Upload lora-scripts/sd-scripts/library/sdxl_model_util.py with huggingface_hub
Browse files
lora-scripts/sd-scripts/library/sdxl_model_util.py
ADDED
@@ -0,0 +1,577 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from accelerate import init_empty_weights
|
3 |
+
from accelerate.utils.modeling import set_module_tensor_to_device
|
4 |
+
from safetensors.torch import load_file, save_file
|
5 |
+
from transformers import CLIPTextModel, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer
|
6 |
+
from typing import List
|
7 |
+
from diffusers import AutoencoderKL, EulerDiscreteScheduler, UNet2DConditionModel
|
8 |
+
from library import model_util
|
9 |
+
from library import sdxl_original_unet
|
10 |
+
from .utils import setup_logging
|
11 |
+
setup_logging()
|
12 |
+
import logging
|
13 |
+
logger = logging.getLogger(__name__)
|
14 |
+
|
15 |
+
VAE_SCALE_FACTOR = 0.13025
|
16 |
+
MODEL_VERSION_SDXL_BASE_V1_0 = "sdxl_base_v1-0"
|
17 |
+
|
18 |
+
# Diffusersの設定を読み込むための参照モデル
|
19 |
+
DIFFUSERS_REF_MODEL_ID_SDXL = "stabilityai/stable-diffusion-xl-base-1.0"
|
20 |
+
|
21 |
+
DIFFUSERS_SDXL_UNET_CONFIG = {
|
22 |
+
"act_fn": "silu",
|
23 |
+
"addition_embed_type": "text_time",
|
24 |
+
"addition_embed_type_num_heads": 64,
|
25 |
+
"addition_time_embed_dim": 256,
|
26 |
+
"attention_head_dim": [5, 10, 20],
|
27 |
+
"block_out_channels": [320, 640, 1280],
|
28 |
+
"center_input_sample": False,
|
29 |
+
"class_embed_type": None,
|
30 |
+
"class_embeddings_concat": False,
|
31 |
+
"conv_in_kernel": 3,
|
32 |
+
"conv_out_kernel": 3,
|
33 |
+
"cross_attention_dim": 2048,
|
34 |
+
"cross_attention_norm": None,
|
35 |
+
"down_block_types": ["DownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D"],
|
36 |
+
"downsample_padding": 1,
|
37 |
+
"dual_cross_attention": False,
|
38 |
+
"encoder_hid_dim": None,
|
39 |
+
"encoder_hid_dim_type": None,
|
40 |
+
"flip_sin_to_cos": True,
|
41 |
+
"freq_shift": 0,
|
42 |
+
"in_channels": 4,
|
43 |
+
"layers_per_block": 2,
|
44 |
+
"mid_block_only_cross_attention": None,
|
45 |
+
"mid_block_scale_factor": 1,
|
46 |
+
"mid_block_type": "UNetMidBlock2DCrossAttn",
|
47 |
+
"norm_eps": 1e-05,
|
48 |
+
"norm_num_groups": 32,
|
49 |
+
"num_attention_heads": None,
|
50 |
+
"num_class_embeds": None,
|
51 |
+
"only_cross_attention": False,
|
52 |
+
"out_channels": 4,
|
53 |
+
"projection_class_embeddings_input_dim": 2816,
|
54 |
+
"resnet_out_scale_factor": 1.0,
|
55 |
+
"resnet_skip_time_act": False,
|
56 |
+
"resnet_time_scale_shift": "default",
|
57 |
+
"sample_size": 128,
|
58 |
+
"time_cond_proj_dim": None,
|
59 |
+
"time_embedding_act_fn": None,
|
60 |
+
"time_embedding_dim": None,
|
61 |
+
"time_embedding_type": "positional",
|
62 |
+
"timestep_post_act": None,
|
63 |
+
"transformer_layers_per_block": [1, 2, 10],
|
64 |
+
"up_block_types": ["CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "UpBlock2D"],
|
65 |
+
"upcast_attention": False,
|
66 |
+
"use_linear_projection": True,
|
67 |
+
}
|
68 |
+
|
69 |
+
|
70 |
+
def convert_sdxl_text_encoder_2_checkpoint(checkpoint, max_length):
|
71 |
+
SDXL_KEY_PREFIX = "conditioner.embedders.1.model."
