Chuxin-Embedding / README.md
Chrislu's picture
Update README.md
f507380 verified
metadata
language:
  - zh
model-index:
  - name: Chuxin-Embedding
    results:
      - dataset:
          config: default
          name: MTEB CmedqaRetrieval (default)
          revision: cd540c506dae1cf9e9a59c3e06f42030d54e7301
          split: dev
          type: C-MTEB/CmedqaRetrieval
        metrics:
          - type: map_at_1
            value: 33.391999999999996
          - type: map_at_10
            value: 48.715
          - type: map_at_100
            value: 50.381
          - type: map_at_1000
            value: 50.456
          - type: map_at_3
            value: 43.708999999999996
          - type: map_at_5
            value: 46.405
          - type: mrr_at_1
            value: 48.612
          - type: mrr_at_10
            value: 58.67099999999999
          - type: mrr_at_100
            value: 59.38
          - type: mrr_at_1000
            value: 59.396
          - type: mrr_at_3
            value: 55.906
          - type: mrr_at_5
            value: 57.421
          - type: ndcg_at_1
            value: 48.612
          - type: ndcg_at_10
            value: 56.581
          - type: ndcg_at_100
            value: 62.422999999999995
          - type: ndcg_at_1000
            value: 63.476
          - type: ndcg_at_3
            value: 50.271
          - type: ndcg_at_5
            value: 52.79899999999999
          - type: precision_at_1
            value: 48.612
          - type: precision_at_10
            value: 11.995000000000001
          - type: precision_at_100
            value: 1.696
          - type: precision_at_1000
            value: 0.185
          - type: precision_at_3
            value: 27.465
          - type: precision_at_5
            value: 19.675
          - type: recall_at_1
            value: 33.391999999999996
          - type: recall_at_10
            value: 69.87100000000001
          - type: recall_at_100
            value: 93.078
          - type: recall_at_1000
            value: 99.55199999999999
          - type: recall_at_3
            value: 50.939
          - type: recall_at_5
            value: 58.714
          - type: main_score
            value: 56.581
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB CovidRetrieval (default)
          revision: 1271c7809071a13532e05f25fb53511ffce77117
          split: dev
          type: C-MTEB/CovidRetrieval
        metrics:
          - type: map_at_1
            value: 71.918
          - type: map_at_10
            value: 80.609
          - type: map_at_100
            value: 80.796
          - type: map_at_1000
            value: 80.798
          - type: map_at_3
            value: 79.224
          - type: map_at_5
            value: 79.96
          - type: mrr_at_1
            value: 72.076
          - type: mrr_at_10
            value: 80.61399999999999
          - type: mrr_at_100
            value: 80.801
          - type: mrr_at_1000
            value: 80.803
          - type: mrr_at_3
            value: 79.276
          - type: mrr_at_5
            value: 80.025
          - type: ndcg_at_1
            value: 72.076
          - type: ndcg_at_10
            value: 84.286
          - type: ndcg_at_100
            value: 85.14500000000001
          - type: ndcg_at_1000
            value: 85.21
          - type: ndcg_at_3
            value: 81.45400000000001
          - type: ndcg_at_5
            value: 82.781
          - type: precision_at_1
            value: 72.076
          - type: precision_at_10
            value: 9.663
          - type: precision_at_100
            value: 1.005
          - type: precision_at_1000
            value: 0.101
          - type: precision_at_3
            value: 29.398999999999997
          - type: precision_at_5
            value: 18.335
          - type: recall_at_1
            value: 71.918
          - type: recall_at_10
            value: 95.574
          - type: recall_at_100
            value: 99.473
          - type: recall_at_1000
            value: 100
          - type: recall_at_3
            value: 87.82900000000001
          - type: recall_at_5
            value: 90.991
          - type: main_score
            value: 84.286
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB DuRetrieval (default)
          revision: a1a333e290fe30b10f3f56498e3a0d911a693ced
          split: dev
          type: C-MTEB/DuRetrieval
        metrics:
          - type: map_at_1
            value: 25.019999999999996
          - type: map_at_10
            value: 77.744
          - type: map_at_100
            value: 80.562
          - type: map_at_1000
            value: 80.60300000000001
          - type: map_at_3
            value: 52.642999999999994
          - type: map_at_5
            value: 67.179
          - type: mrr_at_1
            value: 86.5
          - type: mrr_at_10
            value: 91.024
          - type: mrr_at_100
            value: 91.09
          - type: mrr_at_1000
            value: 91.093
          - type: mrr_at_3
            value: 90.558
          - type: mrr_at_5
            value: 90.913
          - type: ndcg_at_1
            value: 86.5
          - type: ndcg_at_10
            value: 85.651
          - type: ndcg_at_100
            value: 88.504
          - type: ndcg_at_1000
            value: 88.887
          - type: ndcg_at_3
            value: 82.707
          - type: ndcg_at_5
            value: 82.596
          - type: precision_at_1
