layoutlm-funsd
This model is a fine-tuned version of microsoft/layoutlm-base-uncased on the funsd dataset. It achieves the following results on the evaluation set:
- Loss: 0.6178
- Answer: {'precision': 0.6652719665271967, 'recall': 0.7861557478368356, 'f1': 0.7206798866855525, 'number': 809}
- Header: {'precision': 0.29133858267716534, 'recall': 0.31092436974789917, 'f1': 0.3008130081300813, 'number': 119}
- Question: {'precision': 0.7537248028045574, 'recall': 0.8075117370892019, 'f1': 0.7796917497733454, 'number': 1065}
- Overall Precision: 0.6893
- Overall Recall: 0.7692
- Overall F1: 0.7271
- Overall Accuracy: 0.8014
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
---|---|---|---|---|---|---|---|---|---|---|
1.5284 | 1.0 | 38 | 1.0167 | {'precision': 0.3938144329896907, 'recall': 0.4721878862793572, 'f1': 0.4294547498594716, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.5845528455284553, 'recall': 0.6751173708920187, 'f1': 0.6265795206971678, 'number': 1065} | 0.4959 | 0.5524 | 0.5227 | 0.6689 |
0.8661 | 2.0 | 76 | 0.7179 | {'precision': 0.630346232179226, 'recall': 0.765142150803461, 'f1': 0.6912339475153545, 'number': 809} | {'precision': 0.2087912087912088, 'recall': 0.15966386554621848, 'f1': 0.18095238095238092, 'number': 119} | {'precision': 0.7058823529411765, 'recall': 0.7436619718309859, 'f1': 0.7242798353909465, 'number': 1065} | 0.6515 | 0.7175 | 0.6829 | 0.7596 |
0.6265 | 3.0 | 114 | 0.6470 | {'precision': 0.6458546571136131, 'recall': 0.7799752781211372, 'f1': 0.7066069428891377, 'number': 809} | {'precision': 0.2972972972972973, 'recall': 0.2773109243697479, 'f1': 0.28695652173913044, 'number': 119} | {'precision': 0.7359649122807017, 'recall': 0.787793427230047, 'f1': 0.7609977324263038, 'number': 1065} | 0.6746 | 0.7541 | 0.7122 | 0.7879 |
0.5076 | 4.0 | 152 | 0.6207 | {'precision': 0.6680851063829787, 'recall': 0.7762669962917181, 'f1': 0.7181246426529445, 'number': 809} | {'precision': 0.28, 'recall': 0.29411764705882354, 'f1': 0.28688524590163933, 'number': 119} | {'precision': 0.7368421052631579, 'recall': 0.828169014084507, 'f1': 0.7798408488063661, 'number': 1065} | 0.6830 | 0.7752 | 0.7262 | 0.8003 |
0.4471 | 5.0 | 190 | 0.6178 | {'precision': 0.6652719665271967, 'recall': 0.7861557478368356, 'f1': 0.7206798866855525, 'number': 809} | {'precision': 0.29133858267716534, 'recall': 0.31092436974789917, 'f1': 0.3008130081300813, 'number': 119} | {'precision': 0.7537248028045574, 'recall': 0.8075117370892019, 'f1': 0.7796917497733454, 'number': 1065} | 0.6893 | 0.7692 | 0.7271 | 0.8014 |
Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1+cu116
- Datasets 2.10.1
- Tokenizers 0.13.2
- Downloads last month
- 6
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.