tags: | |
- generated_from_trainer | |
metrics: | |
- rouge | |
base_model: google/pegasus-multi_news | |
model-index: | |
- name: pegasus-multi_news-commentaries_hdwriter | |
results: [] | |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You | |
should probably proofread and complete it, then remove this comment. --> | |
# pegasus-multi_news-commentaries_hdwriter | |
This model is a fine-tuned version of [google/pegasus-multi_news](https://huggingface.co/google/pegasus-multi_news) on an unknown dataset. | |
It achieves the following results on the evaluation set: | |
- Loss: 2.7259 | |
- Rouge1: 21.3899 | |
- Rouge2: 6.2409 | |
- Rougel: 16.6172 | |
- Rougelsum: 17.808 | |
- Gen Len: 34.7016 | |
## Model description | |
More information needed | |
## Intended uses & limitations | |
More information needed | |
## Training and evaluation data | |
More information needed | |
## Training procedure | |
### Training hyperparameters | |
The following hyperparameters were used during training: | |
- learning_rate: 2e-05 | |
- train_batch_size: 1 | |
- eval_batch_size: 1 | |
- seed: 42 | |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 | |
- lr_scheduler_type: linear | |
- num_epochs: 5 | |
- mixed_precision_training: Native AMP | |
### Training results | |
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | | |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | |
| 2.847 | 1.0 | 4710 | 2.7513 | 20.5559 | 5.9762 | 16.1223 | 17.2872 | 35.81 | | |
| 2.6399 | 2.0 | 9420 | 2.6890 | 21.2052 | 6.0104 | 16.5753 | 17.6517 | 34.5242 | | |
| 2.3811 | 3.0 | 14130 | 2.6904 | 21.2358 | 6.1416 | 16.6053 | 17.7067 | 34.6157 | | |
| 2.2388 | 4.0 | 18840 | 2.7112 | 21.3806 | 6.1895 | 16.6909 | 17.7504 | 34.5227 | | |
| 2.1589 | 5.0 | 23550 | 2.7259 | 21.3899 | 6.2409 | 16.6172 | 17.808 | 34.7016 | | |
### Framework versions | |
- Transformers 4.15.0 | |
- Pytorch 1.10.0+cu111 | |
- Datasets 1.17.0 | |
- Tokenizers 0.10.3 | |