metadata
language:
- en
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:314315
- loss:AdaptiveLayerLoss
- loss:MultipleNegativesRankingLoss
base_model: microsoft/deberta-v3-small
datasets:
- stanfordnlp/snli
metrics:
- cosine_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
- dot_accuracy
- dot_accuracy_threshold
- dot_f1
- dot_f1_threshold
- dot_precision
- dot_recall
- dot_ap
- manhattan_accuracy
- manhattan_accuracy_threshold
- manhattan_f1
- manhattan_f1_threshold
- manhattan_precision
- manhattan_recall
- manhattan_ap
- euclidean_accuracy
- euclidean_accuracy_threshold
- euclidean_f1
- euclidean_f1_threshold
- euclidean_precision
- euclidean_recall
- euclidean_ap
- max_accuracy
- max_accuracy_threshold
- max_f1
- max_f1_threshold
- max_precision
- max_recall
- max_ap
widget:
- source_sentence: The pitcher is pitching the ball in a game of baseball.
sentences:
- the lady digs into the ground
- A group of people are sitting at tables.
- The pitcher throws the ball.
- source_sentence: People are conversing at a dining table under a canopy.
sentences:
- A canine is using his legs.
- The people are creative.
- People at a party are seated for dinner on the lawn.
- source_sentence: Two teenage girls conversing next to lockers.
sentences:
- Girls talking about their problems next to lockers.
- A group of people play in the ocean.
- The man is testing the bike.
- source_sentence: >-
A young boy in a hoodie climbs a red slide sitting on a red and green
checkered background.
sentences:
- People are buying food from a street vendor.
- A boy is playing.
- A dog outside digging.
- source_sentence: >-
A professional swimmer spits water out after surfacing while grabbing the
hand of someone helping him back to land.
sentences:
- A group of people wait in a line.
- A tourist has his picture taken on Easter Island.
- The swimmer almost drowned after being sucked under a fast current.
pipeline_tag: sentence-similarity
model-index:
- name: SentenceTransformer based on microsoft/deberta-v3-small
results:
- task:
type: binary-classification
name: Binary Classification
dataset:
name: Unknown
type: unknown
metrics:
- type: cosine_accuracy
value: 0.6578209113655319
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.7228835821151733
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.7058138858173776
name: Cosine F1
- type: cosine_f1_threshold
value: 0.6018929481506348
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.586687306501548
name: Cosine Precision
- type: cosine_recall
value: 0.8856433474514386
name: Cosine Recall
- type: cosine_ap
value: 0.6972177912771047
name: Cosine Ap
- type: dot_accuracy
value: 0.6157403897187049
name: Dot Accuracy
- type: dot_accuracy_threshold
value: 240.6935577392578
name: Dot Accuracy Threshold
- type: dot_f1
value: 0.6994949494949494
name: Dot F1
- type: dot_f1_threshold
value: 180.59024047851562
name: Dot F1 Threshold
- type: dot_precision
value: 0.5603834989884774
name: Dot Precision
- type: dot_recall
value: 0.9304805024098145
name: Dot Recall
- type: dot_ap
value: 0.6228322985998769
name: Dot Ap
- type: manhattan_accuracy
value: 0.6658579118962772
name: Manhattan Accuracy
- type: manhattan_accuracy_threshold
value: 281.63262939453125
name: Manhattan Accuracy Threshold
- type: manhattan_f1
value: 0.7096774193548386
name: Manhattan F1
- type: manhattan_f1_threshold
value: 315.9024658203125
name: Manhattan F1 Threshold
- type: manhattan_precision
value: 0.6168446026097272
name: Manhattan Precision
- type: manhattan_recall
value: 0.8354023659997079
name: Manhattan Recall
- type: manhattan_ap
value: 0.7109579985461502
