christinacdl's picture
End of training
417c04e verified
metadata
license: mit
base_model: xlm-roberta-large
tags:
  - generated_from_trainer
model-index:
  - name: xlm-roberta-large_ALL_BCE_new_data_multihead_19_shuffled_special_tokens
    results: []

xlm-roberta-large_ALL_BCE_new_data_multihead_19_shuffled_special_tokens

This model is a fine-tuned version of xlm-roberta-large on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8445
  • F1 Macro 0.1: 0.0895
  • F1 Macro 0.15: 0.1160
  • F1 Macro 0.2: 0.1402
  • F1 Macro 0.25: 0.1634
  • F1 Macro 0.3: 0.1847
  • F1 Macro 0.35: 0.2040
  • F1 Macro 0.4: 0.2229
  • F1 Macro 0.45: 0.2406
  • F1 Macro 0.5: 0.2583
  • F1 Macro 0.55: 0.2763
  • F1 Macro 0.6: 0.2924
  • F1 Macro 0.65: 0.3101
  • F1 Macro 0.7: 0.3251
  • F1 Macro 0.75: 0.3405
  • F1 Macro 0.8: 0.3547
  • F1 Macro 0.85: 0.3634
  • F1 Macro 0.9: 0.3572
  • F1 Macro 0.95: 0.2839
  • Threshold 0: 0.8
  • Threshold 1: 0.85
  • Threshold 2: 0.9
  • Threshold 3: 0.9
  • Threshold 4: 0.8
  • Threshold 5: 0.85
  • Threshold 6: 0.8
  • Threshold 7: 0.9
  • Threshold 8: 0.9
  • Threshold 9: 0.8
  • Threshold 10: 0.95
  • Threshold 11: 0.85
  • Threshold 12: 0.9
  • Threshold 13: 0.8
  • Threshold 14: 0.9
  • Threshold 15: 0.85
  • Threshold 16: 0.85
  • Threshold 17: 0.85
  • Threshold 18: 0.9
  • 0: 0.1543
  • 1: 0.2738
  • 2: 0.3791
  • 3: 0.2915
  • 4: 0.4439
  • 5: 0.4944
  • 6: 0.4463
  • 7: 0.3216
  • 8: 0.3402
  • 9: 0.5410
  • 10: 0.5665
  • 11: 0.5310
  • 12: 0.2331
  • 13: 0.1319
  • 14: 0.3899
  • 15: 0.3173
  • 16: 0.4432
  • 17: 0.6120
  • 18: 0.2342
  • Max F1: 0.3634
  • Mean F1: 0.3761

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 2024
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss F1 Macro 0.1 F1 Macro 0.15 F1 Macro 0.2 F1 Macro 0.25 F1 Macro 0.3 F1 Macro 0.35 F1 Macro 0.4 F1 Macro 0.45 F1 Macro 0.5 F1 Macro 0.55 F1 Macro 0.6 F1 Macro 0.65 F1 Macro 0.7 F1 Macro 0.75 F1 Macro 0.8 F1 Macro 0.85 F1 Macro 0.9 F1 Macro 0.95 Threshold 0 Threshold 1 Threshold 2 Threshold 3 Threshold 4 Threshold 5 Threshold 6 Threshold 7 Threshold 8 Threshold 9 Threshold 10 Threshold 11 Threshold 12 Threshold 13 Threshold 14 Threshold 15 Threshold 16 Threshold 17 Threshold 18 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Max F1 Mean F1
1.2949 1.0 5595 0.9920 0.0638 0.0742 0.0860 0.0994 0.1129 0.1278 0.1430 0.1589 0.1751 0.1903 0.2064 0.2235 0.2373 0.2479 0.2512 0.2275 0.1775 0.0876 0.75 0.8 0.75 0.85 0.65 0.8 0.75 0.85 0.8 0.7 0.9 0.75 0.8 0.8 0.85 0.8 0.85 0.9 0.85 0.0863 0.1572 0.2169 0.0959 0.2903 0.3523 0.3723 0.1624 0.2313 0.4610 0.3852 0.4756 0.1678 0.1154 0.2816 0.1848 0.3673 0.5307 0.1168 0.2512 0.2658
0.9147 2.0 11190 0.9023 0.0813 0.1044 0.1275 0.1498 0.1706 0.1898 0.2088 0.2261 0.2449 0.2624 0.2798 0.2951 0.3107 0.3233 0.3328 0.3348 0.3156 0.2286 0.75 0.8 0.85 0.9 0.75 0.85 0.8 0.85 0.8 0.8 0.9 0.85 0.9 0.65 0.9 0.9 0.85 0.9 0.95 0.1231 0.2517 0.3359 0.2514 0.4106 0.4565 0.4166 0.2556 0.3152 0.5241 0.5686 0.5085 0.2177 0.1176 0.3757 0.3059 0.4286 0.5881 0.2143 0.3348 0.3508
0.732 3.0 16785 0.8445 0.0895 0.1160 0.1402 0.1634 0.1847 0.2040 0.2229 0.2406 0.2583 0.2763 0.2924 0.3101 0.3251 0.3405 0.3547 0.3634 0.3572 0.2839 0.8 0.85 0.9 0.9 0.8 0.85 0.8 0.9 0.9 0.8 0.95 0.85 0.9 0.8 0.9 0.85 0.85 0.85 0.9 0.1543 0.2738 0.3791 0.2915 0.4439 0.4944 0.4463 0.3216 0.3402 0.5410 0.5665 0.5310 0.2331 0.1319 0.3899 0.3173 0.4432 0.6120 0.2342 0.3634 0.3761

Framework versions

  • Transformers 4.36.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.13.1
  • Tokenizers 0.15.0