Edit model card

classify-ISIN-STEP8_binary

This model is a fine-tuned version of albert/albert-base-v2 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0001
  • Accuracy: 1.0
  • F1: 1.0
  • Precision: 1.0
  • Recall: 1.0
  • Accuracy Label Gd622:no: 1.0
  • Accuracy Label Gd622:yes: 1.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall Accuracy Label Gd622:no Accuracy Label Gd622:yes
0.0992 0.1610 100 0.0070 0.9987 0.9987 0.9987 0.9987 0.9982 1.0
0.0082 0.3221 200 0.0002 1.0 1.0 1.0 1.0 1.0 1.0
0.0002 0.4831 300 0.0001 1.0 1.0 1.0 1.0 1.0 1.0
0.0001 0.6441 400 0.0001 1.0 1.0 1.0 1.0 1.0 1.0
0.0001 0.8052 500 0.0001 1.0 1.0 1.0 1.0 1.0 1.0
0.0052 0.9662 600 0.0001 1.0 1.0 1.0 1.0 1.0 1.0

Framework versions

  • Transformers 4.43.3
  • Pytorch 2.4.0
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
4
Safetensors
Model size
11.7M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for calculito/classify-ISIN-STEP8_binary

Finetuned
(159)
this model