ACCC1380's picture
Upload lora-scripts/sd-scripts/library/sdxl_model_util.py with huggingface_hub
3285eaa verified
import torch
from accelerate import init_empty_weights
from accelerate.utils.modeling import set_module_tensor_to_device
from safetensors.torch import load_file, save_file
from transformers import CLIPTextModel, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer
from typing import List
from diffusers import AutoencoderKL, EulerDiscreteScheduler, UNet2DConditionModel
from library import model_util
from library import sdxl_original_unet
from .utils import setup_logging
setup_logging()
import logging
logger = logging.getLogger(__name__)
VAE_SCALE_FACTOR = 0.13025
MODEL_VERSION_SDXL_BASE_V1_0 = "sdxl_base_v1-0"
# Diffusersの設定を読み込むための参照モデル
DIFFUSERS_REF_MODEL_ID_SDXL = "stabilityai/stable-diffusion-xl-base-1.0"
DIFFUSERS_SDXL_UNET_CONFIG = {
"act_fn": "silu",
"addition_embed_type": "text_time",
"addition_embed_type_num_heads": 64,
"addition_time_embed_dim": 256,
"attention_head_dim": [5, 10, 20],
"block_out_channels": [320, 640, 1280],
"center_input_sample": False,
"class_embed_type": None,
"class_embeddings_concat": False,
"conv_in_kernel": 3,
"conv_out_kernel": 3,
"cross_attention_dim": 2048,
"cross_attention_norm": None,
"down_block_types": ["DownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D"],
"downsample_padding": 1,
"dual_cross_attention": False,
"encoder_hid_dim": None,
"encoder_hid_dim_type": None,
"flip_sin_to_cos": True,
"freq_shift": 0,
"in_channels": 4,
"layers_per_block": 2,
"mid_block_only_cross_attention": None,
"mid_block_scale_factor": 1,
"mid_block_type": "UNetMidBlock2DCrossAttn",
"norm_eps": 1e-05,
"norm_num_groups": 32,
"num_attention_heads": None,
"num_class_embeds": None,
"only_cross_attention": False,
"out_channels": 4,
"projection_class_embeddings_input_dim": 2816,
"resnet_out_scale_factor": 1.0,
"resnet_skip_time_act": False,
"resnet_time_scale_shift": "default",
"sample_size": 128,
"time_cond_proj_dim": None,
"time_embedding_act_fn": None,
"time_embedding_dim": None,
"time_embedding_type": "positional",
"timestep_post_act": None,
"transformer_layers_per_block": [1, 2, 10],
"up_block_types": ["CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "UpBlock2D"],
"upcast_attention": False,
"use_linear_projection": True,
}
def convert_sdxl_text_encoder_2_checkpoint(checkpoint, max_length):
SDXL_KEY_PREFIX = "conditioner.embedders.1.model."
# SD2のと、基本的には同じ。logit_scaleを後で使うので、それを追加で返す
# logit_scaleはcheckpointの保存時に使用する
def convert_key(key):
# common conversion
key = key.replace(SDXL_KEY_PREFIX + "transformer.", "text_model.encoder.")
key = key.replace(SDXL_KEY_PREFIX, "text_model.")
if "resblocks" in key:
# resblocks conversion
key = key.replace(".resblocks.", ".layers.")
if ".ln_" in key:
key = key.replace(".ln_", ".layer_norm")
elif ".mlp." in key:
key = key.replace(".c_fc.", ".fc1.")
key = key.replace(".c_proj.", ".fc2.")
elif ".attn.out_proj" in key:
key = key.replace(".attn.out_proj.", ".self_attn.out_proj.")
elif ".attn.in_proj" in key:
key = None # 特殊なので後で処理する
else:
raise ValueError(f"unexpected key in SD: {key}")
elif ".positional_embedding" in key:
key = key.replace(".positional_embedding", ".embeddings.position_embedding.weight")
elif ".text_projection" in key:
key = key.replace("text_model.text_projection", "text_projection.weight")
elif ".logit_scale" in key:
key = None # 後で処理する
elif ".token_embedding" in key:
key = key.replace(".token_embedding.weight", ".embeddings.token_embedding.weight")
elif ".ln_final" in key:
key = key.replace(".ln_final", ".final_layer_norm")
# ckpt from comfy has this key: text_model.encoder.text_model.embeddings.position_ids
elif ".embeddings.position_ids" in key:
key = None # remove this key: position_ids is not used in newer transformers
return key
keys = list(checkpoint.keys())
new_sd = {}
for key in keys:
new_key = convert_key(key)
if new_key is None:
continue
new_sd[new_key] = checkpoint[key]
# attnの変換
for key in keys:
if ".resblocks" in key and ".attn.in_proj_" in key:
# 三つに分割
values = torch.chunk(checkpoint[key], 3)
key_suffix = ".weight" if "weight" in key else ".bias"
key_pfx = key.replace(SDXL_KEY_PREFIX + "transformer.resblocks.", "text_model.encoder.layers.")
