dariolopez's picture
Add new SentenceTransformer model.
90b9497 verified
metadata
base_model: BAAI/bge-m3
datasets: []
language:
  - es
library_name: sentence-transformers
license: apache-2.0
metrics:
  - cosine_accuracy@1
  - cosine_accuracy@3
  - cosine_accuracy@5
  - cosine_accuracy@10
  - cosine_precision@1
  - cosine_precision@3
  - cosine_precision@5
  - cosine_precision@10
  - cosine_recall@1
  - cosine_recall@3
  - cosine_recall@5
  - cosine_recall@10
  - cosine_ndcg@10
  - cosine_mrr@10
  - cosine_map@100
pipeline_tag: sentence-similarity
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:2947
  - loss:MatryoshkaLoss
  - loss:MultipleNegativesRankingLoss
widget:
  - source_sentence: >-
      Es uso privativo el que determina la ocupación de una porción del dominio
      público, de modo que se limita o excluye la utilización del mismo por
      otros interesados.
    sentences:
      - ¿Qué es el uso privativo de los bienes de dominio público?
      - ¿Qué es la sanidad ambiental?
      - >-
        ¿Qué información básica debe contener la información que se facilita al
        afectado cuando se obtienen datos personales de él?
  - source_sentence: >-
      Las retribuciones básicas, que se fijan en la Ley de Presupuestos
      Generales del Estado, estarán integradas única y exclusivamente por: a) El
      sueldo asignado a cada Subgrupo o Grupo de clasificación profesional, en
      el supuesto de que éste no tenga Subgrupo. b) Los trienios, que consisten
      en una cantidad, que será igual para cada Subgrupo o Grupo de
      clasificación profesional, en el supuesto de que éste no tenga Subgrupo,
      por cada tres años de servicio.
    sentences:
      - ¿Qué se entiende por retribuciones básicas?
      - ¿Cuál es el título competencial de esta ley orgánica?
      - ¿Qué se aprueba a propuesta del Ministro de Hacienda?
  - source_sentence: >-
      Se reconoce el valor social de las niñas, niños y adolescentes como
      personas que realizan un aporte afectivo, cultural y ético al caudal
      social, y cuyo protagonismo, creatividad y posicionamiento activo
      enriquecen la vida colectiva.
    sentences:
      - >-
        ¿Qué sucede si se produce un incumplimiento de las actuaciones
        establecidas en el Plan de inclusión sociolaboral?
      - ¿Qué se reconoce en cuanto al valor social de la infancia?
      - ¿Cuál es el plazo de prescripción de las infracciones?
  - source_sentence: >-
      Las empresas y las universidades podrán promover y participar en programas
      de voluntariado que cumplan los requisitos establecidos en esta Ley.
    sentences:
      - ¿Cuál es la consideración de las infracciones muy graves?
      - >-
        ¿Qué tipo de empresas pueden promover y participar en programas de
        voluntariado?
      - >-
        ¿Qué tipo de entidades están obligadas a cumplir con las obligaciones de
        publicidad activa?
  - source_sentence: >-
      Artículo 6. Definiciones. 1. Discriminación directa e indirecta. b) La
      discriminación indirecta se produce cuando una disposición, criterio o
      práctica aparentemente neutros ocasiona o puede ocasionar a una o varias
      personas una desventaja particular con respecto a otras por razón de las
      causas previstas en el apartado 1 del artículo 2.
    sentences:
      - ¿Cuál es el papel del Consejo de Salud de Área?
      - ¿Qué se considera discriminación indirecta?
      - ¿Qué tipo de información se considera veraz?
model-index:
  - name: BGE large Legal Spanish
    results:
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 1024
          type: dim_1024
        metrics:
          - type: cosine_accuracy@1
            value: 0.5335365853658537
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.7926829268292683
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.8475609756097561
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.8810975609756098
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.5335365853658537
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.26422764227642276
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.1695121951219512
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.08810975609756097
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.5335365853658537
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.7926829268292683
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.8475609756097561
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.8810975609756098
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.7186522230387037
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.6652003484320559
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.6705758430588792
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 768
          type: dim_768
        metrics:
          - type: cosine_accuracy@1
            value: 0.5365853658536586
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.7987804878048781
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.8445121951219512
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.8871951219512195
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.5365853658536586
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.266260162601626
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.16890243902439023
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.08871951219512193
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.5365853658536586
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.7987804878048781
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.8445121951219512
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.8871951219512195
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.7219693426433157
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.6678172183507551
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.6724989076281951
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 512
          type: dim_512
        metrics:
          - type: cosine_accuracy@1
            value: 0.5396341463414634
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.7987804878048781
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.8414634146341463
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.8841463414634146
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.5396341463414634
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.266260162601626
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.16829268292682925
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.08841463414634146
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.5396341463414634
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.7987804878048781
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.8414634146341463
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.8841463414634146
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.7234708981888988
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.6705732191250486
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.675333785038191
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 256
          type: dim_256
        metrics:
          - type: cosine_accuracy@1
            value: 0.5487804878048781
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.7865853658536586
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.8201219512195121
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.8780487804878049
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.5487804878048781
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.2621951219512195
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.16402439024390242
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.08780487804878048
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.5487804878048781
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.7865853658536586
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.8201219512195121
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.8780487804878049
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.72218275626782
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.6713293650793652
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.6765227617116516
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 128
          type: dim_128
        metrics:
          - type: cosine_accuracy@1
            value: 0.5274390243902439
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.7713414634146342
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.8201219512195121
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.8628048780487805
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.5274390243902439
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.25711382113821135
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.16402439024390242
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.08628048780487804
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.5274390243902439
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.7713414634146342
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.8201219512195121
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.8628048780487805
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.7052427974875376
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.6535327138985677
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.6594048434747166
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 64
          type: dim_64
        metrics:
          - type: cosine_accuracy@1
            value: 0.5060975609756098
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.7378048780487805
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.801829268292683
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.8597560975609756
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.5060975609756098
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.2459349593495935
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.16036585365853656
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.08597560975609755
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.5060975609756098
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.7378048780487805
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.801829268292683
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.8597560975609756
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.6884036058438198
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.6329074719318624
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.6380929161741958
            name: Cosine Map@100

