Idefices2-EDGAR
Idefices2 8B fine-tuned on 800+ multi-page documents for Visual DocQA. Make sure you have the latest peft and transformers before loading the model. GPU is required for it to work properly.
Compared to the base model, it has a lower edit distance (53% improvement on micro average) on the test set.
Category | Idefics2-8B | Idefics2-8B-EDGAR | Δ(↑) | |
---|---|---|---|---|
0 | agreement_date | 0.878489 | 0.0999479 | 88.62% |
1 | agreement_term | 0.907067 | 0.438816 | 51.62% |
2 | auto_renewal | 0.634946 | 0.0516129 | 91.87% |
3 | contract_value | 0.474438 | 0.418815 | 11.72% |
4 | counterparty_address | 0.771387 | 0.59835 | 22.43% |
5 | counterparty_name | 0.825491 | 0.633359 | 23.27% |
6 | counterparty_signer_name | 0.842091 | 0.480444 | 42.95% |
7 | counterparty_signer_title | 0.61746 | 0.496041 | 19.66% |
8 | effective_date | 0.903268 | 0.125641 | 86.09% |
9 | expiration_date | 0.88673 | 0.235197 | 73.48% |
10 | governing_law | 0.881037 | 0.308771 | 64.95% |
11 | opt_out_length | 0.431548 | 0.047619 | 88.97% |
12 | party_address | 0.730897 | 0.608301 | 16.77% |
13 | party_name | 0.726411 | 0.490194 | 32.52% |
14 | payment_frequency | 0.686123 | 0.373724 | 45.53% |
15 | payment_term | 0.854552 | 0.593333 | 30.57% |
16 | renewal_term | 0.92829 | 0.0595238 | 93.59% |
17 | termination_for_cause | 0.436 | 0.048 | 88.99% |
18 | termination_for_convenience | 0.628261 | 0.156522 | 75.09% |
19 | termination_notice_period | 0.329748 | 0.178394 | 45.90% |
20 | venue | 0.781417 | 0.61403 | 21.42% |
Model Details
Model Description
Finetuned form Idefics2.
Uses
import torch
from transformers import AutoProcessor, Idefics2ForConditionalGeneration, BitsAndBytesConfig
from datasets import load_from_disk
base_model = "HuggingFaceM4/idefics2-8b"
peft_model_id = "chenghao/idefics2-edgar"
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_use_double_quant=True,
bnb_4bit_compute_dtype=torch.float16
)
model = Idefics2ForConditionalGeneration.from_pretrained(
peft_model_id,
torch_dtype=torch.float16,
quantization_config=quantization_config,
)
model.eval()
processor = AutoProcessor.from_pretrained(base_model, do_image_splitting=True,
size={"longest_edge": 490, "shortest_edge": 350})
dataset = load_from_disk("local-dataset")
test_example = dataset["test"][30]
images, question, answer = test_example["images"], test_example["question"], test_example["answer"]
messages = [
{
"role": "user",
"content": [{"type": "image"} for _ in range(len(images))] + [{"type": "text", "text": question}],
},
]
prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
inputs = processor(text=prompt, images=images, return_tensors="pt").to("cuda")
with torch.no_grad():
generated_ids = model.generate(**inputs, max_new_tokens=1024)
generated_texts = processor.batch_decode(generated_ids, skip_special_tokens=True)
preds = [t.split("Assistant:", 1)[-1].strip() for t in generated_texts]
print(f"""
Question: {question}
Answer: {answer}
Prediction: {preds or 'N/A'}
""")
Training Details
Training Data
Training Procedure
10 epochs with QLoRA. Trained with A100-80GB for about 10 hours. Code: Github.
MAX_LENGTH = 1024
USE_LORA = False
USE_QLORA = True
MAX_PAGE = 5
config = {
"max_epochs": 10,
# "val_check_interval": 0.2,
"check_val_every_n_epoch": 1,
"gradient_clip_val": 1.0,
"accumulate_grad_batches": 12,
"lr": 1e-4,
"batch_size": 2,
"precision": "16-mixed",
"seed": 42,
"warmup_steps": 50,
"result_path": "./result",
"verbose": True,
}
Preprocessing [optional]
No image splitting due to memory limit.
processor = AutoProcessor.from_pretrained(
"HuggingFaceM4/idefics2-8b",
do_image_splitting=False,
size={"longest_edge": 490, "shortest_edge": 350}
)
Training Hyperparameters
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_use_double_quant=True,
bnb_4bit_compute_dtype=torch.float16
)
model = Idefics2ForConditionalGeneration.from_pretrained(
"HuggingFaceM4/idefics2-8b",
torch_dtype=torch.float16,
quantization_config=quantization_config,
)
Speeds, Sizes, Times [optional]
Evaluation
Testing Data, Factors & Metrics
Testing Data
20% percent of the dataset.
Metrics
Edit Distance (nltk).
Results
See above.
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.