Datasets:

id
int64
0
7.97k
query
stringlengths
1.29k
1.31k
answer
stringclasses
2 values
choices
sequence
gold
int64
0
1
text
stringlengths
374
399
400
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -3.787, V2: 1.646, V3: -1.704, V4: -4.055, V5: -0.276, V6: 5.926, V7: -5.523, V8: -7.379, V9: -0.846, V10: 1.097, V11: -0.949, V12: 0.076, V13: 0.142, V14: 0.007, V15: -0.465, V16: 0.413, V17: 1.020, V18: 0.429, V19: -1.399, V20: -2.669, V21: 9.102, V22: -3.185, V23: 1.465, V24: 0.492, V25: 0.032, V26: -0.242, V27: 0.168, V28: -0.180, Amount: 16.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -3.787, V2: 1.646, V3: -1.704, V4: -4.055, V5: -0.276, V6: 5.926, V7: -5.523, V8: -7.379, V9: -0.846, V10: 1.097, V11: -0.949, V12: 0.076, V13: 0.142, V14: 0.007, V15: -0.465, V16: 0.413, V17: 1.020, V18: 0.429, V19: -1.399, V20: -2.669, V21: 9.102, V22: -3.185, V23: 1.465, V24: 0.492, V25: 0.032, V26: -0.242, V27: 0.168, V28: -0.180, Amount: 16.000.
401
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.013, V2: -0.735, V3: 1.569, V4: 0.991, V5: -1.176, V6: 1.342, V7: -1.294, V8: 0.637, V9: 1.669, V10: -0.349, V11: 0.116, V12: 1.068, V13: -0.920, V14: -0.788, V15: -1.884, V16: -0.443, V17: 0.352, V18: -0.144, V19: 0.453, V20: -0.139, V21: -0.032, V22: 0.322, V23: -0.099, V24: -0.232, V25: 0.313, V26: 0.517, V27: 0.058, V28: 0.013, Amount: 32.500.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.013, V2: -0.735, V3: 1.569, V4: 0.991, V5: -1.176, V6: 1.342, V7: -1.294, V8: 0.637, V9: 1.669, V10: -0.349, V11: 0.116, V12: 1.068, V13: -0.920, V14: -0.788, V15: -1.884, V16: -0.443, V17: 0.352, V18: -0.144, V19: 0.453, V20: -0.139, V21: -0.032, V22: 0.322, V23: -0.099, V24: -0.232, V25: 0.313, V26: 0.517, V27: 0.058, V28: 0.013, Amount: 32.500.
402
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 2.034, V2: -0.052, V3: -1.396, V4: 0.080, V5: 0.255, V6: -0.627, V7: 0.087, V8: -0.171, V9: 0.437, V10: 0.060, V11: 1.070, V12: 1.182, V13: 0.300, V14: 0.608, V15: 0.158, V16: -0.103, V17: -0.798, V18: 0.546, V19: 0.080, V20: -0.196, V21: 0.324, V22: 1.062, V23: 0.005, V24: 0.797, V25: 0.325, V26: -0.477, V27: 0.002, V28: -0.056, Amount: 1.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 2.034, V2: -0.052, V3: -1.396, V4: 0.080, V5: 0.255, V6: -0.627, V7: 0.087, V8: -0.171, V9: 0.437, V10: 0.060, V11: 1.070, V12: 1.182, V13: 0.300, V14: 0.608, V15: 0.158, V16: -0.103, V17: -0.798, V18: 0.546, V19: 0.080, V20: -0.196, V21: 0.324, V22: 1.062, V23: 0.005, V24: 0.797, V25: 0.325, V26: -0.477, V27: 0.002, V28: -0.056, Amount: 1.000.
403
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.325, V2: 0.028, V3: 2.395, V4: 1.642, V5: -0.658, V6: 1.377, V7: -1.389, V8: 1.286, V9: 0.880, V10: -0.436, V11: -0.262, V12: 0.652, V13: -1.346, V14: -0.362, V15: -1.574, V16: -0.845, V17: 0.849, V18: 0.421, V19: 1.338, V20: 0.113, V21: 0.115, V22: 0.601, V23: -0.210, V24: -0.276, V25: -0.125, V26: -0.074, V27: 0.371, V28: 0.039, Amount: 1.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.325, V2: 0.028, V3: 2.395, V4: 1.642, V5: -0.658, V6: 1.377, V7: -1.389, V8: 1.286, V9: 0.880, V10: -0.436, V11: -0.262, V12: 0.652, V13: -1.346, V14: -0.362, V15: -1.574, V16: -0.845, V17: 0.849, V18: 0.421, V19: 1.338, V20: 0.113, V21: 0.115, V22: 0.601, V23: -0.210, V24: -0.276, V25: -0.125, V26: -0.074, V27: 0.371, V28: 0.039, Amount: 1.000.
404
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 0.210, V2: -0.099, V3: -1.227, V4: -2.637, V5: 2.113, V6: 3.540, V7: -0.711, V8: 0.986, V9: -0.674, V10: -0.446, V11: 0.235, V12: -1.088, V13: -0.114, V14: -2.075, V15: 0.319, V16: 1.626, V17: 1.160, V18: -0.456, V19: -0.144, V20: 0.092, V21: 0.310, V22: 0.781, V23: -0.087, V24: 0.595, V25: -0.339, V26: -0.151, V27: -0.036, V28: 0.026, Amount: 19.950.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 0.210, V2: -0.099, V3: -1.227, V4: -2.637, V5: 2.113, V6: 3.540, V7: -0.711, V8: 0.986, V9: -0.674, V10: -0.446, V11: 0.235, V12: -1.088, V13: -0.114, V14: -2.075, V15: 0.319, V16: 1.626, V17: 1.160, V18: -0.456, V19: -0.144, V20: 0.092, V21: 0.310, V22: 0.781, V23: -0.087, V24: 0.595, V25: -0.339, V26: -0.151, V27: -0.036, V28: 0.026, Amount: 19.950.
405
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -2.352, V2: 2.914, V3: -2.050, V4: -0.515, V5: -0.834, V6: -1.456, V7: -0.377, V8: 1.436, V9: 0.126, V10: 0.332, V11: -1.211, V12: 1.131, V13: 1.125, V14: 1.167, V15: 0.321, V16: -0.166, V17: 0.164, V18: 0.034, V19: -0.211, V20: 0.238, V21: 0.409, V22: 1.284, V23: 0.136, V24: 0.027, V25: -0.423, V26: -0.188, V27: 0.541, V28: 0.375, Amount: 0.890.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -2.352, V2: 2.914, V3: -2.050, V4: -0.515, V5: -0.834, V6: -1.456, V7: -0.377, V8: 1.436, V9: 0.126, V10: 0.332, V11: -1.211, V12: 1.131, V13: 1.125, V14: 1.167, V15: 0.321, V16: -0.166, V17: 0.164, V18: 0.034, V19: -0.211, V20: 0.238, V21: 0.409, V22: 1.284, V23: 0.136, V24: 0.027, V25: -0.423, V26: -0.188, V27: 0.541, V28: 0.375, Amount: 0.890.
406
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.744, V2: -0.406, V3: -2.181, V4: 0.239, V5: 0.566, V6: -0.164, V7: 0.198, V8: -0.079, V9: 0.687, V10: -0.819, V11: 0.770, V12: 1.035, V13: 0.500, V14: -1.529, V15: -0.772, V16: 0.426, V17: 0.658, V18: 0.773, V19: 0.592, V20: 0.221, V21: -0.153, V22: -0.556, V23: -0.010, V24: -0.015, V25: -0.026, V26: -0.121, V27: -0.039, V28: -0.000, Amount: 159.080.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.744, V2: -0.406, V3: -2.181, V4: 0.239, V5: 0.566, V6: -0.164, V7: 0.198, V8: -0.079, V9: 0.687, V10: -0.819, V11: 0.770, V12: 1.035, V13: 0.500, V14: -1.529, V15: -0.772, V16: 0.426, V17: 0.658, V18: 0.773, V19: 0.592, V20: 0.221, V21: -0.153, V22: -0.556, V23: -0.010, V24: -0.015, V25: -0.026, V26: -0.121, V27: -0.039, V28: -0.000, Amount: 159.080.
407
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -2.047, V2: -1.646, V3: 0.083, V4: -2.037, V5: -0.345, V6: -1.472, V7: 0.194, V8: 0.454, V9: -1.141, V10: -0.243, V11: 0.196, V12: -0.094, V13: -1.401, V14: 0.666, V15: -1.877, V16: -0.802, V17: -0.319, V18: 1.307, V19: -1.779, V20: 0.118, V21: -0.048, V22: -0.587, V23: 0.530, V24: 0.327, V25: -0.529, V26: 1.017, V27: 0.090, V28: -0.055, Amount: 218.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -2.047, V2: -1.646, V3: 0.083, V4: -2.037, V5: -0.345, V6: -1.472, V7: 0.194, V8: 0.454, V9: -1.141, V10: -0.243, V11: 0.196, V12: -0.094, V13: -1.401, V14: 0.666, V15: -1.877, V16: -0.802, V17: -0.319, V18: 1.307, V19: -1.779, V20: 0.118, V21: -0.048, V22: -0.587, V23: 0.530, V24: 0.327, V25: -0.529, V26: 1.017, V27: 0.090, V28: -0.055, Amount: 218.000.
408
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.193, V2: 0.247, V3: 0.394, V4: 0.635, V5: -0.481, V6: -0.881, V7: -0.057, V8: -0.029, V9: -0.131, V10: -0.094, V11: 1.690, V12: 0.604, V13: -0.621, V14: 0.067, V15: 0.459, V16: 0.650, V17: -0.141, V18: 0.220, V19: 0.018, V20: -0.117, V21: -0.229, V22: -0.741, V23: 0.148, V24: 0.476, V25: 0.133, V26: 0.066, V27: -0.032, V28: 0.022, Amount: 4.780.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.193, V2: 0.247, V3: 0.394, V4: 0.635, V5: -0.481, V6: -0.881, V7: -0.057, V8: -0.029, V9: -0.131, V10: -0.094, V11: 1.690, V12: 0.604, V13: -0.621, V14: 0.067, V15: 0.459, V16: 0.650, V17: -0.141, V18: 0.220, V19: 0.018, V20: -0.117, V21: -0.229, V22: -0.741, V23: 0.148, V24: 0.476, V25: 0.133, V26: 0.066, V27: -0.032, V28: 0.022, Amount: 4.780.
409
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 2.033, V2: 0.068, V3: -1.817, V4: 0.240, V5: 0.608, V6: -0.383, V7: 0.090, V8: -0.074, V9: 0.252, V10: -0.214, V11: 0.868, V12: 0.742, V13: 0.041, V14: -0.665, V15: -0.473, V16: 0.600, V17: 0.115, V18: 0.285, V19: 0.451, V20: -0.114, V21: -0.326, V22: -0.891, V23: 0.282, V24: 0.187, V25: -0.252, V26: 0.171, V27: -0.069, V28: -0.042, Amount: 11.990.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 2.033, V2: 0.068, V3: -1.817, V4: 0.240, V5: 0.608, V6: -0.383, V7: 0.090, V8: -0.074, V9: 0.252, V10: -0.214, V11: 0.868, V12: 0.742, V13: 0.041, V14: -0.665, V15: -0.473, V16: 0.600, V17: 0.115, V18: 0.285, V19: 0.451, V20: -0.114, V21: -0.326, V22: -0.891, V23: 0.282, V24: 0.187, V25: -0.252, V26: 0.171, V27: -0.069, V28: -0.042, Amount: 11.990.
410
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -2.497, V2: 1.994, V3: -2.551, V4: 5.230, V5: 0.671, V6: 1.428, V7: -1.658, V8: -1.003, V9: -2.281, V10: -0.183, V11: -0.078, V12: -0.034, V13: 0.085, V14: -1.195, V15: 1.375, V16: 0.382, V17: 3.770, V18: -0.459, V19: -0.476, V20: 0.234, V21: -1.625, V22: -0.240, V23: 0.916, V24: -1.406, V25: -0.807, V26: 0.161, V27: 0.325, V28: -0.598, Amount: 7.780.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -2.497, V2: 1.994, V3: -2.551, V4: 5.230, V5: 0.671, V6: 1.428, V7: -1.658, V8: -1.003, V9: -2.281, V10: -0.183, V11: -0.078, V12: -0.034, V13: 0.085, V14: -1.195, V15: 1.375, V16: 0.382, V17: 3.770, V18: -0.459, V19: -0.476, V20: 0.234, V21: -1.625, V22: -0.240, V23: 0.916, V24: -1.406, V25: -0.807, V26: 0.161, V27: 0.325, V28: -0.598, Amount: 7.780.
411
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 2.008, V2: -0.331, V3: -1.332, V4: 0.178, V5: 0.297, V6: 0.045, V7: -0.239, V8: -0.078, V9: 2.260, V10: -0.405, V11: 1.019, V12: -1.731, V13: 1.120, V14: 1.726, V15: -1.744, V16: -0.280, V17: 0.244, V18: 0.594, V19: 0.567, V20: -0.209, V21: -0.050, V22: 0.286, V23: -0.013, V24: 0.184, V25: 0.213, V26: 0.134, V27: -0.070, V28: -0.074, Amount: 29.400.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 2.008, V2: -0.331, V3: -1.332, V4: 0.178, V5: 0.297, V6: 0.045, V7: -0.239, V8: -0.078, V9: 2.260, V10: -0.405, V11: 1.019, V12: -1.731, V13: 1.120, V14: 1.726, V15: -1.744, V16: -0.280, V17: 0.244, V18: 0.594, V19: 0.567, V20: -0.209, V21: -0.050, V22: 0.286, V23: -0.013, V24: 0.184, V25: 0.213, V26: 0.134, V27: -0.070, V28: -0.074, Amount: 29.400.
