|
--- |
|
license: apache-2.0 |
|
base_model: t5-small |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- cnn_dailymail |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: cnn_dailymail_t5_small |
|
results: |
|
- task: |
|
name: Sequence-to-sequence Language Modeling |
|
type: text2text-generation |
|
dataset: |
|
name: cnn_dailymail |
|
type: cnn_dailymail |
|
config: default |
|
split: train |
|
args: default |
|
metrics: |
|
- name: Rouge1 |
|
type: rouge |
|
value: 0.2321 |
|
--- |
|
|
|
|
|
|
|
# cnn_dailymail_t5_small |
|
|
|
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the cnn_dailymail dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.7271 |
|
- Rouge1: 0.2321 |
|
- Rouge2: 0.0955 |
|
- Rougel: 0.1887 |
|
- Rougelsum: 0.1887 |
|
- Gen Len: 18.9998 |
|
|
|
## Model description |
|
|
|
Text-To-Text Transfer Transformer (T5) |
|
T5-Small is the checkpoint with 60 million parameters. |
|
|
|
|
|
## Intended uses & limitations |
|
|
|
This is an exercise for finetuning of pretrained t5 model. |
|
|
|
## Training and evaluation data |
|
|
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 2 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| |
|
| 1.9158 | 1.0 | 10000 | 1.7333 | 0.2313 | 0.0948 | 0.1879 | 0.1879 | 18.9998 | |
|
| 1.9316 | 2.0 | 20000 | 1.7271 | 0.2321 | 0.0955 | 0.1887 | 0.1887 | 18.9998 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.31.0 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.14.4 |
|
- Tokenizers 0.13.3 |
|
|