lora-midm-nsmc
This model is a fine-tuned version of KT-AI/midm-bitext-S-7B-inst-v1 on an nsmc dataset.
Model description
KT-midm modelμ nsmcλ°μ΄ν°λ₯Ό νμ©νμ¬ λ―ΈμΈνλν λͺ¨λΈ
μν 리뷰 λ°μ΄ν°λ₯Ό κΈ°λ°μΌλ‘ μ¬μ©μκ° μμ±ν 리뷰μ κΈμ λλ λΆμ μ νμ
νλ€.
Intended uses & limitations
Intended uses
μ¬μ©μκ° μμ±ν 리뷰μ κΈμ λλ λΆμ κ°μ λΆμμ μ 곡ν¨
Limitaions
μν 리뷰μ νΉνλμ΄ μμΌλ©°, λ€λ₯Έ μ νμλ μ νμ΄ μμ μ μμ
Colab T4 GPUμμ ν
μ€νΈ λμμ
Training and evaluation data
Training data: nsmc 'train' data μ€ μμ 2000κ°μ μν
Evaluation data: nsmc 'test' data μ€ μμ 1000κ°μ μν
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 2
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.03
- training_steps: 300
- mixed_precision_training: Native AMP
Training results
TrainOutput(global_step=300, training_loss=1.1105608495076498,
metrics={'train_runtime': 929.3252, 'train_samples_per_second': 0.646,
'train_steps_per_second': 0.323, 'total_flos': 9315508499251200.0,
'train_loss': 1.1105608495076498, 'epoch': 0.3})
μ νλ
Midm: μ νλ 0.89
Positive Prediction(PP) | Negative Prediction(NP) | |
---|---|---|
True Positive (TP) | 474 | 34 |
True Negative (TN) | 76 | 416 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0
Model tree for chaem/lora-midm-nsmc
Base model
KT-AI/midm-bitext-S-7B-inst-v1