412
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.109, V2: 0.938, V3: -1.204, V4: -0.568, V5: 3.558, V6: 3.210, V7: -0.755, V8: -2.129, V9: 0.367, V10: -1.671, V11: 1.166, V12: -2.970, V13: 1.195, V14: 0.393, V15: 0.132, V16: 0.827, V17: 1.293, V18: 1.202, V19: -0.151, V20: 0.672, V21: -1.580, V22: -0.089, V23: 0.359, V24: 0.803, V25: -0.141, V26: 0.213, V27: -0.035, V28: -0.072, Amount: 0.760.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.109, V2: 0.938, V3: -1.204, V4: -0.568, V5: 3.558, V6: 3.210, V7: -0.755, V8: -2.129, V9: 0.367, V10: -1.671, V11: 1.166, V12: -2.970, V13: 1.195, V14: 0.393, V15: 0.132, V16: 0.827, V17: 1.293, V18: 1.202, V19: -0.151, V20: 0.672, V21: -1.580, V22: -0.089, V23: 0.359, V24: 0.803, V25: -0.141, V26: 0.213, V27: -0.035, V28: -0.072, Amount: 0.760.
413
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 0.757, V2: 0.450, V3: 1.069, V4: 1.791, V5: -0.838, V6: -0.314, V7: -0.724, V8: -0.787, V9: 0.275, V10: 0.374, V11: -0.541, V12: -0.384, V13: -0.890, V14: 0.533, V15: 2.082, V16: -0.067, V17: 0.018, V18: 0.412, V19: 0.931, V20: -0.148, V21: 0.800, V22: -0.148, V23: 0.066, V24: 0.339, V25: -0.511, V26: -0.381, V27: 0.360, V28: 0.354, Amount: 15.740.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 0.757, V2: 0.450, V3: 1.069, V4: 1.791, V5: -0.838, V6: -0.314, V7: -0.724, V8: -0.787, V9: 0.275, V10: 0.374, V11: -0.541, V12: -0.384, V13: -0.890, V14: 0.533, V15: 2.082, V16: -0.067, V17: 0.018, V18: 0.412, V19: 0.931, V20: -0.148, V21: 0.800, V22: -0.148, V23: 0.066, V24: 0.339, V25: -0.511, V26: -0.381, V27: 0.360, V28: 0.354, Amount: 15.740.
414
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.053, V2: 1.737, V3: -0.175, V4: 0.351, V5: 0.666, V6: 0.561, V7: 0.505, V8: -0.331, V9: 0.503, V10: 1.285, V11: -1.338, V12: 0.038, V13: 1.130, V14: -0.358, V15: 1.341, V16: -0.231, V17: -0.664, V18: -0.100, V19: 0.455, V20: -0.021, V21: 0.223, V22: 0.336, V23: 0.063, V24: -1.325, V25: -1.008, V26: -0.588, V27: -1.017, V28: 0.212, Amount: 12.790.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.053, V2: 1.737, V3: -0.175, V4: 0.351, V5: 0.666, V6: 0.561, V7: 0.505, V8: -0.331, V9: 0.503, V10: 1.285, V11: -1.338, V12: 0.038, V13: 1.130, V14: -0.358, V15: 1.341, V16: -0.231, V17: -0.664, V18: -0.100, V19: 0.455, V20: -0.021, V21: 0.223, V22: 0.336, V23: 0.063, V24: -1.325, V25: -1.008, V26: -0.588, V27: -1.017, V28: 0.212, Amount: 12.790.
415
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.086, V2: 1.951, V3: -1.172, V4: -1.067, V5: 1.161, V6: -0.499, V7: 1.125, V8: -0.239, V9: 1.252, V10: 1.221, V11: -1.054, V12: -0.239, V13: 0.389, V14: -1.750, V15: -0.094, V16: 0.321, V17: -0.069, V18: -0.142, V19: -0.135, V20: 0.885, V21: -0.624, V22: -1.045, V23: 0.058, V24: -0.149, V25: -0.025, V26: 0.155, V27: 0.682, V28: 0.255, Amount: 4.990.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.086, V2: 1.951, V3: -1.172, V4: -1.067, V5: 1.161, V6: -0.499, V7: 1.125, V8: -0.239, V9: 1.252, V10: 1.221, V11: -1.054, V12: -0.239, V13: 0.389, V14: -1.750, V15: -0.094, V16: 0.321, V17: -0.069, V18: -0.142, V19: -0.135, V20: 0.885, V21: -0.624, V22: -1.045, V23: 0.058, V24: -0.149, V25: -0.025, V26: 0.155, V27: 0.682, V28: 0.255, Amount: 4.990.
416
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -2.526, V2: 1.901, V3: 0.772, V4: -0.392, V5: -0.397, V6: 0.801, V7: -1.569, V8: -4.456, V9: -0.293, V10: 0.348, V11: 1.684, V12: 1.326, V13: 0.432, V14: 0.490, V15: 0.980, V16: -0.244, V17: 0.523, V18: -0.175, V19: 1.068, V20: -1.069, V21: 4.563, V22: -1.485, V23: 0.486, V24: 0.024, V25: 0.104, V26: 1.148, V27: -0.337, V28: -0.326, Amount: 0.770.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -2.526, V2: 1.901, V3: 0.772, V4: -0.392, V5: -0.397, V6: 0.801, V7: -1.569, V8: -4.456, V9: -0.293, V10: 0.348, V11: 1.684, V12: 1.326, V13: 0.432, V14: 0.490, V15: 0.980, V16: -0.244, V17: 0.523, V18: -0.175, V19: 1.068, V20: -1.069, V21: 4.563, V22: -1.485, V23: 0.486, V24: 0.024, V25: 0.104, V26: 1.148, V27: -0.337, V28: -0.326, Amount: 0.770.
417
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.546, V2: 0.460, V3: 0.561, V4: -0.608, V5: 0.083, V6: -0.104, V7: -0.219, V8: 0.547, V9: 0.325, V10: -0.908, V11: -1.721, V12: -0.031, V13: 0.079, V14: 0.008, V15: -0.156, V16: 0.472, V17: -0.540, V18: 0.363, V19: -0.284, V20: -0.164, V21: 0.366, V22: 0.988, V23: -0.050, V24: 0.537, V25: -0.841, V26: 0.457, V27: 0.075, V28: 0.129, Amount: 6.870.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.546, V2: 0.460, V3: 0.561, V4: -0.608, V5: 0.083, V6: -0.104, V7: -0.219, V8: 0.547, V9: 0.325, V10: -0.908, V11: -1.721, V12: -0.031, V13: 0.079, V14: 0.008, V15: -0.156, V16: 0.472, V17: -0.540, V18: 0.363, V19: -0.284, V20: -0.164, V21: 0.366, V22: 0.988, V23: -0.050, V24: 0.537, V25: -0.841, V26: 0.457, V27: 0.075, V28: 0.129, Amount: 6.870.
418
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 0.003, V2: -0.246, V3: 0.432, V4: -2.192, V5: 0.321, V6: 0.595, V7: -0.166, V8: -0.147, V9: -0.493, V10: 0.776, V11: 0.189, V12: -0.044, V13: 1.075, V14: -0.980, V15: -0.845, V16: 1.465, V17: -0.705, V18: -0.464, V19: 0.797, V20: 0.066, V21: 0.366, V22: 1.151, V23: -0.263, V24: -0.149, V25: -0.311, V26: -0.222, V27: -0.496, V28: -0.213, Amount: 24.990.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 0.003, V2: -0.246, V3: 0.432, V4: -2.192, V5: 0.321, V6: 0.595, V7: -0.166, V8: -0.147, V9: -0.493, V10: 0.776, V11: 0.189, V12: -0.044, V13: 1.075, V14: -0.980, V15: -0.845, V16: 1.465, V17: -0.705, V18: -0.464, V19: 0.797, V20: 0.066, V21: 0.366, V22: 1.151, V23: -0.263, V24: -0.149, V25: -0.311, V26: -0.222, V27: -0.496, V28: -0.213, Amount: 24.990.
419
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.742, V2: 1.980, V3: -1.339, V4: 1.515, V5: 0.287, V6: -1.289, V7: 0.048, V8: 0.547, V9: -0.923, V10: -1.526, V11: -0.028, V12: -0.586, V13: -0.084, V14: -1.757, V15: 2.328, V16: -0.161, V17: 3.164, V18: 1.792, V19: 1.973, V20: 0.024, V21: 0.299, V22: 0.793, V23: -0.335, V24: -0.193, V25: -0.237, V26: 0.302, V27: -0.101, V28: 0.064, Amount: 1.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.742, V2: 1.980, V3: -1.339, V4: 1.515, V5: 0.287, V6: -1.289, V7: 0.048, V8: 0.547, V9: -0.923, V10: -1.526, V11: -0.028, V12: -0.586, V13: -0.084, V14: -1.757, V15: 2.328, V16: -0.161, V17: 3.164, V18: 1.792, V19: 1.973, V20: 0.024, V21: 0.299, V22: 0.793, V23: -0.335, V24: -0.193, V25: -0.237, V26: 0.302, V27: -0.101, V28: 0.064, Amount: 1.000.
420
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.114, V2: -0.824, V3: 0.063, V4: -0.945, V5: -0.135, V6: 1.195, V7: -0.773, V8: 0.467, V9: -1.125, V10: 0.625, V11: 2.341, V12: 0.250, V13: -0.349, V14: 0.328, V15: 1.089, V16: -0.056, V17: 1.266, V18: -2.784, V19: -0.753, V20: 0.007, V21: 0.405, V22: 1.106, V23: -0.032, V24: -0.978, V25: 0.259, V26: -0.009, V27: 0.051, V28: -0.008, Amount: 53.850.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.114, V2: -0.824, V3: 0.063, V4: -0.945, V5: -0.135, V6: 1.195, V7: -0.773, V8: 0.467, V9: -1.125, V10: 0.625, V11: 2.341, V12: 0.250, V13: -0.349, V14: 0.328, V15: 1.089, V16: -0.056, V17: 1.266, V18: -2.784, V19: -0.753, V20: 0.007, V21: 0.405, V22: 1.106, V23: -0.032, V24: -0.978, V25: 0.259, V26: -0.009, V27: 0.051, V28: -0.008, Amount: 53.850.
421
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.530, V2: -0.980, V3: 2.686, V4: -0.860, V5: -2.181, V6: 1.896, V7: 0.376, V8: -0.019, V9: 0.373, V10: 0.213, V11: 0.599, V12: -0.024, V13: -0.615, V14: -1.818, V15: -2.338, V16: 0.124, V17: 0.861, V18: -1.218, V19: 1.208, V20: 0.211, V21: 0.157, V22: 1.178, V23: -0.118, V24: 0.087, V25: -0.094, V26: -0.124, V27: -0.189, V28: -0.466, Amount: 284.350.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.530, V2: -0.980, V3: 2.686, V4: -0.860, V5: -2.181, V6: 1.896, V7: 0.376, V8: -0.019, V9: 0.373, V10: 0.213, V11: 0.599, V12: -0.024, V13: -0.615, V14: -1.818, V15: -2.338, V16: 0.124, V17: 0.861, V18: -1.218, V19: 1.208, V20: 0.211, V21: 0.157, V22: 1.178, V23: -0.118, V24: 0.087, V25: -0.094, V26: -0.124, V27: -0.189, V28: -0.466, Amount: 284.350.
422
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -2.118, V2: -1.089, V3: 3.428, V4: 4.944, V5: 2.215, V6: 3.467, V7: -2.520, V8: 1.147, V9: 1.336, V10: 1.318, V11: 0.608, V12: -2.532, V13: 0.947, V14: 0.295, V15: -1.378, V16: -0.933, V17: 1.696, V18: 0.159, V19: 0.936, V20: 0.016, V21: -0.148, V22: 0.712, V23: -0.616, V24: -0.929, V25: -0.099, V26: 0.699, V27: 0.407, V28: -0.162, Amount: 15.890.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -2.118, V2: -1.089, V3: 3.428, V4: 4.944, V5: 2.215, V6: 3.467, V7: -2.520, V8: 1.147, V9: 1.336, V10: 1.318, V11: 0.608, V12: -2.532, V13: 0.947, V14: 0.295, V15: -1.378, V16: -0.933, V17: 1.696, V18: 0.159, V19: 0.936, V20: 0.016, V21: -0.148, V22: 0.712, V23: -0.616, V24: -0.929, V25: -0.099, V26: 0.699, V27: 0.407, V28: -0.162, Amount: 15.890.
423
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -6.525, V2: -3.666, V3: -1.253, V4: -1.350, V5: -3.497, V6: 2.562, V7: 4.224, V8: -1.740, V9: 1.690, V10: 1.089, V11: 1.852, V12: -3.374, V13: 2.328, V14: -0.230, V15: -0.479, V16: 2.715, V17: -0.580, V18: -0.285, V19: 0.552, V20: -4.296, V21: -1.177, V22: 1.120, V23: 0.143, V24: 0.346, V25: 1.221, V26: -0.159, V27: -2.562, V28: 4.375, Amount: 806.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -6.525, V2: -3.666, V3: -1.253, V4: -1.350, V5: -3.497, V6: 2.562, V7: 4.224, V8: -1.740, V9: 1.690, V10: 1.089, V11: 1.852, V12: -3.374, V13: 2.328, V14: -0.230, V15: -0.479, V16: 2.715, V17: -0.580, V18: -0.285, V19: 0.552, V20: -4.296, V21: -1.177, V22: 1.120, V23: 0.143, V24: 0.346, V25: 1.221, V26: -0.159, V27: -2.562, V28: 4.375, Amount: 806.000.
424
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -2.062, V2: 1.986, V3: -0.226, V4: 0.015, V5: -0.902, V6: -1.079, V7: 0.241, V8: 0.558, V9: -0.440, V10: -0.124, V11: -0.938, V12: -0.129, V13: -0.580, V14: 0.963, V15: 0.566, V16: 0.130, V17: 0.094, V18: -0.175, V19: 0.064, V20: -0.525, V21: 0.237, V22: 0.142, V23: 0.028, V24: 0.390, V25: -0.386, V26: 0.145, V27: -1.401, V28: -0.238, Amount: 42.810.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -2.062, V2: 1.986, V3: -0.226, V4: 0.015, V5: -0.902, V6: -1.079, V7: 0.241, V8: 0.558, V9: -0.440, V10: -0.124, V11: -0.938, V12: -0.129, V13: -0.580, V14: 0.963, V15: 0.566, V16: 0.130, V17: 0.094, V18: -0.175, V19: 0.064, V20: -0.525, V21: 0.237, V22: 0.142, V23: 0.028, V24: 0.390, V25: -0.386, V26: 0.145, V27: -1.401, V28: -0.238, Amount: 42.810.
