Edit model card

whisper-indic-audio-abuse-feature

This model is a fine-tuned version of Vignesh-M/Indic-whisper on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5056
  • Accuracy: 0.8868
  • Macro Precision: 0.8642
  • Macro Recall: 0.8509
  • Macro F1-score: 0.8572

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.01
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Macro Precision Macro Recall Macro F1-score
0.4635 0.4367 50 0.4010 0.8020 0.8176 0.8096 0.8014
0.3403 0.8734 100 0.3162 0.8684 0.8685 0.8668 0.8675
0.2689 1.3100 150 0.3025 0.8807 0.8838 0.8774 0.8793
0.2339 1.7467 200 0.3019 0.8782 0.8776 0.8777 0.8776
0.1723 2.1834 250 0.3715 0.8868 0.8870 0.8854 0.8861
0.1027 2.6201 300 0.3472 0.8930 0.8937 0.8912 0.8921
0.123 3.0568 350 0.3690 0.8795 0.8855 0.8751 0.8776
0.0497 3.4934 400 0.4423 0.8918 0.8916 0.8907 0.8911
0.0534 3.9301 450 0.3937 0.9041 0.9048 0.9024 0.9033
0.0235 4.3668 500 0.4753 0.8979 0.8993 0.8958 0.8970
0.0196 4.8035 550 0.5204 0.8967 0.8982 0.8944 0.8957

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.1.2
  • Datasets 2.19.2
  • Tokenizers 0.19.1
Downloads last month
7
Safetensors
Model size
307M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for callmesan/whisper-indic-audio-abuse-feature

Finetuned
(2)
this model