|
72 |
+
|
73 |
+
# SD2のと、基本的には同じ。logit_scaleを後で使うので、それを追加で返す
|
74 |
+
# logit_scaleはcheckpointの保存時に使用する
|
75 |
+
def convert_key(key):
|
76 |
+
# common conversion
|
77 |
+
key = key.replace(SDXL_KEY_PREFIX + "transformer.", "text_model.encoder.")
|
78 |
+
key = key.replace(SDXL_KEY_PREFIX, "text_model.")
|
79 |
+
|
80 |
+
if "resblocks" in key:
|
81 |
+
# resblocks conversion
|
82 |
+
key = key.replace(".resblocks.", ".layers.")
|
83 |
+
if ".ln_" in key:
|
84 |
+
key = key.replace(".ln_", ".layer_norm")
|
85 |
+
elif ".mlp." in key:
|
86 |
+
key = key.replace(".c_fc.", ".fc1.")
|
87 |
+
key = key.replace(".c_proj.", ".fc2.")
|
88 |
+
elif ".attn.out_proj" in key:
|
89 |
+
key = key.replace(".attn.out_proj.", ".self_attn.out_proj.")
|
90 |
+
elif ".attn.in_proj" in key:
|
91 |
+
key = None # 特殊なので後で処理する
|
92 |
+
else:
|
93 |
+
raise ValueError(f"unexpected key in SD: {key}")
|
94 |
+
elif ".positional_embedding" in key:
|
95 |
+
key = key.replace(".positional_embedding", ".embeddings.position_embedding.weight")
|
96 |
+
elif ".text_projection" in key:
|
97 |
+
key = key.replace("text_model.text_projection", "text_projection.weight")
|
98 |
+
elif ".logit_scale" in key:
|
99 |
+
key = None # 後で処理する
|
100 |
+
elif ".token_embedding" in key:
|
101 |
+
key = key.replace(".token_embedding.weight", ".embeddings.token_embedding.weight")
|
102 |
+
elif ".ln_final" in key:
|
103 |
+
key = key.replace(".ln_final", ".final_layer_norm")
|
104 |
+
# ckpt from comfy has this key: text_model.encoder.text_model.embeddings.position_ids
|
105 |
+
elif ".embeddings.position_ids" in key:
|
106 |
+
key = None # remove this key: position_ids is not used in newer transformers
|
107 |
+
return key
|
108 |
+
|
109 |
+
keys = list(checkpoint.keys())
|
110 |
+
new_sd = {}
|
111 |
+
for key in keys:
|
112 |
+
new_key = convert_key(key)
|
113 |
+
if new_key is None:
|
114 |
+
continue
|
115 |
+
new_sd[new_key] = checkpoint[key]
|
116 |
+
|
117 |
+
# attnの変換
|
118 |
+
for key in keys:
|
119 |
+
if ".resblocks" in key and ".attn.in_proj_" in key:
|
120 |
+
# 三つに分割
|
121 |
+
values = torch.chunk(checkpoint[key], 3)
|
122 |
+
|
123 |
+
key_suffix = ".weight" if "weight" in key else ".bias"
|
124 |
+
key_pfx = key.replace(SDXL_KEY_PREFIX + "transformer.resblocks.", "text_model.encoder.layers.")
|
125 |
+
key_pfx = key_pfx.replace("_weight", "")
|
126 |
+
key_pfx = key_pfx.replace("_bias", "")
|
127 |
+
key_pfx = key_pfx.replace(".attn.in_proj", ".self_attn.")