BGE large Legal Spanish

This is a sentence-transformers model finetuned from BAAI/bge-m3. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: BAAI/bge-m3
  • Maximum Sequence Length: 8192 tokens
  • Output Dimensionality: 1024 tokens
  • Similarity Function: Cosine Similarity
  • Language: es
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("dariolopez/bge-m3-es-legal-tmp-3")
# Run inference
sentences = [
    'Artículo 6. Definiciones. 1. Discriminación directa e indirecta. b) La discriminación indirecta se produce cuando una disposición, criterio o práctica aparentemente neutros ocasiona o puede ocasionar a una o varias personas una desventaja particular con respecto a otras por razón de las causas previstas en el apartado 1 del artículo 2.',
    '¿Qué se considera discriminación indirecta?',
    '¿Qué tipo de información se considera veraz?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.5335
cosine_accuracy@3 0.7927
cosine_accuracy@5 0.8476
cosine_accuracy@10 0.8811
cosine_precision@1 0.5335
cosine_precision@3 0.2642
cosine_precision@5 0.1695
cosine_precision@10 0.0881
cosine_recall@1 0.5335
cosine_recall@3 0.7927
cosine_recall@5 0.8476
cosine_recall@10 0.8811
cosine_ndcg@10 0.7187
cosine_mrr@10 0.6652
cosine_map@100 0.6706

Information Retrieval

Metric Value
cosine_accuracy@1 0.5366
cosine_accuracy@3 0.7988
cosine_accuracy@5 0.8445
cosine_accuracy@10 0.8872
cosine_precision@1 0.5366
cosine_precision@3 0.2663
cosine_precision@5 0.1689
cosine_precision@10 0.0887
cosine_recall@1 0.5366
cosine_recall@3 0.7988
cosine_recall@5 0.8445
cosine_recall@10 0.8872
cosine_ndcg@10 0.722
cosine_mrr@10 0.6678
cosine_map@100 0.6725

