panels_detection_rtdetr
This model is a fine-tuned version of PekingU/rtdetr_r101vd_coco_o365 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 9.5718
- Map: 0.5617
- Map 50: 0.6631
- Map 75: 0.6137
- Map Small: -1.0
- Map Medium: 0.3451
- Map Large: 0.5935
- Mar 1: 0.6546
- Mar 10: 0.7877
- Mar 100: 0.8058
- Mar Small: -1.0
- Mar Medium: 0.5802
- Mar Large: 0.8672
- Map Radar (small): 0.3509
- Mar 100 Radar (small): 0.8077
- Map Ship management system (small): 0.6748
- Mar 100 Ship management system (small): 0.8933
- Map Radar (large): 0.5846
- Mar 100 Radar (large): 0.8624
- Map Ship management system (large): 0.7577
- Mar 100 Ship management system (large): 0.9341
- Map Ship management system (top): 0.789
- Mar 100 Ship management system (top): 0.8356
- Map Ecdis (large): 0.3281
- Mar 100 Ecdis (large): 0.7652
- Map Visual observation (small): 0.585
- Mar 100 Visual observation (small): 0.902
- Map Ecdis (small): 0.7635
- Mar 100 Ecdis (small): 0.8967
- Map Ship management system (table top): 0.6306
- Mar 100 Ship management system (table top): 0.7882
- Map Thruster control: 0.4949
- Mar 100 Thruster control: 0.7447
- Map Visual observation (left): 0.6062
- Mar 100 Visual observation (left): 0.8395
- Map Visual observation (mid): 0.7946
- Mar 100 Visual observation (mid): 0.8901
- Map Visual observation (right): 0.7446
- Mar 100 Visual observation (right): 0.8966
- Map Bow thruster: 0.2392
- Mar 100 Bow thruster: 0.5167
- Map Me telegraph: 0.0825
- Mar 100 Me telegraph: 0.5143
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- num_epochs: 7
Training results
Training Loss | Epoch | Step | Validation Loss | Map | Map 50 | Map 75 | Map Small | Map Medium | Map Large | Mar 1 | Mar 10 | Mar 100 | Mar Small | Mar Medium | Mar Large | Map Radar (small) | Mar 100 Radar (small) | Map Ship management system (small) | Mar 100 Ship management system (small) | Map Radar (large) | Mar 100 Radar (large) | Map Ship management system (large) | Mar 100 Ship management system (large) | Map Ship management system (top) | Mar 100 Ship management system (top) | Map Ecdis (large) | Mar 100 Ecdis (large) | Map Visual observation (small) | Mar 100 Visual observation (small) | Map Ecdis (small) | Mar 100 Ecdis (small) | Map Ship management system (table top) | Mar 100 Ship management system (table top) | Map Thruster control | Mar 100 Thruster control | Map Visual observation (left) | Mar 100 Visual observation (left) | Map Visual observation (mid) | Mar 100 Visual observation (mid) | Map Visual observation (right) | Mar 100 Visual observation (right) | Map Bow thruster | Mar 100 Bow thruster | Map Me telegraph | Mar 100 Me telegraph |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