key_pfx = key_pfx.replace("_weight", "")
key_pfx = key_pfx.replace("_bias", "")
key_pfx = key_pfx.replace(".attn.in_proj", ".self_attn.")
new_sd[key_pfx + "q_proj" + key_suffix] = values[0]
new_sd[key_pfx + "k_proj" + key_suffix] = values[1]
new_sd[key_pfx + "v_proj" + key_suffix] = values[2]
# logit_scale はDiffusersには含まれないが、保存時に戻したいので別途返す
logit_scale = checkpoint.get(SDXL_KEY_PREFIX + "logit_scale", None)
# temporary workaround for text_projection.weight.weight for Playground-v2
if "text_projection.weight.weight" in new_sd:
logger.info("convert_sdxl_text_encoder_2_checkpoint: convert text_projection.weight.weight to text_projection.weight")
new_sd["text_projection.weight"] = new_sd["text_projection.weight.weight"]
del new_sd["text_projection.weight.weight"]
return new_sd, logit_scale
# load state_dict without allocating new tensors
def _load_state_dict_on_device(model, state_dict, device, dtype=None):
# dtype will use fp32 as default
missing_keys = list(model.state_dict().keys() - state_dict.keys())
unexpected_keys = list(state_dict.keys() - model.state_dict().keys())
# similar to model.load_state_dict()
if not missing_keys and not unexpected_keys:
for k in list(state_dict.keys()):
set_module_tensor_to_device(model, k, device, value=state_dict.pop(k), dtype=dtype)
return "<All keys matched successfully>"
# error_msgs
error_msgs: List[str] = []
if missing_keys:
error_msgs.insert(0, "Missing key(s) in state_dict: {}. ".format(", ".join('"{}"'.format(k) for k in missing_keys)))
if unexpected_keys:
error_msgs.insert(0, "Unexpected key(s) in state_dict: {}. ".format(", ".join('"{}"'.format(k) for k in unexpected_keys)))
raise RuntimeError("Error(s) in loading state_dict for {}:\n\t{}".format(model.__class__.__name__, "\n\t".join(error_msgs)))
def load_models_from_sdxl_checkpoint(model_version, ckpt_path, map_location, dtype=None):
# model_version is reserved for future use
# dtype is used for full_fp16/bf16 integration. Text Encoder will remain fp32, because it runs on CPU when caching
# Load the state dict
if model_util.is_safetensors(ckpt_path):
checkpoint = None
try:
state_dict = load_file(ckpt_path, device=map_location)
except:
state_dict = load_file(ckpt_path) # prevent device invalid Error
epoch = None
global_step = None
else:
checkpoint = torch.load(ckpt_path, map_location=map_location)
if "state_dict" in checkpoint:
state_dict = checkpoint["state_dict"]
epoch = checkpoint.get("epoch", 0)
global_step = checkpoint.get("global_step", 0)
else:
state_dict = checkpoint
epoch = 0
global_step = 0
checkpoint = None
# U-Net
logger.info("building U-Net")
with init_empty_weights():
unet = sdxl_original_unet.SdxlUNet2DConditionModel()
logger.info("loading U-Net from checkpoint")
unet_sd = {}
for k in list(state_dict.keys()):
if k.startswith("model.diffusion_model."):
unet_sd[k.replace("model.diffusion_model.", "")] = state_dict.pop(k)
info = _load_state_dict_on_device(unet, unet_sd, device=map_location, dtype=dtype)
logger.info(f"U-Net: {info}")
# Text Encoders
logger.info("building text encoders")
# Text Encoder 1 is same to Stability AI's SDXL
text_model1_cfg = CLIPTextConfig(
vocab_size=49408,
hidden_size=768,
intermediate_size=3072,
num_hidden_layers=12,
num_attention_heads=12,
max_position_embeddings=77,
hidden_act="quick_gelu",
layer_norm_eps=1e-05,
dropout=0.0,
attention_dropout=0.0,
initializer_range=0.02,
initializer_factor=1.0,
pad_token_id=1,
bos_token_id=0,
eos_token_id=2,
model_type="clip_text_model",
projection_dim=768,
# torch_dtype="float32",
# transformers_version="4.25.0.dev0",
)
with init_empty_weights():
text_model1 = CLIPTextModel._from_config(text_model1_cfg)