|
128 |
+
new_sd[key_pfx + "q_proj" + key_suffix] = values[0]
|
129 |
+
new_sd[key_pfx + "k_proj" + key_suffix] = values[1]
|
130 |
+
new_sd[key_pfx + "v_proj" + key_suffix] = values[2]
|
131 |
+
|
132 |
+
# logit_scale はDiffusersには含まれないが、保存時に戻したいので別途返す
|
133 |
+
logit_scale = checkpoint.get(SDXL_KEY_PREFIX + "logit_scale", None)
|
134 |
+
|
135 |
+
# temporary workaround for text_projection.weight.weight for Playground-v2
|
136 |
+
if "text_projection.weight.weight" in new_sd:
|
137 |
+
logger.info("convert_sdxl_text_encoder_2_checkpoint: convert text_projection.weight.weight to text_projection.weight")
|
138 |
+
new_sd["text_projection.weight"] = new_sd["text_projection.weight.weight"]
|
139 |
+
del new_sd["text_projection.weight.weight"]
|
140 |
+
|
141 |
+
return new_sd, logit_scale
|
142 |
+
|
143 |
+
|
144 |
+
# load state_dict without allocating new tensors
|
145 |
+
def _load_state_dict_on_device(model, state_dict, device, dtype=None):
|
146 |
+
# dtype will use fp32 as default
|
147 |
+
missing_keys = list(model.state_dict().keys() - state_dict.keys())
|
148 |
+
unexpected_keys = list(state_dict.keys() - model.state_dict().keys())
|
149 |
+
|
150 |
+
# similar to model.load_state_dict()
|
151 |
+
if not missing_keys and not unexpected_keys:
|
152 |
+
for k in list(state_dict.keys()):
|
153 |
+
set_module_tensor_to_device(model, k, device, value=state_dict.pop(k), dtype=dtype)
|
154 |
+
return "<All keys matched successfully>"
|
155 |
+
|
156 |
+
# error_msgs
|
157 |
+
error_msgs: List[str] = []
|
158 |
+
if missing_keys:
|
159 |
+
error_msgs.insert(0, "Missing key(s) in state_dict: {}. ".format(", ".join('"{}"'.format(k) for k in missing_keys)))
|
160 |
+
if unexpected_keys:
|
161 |
+
error_msgs.insert(0, "Unexpected key(s) in state_dict: {}. ".format(", ".join('"{}"'.format(k) for k in unexpected_keys)))
|
162 |
+
|
163 |
+
raise RuntimeError("Error(s) in loading state_dict for {}:\n\t{}".format(model.__class__.__name__, "\n\t".join(error_msgs)))
|
164 |
+
|
165 |
+
|
166 |
+
def load_models_from_sdxl_checkpoint(model_version, ckpt_path, map_location, dtype=None):
|
167 |
+
# model_version is reserved for future use
|
168 |
+
# dtype is used for full_fp16/bf16 integration. Text Encoder will remain fp32, because it runs on CPU when caching
|
169 |
+
|
170 |
+
# Load the state dict
|
171 |
+
if model_util.is_safetensors(ckpt_path):
|
172 |
+
checkpoint = None
|
173 |
+
try:
|
174 |
+
state_dict = load_file(ckpt_path, device=map_location)
|
175 |
+
except:
|
176 |
+
state_dict = load_file(ckpt_path) # prevent device invalid Error
|
177 |
+
epoch = None
|
178 |
+
global_step = None
|
179 |
+
else:
|
180 |
+
checkpoint = torch.load(ckpt_path, map_location=map_location)
|
181 |
+
if "state_dict" in checkpoint:
|
182 |
+
state_dict = checkpoint["state_dict"]
|
183 |
+
epoch = checkpoint.get("epoch", 0)
|
184 |
+
global_step = checkpoint.get("global_step", 0)
|
185 |
+
else:
|
186 |
+
state_dict = checkpoint
|
187 |
+
epoch = 0
|
188 |
+
global_step = 0
|
189 |
+
checkpoint = None
|
190 |
+
|
191 |
+
# U-Net
|
192 |
+
logger.info("building U-Net")
|
193 |
+
with init_empty_weights():
|
194 |
+
unet = sdxl_original_unet.SdxlUNet2DConditionModel()
|
195 |
+
|
196 |
+
logger.info("loading U-Net from checkpoint")
|
197 |
+
unet_sd = {}
|
198 |
+
for k in list(state_dict.keys()):
|
199 |
+
if k.startswith("model.diffusion_model."):
|
200 |
+
unet_sd[k.replace("model.diffusion_model.", "")] = state_dict.pop(k)
