Update README.md
Browse files
README.md
CHANGED
@@ -27,7 +27,7 @@ Then you can use the model like this:
|
|
27 |
from sentence_transformers import SentenceTransformer
|
28 |
sentences = ["This is an example sentence", "Each sentence is converted"]
|
29 |
|
30 |
-
model = SentenceTransformer(
|
31 |
embeddings = model.encode(sentences)
|
32 |
print(embeddings)
|
33 |
```
|
@@ -53,8 +53,8 @@ def mean_pooling(model_output, attention_mask):
|
|
53 |
sentences = ['This is an example sentence', 'Each sentence is converted']
|
54 |
|
55 |
# Load model from HuggingFace Hub
|
56 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
57 |
-
model = AutoModel.from_pretrained(
|
58 |
|
59 |
# Tokenize sentences
|
60 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
@@ -77,7 +77,8 @@ print(sentence_embeddings)
|
|
77 |
<!--- Describe how your model was evaluated -->
|
78 |
|
79 |
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
|
80 |
-
|
|
|
81 |
|
82 |
|
83 |
## Training
|
|
|
27 |
from sentence_transformers import SentenceTransformer
|
28 |
sentences = ["This is an example sentence", "Each sentence is converted"]
|
29 |
|
30 |
+
model = SentenceTransformer("bespin-global/klue-sroberta-base-continue-learning-by-mnr")
|
31 |
embeddings = model.encode(sentences)
|
32 |
print(embeddings)
|
33 |
```
|
|
|
53 |
sentences = ['This is an example sentence', 'Each sentence is converted']
|
54 |
|
55 |
# Load model from HuggingFace Hub
|
56 |
+
tokenizer = AutoTokenizer.from_pretrained("bespin-global/klue-sroberta-base-continue-learning-by-mnr")
|
57 |
+
model = AutoModel.from_pretrained("bespin-global/klue-sroberta-base-continue-learning-by-mnr")
|
58 |
|
59 |
# Tokenize sentences
|
60 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
|
|
77 |
<!--- Describe how your model was evaluated -->
|
78 |
|
79 |
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
|
80 |
+
|
81 |
+
<img src="https://media.vlpt.us/images/jaehyeong/post/ea83f369-ce37-4e7e-b727-18c3ba7f6174/%E1%84%89%E1%85%B3%E1%84%8F%E1%85%B3%E1%84%85%E1%85%B5%E1%86%AB%E1%84%89%E1%85%A3%E1%86%BA%202022-03-01%20%E1%84%8B%E1%85%A9%E1%84%8C%E1%85%A5%E1%86%AB%201.06.52.png">
|
82 |
|
83 |
|
84 |
## Training
|