damand2061/pfsa-id-med-indobert-lem
This model is a fine-tuned version of indolem/indobert-base-uncased on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.1033
- Validation Loss: 0.2546
- Validation F1: 0.8649
- Validation Accuracy: 0.9290
- Epoch: 4
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'inner_optimizer': {'module': 'transformers.optimization_tf', 'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 1e-05, 'decay_steps': 19220, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.8999999761581421, 'beta_2': 0.9990000128746033, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}, 'registered_name': 'AdamWeightDecay'}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000}
- training_precision: mixed_float16
Training results
Train Loss |
Validation Loss |
Validation F1 |
Validation Accuracy |
Epoch |
0.3412 |
0.2362 |
0.7881 |
0.9230 |
0 |
0.2070 |
0.2131 |
0.8448 |
0.9301 |
1 |
0.1615 |
0.2377 |
0.8529 |
0.9254 |
2 |
0.1288 |
0.2406 |
0.8623 |
0.9285 |
3 |
0.1033 |
0.2546 |
0.8649 |
0.9290 |
4 |
Framework versions
- Transformers 4.44.0
- TensorFlow 2.16.1
- Datasets 2.21.0
- Tokenizers 0.19.1