davidberenstein1957 HF staff commited on
Commit
d90a235
1 Parent(s): f364bfe

Update handler.py

Browse files
Files changed (1) hide show
  1. handler.py +21 -11
handler.py CHANGED
@@ -9,16 +9,26 @@ class EndpointHandler:
9
  ).to("cuda")
10
 
11
  def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
12
- data = data.pop("json")
13
- prompt = data.pop("inputs", None)
14
- parameters = data.pop("parameters", {})
15
- negative_prompt = parameters.pop("negative_prompt", "bad quality, worse quality, deformed")
16
- height = parameters.pop("height", 512)
17
- width = parameters.pop("width", 512)
18
- guidance_scale = parameters.pop("guidance_scale", 4.5)
19
- num_inference_steps = parameters.pop("num_inference_steps", 28)
20
- seed = parameters.pop("seed", 0)
21
-
 
 
 
 
 
 
 
 
 
 
22
  prediction = self.pipeline(
23
  prompt,
24
  negative_prompt=negative_prompt,
@@ -26,6 +36,6 @@ class EndpointHandler:
26
  width=width,
27
  guidance_scale=guidance_scale,
28
  num_inference_steps=num_inference_steps,
29
- generator=torch.manual_seed(seed)
30
  ).images[0]
31
  return prediction
 
9
  ).to("cuda")
10
 
11
  def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
12
+ # Extract data
13
+ data = data.get("json", data)
14
+ prompt = data.get("inputs", None)
15
+ parameters = data.get("parameters", {})
16
+ if not prompt:
17
+ raise ValueError("Input prompt is missing.")
18
+
19
+
20
+ # Extract parameters with defaults
21
+ negative_prompt = parameters.get("negative_prompt", "bad quality, worse quality, deformed")
22
+ height = parameters.get("height", 512)
23
+ width = parameters.get("width", 512)
24
+ guidance_scale = parameters.get("guidance_scale", 4.5)
25
+ num_inference_steps = parameters.get("num_inference_steps", 28)
26
+ seed = parameters.get("seed", 0)
27
+
28
+ # Seed generator
29
+ generator = torch.manual_seed(seed)
30
+
31
+ # Generate prediction
32
  prediction = self.pipeline(
33
  prompt,
34
  negative_prompt=negative_prompt,
 
36
  width=width,
37
  guidance_scale=guidance_scale,
38
  num_inference_steps=num_inference_steps,
39
+ generator=generator
40
  ).images[0]
41
  return prediction