Edit model card

layoutlm-funsd

This model is a fine-tuned version of microsoft/layoutlm-base-uncased on the funsd dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7064
  • Answer: {'precision': 0.70801317233809, 'recall': 0.7972805933250927, 'f1': 0.75, 'number': 809}
  • Header: {'precision': 0.36, 'recall': 0.37815126050420167, 'f1': 0.3688524590163934, 'number': 119}
  • Question: {'precision': 0.7894736842105263, 'recall': 0.8309859154929577, 'f1': 0.8096980786825252, 'number': 1065}
  • Overall Precision: 0.7302
  • Overall Recall: 0.7903
  • Overall F1: 0.7590
  • Overall Accuracy: 0.8069

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Answer Header Question Overall Precision Overall Recall Overall F1 Overall Accuracy
1.7527 1.0 10 1.5609 {'precision': 0.027744270205066344, 'recall': 0.02843016069221261, 'f1': 0.02808302808302808, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.24188129899216126, 'recall': 0.2028169014084507, 'f1': 0.22063329928498468, 'number': 1065} 0.1388 0.1199 0.1287 0.3775
1.4189 2.0 20 1.1905 {'precision': 0.23932729624838292, 'recall': 0.22867737948084055, 'f1': 0.23388116308470291, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.43356164383561646, 'recall': 0.5943661971830986, 'f1': 0.5013861386138613, 'number': 1065} 0.3663 0.4104 0.3871 0.6099
1.0743 3.0 30 0.9279 {'precision': 0.5135722041259501, 'recall': 0.584672435105068, 'f1': 0.5468208092485548, 'number': 809} {'precision': 0.09090909090909091, 'recall': 0.008403361344537815, 'f1': 0.015384615384615384, 'number': 119} {'precision': 0.5574144486692015, 'recall': 0.6882629107981221, 'f1': 0.6159663865546218, 'number': 1065} 0.5372 0.6056 0.5693 0.7197
0.8323 4.0 40 0.7781 {'precision': 0.6182965299684543, 'recall': 0.7268232385661311, 'f1': 0.6681818181818182, 'number': 809} {'precision': 0.14814814814814814, 'recall': 0.06722689075630252, 'f1': 0.09248554913294797, 'number': 119} {'precision': 0.6731255265374895, 'recall': 0.7502347417840376, 'f1': 0.7095914742451155, 'number': 1065} 0.6364 0.6999 0.6667 0.7627
0.6658 5.0 50 0.7131 {'precision': 0.6371308016877637, 'recall': 0.7466007416563659, 'f1': 0.6875355719977233, 'number': 809} {'precision': 0.21686746987951808, 'recall': 0.15126050420168066, 'f1': 0.1782178217821782, 'number': 119} {'precision': 0.6829066886870355, 'recall': 0.7765258215962442, 'f1': 0.726713532513181, 'number': 1065} 0.6463 0.7270 0.6843 0.7812
0.5559 6.0 60 0.7018 {'precision': 0.6437941473259334, 'recall': 0.788627935723115, 'f1': 0.7088888888888889, 'number': 809} {'precision': 0.2653061224489796, 'recall': 0.2184873949579832, 'f1': 0.23963133640552997, 'number': 119} {'precision': 0.7235555555555555, 'recall': 0.7643192488262911, 'f1': 0.7433789954337899, 'number': 1065} 0.6676 0.7416 0.7026 0.7797
0.4847 7.0 70 0.6667 {'precision': 0.6787234042553192, 'recall': 0.788627935723115, 'f1': 0.729559748427673, 'number': 809} {'precision': 0.23853211009174313, 'recall': 0.2184873949579832, 'f1': 0.2280701754385965, 'number': 119} {'precision': 0.7450643776824034, 'recall': 0.8150234741784037, 'f1': 0.77847533632287, 'number': 1065} 0.6920 0.7687 0.7283 0.7982
