Copycats commited on
Commit
5a3f95b
1 Parent(s): eda968a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +7 -5
README.md CHANGED
@@ -7,7 +7,7 @@ tags:
7
  - transformers
8
  ---
9
 
10
- # {MODEL_NAME}
11
 
12
  This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
13
 
@@ -27,7 +27,7 @@ Then you can use the model like this:
27
  from sentence_transformers import SentenceTransformer
28
  sentences = ["This is an example sentence", "Each sentence is converted"]
29
 
30
- model = SentenceTransformer('{MODEL_NAME}')
31
  embeddings = model.encode(sentences)
32
  print(embeddings)
33
  ```
@@ -53,8 +53,8 @@ def mean_pooling(model_output, attention_mask):
53
  sentences = ['This is an example sentence', 'Each sentence is converted']
54
 
55
  # Load model from HuggingFace Hub
56
- tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
57
- model = AutoModel.from_pretrained('{MODEL_NAME}')
58
 
59
  # Tokenize sentences
60
  encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
@@ -77,6 +77,7 @@ print(sentence_embeddings)
77
  <!--- Describe how your model was evaluated -->
78
 
79
  For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
 
80
 
81
 
82
  ## Training
@@ -122,4 +123,5 @@ SentenceTransformer(
122
 
123
  ## Citing & Authors
124
 
125
- <!--- Describe where people can find more information -->
 
 
7
  - transformers
8
  ---
9
 
10
+ # bespin-global/klue-sroberta-base-continue-learning-by-mnr
11
 
12
  This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
13
 
 
27
  from sentence_transformers import SentenceTransformer
28
  sentences = ["This is an example sentence", "Each sentence is converted"]
29
 
30
+ model = SentenceTransformer('bespin-global/klue-sroberta-base-continue-learning-by-mnr)
31
  embeddings = model.encode(sentences)
32
  print(embeddings)
33
  ```
 
53
  sentences = ['This is an example sentence', 'Each sentence is converted']
54
 
55
  # Load model from HuggingFace Hub
56
+ tokenizer = AutoTokenizer.from_pretrained('bespin-global/klue-sroberta-base-continue-learning-by-mnr')
57
+ model = AutoModel.from_pretrained('bespin-global/klue-sroberta-base-continue-learning-by-mnr')
58
 
59
  # Tokenize sentences
60
  encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
 
77
  <!--- Describe how your model was evaluated -->
78
 
79
  For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
80
+ ![]("https://media.vlpt.us/images/jaehyeong/post/ea83f369-ce37-4e7e-b727-18c3ba7f6174/%E1%84%89%E1%85%B3%E1%84%8F%E1%85%B3%E1%84%85%E1%85%B5%E1%86%AB%E1%84%89%E1%85%A3%E1%86%BA%202022-03-01%20%E1%84%8B%E1%85%A9%E1%84%8C%E1%85%A5%E1%86%AB%201.06.52.png")
81
 
82
 
83
  ## Training
 
123
 
124
  ## Citing & Authors
125
 
126
+ <!--- Describe where people can find more information -->
127
+ [Jaehyeong](https://huggingface.co/jaehyeong) at [Bespin Global](https://www.bespinglobal.com/)