|
201 |
+
info = _load_state_dict_on_device(unet, unet_sd, device=map_location, dtype=dtype)
|
202 |
+
logger.info(f"U-Net: {info}")
|
203 |
+
|
204 |
+
# Text Encoders
|
205 |
+
logger.info("building text encoders")
|
206 |
+
|
207 |
+
# Text Encoder 1 is same to Stability AI's SDXL
|
208 |
+
text_model1_cfg = CLIPTextConfig(
|
209 |
+
vocab_size=49408,
|
210 |
+
hidden_size=768,
|
211 |
+
intermediate_size=3072,
|
212 |
+
num_hidden_layers=12,
|
213 |
+
num_attention_heads=12,
|
214 |
+
max_position_embeddings=77,
|
215 |
+
hidden_act="quick_gelu",
|
216 |
+
layer_norm_eps=1e-05,
|
217 |
+
dropout=0.0,
|
218 |
+
attention_dropout=0.0,
|
219 |
+
initializer_range=0.02,
|
220 |
+
initializer_factor=1.0,
|
221 |
+
pad_token_id=1,
|
222 |
+
bos_token_id=0,
|
223 |
+
eos_token_id=2,
|
224 |
+
model_type="clip_text_model",
|
225 |
+
projection_dim=768,
|
226 |
+
# torch_dtype="float32",
|
227 |
+
# transformers_version="4.25.0.dev0",
|
228 |
+
)
|
229 |
+
with init_empty_weights():
|
230 |
+
text_model1 = CLIPTextModel._from_config(text_model1_cfg)
|
231 |
+
|
232 |
+
# Text Encoder 2 is different from Stability AI's SDXL. SDXL uses open clip, but we use the model from HuggingFace.
|
233 |
+
# Note: Tokenizer from HuggingFace is different from SDXL. We must use open clip's tokenizer.
|
234 |
+
text_model2_cfg = CLIPTextConfig(
|
235 |
+
vocab_size=49408,
|
236 |
+
hidden_size=1280,
|
237 |
+
intermediate_size=5120,
|
238 |
+
num_hidden_layers=32,
|
239 |
+
num_attention_heads=20,
|
240 |
+
max_position_embeddings=77,
|
241 |
+
hidden_act="gelu",
|
242 |
+
layer_norm_eps=1e-05,
|
243 |
+
dropout=0.0,
|
244 |
+
attention_dropout=0.0,
|
245 |
+
initializer_range=0.02,
|
246 |
+
initializer_factor=1.0,
|
247 |
+
pad_token_id=1,
|
248 |
+
bos_token_id=0,
|
249 |
+
eos_token_id=2,
|
250 |
+
model_type="clip_text_model",
|
251 |
+
projection_dim=1280,
|
252 |
+
# torch_dtype="float32",
|
253 |
+
# transformers_version="4.25.0.dev0",
|
254 |
+
)
|
255 |
+
with init_empty_weights():
|
256 |
+
text_model2 = CLIPTextModelWithProjection(text_model2_cfg)
|
257 |
+
|
258 |
+
logger.info("loading text encoders from checkpoint")
|
259 |
+
te1_sd = {}
|
260 |
+
te2_sd = {}
|
261 |
+
for k in list(state_dict.keys()):
|
262 |
+
if k.startswith("conditioner.embedders.0.transformer."):
|
263 |
+
te1_sd[k.replace("conditioner.embedders.0.transformer.", "")] = state_dict.pop(k)
|
264 |
+
elif k.startswith("conditioner.embedders.1.model."):
|
265 |
+
te2_sd[k] = state_dict.pop(k)
|
266 |
+
|
267 |
+
# 最新の transformers では position_ids を含むとエラーになるので削除 / remove position_ids for latest transformers
|
268 |
+
if "text_model.embeddings.position_ids" in te1_sd:
|
269 |
+
te1_sd.pop("text_model.embeddings.position_ids")
|
270 |
+
|
271 |
+
info1 = _load_state_dict_on_device(text_model1, te1_sd, device=map_location) # remain fp32
|
272 |
+
logger.info(f"text encoder 1: {info1}")
|
273 |
+
|
274 |
+
converted_sd, logit_scale = convert_sdxl_text_encoder_2_checkpoint(te2_sd, max_length=77)
|
275 |
+
info2 = _load_state_dict_on_device(text_model2, converted_sd, device=map_location) # remain fp32
|
276 |
+
logger.info(f"text encoder 2: {info2}")
|
277 |
+
|
278 |
+
# prepare vae
|
279 |
+
logger.info("building VAE")
|
280 |
+
vae_config = model_util.create_vae_diffusers_config()
|
281 |
+
with init_empty_weights():
|
282 |
+
vae = AutoencoderKL(**vae_config)
|
283 |
+
|
284 |
+
logger.info("loading VAE from checkpoint")
|
285 |
+
