metadata
license: apache-2.0
base_model: microsoft/resnet-50
tags:
- generated_from_trainer
datasets:
- fair_face
metrics:
- accuracy
model-index:
- name: trained-gender
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: fair_face
type: fair_face
config: '0.25'
split: validation
args: '0.25'
metrics:
- name: Accuracy
type: accuracy
value: 0.8985758626985576
trained-gender
This model is a fine-tuned version of microsoft/resnet-50 on the fair_face dataset. It achieves the following results on the evaluation set:
- Loss: 0.2437
- Accuracy: 0.8986
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.4277 | 0.18 | 1000 | 0.4054 | 0.8089 |
0.315 | 0.37 | 2000 | 0.3487 | 0.8318 |
0.3082 | 0.55 | 3000 | 0.3052 | 0.8633 |
0.3235 | 0.74 | 4000 | 0.2899 | 0.8684 |
0.2505 | 0.92 | 5000 | 0.2693 | 0.8785 |
0.2484 | 1.11 | 6000 | 0.2547 | 0.8889 |
0.1933 | 1.29 | 7000 | 0.2521 | 0.8901 |
0.1497 | 1.48 | 8000 | 0.2443 | 0.8929 |
0.326 | 1.66 | 9000 | 0.2406 | 0.8958 |
0.215 | 1.84 | 10000 | 0.2381 | 0.9007 |
0.2035 | 2.03 | 11000 | 0.2437 | 0.8986 |
Framework versions
- Transformers 4.34.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.14.0