14.2599 | 1.0 | 699 | 9.6242 | 0.4769 | 0.5404 | 0.5144 | -1.0 | 0.2274 | 0.5416 | 0.5866 | 0.755 | 0.7709 | -1.0 | 0.4884 | 0.8359 | 0.7408 | 0.92 | 0.672 | 0.8827 | 0.7054 | 0.9504 | 0.8329 | 0.926 | 0.7965 | 0.8692 | 0.3419 | 0.9571 | 0.2734 | 0.8627 | 0.1207 | 0.6933 | 0.4841 | 0.7059 | 0.3541 | 0.6947 | 0.5303 | 0.8961 | 0.8393 | 0.9342 | 0.2629 | 0.8466 | 0.1988 | 0.3583 | 0.0011 | 0.0667 |
8.9356 | 2.0 | 1398 | 9.1941 | 0.5527 | 0.6652 | 0.6044 | -1.0 | 0.3212 | 0.574 | 0.6512 | 0.7882 | 0.8015 | -1.0 | 0.6608 | 0.8085 | 0.6989 | 0.8862 | 0.5273 | 0.8053 | 0.7683 | 0.9145 | 0.7209 | 0.9073 | 0.7995 | 0.8644 | 0.4929 | 0.833 | 0.4034 | 0.8392 | 0.5519 | 0.8333 | 0.6453 | 0.8618 | 0.4221 | 0.6447 | 0.5734 | 0.8474 | 0.8714 | 0.8973 | 0.412 | 0.8448 | 0.3154 | 0.5333 | 0.0874 | 0.5095 |
8.1388 | 3.0 | 2097 | 9.7524 | 0.535 | 0.6013 | 0.5854 | -1.0 | 0.2545 | 0.574 | 0.6219 | 0.7425 | 0.7612 | -1.0 | 0.538 | 0.8183 | 0.6358 | 0.8292 | 0.5844 | 0.8013 | 0.6721 | 0.8368 | 0.7422 | 0.8829 | 0.7144 | 0.8096 | 0.4904 | 0.8562 | 0.7623 | 0.9078 | 0.5667 | 0.89 | 0.6409 | 0.7824 | 0.1853 | 0.5763 | 0.5453 | 0.7789 | 0.8362 | 0.9 | 0.5862 | 0.9207 | 0.0384 | 0.3833 | 0.0248 | 0.2619 |
7.5951 | 4.0 | 2796 | 9.3983 | 0.5991 | 0.7001 | 0.6587 | -1.0 | 0.3745 | 0.6167 | 0.6957 | 0.8036 | 0.8188 | -1.0 | 0.6611 | 0.8746 | 0.603 | 0.8538 | 0.626 | 0.88 | 0.6211 | 0.8496 | 0.8218 | 0.9382 | 0.8062 | 0.8433 | 0.3917 | 0.8804 | 0.6202 | 0.851 | 0.8307 | 0.9433 | 0.555 | 0.8147 | 0.5143 | 0.8 | 0.6609 | 0.8579 | 0.887 | 0.9369 | 0.7174 | 0.8759 | 0.2732 | 0.5333 | 0.0579 | 0.4238 |
7.1786 | 5.0 | 3495 | 9.1194 | 0.6117 | 0.7144 | 0.6689 | -1.0 | 0.3458 | 0.6476 | 0.6904 | 0.8136 | 0.8324 | -1.0 | 0.6649 | 0.8777 | 0.5 | 0.8538 | 0.6723 | 0.8733 | 0.7272 | 0.8795 | 0.778 | 0.9398 | 0.7803 | 0.8385 | 0.3389 | 0.8509 | 0.6484 | 0.8804 | 0.7914 | 0.9433 | 0.7053 | 0.8059 | 0.6257 | 0.8447 | 0.5945 | 0.8658 | 0.8411 | 0.9009 | 0.7812 | 0.9397 | 0.2863 | 0.5792 | 0.1053 | 0.4905 |
7.1386 | 6.0 | 4194 | 9.9394 | 0.5353 | 0.634 | 0.5921 | -1.0 | 0.3062 | 0.5549 | 0.6429 | 0.7691 | 0.7874 | -1.0 | 0.5638 | 0.8364 | 0.3431 | 0.7631 | 0.6563 | 0.8813 | 0.5789 | 0.8393 | 0.6941 | 0.9236 | 0.721 | 0.7712 | 0.4061 | 0.8018 | 0.5685 | 0.8725 | 0.7656 | 0.91 | 0.5317 | 0.8 | 0.5194 | 0.7684 | 0.5191 | 0.8039 | 0.7994 | 0.8586 | 0.6714 | 0.8793 | 0.2223 | 0.4958 | 0.0333 | 0.4429 |
7.0912 | 7.0 | 4893 | 9.5718 | 0.5617 | 0.6631 | 0.6137 | -1.0 | 0.3451 | 0.5935 | 0.6546 | 0.7877 | 0.8058 | -1.0 | 0.5802 | 0.8672 | 0.3509 | 0.8077 | 0.6748 | 0.8933 | 0.5846 | 0.8624 | 0.7577 | 0.9341 | 0.789 | 0.8356 | 0.3281 | 0.7652 | 0.585 | 0.902 | 0.7635 | 0.8967 | 0.6306 | 0.7882 | 0.4949 | 0.7447 | 0.6062 | 0.8395 | 0.7946 | 0.8901 | 0.7446 | 0.8966 | 0.2392 | 0.5167 | 0.0825 | 0.5143 |
Framework versions
- Transformers 4.46.0
- Pytorch 2.5.0+cu121
- Datasets 3.0.2
- Tokenizers 0.20.1
- Downloads last month
- 17
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for cems-official/panels_detection_rtdetr
Base model
PekingU/rtdetr_r101vd_coco_o365