            value: 86.5
          - type: precision_at_10
            value: 41.595
          - type: precision_at_100
            value: 4.7940000000000005
          - type: precision_at_1000
            value: 0.48900000000000005
          - type: precision_at_3
            value: 74.233
          - type: precision_at_5
            value: 63.68000000000001
          - type: recall_at_1
            value: 25.019999999999996
          - type: recall_at_10
            value: 88.114
          - type: recall_at_100
            value: 97.442
          - type: recall_at_1000
            value: 99.39099999999999
          - type: recall_at_3
            value: 55.397
          - type: recall_at_5
            value: 73.095
          - type: main_score
            value: 85.651
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB EcomRetrieval (default)
          revision: 687de13dc7294d6fd9be10c6945f9e8fec8166b9
          split: dev
          type: C-MTEB/EcomRetrieval
        metrics:
          - type: map_at_1
            value: 55.60000000000001
          - type: map_at_10
            value: 67.891
          - type: map_at_100
            value: 68.28699999999999
          - type: map_at_1000
            value: 68.28699999999999
          - type: map_at_3
            value: 64.86699999999999
          - type: map_at_5
            value: 66.652
          - type: mrr_at_1
            value: 55.60000000000001
          - type: mrr_at_10
            value: 67.891
          - type: mrr_at_100
            value: 68.28699999999999
          - type: mrr_at_1000
            value: 68.28699999999999
          - type: mrr_at_3
            value: 64.86699999999999
          - type: mrr_at_5
            value: 66.652
          - type: ndcg_at_1
            value: 55.60000000000001
          - type: ndcg_at_10
            value: 74.01100000000001
          - type: ndcg_at_100
            value: 75.602
          - type: ndcg_at_1000
            value: 75.602
          - type: ndcg_at_3
            value: 67.833
          - type: ndcg_at_5
            value: 71.005
          - type: precision_at_1
            value: 55.60000000000001
          - type: precision_at_10
            value: 9.33
          - type: precision_at_100
            value: 1
          - type: precision_at_1000
            value: 0.1
          - type: precision_at_3
            value: 25.467000000000002
          - type: precision_at_5
            value: 16.8
          - type: recall_at_1
            value: 55.60000000000001
          - type: recall_at_10
            value: 93.30000000000001
          - type: recall_at_100
            value: 100
          - type: recall_at_1000
            value: 100
          - type: recall_at_3
            value: 76.4
          - type: recall_at_5
            value: 84
          - type: main_score
            value: 74.01100000000001
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB MMarcoRetrieval (default)
          revision: 539bbde593d947e2a124ba72651aafc09eb33fc2
          split: dev
          type: C-MTEB/MMarcoRetrieval
        metrics:
          - type: map_at_1
            value: 66.24799999999999
          - type: map_at_10
            value: 75.356
          - type: map_at_100
            value: 75.653
          - type: map_at_1000
            value: 75.664
          - type: map_at_3
            value: 73.515
          - type: map_at_5
            value: 74.67099999999999
          - type: mrr_at_1
            value: 68.496
          - type: mrr_at_10
            value: 75.91499999999999
          - type: mrr_at_100
            value: 76.17399999999999
          - type: mrr_at_1000
            value: 76.184
          - type: mrr_at_3
            value: 74.315
          - type: mrr_at_5
            value: 75.313
          - type: ndcg_at_1
            value: 68.496
          - type: ndcg_at_10
            value: 79.065
          - type: ndcg_at_100
            value: 80.417
          - type: ndcg_at_1000
            value: 80.72399999999999
          - type: ndcg_at_3
            value: 75.551
          - type: ndcg_at_5
            value: 77.505
          - type: precision_at_1
            value: 68.496
          - type: precision_at_10
            value: 9.563
          - type: precision_at_100
            value: 1.024
          - type: precision_at_1000
            value: 0.105
          - type: precision_at_3
            value: 28.391
          - type: precision_at_5
            value: 18.086
          - type: recall_at_1
            value: 66.24799999999999
          - type: recall_at_10
            value: 89.97
          - type: recall_at_100
            value: 96.13199999999999
          - type: recall_at_1000
            value: 98.551
          - type: recall_at_3
            value: 80.624
          - type: recall_at_5
            value: 85.271
          - type: main_score
            value: 79.065
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB MedicalRetrieval (default)
          revision: 2039188fb5800a9803ba5048df7b76e6fb151fc6
          split: dev
          type: C-MTEB/MedicalRetrieval
        metrics:
          - type: map_at_1
            value: 61.8
          - type: map_at_10
            value: 71.101
          - type: map_at_100
            value: 71.576
          - type: map_at_1000
            value: 71.583
          - type: map_at_3
            value: 68.867
          - type: map_at_5
            value: 70.272