converted_vae_checkpoint = model_util.convert_ldm_vae_checkpoint(state_dict, vae_config)
|
286 |
+
info = _load_state_dict_on_device(vae, converted_vae_checkpoint, device=map_location, dtype=dtype)
|
287 |
+
logger.info(f"VAE: {info}")
|
288 |
+
|
289 |
+
ckpt_info = (epoch, global_step) if epoch is not None else None
|
290 |
+
return text_model1, text_model2, vae, unet, logit_scale, ckpt_info
|
291 |
+
|
292 |
+
|
293 |
+
def make_unet_conversion_map():
|
294 |
+
unet_conversion_map_layer = []
|
295 |
+
|
296 |
+
for i in range(3): # num_blocks is 3 in sdxl
|
297 |
+
# loop over downblocks/upblocks
|
298 |
+
for j in range(2):
|
299 |
+
# loop over resnets/attentions for downblocks
|
300 |
+
hf_down_res_prefix = f"down_blocks.{i}.resnets.{j}."
|
301 |
+
sd_down_res_prefix = f"input_blocks.{3*i + j + 1}.0."
|
302 |
+
unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix))
|
303 |
+
|
304 |
+
if i < 3:
|
305 |
+
# no attention layers in down_blocks.3
|
306 |
+
hf_down_atn_prefix = f"down_blocks.{i}.attentions.{j}."
|
307 |
+
sd_down_atn_prefix = f"input_blocks.{3*i + j + 1}.1."
|
308 |
+
unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix))
|
309 |
+
|
310 |
+
for j in range(3):
|
311 |
+
# loop over resnets/attentions for upblocks
|
312 |
+
hf_up_res_prefix = f"up_blocks.{i}.resnets.{j}."
|
313 |
+
sd_up_res_prefix = f"output_blocks.{3*i + j}.0."
|
314 |
+
unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix))
|
315 |
+
|
316 |
+
# if i > 0: commentout for sdxl
|
317 |
+
# no attention layers in up_blocks.0
|
318 |
+
hf_up_atn_prefix = f"up_blocks.{i}.attentions.{j}."
|
319 |
+
sd_up_atn_prefix = f"output_blocks.{3*i + j}.1."
|
320 |
+
unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix))
|
321 |
+
|
322 |
+
if i < 3:
|
323 |
+
# no downsample in down_blocks.3
|
324 |
+
hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0.conv."
|
325 |
+
sd_downsample_prefix = f"input_blocks.{3*(i+1)}.0.op."
|
326 |
+
unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix))
|
327 |
+
|
328 |
+
# no upsample in up_blocks.3
|
329 |
+
hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0."
|
330 |
+
sd_upsample_prefix = f"output_blocks.{3*i + 2}.{2}." # change for sdxl
|
331 |
+
unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix))
|
332 |
+
|
333 |
+
hf_mid_atn_prefix = "mid_block.attentions.0."
|
334 |
+
sd_mid_atn_prefix = "middle_block.1."
|
335 |
+
unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix))
|
336 |
+
|
337 |
+
for j in range(2):
|
338 |
+
hf_mid_res_prefix = f"mid_block.resnets.{j}."
|
339 |
+
sd_mid_res_prefix = f"middle_block.{2*j}."
|
340 |
+
unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix))
|
341 |
+
|
342 |
+
unet_conversion_map_resnet = [
|
343 |
+
# (stable-diffusion, HF Diffusers)
|
344 |
+
("in_layers.0.", "norm1."),
|
345 |
+
("in_layers.2.", "conv1."),
|
346 |
+
("out_layers.0.", "norm2."),
|
347 |
+
("out_layers.3.", "conv2."),
|
348 |
+
("emb_layers.1.", "time_emb_proj."),
|
349 |
+
("skip_connection.", "conv_shortcut."),
|
350 |
+
]
|
351 |
+
|
352 |
+
unet_conversion_map = []
|
353 |
+
for sd, hf in unet_conversion_map_layer:
|
354 |
+
if "resnets" in hf:
|
355 |
+
for sd_res, hf_res in unet_conversion_map_resnet:
|
356 |
+
unet_conversion_map.append((sd + sd_res, hf + hf_res))
|
357 |
+
else:
|
358 |
+
unet_conversion_map.append((sd, hf))
|
359 |
+
|
360 |
+
for j in range(2):
|
361 |
+
hf_time_embed_prefix = f"time_embedding.linear_{j+1}."
