metadata
language:
- en
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_trainer
datasets:
- PolyAI/minds14
metrics:
- wer
model-index:
- name: whisper-tiny-en-poly14
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: PolyAI/minds14
type: PolyAI/minds14
config: en-US
split: train[450:]
args: en-US
metrics:
- name: Wer
type: wer
value: 0.33943329397874855
whisper-tiny-en-poly14
This model is a fine-tuned version of openai/whisper-tiny on the PolyAI/minds14 dataset. It achieves the following results on the evaluation set:
- Loss: 0.7200
- Wer Ortho: 0.3350
- Wer: 0.3394
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_steps: 50
- training_steps: 1000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer |
---|---|---|---|---|---|
0.014 | 8.93 | 250 | 0.5938 | 0.3387 | 0.3353 |
0.001 | 17.86 | 500 | 0.6573 | 0.3307 | 0.3329 |
0.0004 | 26.79 | 750 | 0.6957 | 0.3350 | 0.3400 |
0.0002 | 35.71 | 1000 | 0.7200 | 0.3350 | 0.3394 |
Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1