Edit model card

BERTopic_hurricane_tweet

This is a BERTopic model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets.

Usage

To use this model, please install BERTopic:

pip install -U bertopic

You can use the model as follows:

from bertopic import BERTopic
topic_model = BERTopic.load("cindyangelira/BERTopic_hurricane_tweet")

topic_model.get_topic_info()

Topic overview

  • Number of topics: 11
  • Number of training documents: 811
Click here for an overview of all topics.
Topic ID Topic Keywords Topic Frequency Label
-1 medicare - theft - medical - harvey - identity 1 -1_medicare_theft_medical_harvey
0 gofundme - donate - houstonstrong - texas - houston 111 Weather Updates
1 plaza - txmedcenter - medical - instagram - here 516 Relief Efforts
2 hurricaneharvey - houston - harvey - hurricane - houstonflood 74 Rescue Operations
3 harvey - hurricane - flooded - houston - tx 33 Flooding Reports
4 houston - astros - harvey - snow - houstonstrong 28 Storm Damage Reports
5 harvey - reliefforharvey - hurricaneharvey - relief - houstonians 23 5_harvey_reliefforharvey_hurricaneharvey_relief
6 rescued - hurricaneharvey - - - 14 6_rescued_hurricaneharvey__
7 hurricaneharvey - hurricane - - - 4 7_hurricaneharvey_hurricane__
8 harvey - flooding - houston - floodwaters - flood 4 8_harvey_flooding_houston_floodwaters
9 houston - hurricaneseason - hurricaneharvey - harvey - weather 3 9_houston_hurricaneseason_hurricaneharvey_harvey

Training hyperparameters

  • calculate_probabilities: False
  • language: None
  • low_memory: False
  • min_topic_size: 15
  • n_gram_range: (1, 1)
  • nr_topics: None
  • seed_topic_list: None
  • top_n_words: 10
  • verbose: False
  • zeroshot_min_similarity: 0.85
  • zeroshot_topic_list: ['Weather Updates', 'Evacuation Information', 'Emergency Services', 'Relief Efforts', 'Rescue Operations', 'Flooding Reports', 'Traffic and Road Closures', 'Government and Local Authority Announcements', 'Personal Stories and Experiences', 'Storm Damage Reports', 'Others']

Framework versions

  • Numpy: 1.26.4
  • HDBSCAN: 0.8.38.post1
  • UMAP: 0.5.6
  • Pandas: 2.2.2
  • Scikit-Learn: 1.2.2
  • Sentence-transformers: 3.1.0
  • Transformers: 4.44.0
  • Numba: 0.60.0
  • Plotly: 5.22.0
  • Python: 3.10.14
Downloads last month
0
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.