metadata
tags:
- merge
- mergekit
- lazymergekit
- yam-peleg/Experiment26-7B
- yam-peleg/Experiment26-7B
- yam-peleg/Experiment26-7B
- yam-peleg/Experiment26-7B
- yam-peleg/Experiment26-7B
- yam-peleg/Experiment26-7B
- yam-peleg/Experiment26-7B
- yam-peleg/Experiment26-7B
- yam-peleg/Experiment26-7B
- yam-peleg/Experiment26-7B
base_model:
- yam-peleg/Experiment26-7B
- yam-peleg/Experiment26-7B
- yam-peleg/Experiment26-7B
- yam-peleg/Experiment26-7B
- yam-peleg/Experiment26-7B
- yam-peleg/Experiment26-7B
- yam-peleg/Experiment26-7B
- yam-peleg/Experiment26-7B
- yam-peleg/Experiment26-7B
- yam-peleg/Experiment26-7B
Experiment26-7B-passthrough-10slice
Experiment26-7B-passthrough-10slice is a merge of the following models using LazyMergekit:
- yam-peleg/Experiment26-7B
- yam-peleg/Experiment26-7B
- yam-peleg/Experiment26-7B
- yam-peleg/Experiment26-7B
- yam-peleg/Experiment26-7B
- yam-peleg/Experiment26-7B
- yam-peleg/Experiment26-7B
- yam-peleg/Experiment26-7B
- yam-peleg/Experiment26-7B
- yam-peleg/Experiment26-7B
🧩 Configuration
slices:
- sources:
- model: yam-peleg/Experiment26-7B
layer_range: [0, 5]
- sources:
- model: yam-peleg/Experiment26-7B
layer_range: [3, 8]
- sources:
- model: yam-peleg/Experiment26-7B
layer_range: [6, 11]
- sources:
- model: yam-peleg/Experiment26-7B
layer_range: [9, 14]
- sources:
- model: yam-peleg/Experiment26-7B
layer_range: [12, 17]
- sources:
- model: yam-peleg/Experiment26-7B
layer_range: [15, 20]
- sources:
- model: yam-peleg/Experiment26-7B
layer_range: [18, 23]
- sources:
- model: yam-peleg/Experiment26-7B
layer_range: [21, 26]
- sources:
- model: yam-peleg/Experiment26-7B
layer_range: [24, 29]
- sources:
- model: yam-peleg/Experiment26-7B
layer_range: [27, 32]
merge_method: passthrough
dtype: bfloat16
💻 Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "babybirdprd/Experiment26-7B-passthrough-10slice"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])