Albert-base-v2-emotion
Model description:
Albert is A Lite BERT architecture that has significantly fewer parameters than a traditional BERT architecture.
Albert-base-v2 finetuned on the emotion dataset using HuggingFace Trainer with below Hyperparameters
learning rate 2e-5,
batch size 64,
num_train_epochs=8,
Model Performance Comparision on Emotion Dataset from Twitter:
Model | Accuracy | F1 Score | Test Sample per Second |
---|---|---|---|
Distilbert-base-uncased-emotion | 93.8 | 93.79 | 398.69 |
Bert-base-uncased-emotion | 94.05 | 94.06 | 190.152 |
Roberta-base-emotion | 93.95 | 93.97 | 195.639 |
Albert-base-v2-emotion | 93.6 | 93.65 | 182.794 |
How to Use the model:
from transformers import pipeline
classifier = pipeline("text-classification",model='bhadresh-savani/albert-base-v2-emotion', return_all_scores=True)
prediction = classifier("I love using transformers. The best part is wide range of support and its easy to use", )
print(prediction)
"""
Output:
[[
{'label': 'sadness', 'score': 0.010403595864772797},
{'label': 'joy', 'score': 0.8902180790901184},
{'label': 'love', 'score': 0.042532723397016525},
{'label': 'anger', 'score': 0.041297927498817444},
{'label': 'fear', 'score': 0.011772023513913155},
{'label': 'surprise', 'score': 0.0037756056990474463}
]]
"""
Dataset:
Training procedure
Eval results
{
'test_accuracy': 0.936,
'test_f1': 0.9365658988006296,
'test_loss': 0.15278364717960358,
'test_runtime': 10.9413,
'test_samples_per_second': 182.794,
'test_steps_per_second': 2.925
}
Reference:
- Downloads last month
- 58,337