425
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.564, V2: 1.585, V3: 1.411, V4: 4.411, V5: -0.191, V6: 1.201, V7: -0.496, V8: 0.773, V9: -1.343, V10: 1.482, V11: -1.649, V12: -0.974, V13: -0.348, V14: 0.187, V15: 0.738, V16: 0.234, V17: 0.220, V18: 0.756, V19: 0.969, V20: 0.169, V21: 0.328, V22: 1.005, V23: -0.055, V24: 0.733, V25: -0.653, V26: 0.461, V27: 0.231, V28: 0.208, Amount: 6.800.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.564, V2: 1.585, V3: 1.411, V4: 4.411, V5: -0.191, V6: 1.201, V7: -0.496, V8: 0.773, V9: -1.343, V10: 1.482, V11: -1.649, V12: -0.974, V13: -0.348, V14: 0.187, V15: 0.738, V16: 0.234, V17: 0.220, V18: 0.756, V19: 0.969, V20: 0.169, V21: 0.328, V22: 1.005, V23: -0.055, V24: 0.733, V25: -0.653, V26: 0.461, V27: 0.231, V28: 0.208, Amount: 6.800.
426
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 0.929, V2: -0.558, V3: 1.777, V4: 1.671, V5: -1.153, V6: 1.312, V7: -1.143, V8: 0.584, V9: 1.409, V10: -0.289, V11: 0.490, V12: 1.676, V13: -0.076, V14: -0.905, V15: -2.064, V16: -0.619, V17: 0.329, V18: -0.187, V19: 0.090, V20: -0.097, V21: 0.041, V22: 0.550, V23: -0.118, V24: 0.068, V25: 0.448, V26: -0.214, V27: 0.116, V28: 0.032, Amount: 47.800.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 0.929, V2: -0.558, V3: 1.777, V4: 1.671, V5: -1.153, V6: 1.312, V7: -1.143, V8: 0.584, V9: 1.409, V10: -0.289, V11: 0.490, V12: 1.676, V13: -0.076, V14: -0.905, V15: -2.064, V16: -0.619, V17: 0.329, V18: -0.187, V19: 0.090, V20: -0.097, V21: 0.041, V22: 0.550, V23: -0.118, V24: 0.068, V25: 0.448, V26: -0.214, V27: 0.116, V28: 0.032, Amount: 47.800.
427
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.323, V2: -0.245, V3: -0.394, V4: -3.081, V5: 1.103, V6: 3.318, V7: -1.162, V8: 1.255, V9: -2.748, V10: 0.822, V11: -0.557, V12: -1.198, V13: 0.468, V14: 0.039, V15: 0.497, V16: -0.060, V17: 0.195, V18: 0.613, V19: 0.288, V20: -0.248, V21: -0.145, V22: -0.344, V23: -0.076, V24: 0.973, V25: 0.113, V26: -0.230, V27: -0.042, V28: -0.009, Amount: 15.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.323, V2: -0.245, V3: -0.394, V4: -3.081, V5: 1.103, V6: 3.318, V7: -1.162, V8: 1.255, V9: -2.748, V10: 0.822, V11: -0.557, V12: -1.198, V13: 0.468, V14: 0.039, V15: 0.497, V16: -0.060, V17: 0.195, V18: 0.613, V19: 0.288, V20: -0.248, V21: -0.145, V22: -0.344, V23: -0.076, V24: 0.973, V25: 0.113, V26: -0.230, V27: -0.042, V28: -0.009, Amount: 15.000.
428
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 0.042, V2: 0.905, V3: -0.912, V4: 1.066, V5: -0.268, V6: 0.786, V7: 0.875, V8: 0.130, V9: -0.170, V10: -0.255, V11: -1.727, V12: 0.482, V13: 1.363, V14: 0.186, V15: 0.572, V16: -1.418, V17: 0.596, V18: 0.348, V19: 3.068, V20: 0.146, V21: 0.286, V22: 1.145, V23: 0.056, V24: 0.142, V25: -0.961, V26: 0.093, V27: 0.164, V28: 0.180, Amount: 175.150.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 0.042, V2: 0.905, V3: -0.912, V4: 1.066, V5: -0.268, V6: 0.786, V7: 0.875, V8: 0.130, V9: -0.170, V10: -0.255, V11: -1.727, V12: 0.482, V13: 1.363, V14: 0.186, V15: 0.572, V16: -1.418, V17: 0.596, V18: 0.348, V19: 3.068, V20: 0.146, V21: 0.286, V22: 1.145, V23: 0.056, V24: 0.142, V25: -0.961, V26: 0.093, V27: 0.164, V28: 0.180, Amount: 175.150.
429
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 0.999, V2: 0.230, V3: 1.640, V4: 2.699, V5: -0.284, V6: 1.468, V7: -0.904, V8: 0.505, V9: 1.115, V10: 0.201, V11: 2.158, V12: -1.432, V13: 1.640, V14: 1.257, V15: -1.244, V16: 0.193, V17: 0.624, V18: -0.348, V19: -1.480, V20: -0.255, V21: -0.128, V22: 0.071, V23: 0.105, V24: -0.344, V25: 0.100, V26: -0.041, V27: 0.046, V28: 0.013, Amount: 0.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 0.999, V2: 0.230, V3: 1.640, V4: 2.699, V5: -0.284, V6: 1.468, V7: -0.904, V8: 0.505, V9: 1.115, V10: 0.201, V11: 2.158, V12: -1.432, V13: 1.640, V14: 1.257, V15: -1.244, V16: 0.193, V17: 0.624, V18: -0.348, V19: -1.480, V20: -0.255, V21: -0.128, V22: 0.071, V23: 0.105, V24: -0.344, V25: 0.100, V26: -0.041, V27: 0.046, V28: 0.013, Amount: 0.000.
430
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.903, V2: -1.225, V3: -0.775, V4: -1.506, V5: -1.061, V6: -0.320, V7: -0.963, V8: 0.252, V9: 2.524, V10: -0.755, V11: 0.506, V12: 0.005, V13: -2.713, V14: 0.572, V15: 0.728, V16: -0.199, V17: -0.309, V18: 1.071, V19: 0.791, V20: -0.227, V21: 0.302, V22: 0.895, V23: 0.082, V24: 0.701, V25: -0.164, V26: -0.110, V27: 0.005, V28: -0.044, Amount: 59.850.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.903, V2: -1.225, V3: -0.775, V4: -1.506, V5: -1.061, V6: -0.320, V7: -0.963, V8: 0.252, V9: 2.524, V10: -0.755, V11: 0.506, V12: 0.005, V13: -2.713, V14: 0.572, V15: 0.728, V16: -0.199, V17: -0.309, V18: 1.071, V19: 0.791, V20: -0.227, V21: 0.302, V22: 0.895, V23: 0.082, V24: 0.701, V25: -0.164, V26: -0.110, V27: 0.005, V28: -0.044, Amount: 59.850.
431
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 2.073, V2: 0.353, V3: -2.020, V4: 1.106, V5: 0.914, V6: -0.922, V7: 0.762, V8: -0.413, V9: -0.166, V10: 0.357, V11: -0.830, V12: 0.129, V13: -0.024, V14: 0.785, V15: 0.276, V16: -0.409, V17: -0.456, V18: -0.440, V19: -0.397, V20: -0.246, V21: 0.116, V22: 0.413, V23: 0.009, V24: 0.603, V25: 0.495, V26: -0.508, V27: -0.034, V28: -0.057, Amount: 9.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 2.073, V2: 0.353, V3: -2.020, V4: 1.106, V5: 0.914, V6: -0.922, V7: 0.762, V8: -0.413, V9: -0.166, V10: 0.357, V11: -0.830, V12: 0.129, V13: -0.024, V14: 0.785, V15: 0.276, V16: -0.409, V17: -0.456, V18: -0.440, V19: -0.397, V20: -0.246, V21: 0.116, V22: 0.413, V23: 0.009, V24: 0.603, V25: 0.495, V26: -0.508, V27: -0.034, V28: -0.057, Amount: 9.000.
432
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.837, V2: 0.592, V3: 2.509, V4: 1.734, V5: -0.986, V6: 1.676, V7: 0.913, V8: 0.050, V9: 1.693, V10: -0.497, V11: 1.858, V12: -1.078, V13: 1.689, V14: 0.493, V15: -2.781, V16: -1.576, V17: 1.552, V18: -0.422, V19: 1.291, V20: 0.200, V21: -0.506, V22: -0.443, V23: 0.061, V24: 0.179, V25: -0.119, V26: -0.477, V27: 0.203, V28: -0.105, Amount: 206.980.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.837, V2: 0.592, V3: 2.509, V4: 1.734, V5: -0.986, V6: 1.676, V7: 0.913, V8: 0.050, V9: 1.693, V10: -0.497, V11: 1.858, V12: -1.078, V13: 1.689, V14: 0.493, V15: -2.781, V16: -1.576, V17: 1.552, V18: -0.422, V19: 1.291, V20: 0.200, V21: -0.506, V22: -0.443, V23: 0.061, V24: 0.179, V25: -0.119, V26: -0.477, V27: 0.203, V28: -0.105, Amount: 206.980.
433
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.287, V2: 0.739, V3: -1.349, V4: -1.312, V5: 0.793, V6: -0.768, V7: 0.744, V8: 0.405, V9: 0.218, V10: -1.761, V11: 0.635, V12: 0.970, V13: -0.268, V14: -1.065, V15: -2.206, V16: 0.698, V17: 0.364, V18: 0.533, V19: -1.151, V20: -0.321, V21: 0.127, V22: 0.268, V23: 0.457, V24: 0.566, V25: -1.796, V26: -0.686, V27: 0.197, V28: 0.300, Amount: 56.090.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.287, V2: 0.739, V3: -1.349, V4: -1.312, V5: 0.793, V6: -0.768, V7: 0.744, V8: 0.405, V9: 0.218, V10: -1.761, V11: 0.635, V12: 0.970, V13: -0.268, V14: -1.065, V15: -2.206, V16: 0.698, V17: 0.364, V18: 0.533, V19: -1.151, V20: -0.321, V21: 0.127, V22: 0.268, V23: 0.457, V24: 0.566, V25: -1.796, V26: -0.686, V27: 0.197, V28: 0.300, Amount: 56.090.
434
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -4.603, V2: -5.240, V3: 1.840, V4: 0.889, V5: 5.599, V6: -4.491, V7: -3.310, V8: 0.554, V9: -0.149, V10: -0.038, V11: 1.030, V12: 0.906, V13: -0.352, V14: 0.678, V15: -0.148, V16: 0.592, V17: -0.846, V18: 0.284, V19: -0.470, V20: 1.360, V21: 0.378, V22: -0.799, V23: 1.110, V24: 0.271, V25: -0.208, V26: -0.142, V27: -0.148, V28: 0.241, Amount: 1.980.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -4.603, V2: -5.240, V3: 1.840, V4: 0.889, V5: 5.599, V6: -4.491, V7: -3.310, V8: 0.554, V9: -0.149, V10: -0.038, V11: 1.030, V12: 0.906, V13: -0.352, V14: 0.678, V15: -0.148, V16: 0.592, V17: -0.846, V18: 0.284, V19: -0.470, V20: 1.360, V21: 0.378, V22: -0.799, V23: 1.110, V24: 0.271, V25: -0.208, V26: -0.142, V27: -0.148, V28: 0.241, Amount: 1.980.
435
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 2.047, V2: -0.099, V3: -1.204, V4: 0.207, V5: 0.119, V6: -0.662, V7: 0.085, V8: -0.173, V9: 0.282, V10: 0.238, V11: 0.638, V12: 1.090, V13: 0.220, V14: 0.414, V15: -0.651, V16: 0.197, V17: -0.690, V18: -0.268, V19: 0.581, V20: -0.189, V21: -0.261, V22: -0.644, V23: 0.277, V24: -0.402, V25: -0.271, V26: 0.202, V27: -0.074, V28: -0.074, Amount: 1.980.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 2.047, V2: -0.099, V3: -1.204, V4: 0.207, V5: 0.119, V6: -0.662, V7: 0.085, V8: -0.173, V9: 0.282, V10: 0.238, V11: 0.638, V12: 1.090, V13: 0.220, V14: 0.414, V15: -0.651, V16: 0.197, V17: -0.690, V18: -0.268, V19: 0.581, V20: -0.189, V21: -0.261, V22: -0.644, V23: 0.277, V24: -0.402, V25: -0.271, V26: 0.202, V27: -0.074, V28: -0.074, Amount: 1.980.
436
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.898, V2: -0.611, V3: 0.118, V4: 0.412, V5: -0.912, V6: 0.030, V7: -1.095, V8: 0.141, V9: 2.535, V10: -0.212, V11: 1.365, V12: -1.948, V13: 1.110, V14: 1.433, V15: -0.568, V16: 0.958, V17: -0.227, V18: 0.988, V19: -0.110, V20: -0.184, V21: -0.076, V22: 0.051, V23: 0.262, V24: -0.387, V25: -0.644, V26: 0.442, V27: -0.053, V28: -0.054, Amount: 39.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.898, V2: -0.611, V3: 0.118, V4: 0.412, V5: -0.912, V6: 0.030, V7: -1.095, V8: 0.141, V9: 2.535, V10: -0.212, V11: 1.365, V12: -1.948, V13: 1.110, V14: 1.433, V15: -0.568, V16: 0.958, V17: -0.227, V18: 0.988, V19: -0.110, V20: -0.184, V21: -0.076, V22: 0.051, V23: 0.262, V24: -0.387, V25: -0.644, V26: 0.442, V27: -0.053, V28: -0.054, Amount: 39.000.
