Copycats commited on
Commit
690f062
1 Parent(s): 5a3f95b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +5 -4
README.md CHANGED
@@ -27,7 +27,7 @@ Then you can use the model like this:
27
  from sentence_transformers import SentenceTransformer
28
  sentences = ["This is an example sentence", "Each sentence is converted"]
29
 
30
- model = SentenceTransformer('bespin-global/klue-sroberta-base-continue-learning-by-mnr)
31
  embeddings = model.encode(sentences)
32
  print(embeddings)
33
  ```
@@ -53,8 +53,8 @@ def mean_pooling(model_output, attention_mask):
53
  sentences = ['This is an example sentence', 'Each sentence is converted']
54
 
55
  # Load model from HuggingFace Hub
56
- tokenizer = AutoTokenizer.from_pretrained('bespin-global/klue-sroberta-base-continue-learning-by-mnr')
57
- model = AutoModel.from_pretrained('bespin-global/klue-sroberta-base-continue-learning-by-mnr')
58
 
59
  # Tokenize sentences
60
  encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
@@ -77,7 +77,8 @@ print(sentence_embeddings)
77
  <!--- Describe how your model was evaluated -->
78
 
79
  For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
80
- ![]("https://media.vlpt.us/images/jaehyeong/post/ea83f369-ce37-4e7e-b727-18c3ba7f6174/%E1%84%89%E1%85%B3%E1%84%8F%E1%85%B3%E1%84%85%E1%85%B5%E1%86%AB%E1%84%89%E1%85%A3%E1%86%BA%202022-03-01%20%E1%84%8B%E1%85%A9%E1%84%8C%E1%85%A5%E1%86%AB%201.06.52.png")
 
81
 
82
 
83
  ## Training
 
27
  from sentence_transformers import SentenceTransformer
28
  sentences = ["This is an example sentence", "Each sentence is converted"]
29
 
30
+ model = SentenceTransformer("bespin-global/klue-sroberta-base-continue-learning-by-mnr")
31
  embeddings = model.encode(sentences)
32
  print(embeddings)
33
  ```
 
53
  sentences = ['This is an example sentence', 'Each sentence is converted']
54
 
55
  # Load model from HuggingFace Hub
56
+ tokenizer = AutoTokenizer.from_pretrained("bespin-global/klue-sroberta-base-continue-learning-by-mnr")
57
+ model = AutoModel.from_pretrained("bespin-global/klue-sroberta-base-continue-learning-by-mnr")
58
 
59
  # Tokenize sentences
60
  encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
 
77
  <!--- Describe how your model was evaluated -->
78
 
79
  For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
80
+
81
+ <img src="https://media.vlpt.us/images/jaehyeong/post/ea83f369-ce37-4e7e-b727-18c3ba7f6174/%E1%84%89%E1%85%B3%E1%84%8F%E1%85%B3%E1%84%85%E1%85%B5%E1%86%AB%E1%84%89%E1%85%A3%E1%86%BA%202022-03-01%20%E1%84%8B%E1%85%A9%E1%84%8C%E1%85%A5%E1%86%AB%201.06.52.png">
82
 
83
 
84
  ## Training