# Text Encoder 2 is different from Stability AI's SDXL. SDXL uses open clip, but we use the model from HuggingFace.
# Note: Tokenizer from HuggingFace is different from SDXL. We must use open clip's tokenizer.
text_model2_cfg = CLIPTextConfig(
vocab_size=49408,
hidden_size=1280,
intermediate_size=5120,
num_hidden_layers=32,
num_attention_heads=20,
max_position_embeddings=77,
hidden_act="gelu",
layer_norm_eps=1e-05,
dropout=0.0,
attention_dropout=0.0,
initializer_range=0.02,
initializer_factor=1.0,
pad_token_id=1,
bos_token_id=0,
eos_token_id=2,
model_type="clip_text_model",
projection_dim=1280,
# torch_dtype="float32",
# transformers_version="4.25.0.dev0",
)
with init_empty_weights():
text_model2 = CLIPTextModelWithProjection(text_model2_cfg)
logger.info("loading text encoders from checkpoint")
te1_sd = {}
te2_sd = {}
for k in list(state_dict.keys()):
if k.startswith("conditioner.embedders.0.transformer."):
te1_sd[k.replace("conditioner.embedders.0.transformer.", "")] = state_dict.pop(k)
elif k.startswith("conditioner.embedders.1.model."):
te2_sd[k] = state_dict.pop(k)
# 最新の transformers では position_ids を含むとエラーになるので削除 / remove position_ids for latest transformers
if "text_model.embeddings.position_ids" in te1_sd:
te1_sd.pop("text_model.embeddings.position_ids")
info1 = _load_state_dict_on_device(text_model1, te1_sd, device=map_location) # remain fp32
logger.info(f"text encoder 1: {info1}")
converted_sd, logit_scale = convert_sdxl_text_encoder_2_checkpoint(te2_sd, max_length=77)
info2 = _load_state_dict_on_device(text_model2, converted_sd, device=map_location) # remain fp32
logger.info(f"text encoder 2: {info2}")
# prepare vae
logger.info("building VAE")
vae_config = model_util.create_vae_diffusers_config()
with init_empty_weights():
vae = AutoencoderKL(**vae_config)
logger.info("loading VAE from checkpoint")
converted_vae_checkpoint = model_util.convert_ldm_vae_checkpoint(state_dict, vae_config)
info = _load_state_dict_on_device(vae, converted_vae_checkpoint, device=map_location, dtype=dtype)
logger.info(f"VAE: {info}")
ckpt_info = (epoch, global_step) if epoch is not None else None
return text_model1, text_model2, vae, unet, logit_scale, ckpt_info
def make_unet_conversion_map():
unet_conversion_map_layer = []
for i in range(3): # num_blocks is 3 in sdxl
# loop over downblocks/upblocks
for j in range(2):
# loop over resnets/attentions for downblocks
hf_down_res_prefix = f"down_blocks.{i}.resnets.{j}."
sd_down_res_prefix = f"input_blocks.{3*i + j + 1}.0."
unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix))
if i < 3:
# no attention layers in down_blocks.3
hf_down_atn_prefix = f"down_blocks.{i}.attentions.{j}."
sd_down_atn_prefix = f"input_blocks.{3*i + j + 1}.1."
unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix))
for j in range(3):
# loop over resnets/attentions for upblocks
hf_up_res_prefix = f"up_blocks.{i}.resnets.{j}."
sd_up_res_prefix = f"output_blocks.{3*i + j}.0."
unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix))
# if i > 0: commentout for sdxl
# no attention layers in up_blocks.0
hf_up_atn_prefix = f"up_blocks.{i}.attentions.{j}."
sd_up_atn_prefix = f"output_blocks.{3*i + j}.1."
unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix))
if i < 3:
# no downsample in down_blocks.3
hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0.conv."
sd_downsample_prefix = f"input_blocks.{3*(i+1)}.0.op."
unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix))
# no upsample in up_blocks.3
hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0."