437
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.141, V2: -1.490, V3: 0.307, V4: -1.169, V5: -1.648, V6: -0.734, V7: -0.716, V8: -0.193, V9: -1.934, V10: 1.332, V11: 0.048, V12: -0.715, V13: 0.399, V14: -0.173, V15: 0.838, V16: -0.781, V17: 0.913, V18: -0.573, V19: -0.779, V20: -0.041, V21: -0.063, V22: -0.136, V23: -0.046, V24: 0.385, V25: 0.229, V26: -0.208, V27: 0.012, V28: 0.048, Amount: 177.500.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.141, V2: -1.490, V3: 0.307, V4: -1.169, V5: -1.648, V6: -0.734, V7: -0.716, V8: -0.193, V9: -1.934, V10: 1.332, V11: 0.048, V12: -0.715, V13: 0.399, V14: -0.173, V15: 0.838, V16: -0.781, V17: 0.913, V18: -0.573, V19: -0.779, V20: -0.041, V21: -0.063, V22: -0.136, V23: -0.046, V24: 0.385, V25: 0.229, V26: -0.208, V27: 0.012, V28: 0.048, Amount: 177.500.
438
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.822, V2: -0.545, V3: -0.193, V4: 0.761, V5: -0.721, V6: -0.248, V7: -0.685, V8: -0.055, V9: 2.747, V10: -0.574, V11: 0.262, V12: -2.043, V13: 1.525, V14: 1.297, V15: -0.168, V16: -0.084, V17: 0.409, V18: 0.397, V19: -0.680, V20: -0.124, V21: 0.162, V22: 0.782, V23: 0.122, V24: 1.058, V25: -0.146, V26: -0.253, V27: -0.001, V28: -0.022, Amount: 79.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.822, V2: -0.545, V3: -0.193, V4: 0.761, V5: -0.721, V6: -0.248, V7: -0.685, V8: -0.055, V9: 2.747, V10: -0.574, V11: 0.262, V12: -2.043, V13: 1.525, V14: 1.297, V15: -0.168, V16: -0.084, V17: 0.409, V18: 0.397, V19: -0.680, V20: -0.124, V21: 0.162, V22: 0.782, V23: 0.122, V24: 1.058, V25: -0.146, V26: -0.253, V27: -0.001, V28: -0.022, Amount: 79.000.
439
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.462, V2: 0.010, V3: 0.954, V4: -1.766, V5: -0.398, V6: -0.239, V7: 0.002, V8: 0.543, V9: -1.059, V10: -0.376, V11: -0.515, V12: -0.732, V13: -1.899, V14: 0.707, V15: -0.751, V16: -0.872, V17: -0.530, V18: 2.226, V19: -0.908, V20: -0.788, V21: -0.282, V22: -0.643, V23: -0.470, V24: -0.579, V25: 0.661, V26: -0.293, V27: -0.153, V28: -0.127, Amount: 65.810.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.462, V2: 0.010, V3: 0.954, V4: -1.766, V5: -0.398, V6: -0.239, V7: 0.002, V8: 0.543, V9: -1.059, V10: -0.376, V11: -0.515, V12: -0.732, V13: -1.899, V14: 0.707, V15: -0.751, V16: -0.872, V17: -0.530, V18: 2.226, V19: -0.908, V20: -0.788, V21: -0.282, V22: -0.643, V23: -0.470, V24: -0.579, V25: 0.661, V26: -0.293, V27: -0.153, V28: -0.127, Amount: 65.810.
440
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.048, V2: 0.853, V3: 2.133, V4: -0.267, V5: 0.542, V6: -0.176, V7: 1.061, V8: 0.055, V9: 0.002, V10: -1.410, V11: -1.359, V12: 0.855, V13: 0.557, V14: -0.641, V15: -2.232, V16: -0.126, V17: -0.493, V18: -1.069, V19: -1.034, V20: -0.168, V21: -0.493, V22: -1.321, V23: -0.173, V24: -0.084, V25: 0.667, V26: -1.165, V27: 0.044, V28: 0.064, Amount: 27.500.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.048, V2: 0.853, V3: 2.133, V4: -0.267, V5: 0.542, V6: -0.176, V7: 1.061, V8: 0.055, V9: 0.002, V10: -1.410, V11: -1.359, V12: 0.855, V13: 0.557, V14: -0.641, V15: -2.232, V16: -0.126, V17: -0.493, V18: -1.069, V19: -1.034, V20: -0.168, V21: -0.493, V22: -1.321, V23: -0.173, V24: -0.084, V25: 0.667, V26: -1.165, V27: 0.044, V28: 0.064, Amount: 27.500.
441
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.555, V2: 1.476, V3: -0.883, V4: 0.273, V5: 1.958, V6: -1.194, V7: 1.425, V8: -0.234, V9: -1.027, V10: -1.678, V11: -0.276, V12: -1.543, V13: -1.516, V14: -2.187, V15: 0.597, V16: -0.121, V17: 2.689, V18: 0.958, V19: 0.825, V20: 0.143, V21: -0.061, V22: -0.166, V23: -0.630, V24: 0.417, V25: 1.013, V26: 0.999, V27: -0.034, V28: 0.099, Amount: 0.760.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.555, V2: 1.476, V3: -0.883, V4: 0.273, V5: 1.958, V6: -1.194, V7: 1.425, V8: -0.234, V9: -1.027, V10: -1.678, V11: -0.276, V12: -1.543, V13: -1.516, V14: -2.187, V15: 0.597, V16: -0.121, V17: 2.689, V18: 0.958, V19: 0.825, V20: 0.143, V21: -0.061, V22: -0.166, V23: -0.630, V24: 0.417, V25: 1.013, V26: 0.999, V27: -0.034, V28: 0.099, Amount: 0.760.
442
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.781, V2: 0.392, V3: 1.228, V4: -0.885, V5: -0.803, V6: 0.747, V7: 0.511, V8: 0.326, V9: 0.376, V10: -0.808, V11: -0.023, V12: 1.260, V13: 0.949, V14: -0.661, V15: -1.808, V16: 0.531, V17: -0.731, V18: 0.141, V19: 0.425, V20: -0.083, V21: -0.078, V22: 0.044, V23: 0.093, V24: -0.412, V25: -0.836, V26: 0.632, V27: -0.227, V28: -0.159, Amount: 150.700.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.781, V2: 0.392, V3: 1.228, V4: -0.885, V5: -0.803, V6: 0.747, V7: 0.511, V8: 0.326, V9: 0.376, V10: -0.808, V11: -0.023, V12: 1.260, V13: 0.949, V14: -0.661, V15: -1.808, V16: 0.531, V17: -0.731, V18: 0.141, V19: 0.425, V20: -0.083, V21: -0.078, V22: 0.044, V23: 0.093, V24: -0.412, V25: -0.836, V26: 0.632, V27: -0.227, V28: -0.159, Amount: 150.700.
443
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.083, V2: -0.037, V3: 0.277, V4: 0.566, V5: -0.325, V6: -0.394, V7: 0.010, V8: 0.033, V9: -0.193, V10: 0.093, V11: 1.692, V12: 0.754, V13: -0.569, V14: 0.678, V15: 0.531, V16: 0.005, V17: -0.223, V18: -0.282, V19: -0.358, V20: -0.073, V21: 0.114, V22: 0.234, V23: -0.057, V24: 0.252, V25: 0.365, V26: 0.394, V27: -0.040, V28: 0.005, Amount: 50.220.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.083, V2: -0.037, V3: 0.277, V4: 0.566, V5: -0.325, V6: -0.394, V7: 0.010, V8: 0.033, V9: -0.193, V10: 0.093, V11: 1.692, V12: 0.754, V13: -0.569, V14: 0.678, V15: 0.531, V16: 0.005, V17: -0.223, V18: -0.282, V19: -0.358, V20: -0.073, V21: 0.114, V22: 0.234, V23: -0.057, V24: 0.252, V25: 0.365, V26: 0.394, V27: -0.040, V28: 0.005, Amount: 50.220.
444
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.260, V2: -0.235, V3: 0.791, V4: -2.438, V5: -1.081, V6: -0.849, V7: -0.449, V8: 0.084, V9: -1.951, V10: 1.010, V11: -1.432, V12: -1.855, V13: -0.717, V14: -0.185, V15: 0.031, V16: 0.037, V17: 0.157, V18: 0.345, V19: -0.701, V20: -0.524, V21: -0.161, V22: -0.186, V23: -0.047, V24: -0.190, V25: -0.268, V26: -0.428, V27: -0.363, V28: -0.256, Amount: 15.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.260, V2: -0.235, V3: 0.791, V4: -2.438, V5: -1.081, V6: -0.849, V7: -0.449, V8: 0.084, V9: -1.951, V10: 1.010, V11: -1.432, V12: -1.855, V13: -0.717, V14: -0.185, V15: 0.031, V16: 0.037, V17: 0.157, V18: 0.345, V19: -0.701, V20: -0.524, V21: -0.161, V22: -0.186, V23: -0.047, V24: -0.190, V25: -0.268, V26: -0.428, V27: -0.363, V28: -0.256, Amount: 15.000.
445
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.227, V2: 0.244, V3: -0.185, V4: 0.747, V5: 0.389, V6: 0.045, V7: 0.181, V8: -0.063, V9: -0.313, V10: 0.150, V11: 0.390, V12: 0.891, V13: 0.869, V14: 0.374, V15: 0.225, V16: 0.554, V17: -1.142, V18: 0.638, V19: 0.344, V20: 0.012, V21: 0.029, V22: 0.071, V23: -0.291, V24: -0.816, V25: 0.827, V26: -0.279, V27: 0.008, V28: 0.005, Amount: 33.800.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.227, V2: 0.244, V3: -0.185, V4: 0.747, V5: 0.389, V6: 0.045, V7: 0.181, V8: -0.063, V9: -0.313, V10: 0.150, V11: 0.390, V12: 0.891, V13: 0.869, V14: 0.374, V15: 0.225, V16: 0.554, V17: -1.142, V18: 0.638, V19: 0.344, V20: 0.012, V21: 0.029, V22: 0.071, V23: -0.291, V24: -0.816, V25: 0.827, V26: -0.279, V27: 0.008, V28: 0.005, Amount: 33.800.
446
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 2.009, V2: -2.179, V3: 0.182, V4: -1.346, V5: -2.500, V6: -0.283, V7: -2.013, V8: 0.120, V9: -0.195, V10: 1.487, V11: -1.484, V12: -1.609, V13: -0.786, V14: -0.703, V15: 0.688, V16: 0.292, V17: 0.184, V18: 0.924, V19: -0.560, V20: -0.276, V21: 0.108, V22: 0.550, V23: 0.176, V24: -0.155, V25: -0.607, V26: -0.091, V27: 0.050, V28: -0.011, Amount: 127.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 2.009, V2: -2.179, V3: 0.182, V4: -1.346, V5: -2.500, V6: -0.283, V7: -2.013, V8: 0.120, V9: -0.195, V10: 1.487, V11: -1.484, V12: -1.609, V13: -0.786, V14: -0.703, V15: 0.688, V16: 0.292, V17: 0.184, V18: 0.924, V19: -0.560, V20: -0.276, V21: 0.108, V22: 0.550, V23: 0.176, V24: -0.155, V25: -0.607, V26: -0.091, V27: 0.050, V28: -0.011, Amount: 127.000.
447
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 2.250, V2: -1.371, V3: -0.829, V4: -1.544, V5: -1.394, V6: -0.842, V7: -1.102, V8: -0.157, V9: -1.454, V10: 1.760, V11: 0.730, V12: -0.226, V13: -0.020, V14: -0.123, V15: -0.897, V16: -0.449, V17: 0.328, V18: 0.346, V19: 0.123, V20: -0.460, V21: -0.114, V22: 0.151, V23: 0.233, V24: 0.052, V25: -0.221, V26: -0.185, V27: 0.003, V28: -0.061, Amount: 15.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 2.250, V2: -1.371, V3: -0.829, V4: -1.544, V5: -1.394, V6: -0.842, V7: -1.102, V8: -0.157, V9: -1.454, V10: 1.760, V11: 0.730, V12: -0.226, V13: -0.020, V14: -0.123, V15: -0.897, V16: -0.449, V17: 0.328, V18: 0.346, V19: 0.123, V20: -0.460, V21: -0.114, V22: 0.151, V23: 0.233, V24: 0.052, V25: -0.221, V26: -0.185, V27: 0.003, V28: -0.061, Amount: 15.000.
448
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.037, V2: 0.926, V3: -1.115, V4: -0.278, V5: 0.278, V6: -0.650, V7: 1.005, V8: -0.183, V9: 0.432, V10: -0.227, V11: 0.655, V12: -0.923, V13: -2.350, V14: -0.521, V15: 0.380, V16: 0.415, V17: 0.243, V18: 1.474, V19: 0.109, V20: -0.361, V21: 0.245, V22: 0.879, V23: -0.157, V24: -0.532, V25: -0.428, V26: -0.227, V27: -0.756, V28: -0.546, Amount: 77.610.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.037, V2: 0.926, V3: -1.115, V4: -0.278, V5: 0.278, V6: -0.650, V7: 1.005, V8: -0.183, V9: 0.432, V10: -0.227, V11: 0.655, V12: -0.923, V13: -2.350, V14: -0.521, V15: 0.380, V16: 0.415, V17: 0.243, V18: 1.474, V19: 0.109, V20: -0.361, V21: 0.245, V22: 0.879, V23: -0.157, V24: -0.532, V25: -0.428, V26: -0.227, V27: -0.756, V28: -0.546, Amount: 77.610.
449
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 2.263, V2: -1.569, V3: -0.956, V4: -1.779, V5: -1.118, V6: 0.112, V7: -1.457, V8: 0.102, V9: -1.138, V10: 1.738, V11: 0.033, V12: -0.753, V13: -0.379, V14: -0.220, V15: -0.594, V16: -0.021, V17: 0.025, V18: 0.821, V19: 0.285, V20: -0.415, V21: -0.137, V22: 0.003, V23: 0.219, V24: 0.150, V25: -0.257, V26: -0.195, V27: 0.010, V28: -0.053, Amount: 25.600.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 2.263, V2: -1.569, V3: -0.956, V4: -1.779, V5: -1.118, V6: 0.112, V7: -1.457, V8: 0.102, V9: -1.138, V10: 1.738, V11: 0.033, V12: -0.753, V13: -0.379, V14: -0.220, V15: -0.594, V16: -0.021, V17: 0.025, V18: 0.821, V19: 0.285, V20: -0.415, V21: -0.137, V22: 0.003, V23: 0.219, V24: 0.150, V25: -0.257, V26: -0.195, V27: 0.010, V28: -0.053, Amount: 25.600.