name: Manhattan Ap
- type: euclidean_accuracy
value: 0.6626734399878687
name: Euclidean Accuracy
- type: euclidean_accuracy_threshold
value: 14.194840431213379
name: Euclidean Accuracy Threshold
- type: euclidean_f1
value: 0.7064288581751448
name: Euclidean F1
- type: euclidean_f1_threshold
value: 17.004133224487305
name: Euclidean F1 Threshold
- type: euclidean_precision
value: 0.581586402266289
name: Euclidean Precision
- type: euclidean_recall
value: 0.8995180370965387
name: Euclidean Recall
- type: euclidean_ap
value: 0.7094433163219231
name: Euclidean Ap
- type: max_accuracy
value: 0.6658579118962772
name: Max Accuracy
- type: max_accuracy_threshold
value: 281.63262939453125
name: Max Accuracy Threshold
- type: max_f1
value: 0.7096774193548386
name: Max F1
- type: max_f1_threshold
value: 315.9024658203125
name: Max F1 Threshold
- type: max_precision
value: 0.6168446026097272
name: Max Precision
- type: max_recall
value: 0.9304805024098145
name: Max Recall
- type: max_ap
value: 0.7109579985461502
name: Max Ap
SentenceTransformer based on microsoft/deberta-v3-small
[n_layers_per_step = -1, last_layer_weight = 1 * (model_layers-1), prior_layers_weight= 0.85, kl_div_weight = 2, kl_temperature= 10, lr = 1e-6. batch = 42, schedule = cosine]
This is a sentence-transformers model finetuned from microsoft/deberta-v3-small on the stanfordnlp/snli dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: microsoft/deberta-v3-small
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DebertaV2Model
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("bobox/DeBERTaV3-small-SenTra-AdaptiveLayerAllNorm")
# Run inference
sentences = [
'A professional swimmer spits water out after surfacing while grabbing the hand of someone helping him back to land.',
'The swimmer almost drowned after being sucked under a fast current.',
'A group of people wait in a line.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Binary Classification
- Evaluated with
BinaryClassificationEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.6578 |
cosine_accuracy_threshold | 0.7229 |
cosine_f1 | 0.7058 |
cosine_f1_threshold | 0.6019 |
cosine_precision | 0.5867 |
cosine_recall | 0.8856 |
cosine_ap | 0.6972 |
dot_accuracy | 0.6157 |
dot_accuracy_threshold | 240.6936 |
dot_f1 | 0.6995 |
dot_f1_threshold | 180.5902 |
dot_precision | 0.5604 |
dot_recall | 0.9305 |
dot_ap | 0.6228 |
manhattan_accuracy | 0.6659 |
manhattan_accuracy_threshold | 281.6326 |
manhattan_f1 | 0.7097 |
manhattan_f1_threshold | 315.9025 |
manhattan_precision | 0.6168 |
manhattan_recall | 0.8354 |
manhattan_ap | 0.711 |
euclidean_accuracy | 0.6627 |
euclidean_accuracy_threshold | 14.1948 |
euclidean_f1 | 0.7064 |
euclidean_f1_threshold | 17.0041 |
euclidean_precision | 0.5816 |
euclidean_recall | 0.8995 |
euclidean_ap | 0.7094 |
max_accuracy | 0.6659 |
max_accuracy_threshold | 281.6326 |
max_f1 | 0.7097 |
max_f1_threshold | 315.9025 |
max_precision | 0.6168 |
max_recall | 0.9305 |
max_ap | 0.711 |
Training Details
Training Dataset
stanfordnlp/snli
- Dataset: stanfordnlp/snli at cdb5c3d
- Size: 314,315 training samples
- Columns:
sentence1
,sentence2
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 label type string string int details - min: 5 tokens
- mean: 16.62 tokens
- max: 62 tokens
- min: 4 tokens
- mean: 9.46 tokens
- max: 29 tokens
- 0: 100.00%
- Samples:
sentence1 sentence2 label A person on a horse jumps over a broken down airplane.
A person is outdoors, on a horse.
0
Children smiling and waving at camera
There are children present
0
A boy is jumping on skateboard in the middle of a red bridge.