          - type: mrr_at_1
            value: 61.9
          - type: mrr_at_10
            value: 71.158
          - type: mrr_at_100
            value: 71.625
          - type: mrr_at_1000
            value: 71.631
          - type: mrr_at_3
            value: 68.917
          - type: mrr_at_5
            value: 70.317
          - type: ndcg_at_1
            value: 61.8
          - type: ndcg_at_10
            value: 75.624
          - type: ndcg_at_100
            value: 77.702
          - type: ndcg_at_1000
            value: 77.836
          - type: ndcg_at_3
            value: 71.114
          - type: ndcg_at_5
            value: 73.636
          - type: precision_at_1
            value: 61.8
          - type: precision_at_10
            value: 8.98
          - type: precision_at_100
            value: 0.9900000000000001
          - type: precision_at_1000
            value: 0.1
          - type: precision_at_3
            value: 25.867
          - type: precision_at_5
            value: 16.74
          - type: recall_at_1
            value: 61.8
          - type: recall_at_10
            value: 89.8
          - type: recall_at_100
            value: 99
          - type: recall_at_1000
            value: 100
          - type: recall_at_3
            value: 77.60000000000001
          - type: recall_at_5
            value: 83.7
          - type: main_score
            value: 75.624
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB T2Retrieval (default)
          revision: 8731a845f1bf500a4f111cf1070785c793d10e64
          split: dev
          type: C-MTEB/T2Retrieval
        metrics:
          - type: map_at_1
            value: 27.173000000000002
          - type: map_at_10
            value: 76.454
          - type: map_at_100
            value: 80.021
          - type: map_at_1000
            value: 80.092
          - type: map_at_3
            value: 53.876999999999995
          - type: map_at_5
            value: 66.122
          - type: mrr_at_1
            value: 89.519
          - type: mrr_at_10
            value: 92.091
          - type: mrr_at_100
            value: 92.179
          - type: mrr_at_1000
            value: 92.183
          - type: mrr_at_3
            value: 91.655
          - type: mrr_at_5
            value: 91.94
          - type: ndcg_at_1
            value: 89.519
          - type: ndcg_at_10
            value: 84.043
          - type: ndcg_at_100
            value: 87.60900000000001
          - type: ndcg_at_1000
            value: 88.32799999999999
          - type: ndcg_at_3
            value: 85.623
          - type: ndcg_at_5
            value: 84.111
          - type: precision_at_1
            value: 89.519
          - type: precision_at_10
            value: 41.760000000000005
          - type: precision_at_100
            value: 4.982
          - type: precision_at_1000
            value: 0.515
          - type: precision_at_3
            value: 74.944
          - type: precision_at_5
            value: 62.705999999999996
          - type: recall_at_1
            value: 27.173000000000002
          - type: recall_at_10
            value: 82.878
          - type: recall_at_100
            value: 94.527
          - type: recall_at_1000
            value: 98.24199999999999
          - type: recall_at_3
            value: 55.589
          - type: recall_at_5
            value: 69.476
          - type: main_score
            value: 84.043
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB VideoRetrieval (default)
          revision: 58c2597a5943a2ba48f4668c3b90d796283c5639
          split: dev
          type: C-MTEB/VideoRetrieval
        metrics:
          - type: map_at_1
            value: 70.1
          - type: map_at_10
            value: 79.62
          - type: map_at_100
            value: 79.804
          - type: map_at_1000
            value: 79.804
          - type: map_at_3
            value: 77.81700000000001
          - type: map_at_5
            value: 79.037
          - type: mrr_at_1
            value: 70.1
          - type: mrr_at_10
            value: 79.62
          - type: mrr_at_100
            value: 79.804
          - type: mrr_at_1000
            value: 79.804
          - type: mrr_at_3
            value: 77.81700000000001
          - type: mrr_at_5
            value: 79.037
          - type: ndcg_at_1
            value: 70.1
          - type: ndcg_at_10
            value: 83.83500000000001
          - type: ndcg_at_100
            value: 84.584
          - type: ndcg_at_1000
            value: 84.584
          - type: ndcg_at_3
            value: 80.282
          - type: ndcg_at_5
            value: 82.472
          - type: precision_at_1
            value: 70.1
          - type: precision_at_10
            value: 9.68
          - type: precision_at_100
            value: 1
          - type: precision_at_1000
            value: 0.1
          - type: precision_at_3
            value: 29.133
          - type: precision_at_5
            value: 18.54
          - type: recall_at_1
            value: 70.1
          - type: recall_at_10
            value: 96.8
          - type: recall_at_100
            value: 100
          - type: recall_at_1000
            value: 100
          - type: recall_at_3
            value: 87.4
          - type: recall_at_5
            value: 92.7
          - type: main_score
            value: 83.83500000000001
        task:
          type: Retrieval
tags:
  - mteb

