|
--- |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- i2b22014 |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: electramed-small-deid2014-ner-v3 |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: i2b22014 |
|
type: i2b22014 |
|
config: i2b22014-deid |
|
split: train |
|
args: i2b22014-deid |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.7776378519384726 |
|
- name: Recall |
|
type: recall |
|
value: 0.7946502435885652 |
|
- name: F1 |
|
type: f1 |
|
value: 0.7860520094562647 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9908687950002661 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# electramed-small-deid2014-ner-v3 |
|
|
|
This model is a fine-tuned version of [giacomomiolo/electramed_small_scivocab](https://huggingface.co/giacomomiolo/electramed_small_scivocab) on the i2b22014 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0354 |
|
- Precision: 0.7776 |
|
- Recall: 0.7947 |
|
- F1: 0.7861 |
|
- Accuracy: 0.9909 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 0.0125 | 1.0 | 1838 | 0.1338 | 0.3514 | 0.3812 | 0.3657 | 0.9715 | |
|
| 0.0032 | 2.0 | 3676 | 0.0856 | 0.4444 | 0.5156 | 0.4774 | 0.9778 | |
|
| 0.0012 | 3.0 | 5514 | 0.0678 | 0.5222 | 0.5994 | 0.5581 | 0.9819 | |
|
| 0.0006 | 4.0 | 7352 | 0.0547 | 0.6900 | 0.7025 | 0.6962 | 0.9865 | |
|
| 0.018 | 5.0 | 9190 | 0.0466 | 0.7227 | 0.7468 | 0.7345 | 0.9881 | |
|
| 0.0002 | 6.0 | 11028 | 0.0419 | 0.7396 | 0.7664 | 0.7528 | 0.9891 | |
|
| 0.0002 | 7.0 | 12866 | 0.0390 | 0.7730 | 0.7693 | 0.7712 | 0.9901 | |
|
| 0.0002 | 8.0 | 14704 | 0.0368 | 0.7778 | 0.7822 | 0.7800 | 0.9906 | |
|
| 0.0001 | 9.0 | 16542 | 0.0359 | 0.7765 | 0.7898 | 0.7831 | 0.9907 | |
|
| 0.0001 | 10.0 | 18380 | 0.0354 | 0.7776 | 0.7947 | 0.7861 | 0.9909 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.21.3 |
|
- Pytorch 1.12.1+cu113 |
|
- Datasets 2.4.0 |
|
- Tokenizers 0.12.1 |
|
|