sd_upsample_prefix = f"output_blocks.{3*i + 2}.{2}." # change for sdxl
unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix))
hf_mid_atn_prefix = "mid_block.attentions.0."
sd_mid_atn_prefix = "middle_block.1."
unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix))
for j in range(2):
hf_mid_res_prefix = f"mid_block.resnets.{j}."
sd_mid_res_prefix = f"middle_block.{2*j}."
unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix))
unet_conversion_map_resnet = [
# (stable-diffusion, HF Diffusers)
("in_layers.0.", "norm1."),
("in_layers.2.", "conv1."),
("out_layers.0.", "norm2."),
("out_layers.3.", "conv2."),
("emb_layers.1.", "time_emb_proj."),
("skip_connection.", "conv_shortcut."),
]
unet_conversion_map = []
for sd, hf in unet_conversion_map_layer:
if "resnets" in hf:
for sd_res, hf_res in unet_conversion_map_resnet:
unet_conversion_map.append((sd + sd_res, hf + hf_res))
else:
unet_conversion_map.append((sd, hf))
for j in range(2):
hf_time_embed_prefix = f"time_embedding.linear_{j+1}."
sd_time_embed_prefix = f"time_embed.{j*2}."
unet_conversion_map.append((sd_time_embed_prefix, hf_time_embed_prefix))
for j in range(2):
hf_label_embed_prefix = f"add_embedding.linear_{j+1}."
sd_label_embed_prefix = f"label_emb.0.{j*2}."
unet_conversion_map.append((sd_label_embed_prefix, hf_label_embed_prefix))
unet_conversion_map.append(("input_blocks.0.0.", "conv_in."))
unet_conversion_map.append(("out.0.", "conv_norm_out."))
unet_conversion_map.append(("out.2.", "conv_out."))
return unet_conversion_map
def convert_diffusers_unet_state_dict_to_sdxl(du_sd):
unet_conversion_map = make_unet_conversion_map()
conversion_map = {hf: sd for sd, hf in unet_conversion_map}
return convert_unet_state_dict(du_sd, conversion_map)
def convert_unet_state_dict(src_sd, conversion_map):
converted_sd = {}
for src_key, value in src_sd.items():
# さすがに全部回すのは時間がかかるので右から要素を削りつつprefixを探す
src_key_fragments = src_key.split(".")[:-1] # remove weight/bias
while len(src_key_fragments) > 0:
src_key_prefix = ".".join(src_key_fragments) + "."
if src_key_prefix in conversion_map:
converted_prefix = conversion_map[src_key_prefix]
converted_key = converted_prefix + src_key[len(src_key_prefix) :]
converted_sd[converted_key] = value
break
src_key_fragments.pop(-1)
assert len(src_key_fragments) > 0, f"key {src_key} not found in conversion map"
return converted_sd
def convert_sdxl_unet_state_dict_to_diffusers(sd):
unet_conversion_map = make_unet_conversion_map()
conversion_dict = {sd: hf for sd, hf in unet_conversion_map}
return convert_unet_state_dict(sd, conversion_dict)
def convert_text_encoder_2_state_dict_to_sdxl(checkpoint, logit_scale):
def convert_key(key):
# position_idsの除去
if ".position_ids" in key:
return None
# common
key = key.replace("text_model.encoder.", "transformer.")
key = key.replace("text_model.", "")
if "layers" in key:
# resblocks conversion
key = key.replace(".layers.", ".resblocks.")
if ".layer_norm" in key:
key = key.replace(".layer_norm", ".ln_")
elif ".mlp." in key:
key = key.replace(".fc1.", ".c_fc.")
key = key.replace(".fc2.", ".c_proj.")
elif ".self_attn.out_proj" in key:
key = key.replace(".self_attn.out_proj.", ".attn.out_proj.")
elif ".self_attn." in key:
key = None # 特殊なので後で処理する
else:
raise ValueError(f"unexpected key in DiffUsers model: {key}")
elif ".position_embedding" in key:
key = key.replace("embeddings.position_embedding.weight", "positional_embedding")
elif ".token_embedding" in key:
key = key.replace("embeddings.token_embedding.weight", "token_embedding.weight")
elif "text_projection" in key: # no dot in key
key = key.replace("text_projection.weight", "text_projection")
elif "final_layer_norm" in key:
key = key.replace("final_layer_norm", "ln_final")
return key
keys = list(checkpoint.keys())
new_sd = {}
for key in keys:
new_key = convert_key(key)
if new_key is None:
continue
new_sd[new_key] = checkpoint[key]
# attnの変換
for key in keys:
if "layers" in key and "q_proj" in key:
# 三つを結合
key_q = key
key_k = key.replace("q_proj", "k_proj")
key_v = key.replace("q_proj", "v_proj")
value_q = checkpoint[key_q]
value_k = checkpoint[key_k]
value_v = checkpoint[key_v]
value = torch.cat([value_q, value_k, value_v])
new_key = key.replace("text_model.encoder.layers.", "transformer.resblocks.")