Chuxin-Embedding

Chuxin-Embedding 是专为增强中文文本检索能力而设计的嵌入模型。它基于bge-m3-retromae[1],实现了预训练、微调、精调全流程。该模型在来自各个领域的大量语料库上进行训练,语料库的批量非常大。截至 2024 年 9 月 14 日, Chuxin-Embedding 在检索任务中表现出色,在 C-MTEB 中文检索排行榜上排名第一,领先的性能得分为 77.88,在AIR-Bench中文检索+重排序公开排行榜上排名第一,领先的性能得分为 64.78。

Chuxin-Embedding is a specially designed embedding model aimed at enhancing the capability of Chinese text retrieval. It is based on bge-m3-retromae[1] and implements the entire process of pre-training, fine-tuning, and refining. This model has been trained on a vast amount of corpora from various fields. As of September 14, 2024, Chuxin-Embedding has shown outstanding performance in retrieval tasks. It ranks first on the C-MTEB Chinese Retrieval Leaderboard with a leading performance score of 77.88 and also ranks first on the AIR-Bench Chinese Retrieval + Re-ranking Public Leaderboard with a leading performance score of 64.78.

News

  • 2024/10/18: LLM生成及数据清洗 Code

  • 2024/9/14: 团队的RAG框架欢迎试用 ragnify

  • 2024/9/14: LLM generation and data clean Code .