|
362 |
+
sd_time_embed_prefix = f"time_embed.{j*2}."
|
363 |
+
unet_conversion_map.append((sd_time_embed_prefix, hf_time_embed_prefix))
|
364 |
+
|
365 |
+
for j in range(2):
|
366 |
+
hf_label_embed_prefix = f"add_embedding.linear_{j+1}."
|
367 |
+
sd_label_embed_prefix = f"label_emb.0.{j*2}."
|
368 |
+
unet_conversion_map.append((sd_label_embed_prefix, hf_label_embed_prefix))
|
369 |
+
|
370 |
+
unet_conversion_map.append(("input_blocks.0.0.", "conv_in."))
|
371 |
+
unet_conversion_map.append(("out.0.", "conv_norm_out."))
|
372 |
+
unet_conversion_map.append(("out.2.", "conv_out."))
|
373 |
+
|
374 |
+
return unet_conversion_map
|
375 |
+
|
376 |
+
|
377 |
+
def convert_diffusers_unet_state_dict_to_sdxl(du_sd):
|
378 |
+
unet_conversion_map = make_unet_conversion_map()
|
379 |
+
|
380 |
+
conversion_map = {hf: sd for sd, hf in unet_conversion_map}
|
381 |
+
return convert_unet_state_dict(du_sd, conversion_map)
|
382 |
+
|
383 |
+
|
384 |
+
def convert_unet_state_dict(src_sd, conversion_map):
|
385 |
+
converted_sd = {}
|
386 |
+
for src_key, value in src_sd.items():
|
387 |
+
# さすがに全部回すのは時間がかかるので右から要素を削りつつprefixを探す
|
388 |
+
src_key_fragments = src_key.split(".")[:-1] # remove weight/bias
|
389 |
+
while len(src_key_fragments) > 0:
|
390 |
+
src_key_prefix = ".".join(src_key_fragments) + "."
|
391 |
+
if src_key_prefix in conversion_map:
|
392 |
+
converted_prefix = conversion_map[src_key_prefix]
|
393 |
+
converted_key = converted_prefix + src_key[len(src_key_prefix) :]
|
394 |
+
converted_sd[converted_key] = value
|
395 |
+
break
|
396 |
+
src_key_fragments.pop(-1)
|
397 |
+
assert len(src_key_fragments) > 0, f"key {src_key} not found in conversion map"
|
398 |
+
|
399 |
+
return converted_sd
|
400 |
+
|
401 |
+
|
402 |
+
def convert_sdxl_unet_state_dict_to_diffusers(sd):
|
403 |
+
unet_conversion_map = make_unet_conversion_map()
|
404 |
+
|
405 |
+
conversion_dict = {sd: hf for sd, hf in unet_conversion_map}
|
406 |
+
return convert_unet_state_dict(sd, conversion_dict)
|
407 |
+
|
408 |
+
|
409 |
+
def convert_text_encoder_2_state_dict_to_sdxl(checkpoint, logit_scale):
|
410 |
+
def convert_key(key):
|
411 |
+
# position_idsの除去
|
412 |
+
if ".position_ids" in key:
|
413 |
+
return None
|
414 |
+
|
415 |
+
# common
|
416 |
+
key = key.replace("text_model.encoder.", "transformer.")
|
417 |
+
key = key.replace("text_model.", "")
|
418 |
+
if "layers" in key:
|
419 |
+
# resblocks conversion
|
420 |
+
key = key.replace(".layers.", ".resblocks.")
|
421 |
+
if ".layer_norm" in key:
|
422 |
+
key = key.replace(".layer_norm", ".ln_")
|
423 |
+
elif ".mlp." in key:
|
424 |
+
key = key.replace(".fc1.", ".c_fc.")