450
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.123, V2: -1.690, V3: -2.565, V4: 0.100, V5: 0.835, V6: 1.262, V7: 0.565, V8: 0.156, V9: 0.103, V10: -0.013, V11: 0.895, V12: 0.659, V13: -0.416, V14: 0.906, V15: 0.456, V16: -0.607, V17: 0.050, V18: -1.057, V19: -0.647, V20: 0.628, V21: 0.403, V22: 0.301, V23: -0.281, V24: -0.871, V25: -0.226, V26: 0.730, V27: -0.150, V28: -0.019, Amount: 450.590.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.123, V2: -1.690, V3: -2.565, V4: 0.100, V5: 0.835, V6: 1.262, V7: 0.565, V8: 0.156, V9: 0.103, V10: -0.013, V11: 0.895, V12: 0.659, V13: -0.416, V14: 0.906, V15: 0.456, V16: -0.607, V17: 0.050, V18: -1.057, V19: -0.647, V20: 0.628, V21: 0.403, V22: 0.301, V23: -0.281, V24: -0.871, V25: -0.226, V26: 0.730, V27: -0.150, V28: -0.019, Amount: 450.590.
451
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.863, V2: -0.636, V3: 0.649, V4: -2.285, V5: -1.779, V6: -0.452, V7: -1.164, V8: 0.808, V9: -2.301, V10: 0.869, V11: 0.234, V12: -0.715, V13: -0.176, V14: 0.218, V15: -0.405, V16: 0.605, V17: 0.080, V18: 1.172, V19: -0.497, V20: -0.852, V21: 0.125, V22: 0.506, V23: 0.228, V24: -0.015, V25: -0.345, V26: -0.330, V27: -0.375, V28: -0.066, Amount: 57.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.863, V2: -0.636, V3: 0.649, V4: -2.285, V5: -1.779, V6: -0.452, V7: -1.164, V8: 0.808, V9: -2.301, V10: 0.869, V11: 0.234, V12: -0.715, V13: -0.176, V14: 0.218, V15: -0.405, V16: 0.605, V17: 0.080, V18: 1.172, V19: -0.497, V20: -0.852, V21: 0.125, V22: 0.506, V23: 0.228, V24: -0.015, V25: -0.345, V26: -0.330, V27: -0.375, V28: -0.066, Amount: 57.000.
452
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.190, V2: 1.134, V3: 1.427, V4: -1.115, V5: 0.348, V6: -0.468, V7: 1.015, V8: -0.107, V9: 0.071, V10: 0.248, V11: 0.918, V12: 0.244, V13: -0.744, V14: -0.038, V15: -0.595, V16: -0.006, V17: -0.625, V18: 0.033, V19: 0.061, V20: 0.369, V21: -0.135, V22: 0.020, V23: -0.442, V24: 0.041, V25: 0.666, V26: 0.658, V27: 0.243, V28: 0.003, Amount: 10.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.190, V2: 1.134, V3: 1.427, V4: -1.115, V5: 0.348, V6: -0.468, V7: 1.015, V8: -0.107, V9: 0.071, V10: 0.248, V11: 0.918, V12: 0.244, V13: -0.744, V14: -0.038, V15: -0.595, V16: -0.006, V17: -0.625, V18: 0.033, V19: 0.061, V20: 0.369, V21: -0.135, V22: 0.020, V23: -0.442, V24: 0.041, V25: 0.666, V26: 0.658, V27: 0.243, V28: 0.003, Amount: 10.000.
453
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.295, V2: -1.357, V3: 0.963, V4: -0.945, V5: -2.145, V6: -0.944, V7: -1.310, V8: -0.186, V9: -0.130, V10: 1.054, V11: 0.484, V12: -4.055, V13: 0.773, V14: 1.259, V15: 0.246, V16: -0.195, V17: 1.308, V18: 0.667, V19: -0.788, V20: -0.272, V21: -0.149, V22: -0.051, V23: -0.014, V24: 0.621, V25: 0.192, V26: -0.168, V27: -0.002, V28: 0.038, Amount: 106.600.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.295, V2: -1.357, V3: 0.963, V4: -0.945, V5: -2.145, V6: -0.944, V7: -1.310, V8: -0.186, V9: -0.130, V10: 1.054, V11: 0.484, V12: -4.055, V13: 0.773, V14: 1.259, V15: 0.246, V16: -0.195, V17: 1.308, V18: 0.667, V19: -0.788, V20: -0.272, V21: -0.149, V22: -0.051, V23: -0.014, V24: 0.621, V25: 0.192, V26: -0.168, V27: -0.002, V28: 0.038, Amount: 106.600.
454
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.050, V2: 0.048, V3: 2.376, V4: -3.036, V5: -0.196, V6: -0.681, V7: 0.163, V8: 0.176, V9: 1.330, V10: -2.294, V11: -0.417, V12: 0.729, V13: 0.085, V14: -0.451, V15: 0.398, V16: -0.179, V17: -0.402, V18: -0.445, V19: -1.108, V20: -0.169, V21: 0.072, V22: 0.291, V23: -0.305, V24: 0.110, V25: 0.454, V26: -0.259, V27: 0.046, V28: 0.059, Amount: 1.030.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.050, V2: 0.048, V3: 2.376, V4: -3.036, V5: -0.196, V6: -0.681, V7: 0.163, V8: 0.176, V9: 1.330, V10: -2.294, V11: -0.417, V12: 0.729, V13: 0.085, V14: -0.451, V15: 0.398, V16: -0.179, V17: -0.402, V18: -0.445, V19: -1.108, V20: -0.169, V21: 0.072, V22: 0.291, V23: -0.305, V24: 0.110, V25: 0.454, V26: -0.259, V27: 0.046, V28: 0.059, Amount: 1.030.
455
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.230, V2: -0.010, V3: -1.213, V4: 0.089, V5: 2.166, V6: 3.394, V7: -0.409, V8: 0.792, V9: -0.151, V10: 0.112, V11: -0.190, V12: 0.001, V13: 0.008, V14: 0.474, V15: 1.127, V16: 0.479, V17: -0.972, V18: 0.380, V19: -0.112, V20: 0.045, V21: 0.036, V22: -0.067, V23: -0.172, V24: 1.009, V25: 0.822, V26: -0.269, V27: 0.015, V28: 0.021, Amount: 34.900.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.230, V2: -0.010, V3: -1.213, V4: 0.089, V5: 2.166, V6: 3.394, V7: -0.409, V8: 0.792, V9: -0.151, V10: 0.112, V11: -0.190, V12: 0.001, V13: 0.008, V14: 0.474, V15: 1.127, V16: 0.479, V17: -0.972, V18: 0.380, V19: -0.112, V20: 0.045, V21: 0.036, V22: -0.067, V23: -0.172, V24: 1.009, V25: 0.822, V26: -0.269, V27: 0.015, V28: 0.021, Amount: 34.900.
456
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 2.056, V2: -0.287, V3: -0.686, V4: 0.206, V5: -0.146, V6: -0.065, V7: -0.466, V8: -0.018, V9: 1.294, V10: -0.179, V11: -1.633, V12: 0.402, V13: 0.647, V14: -0.168, V15: 0.734, V16: 0.421, V17: -0.888, V18: 0.011, V19: 0.246, V20: -0.183, V21: -0.241, V22: -0.501, V23: 0.248, V24: -1.098, V25: -0.290, V26: -0.555, V27: 0.040, V28: -0.042, Amount: 3.740.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 2.056, V2: -0.287, V3: -0.686, V4: 0.206, V5: -0.146, V6: -0.065, V7: -0.466, V8: -0.018, V9: 1.294, V10: -0.179, V11: -1.633, V12: 0.402, V13: 0.647, V14: -0.168, V15: 0.734, V16: 0.421, V17: -0.888, V18: 0.011, V19: 0.246, V20: -0.183, V21: -0.241, V22: -0.501, V23: 0.248, V24: -1.098, V25: -0.290, V26: -0.555, V27: 0.040, V28: -0.042, Amount: 3.740.
457
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -3.265, V2: -9.098, V3: -3.940, V4: 2.046, V5: -2.074, V6: 2.755, V7: 2.769, V8: -0.081, V9: 0.617, V10: -1.266, V11: 0.745, V12: 1.081, V13: 0.037, V14: 0.785, V15: 0.373, V16: -0.005, V17: 0.165, V18: -0.838, V19: -1.099, V20: 5.167, V21: 1.262, V22: -2.249, V23: -1.843, V24: -0.841, V25: -1.757, V26: -0.057, V27: -0.510, V28: 0.396, Amount: 2676.640.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -3.265, V2: -9.098, V3: -3.940, V4: 2.046, V5: -2.074, V6: 2.755, V7: 2.769, V8: -0.081, V9: 0.617, V10: -1.266, V11: 0.745, V12: 1.081, V13: 0.037, V14: 0.785, V15: 0.373, V16: -0.005, V17: 0.165, V18: -0.838, V19: -1.099, V20: 5.167, V21: 1.262, V22: -2.249, V23: -1.843, V24: -0.841, V25: -1.757, V26: -0.057, V27: -0.510, V28: 0.396, Amount: 2676.640.
458
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.848, V2: -1.810, V3: 0.160, V4: -0.655, V5: -1.798, V6: 0.666, V7: -1.699, V8: 0.401, V9: 0.935, V10: 0.625, V11: -0.040, V12: 0.626, V13: -0.573, V14: -0.738, V15: -1.643, V16: -1.252, V17: 0.086, V18: 1.496, V19: -0.084, V20: -0.402, V21: -0.381, V22: -0.538, V23: 0.344, V24: 0.792, V25: -0.799, V26: 1.097, V27: -0.041, V28: -0.032, Amount: 104.900.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.848, V2: -1.810, V3: 0.160, V4: -0.655, V5: -1.798, V6: 0.666, V7: -1.699, V8: 0.401, V9: 0.935, V10: 0.625, V11: -0.040, V12: 0.626, V13: -0.573, V14: -0.738, V15: -1.643, V16: -1.252, V17: 0.086, V18: 1.496, V19: -0.084, V20: -0.402, V21: -0.381, V22: -0.538, V23: 0.344, V24: 0.792, V25: -0.799, V26: 1.097, V27: -0.041, V28: -0.032, Amount: 104.900.
459
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.277, V2: 0.391, V3: -0.018, V4: 1.124, V5: 0.139, V6: -0.588, V7: 0.370, V8: -0.266, V9: 0.007, V10: -0.089, V11: -0.909, V12: 0.681, V13: 0.913, V14: 0.033, V15: -0.040, V16: -0.318, V17: -0.333, V18: -0.386, V19: 0.105, V20: -0.085, V21: -0.055, V22: 0.056, V23: -0.225, V24: -0.071, V25: 0.944, V26: -0.249, V27: 0.016, V28: 0.011, Amount: 5.090.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.277, V2: 0.391, V3: -0.018, V4: 1.124, V5: 0.139, V6: -0.588, V7: 0.370, V8: -0.266, V9: 0.007, V10: -0.089, V11: -0.909, V12: 0.681, V13: 0.913, V14: 0.033, V15: -0.040, V16: -0.318, V17: -0.333, V18: -0.386, V19: 0.105, V20: -0.085, V21: -0.055, V22: 0.056, V23: -0.225, V24: -0.071, V25: 0.944, V26: -0.249, V27: 0.016, V28: 0.011, Amount: 5.090.
460
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.517, V2: 0.953, V3: 1.677, V4: -0.085, V5: -0.035, V6: -0.720, V7: 0.591, V8: 0.055, V9: -0.710, V10: -0.148, V11: 1.532, V12: 0.869, V13: 0.211, V14: 0.295, V15: 0.102, V16: 0.320, V17: -0.586, V18: 0.042, V19: 0.224, V20: 0.142, V21: -0.153, V22: -0.424, V23: 0.004, V24: 0.524, V25: -0.238, V26: 0.040, V27: 0.261, V28: 0.115, Amount: 4.990.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.517, V2: 0.953, V3: 1.677, V4: -0.085, V5: -0.035, V6: -0.720, V7: 0.591, V8: 0.055, V9: -0.710, V10: -0.148, V11: 1.532, V12: 0.869, V13: 0.211, V14: 0.295, V15: 0.102, V16: 0.320, V17: -0.586, V18: 0.042, V19: 0.224, V20: 0.142, V21: -0.153, V22: -0.424, V23: 0.004, V24: 0.524, V25: -0.238, V26: 0.040, V27: 0.261, V28: 0.115, Amount: 4.990.
461
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.236, V2: -0.431, V3: 1.559, V4: -0.410, V5: -1.040, V6: -0.914, V7: -0.397, V8: 0.625, V9: 0.877, V10: -1.218, V11: -1.265, V12: -0.333, V13: -1.893, V14: 0.064, V15: -0.871, V16: 0.144, V17: 0.257, V18: -0.330, V19: -0.232, V20: -0.027, V21: 0.060, V22: -0.177, V23: 0.367, V24: 0.732, V25: -1.022, V26: 0.648, V27: -0.021, V28: 0.028, Amount: 84.650.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.236, V2: -0.431, V3: 1.559, V4: -0.410, V5: -1.040, V6: -0.914, V7: -0.397, V8: 0.625, V9: 0.877, V10: -1.218, V11: -1.265, V12: -0.333, V13: -1.893, V14: 0.064, V15: -0.871, V16: 0.144, V17: 0.257, V18: -0.330, V19: -0.232, V20: -0.027, V21: 0.060, V22: -0.177, V23: 0.367, V24: 0.732, V25: -1.022, V26: 0.648, V27: -0.021, V28: 0.028, Amount: 84.650.