  • 2024/9/14: The team's RAG framework is available for trial ragnify .

Training Details

image/png 基于bge-m3-retromae[1],主要改动如下:

  • 基于bge-m3-retromae[1]在亿级数据上预训练。
    • 使用BGE pretrain Code 完成预训练。
  • 在收集的公开亿级检索数据集上实现了微调。
    • 使用BGE finetune Code 完成微调。
  • 在收集的公开百万级检索数据集和百万级LLM合成数据集上实现了精调。
    • 使用BGE finetune Code 和 BGE unified_finetune Code 完成精调。
    • 通过 LLM (QWEN-72B) 进行数据生成,使用 LLM 为message生成新query
    • 数据清洗:
      • 简单的基于规则清洗
      • LLM判断是否可作为搜索引擎查询的query
      • rerank模型对(query,message)评分,舍弃pos中的负例,neg中的正例

Based on bge-m3-retromae[1], the main modifications are as follows:

  • Pre-trained on a billion-level dataset based on bge-m3-retromae[1].
    • Pre-training is completed using BGE pretrain Code .
  • Fine-tuned on a publicly collected billion-level retrieval dataset.
    • Fine-tuning is completed using BGE finetune Code.
  • Refined on a publicly collected million-level retrieval dataset and a million-level LLM synthetic dataset.
    • Refining is completed using BGE finetune Code and BGE unified_finetune Code.
    • Data generation is performed through LLM (QWEN-72B), using LLM to generate new query for messages.
    • Data cleaning:
      • Simple rule-based cleaning
      • LLM to determine whether a query can be used as a search engine query
      • The rerank model scores (query, message) pairs, discarding negative examples in the positive set and positive examples in the negative set.

Collect more data for retrieval-type tasks

  1. 预训练数据
    • ChineseWebText、 oasis、 oscar、 SkyPile、 wudao
  2. 微调数据
    • MTP 、webqa、nlpcc、csl、bq、atec、ccks
  3. 精调数据
    • BGE-M3 、Huatuo26M-Lite 、covid ...
    • LLM 合成(BGE-M3 、Huatuo26M-Lite 、covid、wudao、wanjuan_news、mnbvc_news_wiki、mldr、medical QA...)

Performance

C_MTEB RETRIEVAL

Model Average CmedqaRetrieval CovidRetrieval DuRetrieval EcomRetrieval MedicalRetrieval MMarcoRetrieval T2Retrieval VideoRetrieval
Zhihui_LLM_Embedding 76.74 48.69 84.39 91.34 71.96 65.19 84.77 88.3 79.31
zpoint_large_embedding_zh 76.36 47.16 89.14 89.23 70.74 68.14 82.38 83.81 80.26
Chuxin-Embedding 77.88 56.58 84.28 85.65 74.01 75.62 79.06 84.04 83.84

AIR-Bench

Retrieval Method Reranking Model Average wiki_zh web_zh news_zh healthcare_zh finance_zh
bge-m3 bge-reranker-large 64.53 76.11 67.8 63.25 62.9 52.61
gte-Qwen2-7B-instruct bge-reranker-large 63.39 78.09 67.56 63.14 61.12 47.02
Chuxin-Embedding bge-reranker-large 64.78 76.23 68.44 64.2 62.93 52.11

Generate Embedding for text

#pip install -U FlagEmbedding

from FlagEmbedding import FlagModel

model = FlagModel('chuxin-llm/Chuxin-Embedding',
                   query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:",
                   use_fp16=True)

sentences_1 = ["样例数据-1", "样例数据-2"]
sentences_2 = ["样例数据-3", "样例数据-1"]

embeddings_1 = model.encode(sentences_1)
embeddings_2 = model.encode(sentences_2)
similarity = embeddings_1 @ embeddings_2.T
print(similarity)

Reference

  1. https://huggingface.co/BAAI/bge-m3-retromae
  2. https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/BGE_M3
  3. https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/baai_general_embedding