Information Retrieval

Metric Value
cosine_accuracy@1 0.5396
cosine_accuracy@3 0.7988
cosine_accuracy@5 0.8415
cosine_accuracy@10 0.8841
cosine_precision@1 0.5396
cosine_precision@3 0.2663
cosine_precision@5 0.1683
cosine_precision@10 0.0884
cosine_recall@1 0.5396
cosine_recall@3 0.7988
cosine_recall@5 0.8415
cosine_recall@10 0.8841
cosine_ndcg@10 0.7235
cosine_mrr@10 0.6706
cosine_map@100 0.6753

Information Retrieval

Metric Value
cosine_accuracy@1 0.5488
cosine_accuracy@3 0.7866
cosine_accuracy@5 0.8201
cosine_accuracy@10 0.878
cosine_precision@1 0.5488
cosine_precision@3 0.2622
cosine_precision@5 0.164
cosine_precision@10 0.0878
cosine_recall@1 0.5488
cosine_recall@3 0.7866
cosine_recall@5 0.8201
cosine_recall@10 0.878
cosine_ndcg@10 0.7222
cosine_mrr@10 0.6713
cosine_map@100 0.6765

Information Retrieval

Metric Value
cosine_accuracy@1 0.5274
cosine_accuracy@3 0.7713
cosine_accuracy@5 0.8201
cosine_accuracy@10 0.8628
cosine_precision@1 0.5274
cosine_precision@3 0.2571
cosine_precision@5 0.164
cosine_precision@10 0.0863
cosine_recall@1 0.5274
cosine_recall@3 0.7713
cosine_recall@5 0.8201
cosine_recall@10 0.8628
cosine_ndcg@10 0.7052
cosine_mrr@10 0.6535
cosine_map@100 0.6594

Information Retrieval

Metric Value
cosine_accuracy@1 0.5061
cosine_accuracy@3 0.7378
cosine_accuracy@5 0.8018
cosine_accuracy@10 0.8598
cosine_precision@1 0.5061
cosine_precision@3 0.2459
cosine_precision@5 0.1604
cosine_precision@10 0.086
cosine_recall@1 0.5061
cosine_recall@3 0.7378
cosine_recall@5 0.8018
cosine_recall@10 0.8598
cosine_ndcg@10 0.6884
cosine_mrr@10 0.6329
cosine_map@100 0.6381