The boy does a skateboarding trick.
0
- Loss:
AdaptiveLayerLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "n_layers_per_step": -1, "last_layer_weight": 6, "prior_layers_weight": 0.85, "kl_div_weight": 2, "kl_temperature": 10 }
Evaluation Dataset
stanfordnlp/snli
- Dataset: stanfordnlp/snli at cdb5c3d
- Size: 13,189 evaluation samples
- Columns:
premise
,hypothesis
, andlabel
- Approximate statistics based on the first 1000 samples:
premise hypothesis label type string string int details - min: 6 tokens
- mean: 17.28 tokens
- max: 59 tokens
- min: 4 tokens
- mean: 10.53 tokens
- max: 32 tokens
- 0: ~48.70%
- 1: ~51.30%
- Samples:
premise hypothesis label This church choir sings to the masses as they sing joyous songs from the book at a church.
The church has cracks in the ceiling.
0
This church choir sings to the masses as they sing joyous songs from the book at a church.
The church is filled with song.
1
A woman with a green headscarf, blue shirt and a very big grin.
The woman is young.
0
- Loss:
AdaptiveLayerLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "n_layers_per_step": -1, "last_layer_weight": 6, "prior_layers_weight": 0.85, "kl_div_weight": 2, "kl_temperature": 10 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 42per_device_eval_batch_size
: 32learning_rate
: 1e-06weight_decay
: 1e-08num_train_epochs
: 1lr_scheduler_type
: cosinewarmup_ratio
: 0.2save_safetensors
: Falsefp16
: Truehub_model_id
: bobox/DeBERTaV3-small-SenTra-AdaptiveLayerAllNorm-tmphub_strategy
: checkpointbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 42per_device_eval_batch_size
: 32per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 1e-06weight_decay
: 1e-08adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.2warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Falsesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: bobox/DeBERTaV3-small-SenTra-AdaptiveLayerAllNorm-tmphub_strategy
: checkpointhub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | loss | max_ap |
---|---|---|---|---|
0.0501 | 375 | 23.8735 | 21.0352 | 0.6131 |
0.1002 | 750 | 22.4091 | 19.6992 | 0.6353 |
0.1503 | 1125 | 19.4663 | 16.2104 | 0.6580 |
0.2004 | 1500 | 15.348 | 13.2038 | 0.6732 |
0.2505 | 1875 | 12.5377 | 11.6357 | 0.6815 |
0.3006 | 2250 | 11.4576 | 10.7570 | 0.6862 |
0.3507 | 2625 | 10.7446 | 10.1819 | 0.6891 |
0.4009 | 3000 | 10.2323 | 9.7470 | 0.6904 |
0.4510 | 3375 | 9.9825 | 9.4256 | 0.6914 |
0.5011 | 3750 | 9.6954 | 9.2200 | 0.6923 |
0.5512 | 4125 | 9.6359 | 9.0367 | 0.6923 |
0.6013 | 4500 | 8.3103 | 7.8258 | 0.7026 |
0.6514 | 4875 | 4.4845 | 7.4044 | 0.7073 |
0.7015 | 5250 | 3.8303 | 7.2647 | 0.7092 |
0.7516 | 5625 | 3.5617 | 7.2020 | 0.7098 |
0.8017 | 6000 | 3.4088 | 7.1684 | 0.7103 |
0.8518 | 6375 | 3.347 | 7.1531 | 0.7108 |
0.9019 | 6750 | 3.2064 | 7.1451 | 0.7109 |
0.9520 | 7125 | 3.3096 | 7.1427 | 0.7110 |
Framework Versions
- Python: 3.10.13
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2
- Accelerate: 0.30.1
- Datasets: 2.19.2
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
AdaptiveLayerLoss
@misc{li20242d,
title={2D Matryoshka Sentence Embeddings},
author={Xianming Li and Zongxi Li and Jing Li and Haoran Xie and Qing Li},
year={2024},
eprint={2402.14776},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}