0.4247 8.0 80 0.6833 {'precision': 0.6836518046709129, 'recall': 0.796044499381953, 'f1': 0.7355796687607081, 'number': 809} {'precision': 0.2578125, 'recall': 0.2773109243697479, 'f1': 0.26720647773279355, 'number': 119} {'precision': 0.7610008628127696, 'recall': 0.828169014084507, 'f1': 0.7931654676258992, 'number': 1065} 0.6994 0.7822 0.7385 0.7961
0.3796 9.0 90 0.6774 {'precision': 0.7042716319824753, 'recall': 0.7948084054388134, 'f1': 0.7468060394889663, 'number': 809} {'precision': 0.28688524590163933, 'recall': 0.29411764705882354, 'f1': 0.2904564315352697, 'number': 119} {'precision': 0.7781785392245266, 'recall': 0.8103286384976526, 'f1': 0.7939282428702852, 'number': 1065} 0.7188 0.7732 0.7450 0.8022
0.361 10.0 100 0.6885 {'precision': 0.7047413793103449, 'recall': 0.8084054388133498, 'f1': 0.7530224525043179, 'number': 809} {'precision': 0.30833333333333335, 'recall': 0.31092436974789917, 'f1': 0.3096234309623431, 'number': 119} {'precision': 0.7742504409171076, 'recall': 0.8244131455399061, 'f1': 0.7985447930877672, 'number': 1065} 0.7191 0.7873 0.7516 0.8045
0.3089 11.0 110 0.6921 {'precision': 0.7141292442497261, 'recall': 0.8059332509270705, 'f1': 0.7572590011614402, 'number': 809} {'precision': 0.3358208955223881, 'recall': 0.37815126050420167, 'f1': 0.3557312252964427, 'number': 119} {'precision': 0.7929792979297929, 'recall': 0.8272300469483568, 'f1': 0.8097426470588235, 'number': 1065} 0.7312 0.7918 0.7603 0.8038
0.295 12.0 120 0.6928 {'precision': 0.7082872928176795, 'recall': 0.792336217552534, 'f1': 0.7479579929988331, 'number': 809} {'precision': 0.33070866141732286, 'recall': 0.35294117647058826, 'f1': 0.34146341463414637, 'number': 119} {'precision': 0.7917414721723519, 'recall': 0.828169014084507, 'f1': 0.8095456631482332, 'number': 1065} 0.7293 0.7852 0.7562 0.8064
0.278 13.0 130 0.7052 {'precision': 0.6988082340195017, 'recall': 0.7972805933250927, 'f1': 0.7448036951501155, 'number': 809} {'precision': 0.34615384615384615, 'recall': 0.37815126050420167, 'f1': 0.36144578313253006, 'number': 119} {'precision': 0.7985546522131888, 'recall': 0.8300469483568075, 'f1': 0.8139963167587477, 'number': 1065} 0.7287 0.7898 0.7580 0.8048
0.2603 14.0 140 0.7044 {'precision': 0.7056892778993435, 'recall': 0.7972805933250927, 'f1': 0.7486941381311665, 'number': 809} {'precision': 0.3492063492063492, 'recall': 0.3697478991596639, 'f1': 0.35918367346938773, 'number': 119} {'precision': 0.7852706299911268, 'recall': 0.8309859154929577, 'f1': 0.8074817518248176, 'number': 1065} 0.7263 0.7898 0.7567 0.8074
0.258 15.0 150 0.7064 {'precision': 0.70801317233809, 'recall': 0.7972805933250927, 'f1': 0.75, 'number': 809} {'precision': 0.36, 'recall': 0.37815126050420167, 'f1': 0.3688524590163934, 'number': 119} {'precision': 0.7894736842105263, 'recall': 0.8309859154929577, 'f1': 0.8096980786825252, 'number': 1065} 0.7302 0.7903 0.7590 0.8069

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.5.1+cpu
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
4
Safetensors
Model size
113M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for coeus-ek/layoutlm-funsd

Finetuned
(135)
this model