metadata
license: mit
base_model: DTAI-KULeuven/robbert-2023-dutch-base
tags:
- generated_from_trainer
metrics:
- precision
- recall
- accuracy
model-index:
- name: robbert-2023-dutch-base-gender
results: []
robbert-2023-dutch-base-gender
This model is a fine-tuned version of DTAI-KULeuven/robbert-2023-dutch-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.6591
- Precision: 0.6282
- Recall: 0.6290
- Fscore: 0.6278
- Accuracy: 0.6285
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1.0
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | Fscore | Accuracy |
---|---|---|---|---|---|---|---|
0.616 | 0.29 | 2000 | 0.6498 | 0.6295 | 0.6299 | 0.6266 | 0.6267 |
0.6033 | 0.59 | 4000 | 0.6584 | 0.6278 | 0.6274 | 0.6228 | 0.6228 |
0.5896 | 0.88 | 6000 | 0.6600 | 0.6285 | 0.6293 | 0.6282 | 0.6290 |
Framework versions
- Transformers 4.36.2
- Pytorch 2.1.2+cu121
- Datasets 2.14.5
- Tokenizers 0.15.0