462
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 0.864, V2: -0.747, V3: 0.490, V4: 0.382, V5: -1.045, V6: -0.544, V7: -0.094, V8: 0.020, V9: 0.472, V10: -0.173, V11: 1.121, V12: 0.690, V13: -1.138, V14: 0.307, V15: -0.681, V16: 0.039, V17: -0.027, V18: -0.283, V19: 0.588, V20: 0.202, V21: -0.153, V22: -0.753, V23: -0.033, V24: 0.572, V25: 0.067, V26: 0.796, V27: -0.108, V28: 0.026, Amount: 178.260.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 0.864, V2: -0.747, V3: 0.490, V4: 0.382, V5: -1.045, V6: -0.544, V7: -0.094, V8: 0.020, V9: 0.472, V10: -0.173, V11: 1.121, V12: 0.690, V13: -1.138, V14: 0.307, V15: -0.681, V16: 0.039, V17: -0.027, V18: -0.283, V19: 0.588, V20: 0.202, V21: -0.153, V22: -0.753, V23: -0.033, V24: 0.572, V25: 0.067, V26: 0.796, V27: -0.108, V28: 0.026, Amount: 178.260.
463
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.466, V2: -1.353, V3: -0.011, V4: -1.847, V5: 2.925, V6: -1.437, V7: -0.194, V8: 0.088, V9: 0.124, V10: -0.884, V11: -0.563, V12: 0.558, V13: 0.031, V14: 0.315, V15: -1.314, V16: 0.293, V17: -1.078, V18: 0.137, V19: 0.753, V20: 0.340, V21: -0.051, V22: -0.634, V23: 0.098, V24: -1.353, V25: -0.252, V26: 0.546, V27: -0.017, V28: 0.164, Amount: 4.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.466, V2: -1.353, V3: -0.011, V4: -1.847, V5: 2.925, V6: -1.437, V7: -0.194, V8: 0.088, V9: 0.124, V10: -0.884, V11: -0.563, V12: 0.558, V13: 0.031, V14: 0.315, V15: -1.314, V16: 0.293, V17: -1.078, V18: 0.137, V19: 0.753, V20: 0.340, V21: -0.051, V22: -0.634, V23: 0.098, V24: -1.353, V25: -0.252, V26: 0.546, V27: -0.017, V28: 0.164, Amount: 4.000.
464
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 2.201, V2: -0.820, V3: -1.344, V4: -0.597, V5: -0.347, V6: -0.239, V7: -0.601, V8: -0.097, V9: -0.122, V10: 0.890, V11: -1.849, V12: -0.746, V13: -0.477, V14: 0.129, V15: 0.270, V16: -1.205, V17: -0.320, V18: 1.230, V19: -0.509, V20: -0.604, V21: -0.448, V22: -0.759, V23: 0.243, V24: 0.057, V25: -0.237, V26: 0.566, V27: -0.055, V28: -0.056, Amount: 15.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 2.201, V2: -0.820, V3: -1.344, V4: -0.597, V5: -0.347, V6: -0.239, V7: -0.601, V8: -0.097, V9: -0.122, V10: 0.890, V11: -1.849, V12: -0.746, V13: -0.477, V14: 0.129, V15: 0.270, V16: -1.205, V17: -0.320, V18: 1.230, V19: -0.509, V20: -0.604, V21: -0.448, V22: -0.759, V23: 0.243, V24: 0.057, V25: -0.237, V26: 0.566, V27: -0.055, V28: -0.056, Amount: 15.000.
465
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.896, V2: 1.187, V3: -1.774, V4: 3.951, V5: 1.273, V6: -0.210, V7: 0.405, V8: -0.044, V9: -1.416, V10: 0.459, V11: 1.051, V12: 0.234, V13: 0.487, V14: -2.465, V15: -1.344, V16: 1.968, V17: 0.955, V18: 0.959, V19: -1.278, V20: -0.152, V21: -0.398, V22: -1.110, V23: 0.235, V24: -0.794, V25: -0.200, V26: -0.334, V27: -0.003, V28: 0.004, Amount: 4.370.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.896, V2: 1.187, V3: -1.774, V4: 3.951, V5: 1.273, V6: -0.210, V7: 0.405, V8: -0.044, V9: -1.416, V10: 0.459, V11: 1.051, V12: 0.234, V13: 0.487, V14: -2.465, V15: -1.344, V16: 1.968, V17: 0.955, V18: 0.959, V19: -1.278, V20: -0.152, V21: -0.398, V22: -1.110, V23: 0.235, V24: -0.794, V25: -0.200, V26: -0.334, V27: -0.003, V28: 0.004, Amount: 4.370.
466
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.413, V2: 0.831, V3: 1.197, V4: -0.459, V5: 0.057, V6: -1.237, V7: 0.683, V8: -0.286, V9: 1.057, V10: -0.826, V11: 0.302, V12: -3.440, V13: 0.073, V14: 1.977, V15: 0.117, V16: -0.075, V17: 0.646, V18: -0.010, V19: 0.141, V20: -0.183, V21: -0.160, V22: -0.329, V23: -0.102, V24: 0.351, V25: -0.113, V26: 0.956, V27: -0.216, V28: 0.019, Amount: 1.230.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.413, V2: 0.831, V3: 1.197, V4: -0.459, V5: 0.057, V6: -1.237, V7: 0.683, V8: -0.286, V9: 1.057, V10: -0.826, V11: 0.302, V12: -3.440, V13: 0.073, V14: 1.977, V15: 0.117, V16: -0.075, V17: 0.646, V18: -0.010, V19: 0.141, V20: -0.183, V21: -0.160, V22: -0.329, V23: -0.102, V24: 0.351, V25: -0.113, V26: 0.956, V27: -0.216, V28: 0.019, Amount: 1.230.
467
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.457, V2: -1.564, V3: 1.277, V4: -3.070, V5: -0.870, V6: 0.517, V7: -0.850, V8: 0.292, V9: -1.736, V10: 0.737, V11: 0.082, V12: -0.351, V13: 1.397, V14: -0.904, V15: -0.480, V16: 0.927, V17: -0.888, V18: 1.553, V19: -0.994, V20: 0.090, V21: 0.364, V22: 1.043, V23: 0.413, V24: 0.168, V25: -1.003, V26: -0.370, V27: 0.207, V28: 0.250, Amount: 152.650.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.457, V2: -1.564, V3: 1.277, V4: -3.070, V5: -0.870, V6: 0.517, V7: -0.850, V8: 0.292, V9: -1.736, V10: 0.737, V11: 0.082, V12: -0.351, V13: 1.397, V14: -0.904, V15: -0.480, V16: 0.927, V17: -0.888, V18: 1.553, V19: -0.994, V20: 0.090, V21: 0.364, V22: 1.043, V23: 0.413, V24: 0.168, V25: -1.003, V26: -0.370, V27: 0.207, V28: 0.250, Amount: 152.650.
468
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.210, V2: 0.013, V3: 0.983, V4: 0.034, V5: 0.108, V6: -0.553, V7: -0.367, V8: 0.271, V9: 0.610, V10: -0.974, V11: 1.029, V12: 0.553, V13: -0.223, V14: -1.303, V15: 0.121, V16: 0.806, V17: 0.131, V18: 1.502, V19: 0.026, V20: 0.060, V21: 0.218, V22: 0.595, V23: 0.205, V24: -0.049, V25: -1.050, V26: -0.494, V27: 0.193, V28: 0.162, Amount: 24.990.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.210, V2: 0.013, V3: 0.983, V4: 0.034, V5: 0.108, V6: -0.553, V7: -0.367, V8: 0.271, V9: 0.610, V10: -0.974, V11: 1.029, V12: 0.553, V13: -0.223, V14: -1.303, V15: 0.121, V16: 0.806, V17: 0.131, V18: 1.502, V19: 0.026, V20: 0.060, V21: 0.218, V22: 0.595, V23: 0.205, V24: -0.049, V25: -1.050, V26: -0.494, V27: 0.193, V28: 0.162, Amount: 24.990.
469
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -3.988, V2: 4.020, V3: -2.589, V4: -0.606, V5: -0.623, V6: 0.911, V7: -3.131, V8: -7.486, V9: -0.006, V10: -0.543, V11: 0.191, V12: 1.076, V13: -0.782, V14: 0.716, V15: -0.171, V16: 0.670, V17: 1.349, V18: 1.600, V19: 0.102, V20: -2.266, V21: 8.923, V22: -1.790, V23: 1.126, V24: -0.703, V25: -0.240, V26: -0.100, V27: -0.033, V28: 0.102, Amount: 9.010.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -3.988, V2: 4.020, V3: -2.589, V4: -0.606, V5: -0.623, V6: 0.911, V7: -3.131, V8: -7.486, V9: -0.006, V10: -0.543, V11: 0.191, V12: 1.076, V13: -0.782, V14: 0.716, V15: -0.171, V16: 0.670, V17: 1.349, V18: 1.600, V19: 0.102, V20: -2.266, V21: 8.923, V22: -1.790, V23: 1.126, V24: -0.703, V25: -0.240, V26: -0.100, V27: -0.033, V28: 0.102, Amount: 9.010.
470
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 2.067, V2: -0.048, V3: -1.089, V4: 0.401, V5: -0.109, V6: -1.177, V7: 0.187, V8: -0.334, V9: 0.537, V10: 0.072, V11: -0.787, V12: 0.448, V13: 0.131, V14: 0.261, V15: 0.038, V16: -0.090, V17: -0.314, V18: -0.856, V19: 0.169, V20: -0.219, V21: -0.293, V22: -0.706, V23: 0.332, V24: -0.023, V25: -0.288, V26: 0.200, V27: -0.070, V28: -0.060, Amount: 1.790.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 2.067, V2: -0.048, V3: -1.089, V4: 0.401, V5: -0.109, V6: -1.177, V7: 0.187, V8: -0.334, V9: 0.537, V10: 0.072, V11: -0.787, V12: 0.448, V13: 0.131, V14: 0.261, V15: 0.038, V16: -0.090, V17: -0.314, V18: -0.856, V19: 0.169, V20: -0.219, V21: -0.293, V22: -0.706, V23: 0.332, V24: -0.023, V25: -0.288, V26: 0.200, V27: -0.070, V28: -0.060, Amount: 1.790.
471
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 0.016, V2: 0.966, V3: 0.594, V4: -0.154, V5: 0.642, V6: -0.876, V7: 1.065, V8: -0.542, V9: 1.318, V10: -0.354, V11: 0.284, V12: -2.250, V13: 2.076, V14: 1.266, V15: -0.819, V16: -0.490, V17: 0.430, V18: -0.585, V19: 0.141, V20: 0.068, V21: -0.425, V22: -0.630, V23: 0.058, V24: -0.063, V25: -0.631, V26: 0.137, V27: -0.045, V28: -0.099, Amount: 7.990.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 0.016, V2: 0.966, V3: 0.594, V4: -0.154, V5: 0.642, V6: -0.876, V7: 1.065, V8: -0.542, V9: 1.318, V10: -0.354, V11: 0.284, V12: -2.250, V13: 2.076, V14: 1.266, V15: -0.819, V16: -0.490, V17: 0.430, V18: -0.585, V19: 0.141, V20: 0.068, V21: -0.425, V22: -0.630, V23: 0.058, V24: -0.063, V25: -0.631, V26: 0.137, V27: -0.045, V28: -0.099, Amount: 7.990.
472
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.280, V2: -0.620, V3: 0.740, V4: -0.577, V5: -0.985, V6: -0.095, V7: -1.005, V8: 0.053, V9: 0.462, V10: 0.391, V11: 2.497, V12: -2.577, V13: 1.395, V14: 1.458, V15: -0.247, V16: 1.137, V17: 0.949, V18: -0.684, V19: 0.063, V20: 0.029, V21: 0.283, V22: 0.961, V23: -0.121, V24: -0.005, V25: 0.416, V26: -0.059, V27: -0.002, V28: 0.000, Amount: 29.920.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.280, V2: -0.620, V3: 0.740, V4: -0.577, V5: -0.985, V6: -0.095, V7: -1.005, V8: 0.053, V9: 0.462, V10: 0.391, V11: 2.497, V12: -2.577, V13: 1.395, V14: 1.458, V15: -0.247, V16: 1.137, V17: 0.949, V18: -0.684, V19: 0.063, V20: 0.029, V21: 0.283, V22: 0.961, V23: -0.121, V24: -0.005, V25: 0.416, V26: -0.059, V27: -0.002, V28: 0.000, Amount: 29.920.
473
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 2.039, V2: 0.101, V3: -1.780, V4: 0.238, V5: 0.630, V6: -0.334, V7: 0.072, V8: -0.056, V9: 0.230, V10: -0.221, V11: 0.993, V12: 0.843, V13: 0.140, V14: -0.681, V15: -0.444, V16: 0.517, V17: 0.187, V18: 0.160, V19: 0.358, V20: -0.135, V21: -0.321, V22: -0.842, V23: 0.303, V24: 0.200, V25: -0.268, V26: 0.173, V27: -0.063, V28: -0.043, Amount: 1.980.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 2.039, V2: 0.101, V3: -1.780, V4: 0.238, V5: 0.630, V6: -0.334, V7: 0.072, V8: -0.056, V9: 0.230, V10: -0.221, V11: 0.993, V12: 0.843, V13: 0.140, V14: -0.681, V15: -0.444, V16: 0.517, V17: 0.187, V18: 0.160, V19: 0.358, V20: -0.135, V21: -0.321, V22: -0.842, V23: 0.303, V24: 0.200, V25: -0.268, V26: 0.173, V27: -0.063, V28: -0.043, Amount: 1.980.
474
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 2.175, V2: -1.368, V3: -1.484, V4: -1.900, V5: -0.275, V6: 0.644, V7: -1.058, V8: 0.149, V9: -1.878, V10: 1.707, V11: 1.325, V12: 0.095, V13: 0.686, V14: 0.089, V15: 0.281, V16: -1.296, V17: 0.924, V18: -0.850, V19: -1.091, V20: -0.502, V21: 0.195, V22: 1.148, V23: 0.108, V24: -1.319, V25: -0.120, V26: 0.166, V27: 0.038, V28: -0.085, Amount: 15.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 2.175, V2: -1.368, V3: -1.484, V4: -1.900, V5: -0.275, V6: 0.644, V7: -1.058, V8: 0.149, V9: -1.878, V10: 1.707, V11: 1.325, V12: 0.095, V13: 0.686, V14: 0.089, V15: 0.281, V16: -1.296, V17: 0.924, V18: -0.850, V19: -1.091, V20: -0.502, V21: 0.195, V22: 1.148, V23: 0.108, V24: -1.319, V25: -0.120, V26: 0.166, V27: 0.038, V28: -0.085, Amount: 15.000.