Training Details

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • gradient_accumulation_steps: 16
  • learning_rate: 2e-05
  • num_train_epochs: 32
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.1
  • bf16: True
  • tf32: True
  • load_best_model_at_end: True
  • optim: adamw_torch_fused
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 16
  • eval_accumulation_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 32
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: True
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss loss dim_1024_cosine_map@100 dim_128_cosine_map@100 dim_256_cosine_map@100 dim_512_cosine_map@100 dim_64_cosine_map@100 dim_768_cosine_map@100
0.8649 10 1.5054 - - - - - - -
0.9514 11 - 0.8399 0.6684 0.6148 0.6574 0.6770 0.5281 0.6691
1.7297 20 1.0127 - - - - - - -
1.9892 23 - 0.5057 0.6757 0.6596 0.6715 0.6738 0.6017 0.6719
2.5946 30 0.5708 - - - - - - -
2.9405 34 - 0.4593 0.6781 0.6551 0.6795 0.6806 0.6165 0.6697
3.4595 40 0.2618 - - - - - - -
3.9784 46 - 0.4122 0.6787 0.6607 0.6842 0.6795 0.6227 0.6793
4.3243 50 0.1079 - - - - - - -
4.9297 57 - 0.3717 0.6827 0.6609 0.6810 0.6868 0.6277 0.6769
5.1892 60 0.0574 - - - - - - -
5.9676 69 - 0.3394 0.6824 0.6493 0.6777 0.6784 0.6344 0.6685
6.0541 70 0.0342 - - - - - - -
6.9189 80 0.0211 0.3379 0.6771 0.6627 0.6764 0.6766 0.6395 0.6723
7.7838 90 0.0136 - - - - - - -
7.9568 92 - 0.3128 0.6790 0.6536 0.6789 0.6782 0.6279 0.6730
8.6486 100 0.0087 - - - - - - -
8.9946 104 - 0.3163 0.6811 0.6542 0.6716 0.6744 0.6413 0.6758
9.5135 110 0.0073 - - - - - - -
9.9459 115 - 0.2937 0.6730 0.6569 0.6735 0.6747 0.6380 0.6710
10.3784 120 0.0049 - - - - - - -
10.9838 127 - 0.2927 0.6701 0.6578 0.6772 0.6724 0.6355 0.6738
11.2432 130 0.0044 - - - - - - -
11.9351 138 - 0.2837 0.6720 0.6558 0.6791 0.6752 0.6376 0.6783
12.1081 140 0.0035 - - - - - - -
12.9730 150 0.0031 0.2897 0.6746 0.6610 0.6708 0.6739 0.6375 0.6769
13.8378 160 0.0027 - - - - - - -
13.9243 161 - 0.2961 0.6733 0.6562 0.6692 0.6704 0.6402 0.6740
14.7027 170 0.0026 - - - - - - -
14.9622 173 - 0.2934 0.6734 0.6557 0.6720 0.6720 0.6368 0.6726
15.5676 180 0.0025 - - - - - - -
16.0 185 - 0.2932 0.6735 0.6561 0.6718 0.6744 0.6414 0.6773
16.4324 190 0.0023 - - - - - - -
16.9514 196 - 0.2912 0.6708 0.6582 0.6761 0.6794 0.6367 0.6753
17.2973 200 0.0021 - - - - - - -
17.9892 208 - 0.2925 0.6726 0.6582 0.6747 0.6773 0.6357 0.6737
18.1622 210 0.0022 - - - - - - -
18.9405 219 - 0.2965 0.6688 0.6563 0.6758 0.6769 0.6372 0.6765
19.0270 220 0.002 - - - - - - -
19.8919 230 0.0019 - - - - - - -
19.9784 231 - 0.3010 0.6697 0.6563 0.6768 0.6775 0.6380 0.6730
20.7568 240 0.0018 - - - - - - -
20.9297 242 - 0.3025 0.6728 0.6564 0.6764 0.6757 0.6367 0.6728
21.6216 250 0.0019 - - - - - - -
21.9676 254 - 0.3043 0.6707 0.6533 0.6733 0.6750 0.6352 0.6729
22.4865 260 0.0018 - - - - - - -
22.9189 265 - 0.3029 0.6706 0.6554 0.6734 0.6757 0.6355 0.6715
23.3514 270 0.0018 - - - - - - -
23.9568 277 - 0.3046 0.6706 0.6586 0.6733 0.6740 0.6383 0.6731
24.2162 280 0.0018 - - - - - - -
24.9946 289 - 0.3045 0.6722 0.6553 0.6740 0.6752 0.6364 0.6735
25.0811 290 0.0016 - - - - - - -
25.9459 300 0.0017 0.3061 0.6703 0.6564 0.6770 0.6736 0.6371 0.6724
26.8108 310 0.0016 - - - - - - -
26.9838 312 - 0.3023 0.6694 0.6581 0.6790 0.6771 0.6375 0.6731
27.6757 320 0.0015 - - - - - - -
27.9351 323 - 0.3035 0.6701 0.6585 0.6748 0.6787 0.6366 0.6729
28.5405 330 0.0016 - - - - - - -
28.9730 335 - 0.3017 0.6686 0.6568 0.6748 0.6710 0.6357 0.6713
29.4054 340 0.0016 - - - - - - -
29.9243 346 - 0.3043 0.6683 0.6549 0.6722 0.6762 0.6367 0.6712
30.2703 350 0.0017 - - - - - - -
30.4432 352 - 0.3056 0.6706 0.6594 0.6765 0.6753 0.6381 0.6725
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.0.1
  • Transformers: 4.42.3
  • PyTorch: 2.2.0+cu121
  • Accelerate: 0.32.1
  • Datasets: 2.20.0
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}