Dep-O's Legacy
Collection
Collection of early instruct models back when Alpaca was brand new. (July 2023)
β’
9 items
β’
Updated
This is a replica of Alpaca by Stanford' tatsu
Trained using the original instructions with a minor modification in FSDP mode
13B: https://huggingface.co/chavinlo/alpaca-13b
13B -> GPT4 : https://huggingface.co/chavinlo/gpt4-x-alpaca
Trained on 4xA100s for 6H Donated by redmond.ai
NO LORA HAS BEEN USED, this is a natively-finetuned model, hence "alpaca-native"
If you are interested on more llama-based models, you can check out my profile or search for other models at https://huggingface.co/models?other=llama
This (MIGHT) be a quantized version of this model, but be careful: https://boards.4channel.org/g/thread/92173062#p92182396
CONFIGURATION (default except fsdp):
torchrun --nproc_per_node=4 --master_port=3045 train.py \
--model_name_or_path /workspace/llama-7b-hf \
--data_path ./alpaca_data.json \
--bf16 True \
--output_dir /workspace/output \
--num_train_epochs 3 \
--per_device_train_batch_size 4 \
--per_device_eval_batch_size 4 \
--gradient_accumulation_steps 8 \
--evaluation_strategy "no" \
--save_strategy "steps" \
--save_steps 200 \
--save_total_limit 1 \
--learning_rate 2e-5 \
--weight_decay 0. \
--warmup_ratio 0.03 \
--lr_scheduler_type "cosine" \
--logging_steps 1 \
--fsdp "shard_grad_op auto_wrap" \
--fsdp_transformer_layer_cls_to_wrap 'LLaMADecoderLayer' \
--tf32 True --report_to="wandb"
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 41.96 |
ARC (25-shot) | 52.3 |
HellaSwag (10-shot) | 77.09 |
MMLU (5-shot) | 41.6 |
TruthfulQA (0-shot) | 37.58 |
Winogrande (5-shot) | 69.46 |
GSM8K (5-shot) | 1.44 |
DROP (3-shot) | 14.23 |