|
--- |
|
license: apache-2.0 |
|
base_model: distilbert-base-multilingual-cased |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
- f1 |
|
model-index: |
|
- name: results |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# results |
|
|
|
This model is a fine-tuned version of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.5117 |
|
- Accuracy: 0.7169 |
|
- Precision: 0.6803 |
|
- Recall: 0.6642 |
|
- F1: 0.6693 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 999 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| |
|
| 0.7606 | 1.0 | 761 | 0.6333 | 0.7228 | 0.6856 | 0.6831 | 0.6819 | |
|
| 0.4448 | 2.0 | 1522 | 0.6450 | 0.7320 | 0.6983 | 0.7065 | 0.7011 | |
|
| 1.0076 | 3.0 | 2283 | 0.6573 | 0.7346 | 0.7038 | 0.7153 | 0.7069 | |
|
| 0.1369 | 4.0 | 3044 | 0.8941 | 0.7248 | 0.6855 | 0.6762 | 0.6796 | |
|
| 0.0096 | 5.0 | 3805 | 1.1590 | 0.7264 | 0.6874 | 0.6911 | 0.6889 | |
|
| 0.0728 | 6.0 | 4566 | 1.2896 | 0.7366 | 0.7001 | 0.6875 | 0.6910 | |
|
| 0.0007 | 7.0 | 5327 | 1.5882 | 0.7297 | 0.7027 | 0.6787 | 0.6825 | |
|
| 0.0106 | 8.0 | 6088 | 1.5117 | 0.7169 | 0.6803 | 0.6642 | 0.6693 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.37.2 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.17.1 |
|
- Tokenizers 0.15.2 |
|
|