Datasets:
language:
- ko
multilinguality:
- multilingual
size_categories: []
source_datasets: []
tags: []
task_categories:
- text-retrieval
license:
- apache-2.0
task_ids:
- document-retrieval
Wikipedia (ko) embedded with cohere.ai multilingual-22-12
encoder
We encoded Wikipedia (ko) using the cohere.ai multilingual-22-12
embedding model.
To get an overview how this dataset was created and pre-processed, have a look at Cohere/wikipedia-22-12.
Embeddings
We compute for title+" "+text
the embeddings using our multilingual-22-12
embedding model, a state-of-the-art model that works for semantic search in 100 languages. If you want to learn more about this model, have a look at cohere.ai multilingual embedding model.
Further languages
We provide embeddings of Wikipedia in many different languages: ar, de, en, es, fr, hi, it, ja, ko, simple english, zh,
You can find the Wikipedia datasets without embeddings at Cohere/wikipedia-22-12.
Loading the dataset
You can either load the dataset like this:
from datasets import load_dataset
docs = load_dataset(f"Cohere/wikipedia-22-12-ko-embeddings", split="train")
Or you can also stream it without downloading it before:
from datasets import load_dataset
docs = load_dataset(f"Cohere/wikipedia-22-12-ko-embeddings", split="train", streaming=True)
for doc in docs:
docid = doc['id']
title = doc['title']
text = doc['text']
emb = doc['emb']
Search
A full search example:
#Run: pip install cohere datasets
from datasets import load_dataset
import torch
import cohere
co = cohere.Client(f"<<COHERE_API_KEY>>") # Add your cohere API key from www.cohere.com
#Load at max 1000 documents + embeddings
max_docs = 1000
docs_stream = load_dataset(f"Cohere/wikipedia-22-12-ko-embeddings", split="train", streaming=True)
docs = []
doc_embeddings = []
for doc in docs_stream:
docs.append(doc)
doc_embeddings.append(doc['emb'])
if len(docs) >= max_docs:
break
doc_embeddings = torch.tensor(doc_embeddings)
query = 'Who founded Youtube'
response = co.embed(texts=[query], model='multilingual-22-12')
query_embedding = response.embeddings
query_embedding = torch.tensor(query_embedding)
# Compute dot score between query embedding and document embeddings
dot_scores = torch.mm(query_embedding, doc_embeddings.transpose(0, 1))
top_k = torch.topk(dot_scores, k=3)
# Print results
print("Query:", query)
for doc_id in top_k.indices[0].tolist():
print(docs[doc_id]['title'])
print(docs[doc_id]['text'], "\n")
Performance
You can find performance on the MIRACL dataset (a semantic search evaluation dataset) here: miracl-en-queries-22-12#performance