/lfs/hyperturing1/0/brando9/beyond-scale-2-alignment-coeff/py_src/alignment/synth_data_gen/af/math_nl_2_lean4.py", line 83, in main
dataset: Dataset = get_hf_dataset_gair()
^^^^^^^^^^^^^^^^^^^^^
File "/afs/cs.stanford.edu/u/brando9/beyond-scale-2-alignment-coeff/py_src/alignment/synth_data_gen/af/get_nl_math_data.py", line 125, in get_hf_dataset_gair
dataset = load_dataset(path, split='train', num_proc=os.cpu_count())
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/lfs/hyperturing1/0/brando9/miniconda/envs/beyond_scale_2/lib/python3.11/site-packages/datasets/load.py", line 2096, in load_dataset
builder_instance.download_and_prepare(
File "/lfs/hyperturing1/0/brando9/miniconda/envs/beyond_scale_2/lib/python3.11/site-packages/datasets/builder.py", line 924, in download_and_prepare
self._download_and_prepare(
File "/lfs/hyperturing1/0/brando9/miniconda/envs/beyond_scale_2/lib/python3.11/site-packages/datasets/builder.py", line 999, in _download_and_prepare
self._prepare_split(split_generator, **prepare_split_kwargs)
File "/lfs/hyperturing1/0/brando9/miniconda/envs/beyond_scale_2/lib/python3.11/site-packages/datasets/builder.py", line 1769, in _prepare_split
for job_id, done, content in iflatmap_unordered(
File "/lfs/hyperturing1/0/brando9/miniconda/envs/beyond_scale_2/lib/python3.11/site-packages/datasets/utils/py_utils.py", line 718, in iflatmap_unordered
[async_result.get(timeout=0.05) for async_result in async_results]
File "/lfs/hyperturing1/0/brando9/miniconda/envs/beyond_scale_2/lib/python3.11/site-packages/datasets/utils/py_utils.py", line 718, in <listcomp>
[async_result.get(timeout=0.05) for async_result in async_results]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/lfs/hyperturing1/0/brando9/miniconda/envs/beyond_scale_2/lib/python3.11/site-packages/multiprocess/pool.py", line 774, in get
raise self._value
datasets.exceptions.DatasetGenerationError: An error occurred while generating the dataset
I do have it downloaded
# gair: https://huggingface.co/datasets/GAIR/MathPile
# GAIR/MathPile
def get_hf_dataset_gair(
path: str = '~/data/GAIR/MathPile/train/',
# split: str = 'train',
) -> Dataset:
path: str = os.path.expanduser(path)
dataset = load_dataset(path, split='train', num_proc=os.cpu_count())
print(dataset[0]) # Preview a single example from the dataset
# Remove the columns
all_columns = dataset.column_names # Get all the column names
all_columns.remove('text') # Remove 'text' from the list of columns to drop
dataset = dataset.remove_columns(all_columns)
# Shuffle and select 10k examples
dataset = dataset.shuffle(seed=42)
dataset = dataset.select(10_000)
return dataset
e.g.,
Download GAIR
source $AFS/.bashrc
conda activate beyond_scale_2
mkdir -p ~/data/GAIR/MathPile
huggingface-cli download --resume-download --repo-type dataset GAIR/MathPile --local-dir ~/data/GAIR/MathPile --local-dir-use-symlinks False
cd ~/data/GAIR/MathPile/
find . -type f -name "*.gz" -exec gzip -d {} \;