475
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.349, V2: 0.654, V3: 2.317, V4: 0.760, V5: -0.251, V6: -0.631, V7: 0.678, V8: -0.311, V9: -0.157, V10: -0.358, V11: -0.097, V12: 0.741, V13: 0.827, V14: -0.649, V15: -0.284, V16: -0.995, V17: 0.413, V18: -0.648, V19: 0.814, V20: 0.199, V21: -0.045, V22: 0.277, V23: -0.285, V24: 1.008, V25: 0.429, V26: 0.510, V27: -0.187, V28: -0.237, Amount: 12.500.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.349, V2: 0.654, V3: 2.317, V4: 0.760, V5: -0.251, V6: -0.631, V7: 0.678, V8: -0.311, V9: -0.157, V10: -0.358, V11: -0.097, V12: 0.741, V13: 0.827, V14: -0.649, V15: -0.284, V16: -0.995, V17: 0.413, V18: -0.648, V19: 0.814, V20: 0.199, V21: -0.045, V22: 0.277, V23: -0.285, V24: 1.008, V25: 0.429, V26: 0.510, V27: -0.187, V28: -0.237, Amount: 12.500.
476
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.175, V2: -0.819, V3: -0.643, V4: -0.867, V5: -0.273, V6: -0.292, V7: 0.054, V8: -0.184, V9: -1.370, V10: 0.791, V11: 0.257, V12: 0.237, V13: 0.394, V14: 0.487, V15: 0.041, V16: -0.919, V17: -0.581, V18: 1.256, V19: 0.199, V20: -0.138, V21: -0.681, V22: -1.898, V23: -0.054, V24: -0.853, V25: 0.168, V26: 0.746, V27: -0.115, V28: 0.008, Amount: 154.800.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.175, V2: -0.819, V3: -0.643, V4: -0.867, V5: -0.273, V6: -0.292, V7: 0.054, V8: -0.184, V9: -1.370, V10: 0.791, V11: 0.257, V12: 0.237, V13: 0.394, V14: 0.487, V15: 0.041, V16: -0.919, V17: -0.581, V18: 1.256, V19: 0.199, V20: -0.138, V21: -0.681, V22: -1.898, V23: -0.054, V24: -0.853, V25: 0.168, V26: 0.746, V27: -0.115, V28: 0.008, Amount: 154.800.
477
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -2.957, V2: 3.115, V3: 0.425, V4: 2.190, V5: -0.043, V6: 1.136, V7: -0.594, V8: -2.580, V9: -1.189, V10: 2.188, V11: 0.690, V12: 1.031, V13: 1.213, V14: 0.435, V15: 0.411, V16: 0.385, V17: -0.142, V18: 0.180, V19: 1.516, V20: 0.013, V21: 2.453, V22: -2.450, V23: 0.382, V24: -0.607, V25: 0.330, V26: -0.107, V27: 0.753, V28: 0.466, Amount: 38.970.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -2.957, V2: 3.115, V3: 0.425, V4: 2.190, V5: -0.043, V6: 1.136, V7: -0.594, V8: -2.580, V9: -1.189, V10: 2.188, V11: 0.690, V12: 1.031, V13: 1.213, V14: 0.435, V15: 0.411, V16: 0.385, V17: -0.142, V18: 0.180, V19: 1.516, V20: 0.013, V21: 2.453, V22: -2.450, V23: 0.382, V24: -0.607, V25: 0.330, V26: -0.107, V27: 0.753, V28: 0.466, Amount: 38.970.
478
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.951, V2: -0.297, V3: -1.762, V4: 0.207, V5: 0.389, V6: -0.573, V7: 0.275, V8: -0.268, V9: 0.626, V10: -0.034, V11: -1.099, V12: 0.053, V13: 0.041, V14: 0.496, V15: 0.891, V16: -0.095, V17: -0.629, V18: 0.067, V19: -0.142, V20: -0.050, V21: 0.262, V22: 0.703, V23: -0.085, V24: 0.304, V25: 0.299, V26: -0.119, V27: -0.038, V28: -0.043, Amount: 82.860.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.951, V2: -0.297, V3: -1.762, V4: 0.207, V5: 0.389, V6: -0.573, V7: 0.275, V8: -0.268, V9: 0.626, V10: -0.034, V11: -1.099, V12: 0.053, V13: 0.041, V14: 0.496, V15: 0.891, V16: -0.095, V17: -0.629, V18: 0.067, V19: -0.142, V20: -0.050, V21: 0.262, V22: 0.703, V23: -0.085, V24: 0.304, V25: 0.299, V26: -0.119, V27: -0.038, V28: -0.043, Amount: 82.860.
479
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.159, V2: -0.008, V3: -0.142, V4: 1.471, V5: 1.755, V6: 4.303, V7: -1.070, V8: 1.127, V9: -0.175, V10: 0.599, V11: -0.592, V12: -0.090, V13: 0.058, V14: -0.139, V15: 0.316, V16: 1.129, V17: -1.064, V18: 0.353, V19: -0.612, V20: 0.003, V21: -0.089, V22: -0.354, V23: 0.001, V24: 0.988, V25: 0.424, V26: -0.035, V27: 0.037, V28: 0.032, Amount: 16.530.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.159, V2: -0.008, V3: -0.142, V4: 1.471, V5: 1.755, V6: 4.303, V7: -1.070, V8: 1.127, V9: -0.175, V10: 0.599, V11: -0.592, V12: -0.090, V13: 0.058, V14: -0.139, V15: 0.316, V16: 1.129, V17: -1.064, V18: 0.353, V19: -0.612, V20: 0.003, V21: -0.089, V22: -0.354, V23: 0.001, V24: 0.988, V25: 0.424, V26: -0.035, V27: 0.037, V28: 0.032, Amount: 16.530.
480
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -2.036, V2: 0.926, V3: 1.157, V4: -1.074, V5: 0.206, V6: -0.943, V7: 1.175, V8: -3.290, V9: -0.084, V10: -0.041, V11: -0.032, V12: -0.292, V13: -0.652, V14: -0.051, V15: 0.205, V16: -0.023, V17: -0.375, V18: -0.731, V19: -0.614, V20: -1.027, V21: 2.042, V22: -0.716, V23: 0.186, V24: 0.751, V25: 0.612, V26: 0.914, V27: -0.334, V28: -0.488, Amount: 95.290.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -2.036, V2: 0.926, V3: 1.157, V4: -1.074, V5: 0.206, V6: -0.943, V7: 1.175, V8: -3.290, V9: -0.084, V10: -0.041, V11: -0.032, V12: -0.292, V13: -0.652, V14: -0.051, V15: 0.205, V16: -0.023, V17: -0.375, V18: -0.731, V19: -0.614, V20: -1.027, V21: 2.042, V22: -0.716, V23: 0.186, V24: 0.751, V25: 0.612, V26: 0.914, V27: -0.334, V28: -0.488, Amount: 95.290.
481
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 0.115, V2: 1.125, V3: -0.189, V4: -0.444, V5: 0.780, V6: -1.078, V7: 1.053, V8: -0.199, V9: -0.235, V10: -0.865, V11: -0.105, V12: 0.581, V13: 0.956, V14: -1.195, V15: -0.386, V16: 0.149, V17: 0.474, V18: -0.492, V19: -0.409, V20: 0.069, V21: -0.300, V22: -0.666, V23: 0.139, V24: 1.071, V25: -0.448, V26: 0.080, V27: 0.230, V28: 0.091, Amount: 2.690.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 0.115, V2: 1.125, V3: -0.189, V4: -0.444, V5: 0.780, V6: -1.078, V7: 1.053, V8: -0.199, V9: -0.235, V10: -0.865, V11: -0.105, V12: 0.581, V13: 0.956, V14: -1.195, V15: -0.386, V16: 0.149, V17: 0.474, V18: -0.492, V19: -0.409, V20: 0.069, V21: -0.300, V22: -0.666, V23: 0.139, V24: 1.071, V25: -0.448, V26: 0.080, V27: 0.230, V28: 0.091, Amount: 2.690.
482
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -3.153, V2: -0.916, V3: -0.286, V4: -0.247, V5: 5.128, V6: -4.160, V7: -2.762, V8: -1.809, V9: 0.512, V10: -1.441, V11: -0.149, V12: -0.307, V13: -0.774, V14: -2.423, V15: 0.305, V16: 1.243, V17: 1.527, V18: 1.086, V19: -1.868, V20: -1.605, V21: 1.378, V22: -0.629, V23: -3.894, V24: 0.044, V25: -0.142, V26: -0.277, V27: 0.877, V28: 0.047, Amount: 1.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -3.153, V2: -0.916, V3: -0.286, V4: -0.247, V5: 5.128, V6: -4.160, V7: -2.762, V8: -1.809, V9: 0.512, V10: -1.441, V11: -0.149, V12: -0.307, V13: -0.774, V14: -2.423, V15: 0.305, V16: 1.243, V17: 1.527, V18: 1.086, V19: -1.868, V20: -1.605, V21: 1.378, V22: -0.629, V23: -3.894, V24: 0.044, V25: -0.142, V26: -0.277, V27: 0.877, V28: 0.047, Amount: 1.000.
483
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.423, V2: -0.481, V3: 0.484, V4: 1.283, V5: 1.119, V6: -0.715, V7: 0.499, V8: -0.580, V9: -0.351, V10: 1.084, V11: 1.398, V12: 0.860, V13: 0.696, V14: 0.039, V15: 0.724, V16: -1.129, V17: 0.276, V18: -0.143, V19: 3.259, V20: -0.713, V21: -0.429, V22: 0.124, V23: 0.931, V24: 0.094, V25: -0.915, V26: 0.532, V27: -0.032, V28: -0.247, Amount: 1.980.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.423, V2: -0.481, V3: 0.484, V4: 1.283, V5: 1.119, V6: -0.715, V7: 0.499, V8: -0.580, V9: -0.351, V10: 1.084, V11: 1.398, V12: 0.860, V13: 0.696, V14: 0.039, V15: 0.724, V16: -1.129, V17: 0.276, V18: -0.143, V19: 3.259, V20: -0.713, V21: -0.429, V22: 0.124, V23: 0.931, V24: 0.094, V25: -0.915, V26: 0.532, V27: -0.032, V28: -0.247, Amount: 1.980.
484
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.509, V2: -1.092, V3: 0.458, V4: -1.566, V5: -1.176, V6: 0.160, V7: -1.284, V8: -0.001, V9: -1.675, V10: 1.357, V11: -0.894, V12: -0.632, V13: 1.591, V14: -0.693, V15: 1.057, V16: -0.239, V17: 0.298, V18: 0.024, V19: -0.491, V20: -0.261, V21: -0.076, V22: 0.272, V23: -0.088, V24: -0.750, V25: 0.408, V26: -0.025, V27: 0.072, V28: 0.018, Amount: 15.600.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.509, V2: -1.092, V3: 0.458, V4: -1.566, V5: -1.176, V6: 0.160, V7: -1.284, V8: -0.001, V9: -1.675, V10: 1.357, V11: -0.894, V12: -0.632, V13: 1.591, V14: -0.693, V15: 1.057, V16: -0.239, V17: 0.298, V18: 0.024, V19: -0.491, V20: -0.261, V21: -0.076, V22: 0.272, V23: -0.088, V24: -0.750, V25: 0.408, V26: -0.025, V27: 0.072, V28: 0.018, Amount: 15.600.
485
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.752, V2: 0.674, V3: 2.603, V4: 0.194, V5: -0.547, V6: 0.099, V7: 0.035, V8: 0.301, V9: 0.285, V10: -0.608, V11: -0.309, V12: 0.491, V13: 0.253, V14: -0.556, V15: 0.198, V16: -0.385, V17: 0.240, V18: -0.658, V19: -0.339, V20: 0.114, V21: -0.003, V22: 0.302, V23: -0.095, V24: 0.440, V25: -0.172, V26: 0.322, V27: 0.357, V28: 0.173, Amount: 9.200.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.752, V2: 0.674, V3: 2.603, V4: 0.194, V5: -0.547, V6: 0.099, V7: 0.035, V8: 0.301, V9: 0.285, V10: -0.608, V11: -0.309, V12: 0.491, V13: 0.253, V14: -0.556, V15: 0.198, V16: -0.385, V17: 0.240, V18: -0.658, V19: -0.339, V20: 0.114, V21: -0.003, V22: 0.302, V23: -0.095, V24: 0.440, V25: -0.172, V26: 0.322, V27: 0.357, V28: 0.173, Amount: 9.200.
486
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.823, V2: -1.466, V3: -0.248, V4: -0.335, V5: -1.380, V6: 0.051, V7: -1.117, V8: 0.053, V9: 0.260, V10: 0.713, V11: -1.196, V12: 0.057, V13: 0.693, V14: -0.474, V15: 0.646, V16: -0.790, V17: -0.437, V18: 1.410, V19: -1.040, V20: -0.243, V21: -0.276, V22: -0.537, V23: 0.303, V24: 0.653, V25: -0.727, V26: 0.418, V27: -0.020, V28: -0.002, Amount: 155.980.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.823, V2: -1.466, V3: -0.248, V4: -0.335, V5: -1.380, V6: 0.051, V7: -1.117, V8: 0.053, V9: 0.260, V10: 0.713, V11: -1.196, V12: 0.057, V13: 0.693, V14: -0.474, V15: 0.646, V16: -0.790, V17: -0.437, V18: 1.410, V19: -1.040, V20: -0.243, V21: -0.276, V22: -0.537, V23: 0.303, V24: 0.653, V25: -0.727, V26: 0.418, V27: -0.020, V28: -0.002, Amount: 155.980.
487
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.314, V2: -0.135, V3: -0.061, V4: -1.641, V5: 0.205, V6: -0.616, V7: 0.691, V8: -0.105, V9: -1.449, V10: 0.570, V11: 0.037, V12: -0.143, V13: -0.044, V14: 0.383, V15: -0.639, V16: -1.097, V17: -0.779, V18: 1.985, V19: -0.781, V20: -0.174, V21: 0.034, V22: 0.490, V23: 0.068, V24: -0.482, V25: -0.603, V26: 0.678, V27: 0.358, V28: 0.262, Amount: 93.070.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.314, V2: -0.135, V3: -0.061, V4: -1.641, V5: 0.205, V6: -0.616, V7: 0.691, V8: -0.105, V9: -1.449, V10: 0.570, V11: 0.037, V12: -0.143, V13: -0.044, V14: 0.383, V15: -0.639, V16: -1.097, V17: -0.779, V18: 1.985, V19: -0.781, V20: -0.174, V21: 0.034, V22: 0.490, V23: 0.068, V24: -0.482, V25: -0.603, V26: 0.678, V27: 0.358, V28: 0.262, Amount: 93.070.