|
425 |
+
key = key.replace(".fc2.", ".c_proj.")
|
426 |
+
elif ".self_attn.out_proj" in key:
|
427 |
+
key = key.replace(".self_attn.out_proj.", ".attn.out_proj.")
|
428 |
+
elif ".self_attn." in key:
|
429 |
+
key = None # 特殊なので後で処理する
|
430 |
+
else:
|
431 |
+
raise ValueError(f"unexpected key in DiffUsers model: {key}")
|
432 |
+
elif ".position_embedding" in key:
|
433 |
+
key = key.replace("embeddings.position_embedding.weight", "positional_embedding")
|
434 |
+
elif ".token_embedding" in key:
|
435 |
+
key = key.replace("embeddings.token_embedding.weight", "token_embedding.weight")
|
436 |
+
elif "text_projection" in key: # no dot in key
|
437 |
+
key = key.replace("text_projection.weight", "text_projection")
|
438 |
+
elif "final_layer_norm" in key:
|
439 |
+
key = key.replace("final_layer_norm", "ln_final")
|
440 |
+
return key
|
441 |
+
|
442 |
+
keys = list(checkpoint.keys())
|
443 |
+
new_sd = {}
|
444 |
+
for key in keys:
|
445 |
+
new_key = convert_key(key)
|
446 |
+
if new_key is None:
|
447 |
+
continue
|
448 |
+
new_sd[new_key] = checkpoint[key]
|
449 |
+
|
450 |
+
# attnの変換
|
451 |
+
for key in keys:
|
452 |
+
if "layers" in key and "q_proj" in key:
|
453 |
+
# 三つを結合
|
454 |
+
key_q = key
|
455 |
+
key_k = key.replace("q_proj", "k_proj")
|
456 |
+
key_v = key.replace("q_proj", "v_proj")
|
457 |
+
|
458 |
+
value_q = checkpoint[key_q]
|
459 |
+
value_k = checkpoint[key_k]
|
460 |
+
value_v = checkpoint[key_v]
|
461 |
+
value = torch.cat([value_q, value_k, value_v])
|
462 |
+
|
463 |
+
new_key = key.replace("text_model.encoder.layers.", "transformer.resblocks.")
|
464 |
+
new_key = new_key.replace(".self_attn.q_proj.", ".attn.in_proj_")
|
465 |
+
new_sd[new_key] = value
|
466 |
+
|
467 |
+
if logit_scale is not None:
|
468 |
+
new_sd["logit_scale"] = logit_scale
|
469 |
+
|
470 |
+
return new_sd
|
471 |
+
|
472 |
+
|
473 |
+
def save_stable_diffusion_checkpoint(
|
474 |
+
output_file,
|
475 |
+
text_encoder1,
|
476 |
+
text_encoder2,
|
477 |
+
unet,
|
478 |
+
epochs,
|
479 |
+
steps,
|
480 |
+
ckpt_info,
|
481 |
+
vae,
|
482 |
+
logit_scale,
|
483 |
+
metadata,
|
484 |
+
save_dtype=None,
|
485 |
+
):
|
486 |
+
state_dict = {}
|
487 |
+
|
488 |
+
def update_sd(prefix, sd):
|
489 |
+
for k, v in sd.items():
|
490 |
+
key = prefix + k
|
491 |
+
if save_dtype is not None:
|
492 |
+
v = v.detach().clone().to("cpu").to(save_dtype)
|
493 |
+
state_dict[key] = v
|
494 |
+
|
495 |
+
# Convert the UNet model
|
496 |
+
update_sd("model.diffusion_model.", unet.state_dict())
|
497 |
+
|
498 |
+
# Convert the text encoders
|
499 |
+
update_sd("conditioner.embedders.0.transformer.", text_encoder1.state_dict())
|
500 |
+
|
501 |
+
text_enc2_dict = convert_text_encoder_2_state_dict_to_sdxl(text_encoder2.state_dict(), logit_scale)
|
502 |
+
update_sd("conditioner.embedders.1.model.", text_enc2_dict)
|
503 |
+
|
504 |
+
# Convert the VAE
|
505 |
+
vae_dict = model_util.convert_vae_state_dict(vae.state_dict())
