luisespinosa's picture
Update README.md
ad3b252
|
raw
history blame
2.39 kB

Twitter-roBERTa-base for Sentiment Analysis

This is a roBERTa-base model trained on ~58M tweets and finetuned for sentiment analysis with the TweetEval benchmark.

Example of classification

from transformers import AutoModelForSequenceClassification
from transformers import TFAutoModelForSequenceClassification
from transformers import AutoTokenizer
import numpy as np
from scipy.special import softmax
import csv
import urllib.request

# Preprocess text (username and link placeholders)
def preprocess(text):
    new_text = []
 
 
    for t in text.split(" "):
        t = '@user' if t.startswith('@') and len(t) > 1 else t
        t = 'http' if t.startswith('http') else t
        new_text.append(t)
    return " ".join(new_text)

# Tasks:
# emoji, emotion, hate, irony, offensive, sentiment
# stance/abortion, stance/atheism, stance/climate, stance/feminist, stance/hillary

task='sentiment'
MODEL = f"cardiffnlp/twitter-roberta-base-{task}"

tokenizer = AutoTokenizer.from_pretrained(MODEL)

# download label mapping
labels=[]
mapping_link = f"https://raw.githubusercontent.com/cardiffnlp/tweeteval/main/datasets/{task}/mapping.txt"
with urllib.request.urlopen(mapping_link) as f:
    html = f.read().decode('utf-8').split("\n")
    csvreader = csv.reader(html, delimiter='\t')
labels = [row[1] for row in csvreader if len(row) > 1]

# PT
model = AutoModelForSequenceClassification.from_pretrained(MODEL)
model.save_pretrained(MODEL)

text = "Good night ๐Ÿ˜Š"
text = preprocess(text)
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
scores = output[0][0].detach().numpy()
scores = softmax(scores)

# # TF
# model = TFAutoModelForSequenceClassification.from_pretrained(MODEL)
# model.save_pretrained(MODEL)

# text = "Good night ๐Ÿ˜Š"
# encoded_input = tokenizer(text, return_tensors='tf')
# output = model(encoded_input)
# scores = output[0][0].numpy()
# scores = softmax(scores)

ranking = np.argsort(scores)
ranking = ranking[::-1]
for i in range(scores.shape[0]):
    l = labels[ranking[i]]
    s = scores[ranking[i]]
    print(f"{i+1}) {l} {np.round(float(s), 4)}")

Output:

1) positive 0.8466
2) neutral 0.1458
3) negative 0.0076