new_key = new_key.replace(".self_attn.q_proj.", ".attn.in_proj_")
new_sd[new_key] = value
if logit_scale is not None:
new_sd["logit_scale"] = logit_scale
return new_sd
def save_stable_diffusion_checkpoint(
output_file,
text_encoder1,
text_encoder2,
unet,
epochs,
steps,
ckpt_info,
vae,
logit_scale,
metadata,
save_dtype=None,
):
state_dict = {}
def update_sd(prefix, sd):
for k, v in sd.items():
key = prefix + k
if save_dtype is not None:
v = v.detach().clone().to("cpu").to(save_dtype)
state_dict[key] = v
# Convert the UNet model
update_sd("model.diffusion_model.", unet.state_dict())
# Convert the text encoders
update_sd("conditioner.embedders.0.transformer.", text_encoder1.state_dict())
text_enc2_dict = convert_text_encoder_2_state_dict_to_sdxl(text_encoder2.state_dict(), logit_scale)
update_sd("conditioner.embedders.1.model.", text_enc2_dict)
# Convert the VAE
vae_dict = model_util.convert_vae_state_dict(vae.state_dict())
update_sd("first_stage_model.", vae_dict)
# Put together new checkpoint
key_count = len(state_dict.keys())
new_ckpt = {"state_dict": state_dict}
# epoch and global_step are sometimes not int
if ckpt_info is not None:
epochs += ckpt_info[0]
steps += ckpt_info[1]
new_ckpt["epoch"] = epochs
new_ckpt["global_step"] = steps
if model_util.is_safetensors(output_file):
save_file(state_dict, output_file, metadata)
else:
torch.save(new_ckpt, output_file)
return key_count
def save_diffusers_checkpoint(
output_dir, text_encoder1, text_encoder2, unet, pretrained_model_name_or_path, vae=None, use_safetensors=False, save_dtype=None
):
from diffusers import StableDiffusionXLPipeline
# convert U-Net
unet_sd = unet.state_dict()
du_unet_sd = convert_sdxl_unet_state_dict_to_diffusers(unet_sd)
diffusers_unet = UNet2DConditionModel(**DIFFUSERS_SDXL_UNET_CONFIG)
if save_dtype is not None:
diffusers_unet.to(save_dtype)
diffusers_unet.load_state_dict(du_unet_sd)
# create pipeline to save
if pretrained_model_name_or_path is None:
pretrained_model_name_or_path = DIFFUSERS_REF_MODEL_ID_SDXL
scheduler = EulerDiscreteScheduler.from_pretrained(pretrained_model_name_or_path, subfolder="scheduler")
tokenizer1 = CLIPTokenizer.from_pretrained(pretrained_model_name_or_path, subfolder="tokenizer")
tokenizer2 = CLIPTokenizer.from_pretrained(pretrained_model_name_or_path, subfolder="tokenizer_2")
if vae is None:
vae = AutoencoderKL.from_pretrained(pretrained_model_name_or_path, subfolder="vae")
# prevent local path from being saved
def remove_name_or_path(model):
if hasattr(model, "config"):
model.config._name_or_path = None
model.config._name_or_path = None
remove_name_or_path(diffusers_unet)
remove_name_or_path(text_encoder1)
remove_name_or_path(text_encoder2)
remove_name_or_path(scheduler)
remove_name_or_path(tokenizer1)
remove_name_or_path(tokenizer2)
remove_name_or_path(vae)
pipeline = StableDiffusionXLPipeline(
unet=diffusers_unet,
text_encoder=text_encoder1,
text_encoder_2=text_encoder2,
vae=vae,
scheduler=scheduler,
tokenizer=tokenizer1,
tokenizer_2=tokenizer2,
)
if save_dtype is not None:
pipeline.to(None, save_dtype)
pipeline.save_pretrained(output_dir, safe_serialization=use_safetensors)