|
506 |
+
update_sd("first_stage_model.", vae_dict)
|
507 |
+
|
508 |
+
# Put together new checkpoint
|
509 |
+
key_count = len(state_dict.keys())
|
510 |
+
new_ckpt = {"state_dict": state_dict}
|
511 |
+
|
512 |
+
# epoch and global_step are sometimes not int
|
513 |
+
if ckpt_info is not None:
|
514 |
+
epochs += ckpt_info[0]
|
515 |
+
steps += ckpt_info[1]
|
516 |
+
|
517 |
+
new_ckpt["epoch"] = epochs
|
518 |
+
new_ckpt["global_step"] = steps
|
519 |
+
|
520 |
+
if model_util.is_safetensors(output_file):
|
521 |
+
save_file(state_dict, output_file, metadata)
|
522 |
+
else:
|
523 |
+
torch.save(new_ckpt, output_file)
|
524 |
+
|
525 |
+
return key_count
|
526 |
+
|
527 |
+
|
528 |
+
def save_diffusers_checkpoint(
|
529 |
+
output_dir, text_encoder1, text_encoder2, unet, pretrained_model_name_or_path, vae=None, use_safetensors=False, save_dtype=None
|
530 |
+
):
|
531 |
+
from diffusers import StableDiffusionXLPipeline
|
532 |
+
|
533 |
+
# convert U-Net
|
534 |
+
unet_sd = unet.state_dict()
|
535 |
+
du_unet_sd = convert_sdxl_unet_state_dict_to_diffusers(unet_sd)
|
536 |
+
|
537 |
+
diffusers_unet = UNet2DConditionModel(**DIFFUSERS_SDXL_UNET_CONFIG)
|
538 |
+
if save_dtype is not None:
|
539 |
+
diffusers_unet.to(save_dtype)
|
540 |
+
diffusers_unet.load_state_dict(du_unet_sd)
|
541 |
+
|
542 |
+
# create pipeline to save
|
543 |
+
if pretrained_model_name_or_path is None:
|
544 |
+
pretrained_model_name_or_path = DIFFUSERS_REF_MODEL_ID_SDXL
|
545 |
+
|
546 |
+
scheduler = EulerDiscreteScheduler.from_pretrained(pretrained_model_name_or_path, subfolder="scheduler")
|
547 |
+
tokenizer1 = CLIPTokenizer.from_pretrained(pretrained_model_name_or_path, subfolder="tokenizer")
|
548 |
+
tokenizer2 = CLIPTokenizer.from_pretrained(pretrained_model_name_or_path, subfolder="tokenizer_2")
|
549 |
+
if vae is None:
|
550 |
+
vae = AutoencoderKL.from_pretrained(pretrained_model_name_or_path, subfolder="vae")
|
551 |
+
|
552 |
+
# prevent local path from being saved
|
553 |
+
def remove_name_or_path(model):
|
554 |
+
if hasattr(model, "config"):
|
555 |
+
model.config._name_or_path = None
|
556 |
+
model.config._name_or_path = None
|
557 |
+
|
558 |
+
remove_name_or_path(diffusers_unet)
|
559 |
+
remove_name_or_path(text_encoder1)
|
560 |
+
remove_name_or_path(text_encoder2)
|
561 |
+
remove_name_or_path(scheduler)
|
562 |
+
remove_name_or_path(tokenizer1)
|
563 |
+
remove_name_or_path(tokenizer2)
|
564 |
+
remove_name_or_path(vae)
|
565 |
+
|
566 |
+
pipeline = StableDiffusionXLPipeline(
|
567 |
+
unet=diffusers_unet,
|
568 |
+
text_encoder=text_encoder1,
|
569 |
+
text_encoder_2=text_encoder2,
|
570 |
+
vae=vae,
|
571 |
+
scheduler=scheduler,
|
572 |
+
tokenizer=tokenizer1,
|
573 |
+
tokenizer_2=tokenizer2,
|
574 |
+
)
|
575 |
+
if save_dtype is not None:
|
576 |
+
pipeline.to(None, save_dtype)
|
577 |
+
pipeline.save_pretrained(output_dir, safe_serialization=use_safetensors)
|