488
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.092, V2: 1.321, V3: -0.484, V4: -0.600, V5: 1.215, V6: -0.248, V7: 0.840, V8: -0.060, V9: 1.070, V10: -0.755, V11: 1.799, V12: -1.622, V13: 2.419, V14: 0.364, V15: -1.723, V16: 0.546, V17: 0.664, V18: 0.555, V19: -0.046, V20: 0.176, V21: -0.486, V22: -0.930, V23: 0.056, V24: 0.134, V25: -0.348, V26: 0.080, V27: 0.305, V28: 0.125, Amount: 8.330.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.092, V2: 1.321, V3: -0.484, V4: -0.600, V5: 1.215, V6: -0.248, V7: 0.840, V8: -0.060, V9: 1.070, V10: -0.755, V11: 1.799, V12: -1.622, V13: 2.419, V14: 0.364, V15: -1.723, V16: 0.546, V17: 0.664, V18: 0.555, V19: -0.046, V20: 0.176, V21: -0.486, V22: -0.930, V23: 0.056, V24: 0.134, V25: -0.348, V26: 0.080, V27: 0.305, V28: 0.125, Amount: 8.330.
489
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 0.696, V2: -1.563, V3: 0.782, V4: 0.652, V5: -1.618, V6: 0.353, V7: -0.772, V8: 0.202, V9: -0.377, V10: 0.738, V11: 0.289, V12: 0.064, V13: -0.688, V14: 0.050, V15: -0.050, V16: -0.879, V17: -0.451, V18: 2.352, V19: -0.863, V20: 0.009, V21: -0.043, V22: -0.227, V23: -0.307, V24: -0.031, V25: 0.272, V26: -0.281, V27: 0.029, V28: 0.076, Amount: 298.400.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 0.696, V2: -1.563, V3: 0.782, V4: 0.652, V5: -1.618, V6: 0.353, V7: -0.772, V8: 0.202, V9: -0.377, V10: 0.738, V11: 0.289, V12: 0.064, V13: -0.688, V14: 0.050, V15: -0.050, V16: -0.879, V17: -0.451, V18: 2.352, V19: -0.863, V20: 0.009, V21: -0.043, V22: -0.227, V23: -0.307, V24: -0.031, V25: 0.272, V26: -0.281, V27: 0.029, V28: 0.076, Amount: 298.400.
490
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.257, V2: 0.378, V3: 0.313, V4: 0.690, V5: -0.343, V6: -1.066, V7: 0.109, V8: -0.222, V9: -0.017, V10: -0.292, V11: -0.010, V12: 0.409, V13: 0.554, V14: -0.353, V15: 1.058, V16: 0.463, V17: -0.024, V18: -0.339, V19: -0.201, V20: -0.060, V21: -0.284, V22: -0.803, V23: 0.125, V24: 0.354, V25: 0.227, V26: 0.093, V27: -0.021, V28: 0.032, Amount: 1.790.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.257, V2: 0.378, V3: 0.313, V4: 0.690, V5: -0.343, V6: -1.066, V7: 0.109, V8: -0.222, V9: -0.017, V10: -0.292, V11: -0.010, V12: 0.409, V13: 0.554, V14: -0.353, V15: 1.058, V16: 0.463, V17: -0.024, V18: -0.339, V19: -0.201, V20: -0.060, V21: -0.284, V22: -0.803, V23: 0.125, V24: 0.354, V25: 0.227, V26: 0.093, V27: -0.021, V28: 0.032, Amount: 1.790.
491
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 2.033, V2: 0.262, V3: -1.464, V4: 0.516, V5: 0.319, V6: -1.055, V7: 0.271, V8: -0.319, V9: 0.256, V10: -0.426, V11: 0.163, V12: 1.042, V13: 1.302, V14: -1.073, V15: 0.069, V16: 0.047, V17: 0.638, V18: -0.725, V19: -0.219, V20: -0.095, V21: -0.311, V22: -0.718, V23: 0.394, V24: 1.029, V25: -0.296, V26: 0.141, V27: -0.050, V28: -0.023, Amount: 0.990.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 2.033, V2: 0.262, V3: -1.464, V4: 0.516, V5: 0.319, V6: -1.055, V7: 0.271, V8: -0.319, V9: 0.256, V10: -0.426, V11: 0.163, V12: 1.042, V13: 1.302, V14: -1.073, V15: 0.069, V16: 0.047, V17: 0.638, V18: -0.725, V19: -0.219, V20: -0.095, V21: -0.311, V22: -0.718, V23: 0.394, V24: 1.029, V25: -0.296, V26: 0.141, V27: -0.050, V28: -0.023, Amount: 0.990.
492
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 0.316, V2: 3.809, V3: -5.615, V4: 6.047, V5: 1.554, V6: -2.651, V7: -0.747, V8: 0.056, V9: -2.679, V10: -4.959, V11: 6.439, V12: -7.520, V13: 0.386, V14: -9.252, V15: -1.365, V16: -0.502, V17: 0.784, V18: 1.494, V19: -1.808, V20: 0.388, V21: 0.209, V22: -0.512, V23: -0.584, V24: -0.220, V25: 1.475, V26: 0.491, V27: 0.519, V28: 0.403, Amount: 1.000.' Answer:
yes
[ "no", "yes" ]
1
The client has attributes: V1: 0.316, V2: 3.809, V3: -5.615, V4: 6.047, V5: 1.554, V6: -2.651, V7: -0.747, V8: 0.056, V9: -2.679, V10: -4.959, V11: 6.439, V12: -7.520, V13: 0.386, V14: -9.252, V15: -1.365, V16: -0.502, V17: 0.784, V18: 1.494, V19: -1.808, V20: 0.388, V21: 0.209, V22: -0.512, V23: -0.584, V24: -0.220, V25: 1.475, V26: 0.491, V27: 0.519, V28: 0.403, Amount: 1.000.
493
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.058, V2: 0.705, V3: 1.332, V4: -0.348, V5: 1.131, V6: 1.697, V7: 0.478, V8: 0.362, V9: 0.376, V10: -0.043, V11: -0.197, V12: 0.317, V13: -0.016, V14: -0.445, V15: 0.767, V16: -1.639, V17: 0.952, V18: -2.395, V19: -0.945, V20: 0.140, V21: -0.181, V22: 0.116, V23: -0.125, V24: -1.454, V25: -0.264, V26: 0.471, V27: 0.196, V28: 0.015, Amount: 17.140.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.058, V2: 0.705, V3: 1.332, V4: -0.348, V5: 1.131, V6: 1.697, V7: 0.478, V8: 0.362, V9: 0.376, V10: -0.043, V11: -0.197, V12: 0.317, V13: -0.016, V14: -0.445, V15: 0.767, V16: -1.639, V17: 0.952, V18: -2.395, V19: -0.945, V20: 0.140, V21: -0.181, V22: 0.116, V23: -0.125, V24: -1.454, V25: -0.264, V26: 0.471, V27: 0.196, V28: 0.015, Amount: 17.140.
494
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.039, V2: 0.675, V3: 0.521, V4: -1.412, V5: -1.997, V6: -0.589, V7: -0.650, V8: -2.446, V9: -1.602, V10: -0.756, V11: -0.322, V12: -0.527, V13: -0.596, V14: 0.514, V15: -0.074, V16: 1.529, V17: 0.455, V18: -1.329, V19: -0.521, V20: 0.492, V21: -0.956, V22: 1.022, V23: 0.362, V24: 0.903, V25: -0.275, V26: -0.469, V27: -0.051, V28: -0.029, Amount: 168.860.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.039, V2: 0.675, V3: 0.521, V4: -1.412, V5: -1.997, V6: -0.589, V7: -0.650, V8: -2.446, V9: -1.602, V10: -0.756, V11: -0.322, V12: -0.527, V13: -0.596, V14: 0.514, V15: -0.074, V16: 1.529, V17: 0.455, V18: -1.329, V19: -0.521, V20: 0.492, V21: -0.956, V22: 1.022, V23: 0.362, V24: 0.903, V25: -0.275, V26: -0.469, V27: -0.051, V28: -0.029, Amount: 168.860.
495
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.972, V2: -0.048, V3: -3.672, V4: -0.190, V5: 2.867, V6: 3.070, V7: -0.385, V8: 0.783, V9: 0.572, V10: -1.051, V11: 0.458, V12: -0.123, V13: -0.467, V14: -2.425, V15: 0.034, V16: 0.269, V17: 1.956, V18: 0.510, V19: -0.404, V20: -0.033, V21: -0.008, V22: 0.143, V23: -0.023, V24: 0.563, V25: 0.233, V26: 0.745, V27: -0.022, V28: -0.015, Amount: 29.560.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.972, V2: -0.048, V3: -3.672, V4: -0.190, V5: 2.867, V6: 3.070, V7: -0.385, V8: 0.783, V9: 0.572, V10: -1.051, V11: 0.458, V12: -0.123, V13: -0.467, V14: -2.425, V15: 0.034, V16: 0.269, V17: 1.956, V18: 0.510, V19: -0.404, V20: -0.033, V21: -0.008, V22: 0.143, V23: -0.023, V24: 0.563, V25: 0.233, V26: 0.745, V27: -0.022, V28: -0.015, Amount: 29.560.
496
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.192, V2: 0.124, V3: 0.126, V4: 0.467, V5: -0.117, V6: -0.130, V7: -0.216, V8: 0.199, V9: 0.047, V10: -0.108, V11: 1.272, V12: 0.003, V13: -1.509, V14: 0.254, V15: 0.855, V16: 0.558, V17: -0.001, V18: 0.062, V19: -0.132, V20: -0.199, V21: -0.249, V22: -0.802, V23: 0.126, V24: -0.395, V25: 0.100, V26: 0.133, V27: -0.022, V28: 0.010, Amount: 1.790.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.192, V2: 0.124, V3: 0.126, V4: 0.467, V5: -0.117, V6: -0.130, V7: -0.216, V8: 0.199, V9: 0.047, V10: -0.108, V11: 1.272, V12: 0.003, V13: -1.509, V14: 0.254, V15: 0.855, V16: 0.558, V17: -0.001, V18: 0.062, V19: -0.132, V20: -0.199, V21: -0.249, V22: -0.802, V23: 0.126, V24: -0.395, V25: 0.100, V26: 0.133, V27: -0.022, V28: 0.010, Amount: 1.790.
497
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.228, V2: -0.539, V3: 0.719, V4: 0.538, V5: -1.018, V6: 0.061, V7: -0.756, V8: 0.148, V9: -0.716, V10: 0.931, V11: 0.367, V12: 0.186, V13: -0.555, V14: 0.139, V15: -0.376, V16: -1.118, V17: -0.370, V18: 1.928, V19: -0.656, V20: -0.525, V21: -0.343, V22: -0.507, V23: -0.043, V24: -0.053, V25: 0.424, V26: -0.333, V27: 0.056, V28: 0.024, Amount: 34.130.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.228, V2: -0.539, V3: 0.719, V4: 0.538, V5: -1.018, V6: 0.061, V7: -0.756, V8: 0.148, V9: -0.716, V10: 0.931, V11: 0.367, V12: 0.186, V13: -0.555, V14: 0.139, V15: -0.376, V16: -1.118, V17: -0.370, V18: 1.928, V19: -0.656, V20: -0.525, V21: -0.343, V22: -0.507, V23: -0.043, V24: -0.053, V25: 0.424, V26: -0.333, V27: 0.056, V28: 0.024, Amount: 34.130.
498
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.071, V2: -0.293, V3: 0.483, V4: -0.222, V5: 0.804, V6: 0.881, V7: -0.166, V8: 0.160, V9: 0.750, V10: 0.259, V11: -0.558, V12: -0.540, V13: -1.156, V14: -0.091, V15: 0.093, V16: 0.324, V17: -0.874, V18: 1.249, V19: 1.335, V20: -0.037, V21: 0.256, V22: 1.064, V23: 0.246, V24: -0.384, V25: -1.474, V26: 0.514, V27: 0.014, V28: 0.042, Amount: 11.500.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.071, V2: -0.293, V3: 0.483, V4: -0.222, V5: 0.804, V6: 0.881, V7: -0.166, V8: 0.160, V9: 0.750, V10: 0.259, V11: -0.558, V12: -0.540, V13: -1.156, V14: -0.091, V15: 0.093, V16: 0.324, V17: -0.874, V18: 1.249, V19: 1.335, V20: -0.037, V21: 0.256, V22: 1.064, V23: 0.246, V24: -0.384, V25: -1.474, V26: 0.514, V27: 0.014, V28: 0.042, Amount: 11.500.
499
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.830, V2: -0.413, V3: -0.489, V4: 1.523, V5: -0.499, V6: -0.169, V7: -0.399, V8: 0.054, V9: 1.179, V10: 0.120, V11: -1.060, V12: 0.013, V13: -1.038, V14: 0.041, V15: -0.212, V16: -0.252, V17: -0.143, V18: -0.004, V19: -0.611, V20: -0.215, V21: 0.249, V22: 0.839, V23: 0.080, V24: 1.080, V25: 0.082, V26: -0.485, V27: 0.034, V28: -0.022, Amount: 59.900.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.830, V2: -0.413, V3: -0.489, V4: 1.523, V5: -0.499, V6: -0.169, V7: -0.399, V8: 0.054, V9: 1.179, V10: 0.120, V11: -1.060, V12: 0.013, V13: -1.038, V14: 0.041, V15: -0.212, V16: -0.252, V17: -0.143, V18: -0.004, V19: -0.611, V20: -0.215, V21: 0.249, V22: 0.839, V23: 0.080, V24: 1.080, V25: 0.082, V26: -0.485, V27: 0.034, V28: -0.022, Amount: 59.900.